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Abstract

We consider an online decision problem over a discrete dpatkich the loss function is submod-
ular. We give algorithms which are computationally effitiand are Hannan-consistent in both the
full information and partial feedback settings.
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1. Introduction

Online decision-making is a learning problem in which one needs to chooseisiah repeatedly
from a given set of decisions, in an effort to minimize costs over the long euen in the face

of complete uncertainty about future outcomes. The performance oflare d@arning algorithm

is measured in terms of itegret which is the difference between the total cost of the decisions it
chooses, and the cost of the optimal decision chosen in hindsigh&nfan-consisterglgorithm is

one that achieves sublinear regret (as a function of the number ofaeaisking rounds). Hannan-
consistency implies that the average per round cost of the algorithmrgesv®e that of the optimal
decision in hindsight.

In the past few decades, a variety of Hannan-consistent algorithradleawn devised for a wide
range of decision spaces and cost functions, including well-known getimnch as prediction from
expert advice (Littlestone and Warmuth, 1989), online convex optimizatimké¢¥ich, 2003), and
more (see the book by Cesa-Bianchi and Lugosi, 2006 for an exéessivey of prediction algo-
rithms). Most of these algorithms are based on an online version of coptiexization algorithms.
Despite this success, many online decision-making problems still remain gpecjaly when the
decision space is discrete and large (say, exponential size in the prphtameters) and the cost
functions are non-linear.

In this paper, we consider just such a scenario. Our decision spac® itha set of all subsets
of a ground set oh elements, and the cost functions are assumed submodular This property
is widely seen as the discrete analogue of convexity, and has proveratatbgquitous property in
various machine learning tasks (see Guestrin and Krause, 2008 éoemeés). A crucial compo-
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nent in these latter results are the celebrated polynomial time algorithms for dulamfunction
minimization (lwata et al., 2001).

To motivate the online decision-making problem with submodular cost func¢timere is an
example from the survey by McCormick (2006). Consider a factory ldapaf producing any
subset from a given set afproductsE. Let f : 2F — R be the cost function for producing any such
subset (here,2stands for the set of all subsets®Bf. Economics tells us that this cost function
should satisfy the law of diminishing returns: that is, the additional costarfuming an additional
item is lower the more we produce. Mathematically stated, for allS8tsC E such thafT C S
and for all elementsec E, we have

f(Tu{i})—f(T) > f(SU{i})—1(9).

Such cost functions are callsdibmodular and frequently arise in real-world economic and other
scenarios. Now, for every item let p; be the market price of the item, which is only determined
in the future based on supply and demand. Thus, the profit from piragflacsubses of the items

is P(S) = Sicspi — f(S). Maximizing profit is equivalent to minimizing the functionP, which is
submodular as well.

The online decision problem which arises is now to decide which set oluptedo produce,
to maximize profits in the long run, without knowing in advance the cost funaiaihe market
prices. A more difficult version of this problem, perhaps more realistic, envthe only information
obtained is the actual profit of the chosen subset of items, and no infomuatithe profit possible
for other subsets.

In general, the Online Submodular Minimization problem is the following. In etechtion,
we choose a subset of a ground senhaflements, and then observe a submodular cost function
which gives the cost of the subset we chose. The goal is to minimize thet,regrich is the
difference between the total cost of the subsets we chose, and thod twsbest subset in hindsight.
Depending on the feedback obtained, we distinguish between two settitigigfdrmation and
bandit. In the full-information setting, we can query each cost functiors ahany points as we
like. In the bandit setting, we only get to observe the cost of the subsehese, and no other
information is revealed.

Obviously, if we ignore the special structure of these problems, staattgowdthms for learning
with expert advice and/or with bandit feedback can be applied to this setiogever, the com-
putational complexity of these algorithms would be proportional to the numbsuhlidets, which
is 2. In addition, for the submodular bandits problem, even the regret bdwawiisan exponential
dependence on. It is hence of interest to desiggificientalgorithms for these problems. For the
bandit version an even more basic question arises: does there exigbathen with regret which
depends only polynomially on?

In this paper, we answer these questions in the affirmative. We givéeaffiglgorithms for
both problems, with regret which is bounded by a polynomiai,ithe underlying dimension, and
sublinearly in the number of iterations. For the full information setting, we give different
randomized algorithms.

One of these algorithms is based on the follow-the-perturbed-leadevaapp(Hannan, 1957;
Kalai and Vempala, 2005). We give a new way of analyzing such anitiigor We hope this
analysis technique will be applicable to other problems with large decisiores@acwell. This
algorithm is combinatorial, strongly polynomial, and can be generalized to asbidistributive
lattices, rather than just all subsets of a given set.
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The second algorithm is based on convex analysis. We make cruciaf aseoatinuous ex-
tension of a submodular function known as tlmasz extensianWe obtain our regret bounds by
running a (sub)gradient descent algorithm in the style of Zinkevich3R0Dhe expected regret of
this latter algorithm is shown to be bounded®g/nT), and we show this to be optimal.

For the bandit setting, we give a randomized algorithm with expected ragnedstO(nT2/3).
This algorithm also makes use of the [a®z extension and gradient descent. The algorithm folds
exploration and exploitation steps into a single sample and obtains the staetchagrd. We also
give high-probability bounds on regret of the same order for both settihgsline submodular
minimization.

An extended abstract of the results of this paper was originally presentd&@S 2009 (Hazan
and Kale, 2009). The present paper contains additional results withedepsoofs and tighter
bounds, as well as several corrections.

1.1 Related Work

Submodular optimization has found numerous applications in machine learmimmgpamization in
recent years, see, for example, the survey of Krause and GueXitih)( The prediction framework
of online convex optimization was put forth by Zinkevich (2003), and thonmerous applications
since. Flaxman et al. (2005) show how to obtain sub linear regret banildes bandit setting. The
latter technique is applicable to our setting when applied to théasoextension of a submodular
function, although this gives weaker regret bounds than the onesnpeeshereby. Following our
work, Jegelka and Bilmes (2011) study constrained submodular minimizatesrspecific combi-
natorial structures.

2. Preliminaries and Problem Statement

In this section we review the basic concepts of submodular functiondcpogdand online convex
optimization, and state our main results.

2.1 Submodular Functions

The decision space is the set of all subsets of a universeetgfments|n] = {1,2,...,n}. The set
of all subsets ofn] is denoted ?!. For a seSC [n], denote bys its characteristic vector if0, 1}",
thatis,xs(i) = 1if i € S and 0 otherwise.
A function f : 2 — R is calledsubmodulaif for all setsS T C [n] such thafl C S and for all
elements € [n], we have
f(T+i)—f(T) > f(S+i)—1(9).

Here, we use the shorthand notat®#i to indicateSU {i}. An explicit description off would take
exponential space. We assume therefore that the only way to aiccesi avalue oraclethat is,
an oracle that returns the value bét any given seS C [n).

Given access to a value oracle for a submodular function, it is possible to méninizpoly-
nomial time (Gbtschel et al., 1988), and indeed, even in strongly polynomial timétéGhel et al.,
1988; Iwata et al., 2001; Schrijver, 2000; Iwata, 2003; Orlin, 200&t& and Orlin, 2009). The
current fastest strongly polynomial algorithm is due to Orlin (2009) anestéikneO(n°EO+ nb),
where EO is the time taken to run the value oracle. The fastest weakly polyiralgoaithm are
given by Iwata (2003) and Iwata and Orlin (2009) and run in t(ﬁﬁe“EOJr n°).
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2.2 Online Submodular Minimization

In the Online Submodular Minimization problem, over a sequence of iterdtierds2, ..., an online
decision maker has to repeatedly chose a sURsget[n]. In each iteration, after choosing the set
S. the cost of the decision is specified by a submodular fundiio@" — [-M,M]. The decision
maker incurs cosf; (S ). Theregretof the decision maker is defined to be

T T
Regret = Zlft(S)—S”C]i[p]Zlft(S)-
= Syl=

If the sets§ are chosen by a randomized algorithm, then we consider the expectetoegr the
randomness in the algorithm.

An online algorithm to choose the s&swill be said to be Hannan-consistent if it ensures that
Regret = o(T). The algorithm will be calleefficientif it computes each decisiog in poly(n,t)
time. Depending on the kind of feedback the decision maker receivesstirgdish between two
settings of the problem:

e Fullinformation settingln this case, in each roundthe decision maker has unlimited access
to the value oracles of the previously seen cost functioffy, ... f;_j.

e Bandit setting.n this case, in each rourndthe decision maker only observes the cost of her
decisionS, viz. f;(S), and receives no other information.

2.3 Statement of Main Results

In the setup of the Online Submodular Minimization, we have the following results:

Theorem 1 In the full information setting of Online Submodular Minimization, there is anieffic
randomized algorithm that attains the following regret bound:

E[Regret] = O(MV/nT).

Furthermore, Regrgt= O(M(y/n+ \/log(1/¢))v/T) with probability at leastL — &.

We also prove a lower bound that shows that the algorithm of Theorers @gianal regret up
to constants:

Theorem 2 In the full information setting of Online Submodular Minimization, for any algorjthm
there is a sequence of submodular cost functions such that the algo@thradret at leas® (M+v/nT).

Theorem 3 In the bandit setting of Online Submodular Minimization, there is an efficammaom-
ized algorithm that attains the following regret bound:

E[Regret] = O(MnT?/3).
Furthermore, Regret= O(M(n+ /nlog(1/¢))T%3) with probability at leastl — &.

Both Theorem 1 and Theorem 3 hold against both oblivious as well a¢iagladversaries, that
is, the cost functions can be chosen adversarially with knowledge ofishédtion over subsets
chosen by the decision maker.
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2.4 The Lovasz Extension

A major technical construction we need for the algorithms idinész extensiof of the submod-
ular function f. This is defined on the unit hyperculfé = [0,1]" and takes real values. Before
defining the Loasz extension, we need the concept of a chain of subs@is of

Definition 4 A chain of subsets ofn] is a collection of sets AA, ..., Ap such that
A C AL C A C - CAp.

A maximal chain is one where p=n. For a maximal chain, we have,A- 0, A, = [n], and there is
a unique associated permutatiorn [n] — [n] such that for all i€ [n], we have fj) = A1 + 1.
For this permutatior, we have 4 = {j € [n] : 1i(j) < (i)} for alli € [n].

Now letx € K. There is a unique chaiy C Ay C --- Ap such thak can be expressed as a convex
combinationx = zF:OHxA wherey; > 0 andzip:OM- = 1. A nice way to construct this combination
is the following random process: choose a threshadd|0, 1] uniformly at random, and consider
the level seS; = {i: x > 1}. The sets in the required chain are exactly the level sets which are
obtained with positive probability, and for any such 8ety; = Pr[S; = Aj]. In other words, we
havex = E{[Xs]. This follows immediately by noting that for anywe havePr[i € ] = x;. Of
course, the chain and the weightsan also be constructed deterministically simply by sorting the
coordinates ok.

Now, we are ready to defihe¢he Lovasz extension :

Definition 5 Letxe K. Let A C Ay C ---Ap such that x can be expressed as a convex combination
x= 3P otixa where g>0ands " o = 1. Then the value of the Léasz extensiof at x is defined
to be

~ p
0 = Y uiA)

The preceding discussion gives an equivalent way of defining th@dzoextension: choose a
thresholdt € [0, 1] uniformly at random, and consider the level Set= {i : x; > t}. Then we have

f0 = Ed[f(S)].

Note that the definition immediately implies that for all s&ts [n], we havef (xs) = f(S).
We will also need the notion of a maximal chain associated to a gank in order to define
subgradients of the L@&sz extension:

Definition 6 Letxe %, and let & C Ay C --- Ap be the unique chain such thatxs P ; Lixa where
K > 0and zip:Op; = 1. Amaximal chain associated withx is any maximal completion of the A
chain, that is, a maximal chaib= By C By C B, C ---Bn = [n] such that all sets fappear in the
Bj chain.

We have the following key properties of the lasz extension. For proofs, refer to the book by
Fujishige (2005, chapter IV).

Proposition 7 For a submodular function f, the following properties of its hew extensiorf :
X — R hold:

1. Note that this is not the standard definition of the &sw extension, but an equivalent characterization.
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1. fis convex.

2. Letxe K. Let0 =By C By C By C ---By = [n] be an arbitrary maximal chain associated
with x, and letrt: [n] — [n] be the corresponding permutation. Then, a subgradient fyaf
X is given as follows:
9 = F(Bri)) — f(Briy-1)-

With the notation above, the following Lemma is from the paper by Jegelka and 8{206é 1):

Lemma 8 (Lemma 1 from Jegelka and Bilmes, 2011)The subgradients g of the Lasz extension
f : X — [-M,M] of a submodular function are bounded [y|> < ||g||1 < 4M.

We provide a proof of this lemma in the appendix for completeness.

3. The Full Information Setting

In this section we give two algorithms for regret minimization in the full informatietiisg. The
firstis a randomized combinatorial algorithm, based on the “follow the leagmtoach of Hannan
(1957) and Kalai and Vempala (2005) which attain the regret bour{in/T).

The second is an analytical algorithm based on (sub)gradient destémt Loasz extension.
It attains the regret bound @(M+/nT). We also prove a lower bound &{(M+/nT) on the regret of
any algorithm for online submodular minimization, implying that the analytical algorigoptimal
up to constants.

Both algorithms have pros and cons: while the second algorithm is much sinmglenare
efficient, we do not know how to extend it to distributive lattices, for which fire& algorithm
readily applies.

3.1 A Combinatorial Algorithm

In this section we analyze a combinatorial, strongly polynomial, algorithm for mimigpizgret in
the full information Online Submodular Minimization setting:

Algorithm 1 Submodular Follow-The-Perturbed-Leader
1: Input: parameten > 0.
2: Initialization: For everyi € [n], choose a random numbere [—M/n,M/n] uniformly at ran-
dom. DefineR: 2" — R asR(S) = Ticsi.
:fort=1t0T do
Use the se§ = argming Si7% f(S) +R(S), and obtain cosf(S).
end for

a kR w

Definedy : 2N — R as®(S) = 3173 f:(S) +R(S). Note thatR is a submodular function, and
®;, being the sum of submodular functions, is itself submodular. Furtherm@easy to construct
a value oracle fofb; simply by using the value oracles for tlig Thus, the optimization in step 3
is poly-time solvable given oracle accesshp

While the algorithm itself is a simple extension of Hannan (1957) follow-théupeed-leader
algorithm, previous analysis (such as the one given by Kalai and Veni}i20&), which rely on
linearity of the cost functions, cannot be made to work here. Insteadthtveeluce a new analysis
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technique: we divide the decision space usimifferent cuts so that any two decisions are separated
by at least one cut, and then we give an upper bound on the probabilitththahosen decision
switches sides over each such cut. This new technique may have app$datimher problems as
well. We now prove the regret bound of Theorem 1.

Theorem 9 Algorithm 1 run with parameten = % achieves the following regret bound:

E[Regret] < 6Mnv/T.

Proof We note that the algorithm is essentially running a “follow-the-leader” algorith the cost
functionsfy, f1,..., fi_1, wherefo = Ris a fictitious “period 0” cost function used for regularization.
The first step to analyzing this algorithm is to use a stability lemma, essentiallydpguealai and
Vempala (2005) and reproved in the appendix as Lemma 21 for completevigsh bounds the

regret as follows:
-

Regret < 3 [(S) ~ (S1)] +RS) ~R(S:),

t=

Here,S* = argminsc(y _1 ft(S).

To bound the expected regret, by linearity of expectation, it sufficesund®|f (S) — f(S+1)],
where for the purpose of analysis, we assume that we re-randomizerinreund (that is, choose
a fresh random functioR : 21" — R). Naturally, the expectatioE[f(S) — f(S.1)] is the same
regardless of wheRis chosen.

To bound this, we need the following lemma:

Lemma 10
PriS # S+1) < 2m.

Proof First, we note the following simple union bound:

Pr(S # S41] < Z Prii € S andi ¢ S1] +Prfi ¢ S andi € S.1]. 1)

ie[n|
Now, fix anyi, and we aim to bounBr[i € § andi ¢ S 1]. For this, we condition on the randomness
in choosingj for all j #i. DefineR : 2" — R asR/(S) = ¥ jeg j»i T, and®] : 2" — R as®{(S) =
st (S +R(S). Note that ifi ¢ S thenR/(S) = R(S) and®j(S) = ®(S). Let

A= in ®(S) and B = in @'(9).
arg, min (S an arg, min (S

Now, we note that the event S happens only ifo{ (A) +r; < ®{(B), andS = A. Butif ®{(A)+r; <
®{(B) — 2M, then we must haviec S 1, since for anyC such thai ¢ C,
Pria(A) = PA) +1i+ fi(A) < PB)—M < P(C)+ f(C) = ®(C).

The inequalities above use the fact thi@6) € [-M, M| for all SC [n]. Thus, ifv:= ®[(B) — ®{(A),
we have
PriceSandi¢ Sya|rj,]#i] < Pririe[v—2M,v] |rj,j#i] < n,
sincer; is chosen uniformly fromj—M/n,M/n]. We can now remove the conditioning onfor
j #1i, and conclude that
Priie S andi ¢ S4+1] < n.
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Similarly, we can boundPr[i ¢ § andi € S1] < n. Finally, the union bound (1) over all choices
of i yields the required bound d?r[S # S1]. |

Continuing the proof, we have (singg(S)| < M)

E[f(S)— f(S+1)] = E[f(S) — f(S+1) | § # S+1] - Pr[S # S+
2M -Pr[§ # S 4]

<
< 4Mnn.

The last inequality follows from Lemma 10. Now, we hd¥S") — R(S;) < 2Mn/n, and so

T
E[Regre¢] < ZE[f(S) — (S )] +ERES) -RS)]
t=

AMnNT + 2’?]/'”

IN

< 6MnVT,

sincen = —=. |

o

3.2 An Analytical Algorithm

In this section, we give a different algorithm based on the Online Gradestent method of
Zinkevich (2003). We apply this technique to the lase extension of the cost function coupled
with a simple randomized construction of the subgradient, as given in defibitidhis algorithm
requires the concept of uclidean projectiorof a point inR" on to the setX, which is a function
Mg : R"— K defined by

N (y) = argminlx—yl.

SinceX = [0,1]", it is easy to implement this projection: indeed, for a pgiatR", the projection
x = Mg(y) is defined by

yi ifyi€[0,1]
X =40 ifyi<O
1 ifyi>1.

Algorithm 2 Submodular Subgradient Descent

1: Input: parameten > 0. Letx; € K be an arbitrary initial point.

2. fort=1toT do

3:  Choose a thresholde [0, 1] uniformly at random, and use the st= {i : x(i) > 1} and

obtain costf;(S).

4:  Find a maximal chain associated wity, 0 = By C B; € B, C ---B, = [n], and use
ft(Bo), ft(B1),. .., ft(By) to compute a subgradiegt of f, atx asin part 2 of Proposition 7.
Update: sek1 = Mg (% —NGt).

6: end for

a
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In the analysis of the algorithm, we need the following regret bound. Itimple extension of
Zinkevich’s analysis of Online Gradient Descent to vector-valuedaandariables whose expec-
tation is the subgradient of the cost function (the generality to randomblesiés not required for
this section, but it will be useful in the next section):

Lemma 11 Let f1, f5,..., fr 1 X — R be a sequence of convex cost functions over the GuHeet
X1,X2,...,XT € K be defined byx= 0 and %,1 = M« (% —n& ), wheredi, 0o, ...,§r are vector-
valued random variables such th&{g:|x] = g:, where g is a subgradient off; at x. Then the
expected regret of playing xo, . ..,Xr is bounded by

n A 112
ZLE [f(%)] —min fT(x) < EJFZHZE[HQIH ].

er&
Proof Letyii1 =% — NG, so thatx1 = M« (yr+1). Note that
IVers =X = % —=x[1> = 20§ (% —x*) +n?| G

Rearranging,

- . 1 -

G (% —x) = r][IIXt X[|2 = [[Yera — X7+ ||9t\|2
< = W12 12 ﬂ A (12
< 2n[||Xt X" = e =T+ S 116

sincel|x+1— X*|| < [|yt+1 — X*|| by the properties of Euclidean projections onto convex sets. Hence,
we have

. =% = X2 =[x — X2
& (x—Xx) <
2 2

N  Ne 4 2
S —+5 )
o+ 26

since||xy —x*||? < n, bothx; andx* being in the cubeX. Next, sinceE[G %] = g, a subgradient
of f; atx, we have

Nyar2
+alal

t=

E[G (¢ —x)x] = o (% —x) = fu(x) — fu(x"),
sincef; is a convex function. Taking expectation over the choic ofve have
E[6 (x —x)] > E[fi(x)] - f(x).
Thus, we can bound the expected regret as follows:

T

ZE[ﬂ(Xt)]—ﬂ(X*) <E [ti@tT(xt—X*)] < f+g E[IG1%)-

t=

We can now prove the following regret bound:
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Theorem 12 Algorithm 2, run with parameten = /577, achieves the following regret bound:
E[Regret] < 4Mv/nT.
Furthermore, with probability at least — €, we have

Regret < 4M+v/nT +M,/2T log(1/%).

Proof Note that be Definition 5, we have thaif,(S)] = f;(x). Since the algorithm runs Online
Gradient Descent (from Lemma 11) with = g (that is, no randomness), we get the following
bound on the regret. Here, we use the bound of LemmiG & = ||g/|? < 16M?2.

E[Regret] = iE[ft( — min Zf

SC[n]
< f min f
< Z t xe'?(zi T(X
n 16 .,
< —— 4
< 2ﬂ+ 2nM T
< 4AMvVNT,

where the last inequality is due to the choicendds in the theorem statement.
We proceed to give a high probability bound. The following Theorem is bgffding (see the
book by Cesa-Bianchi and Lugosi 2006, Appendix A):

Theorem 13 (Hoeffding) Let X, ..., Xr be independent random variables such th&tf < M.
Then, fore > 0, we have

el

Note that the sequence of poixtsxy, ..., Xt is deterministic since it is obtained by determinis-
tic gradient descent. The s&§sare obtained by independent randomized rounding oxtheand
so the random variable§ = f;(S) are independent. Note thg&| < M. Applying the Hoeffding
bound above we get that with probability at least 4,

>My/2T Iog(l/s)] <

in(so < iE[ft<s>1+M¢2Tlog<1/s>,

which implies the high probability regret bound. |

3.3 Lower Bound on Regret

We give a simple lower bound (which is reminiscent of the lower bounds éosékting of prediction
from expert advice as in the book by Cesa-Bianchi and Lugosi, 200&) in the full-information
setting any algorithm for online submodular minimization can be made to have gve,/nT).
This show that the upper bound of Theorem 12 is optimal up to constants.
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Theorem 14 In the full-information setting, for any algorithm for online submodular minimization
there is a sequence of submodular cost functiané,f. .., fr : 2N — [—M,M] such that the regret
of the algorithm is at leasR(M+/nT).

Proof Consider the following randomized sequence of cost functions. Indrbuchoose the
element(t) = (t modn) +1 € [n], and a Rademacher random variabjez {—1,1} chosen inde-
pendently of all other random variables. Then, define2l” — [—M, M| as:

—oM  ifi(t) ¢S

vSCn: f(9) = {otM ifit)es

It is easy to check that; is submodular (in fact, it is modular). Note that for any Seplayed by
the algorithm in round, we haveE|[f;(S)] = 0, where the expectation is taken over the choice of
o:. Thus, in expectation, the cost of the algorithm is 0. But now considerttes [n] defined as
follows. For alli € [n], let X = Y;)=i Ot- ThenletS= {i: X < 0}. Observe that by construction,

3 (S = 3 M|

and hence

|5 1| -¢

> M|

=n--M-Q (ﬁ) = —Q(MVnT).

Here, we used the fact that eahis a sum of at least{ | independent Rademacher random
variables, and Khintchine’s inequality (see Cesa-Bianchi and Lug066,2Appendix A) implies
that if Y is a sum ofm independent Rademacher random variables, BE[gf] > /m/2. Hence,
the expected regret of the algorithm@M+/nT). In particular, there is a specific choice of the
Rademacher random variablassuch that the algorithm incurs regret at le@$M+/nT). [ |

4. The Bandit Setting

We now present an algorithm for the Bandit Online Submodular Minimizatiobleno. The algo-
rithm is based on the Online Gradient Descent algorithm of Zinkevich (2008 main idea is to
use just one sample for both exploration (to construct an unbiased estimatbe subgradient)
and exploitation (to construct an unbiased estimator for the point chosdrel@nline Gradient
Descent algorithm).
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Algorithm 3 Bandit Submodular Subgradient Descent
1: Input: parameterg,d > 0. Letx; € X be arbitrary.
2. fort=1toT do
3:  Find a maximal chain associated with ® =By C B; C B, C ---B, = [n], and letrtbe the
associated permutation as in part 2 of Proposition 7. khean be written ag = > o i Xg;,
wherey; = 0 for the extra setB; that were added to complete the maximal chaingor
4:  Choose the s& as follows:

, - 5
S =B; with probability p;j = (1-3)y+ 1

Use the se§ and obtain cosf;(S).
5. If § =By, then sety’'= —p—lo fi(S)en1), and ifS = By then sey’ = p—ln f (S )enn). Otherwise,
S = B; for some 1< i < n-—1. Choose; € {+1,—1} uniformly at random, and set:

pgft(S)en(,) if & = 1
_éft(S)en(iJrl) if & =—1.

6: Update: sek1 = Mg (% —NG).
7. end for

Before launching into the analysis, we define some convenient notatiorifafne the filtration
F = (%<1), Where % is the smallest-field with respect to which the random coin tosses of the
algorithmin rounds 12,...,t are measurable, and IEt]-| = E[-| 1], and VAR[:] = VAR[-| %_1].

A first observation is that in expectation, the regret of the algorithm alsogknost the same
as if it had played all along and the loss functions were replaced by thedlsavextensions of the
actual loss functions.

Lemma 15 For all t, we haveE[f(S)] < E[f;(x)] + 23M.

Proof From Definition 5 we have thdf(x ) = ¥ 1 fi(B;). On the other handg[f(S)] = ¥ pi ft(Bi),
and hence:

n

Ei[fi(S)] - fi(x) = _;(pi—u)ft(si) < 52 {niﬁ“} 1f(B)| < 25M. 2)

The lemma now follows by taking expectations on both sides with respect toniermaess up to
roundt — 1. |

Next, by Proposition 7, the subgradient of the heg extension of; at pointx; corresponding
to the maximal chaiBp C By C --- C By is given byg (i) = f(Byj)) — f(Bri)—1). Using this fact,
it is easy to check that the random veagpis™constructed in such a way tHag; %] = E:[§] = G-
Furthermore, we can bound the norm of this estimator as follows:

AM?(n+1)2 - 16M?n?

ElGl?] < § 5 f(B)? pi < 5 < =

©)

2914



ONLINE SUBMODULAR MINIMIZATION

.y . 212
We can now remove the conditioning, and conclude Ej#6:||?] < 16"g o,

Theorem 16 Algorithm 3, run with paramete§ = -7, n =
bound:

a7, achieves the following regret

E[Regret] < 6MnT?3,

Proof We bound the expected regret as follows: using Lemma 15), we have

T T T T
E[f(S)]—min § f(S) < 20MT + ¥ E[fi(%)]—min'y fi(x
t; [f(S)] Sgn]t; (9 < t; [t ()] min 2 t(X)
T
n n A (12
<20MT+—+=-S E By Lemma 11
on + 2 2 EllGI? (By )
n  8n’M2nT
< 20MT + — + —n——. By (3
< 2MT+ o+ =5 (BY (3))
The bound is now obtained using the stated valueg for |

4.1 High Probability Bounds on the Regret

The theorem of the previous section gave a bound on the expectet iégnever, a much stronger
claim can be made that essentially the same regret bound holds with veryrblgdibpity (expo-
nential tail). The following gives high probability bounds against an adeatilversary.

Theorem 17 With probability at leastl — 4¢€, Algorithm 3, run with parameterd = TT”/S, n=
W#z/@ achieves the following regret bound:

Regre} < 38MnT%3 .+ 44My/nT%3,/log(1/).

To prove the high probability regret bound, we require the following eatration lemma which
can be found in the book by Cesa-Bianchi and Lugosi (2006, AgreX)d

Lemma 18 (Bernstein inequality for martingales) Let X, ..., Xt be a sequence of bounded ran-
dom variables adapted to a filtratiof = (% )i<t. LetEi[-] := E[-|%-1]. Suppose thd;| < b and
let E¢[X?] <V forallt <T. Then, fore > 0, we have

|

The following simple corollary will be useful in the analysis:

T
let — E[X{]

> 2TVIog(1/s)+bIog(1/e)] < e

Corollary 19 In the setup of Lemma 18, assume that the parametdfsTande satisfyvTV >

by/log(1/¢€). Then
Pr[

N
IZ\Xt — E¢[X]

>4\/TVIog(1/s)] < &
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Proof [Theorem 17]1f T < 2log®?(1/¢), then the regret can be trivially bounded by

2MT < 4MT?3,/log(1/e) < 38MNnT%3 +44M/nT?3,/log(1/¢).
So from now on we assume tHet> 2log*?(1/¢). We need the following lemma:

Lemma20 If T > 2Iog3/2(1/£), then with probability at least — 4¢, all of the following inequali-
ties hold:

T T
ZII@tH2 < ZEt[l!@tllz]+64M2T4/3\/|09(1/8), (4)
t= t=

T T
Zlgfxt < Zl@thwleMﬁTZ/s\/log(l/s), (5)
t= t=
T T

vSc[nl, Z@TXS < ZlgtTXS—I-].GM\mT 23\/log(2"/¢), (6)
t= t=

5 ;
and 5 K(S) < Y ER(S)]+4My Tlog(1/e) )
t= t=

Proof We use Lemma 18 to bound the probability of each of the four evestteappening by,
and then we apply a union bound. In the following, we use the lower bound

o 1

n+1 = 2TL/3" (®)

pi =
Recall the filtrationf = (‘k<T), where%; is the smallest-field with respect to which the random
coin tosses of the algorithm in roundg2]. .. ,t are measurable. In the following we will consider
sequences of random variablg Xy, ..., Xy adapted tgr .
Proof of (4). Consider the random variables := ||G;||? for t < T, that are adapted t@. To
apply Corollary 19, we estimate the parameteks. If B; was sampled in stepwe have, using (3),

. 4
X = l1GI? < @ftz(Bi) < 16M7T?,

|
using (8). Thus, we can choobe= 16M2T2/3, Next, we have

n
El1Ge)|4 A1) < ;{?n(a)“.pi < (n+1)-16-8T-M* < 256V“nT.
i=0Fi

Thus, we can choodé = 256M*nT. Now, v/ TV = 16M2,/nT > by/log(1/¢) for T > log®?(1/).
The required bound follows from Corollary 19 using the overestimagion< T/3,

Proof of (5). Consider the random variabl&s:= Qtht fort < T, that are adapted t¢ . First
note thatE[g, %] = g %. To apply Corollary 19, we estimate the parameteks. First, if B; was
sampled in step, then we have, using®ider’s inequality,

X 2
Xl < llGelalxelle < a|ft(Bi)’ < AMTYE,
|

2916



ONLINE SUBMODULAR MINIMIZATION

using (8). Thus, we choose= 4MTY/3. Next, again using Blder’s inequality we have

n
. . 4
E[(G %)% < Edl&lilxl] < _%Eftz(Bi)‘pi < 16M2nTY3,
=

using (8). Thus, we can choo¥e= 16M2nTY/3. Note thaty/TV = 4M/nT%/3 > b, /log(1/¢)) for
T >log¥?(1/¢). The required bound follows from Corollary 19.

Proof of (6). This bound follows exactly as the previous one, except we use themavatttables
X = @/ Xs for every fixed seS C [n], with error parameteg/2". With this value of the error
parameter, the conditions of Corollary 19 are metTor- 2log*2(1/¢). We then take a union
bound over the 2choices ofSto obtain the required bound.

Proof of (7). Consider the random variablég:= f;(S) fort < T, that are adapted té. To
apply Corollary 19, we estimate the parameteig. We have

X = f(S)] < M.

So we can usé = M. As forV, we use the trivial bound = b? = M?. Again, vTV =+Tb>
by/log(1/¢) for T >log(1/¢€). The required bound follows from Corollary 19. [ |

Finally, we can imagine the poinig, xo,..., %t as being produced by running Online Gradient
Descent with linear cost functiomg X, thinking ofg; as deterministic vectors. Thus, by Lemma 11,
we get that for anys C [n], we have

- n n 5112
t;gtT(Xt—XS) < ot o > I8l 9)
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Thus, with probability - 4, for anySC [n], we have

Zlft — (S

< ZEt[ft(S)]_ft(s)+4M\/T|09(l/£) (By (7))
< Zift — fi(xs) +2nMT?3 + 4M /T log(1/¢) (By (2))
< Zlgt (% —Xs) +2MnT?3 +4M+/T log(1/¢) (by convexity off,)
t=
T
< ZthT(Xt—XS)+2MnT2/3+4M\/T|09(1/5)
t=
+32M/nT?3/log(2"/¢) (By (5), (6))
.
< ¥ G (% —Xs)+34MnT%3 + 36M/nT%3,/log(1/¢)
t=
< ; % 1G¢l[2+ 34MnT2/3 4 36M/nT2/3, /log(1/¢) (By (9))
< 21 zlEt 16¢12] -+ 64M2T%/3, /log(1/e)
+34MnT?/3 + 36M/nT%3,/log(1/¢) (By (4))
< 4AMnT?3 4 8MT%3, /log(1/¢)
+34MnT?/% + 36M/nT%3,/log(1/¢) (C.f. proof of Thm 16)
< 38MNnT%3 4 44M/nT?3,/log(1/¢).
This gives the required bound. |

5. Conclusions and Open Questions

We have described efficient regret minimization algorithms for submodutarfgnctions, in both
the bandit and full information settings. This parallels the work of StreetéGaovin (2008) who
study two specific instances of online submoduteximization(for which the offline problem is
NP-hard), and give (approximate) regret minimizing algorithms. We leaw @inaopen question
whether there exists an efficient algorithm that att&s/T) regret bounds for online submodular
minimization in the bandit setting.
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Appendix A. Additional Lemmas

In this section we prove auxiliary lemmas that were used in the paper for cemess.

A.1 The FTL-BTL Lemma

The following stability lemma was essentially proved in Theorem 1.1 of Kalai @mdpéla (2005).
We reprove it here for completeness:

Lemma 21 Let § = arg minsgn]{zt{:ll f(S)+R(S)} as in Algorithm 1. Then

T

Regret < 3 [1(S) ~ h(S.2)] +R(S) - R(S,)

=
Where S = argminsy 311 f(S).

Proof For convenience, denote by = R, and assume we start the algorithm froess O with an
arbitraryS,. The lemma is now proved by induction dn
Induction base: Note that by definition, we have th& = argmins{R(S)}, and thusfy(S) <

fo(S) for all S*, thus fo(S) — fo(S) < fo(S) — fo(S1).
Induction step: Assume that that fof, we have

%;ﬁ(&)—-ﬂ < E;ﬁ S) — ft(S41)

and let us prove fof + 1. SinceSr ., = argmins{ 3y ft(S)} we have:

T+1 T+1 T+1 T+1

;ft(S)— ;ft(S*) < ;ft(st)_ ;ft(ST+2)

= i( ft(S) — ft(Sr+2)) + fr+1(S+1) — fr41(Sr+42)

t=
T

%( ft(S) — t(S1) + frea(Se1) — frea(Sry2)
A

T+1

= Z)ft S) - fi(S+a).

Where in the third line we used the induction hypothesisfoe Sr, 2. We conclude that

IN

Zlft S)-f(S) < Zlft S) — ft(S2) +[=fo(S0) + fo(S) + fo(S0) — fo(S1)]
= Zlft )= ft(S41) +[R(S) —RS)]-
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A.2 Proof of Lemma 8

Next, we give a proof of Lemma 8 from the paper of Jegelka and BilmesLj26dr completeness:

Lemma 8 restatement: The subgradients g of the Lasz extensiorf : X — [-M,M] of a
submodular function are bounded bg||> < ||g||1 < 4M.
Proof Recall the subgradient definition of proposition 7: et K. Let0 =By C By C B, C
---Bn = [n] be an arbitrary maximal chain associated witand letrt: [n] — [n] be the corresponding
permutation. Note thd;) = {j € [n] : 7i(j) < m(i)}. Then, a subgradiewtof f atxis given by:

g = f(Bni)) — f(Brgi)-1)-
LetS" ={i: gi > 0}. First, we claim:

Proposition 22

Proof Leto:S" — {1,2,...,|S"|} be the one-to-one mapping that orders the elemen&'of
according tom, that is, fori, j € S*, we haveo(i) < a(j) if and only if (i) < 7(j). Fori € [S],
defineCi = {j € S*: a(j) <i}, and defin&, = 0. Sinceo respects the ordering given Iy for all

i € S" we have

Co(iy—1 = {j€S:a(j)<a(i)—1} C {je(n: n(i) <m(j)—1} = Bry_1.
Note thatCq(j) = Cq(j)—1 +1 andBryj) = Brj)—1 + 1. Thus by the submodularity df, we have

g = f(Bri) = f(Briy-1) < F(Cop)) = F(Copi)-1)-

Thus, we have

ieSt ieSt
IS*]
= ¥ £(C)~f(G1)
= f(S") - f(0)
< M- f(0)

Now letS™ :=[n]\ S* be the subset of indices of all negative entrieg.dfVe have

Yo=>6->06=FHn)-f0-5 g =>-2M

€S- i€[n ieSt ieSt
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The second equality above follows by the definitiorgoHence, we have

lgls = > @i— > 6 < 3M—f(0) < 4m.

ieSt ieS
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