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Abstract
We consider an online decision problem over a discrete spacein which the loss function is submod-
ular. We give algorithms which are computationally efficient and are Hannan-consistent in both the
full information and partial feedback settings.
Keywords: submodular optimization, online learning, regret minimization

1. Introduction

Online decision-making is a learning problem in which one needs to choose a decision repeatedly
from a given set of decisions, in an effort to minimize costs over the long run, even in the face
of complete uncertainty about future outcomes. The performance of an online learning algorithm
is measured in terms of itsregret, which is the difference between the total cost of the decisions it
chooses, and the cost of the optimal decision chosen in hindsight. AHannan-consistentalgorithm is
one that achieves sublinear regret (as a function of the number of decision-making rounds). Hannan-
consistency implies that the average per round cost of the algorithm converges to that of the optimal
decision in hindsight.

In the past few decades, a variety of Hannan-consistent algorithms have been devised for a wide
range of decision spaces and cost functions, including well-known settings such as prediction from
expert advice (Littlestone and Warmuth, 1989), online convex optimization (Zinkevich, 2003), and
more (see the book by Cesa-Bianchi and Lugosi, 2006 for an extensive survey of prediction algo-
rithms). Most of these algorithms are based on an online version of convexoptimization algorithms.
Despite this success, many online decision-making problems still remain open, especially when the
decision space is discrete and large (say, exponential size in the problemparameters) and the cost
functions are non-linear.

In this paper, we consider just such a scenario. Our decision space is now the set of all subsets
of a ground set ofn elements, and the cost functions are assumed to besubmodular. This property
is widely seen as the discrete analogue of convexity, and has proven to bea ubiquitous property in
various machine learning tasks (see Guestrin and Krause, 2008 for references). A crucial compo-
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nent in these latter results are the celebrated polynomial time algorithms for submodular function
minimization (Iwata et al., 2001).

To motivate the online decision-making problem with submodular cost functions, here is an
example from the survey by McCormick (2006). Consider a factory capable of producing any
subset from a given set ofn productsE. Let f : 2E 7→R be the cost function for producing any such
subset (here, 2E stands for the set of all subsets ofE). Economics tells us that this cost function
should satisfy the law of diminishing returns: that is, the additional cost of producing an additional
item is lower the more we produce. Mathematically stated, for all setsS,T ⊆ E such thatT ⊆ S,
and for all elementsi ∈ E, we have

f (T ∪{i})− f (T) ≥ f (S∪{i})− f (S).

Such cost functions are calledsubmodular, and frequently arise in real-world economic and other
scenarios. Now, for every itemi, let pi be the market price of the item, which is only determined
in the future based on supply and demand. Thus, the profit from producing a subsetSof the items
is P(S) = ∑i∈Spi − f (S). Maximizing profit is equivalent to minimizing the function−P, which is
submodular as well.

The online decision problem which arises is now to decide which set of products to produce,
to maximize profits in the long run, without knowing in advance the cost functionor the market
prices. A more difficult version of this problem, perhaps more realistic, is when the only information
obtained is the actual profit of the chosen subset of items, and no information on the profit possible
for other subsets.

In general, the Online Submodular Minimization problem is the following. In eachiteration,
we choose a subset of a ground set ofn elements, and then observe a submodular cost function
which gives the cost of the subset we chose. The goal is to minimize the regret, which is the
difference between the total cost of the subsets we chose, and the costof the best subset in hindsight.
Depending on the feedback obtained, we distinguish between two settings, full-information and
bandit. In the full-information setting, we can query each cost function at as many points as we
like. In the bandit setting, we only get to observe the cost of the subset wechose, and no other
information is revealed.

Obviously, if we ignore the special structure of these problems, standardalgorithms for learning
with expert advice and/or with bandit feedback can be applied to this setting.However, the com-
putational complexity of these algorithms would be proportional to the number ofsubsets, which
is 2n. In addition, for the submodular bandits problem, even the regret boundshave an exponential
dependence onn. It is hence of interest to designefficientalgorithms for these problems. For the
bandit version an even more basic question arises: does there exist an algorithm with regret which
depends only polynomially onn?

In this paper, we answer these questions in the affirmative. We give efficient algorithms for
both problems, with regret which is bounded by a polynomial inn, the underlying dimension, and
sublinearly in the number of iterations. For the full information setting, we give two different
randomized algorithms.

One of these algorithms is based on the follow-the-perturbed-leader approach (Hannan, 1957;
Kalai and Vempala, 2005). We give a new way of analyzing such an algorithm. We hope this
analysis technique will be applicable to other problems with large decision spaces as well. This
algorithm is combinatorial, strongly polynomial, and can be generalized to arbitrary distributive
lattices, rather than just all subsets of a given set.
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The second algorithm is based on convex analysis. We make crucial use of a continuous ex-
tension of a submodular function known as theLovász extension. We obtain our regret bounds by
running a (sub)gradient descent algorithm in the style of Zinkevich (2003). The expected regret of
this latter algorithm is shown to be bounded byO(

√
nT), and we show this to be optimal.

For the bandit setting, we give a randomized algorithm with expected regretat mostO(nT2/3).
This algorithm also makes use of the Lovász extension and gradient descent. The algorithm folds
exploration and exploitation steps into a single sample and obtains the stated regret bound. We also
give high-probability bounds on regret of the same order for both settingsof online submodular
minimization.

An extended abstract of the results of this paper was originally presentedin NIPS 2009 (Hazan
and Kale, 2009). The present paper contains additional results with detailed proofs and tighter
bounds, as well as several corrections.

1.1 Related Work

Submodular optimization has found numerous applications in machine learning and optimization in
recent years, see, for example, the survey of Krause and Guestrin (2011). The prediction framework
of online convex optimization was put forth by Zinkevich (2003), and found numerous applications
since. Flaxman et al. (2005) show how to obtain sub linear regret boundsin the bandit setting. The
latter technique is applicable to our setting when applied to the Lovász extension of a submodular
function, although this gives weaker regret bounds than the ones presented hereby. Following our
work, Jegelka and Bilmes (2011) study constrained submodular minimization over specific combi-
natorial structures.

2. Preliminaries and Problem Statement

In this section we review the basic concepts of submodular functions, prediction and online convex
optimization, and state our main results.

2.1 Submodular Functions

The decision space is the set of all subsets of a universe ofn elements,[n] = {1,2, . . . ,n}. The set
of all subsets of[n] is denoted 2[n]. For a setS⊆ [n], denote byχS its characteristic vector in{0,1}n,
that is,χS(i) = 1 if i ∈ S, and 0 otherwise.

A function f : 2[n] →R is calledsubmodularif for all setsS,T ⊆ [n] such thatT ⊆ S, and for all
elementsi ∈ [n], we have

f (T + i)− f (T) ≥ f (S+ i)− f (S).

Here, we use the shorthand notationS+ i to indicateS∪{i}. An explicit description off would take
exponential space. We assume therefore that the only way to accessf is via avalue oracle, that is,
an oracle that returns the value off at any given setS⊆ [n].

Given access to a value oracle for a submodular function, it is possible to minimize it in poly-
nomial time (Gr̈otschel et al., 1988), and indeed, even in strongly polynomial time (Grötschel et al.,
1988; Iwata et al., 2001; Schrijver, 2000; Iwata, 2003; Orlin, 2009; Iwata and Orlin, 2009). The
current fastest strongly polynomial algorithm is due to Orlin (2009) and takes timeO(n5EO+n6),
where EO is the time taken to run the value oracle. The fastest weakly polynomial algorithm are
given by Iwata (2003) and Iwata and Orlin (2009) and run in timeÕ(n4EO+n5).
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2.2 Online Submodular Minimization

In the Online Submodular Minimization problem, over a sequence of iterationst = 1,2, . . ., an online
decision maker has to repeatedly chose a subsetSt ⊆ [n]. In each iteration, after choosing the set
St , the cost of the decision is specified by a submodular functionft : 2[n] → [−M,M]. The decision
maker incurs costft(St). Theregretof the decision maker is defined to be

RegretT :=
T

∑
t=1

ft(St)− min
S⊆[n]

T

∑
t=1

ft(S).

If the setsSt are chosen by a randomized algorithm, then we consider the expected regret over the
randomness in the algorithm.

An online algorithm to choose the setsSt will be said to be Hannan-consistent if it ensures that
RegretT = o(T). The algorithm will be calledefficientif it computes each decisionSt in poly(n, t)
time. Depending on the kind of feedback the decision maker receives, we distinguish between two
settings of the problem:

• Full information setting.In this case, in each roundt, the decision maker has unlimited access
to the value oracles of the previously seen cost functionf1, f2, . . . ft−1.

• Bandit setting.In this case, in each roundt, the decision maker only observes the cost of her
decisionSt , viz. ft(St), and receives no other information.

2.3 Statement of Main Results

In the setup of the Online Submodular Minimization, we have the following results:

Theorem 1 In the full information setting of Online Submodular Minimization, there is an efficient
randomized algorithm that attains the following regret bound:

E[RegretT ] = O(M
√

nT).

Furthermore, RegretT = O(M(
√

n+
√

log(1/ε))
√

T) with probability at least1− ε.

We also prove a lower bound that shows that the algorithm of Theorem 1 has optimal regret up
to constants:

Theorem 2 In the full information setting of Online Submodular Minimization, for any algorithm,
there is a sequence of submodular cost functions such that the algorithm has regret at leastΩ(M

√
nT).

Theorem 3 In the bandit setting of Online Submodular Minimization, there is an efficient random-
ized algorithm that attains the following regret bound:

E[RegretT ] = O(MnT2/3).

Furthermore, RegretT = O(M(n+
√

nlog(1/ε))T2/3) with probability at least1− ε.

Both Theorem 1 and Theorem 3 hold against both oblivious as well as adaptive adversaries, that
is, the cost functions can be chosen adversarially with knowledge of the distribution over subsets
chosen by the decision maker.
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2.4 The Lovász Extension

A major technical construction we need for the algorithms is theLovász extension̂f of the submod-
ular function f . This is defined on the unit hypercubeK = [0,1]n and takes real values. Before
defining the Lov́asz extension, we need the concept of a chain of subsets of[n]:

Definition 4 A chain of subsets of[n] is a collection of sets A0,A1, . . . ,Ap such that

A0 ⊂ A1 ⊂ A2 ⊂ ·· · ⊂ Ap.

A maximal chain is one where p= n. For a maximal chain, we have A0 = /0, An = [n], and there is
a unique associated permutationπ : [n]→ [n] such that for all i∈ [n], we have Aπ(i) = Aπ(i)−1+ i.
For this permutationπ, we have Aπ(i) = { j ∈ [n] : π( j)≤ π(i)} for all i ∈ [n].

Now letx∈K . There is a unique chainA0 ⊂A1 ⊂ ·· ·Ap such thatx can be expressed as a convex
combinationx= ∑p

i=0µiχAi whereµi > 0 and∑p
i=0µi = 1. A nice way to construct this combination

is the following random process: choose a thresholdτ ∈ [0,1] uniformly at random, and consider
the level setSτ = {i : xi > τ}. The sets in the required chain are exactly the level sets which are
obtained with positive probability, and for any such setAi , µi = Pr[Sτ = Ai ]. In other words, we
havex= Eτ[χSτ ]. This follows immediately by noting that for anyi, we havePrτ[i ∈ Sτ] = xi . Of
course, the chain and the weightsµi can also be constructed deterministically simply by sorting the
coordinates ofx.

Now, we are ready to define1 the Lov́asz extension̂f :

Definition 5 Let x∈K . Let A0 ⊂ A1 ⊂ ·· ·Ap such that x can be expressed as a convex combination
x= ∑p

i=0µiχAi where µi > 0 and∑p
i=0µi = 1. Then the value of the Lovász extension̂f at x is defined

to be

f̂ (x) :=
p

∑
i=0

µi f (Ai).

The preceding discussion gives an equivalent way of defining the Lovász extension: choose a
thresholdτ ∈ [0,1] uniformly at random, and consider the level setSτ = {i : xi > τ}. Then we have

f̂ (x) = Eτ[ f (Sτ)].

Note that the definition immediately implies that for all setsS⊆ [n], we havef̂ (χS) = f (S).
We will also need the notion of a maximal chain associated to a pointx∈ K in order to define

subgradients of the Lovász extension:

Definition 6 Let x∈K , and let A0 ⊂A1 ⊂ ·· ·Ap be the unique chain such that x= ∑p
i=0µiχAi where

µi > 0 and∑p
i=0µi = 1. A maximal chain associated withx is any maximal completion of the Ai

chain, that is, a maximal chain/0 = B0 ⊂ B1 ⊂ B2 ⊂ ·· ·Bn = [n] such that all sets Ai appear in the
B j chain.

We have the following key properties of the Lovász extension. For proofs, refer to the book by
Fujishige (2005, chapter IV).

Proposition 7 For a submodular function f , the following properties of its Lovász extension̂f :
K → R hold:

1. Note that this is not the standard definition of the Lovász extension, but an equivalent characterization.
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1. f̂ is convex.

2. Let x∈ K . Let /0 = B0 ⊂ B1 ⊂ B2 ⊂ ·· ·Bn = [n] be an arbitrary maximal chain associated
with x, and letπ : [n]→ [n] be the corresponding permutation. Then, a subgradient g off̂ at
x is given as follows:

gi = f (Bπ(i))− f (Bπ(i)−1).

With the notation above, the following Lemma is from the paper by Jegelka and Bilmes (2011):

Lemma 8 (Lemma 1 from Jegelka and Bilmes, 2011)The subgradients g of the Lovász extension
f̂ : K → [−M,M] of a submodular function are bounded by‖g‖2 ≤ ‖g‖1 ≤ 4M.

We provide a proof of this lemma in the appendix for completeness.

3. The Full Information Setting

In this section we give two algorithms for regret minimization in the full information setting. The
first is a randomized combinatorial algorithm, based on the “follow the leader”approach of Hannan
(1957) and Kalai and Vempala (2005) which attain the regret bound ofO(Mn

√
T).

The second is an analytical algorithm based on (sub)gradient descenton the Lov́asz extension.
It attains the regret bound ofO(M

√
nT). We also prove a lower bound ofΩ(M

√
nT) on the regret of

any algorithm for online submodular minimization, implying that the analytical algorithm is optimal
up to constants.

Both algorithms have pros and cons: while the second algorithm is much simpler and more
efficient, we do not know how to extend it to distributive lattices, for which thefirst algorithm
readily applies.

3.1 A Combinatorial Algorithm

In this section we analyze a combinatorial, strongly polynomial, algorithm for minimizing regret in
the full information Online Submodular Minimization setting:

Algorithm 1 Submodular Follow-The-Perturbed-Leader
1: Input: parameterη > 0.
2: Initialization: For everyi ∈ [n], choose a random numberr i ∈ [−M/η,M/η] uniformly at ran-

dom. DefineR : 2[n] → R asR(S) = ∑i∈Sr i .
3: for t = 1 toT do
4: Use the setSt = argminS⊆[n] ∑t−1

τ=1 fτ(S)+R(S), and obtain costft(St).
5: end for

DefineΦt : 2[n] → R asΦt(S) = ∑t−1
τ=1 fτ(S)+R(S). Note thatR is a submodular function, and

Φt , being the sum of submodular functions, is itself submodular. Furthermore,it is easy to construct
a value oracle forΦt simply by using the value oracles for thefτ. Thus, the optimization in step 3
is poly-time solvable given oracle access toΦt .

While the algorithm itself is a simple extension of Hannan (1957) follow-the-perturbed-leader
algorithm, previous analysis (such as the one given by Kalai and Vempala,2005), which rely on
linearity of the cost functions, cannot be made to work here. Instead, weintroduce a new analysis
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technique: we divide the decision space usingn different cuts so that any two decisions are separated
by at least one cut, and then we give an upper bound on the probability that the chosen decision
switches sides over each such cut. This new technique may have applications to other problems as
well. We now prove the regret bound of Theorem 1:

Theorem 9 Algorithm 1 run with parameterη = 1√
T

achieves the following regret bound:

E[RegretT ] ≤ 6Mn
√

T.

Proof We note that the algorithm is essentially running a “follow-the-leader” algorithm on the cost
functionsf0, f1, . . . , ft−1, wheref0 =R is a fictitious “period 0” cost function used for regularization.
The first step to analyzing this algorithm is to use a stability lemma, essentially proved by Kalai and
Vempala (2005) and reproved in the appendix as Lemma 21 for completeness, which bounds the
regret as follows:

RegretT ≤
T

∑
t=1

[ ft(St)− ft(St+1)]+R(S∗)−R(S1).

Here,S∗ = argminS⊆[n] ∑T
t=1 ft(S).

To bound the expected regret, by linearity of expectation, it suffices to boundE[ f (St)− f (St+1)],
where for the purpose of analysis, we assume that we re-randomize in every round (that is, choose
a fresh random functionR : 2[n] → R). Naturally, the expectationE[ f (St)− f (St+1)] is the same
regardless of whenR is chosen.

To bound this, we need the following lemma:

Lemma 10
Pr[St 6= St+1] ≤ 2nη.

Proof First, we note the following simple union bound:

Pr[St 6= St+1] ≤ ∑
i∈[n]

Pr[i ∈ St andi /∈ St+1]+Pr[i /∈ St andi ∈ St+1]. (1)

Now, fix anyi, and we aim to boundPr[i ∈St andi /∈St+1]. For this, we condition on the randomness
in choosingr j for all j 6= i. DefineR′ : 2[n] →R asR′(S) = ∑ j∈S, j 6=i r j , andΦ′

t : 2[n] →R asΦ′
t(S) =

∑t−1
τ=1 fτ(S)+R′(S). Note that ifi /∈ S, thenR′(S) = R(S) andΦ′

t(S) = Φt(S). Let

A = arg min
S⊆[n]:i∈S

Φ′(S) and B = arg min
S⊆[n]:i /∈S

Φ′(S).

Now, we note that the eventi ∈St happens only ifΦ′
t(A)+r i <Φ′

t(B), andSt =A. But if Φ′
t(A)+r i <

Φ′
t(B)−2M, then we must havei ∈ St+1, since for anyC such thati /∈C,

Φt+1(A) = Φ′
t(A)+ r i + ft(A) < Φ′

t(B)−M < Φ′
t(C)+ ft(C) = Φt(C).

The inequalities above use the fact thatft(S)∈ [−M,M] for all S⊆ [n]. Thus, ifv := Φ′
t(B)−Φ′

t(A),
we have

Pr[i ∈ St andi /∈ St+1 | r j , j 6= i] ≤ Pr[r i ∈ [v−2M,v] | r j , j 6= i] ≤ η,

sincer i is chosen uniformly from[−M/η,M/η]. We can now remove the conditioning onr j for
j 6= i, and conclude that

Pr[i ∈ St andi /∈ St+1] ≤ η.
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Similarly, we can boundPr[i /∈ St andi ∈ St+1] ≤ η. Finally, the union bound (1) over all choices
of i yields the required bound onPr[St 6= St+1].

Continuing the proof, we have (since| f (S)| ≤ M)

E[ f (St)− f (St+1)] = E[ f (St)− f (St+1) | St 6= St+1] ·Pr[St 6= St+1]

≤ 2M ·Pr[St 6= St+1]

≤ 4Mnη.

The last inequality follows from Lemma 10. Now, we haveR(S∗)−R(S1)≤ 2Mn/η, and so

E[RegretT ] ≤
T

∑
t=1

E[ f (St)− f (St+1)]+E[R(S∗)−R(S1)]

≤ 4MnηT +
2Mn

η
≤ 6Mn

√
T,

sinceη = 1√
T

.

3.2 An Analytical Algorithm

In this section, we give a different algorithm based on the Online GradientDescent method of
Zinkevich (2003). We apply this technique to the Lovász extension of the cost function coupled
with a simple randomized construction of the subgradient, as given in definition5. This algorithm
requires the concept of aEuclidean projectionof a point inRn on to the setK , which is a function
ΠK : Rn → K defined by

ΠK (y) := argmin
x∈K

‖x−y‖.

SinceK = [0,1]n, it is easy to implement this projection: indeed, for a pointy∈ R
n, the projection

x= ΠK (y) is defined by

xi =











yi if yi ∈ [0,1]

0 if yi < 0

1 if yi > 1.

Algorithm 2 Submodular Subgradient Descent
1: Input: parameterη > 0. Letx1 ∈K be an arbitrary initial point.
2: for t = 1 toT do
3: Choose a thresholdτ ∈ [0,1] uniformly at random, and use the setSt = {i : xt(i) > τ} and

obtain costft(St).
4: Find a maximal chain associated withxt , /0 = B0 ⊂ B1 ⊂ B2 ⊂ ·· ·Bn = [n], and use

ft(B0), ft(B1), . . . , ft(Bn) to compute a subgradientgt of f̂t atxt as in part 2 of Proposition 7.
5: Update: setxt+1 = ΠK (xt −ηgt).
6: end for
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In the analysis of the algorithm, we need the following regret bound. It is a simple extension of
Zinkevich’s analysis of Online Gradient Descent to vector-valued random variables whose expec-
tation is the subgradient of the cost function (the generality to random variables is not required for
this section, but it will be useful in the next section):

Lemma 11 Let f̂1, f̂2, . . . , f̂T : K →R be a sequence of convex cost functions over the cubeK . Let
x1,x2, . . . ,xT ∈ K be defined by x1 = 0 and xt+1 = ΠK (xt −ηĝt), whereĝ1, ĝ2, . . . , ĝT are vector-
valued random variables such thatE[ĝt |xt ] = gt , where gt is a subgradient off̂t at xt . Then the
expected regret of playing x1,x2, . . . ,xT is bounded by

T

∑
t=1

E[ f̂t(xt)]−min
x∈K

T

∑
t=1

f̂T(x) ≤ n
2η

+2η∑
t

E[‖ĝt‖2].

Proof Let yt+1 = xt −ηĝt , so thatxt+1 = ΠK (yt+1). Note that

‖yt+1−x∗‖2 = ‖xt −x∗‖2−2ηĝ⊤t (xt −x∗)+η2‖ĝt‖2.

Rearranging,

ĝ⊤t (xt −x∗) =
1

2η
[‖xt −x∗‖2−‖yt+1−x∗‖2]+

η
2
‖ĝt‖2

≤ 1
2η

[‖xt −x∗‖2−‖xt+1−x∗‖2]+
η
2
‖ĝt‖2,

since‖xt+1−x∗‖ ≤ ‖yt+1−x∗‖ by the properties of Euclidean projections onto convex sets. Hence,
we have

T

∑
t=1

ĝ⊤t (xt −x∗) ≤
T

∑
t=1

‖xt −x∗‖2−‖xt+1−x∗‖2

2η
+

η
2
‖ĝt‖2

≤ n
2η

+
η
2

T

∑
t=1

‖ĝt‖2,

since‖x1− x∗‖2 ≤ n, bothx1 andx∗ being in the cubeK . Next, sinceE[ĝt |xt ] = gt , a subgradient
of f̂t atxt , we have

E[ĝ⊤t (xt −x∗)|xt ] = g⊤t (xt −x∗) ≥ f̂t(xt)− f̂t(x
∗),

since f̂t is a convex function. Taking expectation over the choice ofxt , we have

E[ĝ⊤t (xt −x∗)] ≥ E[ f̂t(xt)]− f̂t(x
∗).

Thus, we can bound the expected regret as follows:

T

∑
t=1

E[ f̂t(xt)]− f̂t(x
∗) ≤ E

[

T

∑
t=1

ĝ⊤t (xt −x∗)

]

≤ n
2η

+
η
2

T

∑
t=1

E[‖ĝt‖2].

We can now prove the following regret bound:
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Theorem 12 Algorithm 2, run with parameterη =
√ n

16MT , achieves the following regret bound:

E[RegretT ] ≤ 4M
√

nT.

Furthermore, with probability at least1− ε, we have

RegretT ≤ 4M
√

nT+M
√

2T log(1/ε).

Proof Note that be Definition 5, we have thatE[ ft(St)] = f̂t(xt). Since the algorithm runs Online
Gradient Descent (from Lemma 11) with ˆgt = gt (that is, no randomness), we get the following
bound on the regret. Here, we use the bound of Lemma 8‖ĝt‖2 = ‖gt‖2 ≤ 16M2.

E[RegretT ] =
T

∑
t=1

E[ ft(St)]− min
S⊆[n]

T

∑
t=1

f (S)

≤
T

∑
t=1

f̂t(xt)−min
x∈K

T

∑
t=1

f̂T(x)

≤ n
2η

+
16
2

ηM2T

≤ 4M
√

nT,

where the last inequality is due to the choice ofη as in the theorem statement.
We proceed to give a high probability bound. The following Theorem is by Hoeffding (see the

book by Cesa-Bianchi and Lugosi 2006, Appendix A):

Theorem 13 (Hoeffding) Let X1, . . . ,XT be independent random variables such that|Xt | ≤ M.
Then, forε > 0, we have

Pr

[

T

∑
t=1

Xt −E

[

T

∑
t=1

Xt

]

> M
√

2T log(1/ε)

]

≤ ε.

Note that the sequence of pointsx1,x2, . . . ,xT is deterministic since it is obtained by determinis-
tic gradient descent. The setsSt are obtained by independent randomized rounding on thext ’s, and
so the random variablesXt = ft(St) are independent. Note that|Xt | ≤ M. Applying the Hoeffding
bound above we get that with probability at least 1− ε,

T

∑
t=1

ft(St) ≤
T

∑
t=1

E[ ft(St)]+M
√

2T log(1/ε),

which implies the high probability regret bound.

3.3 Lower Bound on Regret

We give a simple lower bound (which is reminiscent of the lower bounds for the setting of prediction
from expert advice as in the book by Cesa-Bianchi and Lugosi, 2006), that in the full-information
setting any algorithm for online submodular minimization can be made to have regret Ω(M

√
nT).

This show that the upper bound of Theorem 12 is optimal up to constants.
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Theorem 14 In the full-information setting, for any algorithm for online submodular minimization,
there is a sequence of submodular cost functions f1, f2, . . . , fT : 2[n] → [−M,M] such that the regret
of the algorithm is at leastΩ(M

√
nT).

Proof Consider the following randomized sequence of cost functions. In round t, choose the
elementi(t) = (t modn)+1∈ [n], and a Rademacher random variableσt ∈ {−1,1} chosen inde-
pendently of all other random variables. Then, defineft : 2[n] → [−M,M] as:

∀S⊆ [n] : ft(S) =

{

−σtM if i(t) /∈ S

σtM if i(t) ∈ S.

It is easy to check thatft is submodular (in fact, it is modular). Note that for any setSt played by
the algorithm in roundt, we haveE[ ft(St)] = 0, where the expectation is taken over the choice of
σt . Thus, in expectation, the cost of the algorithm is 0. But now consider the set S⊆ [n] defined as
follows. For alli ∈ [n], let Xi = ∑t:i(t)=i σt . Then letS= {i : Xi ≤ 0}. Observe that by construction,

∑
t

ft(S) = ∑
i

−M|Xi |,

and hence

E
[

∑
t

ft(S)

]

= E

[

∑
i

−M|Xi |
]

= n·−M ·Ω
(

√

T
n

)

=−Ω(M
√

nT).

Here, we used the fact that eachXi is a sum of at least⌊T
n ⌋ independent Rademacher random

variables, and Khintchine’s inequality (see Cesa-Bianchi and Lugosi, 2006, Appendix A) implies
that if Y is a sum ofm independent Rademacher random variables, thenE[|Y|] ≥

√

m/2. Hence,
the expected regret of the algorithm isΩ(M

√
nT). In particular, there is a specific choice of the

Rademacher random variablesσt such that the algorithm incurs regret at leastΩ(M
√

nT).

4. The Bandit Setting

We now present an algorithm for the Bandit Online Submodular Minimization problem. The algo-
rithm is based on the Online Gradient Descent algorithm of Zinkevich (2003). The main idea is to
use just one sample for both exploration (to construct an unbiased estimatorfor the subgradient)
and exploitation (to construct an unbiased estimator for the point chosen bythe Online Gradient
Descent algorithm).
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Algorithm 3 Bandit Submodular Subgradient Descent
1: Input: parametersη,δ > 0. Letx1 ∈K be arbitrary.
2: for t = 1 toT do
3: Find a maximal chain associated withxt , /0 = B0 ⊂ B1 ⊂ B2 ⊂ ·· ·Bn = [n], and letπ be the

associated permutation as in part 2 of Proposition 7. Thenxt can be written asxt =∑n
i=0µiχBi ,

whereµi = 0 for the extra setsBi that were added to complete the maximal chain forxt .
4: Choose the setSt as follows:

St = Bi with probability ρi = (1−δ)µi +
δ

n+1
.

Use the setSt and obtain costft(St).
5: If St = B0, then set ˆgt =− 1

ρ0
ft(St)eπ(1), and ifSt = Bn then set ˆgt =

1
ρn

ft(St)eπ(n). Otherwise,
St = Bi for some 1≤ i ≤ n−1. Chooseεt ∈ {+1,−1} uniformly at random, and set:

ĝt =











2
ρi

ft(St)eπ(i) if εt = 1

− 2
ρi

ft(St)eπ(i+1) if εt =−1.

6: Update: setxt+1 = ΠK (xt −ηĝt).
7: end for

Before launching into the analysis, we define some convenient notation first. Define the filtration
F = (Ft≤T), whereFt is the smallestσ-field with respect to which the random coin tosses of the
algorithm in rounds 1,2, . . . , t are measurable, and letEt [·] = E[·|Ft−1], and VARt [·] = VAR[·|Ft−1].

A first observation is that in expectation, the regret of the algorithm aboveis almost the same
as if it had playedxt all along and the loss functions were replaced by the Lovász extensions of the
actual loss functions.

Lemma 15 For all t, we haveE[ ft(St)]≤ E[ f̂t(xt)]+2δM.

Proof From Definition 5 we have that̂ft(xt)=∑i µi ft(Bi). On the other hand,Et [ ft(St)] =∑i ρi ft(Bi),
and hence:

Et [ ft(St)]− f̂t(xt) =
n

∑
i=0

(ρi −µi) ft(Bi) ≤ δ
n

∑
i=0

[

1
n+1

+µi

]

| ft(Bi)| ≤ 2δM. (2)

The lemma now follows by taking expectations on both sides with respect to the randomness up to
roundt −1.

Next, by Proposition 7, the subgradient of the Lovász extension offt at pointxt corresponding
to the maximal chainB0 ⊂ B1 ⊂ ·· · ⊂ Bn is given bygt(i) = f (Bπ(i))− f (Bπ(i)−1). Using this fact,
it is easy to check that the random vector ˆgt is constructed in such a way thatE[ĝt |xt ] = Et [ĝt ] = gt .
Furthermore, we can bound the norm of this estimator as follows:

Et [‖ĝt‖2] ≤
n

∑
i=0

4

ρ2
i

ft(Bi)
2 ·ρi ≤ 4M2(n+1)2

δ
≤ 16M2n2

δ
. (3)
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We can now remove the conditioning, and conclude thatE[‖ĝt‖2]≤ 16M2n2

δ .

Theorem 16 Algorithm 3, run with parametersδ = n
T1/3 , η = 1

4MT2/3 , achieves the following regret
bound:

E[RegretT ] ≤ 6MnT2/3.

Proof We bound the expected regret as follows: using Lemma 15), we have

T

∑
t=1

E[ ft(St)]− min
S⊆[n]

T

∑
t=1

ft(S) ≤ 2δMT +
T

∑
t=1

E[ f̂t(xt)]−min
x∈K

T

∑
t=1

f̂t(x)

≤ 2δMT +
n

2η
+

η
2

T

∑
t=1

E[‖ĝt‖2] (By Lemma 11)

≤ 2δMT +
n

2η
+

8n2M2ηT
δ

. (By (3))

The bound is now obtained using the stated values forη,δ.

4.1 High Probability Bounds on the Regret

The theorem of the previous section gave a bound on the expected regret. However, a much stronger
claim can be made that essentially the same regret bound holds with very high probability (expo-
nential tail). The following gives high probability bounds against an adaptive adversary.

Theorem 17 With probability at least1− 4ε, Algorithm 3, run with parametersδ = n
T1/3 , η =

1
4MT2/3 , achieves the following regret bound:

RegretT ≤ 38MnT2/3+44M
√

nT2/3
√

log(1/ε).

To prove the high probability regret bound, we require the following concentration lemma which
can be found in the book by Cesa-Bianchi and Lugosi (2006, Appendix A):

Lemma 18 (Bernstein inequality for martingales) Let X1, . . . ,XT be a sequence of bounded ran-
dom variables adapted to a filtrationF = (Ft)t≤T . LetEt [·] := E[·|Ft−1]. Suppose that|Xt | ≤ b and
let Et [X2

t ]≤V for all t ≤ T. Then, forε > 0, we have

Pr

[∣

∣

∣

∣

∣

T

∑
t=1

Xt −Et [Xt ]

∣

∣

∣

∣

∣

>
√

2TV log(1/ε)+blog(1/ε)

]

≤ ε.

The following simple corollary will be useful in the analysis:

Corollary 19 In the setup of Lemma 18, assume that the parameters T,V,b andε satisfy
√

TV >
b
√

log(1/ε). Then

Pr

[∣

∣

∣

∣

∣

T

∑
t=1

Xt −Et [Xt ]

∣

∣

∣

∣

∣

> 4
√

TV log(1/ε)

]

≤ ε.
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Proof [Theorem 17] If T ≤ 2log3/2(1/ε), then the regret can be trivially bounded by

2MT ≤ 4MT2/3
√

log(1/ε)≤ 38MnT2/3+44M
√

nT2/3
√

log(1/ε).

So from now on we assume thatT > 2log3/2(1/ε). We need the following lemma:

Lemma 20 If T > 2log3/2(1/ε), then with probability at least1−4ε, all of the following inequali-
ties hold:

T

∑
t=1

‖ĝt‖2 ≤
T

∑
t=1

Et [‖ĝt‖2]+64M2T4/3
√

log(1/ε), (4)

T

∑
t=1

g⊤t xt ≤
T

∑
t=1

ĝ⊤t xt +16M
√

nT2/3
√

log(1/ε), (5)

∀S⊆ [n],
T

∑
t=1

ĝ⊤t χS ≤
T

∑
t=1

g⊤t χS+16M
√

nT2/3
√

log(2n/ε), (6)

and
T

∑
t=1

ft(St) ≤
T

∑
t=1

Et [ ft(St)]+4M
√

T log(1/ε). (7)

Proof We use Lemma 18 to bound the probability of each of the four eventsnot happening byε,
and then we apply a union bound. In the following, we use the lower bound

ρi ≥ δ
n+1

≥ 1

2T1/3
. (8)

Recall the filtrationF = (Ft≤T), whereFt is the smallestσ-field with respect to which the random
coin tosses of the algorithm in rounds 1,2, . . . , t are measurable. In the following we will consider
sequences of random variablesX1,X2, . . . ,XT adapted toF .

Proof of (4). Consider the random variablesXt := ‖ĝt‖2 for t ≤ T, that are adapted toF . To
apply Corollary 19, we estimate the parametersb,V. If Bi was sampled in stept, we have, using (3),

|Xt | = ‖ĝt‖2 ≤ 4

ρ2
i

f 2
t (Bi) ≤ 16M2T2/3,

using (8). Thus, we can chooseb= 16M2T2/3. Next, we have

E[‖ĝt‖4|Ft−1] ≤
n

∑
i=0

16

ρ4
i

ft(Bi)
4 ·ρi ≤ (n+1) ·16·8T ·M4 ≤ 256M4nT.

Thus, we can chooseV = 256M4nT. Now,
√

TV = 16M2√nT > b
√

log(1/ε) for T > log3/2(1/ε).
The required bound follows from Corollary 19 using the overestimation

√
n≤ T1/3.

Proof of (5). Consider the random variablesXt := ĝ⊤t xt for t ≤ T, that are adapted toF . First
note thatEt [ĝ⊤t xt ] = g⊤t xt . To apply Corollary 19, we estimate the parametersb,V. First, if Bi was
sampled in stept, then we have, using Ḧolder’s inequality,

|Xt | ≤ ‖ĝt‖1‖xt‖∞ ≤ 2
ρi
| ft(Bi)| ≤ 4MT1/3,

2916



ONLINE SUBMODULAR M INIMIZATION

using (8). Thus, we chooseb= 4MT1/3. Next, again using Ḧolder’s inequality we have

Et [(ĝ
⊤
t xt)

2] ≤ Et [‖ĝt‖2
1‖xt‖2

∞] ≤
n

∑
i=0

4

ρ2
i

f 2
t (Bi) ·ρi ≤ 16M2nT1/3,

using (8). Thus, we can chooseV = 16M2nT1/3. Note that
√

TV = 4M
√

nT2/3 > b
√

log(1/ε)) for
T > log3/2(1/ε). The required bound follows from Corollary 19.

Proof of (6). This bound follows exactly as the previous one, except we use the random variables
Xt := ĝ⊤t χS for every fixed setS⊆ [n], with error parameterε/2n. With this value of the error
parameter, the conditions of Corollary 19 are met forT > 2log3/2(1/ε). We then take a union
bound over the 2n choices ofS to obtain the required bound.

Proof of (7). Consider the random variablesXt := ft(St) for t ≤ T, that are adapted toF . To
apply Corollary 19, we estimate the parametersb,V. We have

|Xt | = | ft(St)| ≤ M.

So we can useb = M. As for V, we use the trivial boundV = b2 = M2. Again,
√

TV =
√

Tb>
b
√

log(1/ε) for T > log(1/ε). The required bound follows from Corollary 19.

Finally, we can imagine the pointsx1,x2, . . . ,xT as being produced by running Online Gradient
Descent with linear cost functions ˆg⊤t x, thinking of ĝt as deterministic vectors. Thus, by Lemma 11,
we get that for anyS⊆ [n], we have

T

∑
t=1

ĝ⊤t (xt −χS) ≤ n
2η

+
η
2

T

∑
t=1

‖ĝt‖2. (9)
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Thus, with probability 1−4ε, for anyS⊆ [n], we have

T

∑
t=1

ft(St)− ft(S)

≤
T

∑
t=1

Et [ ft(St)]− ft(S)+4M
√

T log(1/ε) (By (7))

≤
T

∑
t=1

f̂t(xt)− f̂t(χS)+2nMT2/3+4M
√

T log(1/ε) (By (2))

≤
T

∑
t=1

g⊤t (xt −χS)+2MnT2/3+4M
√

T log(1/ε) (by convexity of f̂t)

≤
T

∑
t=1

ĝ⊤t (xt −χS)+2MnT2/3+4M
√

T log(1/ε)

+32M
√

nT2/3
√

log(2n/ε) (By (5), (6))

≤
T

∑
t=1

ĝ⊤t (xt −χS)+34MnT2/3+36M
√

nT2/3
√

log(1/ε)

≤ n
η
+

η
2

T

∑
t=1

‖ĝt‖2+34MnT2/3+36M
√

nT2/3
√

log(1/ε) (By (9))

≤ n
2η

+
η
2

[

T

∑
t=1

Et [‖ĝt‖2]+64M2T4/3
√

log(1/ε)

]

+34MnT2/3+36M
√

nT2/3
√

log(1/ε) (By (4))

≤ 4MnT2/3+8MT2/3
√

log(1/ε)

+34MnT2/3+36M
√

nT2/3
√

log(1/ε) (C.f. proof of Thm 16)

≤ 38MnT2/3+44M
√

nT2/3
√

log(1/ε).

This gives the required bound.

5. Conclusions and Open Questions

We have described efficient regret minimization algorithms for submodular cost functions, in both
the bandit and full information settings. This parallels the work of Streeter and Golovin (2008) who
study two specific instances of online submodularmaximization(for which the offline problem is
NP-hard), and give (approximate) regret minimizing algorithms. We leave it as an open question
whether there exists an efficient algorithm that attainsO(

√
T) regret bounds for online submodular

minimization in the bandit setting.
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Appendix A. Additional Lemmas

In this section we prove auxiliary lemmas that were used in the paper for completeness.

A.1 The FTL-BTL Lemma

The following stability lemma was essentially proved in Theorem 1.1 of Kalai and Vempala (2005).
We reprove it here for completeness:

Lemma 21 Let St = argminS⊆[n]{∑t−1
τ=1 fτ(S)+R(S)} as in Algorithm 1. Then

RegretT ≤
T

∑
t=1

[ ft(St)− ft(St+1)]+R(S∗)−R(S1).

Where S∗ = argminS⊆[n] ∑T
t=1 ft(S).

Proof For convenience, denote byf0 = R, and assume we start the algorithm fromt = 0 with an
arbitraryS0. The lemma is now proved by induction onT.
Induction base: Note that by definition, we have thatS1 = argminS{R(S)}, and thusf0(S1) ≤
f0(S∗) for all S∗, thus f0(S0)− f0(S∗)≤ f0(S0)− f0(S1).
Induction step: Assume that that forT, we have

T

∑
t=0

ft(St)− ft(S
∗) ≤

T

∑
t=0

ft(St)− ft(St+1)

and let us prove forT +1. SinceST+2 = argminS{∑T+1
t=0 ft(S)} we have:

T+1

∑
t=0

ft(St)−
T+1

∑
t=0

ft(S
∗) ≤

T+1

∑
t=0

ft(St)−
T+1

∑
t=0

ft(ST+2)

=
T

∑
t=0

( ft(St)− ft(ST+2))+ fT+1(St+1)− fT+1(ST+2)

≤
T

∑
t=0

( ft(St)− ft(St+1))+ fT+1(St+1)− fT+1(ST+2)

=
T+1

∑
t=0

ft(St)− ft(St+1).

Where in the third line we used the induction hypothesis forS∗ = ST+2. We conclude that

T

∑
t=1

ft(St)− ft(S
∗) ≤

T

∑
t=1

ft(St)− ft(St+1)+ [− f0(S0)+ f0(S
∗)+ f0(S0)− f0(S1)]

=
T

∑
t=1

ft(St)− ft(St+1)+ [R(S∗)−R(S1)] .
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A.2 Proof of Lemma 8

Next, we give a proof of Lemma 8 from the paper of Jegelka and Bilmes (2011), for completeness:

Lemma 8 restatement: The subgradients g of the Lovász extension̂f : K → [−M,M] of a
submodular function are bounded by‖g‖2 ≤ ‖g‖1 ≤ 4M.
Proof Recall the subgradient definition of proposition 7: Letx ∈ K . Let /0 = B0 ⊂ B1 ⊂ B2 ⊂
·· ·Bn= [n] be an arbitrary maximal chain associated withx, and letπ : [n]→ [n] be the corresponding
permutation. Note thatBπ(i) = { j ∈ [n] : π( j)≤ π(i)}. Then, a subgradientg of f̂ atx is given by:

gi = f (Bπ(i))− f (Bπ(i)−1).

Let S+ = {i : gi ≥ 0}. First, we claim:

Proposition 22

∑
i∈S+

gi ≤ M− f ( /0).

Proof Let σ : S+ → {1,2, . . . , |S+|} be the one-to-one mapping that orders the elements ofS+

according toπ, that is, fori, j ∈ S+, we haveσ(i) < σ( j) if and only if π(i) < π( j). For i ∈ [S+],
defineCi = { j ∈ S+ : σ( j)≤ i}, and defineC0 = /0. Sinceσ respects the ordering given byπ, for all
i ∈ S+ we have

Cσ(i)−1 = { j ∈ S+ : σ( j)≤ σ(i)−1} ⊆ { j ∈ [n] : π(i)≤ π( j)−1} = Bπ(i)−1.

Note thatCσ(i) =Cσ(i)−1+ i andBπ(i) = Bπ(i)−1+1. Thus by the submodularity off , we have

gi = f (Bπ(i))− f (Bπ(i)−1) ≤ f (Cσ(i))− f (Cσ(i)−1).

Thus, we have

∑
i∈S+

gi ≤ ∑
i∈S+

f (Cσ(i))− f (Cσ(i)−1)

=
|S+|

∑
i=1

f (Ci)− f (Ci−1)

= f (S+)− f ( /0)
≤ M− f ( /0).

Now letS− := [n]\S+ be the subset of indices of all negative entries ofg. We have

∑
i∈S−

gi = ∑
i∈[n]

gi − ∑
i∈S+

gi = f ([n])− f ( /0)− ∑
i∈S+

gi ≥ −2M.
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The second equality above follows by the definition ofg. Hence, we have

‖g‖1 = ∑
i∈S+

gi − ∑
i∈S−

gi ≤ 3M− f ( /0) ≤ 4M.
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