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Abstract

Contemporary global optimization algorithms are based on local measures of utility, rather than

a probability measure over location and value of the optimum. They thus attempt to collect low

function values, not to learn about the optimum. The reason for the absence of probabilistic global

optimizers is that the corresponding inference problem is intractable in several ways. This paper

develops desiderata for probabilistic optimization algorithms, then presents a concrete algorithm

which addresses each of the computational intractabilities with a sequence of approximations and

explicitly addresses the decision problem of maximizing information gain from each evaluation.
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1. Introduction

Optimization problems are ubiquitous in science, engineering, and economics. Over time the re-

quirements of many separate fields have led to a heterogeneous set of settings and algorithms.

Speaking very broadly, however, there are two distinct regimes for optimization. In the first one,

relatively cheap function evaluations take place on a numerical machine and the goal is to find a

“good” region of low or high function values. Noise tends to be small or negligible, and derivative

observations are often available at low additional cost; but the parameter space may be very high-

dimensional. This is the regime of numerical, local or convex optimization, often encountered as

a sub-problem of machine learning algorithms. Popular algorithms for such settings include quasi-

Newton methods (Broyden, 1965; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), the conjugate

gradient method (Hestenes and Stiefel, 1952), and stochastic optimization and evolutionary search

methods (for example Hansen and Ostermeier, 2001), to name only a few. Since these algorithms

perform local search, constraints on the solution space are often a crucial part of the problem. Thor-

ough introductions can be found in the textbooks by Nocedal and Wright (1999) and Boyd and

Vandenberghe (2004). This paper will use algorithms from this domain, but it is not its primary

subject.

In the second milieu, which this paper addresses, the function itself is not known and needs to

be learned during the search for its global minimum within some measurable (usually: bounded)

domain. Here, the parameter space is often relatively low-dimensional, but evaluating the func-

tion involves a monetarily or morally expensive physical process—building a prototype, drilling a

borehole, killing a rodent, treating a patient. Noise is often a nontrivial issue, and derivative obser-
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vations, while potentially available, cannot be expected in general. Algorithms for such applications

also need to be tractable, but their most important desideratum is efficient use of data, rather than

raw computational cost. This domain is often called global optimization, but is also closely associ-

ated with the field of experimental design and related to the concept of exploration in reinforcement

learning. The learned model of the function is also known as a response surface in some com-

munities. The two contributions of this paper are a probabilistic view on this field, and a concrete

algorithm for such problems.

1.1 Problem Definition

We define the problem of probabilistic global optimization: Let I ⊂ R
D be some bounded domain

of the real vector space. There is a function f : I _ R, and our knowledge about f is described by

a probability measure p( f ) over the space of functions I _ R. This induces a measure

pmin(x)≡ p[x = arg min f (x)] =
∫

f :I_R

p( f )∏
x̃∈I

x̃ 6=x

θ[ f (x̃)− f (x)]d f , (1)

where θ is Heaviside’s step function. The exact meaning of the “infinite product” over the entire

domain I in this equation should be intuitively clear, but is defined properly in the Appendix. Note

that the integral is over the infinite-dimensional space of functions. We assume we can evaluate

the function1 at any point x ∈ I within some bounded domain I, obtaining function values y(x)
corrupted by noise, as described by a likelihood p(y | f (x)). Finally, let L(x∗,xmin) be a loss function

describing the cost of naming x∗ as the result of optimization if the true minimum is at xmin. This

loss function induces a loss functional L(pmin) assigning utility to the uncertain knowledge about

xmin, as

L(pmin) =
∫

I
[min

x∗
L(x∗,xmin)]pmin(xmin)dxmin.

The goal of global optimization is to decrease the expected loss after H function evaluations at

locations x = {x1, . . . ,xH} ⊂ I. The expected loss is

〈L〉H =
∫

p(y |x)L(pmin(x |y,x))dy =
∫∫

p(y | f (x))p( f (x) |x)L(pmin(x |y,x))dy d f , (2)

where L(pmin(x |y,x)) should be understood as the cost assigned to the measure pmin(x) induced by

the posterior belief over f after observations y = {y1, . . . ,yH} ⊂ R at the locations x.

The remainder of this paper will replace the symbolic objects in this general definition with

concrete measures and models to construct an algorithm we call Entropy Search. But it is useful to

pause at this point to contrast this definition with other concepts of optimization.

1.1.1 PROBABILISTIC OPTIMIZATION

The distinctive aspect of our definition of “optimization” is Equation (1), an explicit role for the

function’s extremum. Previous work did not consider the extremum so directly. In fact, many

frameworks do not even use a measure over the function itself. An example of optimizers that only

1. We may further consider observations of linear operations on f . This includes derivative and integral observations of

any order, if they exist. Section 2.8.1 addresses this point; it is unproblematic under our chosen prior, but clutters the

notation, and is thus left out elsewhere in the paper.
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implicitly encode assumptions about the function are genetic algorithms (Schmitt, 2004) and evolu-

tionary search (Hansen and Ostermeier, 2001). If such formulations feature the global minimum xmin

at all, then only in statements about the limit behavior of the algorithm after many evaluations. Not

explicitly writing out the prior over the function space can have advantages: Probabilistic analyses

tend to involve intractable integrals; a less explicit formulation thus allows to construct algorithms

with interesting properties that would be challenging to derive from a probabilistic viewpoint. But

non-probabilistic algorithms cannot make explicit statements about the location of the minimum.

At best, they may be able to provide bounds.

Fundamentally, reasoning about optimization of functions on continuous domains after finitely

many evaluations, like any other inference task on spaces without natural measures, is impossible

without prior assumptions. For intuition, consider the following thought experiment: Let (x0,y0)
be a finite, possibly empty, set of previously collected data. For simplicity, and without loss of

generality, assume there was no measurement noise, so the true function actually passes through

each data point. Say we want to suggest that the minimum of f may be at x∗ ∈ I. To make this

argument, we propose a number of functions that pass through (x0,y0) and are minimized at x∗.

We may even suggest an uncountably infinite set of such functions. Whatever our proposal, a critic

can always suggest another uncountable set of functions that also pass through the data, and are

not minimized at x∗. To argue with this person, we need to reason about the relative size of our set

versus their set. Assigning size to infinite sets amounts to the aforementioned normalized measure

over admissible functions p( f ), and the consistent way to reason with such measures is probability

theory (Kolmogorov, 1933; Cox, 1946). Of course, this amounts to imposing assumptions on f , but

this is a fundamental epistemological limitation of inference, not a special aspect of optimization.

1.1.2 RELATIONSHIP TO THE BANDIT SETTING

There is a considerable amount of prior work on continuous bandit problems, also sometimes called

“global optimization” (for example Kleinberg, 2005; Grünewälder et al., 2010; Srinivas et al., 2010).

The bandit concept differs from the setting defined above, and bandit regret bounds do not apply

here: Bandit algorithms seek to minimize regret, the sum over function values at evaluation points,

while probabilistic optimizers seek to infer the minimum, no matter what the function values at

evaluation points. An optimizer gets to evaluate H times, then has to make one single decision

regarding L(pmin). Bandit players have to make H evaluations, such that the evaluations produce

low values. This forces bandits to focus their evaluation policy on function value, rather than the

loss at the horizon (see also Section 3.1). In probabilistic optimization, the only quantity that counts

is the quality of the belief on pmin under L , after H evaluations, not the sum of the function values

returned during those H steps.

1.1.3 RELATIONSHIP TO HEURISTIC GAUSSIAN PROCESS OPTIMIZATION AND RESPONSE

SURFACE OPTIMIZATION

There are also a number of works employing Gaussian process measures to construct heuristics

for search, also known as “Gaussian process global optimization” (Jones et al., 1998; Lizotte, 2008;

Osborne et al., 2009). As in our definition, these methods explicitly infer the function from observa-

tions, constructing a Gaussian process posterior. But they then evaluate at the location maximizing

a heuristic u[p( f (x))] that turns the marginal belief over f (x) at x, which is a univariate Gaussian

p( f (x)) = N [ f (x);µ(x),σ2(x)], into an ad hoc utility for evaluation, designed to have high value at
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locations close to the function’s minimum. Two popular heuristics are the probability of improve-

ment (Lizotte, 2008)

uPI(x) = p[ f (x)< η] =
∫ η

−∞
N ( f (x);µ(x),σ(x)2)d f (x) = Φ

(

η−µ(x)

σ(x)

)

,

and expected improvement (Jones et al., 1998)

uEI(x) = E[min{0,(η− f (x))}] = (η−µ)Φ

(

η−µ(x)

σ(x)

)

+σφ

(

η−µ(x)

σ(x)

)

,

where Φ(z) = 1/2[1+ erf(z/
√

2)] is the standard Gaussian cumulative density function, φ(x) =
N (x;0,1) is the standard Gaussian probability density function, and η is a current “best guess” for

a low function value, for example the lowest evaluation so far.

These two heuristics have different units of measure: probability of improvement is a probabil-

ity, expected improvement has the units of f . Both utilities differ markedly from Equation (1), pmin,

which is a probability measure and as such a global quantity. See Figure 2 for a comparison of the

three concepts on an example. The advantage of the heuristic approach is that it is computationally

lightweight, because the utilities have analytic form. But local measures cannot capture general

decision problems of the type described above. For example, these algorithms do not capture the

effect of evaluations on knowledge: A small region of high density pmin(x) may be less interesting

to explore than a broad region of lower density, because the expected change in knowledge from

an evaluation in the broader region may be much larger, and may thus have much stronger effect

on the loss. If the goal is to infer the location of the minimum (more generally: minimize loss at

the horizon), the optimal strategy is to evaluate where we expect to learn most about the minimum

(reduce loss toward the horizon), rather then where we think the minimum is (recall Section 1.1.2).

The former is a nonlocal problem, because evaluations affect the belief, in general, everywhere. The

latter is a local problem.

2. Entropy Search

The probable reason for the absence of global optimization algorithms from the literature is a num-

ber of intractabilities in any concrete realisation of the setting of Section 1.1. This section makes

some choices and constructs a series of approximations, to arrive at a tangible algorithm, which we

call Entropy Search. The derivations evolve along the following path.

choosing p( f ) We commit to a Gaussian process prior on f (Section 2.1). Limitations and impli-

cations of this choice are outlined, and possible extensions suggested, in Sections 2.8.1 and

2.8.3.

discretizing pmin We discretize the problem of calculating pmin, to a finite set of representer points

chosen from a non-uniform measure, which deals gracefully with the curse of dimensionality.

Artifacts created by this discretization are studied in the tractable one-dimensional setting

(Section 2.2).

approximating pmin We construct an efficient approximation to pmin, which is required because

Equation (1), even for finite-dimensional Gaussian measures, is not analytically tractable,

(Section 2.3). We compare the approximation to the (asymptotically exact, but more expen-

sive) Monte Carlo solution.
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Figure 1: A Gaussian process measure (rational quadratic kernel), conditioned on three previous

observations (black crosses). Mean function in solid red, marginal standard deviation at

each location (two standard deviations) as light red tube. Five sampled functions from

the current belief as dashed red lines. Arbitrary ordinate scale, zero in gray.

predicting change to pmin The Gaussian process measure affords a straightforward but rarely used

analytic probabilistic formulation for the change of p( f ) as a function of the next evaluation

point (Section 2.4).

choosing loss function We commit to relative entropy from a uniform distribution as the loss func-

tion, as this can be interpreted as a utility on gained information about the location of the

minimum (Section 2.5).

predicting expected information gain From the predicted change, we construct a first-order ex-

pansion on 〈L〉 from future evaluations and, again, compare to the asymptotically exact Monte

Carlo answer (Section 2.6).

choosing greedily Faced with the exponential cost of the exact dynamic problem to the horizon H,

we accept a greedy approach for the reduction of 〈L〉 at every step. We illustrate the effect of

this shortcut in an example setting (Section 2.7).

2.1 Gaussian Process Measure on f

The remainder of the paper commits to Gaussian process measures for p( f ). These are conve-

nient for the task at hand due to their descriptive generality and their convenient analytic properties.

Since this paper is aimed at readers from several communities, this section contains a very brief

introduction to some relevant aspects of Gaussian processes; readers familiar with the subject can

safely skip ahead. A thorough introduction can be found in a textbook of Rasmussen and Williams

(2006). Some readers from other fields may find it helpful to know that more or less special cases

of Gaussian process inference are elsewhere known under names like Kriging (Krige, 1951) and

Kolmogorov-Wiener prediction (Wiener and Masani, 1957), but while these frameworks use essen-

tially the same idea, the generality of their definitions varies, so restrictions of those frameworks
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should not be assumed to carry over to Gaussian process inference as understood in machine learn-

ing.

A Gaussian process is an infinite-dimensional probability density, such that each linear finite-

dimensional restriction is multivariate Gaussian. The infinite-dimensional space can be thought

of as a space of functions, and the finite-dimensional restrictions as values of those functions at

locations {x∗i }i=1,...,N . Gaussian process beliefs are parametrized by a mean function m : I _ R and

a covariance function k : I × I _ R. For our particular analysis, we restrict the domain I to finite,

compact subsets of the real vector spaces RD. The covariance function, also known as the kernel, has

to be positive definite, in the sense that any finite-dimensional matrix with elements Ki j = k(xi,x j)
has to be positive definite ∀xi,x j ∈ I. A number of such kernel functions are known in the literature,

and different kernel functions induce different kinds of Gaussian process measures over the space

of functions. Among the most widely used kernels for regression are the squared exponential kernel

kSE(x,x
′;S,s) = s2 exp

[

−1

2
(x− x′)⊺S−1(x− x′)

]

,

which induces a measure that puts nonzero mass on only smooth functions of characteristic length-

scale S and signal variance s2 (MacKay, 1998b), and the rational quadratic kernel (Matérn, 1960;

Rasmussen and Williams, 2006)

kRQ(x,x
′;S,s,α) = s2

(

1+
1

2α
(x− x′)⊺S−1(x− x′)

)−α

,

which induces a belief over smooth functions whose characteristic length scales are a scale mix-

ture over a distribution of width 1/α and location S. Other kernels can be used to induce beliefs

over non-smooth functions (Matérn, 1960), and even over non-continuous functions (Uhlenbeck

and Ornstein, 1930). Experiments in this paper use the two kernels defined above, but the results

apply to all kernels inducing beliefs over continuous functions. While there is a straightforward

relationship between kernel continuity and the mean square continuity of the induced process, the

relationship between the kernel function and the continuity of each sample is considerably more

involved (Adler, 1981, §3). Regularity of the kernel also plays a nontrivial role in the question

whether the distribution of infima of samples from the process is well-defined at all (Adler, 1990).

In this work, we side-step this issue by assuming that the chosen kernel is sufficiently regular to

induce a well-defined belief pmin as defined by Equation (8).

Kernels form a semiring: products and sums of kernels are kernels. These operations can be

used to generalize the induced beliefs over the function space (Section 2.8.3). Without loss of

generality, the mean function is often set to m ≡ 0 in theoretical analyses, and this paper will keep

with this tradition, except for Section 2.8.3. Where m is nonzero, its effect is a straightforward

off-set p( f (x)) _ p( f (x)−m(x)).
For the purpose of regression, the most important aspect of Gaussian process priors is that they

are conjugate to the likelihood from finitely many observations (X ,Y ) = {xi,yi}i=1,...,N of the form

yi(xi) = f (xi)+ξ with Gaussian noise ξ ∼ N (0,σ2). The posterior is a Gaussian process with mean

and covariance functions

µ(x∗) = kx∗,X [KX ,X +σ2I]−1y ; Σ(x∗,x∗) = kx∗,x∗ − kx∗,X [KX ,X +σ2I]−1kX ,x∗ , (3)

where KX ,X is the kernel Gram matrix K
(i, j)
X ,X = k(xi,x j), and other objects of the form ka,b are also

matrices with elements k
(i, j)
a,b = k(ai,b j). Finally, for what follows it is important to know that

1814



ENTROPY SEARCH

−5 −4 −3 −2 −1 0 1 2 3 4 5

f

x

Figure 2: pmin induced by p( f ) from Figure 1. p( f ) repeated for reference. Blue solid line: Asymp-

totically exact representation of pmin gained from exact sampling of functions on a regular

grid (artifacts due to finite sample size). For comparison, the plot also shows the local

utilities probability of improvement (dashed magenta) and expected improvement (solid

magenta) often used for Gaussian process global optimization. Blue circles: Approximate

representation on representer points, sampled from probability of improvement measure.

Stochastic error on sampled values, due to only asymptotically correct assignment of

mass to samples, and varying density of points, focusing on relevant areas of pmin. This

plot uses arbitrary scales for each object: The two heuristics have different units of mea-

sure, differing from that of pmin. Notice the interesting features of pmin at the boundaries

of the domain: The prior belief encodes that f is smooth, and puts finite probability mass

on the hypothesis that f has negative (positive) derivative at the right (left) boundary of

the domain. With nonzero probability, the minimum thus lies exactly on the boundary of

the domain, rather than within a Taylor radius of it.

it is straightforward to sample “functions” (point-sets of arbitrary size from I) from a Gaussian

process. To sample the value of a particular sample at the M locations X∗, evaluate mean and

variance function as a function of any previously collected data points, using Equation (3), draw

a vector ζ ∼ ∏M N (0,1) of M random numbers i.i.d. from a standard one-dimensional Gaussian

distribution, then evaluate

f̃ (X∗) = µ(X∗)+C[Σ(X∗,X∗)]⊺ζ,

where the operator C denotes the Cholesky decomposition (Benoit, 1924).

2.2 Discrete Representations for Continuous Distributions

Having established a probability measure p( f ) on the function, we turn to constructing the belief

pmin(x) over its minimum. Inspecting Equation (1), it becomes apparent that it is challenging in two

ways: First, because it is an integral over an infinite-dimensional space, and second, because even

on a finite-dimensional space it may be a hard integral for a particular p( f ). This section deals with

the former issue, the following Section 2.3 with the latter.
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It may seem daunting that pmin involves an infinite-dimensional integral. The crucial observation

for a meaningful approximation in finite time is that regular functions can be represented meaning-

fully on finitely many points. If the stochastic process representing the belief over f is sufficiently

regular, then Equation (1) can be approximated arbitrarily well with finitely many representer points.

The discretization grid need not be regular—it may be sampled from any distribution which puts

non-zero measure on every open neighborhood of I. This latter point is central to a graceful han-

dling of the curse of dimensionality: The naı̈ve approach of approximately solving Equation (1) on

a regular grid, in a D-dimensional domain, would require O(exp(D)) points to achieve any given

resolution. This is obviously not efficient: Just like in other numerical quadrature problems, any

given resolution can be achieved with fewer representer points if they are chosen irregularly, with

higher resolution in regions of greater influence on the result of integration. We thus choose to

sample representer points from a proposal measure u, using a Markov chain Monte Carlo sampler

(our implementation uses shrinking rank slice sampling, by Thompson and Neal, 2010).

What is the effect of this stochastic discretization? A non-uniform quadrature measure u(x̃)
for N representer locations {x̃i}i=1,...,N leads to varying widths in the “steps” of the representing

staircase function. As N _ ∞, the width of each step is approximately proportional to (u(x̃i)N)−1.

Section 2.3 will construct a discretized q̂min(x̃i) that is an approximation to the probability that fmin

occurs within the step at x̃i. So the approximate p̂min on this step is proportional to q̂min(x̃i)u(x̃i),
and can be easily normalized numerically, to become an approximation to pmin.

How should the measure u be chosen? Unfortunately, the result of the integration, being a

density rather than a function, is itself a function of u, and the loss-function is also part of the

problem. So it is nontrivial to construct an optimal quadrature measure. Intuitively, a good proposal

measure for discretization points should put high resolution on regions of I where the shape of pmin

has strong influence on the loss, and on its change. For our choice of loss function (Section 2.5),

it is a good idea to choose u such that it puts high mass on regions of high value for pmin. But for

other functions, this need not always be the case.

We have experimented with a number of ad hoc choices for u, and found the aforementioned

“expected improvement” and “probability of improvement” (Section 1.1.3) to lead to reasonably

good performance. We use these functions for a similar reason as their original authors: Because

they tend to have high value in regions where pmin is also large. To avoid confusion, however,

note that we use these functions as unnormalized measures to sample discretization points for our

calculation of pmin, not as an approximation for pmin itself, as was done in previous work by other

authors. Defects in these heuristics have weaker effect on our algorithm than in the cited works: in

our case, if u is not a good proposal measure, we simply need more samples to construct a good

representation of pmin. In the limit of N _ ∞, all choices of u perform equally well, as long as they

put nonzero mass on all open neighborhoods of the domain.

2.3 Approximating pmin with Expectation Propagation

The previous Section 2.2 provided a way to construct a non-uniform grid of N discrete locations

x̃i, i = 1, . . . ,N. The restriction of the Gaussian process belief to these locations is a multivariate

Gaussian density with mean µ̃∈R
N and covariance Σ̃∈R

N×N . So Equation (1) reduces to a discrete

probability distribution (as opposed to a density)

p̂min(xi) =
∫

f∈RN
N ( f ; µ̃, Σ̃)

N

∏
i6= j

θ( f (x j)− f (xi))d f .
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fN ( f ; µ̃, Σ̃) θ[ f (x̃ j)− f (x̃i)]

i 6= j

Figure 3: Graphical model providing motivation for EP approximation on pmin. See text for details.

This is a multivariate Gaussian integral over a half-open, convex, piecewise linearly constrained

integration region—a polyhedral cone. Unfortunately, such integrals are known to be intractable

(Plackett, 1954; Lazard-Holly and Holly, 2003). However, it is possible to construct an effective

approximation q̂min based on Expectation Propagation (EP) (Minka, 2001): Consider the belief

p( f (x̃)) as a “prior message” on f (x̃), and each of the terms in the product as one factor providing

another message. This gives the graphical model shown in Figure 3. Running EP on this graph

provides an approximate Gaussian marginal, whose normalization constant q̂min(xi), which EP also

provides, approximates p( f |xmin = xi). The EP algorithm itself is somewhat involved, and there

are a number of algorithmic technicalities to take into account for this particular setting. We refer

interested readers to recent work by Cunningham et al. (2011), which gives a detailed description of

these aspects. The cited work also establishes that, while EP’s approximations to Gaussian integrals

are not always reliable, in this particular case, where there are as many constraints as dimensions

to the problem, the approximation is generally of high quality (see Figure 4 for an example). An

important advantage of the EP approximation over both numerical integration and Monte Carlo

integration (see next Section) is that it allows analytic differentiation of q̂min with respect to the

parameters µ̃ and Σ̃ (Cunningham et al., 2011; Seeger, 2008). This fact will become important in

Section 2.6.

The computational cost of this approximation is considerable: Each computation of q̂min(x̃i), for

a given i, involves N factor updates, which each have rank 1 and thus cost O(N2). So, overall, the

cost of calculating q̂min(x̃) is O(N4). This means N is effectively limited to well below N = 1000.

Our implementation uses a default of N = 50, and can calculate next evaluation points in ∼ 10

seconds. Once again, it is clear that this algorithm is not suitable for simple numerical optimization

problems; but a few seconds are arguably an acceptable waiting time for physical optimization

problems.

2.3.1 AN ALTERNATIVE: SAMPLING

An alternative to EP is Monte Carlo integration: sample S functions exactly from the Gaussian

belief on p( f ), at cost O(N2) per sample, then find the minimum for each sample in O(N) time.

This technique was used to generate the asymptotically exact plots in Figures 2 and following. It

has overall cost O(SN3), and can be implemented efficiently using Matrix-Matrix multiplications,

so each evaluation of this algorithm is considerably faster than EP. It also has the advantage of

asymptotic exactness. But, unfortunately, it provides no analytic derivatives, because of strong

discontinuity in the step functions of Equation (1). So the choice is between a first-order expansion

using EP (see Section 2.6) which is expensive, but provides a reusable, differentiable function, and

repeated calls to a cheaper, asymptotically exact sampler. In our experiments, the former option

appeared to be considerably faster, and of acceptable approximative quality. But for relatively
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Figure 4: EP-approximation to pmin (dashed green). Other plots as in previous figures. EP achieves

good agreement with the asymptotically exact Monte Carlo approximation to pmin, in-

cluding the point masses at the boundaries of the domain.

Figure 5: Innovation from two observations at x = −3 and x = 3. Current belief as red outline in

background, from Figure 1. Samples from the belief over possible beliefs after observa-

tions at x in blue. For each sampled innovation, the plot also shows the induced innovated

pmin (lower sampling resolution as previous plots). Innovations from several (here: two)

observations can be sampled jointly.

high-dimensional optimization problems, where one would expect to require relatively large N for

acceptable discretization, the sampling approach can be expected to scale better. [Note added in

proof: It has been pointed out to us that a related approach, using sampling, was previously studied

by Villemonteix et al. (2009).]
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2.4 Predicting Innovation from Future Observations

As detailed in Equation (2), the optimal choice of the next H evaluations is such that the expected

change in the loss 〈L〉x is extremal, that is, it effects the biggest possible expected drop in loss. The

loss is a function of pmin, which in turn is a function of p( f ). So predicting change in loss requires

predicting change in p( f ) as a function of the next evaluation points. It is another convenient

aspect of Gaussian processes that they allow such predictions in analytic form (Hennig, 2011): Let

previous observations at X0 have yielded observations Y 0. Evaluating at locations X will give new

observations Y , and the mean will be given by

µ(x∗) = [kx∗,X0
,kx∗,X ]

(

KX0,X0
kX0,X

kX ,X0
KX ,X

)−1(
Y 0

Y

)

= kx∗,X0
K−1

X0,X0
Y 0 +(kx∗,X − kx∗,X0

K−1
X0,X0

kX0,X)×
(kX ,X − kX ,X0

K−1
X0,X0

kX0,X)
−1(Y − kX ,X0

K−1
X0,X0

Y 0)

= µ0(x
∗)+Σ0(x

∗,X)Σ−1
0 (X ,X)(Y −µ0(X)),

(4)

where K
(i, j)
a,b = k(ai,b j)+δi jσ

2. The step from the first to the second line involves an application of

the matrix inversion lemma, the last line uses the mean and covariance functions conditioned on the

data set (X0,Y 0) so far. Since Y is presumed to come from this very Gaussian process belief, we

can write

Y = µ(X)+C[Σ(X ,X)]⊺Ω′+σω = µ(X)+C[Σ(X ,X)+σ2IH ]
⊺Ω Ω,Ω′,ω ∼ N (0, IH),

and Equation (4) simplifies. An even simpler construction can be made for the covariance function.

We find that mean and covariance function of the posterior after observations (X ,Y ) are mean and

covariance function of the prior, incremented by the innovations

∆µX ,Ω(x
∗) = Σ(x∗,X)Σ−1(X ,X)C[Σ(X ,X)+σ2IH ]Ω

∆ΣX(x
∗,x∗) = Σ(x∗,X)Σ−1(X ,X)Σ(X ,x∗).

The change to the mean function is stochastic, while the change to the covariance function is deter-

ministic. Both innovations are functions both of X and of the evaluation points x∗. One use of this

result is to sample 〈L〉X by sampling innovations, then evaluating the innovated pmin for each inno-

vation in an inner loop, as described in Section 2.3.1. An alternative, described in the next section,

is to construct an analytic first order approximation to 〈L〉X from the EP prediction constructed in

Section 2.3. As mentioned above, the advantage of this latter option is that it provides an analytic

function, with derivatives, which allows efficient numerical local optimization.

2.5 Information Gain—the Log Loss

To solve the decision problem of where to evaluate the function next in order to learn most about

the location of the minimum, we need to say what it means to “learn”. Thus, we require a loss

functional that evaluates the information content of innovated beliefs pmin. This is, of course, a

core idea in information theory. The seminal paper by Shannon (1948) showed that the negative

expectation of probability logarithms,

H[p] =−〈log p〉p =−∑
i

pi log pi, (5)
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Figure 6: 1-step predicted loss improvement for the log loss (relative entropy). Upper part of plot as

before, for reference. Monte Carlo prediction on regular grid as solid black line. Monte

Carlo prediction from sampled irregular grid as dot-dashed black line. EP prediction on

regular grid as black dashed line. EP prediction from samples as black dotted line. The

minima of these functions, where the algorithm will evaluate next, are marked by vertical

lines. While the predictions from the various approximations are not identical, they lead

to similar next evaluation points. Note that these next evaluation points differ qualitatively

from the choice of the GP optimization heuristics of Figure 2. Since each approximation

is only tractable up a multiplicative constant, the scales of these plots are arbitrary, and

only chosen to overlap for convenience.

known as entropy, has a number of properties that allow its interpretation as a measure of uncer-

tainty represented by a probability distribution p. Its value can be be interpreted as the number of

natural information units an optimal compression algorithm requires to encode a sample from the

distribution, given knowledge of the distribution. However, it has since been pointed out repeatedly

that this concept does not easily generalize to probability densities. A density p(x) has a unit of

measure [x]−1, so its logarithm is not well-defined, and one cannot simply replace summation with

integration in Equation (5). A functional that is well-defined on probability densities and preserves

many of the information-content interpretations of entropy (Jaynes and Bretthorst, 2003) is relative

entropy, also known as Kullback-Leibler (1951) divergence. We use its negative value as a loss

function for information gain.

LKL(p;b) =−
∫

p(x) log
p(x)

b(x)
dx.

As base measure b we choose the uniform measure UI(x) = |I|−1 over I, which is well-defined

because I is presumed to be bounded.2 With this choice, the loss is maximized (at L = 0) for a

2. Although uniform measures appeal as a natural representation of ignorance, they do encode an assumption about

I being represented in a “natural” way. Under a nonlinear transformation of I, the distribution would not remain
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uniform belief over the minimum, and diverges toward negative infinity if p approaches a Dirac

point distribution. The resulting algorithm, Entropy Search, will thus choose evaluation points such

that it expects to move away from the uniform base measure toward a Dirac distribution as quickly

as possible.

The reader may wonder: What about the alternative idea of maximizing, at each evaluation,

entropy relative to the current pmin? This would only encourage the algorithm to attempt to change

the current belief, but not necessarily in the right direction. For example, if the current belief puts

very low mass on a certain region, an evaluation that has even a small chance of increasing pmin

in this region could appear more favorable than an alternative evaluation predicted to have a large

effect on regions where the current pmin has larger values. The point is not to just change pmin, but

to change it such that it moves away from the base measure.

Recall that we approximate the density p(x) using a distribution p̂(xi) on a finite set {xi} of rep-

resenter points, which define steps of width proportional, up to stochastic error, to an unnormalized

measure ũ(xi). In other words, we can approximate pmin(x) as

pmin(x)≈
p̂(xi)Nũ(xi)

Zu

; Zu =
∫

ũ(x)dx; xi = arg min
{x j}

‖x− x j‖.

We also note that after N samples, the unit element of measure has size, up to stochastic error, of

∆xi ≈ Zu

ũ(xi)N
. So we can approximately represent the loss

LKL(pmin;b) ≈−∑i pmin(xi)∆xi log
pmin(xi)

b(xi)

=−∑i p̂min(xi) log
p̂min(xi)Nũ(xi)

Zub(xi)

=−∑i p̂min(xi) log
p̂min(xi)ũ(xi)

b(xi)
+ log

(

Zu

N

)

∑i p̂min(xi)

= H[ p̂min]−〈log ũ〉 p̂min
+ 〈logb〉 p̂min

+ logZu − logN,

which means we do not require the normalization constant Zu for optimization of LKL. For our

uniform base measure, the third term in the last line is a constant, too; but other base measures

would contribute nontrivially.

2.6 First-Order Approximation to 〈L〉
Since EP provides analytic derivatives of pmin with respect to mean and covariance of the Gaus-

sian measure over f , we can construct a first order expansion of the expected change in loss from

evaluations. To do so, we consider, in turn, the effect of evaluations at X on the measure on f , the

induced change in pmin, and finally the change in L . Since the change to the mean is Gaussian

stochastic, Itō’s (1951) Lemma applies. The following Equation uses the summation convention:

double indices in products are summed over.

〈∆L〉X =
∫

L

[

p0
min +

∂pmin

∂Σ(x̃i, x̃ j)
∆ΣX(x̃i, x̃ j)+

∂2 pmin

∂µi∂µ j

∆µX ,1(x̃i)∆µX ,1(x̃ j)

+
∂pmin

∂µ(x̃i)
∆X ,Ωµ(x̃i)+O((∆µ)2,(∆Σ)2)

]

N (Ω;0,1)dΩ−L [p0
min]. (6)

uniform. For example, uniform measures on the [0,1] simplex appear bell-shaped in the softmax basis (MacKay,

1998a). So, while b here does not represent prior knowledge on xmin per se, it does provide a unit of measure to

information and as such is nontrivial.
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Figure 7: Expected drop in relative entropy (see Section 2.5) from two additional evaluations to the

three old evaluations shown in previous plots. First new evaluation on abscissa, second

new evaluation on ordinate, but due to the exchangeability of Gaussian process measures,

the plot is symmetric. Diagonal elements excluded for numerical reasons. Blue regions

are more beneficial than red ones. The relatively complicated structure of this plot illus-

trates the complexity of finding the optimal H-step evaluation locations.

The first line contains deterministic effects, the first term in the second line covers the stochastic

aspect. Monte Carlo integration over the stochastic effects can be performed approximately using a

small number of samples Ω. These samples should be drawn only once, at first calculation, to get a

differentiable function 〈∆L〉X that can be re-used in subsequent optimization steps.

The above formulation is agnostic with respect to the loss function. Hence, in principle, Entropy

Search should be easy to generalize to different loss functions. But recall that the fidelity of the

calculation of Equation (6) depends on the intermediate approximate steps, in particular the choice

of discretization measure ũ. We have experimented with other loss functions and found it difficult

to find a good measure ũ providing good performance for many such loss functions. So this paper

is limited to the specific choice of the relative entropy loss function. Generalization to other losses

is future work.

2.7 Greedy Planning, and its Defects

The previous sections constructed a means to predict, approximately, the expected drop in loss from

H new evaluations at locations X = {xi}i=1,...,N . The remaining task is to optimize these locations.

It may seem pointless to construct an optimization algorithm which itself contains an optimization

problem, but note that this new optimization problem is quite different from the initial one. It is

a numerical optimization problem, of the form described in Section 1: We can evaluate the utility
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function numerically, without noise, with derivatives, and at hopefully relatively low cost compared

to the physical process we are ultimately trying to optimize.

Nevertheless, one issue remains: Optimizing evaluations over the entire horizon H is a dynamic

programming problem, which, in general, has cost exponential in H. However, this problem has a

particular structure: Apart from the fact that evaluations drawn from Gaussian process measures are

exchangeable, there is also other evidence that optimization problems are benign from the point of

view of planning. For example, Srinivas et al. (2010) show that the information gain over the func-

tion values is submodular, so that greedy learning of the function comes close to optimal learning

of the function. While is is not immediately clear whether this statement extends to our issue of

learning about the function’s minimum, it is obvious that the greedy choice of whatever evaluation

location most reduces expected loss in the immediate next step is guaranteed to never be catastroph-

ically wrong. In contrast to general planning, there are no “dead ends” in inference problems. At

worst, a greedy algorithm may choose an evaluation point revealed as redundant by a later step. But

thanks to the consistency of Bayesian inference in general, and Gaussian process priors in particular

(van der Vaart and van Zanten, 2011), no decision can lead to an evaluation that somehow makes

it impossible to learn the true function afterward. In our approximate algorithm, we thus adopt this

greedy approach. It remains an open question for future research whether approximate planning

techniques can be applied efficiently to improve performance in this planning problem.

2.8 Further Issues

This section digresses from the main line of thought to briefly touch upon some extensions and

issues arising from the choices made in previous sections. For the most part, we point out well-

known analytic properties and approximations that can be used to generalize the algorithm. Since

they apply to Gaussian process regression rather than the optimizer itself, they will not play a role

in the empirical evaluation of Section 3.

2.8.1 DERIVATIVE OBSERVATIONS

Gaussian process inference remains analytically tractable if instead of, or in addition to direct obser-

vations of f , we observe the result of any linear operator acting on f . This includes observations of

the function’s derivatives (Rasmussen and Williams, 2006, §9.4) and, with some caveats, to integral

observations (Minka, 2000). The extension is pleasingly straightforward: The kernel defines co-

variances between function values. Covariances between the function and its derivatives are simply

given by

cov

(

∂n f (x)

∏i ∂xi

,
∂m f (x′)

∏ j ∂x′j

)

=
∂n+mk(x,x′)

∏i ∂xi ∏ j ∂x′j
,

so kernel evaluations simply have to be replaced with derivatives (or integrals) of the kernel where

required. Obviously, this operation is only valid as long as the derivatives and integrals in question

exist for the kernel in question. Hence, all results derived in previous sections for optimization

from function evaluations can trivially be extended to optimization from function and derivative

observations, or from only derivative observations.
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Figure 8: Generalizing GP regression. Left: Samples from different priors. Right: Posteriors

(mean, two standard deviations) after observing three data points with negligible noise

(kernel parameters differ between the two plots). base: standard GP regression with

Matérn kernel. kernel: sum of two kernels (square exponential and rational quadratic) of

different length scales and strengths. poly: polynomial (here: quadratic) mean function.

lik: Non-Gaussian likelihood (here: logarithmic link function). The scales of both x and

f (x) are functions of kernel parameters, so the numerical values in this plot have relevance

only relative to each other. Note the strong differences in both mean and covariance

functions of the posteriors.

2.8.2 LEARNING HYPERPARAMETERS

Throughout this paper, we have assumed kernel and likelihood function to be given. In real appli-

cations, this will not usually be the case. In such situations, the hyperparameters defining these two

functions, and if necessary a mean function, can be learned from the data, either by setting them to

maximum likelihood values, or by full-scale Bayesian inference using Markov chain Monte Carlo

methods. See Rasmussen and Williams (2006, §5) and Murray and Adams (2010) for details. In

the latter case, the belief p( f ) over the function is a mixture of Gaussian processes. To still be able

to use the algorithm derived so far, we approximate this belief with a single Gaussian process by

calculating expected values of mean and covariance function.

Ideally, one would want to take account of this hierarchical learning process in the decision

problem addressed by the optimizer. This adds another layer of computation complexity to the

problem, and is outside of the scope of this paper. Here, we content ourselves with considering the

uncertainty of the Gaussian process conditioned on a particular set of hyperparameters.
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2.8.3 LIMITATIONS AND EXTENSIONS OF GAUSSIAN PROCESSES FOR OPTIMIZATION

Like any probability measure over functions, Gaussian process measures are not arbitrarily general.

In particular, the most widely used kernels, including the two mentioned above, are stationary,

meaning they only depend on the difference between locations, not their absolute values. Loosely

speaking, the prior “looks the same everywhere”. One may argue that many real optimization

problems do not have this structure. For example, it may be known that the function tends to have

larger functions values toward the boundaries of I or, more vaguely, that it is roughly “bowl-shaped”.

Fortunately, a number of extensions readily suggest themselves to address such issues (Figure 8).

Parametric Means As pointed out in Section 2.1, we are free to add any parametric general linear

model as the mean function of the Gaussian process,

m(x) = ∑
i

φi(x)wi.

Using Gaussian beliefs on the weights wi of this model, this model may be learned at the same

time as the Gaussian process itself (Rasmussen and Williams, 2006, §2.7). Polynomials such

as the quadratic φ(x) = [x;xx⊺] are beguiling in this regard, but they create an explicit “origin”

at the center of I, and induce strong long-range correlations between opposite ends of I. This

seems pathological: In most settings, observing the function on one end of I should not tell us

much about the value at the opposite end of I. But we may more generally choose any feature

set for the linear model. For example, a set of radial basis functions φi(x) = exp(‖x−ci‖2/ℓ2
i )

around locations ci at the rims of I can explain large function values in a region of width ℓi

around such a feature, without having to predict large values at the center of I. This idea can

be extended to a nonparametric version, described in the next point.

Composite Kernels Since kernels form a semiring, we may sum a kernel of large length scale and

large signal variance and a kernel of short length scale and low signal variance. For example

k(x,x′) = kSE(x,x
′;s1,S1)+ kRQ(x,x

′,s2,S2,α2) s1 ≫ s2;S
i j
1 ≫ S

i j
2 ∀i, j

yields a kernel over functions that, within the bounded domain I, look like “rough troughs”:

global curvature paired with local stationary variations. A disadvantage of this prior is that it

thinks “domes” just as likely as “bowls”. An advantage is that it is a very flexible framework,

and does not induce unwanted global correlations.

Nonlinear Likelihoods An altogether different effect can be achieved by a non-Gaussian, non-

linear likelihood function. For example, if f is known to be strictly positive, one may assume

the noise model

p(y |g) = N (y; exp(g),σ2); f = exp(g), (7)

and learn g instead of f . Since the logarithm is a convex function, the minimum of the la-

tent g is also a minium of f . Of course, this likelihood leads to a non-Gaussian posterior.

To retain a tractable algorithm, approximate inference methods can be used to construct ap-

proximate Gaussian posteriors. In our example (labeled lik in Figure 8), we used a Laplace

approximation: It is straightforward to show that Equation (7) implies

∂ log p(y |g)
∂g

∣

∣

∣

∣

g=ĝ

!
=0 ⇒ ĝ = logy

∂2 log p(y |g)
∂2g

∣

∣

∣

∣

g=ĝ

=
y2

σ2
,
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Figure 9: Laplace approximation for a logarithmic Gaussian likelihood. True likelihood in thick

red, Gaussian approximation in thin blue, maximum likelihood solution marked in grey.

Four log relative values a = log(y/σ) of sample y and noise σ (scaled in height for read-

ability). a =−1 (solid); a = 0 (dash-dotted); a = 1 (dashed); a = 2 (dotted). The approx-

imation is good for a ≫ 0.

so a Laplace approximation amounts to a heteroscedastic noise model, in which an observa-

tion (y,σ2) is incorporated into the Gaussian process as (log(y),(σ/y)2). This approximation

is valid if σ ≪ y (see Figure 9). For functions on logarithmic scales, however, finding min-

ima smaller than the noise level, at logarithmic resolution, is a considerably harder problem

anyway.

The right part of Figure 8 shows posteriors produced using the three approaches detailed above,

and the base case of a single kernel with strong signal variance, when presented with the same three

data points, with very low noise. The strong difference between the posteriors may be disappointing,

but it is a fundamental aspect of inference: Different prior assumptions lead to different posteriors,

and function space inference is impossible without priors. Each of the four beliefs shown in the

Figure may be preferable over the others in particular situations. The polynomial mean describes

functions that are almost parabolic. The exponential likelihood approximation is appropriate for

functions with an intrinsic logarithmic scale. The sum kernel approach is pertinent for the search for

local minima of globally stationary functions. Classic methods based on polynomial approximations

are a lot more restrictive than any of the models described above.

Perhaps the most general option is to use additional prior information I giving p(xmin |I ), inde-

pendent of p( f ), to encode outside information about the location of the minimum. Unfortunately,

this is intractable in general. But it may be approached through approximations. This option is

outside of the scope of this paper, but will be the subject of future work.

2.9 Summary—the Entire Algorithm

Algorithm 1 shows pseudocode for Entropy Search. It takes as input the prior, described by the

kernel k, and the likelihood l = p(y | f (x)), as well as the discretization measure u (which may itself

1826



ENTROPY SEARCH

Algorithm 1 Entropy Search

1: procedure ENTROPYSEARCH(k, l = p(y | f (x)),u,H,(x,y))
2: x̃ ∼ u(x,y) ⊲ discretize using measure u (Section 2.2)

3: [µ,Σ,∆µx,∆Σx] ^ GP(k, l,x,y) ⊲ infer function, innovation, from GP prior (2.1)

4: [q̂min(x̃),
∂q̂min

∂µ
, ∂2q̂min

∂µ∂µ
, ∂q̂minx

∂Σ ] ^ EP(µ,Σ) ⊲ approximate p̂min (2.3)

5: if H=0 then

6: return qmin ⊲ At horizon, return belief for final decision

7: else

8: x′ ^ arg min〈L〉x ⊲ predict information gain; Equation (6)

9: y′ ^ EVALUATE( f (x′)) ⊲ take measurement

10: ENTROPYSEARCH(k, l,u,H −1,(x,y)∪ (x′,y′)) ⊲ move to next evaluation

11: end if

12: end procedure

be a function of previous data, the Horizon H, and any previously collected observations (x,y). To

choose where to evaluate next, we first sample discretization points from u, then calculate the current

Gaussian belief over f on the discretized domain, along with its derivatives. We construct an approx-

imation to the belief over the minimum using Expectation Propagation, again with derivatives. Fi-

nally, we construct a first order approximation on the expected information gain from an evaluation

at x′ and optimize numerically. We evaluate f at this location, then the cycle repeats. An example

implementation in MATLAB can be downloaded from www.probabilistic-optimization.org.

3. Experiments

Figures in previous sections provided some intuition and anecdotal evidence for the efficacy of the

various approximations used by Entropy Search. In this section, we compare the resulting algorithm

to two Gaussian process global optimization heuristics: Expected Improvement, Probability of Im-

provement (Section 1.1.3), as well as to a continuous armed bandit algorithm: GP-UCB (Srinivas

et al., 2010). For reference, we also compare to a number of numerical optimization algorithms:

Trust-Region-Reflective (Coleman and Li, 1996, 1994), Active-Set (Powell, 1978b,a), interior point

(Byrd et al., 1999, 2000; Waltz et al., 2006), and a naı̈vely projected version of the BFGS algorithm

(Broyden, 1965; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). We avoid implementation bias by

using a uniform code framework for the three Gaussian process-based algorithms, that is, the algo-

rithms share code for the Gaussian process inference and only differ in the way they calculate their

utility. For the local numerical algorithms, we used third party code: The projected BFGS method

is based on code by Carl Rasmussen,3 the other methods come from version 6.0 of the optimization

toolbox of MATLAB.4

In some communities, optimization algorithms are tested on hand-crafted test functions. This

runs the risk of introducing bias. Instead, we compare our algorithms on a number of functions

sampled from a generative model. In the first experiment, the function is sampled from the model

used by the GP algorithms themselves. This eliminates all model-mismatch issues and allows a

3. Code can be found at http://www.gaussianprocess.org/gpml/code/matlab/util/minimize.m, version using

BFGS: personal communication.

4. Toolbox can be found at http://www.mathworks.de/help/toolbox/optim/rn/bsqj_zi.html.
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Figure 10: Distance of function value at optimizers’ best guess for xmin from true global minimum.

Log scale.

direct comparison of other GP optimizers to the probabilistic optimizer. In a second experiment, the

functions were sampled from a model strictly more general than the model used by the algorithms,

to show the effect of model mismatch.

3.1 Within-Model Comparison

The first experiment was carried out over the 2-dimensional unit domain I = [0,1]2. To generate

test functions, 1000 function values were jointly sampled from a Gaussian process with a squared-

exponential covariance function of length scale ℓ = 0.1 in each direction and unit signal variance.

The resulting posterior mean was used as the test function. All algorithms had access to noisy eval-

uations of the test functions. For the benefit of the numerical optimizers, noise was kept relatively

low: Gaussian with standard deviation σ = 10−3. All algorithms were tested on the same set of 40

test functions, all Figures in this section are averages over those sets of functions. It is nontrivial to

provide error bars on these average estimates, because the data sets have no parametric distribution.

But the regular structure of the plots, given that individual experiments were drawn i.i.d., indicates

that there is little remaining stochastic error.

After each function evaluation, the algorithms were asked to return a best guess for the minimum

xmin. For the local algorithms, this is simply the point of their next evaluation. The Gaussian process

based methods returned the global minimum of the mean belief over the function (found by local

optimization with random restarts). Figure 10 shows the difference between the global optimum

of the function and the function value at the reported best guesses. Since the best guesses do not
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Figure 11: Euclidean distance of optimizers’ best guess for xmin from truth. Log scale.

in general lie at a data point, their quality can actually decrease during optimization. The most

obvious feature of this plot is that local optimization algorithms are not adept at finding global

minima, which is not surprising, but gives an intuition for the difficulty of problems sampled from

this generative model. The plot shows a clear advantage for Entropy Search over its competitors,

even though the algorithm does not directly aim to optimize this particular loss function. The

flattening out of the error of all three global optimizers toward the right is due to evaluation noise

(recall that evaluations include Gaussian noise of standard deviation 10−3). Interestingly, Entropy

Search flattens out at an error almost an order of magnitude lower than that of the nearest competitor,

Expected Improvement. One possible explanation for this behavior is a pathology in the classic

heuristics: Both Expected Improvement and Probability of Improvement require a “current best

guess” η, which has to be a point estimate, because proper marginalization over an uncertain belief

is not tractable. Due to noise, it can thus happen that this best guess is overly optimistic, and the

algorithm then explores too aggressively in later stages.

Figure 11 shows data from the same experiments as the previous figure, but plots Euclidean

distance from the true global optimum in input space, rather than in function value space. The

results from this view are qualitatively similar to those shown in Figure 10.

Since Entropy Search attempts to optimize information gain from evaluations, one would also

like to compare to algorithms on the entropy loss function. However, this is challenging. First,

the local optimization algorithms provide no probabilistic model of the function and can thus not

provide this loss. But even for the optimization algorithms based on Gaussian process measures, it

is challenging to evaluate this loss globally with good resolution. The only option we are aware of

is to approximately calculate entropy, using the very algorithm introduced in this paper. Doing so

amounts to a kind of circular experiment that Entropy Search wins by definition, so we omit it here.
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Figure 12: Regret as a function of number of evaluations.

We pointed out in Section 1.1.2 that the bandit setting differs considerably from the kind of

optimization discussed in this paper, because bandit algorithms try to minimize regret, rather than

improve an estimate of the function’s optimum. To clarify this point further, Figure 12 shows the

regret

r(T ) =
T

∑
t=1

[yt − fmin],

for each of the algorithms. Notice that probability of improvement, which performs worst among

the global algorithms as seen from the previous two measures of performance, achieves the lowest

regret. The intuition here is that this heuristic focuses evaluations on regions known to give low

function values. In contrast, the actual value of the function at the evaluation point has no special

role in Entropy Search. The utility of an evaluation point only depends on its expected effect on

knowledge about the minimum of the function.

Surprisingly, the one algorithm explicitly designed to achieve low regret, GP-UCB, performs

worst in this comparison. This algorithm chooses evaluation points according to (Srinivas et al.,

2010)

xnext = arg min
x

[µ(x)−β1/2σ(x)] where β = 4(D+1) logT +C(k,δ)

with T , the number of previous evaluations, D, the dimensionality of the input domain, and C(k,δ) is

a constant that depends on some analytic properties of the kernel k and a free parameter, 0 < δ < 1.

We found it hard to find a good setting for this δ, which clearly has influence on the algorithm’s

performance. The results shown here represent the best performance over a set of 4 experiments

with different choices for δ. They appear to be slightly worse than, but comparable to the empirical

performance reported by the original paper on this algorithm (Srinivas et al., 2010, Figure 5a).
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Figure 13: Left: A sample from the GP prior with squared exponential kernel used in the on-model

experiments of Section 3.1. Right: Sample from prior with the rational quadratic kernel

used for the out-of-model comparison of Section 3.2.

3.2 Out-of-Model Comparison

In the previous section, the algorithms attempted to find minima of functions sampled from the

prior used by the algorithms themselves. In real applications, one can rarely hope to be so lucky,

but hierarchical inference can be used to generalize the prior and construct a relatively general al-

gorithm. But what if even the hierarchically extended prior class does not contain the true function?

Qualitatively, it is clear that, beyond a certain point of model-mismatch, all algorithms can be made

to perform arbitrarily badly. The poor performance of local optimizers (which may be interpreted

as building a quadratic model) in the previous section is an example of this effect. In this section,

we present results of the same kind of experiments as in the previous section, but on a set of 30

two-dimensional functions sampled from a Gaussian process prior with rational quadratic kernel,

with the same length scale and signal variance as above, and scale mixture parameter α = 1 (see

Equation 2.1). This means samples evolve over an infinite number of different length scales, includ-

ing both longer and shorter scales than those covered by the priors of the algorithms (Figure 13).

Figure 14 shows error on function values, Figure 15 Euclidean error in input space, Figure 16 regret.

Note the different scales for the ordinate axes relative to the corresponding previous plots: While

Entropy Search still (barely) outperforms the competitors, all three algorithms perform worse than

before; and their errors become more similar to each other. However, they still manage to discover

good regions in the domain, demonstrating a certain robustness to model-mismatch.

4. Conclusion

This paper presented a new probabilistic paradigm for global optimization, as an inference prob-

lem on the minimum of the function, rather than the problem of collecting iteratively lower and

lower function values. We argue that this description is closer to practitioners’ requirements than

classic response surface optimization, bandit algorithms, or other, heuristic, global optimization al-

1831



HENNIG AND SCHULER

0 10 20 30 40 50 60 70 80 90 100
10−4

10−3

10−2

10−1

100

101

# of evaluations

|f
m
in
−
f̂
m
in
|

GP UCB

prob. of improvement

expected improvement

entropy search

Figure 14: Function value error, off-model tasks.
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Figure 15: Error on xmin, off-model tasks.
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Figure 16: Regret, off-model tasks.

gorithms. In the main part of the paper, we constructed Entropy Search, a practical probabilistic

global optimization algorithm, using a series of analytic assumptions and numerical approxima-

tions: A particular family of priors over functions (Gaussian processes); constructing the belief

pmin over the location of the minimum on an irregular grid to deal with the curse of dimensional-

ity; and using Expectation Propagation toward an efficient analytic approximation. The Gaussian

belief allows analytic probabilistic predictions of the effect of future data points, from which we

constructed a first-order approximation of the expected change in relative entropy of pmin to a base

measure. For completeness, we also pointed out some already known analytic properties of Gaus-

sian process measures that can be used to generalize this algorithm. We showed that the resulting

algorithm outperforms both directly and distantly related competitors through its more elaborate,

probabilistic description of the problem. This increase in performance is exchanged for somewhat

increased computational cost (Entropy Search costs are a constant multiple of that of classic Gaus-

sian process global optimizers); so this algorithm is more suited for problems where evaluating

the function itself carries considerable cost. It provides a natural description of the optimization

problem, by focusing on the performance under a loss function at the horizon, rather than function

values returned during the optimization process. It allows the practitioner to explicitly encode prior

knowledge in a flexible way, and adapts its behavior to the user’s loss function.
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Appendix A. Mathematical Appendix

The notation in Equation (1) can be read, sloppily, to mean “pmin(x) is the probability that the

value of f at x is lower than at any other x̃ ∈ I”. For a continuous domain, though, there are

uncountably many other x̃. To give more precise meaning to this notation, consider the following

argument. Let there be a sequence of locations {xi}i=1,...,N , such that for N _ ∞ the density of

points at each location converges to a measure m(x) nonzero on every open neighborhood in I. If

the stochastic process p( f ) is sufficiently regular to ensure samples are almost surely continuous

(see footnote in Section 2.1), then almost every sample can be approximated arbitrarily well by a

staircase function with steps of width m(xi)/N at the locations xi, in the sense that ∀ε > 0 ∃N0 > 0

such that, ∀N > N0 : | f (x)− f (arg minx j, j=1,...,N |x− x j|)| < ε, where | · | is a norm (all norms on

finite-dimensional vector spaces are equivalent). This is the original reason why samples from

sufficiently regular Gaussian processes can be plotted using finitely many points, in the way used in

this paper. We now define the notation used in Equation (1) to mean the following limit, where it

exists.

pmin(x) =
∫

p( f )∏
x̃6=x

θ( f (x̃)− f (x))d f

≡ lim
N_∞

|xi−xi−1|·N_m(x)

∫
p[ f ({xi}i=1,...,N)]

N

∏
i=1;i6= j

θ[ f (xi)− f (x j)]d f ({xi}i=1,...,N) · |xi − xi−1| ·N. (8)

In words: The “infinite product” is meant to be the limit of finite-dimensional integrals with an in-

creasing number of factors and dimensions, where this limit exists. In doing so, we have sidestepped

the issue of whether this limit exists for any particular Gaussian process (kernel function). We do

so because the theory of suprema of stochastic processes is highly nontrivial. We refer the reader to

a friendly but demanding introduction to the topic by Adler (1990). From our applied standpoint,

the issue of whether (8) is well defined for a particular Gaussian prior is secondary: If it is known

that the true function is continuous and bounded, then it has a well-defined supremum, and the prior

should reflect this knowledge by assigning sufficiently regular beliefs. If the actual prior is such

that we expect the function to be discontinuous, it should be clear that optimization is extremely

challenging anyway. We conjecture that the finer details of the region between these two domains

have little relevance for communities interested in optimization.
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celui des inconnues. Application de la méthode a la résolution d’un système défini d’équations
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