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Abstract

We consider a model for which it is important, early in praieg, to estimate some variables
with high precision, but perhaps at relatively low recaflsbme variables can be identified with
near certainty, they can be conditioned upon, allowinghtertinference to be done efficiently.
Specifically, we consider optical character recognitiol€R) systems that can be bootstrapped
by identifying a subset of correctly translated documentdsowith very high precision. This
“clean set” is subsequently used as document-specifidrigattata. While OCR systems produce
confidence measures for the identity of each letter or wbrésholding these values still produces
a significant number of errors.

We introduce a novel technique for identifying a set of cormeords with very high precision.
Rather than estimating posterior probabilities, ind the probability that any given word is
incorrect using an approximate worst case analysis. We @mpgirical results on a data set of
difficult historical newspaper scans, demonstrating thatroethod for identifying correct words
makes only two errors in 56 documents. Using document-Bpetiaracter models generated from
this data, we are able to reduce the error over properly setpaieharacters by 34.1% from an
initial OCR system’s translatioh.

Keywords: optical character recognition, probability bounding, doent-specific modeling,
computer vision
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1. Introduction

A long-standing desire in classification has been the ability to adapt a moa#icgéy to a given
test instance. For instance, if one had a reliable method for gauging thahjility of correctness
of an initial set of predictions, then one could iteratively use the predictikely to be correct to
refine the classification model and adapt to the specific test distribution.g&éheral strategy has
been considered in the past (Ho, 1998; Hong and Hull, 1995b,c) dotitplarly within the domain
of computer vision, it has not had much success. We believe that this laticoéss stems from
the difficulty of reliably estimating probabilities in the high dimensional vector egaommon in
computer vision. Rather than attempting to reliably estimate probabilities for alicicets, we
instead propose a shift in perspective, focusing on identifying cakesawve can reliably bound
probabilities.

We show that this old idea of using a first pass system to identify some relablgles, which
are then used in turn to train a second pass system, can be quite poweefultme method of
selecting reliable samples is appropriate. In particular, by formally upperding the probability
of error in a first pass system, we can select results whose probabikty@fis not greater than
some very small threshold, leading to the automatic selection of a subsetutif rekthe first
pass system with very low error rate. These results can be considigidy reliable “training
data”, specific to the test distribution, for a second pass system. Using shisptecific training
data, we demonstrate significant error reductions on some difficult OGiitgons. Thus, the main
contribution of our paper is the combination of standard bounding technigjtrethe idea of multi-
pass test-specific classification systems. To our knowledge, there iecedprg work which does
this.

We first describe why adapting a model to a specific test distribution is an fampayoal, and
in Section 2, discuss our rationale for bounding rather than estimatinglplitiba.

1.1 Adapting to the Test Distribution

In supervised learning, we are given training dgta, i)} to learn a model capable of predicting
variablesy from observationg, and apply this model at test time to new, previously unseen obser-
vationsx'. An important implicit assumption in this framework is that the training instacesg )
are drawn from the same distribution as the test instaficgg). Unfortunately, however, this is
often not the case, and when this assumption is violated, the performangpesfised learning
techniques can decay rapidly.

One natural setting in which this scenario arises is text recognition. Iydseiife, we en-
counter a variety of fonts and character appearances that diffeifiden each other and may be
entirely new to us, such as in outdoor signs, graffiti, and handwritten gessBespite not having
appropriate labeled training examples, as humans we would be able to qudekiyamnd recognize
such text, whereas a machine learning algorithm would not.

There are several methods of addressing this problem. We may attemptragkekaowledge
from a closely related task and apply that knowledge to solve the new tddepr, as in transfer
learning. Alternatively, we may attempt to explicitly parameterize and model theenamwhich
the data varies, as in a hierarchical Bayes model. Instead, we argaettiod, non-parametric
option, inspired by human behavior.

When presented with text in an unusual font, or with a new situation in gemerargue that
humans will first identify elements that they are very confident in their wtdeding of, based on
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previous experience. For instance, they may be able to identify a partietiarbased on similarity
to previously seen fonts or by the occurrence statistics. Once they bagdthds, they will condition
on this information and use it as an aid to understanding the remaining elements.

Similarly, we argue that a machine learning algorithm could benefit by fidgnstanding, with
very low probability of being incorrect, some subset of the new test instaara conditioning on
this information as training data specific to the test case.

Ideally, rather than making a hard decision and potentially throwing awduluséormation,
we would like to maintain a distribution over the possible interpretations, sucHiasiaution over
the possible characters a particular letter could be. We could then resmmabiistically over the
different joint labelings of all characters to determine a maximum a postestmate. In practice,
however, we believe this has two pitfalls. The first is the difficulty in obtainiogueate distribu-
tions over labels, especially when dealing with very high dimensional datagatescribe later.
These initial errors can then propagate as we do further reasoniegetiond is the computational
complexity of performing learning and inference on such distributions laNlings. Instead, by
making a hard decision, we can make learning and inference much morergffend make use of
the conditioned information as test-case specific training data with minor modifisatstandard
algorithms. In essence, by making hard decisions only where we aremefigent of the labeling,
we gain the computational efficiencies associated with making such decistbiasiithe common
risk of making unrecoverable errors.

1.2 Document-Specific OCR

In this paper, we focus on the problem of improving optical charactergrétion (OCR) perfor-
mance on difficult test cases. In these instances, the non-stationariydvetie distribution in the
training examples and distribution in the test cases arises due to factorassnoh-standard fonts
and corruption from noise and low resolution.

Applying the reasoning above, we would like to obtain training data from thedtesiments
themselves. In this paper, we use the output from an OCR program antifyiddist of words which
the program got correct. We can then use these correct words to buildocument-specifioCR
models.

While identifying correct words in OCR program output may seem like an #isg to do, to
our knowledge, there are no existing techniques to perform this task wigthigh accuracy. There
are many methods that could be used to produce lists of words that are narstigtcbut contain
some errors. Unfortunately, such lists are not much good as training atatteoéument-specific
models since they contain errors, and these errors in training propaga&ate more errors later.

Although some classifiers may be robust to errors in the training data, thisawilily dependent
on the number of training examples available. For characters sughthat appear less frequently,
having even a few errors may mean that more than half of the training exaanpliegorrect. While
we can tolerate some errors in character sets sua¥,age cannot tolerate them everywhere.

Thus, it is essential that our error rate be very low in the list of wordshve®se as correct. As
described below, our error rate is less than 0.002, as predicted byemretital bounds, making
our generated lists appropriate for training document-specific models.

We first give some background on why we believe this problem of bogngiiobabilities to
achieve high-precision, document-specific training data is interestingedtio® 3, we present the
specifics of our method for creating nearly error-free training setsgee theoretical bounds on the
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probability of error in these sets in Section 4. We then describe how we estument-specific
model to reduce the error rate in Section 5, and give experimental seteurgsults in Section 6.
Finally, we conclude with directions for future research in OCR, as weibtential applications of
our method to other problem domains, in Section 8.

2. Background

Humans and machines both make lots of errors in recognition problems. dgwee of the most

interesting differences between people and machines is that, for some mputms are extremely
confident of their results and appear to be well-justified in this confidevieehines, on the other

hand, while producing numbers such as posterior probabilities, whichugmgosed to represent
confidences, are often wrong even when posterior probabilities trenedy close to 1.

This is a particularly vexing problem when using generative models in dilkeasomputer
vision and pattern recognition. For example, consider a two class problerhian we are dis-
criminating between two similar image class@sndB. Because images are so high-dimensional,
likelihood exponents are frequently very small, and small percentages émrtirese exponents can
render the posteriors meaningless. For example, suppoderthatge|A) = exp(—1000+¢,) and
Pr(image|B) = exp(—1005 + €5), Whereea andeg represent errors in the estimates of the image
distributions?> Assuming a roughly equal prior ol andB, if 5 andeg are Gaussian distributed
with standard deviation a small proportion (for instance, around 1%) ahtgnitude of the expo-
nents, the estimate of the posterior will be extremely sensitive to the erroarficydar, we will
frequently conclude, incorrectly, thr(B|image) ~ 1 andPr(A|image) ~ 0. This phenomenon,
which is quite common in computer vision, makes it quite difficult to assess cogédelues in
recognition problems.

Rather than estimating posterior probabilities very accurately in order torbeogertain re-
sults, we suggest an alternative. We formulate our confidence estimatehgp@hesis test that a
certain result isncorrect and if there is sufficient evidence, we reject the hypothesis that the re-
sult is incorrect. As we shall see, this comes closdraondingthe probabilities of certain results,
which can be done with greater confidence, testimatinghe probability of results, which is much
more difficult. A critical aspect of our approach is that if there is insufficevidence to reject a
hypothesis, then we make no judgment on the correctness of the resulpré2ess only makes
decisions when there is enough evidence, and avoids making decisiengivere is not.

One interesting aspect of our work is that we make use of our boundinly assan important
intermediate step in our overall system. In general, bounds given in mdeliméng are used to
give theoretical justification for pursuing a particular algorithm and to gasigiiis on why they
work. For instance, variational mean field inference can be viewedtasiring a lower bound on
the log partition function (Koller and Friedman, 2009).

In contrast, we make active use of our bound to guarantee that oumdotispecific training
data will be nearly error-free. In this way, our bound plays in an integta in the system itself,
rather than as an analysis of the system.

2. Such errors are extremely difficult to avoid in high-dimensional esiimaroblems, since there is simply not enough
data to estimate the exponents accurately.
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2.1 OCR and Document-Specific Modeling

Despite claims to the contrary, getting OCR systems to obtain very high acaatasyon mod-
erately degraded documents continues to be a challenging problem (2¢4§3), One promising
approach to achieving very high OCR accuracy rates is to incorpdotiement-specific model-
ing (Ho, 1998; Hong and Hull, 1995b,c). This set of approaches attempfine IOCR models to
specifically model the document currently being processed by adaptingforits in the document,
adapting to the noise model in the document, or adapting to the lexicon in the dutcume

If one had some method for finding a sample of words in a document thatkmeren to be
correct with high confidence, one could effectively use the chamairtesuch words as training data
with which to build document-specific models of the fonts in a document. Resalvisigircular-
dependency problem is not easy, however.

To tackle this problem of producing “clean word lists” for document-specifodeling, we
consider a somewhat different approach. Rather than trying to estimaisothegbility that an inter-
mediate output of an OCR system (like an HMM or CRF) is correct and theshbtding this prob-
ability, we instead form a set of hypotheses about each word in the dotuBech hypothesis poses
that one particular word of the first-pass OCR system is incorrect. Westrach for hypotheses
that we can reject with high confidence. More formally, we treat a thirth@€R system (in this
case, the open source OCR program Tessehatp(// code. googl e. cont p/ t esseract-ocr/)
as a null hypothesis generator, in which each attempted transcriptiwaduced by the OCR sys-
tem is treated as the basis for a separate null hypothesis. The null hgisdtivewordT is simply
“Transcription T is incorrect. Letting W be the true identity of a transcriptidn we notate this as

T £W.

Our goal is to find as many hypotheses as possible that can be rejétteaigh confidence
In this paper, we take high confidence to mean with fewer than 1 error in @&ahduejected
hypotheses. As we mention later, we only make 2 errors in 4465 words tieaur word lists, even
when they come from quite challenging documents.

Before proceeding, we stress that the followingroegoals of this paper:

e to present a complete end-to-end system for OCR,

e to produce accurate estimates of the probability of error of particularsnor@CR.

Once again, our goal is to produce large lists of clean words from O@Riband demonstrate
how they can be used for document-specific modeling. After presentingnethod for produc-
ing clean word lists, we provide a formal analysis of the bounds on theapiidly of incorrectly
including a word in our clean word list, under certain assumptions. Whemasgumptions hold,
our error bound is very loose, meaning our true probability of error is nawlr. However, some
documents do in fact violate our assumptions.

We analyze this approach, and find that, with modest assumptions, wewahthe probability
that our method produces an error at less than 0.002. Moreover, i&t-stdp validation of our
general approach, we give a simple method for building a model from thendent-specific data
that significantly reduces the character error on a difficult, real-wadtd dget.

We also compare our method with using the built-in confidence measure oflia damain
OCR system, and thresholding this value to produce document-specific grdetia. We find that
this method produces results that are less consistent and worse ahgecharacter error than our
method.
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2.2 Related Work

Our approach has ties with both prior work in OCR as well as methods outs@€R, such as in
image retrieval. We give a survey of related work below.

2.2.1 NOCR

There has been significant work done in making use of the output of O@R iterative fashion,
although all different from the work we present here. Kukich (199®)Vveyed various methods
to correct words, either in isolation or with context, using natural langpageessing techniques.
Isolated-word error correction methods analyze spelling error patt&mnexample, by deriving
heuristics for common errors or by examining phonetic errors, and attemtptifig these errors
through techniques such as minimum edit distanagram statistics, and neural networks. Context-
dependent word correction methods include using statistical language rsadklas worah-gram
probabilities to correct errors using neighboring words.

Kolak (2003) developed a generative model to estimate the true wordrsagirem noisy OCR
output. They assume a generative process that produces words;tens, and word boundaries,
in order to model segmentation and character recognition errors of ans9&iBm. The model
can be trained on OCR output paired with ground truth and then used t@mastss and correct
additional OCR output by finding the set of words, characters, and bmundaries that maximize
the probability of the observed labeling.

Our work is distinguished from the above mentioned methods in that we examreide¢hment
images themselves to build document-specific models of the characters. A simdavad used
by Hong and Hull (1995a), who examined the inter-word relationships@afacter patches to help
constrain possible interpretations. Specifically, they cluster whole wordesnagd use majority
voting of the associated OCR labels to decide on the correct output aat atearacter image
prototypes. This information is then used to correct additional errorsxagniming sub-patterns
(e.g., aword is a prefix of another word) and decompositions of unkmeovds into known word
patterns using the document images. Our work extends these ideas teedean, document-
specific training data that can then be used in other methods, rather thansimdypotentially
noisy labels through sub-pattern and decomposition analysis.

Our work is also related to a variety of approaches that leverage indeaatier similarity in
documents in order to reduce the dependence upon a priori charaaieism@®ne method for
making use of such information is to treat OCR as a cryptogram decodifieprpwhich dates
back to Casey (1986) and Nagy (1986). After performing charadbstering, decoding can be
performed by a lexicon-based method (Ho and Nagy, 2000) or usingrhidekov models (Lee,
2002); however, such methods are limited by the assumption that chaxztdrs clustered cleanly
into pure clusters consisting of only one character. This particular probbn be overcome by
solving the decoding problem iteratively, using word and character statistifirst decode least
ambiguous characters, then to iteratively decode progressively méicltli€haracters (Kae and
Learned-Miller, 2009).

An alternative approach to obtaining document-specific character modeissisnped by Ed-
wards and Forsyth (2005), using an iterative algorithm to extract cteargemplates from high
confidence regions. One major difference is that we provide a thedretiopad on the number of
errors expected using our algorithm to identify highly confident wordsotAer significant differ-
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ence is that the authors provide a small amount of manually defined trairtangndbeir application,
whereas we provide none.

Another method for leveraging inter-character similarity is to perform some aymharac-
ter clustering. Hobby and Ho (1997) perform clustering in order to pepiadividual, potentially
degraded character images, with a smoothed image over the cluster. @@Q@) learns a proba-
bilistic similarity function to perform nearest-neighbor classification of cttara.

The inability to attain high confidence in either the identity or equivalence obckars in these
papers has hindered their use in subsequent OCR developments. Bvihabihe high confidence
values we obtain will spur the use of these techniques for document-sproifieling.

2.2.2 O'HER WORK

Outside of OCR, our work is similar to Leisink and Kappen (2003), whichsdedh inference in
graphical models for which exact inference is intractable. As an altgetatapproximate inference
techniques (which may bound a different quantity, the log partition functibay directly bound the
marginal probabilities at each node in an iterative process called boapdgation. Each iteration
consists of solving a linear program, where some of the constraints ate doands computed by
previous iterations.

The end product of bound propagation is an upper and lower bourehfdh of the marginal
probabilities of the nodes in the graphical model, with no guarantee on thedgghwhany particular
bound. In contrast, our work focuses on finding the subset of wimrda&hich we can put a very
tight bound on the probability of error, and thus is a different appreacter the general idea of
bounding probabilities.

Our work is also related to the problem of covariate shift (Shimodaira, )200Qvhich it is
assumed that the conditional distributiop§/|x) remain the same for both the training and test
distributions, but the distribution on the observatigg) may differ. In this case, lettingo(x) be
the distribution for the training set, anm (x) be the distribution for a test set, one can reweight the
log likelihood of the training instances wit%o(%. The principal difficulty is estimating this ratio.
In particular, in OCR, test documents may have a range of degradatiomoégs®] and potentially
unseen font models, and thus the suppongk) may potentially not contain the support pf(x),
in which case a re-weighting approach could not be applied. Moreowixe and font appearance
specific to the test document may also lead to a changéyiw) for ambiguous or noisy. Instead,
our work attempts to identify highly confident labelings (x’,y") in order to reltderize the test-
specific distribution over appearance and labels.

Another area closely related to the method presented in this paper is the cuaitien work
of Scheirer et al. (2011). They consider the problem of multiclass retog, such as object or face
recognition. A given test image produces a set of scores indicating edivhe test image matched
each class. Since the test image can belong to at most one class, all bighttst heturned score
can be used to model the distribution of non-matching scores, specific tmie st image. The
authors use some fraction of the top non-matching scores producededst immage to model the
tail of the non-matching distribution using extreme value theory, and then issdisgtribution to
normalize the top matching score.

Similar to our work, the tail distribution that is modeled can be used to attempt td tiegeicull
hypothesis that the top matching score belongs to the non-matching distribQtionwvork differs
in that we specifically focus only on cases where we can reject this npdithgsis with very high
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confidence. To do so, we leverage the appearance of the entire dagwvhé&ch allows us to be
more robust to cases where the test distribution differs substantially fretnatiming distribution.

The idea of identifying objects which can confidently be given a particulaell&s also an
important component of query expansion in the information retrieval fielderexpansion is a
technique used to add terms to an initial query based on the highly rankioghéots of the initial
qguery. In Chum et al. (2007), query expansion is used for imagevatmdere the initial results of
an image query are processed to find resulting images that the system @denoniatch the initial
guery. The confidence in a particular match is evaluated using a spatfaat@n scheme that is
similar to our consistency check presented below. This verification is criticplery expansion, as
false positives can lead to drift, causing irrelevant features to be addled expanded query. Later,
we propose a possible extension to see whether our bound analysis applied to give a bound
on the probability of a false match passing the spatial verification.

Building models specific to a testimage has also been applied in other aresspmiter vision.
In work by Nilsback and Zisserman (2007), an initial, general flower rhisdgplied to an image to
segment a flower from the background. This initial segmentation is usedldoaiouimage-specific
color model of the foreground flower, and this process of segmentatidrcalor estimation is
iterated until convergence.

Berg et al. (2007) follow a similar approach to image parsing, first extigeatiper pixel segmen-
tation of the image, then using pixels with high confidence to learn an imagéispetor model
of sky and building. Ramanan (2006) uses an initial edge model to infelodeqf a person in the
image, then uses this to build an image-specific color model, and iterates unékgence. These
methods can be sensitive to the initial steps, underscoring the need fagorkighion in construct-
ing image-specific models. Sapp et al. (2010) take a slightly differenbapprby using similarity
between a test image and a set of training exemplars and kernel regrieskarn image-specific
model parameters, and then performing inference with the image-specifed.mod

3. Method for Producing Clean Word Lists

In this section, we present our method for examining a document bitmap andtfhé of an OCR
system for that document to produce a so-catlkxdn word list that is, a list of words which we
believe to be correct, with high confidence. Our success will be meabyréd number of words
that can be produced, and whether we achieve a very low error raedfetin list. Ideally, we must
produce a clean word list which is large enough to provide sufficientitigidata for document-
specific modeling.

We assume the following setup.

e We are provided with a documentin the form of a grayscale image.
e We are provided with an OCR system.

e We further assume that the OCR system provideattamptedsegmentation of the docu-
mentD into words, and that the words are segmented into characters. It is cedsaey
that the segmentation be entirely correct, but merely that the system psoaluegtempted
segmentation.

¢ In addition to a segmentation of words and letters, the system should prachest guess
for every character it has segmented, and hence, by extensiorergfveard (or string) it has
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segmented. Of course, we do not expect all of the characters osuwmiwk correct, as that
would make our exercise pointless.

e Using the segmentations provided by the OCR system, we assume we cahtbeigay-
valued bitmaps representing each guessed character from the originahent image.

¢ Finally, we assume we are given a lexicon. Our method is relatively robulsétohoice of
lexicon, and assumes there will be a significant number of non-lexicodisiothe document.

We define a few terms before proceeding. Hamming distancéetween two strings of the
same number of characters is the number of character substitutionsargtes®nvert one string to
the other. Thédamming ballof radiusr for a wordW, H; (W), is the set of strings whose Hamming
distance tdV is less than or equal to Later, after defining certain equivalence relationships among
highly confusable characters such asand 'c’, we define apseudo-Hamming distanaehich is
equivalent to the Hamming distance except that it ignores substitutions arhangcters in the
same equivalence class. We also use the notions of edit distance, wtdnbdeklamming distance
by including joins and splits of characters, and pseudo-edit distangeh vghedit distance using
the aforementioned equivalence classes.

Our method for identifying words in the clean list has three basic steps. Wédsy each word
T output by the initial OCR system.

1. If T is not in the lexicon, we discard it and make no attempt to classify whether itrisato
That is, we do not put it on the clean word [Fst.

2. Given thafT is a lexicon word, we evaluate whethidi(T) is non-empty, that is, whether
there are any lexicon words for which a single change of a letter carupedd If Hy(T) is
non-empty, we discar@ and again make no attempt to classify whether it is correct.

3. Assuming we have passed the first two tests, we now perfaonsistency chedklescribed
below) of each character in the word. If the consistency check is paseedeclare the word
to be correctly recognized and include it in the clean list.

3. Why is it not trivial to simply declare any output of an OCR system thatlexi@on word to be highly confident?
The reason is that OCR systems frequently use language models tot projectain words onto nearby lexicon
words. For example, suppose the original string was “Rumpledpigsiind the OCR system, confused by its initial
interpretation, projected “Rumpledpigskin” onto the nearest lexicon WRminplestiltskin”. A declaration that this
word is correct would then be wrong. However, our method will notifathis way because if the true string were
in fact “Rumpledpigskin”, the character consistency check wouldmgass. It is for this reason that our method is
highly non-trivial, and represents a significant advance in the creatioiglaly accurate clean word lists.

We could potentially restrict our attention to OCR systems that did not prajgetiexicon words, or for which
it is possible to access intermediate results prior to such projection. Horesults, it is much more likely that a
word labeled as a lexicon word with an empty Hamming ball of some radiusfegt, correctly labeled. We choose
not to make such a restriction, both so that our method is more genedabegause projecting uncertain words to
nearby lexicon words can often substantially increase the labeling agycuraother words, by only considering
labelings obtained without such projection, we may find far fewer wordswle can confidently classify as being
correctly labeled, due to the lower accuracy of the initial OCR system. &hefth of using a lexicon is evident in the
scene text recognition work of Weinman et al. (2009). In this work, Birfgrcing all predicted words to be lexicon
words led to a 3 percentage point increase in word accuracy, angareting factors with lexicon information into
the probability model led to an additional 5 percentage point increase thaeguracy. By performing a more robust
analysis than accepting lexicon words, our method is equally applicablphistioated OCR systems that make use
of lexicon information.
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3.1 Consistency Check

In the following discussion, we use the tegilyphto refer to a rectangular portion of an image that
is likely to be a single character, but may be only a portion of a character, tewtigracters, or a
stray mark. LeW, be the true character class of tfta glyph of a wordW, and letT; be the initial
OCR system’s interpretation of the same glyph. The goal of a consisteack hto ensure that the
OCR system'’s interpretation of a glyph is reliable. We will assess reliability legkihg whether
other similar-looking glyphs are usually interpreted the same by the OCR system.

To understand the purpose of the consistency check, consider thgifgleituation. Imagine
that a document contains a stray mark that does not look like any chaaibatkbut was interpreted
by the initial OCR system as a character. If the OCR system thought thatrétyensark was a
character, it would have to assign it to a character class tikeWe would like to detect that this
character is unreliable. Our scheme for doing this is to find other chasabtgrare similar to this
glyph, and to check the identity assigned to those characters by the initials@&&n. If a large
majority of those characters are given the same interpretation by the O@Rsyisen we consider
the original character to be reliable. Since it is unlikely that the charadtesest to the stray mark
are clustered tightly around the true charactérwe hope to detect that the stray mark is atypical,
and hence unreliable.

More formally, to test a glyplg for reliability, we first find theM glyphs in the document that
are most similar t@ (using normalized correlation as the similarity measure). If a fradiofithe
M glyphs most similar t@ have the character labelthen we say that the glypis 6-dominated
by c. More precisely, we run the following procedure:

Il n: vector storing the counts for each character c.
Il L: set of character |abels.
Il M : nunber of glyphs to conpare to.
njc] < 0,vcelL
for i+ 1to M do

¢ «+ label of characteith most similar tag

njc] =n[c]+1

it %9 > 6 then

return gis 6-dominated by

end
end
return gis undominated

Algorithm 1: Consistency check algorithm.

There are three possible outcomes of the consistency check. Thethttise glyphy is dominated
by the same clagsas the OCR system’s interpretationgphamelyT;. The second outcome is that
is dominated by some other class that does not mtcthe third outcome is thatis undominated,
meaning that the neighbors gfare relatively inconsistent. In the latter two cases, we declare the
glyphgto beunreliable The interpretation of glypf is reliable only ifg is dominated by the same
class as the original OCR system. Furthermore, a word is included in thelisleamly if all of the
characters in the word are reliable.

The constants used in our experiments wiegre= 20 andB = 0.66. That is, we compared
each glyph against a maximum of 20 other glyphs in our reliability check, anthsisted that a
“smoothed” estimate of the number of similarly interpreted glyphs was at le&b86f6re declaring
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a character to be reliable. We now analyze the probability of making anierttog clean set, under
a specific set of assumptions.

4. Theoretical Bound

For a word in a document, & be the ground truth label of the word afidbe the initial OCR
system’s labeling of the word. Consider the problem of trying to estimate thmabildy that the
labeling was correcR(W = w|T = w;). It is difficult to formulate a bound or performance guaran-
tee on such an estimate, due to the non-stationarity in the sequence of Woeddistribution and
appearance of words is dependent on the topics and fonts preseatdodbment containing the
words, and any noise in the document, which may range from local, sisthegianarks, to global,
such as low contrast. Therefore, we would not be able to rely on agemner assumption on the
words.

Rather than attempting to estimate the probability that the labeling was correct,comeant
the above problems by focusing on bounding the probability for a sulfsebrls. LetC be a
binary indicator equal to 1 if the word passed the consistency check. alfetar upper bound the
probability PEW # w|T = w,C = 1) whenw is a lexicon word and has an empty Hamming ball
of size 1. We decompose the probability into three terms:

PrW £w|T =w,C=1) = Z PrW =w|T =w;,C=1)

WEW

= Z PrW =w|T =w,C=1)
WAW weLex
+ PrW =w|T =w;,C=1)

WAW , WeLex

- S Pr(W =w|T =w;,C=1) 1)
WAW WeLex, |w|=|w|
+ z PrW =w|T =w,C=1)

wewe weLex, | wi|w|
+ 5 PW=wT=w,C=1).

WH£W,WELex

Our approach for bounding this probability will be to individually bound thee¢hterms in
Equation 1. The first term considers all words in the lexicon with the samehegv, and
accounts for the most likely type of error. The second term considersaatls in the lexicon,
but with a different length fronw;, and so considers many more possible words resulting from
segmentation errors, but each of which is much less likely to occur. Finaltyittieterm considers
words not in the lexicon, each of which occurs even less frequently.

To bound the first term, we can consider all words of a given Hamming distdrom w;. Our
strategy will then be to bound the contribution to the error from all wordsarhhkhing distance,
enabling us to bound the total error as the sum of a geometric series. Weecaiollow the same
approach to bound the next two terms, where we will instead need to comeslidelistance rather
than Hamming distance.

In order to bound these terms using a geometric series, we will need two itefe. Ve will
need an upper bound on the probability of the consistency check pdesiagpecific character
when the label is incorrect €2, and a lower bound on the probability of the consistency check
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passing when the label is corred).(We explain these quantities in the next section. Next, we will
need to relate these bounds on the character consistency ch@€k; BIT = w;, W), to the terms
in the geometric series, f¥ = w|T = w;,C = 1), which we do in Section 4.2.

4.1 Bounding the Character Consistency Check

We will rewrite the P(W = w|T = w;,C = 1) terms as bounds involving & = 1|T = w, W = w)
using Bayes’ rule. We will make the assumption that the individual charestesistency checks are
independent, although this is not exactly true, since there may be locathaiskegrades characters
in a word in the same way.

Assume that each character is formed on the page by taking a single tru,dppearance
based on the font and the particular character class and adding sometarhaoise. Lete be
an upper bound on the probability that noise has caused a character gifzan class to look like
it belongs to another specific class other than its own class. More formatipglg.(a) be the
probability of a character appeararecéor a given clasg under the noise moded,satisfies, for all
character classes, C,C1 # Cy,

€> / pc, (a)da (2)
alpe, (8)<pc, ()

In order to obtain a small value fa; and hence later a small probability of error, we revise
Equation 2 to be a bound only aron-confusableharacter classes. In other words, since some
character classes are highly confusable, such’as”, and ’e’, we ignore such substitutions when
computing Hamming and edit distance. We’ll refer to these distances asydistahces, sarbde”
and ‘ner e” have a true Hamming distance of 2 but a pseudo-Hamming distance of 1.

This is similar to defining an equivalence relation where confusable dieasadoelong to the
same equivalence class, and computing distance over the quotient settHowtt transitivity, as,
for example, h” may be confusable withn”, and 'n’ may be confusable withu”, but "h” may not
necessarily be confusable witin'.

For a character to pass a consistency check with the tabehen the true underlying label is
c1, roughly one of two things must happen: (a) either the character waspted and looked more
like ¢, thancy, or (b) some number of other characters with latelere corrupted and looked like
C1’s.

The probability (a) is clearly upper boundeddysince it requires both the corruption and most
of its neighbors to have the same lalbgl Sincee <« 1 and (b) requires several other characters
with labelc, to be corrupted to look like;, the probability of (b) should be bounded by (a), and
thuse, as well. Therefore the probability of the consistency check giving d @behen the true
underlying label i is less than &, for any classes;, C;.

We will also need a lower bound on the probability that a character consjstdreck will
succeed if the OCR system’s label of the character matches the grountatreithLetd be a lower
bound on this quantity, which is dependent on both the amount of noise irothemgnt and the
length of the document. (The latter condition is due to the fact that the chacactsistency check
requires a character to match to at least a certain number of other similadgdatbaaracters, so,
for example, if that number is not present in the document to begin with, thechtak will fail
with certainty.)
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4.2 Bounding One Term
Consider bounding PW = w|T = w;,C = 1):

PrW =w|T =w;,C=1)

_ PriC=1|T =w,W =w) Pr(W = w|T = w)

~ SwPrC=1T =w,W=w)PrW =w|T =w)

_ PrC=1T =w,W =w)Pr(T = w|W = w) Pr(W = w)

- SwPrC=1T =w,W =w)Pr(T =w|W =w)Pr(W =w)

PrC=1T =w,W =w)Pr(T =w|W =w)Pr(W = w) 3)

~ PriC=1T =w,W =w;) Pr(T = w|W =w;) PrW =w)
Here the inequality follows from the fact thek is one of the words being summed over in the
denominator, and hence replacing the sum with onlywgheomponent will make the denominator
less than or equal to the sum.

4.3 Bounding the Probability of Lexicon Words
Recall thatw, the initial OCR system’s word labeling, is a lexicon word with empty pseudo-
Hamming ball of size 1. For lexicon wordg we will assume that
Pr(T =w|W =w)Pr(W = w)
Pr(T =w (W =w) Pr(W = w)

1,

or, equivalently,
Pr W =w|T =w)
PrW =w|T =w;)

One way to view this is to think o = w; as a feature. Then, for a reasonable classifier, this
assumption should hold for any document in the training set, as this is simply jf&s Bacision
rule. (If the assumption did not hold, then we could increase the trainingawcby predictingv
whenever we saw the featufe= w.)

Thus, we are assuming that a test document does not differ from thimgraiocuments used
to train the initial OCR system so much as to change the most probable woriti@oad on the
featureT = w, as suggested by Equatiorf Note thatw; has an empty Hamming ball of size 1, so
w differs fromw; by at least two letters. For this assumption to be violated, either the document mus
be such that at least one letter is consistently interpreted as anothes an lextremely different
prior distribution on words than that of the training set, both of which are alylikAs we discuss
later, the first case is also problematic for the character consistencit asewell, and so falls
outside the scope of documents for which our method will be applicable.

It is important to note that this does not imply that the word accuracy needrtielarly high,
for example, if all the words have the same prior probability of occurrirey the assumption could
hold for a classifier with accuracy simply better than the chance accufq@tlowhereﬂex\ is the
size of the lexicon.

Applying this to Equation 3, we get

< 1 4)

Pr(C=1|T =w,W =w)
PriC=1T =w,W=w)"

4. This assumption is similar to, but slightly weaker than, the assumption umalée covariate shift (Shimodaira, 2000).

P(W=w|T =w,C=1) < (5)
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4.3.1 BOUNDING THE PROBABILITY OF LEXICON HAMMING WORDS

Consider a lexicon wordv that is a pseudo-Hamming distancéom w;. We can then simplify
Equation 5 to

(2e)'

PrW =w|T =w,C=1) 5

by making use of the assumption that the character consistency chedkdegendent, and that
andw; only differ ini characters. For thosecharactersyw does not match the OCR system’s label
andw; does match the OCR system'’s label, so we use the bouraisdd.

Now let D; be the number of lexicon words of pseudo-Hamming distarseeay fromw;. Let
rp be the rate of growth ob; as a function of, that is,Dj, » < r}DDg. Assume, since < 1, that
ro(%) < 3.5 (To produce a final number for our theoretical bound, we later assuae th10~3
andd® > 101, Given these numbers, our assumption becames79, which is a very conservative
bound as experiments on the lexicon used in our main experiments showedg tkagenerally
bounded by 5.)

To get the total contribution to the error from all lexicon Hamming words, we euerD; for
ali>1,

2 i
PIW =wT =w,C=1) < ZDi( ?
WA, we Lex, [wi=|w| i= 5
(2¢)? (2¢)? €.
= D2~ +D2-5— ) (2rp%)
o2 o2 i; 0
.

4.3.2 BOUNDING LEXICON EDIT WORDS

Traditionally, edit distance is computed in terms of number of substitutionstimsgrand deletions
necessary to convert one string to another string. In our context, amatusl notion may be splits
and joins rather than insertions and deletions. For example, the interpretb#iorm may be split
into an r’and an h’, or vice-versa for a join.

The probability that a split or a join passes the consistency check is uppaded by(2¢)?.
We can see this from two perspectives. First, a split or join has traditiditalistance of 2, since it
requires an insertion or deletion and a substitutiori {6 “m” insertion followed by fm” to “rn”
substitution).

A more intuitive explanation is that, for a split, one character must be codupteok like the
left hand side of the resulting character and another character tedrigplook like the right hand
side, and for a join, the left hand side of a character must be corrupteokitike one character and
the right hand side corrupted to look like another.

Similar to the case of confusable characters for substitutions, we als@igonfusable charac-
ters for splits and joins, namely”followed by 'n” with ’ mi, and 'v’ followed by 'v’ with ' w. Thus,
“corn” and “conb” have an edit distance of 2 but a pseudo-edit distance of 1.

5. Recall thad, as defined earlier, is a lower bound on the probability that a characteistency check will succeed if
the OCR system’s label of the character is correct.
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Consider a lexicon word with pseudo-edit distanddrom w;, and involving at least one inser-
tion or deletion (sdw| # |w|). Similar to the lexicon Hamming words, we can simplify Equation 5
for was

PIW=w|T=w,C=1) <

since each substitution contribute%aand each insertion or deletion, of which there is at least one,
. 2
contributes af%.

Let E; be the number of lexicon words with a pseudo-edit distanéeaway fromw; and|w| #
Iwt|. Again, also assume that, the rate of growth of;, satisfieSE(%) < 3. Summing the total
contribution to the error from lexicon edit words,

i+1
PIW=w|T =w,C=1) < ZEi(ze).
i= d

= El(zis)z + El(zg)2 i;(erg)i

2

WAW We Lex, | w]7w|

< 8El€6

g2
52

VAN

8E1

4.4 Bounding Non-Lexicon Words

Let N, be the set of non-lexicon words with a pseudo-edit dista’ntr@m w;, and letp =
P P - Assume the rate of growth of of p satisfiesn (%) < 3.

Rearranging Equation 3 and summing over all non-lexicon words:

PrW =w|T =w;,C=1)
WAW W Lex
C 1|T we, W = W) PI‘(W:W]T :Wt)
- Zl Z\‘ PrC 1‘T wy, W = Wt)Pr(W:Wt‘T =W)
PrW w|T =w)
_Zl Z\‘ 6' PrW Wt|T Wt)
_ W € N,]T Wt)
N Zl 6' PrW = w|T = w)

:i; 8 '

2¢ 2¢ €
< _ _ —
SPiy P ig (2rn)

< 4p1 52
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4.5 Final Bound

Combining each of the individual bounds derived above, we have
8D, + 8E;)e? + 4p;€
PIW £ wiT —w,C=1) < < ﬁg TAPE
To use this in practice, we need to set some realistic (but conservatiuesviar the remaining
constants. Fog < 1073, 8D, +8E; < 10, 4p; < 1071, & > 1071,

Pr(W #w|T=w,C=1) < 2.10°

The bounds for the constants chosen above were selected consdyvtathold for a large range
of documents, from very clean to moderately noisy. Not all documents wikkssarily satisfy
these bounds. In a sense, these inequalities define the set of docuanesmktsch our algorithm
is expected to work, and for heavily degraded documents that fall outsislset, the character
consistency checks may no longer be robust enough to guaranteelawsgarobability of error.

Our final bound on the probability of error, 0.002, is the result efcast case analysiander
our assumptions. If our assumptions hold, the probability of error will likelyrtuch lower for the
following reasons. For most pairs of lettegs= 102 is not a tight upper bound. The quantity on
the right of Equation 4 is typically much lower than 1. The rate of growihsg,rn are typically
much lower than assumed. The boundmnthe non-lexicon word probabilities, is not a tight upper
bound, as non-lexicon words mislabeled as lexicon words are rardlyf-iha number of Hamming
and edit distance neighbos andE; will typically be less than assumed.

On the other hand, for sufficiently noisy documents, and certain typesaw§eour assumptions
do not hold. Some of the problematic cases include the following. As disgubseassumption that
the individual character consistency checks are independent isirottta document is degraded or
has a font such that one letter is consistently interpreted as afdtiear,that error will likely pass
the consistency check (i.e& will be very large). If a document is degraded or is very short, then
may be much smaller than 16. (The character consistency check requires a character to match to
at least a certain number of other similarly labeled characters, so, formpdaaif that number isn’t
present in the document to begin with, then the check will fail with certaintyalkirif the lexicon
is not appropriate for the document thepy 4 101 may not hold. This problem is compounded if
the OCR system projects to lexicon words. Still these assumptions appedd fotha wide range
of documents.

5. Character Recognition

To validate the utility of our clean word lists, we implemented a simple technique fstreating
document-specific character appearance models, using SIFT fe@taves, 2004), and demon-
strated that this model can be used to significantly reduce character ether iamainder of the
document. We refer to our algorithm as SIRTign. In the future, we believe these clean word
lists can be incorporated into more sophisticated document-specific OCR nmaéisin further
improvements in recognition accuracy, as we discuss in future work.

6. It should be noted that the probability of such an error (consistentispiretiing one letter as another) is substantially
reduced by using a language model, for example, projecting uncertadswo nearby lexicon words.

7. A SIFT feature is essentially computed by dividing the image into a sedrforerlapping patches, and computing
a histogram over edge orientations weighted by edge strength, for atth p
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We use the traditional SIFT descriptor without applying the Gaussian wejgh¢icause we did
not want to weight the center of an image more highly than the rest. In additefix the scale to
be 1 and orientation to be 0 at all times. The SIKIIgn procedure is presented below:

1. Compute the SIFT descriptor for each character image in the clean lisg eg¢niter of the
image.

2. Compute the component-wise arithmetic mean of all SIFT descriptors focbacacter class
in the clean list. These mean descriptors are the “representations” (@ctdgramodels) of
the respective classes.

3. For each character image in the clean list, compute a SIFT descriptoadbrpmint in a
window in the center of the image (we use a 5x5 window) and select theigtesawith
smallest L2 distance to the mean SIFT descriptor for this character clagsaligms each
character’s descriptor to the mean class descriptor.

4. Test images are defined as follows. We start by collecting all charatages that areot
in the clean list (since we do not want to test on images we trained on). Wdiltdsdhe
test images as follows. If Tesseract gives a label to an image that é&label for any of the
clean set characters, then we do not include this character in our teStreerationale for
this is the following. Since our method will only assign to a character a labebgyars in
the clean set, then if the character was originally correct, we will definitelgdoire an error
by attempting to correct it. Furthermore, we have no direct information ahewtppearance
of characters whose labels aretin the clean set, so it is relatively difficult to assess if the
original label is unreasonable. For these reasons, we only attemptéctocharacters whose
Tesseract label appears as one of the clean set labels.

5. For each test image, again compute a 5x5 window of 25 SIFT descriptudsselect the
descriptor which has minimum L2 distance @ay of the mean descriptors. This aligned
descriptor is the final descriptor for the test image.

6. Pass the SIFT descriptors for the training/test images found in the psestieps to a multi-
class SVM.

In summary, this classifier can be described as simply using an SVM with S&drigtors, except
that care is taken to align characters as well as possible for both trainth¢eating. We use
the SV MMUlticlassimplementatiof of multiclass SVM (Tsochantaridis et al., 2004) and use a high
C value of 5,000,000, which was selected through cross-validation. Thiesrsense since we
generally do not have many instances of each character class in thdisteand so we want a
minimum of slack, which a high C value enforces.

6. Experiments

In this section, we describe three types of experiments. First, we shovouhairocedure for
generating clean sets achieves the very low error rate predicted bypond$ Next, we show that
for a collection of 56 documents, using the clean sets to train new, docupexifis classifiers

8. SVM implementation can be foundttt p: // svm i ght . j oachi ms. org/ .
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Figure 1: Thick blue boxes indicate clean list words. Dashed red bodeste Tesseract's confi-
dent word list. Thin green boxes indicate words in both lists. Despite beingsiseract’s
list of high confidence words, “timber” is misrecognized by Tesserattimbicr”. All
other words in boxes were correctly translated by Tesseract. (Begtdi@ color.)

significantly reduces OCR errors over the initial OCR system used. Fimadlghow what happens
if a traditional measure of confidence is used to select a document-spedifing set. In particular,
we show that our clean sets have far fewer errors and result in dottgpecific models that can
correct a much larger number of errors in the original OCR output.

6.1 Initial Clean Set Experiments

We experimented with two sets of documents. The first set consists of 10ng@ots from the
JSTOR archivéand Project Gutenberd. This initial set of documents was used to evaluate our
clean list generation algorithm and develop our algorithm for produciagacier models from the
clean lists (Kae et al., 2009). In this work, our clean lists selected angeefe6% of the words
from each documentThese clean lists did not contain a single egrthrat is, the precision of our
clean lists was 100%. This strongly supports our theoretical bounddisistabin Section 4.

9. JSTOR can be found htt p: // www. j st or. or g.
10. Project Gutenberg can be foundhatp: / / ww. gut enberg. or g/ .
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Figure 2: Character error reduction rates for SIFIgn using the clean list (SIFRlign_Clean)
and Tesseract's confident word list (SIATign_Tess) on the test sets of 56 documents.
SIFT_Align_Clean increases the error rate in 10 documents whereas Al§iT_Tess
increases the error rate in 21 documents.

6.2 Correcting OCR Errors

After establishing the basic viability of the clean set procedure, we selacteter set of documents
on which to test our end-to-end system of generating clean sets, usimgtéhleuild document-
specific models, and using these models, in turn, to correct errors make tgiginal OCR system.

The second set of documents, used for performance evaluation dRReA8gn algorithm, are
56 documents taken from the Chronicling Ameticarchive of historical newspapers. Since our
initial OCR system (Tesseract) can only accept blocks of text and aageerform layout analysis,
we manually cropped out single columns of text from these newspapes p@gher than cropping
and converting to the TIFF image format for Tesseract, the documentsneeraodified in any
way. There are on average 1204 words per document. The cleanritsire®?2 errors out of a total
of 4465 words, within the theoretical bound of 0.002 mentioned earlier.

In an effort to increase the size of the clean lists beyond 6% per docuweakperimented with
relaxing some of the criteria used to select the clean lists. In particular, weeallthe Hamming
ball of radius 1 for a word to be non-empty as long as the words within theliiatiot appear within
the original OCR system’s translation. By making this small change, we wézdalmcrease the
size of the clean lists to an average of 18% per document while introducimgsitone error per
document. We refer to the original clean listscamservative clean listend to the modified, larger,

11. Documents can be foundtdtt p: / / chroni cl i nganeri ca. | oc. gov/ .
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Figure 3: Sample of results from two documents. A thin green box indicatesthe initial OCR
system (Tesseract) and SIFlign correctly classified the character. A dashed red box
indicates both systems misclassified the character, and a thick blue box iaditate
SIFT_Align classified the character correctly and Tesseract misclassified it.isiexh
ample, there are no cases shown where Tesseract correctly classidtetacter and
SIFT_Align misclassifies it. (Best viewed in color.)

and slightly less accurate clean listssggjressive clean list&Ve decided to use the aggressive clean
lists for our experiments because they contain few errors and there agecharacter instancés.
From this point, our use of “clean list” refers to the aggressive clean list.

We then ran Tesseract on all documents, obtaining character boundiegband guesses
for each character. Next, we used Mechanical Ttk label all character bounding boxes to
produce a ground truth labeling. We instructed annotators to only lababiigiboxes for which a
single character is clearly visible. Other cases (multiple characters in tmginguoox or a partial
character) were discarded.

After the initial OCR system was used to make an initial pass at each documertdietin
list for that document was extracted. Character recognition was théormped as described in
Section 5. Even though many of the characters were already recogrimedtly by the original

12. To account for the looser criteria of the aggressive set, we waéd to add a term to the theoretical bound that
considers the probability of error due to the true labeling of the word bemggnbor of Hamming distance 1 from
the OCR system’s interpretation. This term Wouldllbng—g, whereD; is the number of neighbors of Hamming
distance 1, and is the probability that a word that was not detected anywhere in the dot¢w@atierally appears in
the document. Given our assumed bounds af10-3, & > 101, if we further assum®:q to be conservatively
bounded by 0.3, then using the aggressive criteria doubles the jitybaferror to 0.004.

We note that the assumptions we make to produce the theoretical boumdrareonservative. This leaves
room for some experimentation to find the optimal balance between plibpaberror and clean set size, while still
maintaining an empirical error close to the predicted bound of 0.002.

13. This feature is not available out of the box; we edited the source code

14. Mechanical Turk can be foundlgtt ps: / / ww. it ur k. con nt ur k/ wel cone.
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OCR system, our approach improves the recognition to produce an evesr hiccuracy than the
original OCR system’s accuracy, on average. As shown in the nettbset most cases, this
resulted in correcting a significant portion of the characters in the dodsmen

6.3 Comparison to Another Confidence Measure

In order to judge the effectiveness of using our clean list, we also geteanother confident word
list using Tesseract's own measure of confidelcdo generate the confident word list, we sort
Tesseract'’s recognized words by their measure of confidence amth@tkopn words that result in
the same number of characters as our clean list.

In Figure 1, we show a portion of a document and the correspondirggsabclean list words
(generated by our process) and highly confident Tesseract walds the words in our clean list
were, in fact, correctly labeled by the initial Tesseract pass. In othetsyour clean list for this
example was error free. But Tesseract's high confidence word liktdes “timber” which was
mistranslated by Tesseract.

We refer to the SIFTAlign algorithm using our clean list as SIEAlign _Clean and the SIFRlign
algorithm using Tesseract’s confidences as SMigin_Tess. In Figure 2, we show the charac-
ter error reduction rates for both SIFAlign_Clean and SIFTAlign_Tess. In 46 of the 56 docu-
ments, SIFTAlign_Clean results in a reduction of errors whereas SHign_Tess reduces error
in 35 documents. Note this figure shows percent error reduction, notwhe@umber of errors.
SIFT_Align_Clean made a total of 2487 character errors (44.4 errors per docuomettig test set
compared to 7745 errors (138.3 errors per document) originally madedsefiact on those same
characters. For the 10 cases where SAgn _Clean increased error, SIEAlign_Clean made 356
character errors and Tesseract made 263 errors. Thus, oveeadlyrtir reductions achieved by
SIFT_Align_Clean were much greater than the errors introduced.

SIFT_Align_Clean outperforms SifAlign_Tess. Average error reduction for
SIFT_Align_Clean is 34.1% compared to 9.5% for S#lign _Tess. Error reduction is calculated as
(TT—ST)/TDwhereTT is # Tesseract errors in the test $&T,is # SIFT Align errors in the test
setandrl D is # Tesseract errors in the document. SWign_Clean also reduces the character error
in more documents than does Sitign_Tess.

Our test cases only consider properly segmented characters whiohnador about half of
all the errors in these documents. The error reduction for Akgn_Clean over all characters
(segmented properly or not) is 20.3%.

Our experiments have shown that, on two separate sets of documentgngenative clean
sets have very low error rates, meeting the theoretical bounds presantethat by relaxing the
criteria slightly, we can get significantly larger sets while maintaining a low eat®. We have
shown that using these clean sets to build document-specific models carcarghifreduce OCR
errors, and that traditional confidence measures do not result inrtfelsenefits.

7. Applications to Other Domains

We believe that our method of identifying subsets of results for which weachieve a very high
bound of being correct can also be applied to other domains outside of OCR

15. There are two measures of word confidence in Tesseractjlbar the Tesseract documentation as “rating” and
“certainty”. We use “certainty”.
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One such domain is speech recognition. Here, our consistency ched#t @ over acoustic
signals rather than a patch of pixels from a scanned document. This wluedtt be similar to
Algorithm 1 except that we now apply the check to a segment of speechl.signthis speech
recognition context, the segment is now the “glyghand we want to check whether the label
assigned tg is reliable by comparing with other segments from the same recording that are most
similar tog. Acoustic segmeny should be given the same label (in our terminology, dominated by
that label) as its most similar segments. We can then form equivalence adhssesily confusable
phonemes, and perform consistency checks on segments of spedwwvthbeen labeled as a word
with an empty pseudo-Hamming distance of 1. We could then follow a procaihaitar to the
proof presented in Section 4 to bound the probability that segments ofhspiegicpass such a
consistency check were incorrectly labeled.

By using this framework for speech recognition, we can potentially obtairedjuévalent of
clean lists: portions of speech for which we are very confident the initiglilag was correct. This
may allow us to refine the speech recognition model to be specific to the mmgofor instance,
allowing for a model that is specific to a particular individual's accent.

The application of our idea to speech recognition may involve a slightly diffexet of difficul-
ties than when applied to OCR. For instance, identifying word segmentationsemagre difficult.
However, when training speech recognition systems, we may have as@sadditional source of
information in the form of closed captions. We can model the closed captiasaisy signal of
the ground truth, independent of the speech recognizer. Takingsem@tive estimate of the closed
captioning error rate, we can use the closed captions to reduce out bouhe probability of error
by requiring that the closed captioning match the labeling given by the speeagnition system.

In Lamel et al. (2002), audio with closed captions is used to generate awdditidoeled training
data for a speech recognizer, by aligning the speech recognizelt taithe closed captioning and
accepting segments where the two agree. Given the large amount of ciqgeiehing data available,
this scenario is particularly amenable to our method of generating high pretiaining data (at
some cost to recall). Additionally, using a consistency check approgateassnted in Algorithm 1
can yield advantages over using an ad-hoc check such as directlgtiagceegments where the
speech recognizer and closed captioning agree. For instance, weneh&yntcessary to throw out
words where the two agree if the word has many nearby phonemic neighiborshich it may be
confused, and thereby likely reduce the error rate of the labelingsasseedining data.

Another potential application for our bound analysis is in the area of infiomeetrieval using
query expansion. As mentioned earlier in Section 2.2.2, query expans#technique used in
information retrieval to add terms to an initial query based on the highly rad&edments of the
initial query. One issue when performing query expansion is that matchindaiseh positives can
quickly lead to errors due to drift in the query. For image retrieval, Chuah ¢€2007) give a method
of spatial verification to eliminate false matches. In this context, queries @etslin images and
images are represented using a bag-of-visual-words.

Let the original query image b®, and let the set of images returned initially by the search
engine beR. The goal is to identify returned imagéR; } that we believe contain the same object as
Q with very high confidence. We can then add these imd&gsto the query and repeat the search
procedure with this expanded query set, ideally increasing the numbeleg&nt images returned
by the search engine.

To reduce the possibility of adding a false maRto the query set, Chum et al. (2007) apply
a spatial verification procedure as follows. A feature poinRimmatching a feature point iQ
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generates a hypothesized transformation that would put the objBctrircorrespondence with the
object inQ. If this hypothesis leads to at least a certain number of matching feature poitand

Q (same visual word and location after transformation), tReis spatially verified and added to the
query set.

We could estimate a bound on the probability of a false match passing spatielatien by
assuming a feature in a random, non-matching returned image matches a iietterquery image
Q with probability p. If we further assume that the probability of two features matching is indepen
dent of the other features @and returned imag®;, then the number of features in correspondence
between th&€) and non-matching resuR; is a binomial distribution with parametemsthe number
of features in the query image, apd

A result imageR; passes the spatial verification if, for at least one hypothesized tramesion
for puttingQ in correspondence witR;, at least 20 features are in correspondence. With the number
of hypotheses being approximately®18 also being approximately $0and a conservatively high
estimate ofp as 102 (given a visual dictionary of size £)) we find that even with a requirement
of just at least 12 features being in correspondence, the probabiktyadde match being spatially
verified is less than £0 (1— 3, (M) p'(1— p)" ') < 10°C.

However, spatial verification will likely result in more errors than predidigdhis analysis,
due to the overly restrictive assumption that the probability of features mgtahim result image
R is independent of the other features. One potential method for removingsiisnption is to
analyze the error in terms of common substructures: features belongiingiler substructures are
more likely to match, but the probability of one feature matching is independéng deatures in
different substructures of the same image. This analysis may suggesohiayproving the spatial
verification, such as requiring that the matching features not be closskgd in only one section
of the image.

8. Conclusions and Future Work

In this paper, we advocate dealing with the problem of non-stationarity betthe training and test
distributions by identifying a subset of information whose interpretation weébeaconfident of, and
using this information as test-specific training data. We have applied thisaghpto the problem
of OCR, demonstrating that we can produce high-precision documeditispiaining data. Under
modest assumptions, we show the error rate of this labeled data to be ddyn@e02, and give
empirical results consistent with this theoretical bound.

By combining this document-specific training data with simple appearance-luhseacter
recognition techniques, we are able to achieve significant reductionsemages character error.
We believe that further improvements can be achieved by using the clean ligtsjimction with
more sophisticated models, such as document-specific language modetgyestad by Wick et al.
(2007). In addition, while our work has taken the character segmentatrodsiced by the initial
OCR system as fixed, we believe that the clean lists can also be used gpnerd@nd fix the large
percentage of initial errors that result from incorrect charactansegation.

Lastly, we also show potential applications to problems in other domains ss@eeash recog-
nition and query expansion. While many of the techniques used in this wedpacific to an OCR
application, we believe that the principles are quite general, and that trehdea more formal
bounds on probabilities of error will lead toward a variety of new application
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