
Journal of Machine Learning Research 13 (2012) 2409-2464 Submitted 4/11; Revised 2/12; Published 8/12

Characterization and Greedy Learning of Interventional Markov

Equivalence Classes of Directed Acyclic Graphs

Alain Hauser HAUSER@STAT.MATH.ETHZ.CH
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Abstract

The investigation of directed acyclic graphs (DAGs) encoding the same Markov property, that is

the same conditional independence relations of multivariate observational distributions, has a long

tradition; many algorithms exist for model selection and structure learning in Markov equivalence

classes. In this paper, we extend the notion of Markov equivalence of DAGs to the case of interven-

tional distributions arising from multiple intervention experiments. We show that under reasonable

assumptions on the intervention experiments, interventional Markov equivalence defines a finer par-

titioning of DAGs than observational Markov equivalence and hence improves the identifiability of

causal models. We give a graph theoretic criterion for two DAGs being Markov equivalent under

interventions and show that each interventional Markov equivalence class can, analogously to the

observational case, be uniquely represented by a chain graph called interventional essential graph

(also known as CPDAG in the observational case). These are key insights for deriving a general-

ization of the Greedy Equivalence Search algorithm aimed at structure learning from interventional

data. This new algorithm is evaluated in a simulation study.

Keywords: causal inference, interventions, graphical model, Markov equivalence, greedy equiva-

lence search

1. Introduction

Directed acyclic graphs (or DAGs for short) are commonly used to model causal relationships be-

tween random variables; in such models, parents of some vertex in the graph are understood as

“causes”, and edges have the meaning of “causal influences”. The causal influences between ran-

dom variables imply conditional independence relations among them. However, those independence

relations, or the corresponding Markov properties, do not identify the corresponding DAG com-

pletely, but only up to Markov equivalence. To put it simple, the skeleton of an underlying DAG is

completely determined by its Markov property, whereas the direction of the arrows (which is cru-

cial for causal interpretation) is in general not encoded in the Markov property for the observational

distribution.

Interventions can help to overcome those limitations in identifiability. An intervention is re-

alized by forcing the value of one or several random variables of the system to chosen values,

destroying their original causal dependencies. The ensemble of both the observational and interven-

tional distributions can greatly improve the identifiability of the causal structure of the system, the

underlying DAG.
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This paper has two main contributions. The first one is an algorithmically tractable graphical

representation of Markov equivalence classes under a given set of interventions (possibly affecting

several variables) from which the identifiability of causal models can be read off. This is of general

interest for computation and algorithms dealing with structure (DAG) learning from an ensemble of

observational and interventional data such as MCMC. The second contribution is a generalization

of the Greedy Equivalence Search (GES) algorithm of Chickering (2002b), yielding an algorithm

called Greedy Interventional Equivalence Search (GIES) which can be used for regularized maxi-

mum likelihood estimation in such an interventional setting.

In Section 2, we establish a criterion for two DAGs being Markov equivalent under a given

intervention setting. We then generalize the concept of essential graphs, a graph theoretic represen-

tation of Markov equivalence classes, to the interventional case and characterize the properties of

those graphs in Section 3. In Section 4, we elaborate a set of algorithmic operations to efficiently

traverse the search space of interventional essential graphs and finally present the GIES algorithm.

An experimental evaluation thereof is given in Section 5. We postpone all proofs to Appendix B,

while Appendix A contains a review on graph theoretic concepts and definitions. An implementa-

tion of the GIES algorithm will be available in the next release of the R package pcalg (Kalisch

et al., 2012); meanwhile, a prerelease version is available upon request from the first author.

1.1 Related Work

The investigation of Markov equivalence classes of directed graphical models has a long tradi-

tion, perhaps starting with the criterion for two DAGs being Markov equivalent by Verma and

Pearl (1990) and culminating in the graph theoretic characterization of essential graphs (also called

CPDAGs, “completed partially directed acyclic graphs”) representing Markov equivalence classes

by Andersson et al. (1997). Several algorithms for estimating essential graphs from observational

data exist, such as the PC algorithm (Spirtes et al., 2000) or the Greedy Equivalence Search (GES)

algorithm (Meek, 1997; Chickering, 2002b); a more complete overview is given in Brown et al.

(2005) and Murphy (2001).

Different approaches to incorporate interventional data for learning causal models have been

developed in the past. The Bayesian procedures of Cooper and Yoo (1999) or Eaton and Murphy

(2007) address the problem of calculating a posterior (and also a likelihood) of an ensemble of ob-

servational and interventional data but do not address questions of identifiability or Markov equiv-

alence: allowing different posteriors for Markov equivalent models can be intended in Bayesian

methods (and realized by giving the corresponding models different priors). Since the number of

DAGs with p variables grows super-exponentially with p (Robinson, 1973), the computation of a

full posterior is intractable. For this reason, the mentioned Bayesian approaches are limited to com-

puting posterior probabilities for certain features of a DAG; such a feature could be an edge from a

vertex a to another vertex b, or a directed path from a to b visiting additional vertices. Approaches

based on active learning (He and Geng, 2008; Tong and Koller, 2001; Eberhardt, 2008) propose

an iterative line of action, estimating the essential graph with observational data in a first step and

using interventional data in a second step to orient beforehand unorientable edges. He and Geng

(2008) present a greedy procedure in which interventional data is uniquely used for deciding about

edge orientations; this is not favorable from a statistical point of view since interventional data can

also help to improve the estimation of the skeleton (or, more generally, the observational essential

graph). Tong and Koller (2001) avoid this problem by using a Bayesian framework, but do not
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address the issue of Markov equivalence therewith. Eberhardt et al. (2005) and Eberhardt (2008)

provide algorithms for choosing intervention targets that completely identify all causal models of p

variables uniformly, but neither address the question of partial identifiability under a limited number

of interventions nor provide an algorithm for learning the causal structure from data. Eberhardt et al.

(2010) present an algorithm for learning cyclic linear causal models, but focus on complete identi-

fiability; identifiability results for cyclic models only imply sufficient, but not necessary, conditions

for the identifiability of acyclic models.

Probably the most advanced result concerning identifiability of causal models under single-

variable interventions so far is given in the work of Tian and Pearl (2001). Although they do not

provide a characterization of equivalence classes as a whole (as this paper does), they present a

necessary and sufficient graph theoretic criterion for two models being indistinguishable under a set

of single-variable interventions as well as a learning algorithm based on the detection of changes in

marginal distributions.

2. Model

We consider p random variables (X1, . . . ,Xp) =: X which take values in some product measure space

(X ,A,µ) = (∏
p
i=1Xi,

⊗p
i=1Ai,

⊗p
i=1 µi) with Xi ⊂ R ∀ i. Each σ-algebra Ai is assumed to contain

at least two disjoint sets of positive measure to avoid pathologies, and X is assumed to have a strictly

positive joint density w.r.t. the measure µ on X . We denote the set of all positive densities on X by

M. For any subset of component indices A⊂ [p] := {1, . . . , p}, we use the notation XA := ∏a∈AXa,

XA := (Xa)a∈A and the convention X/0 ≡ 0. Lowercase symbols like xA represent a value in XA.

The model we are considering is built upon Markov properties with respect to DAGs. By con-

vention, all graphs appearing in the paper shall have the vertex set [p], representing the p random

variables X1, . . . ,Xp. Our notation and definitions related to graphs are summarized in Appendix

A.1.

2.1 Causal Calculus: A Short Review

We start by summarizing important facts and fixing our notation concerning Markov properties and

intervention calculus.

Definition 1 (Markov property; Lauritzen, 1996) Let D be a DAG. Then we say that a proba-

bility density f ∈M obeys the Markov property of D if f (x) = ∏
p
i=1 f (xi|xpaD(i)

). The set of all

positive densities obeying the Markov property of D is denoted byM(D).

Definition 1 is the most straightforward translation of independence relations induced from

structural equations, the historical origin of directed graphical models (Wright, 1921). Related

notions like local and global Markov properties exist and are equivalent to the factorization property

of Definition 1 for positive densities (Lauritzen, 1996).

Definition 2 (Markov equivalence; Andersson et al., 1997) Let D1 and D2 be two DAGs. D1 and

D2 are called Markov equivalent (notation: D1 ∼ D2) ifM(D1) =M(D2).

Theorem 3 (Verma and Pearl, 1990) Two DAGs D1 and D2 are Markov-equivalent if and only if

they have the same skeleton and the same v-structures.
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Directed graphical models allow for an obvious causal interpretation. For a density f that obeys

the Markov properties of some DAG D, we can think of a random variable Xa being the direct cause

of another variable Xb if a is a parent of b in D.

Definition 4 (Causal model) A causal model is a pair (D, f ), where D is a DAG on the vertex set

[p] and f ∈M(D) is a density obeying the Markov property of D: D is called the causal structure

of the model, and f the observational density.

Causality is strongly linked to interventions. We consider stochastic interventions (Korb et al.,

2004) modeling the effect of setting or forcing one or several random variables XI , where I ⊂ [p]
is called the intervention target, to the value of independent random variables UI , called inter-

vention variables. The joint product density of UI on XI , called level density, is denoted by f̃ .

Extending the do() operator (Pearl, 1995) to stochastic interventions, we denote the density of X

under such an intervention by f (x|doD(XI =UI)). Using truncated factorization and the assumption

of independent intervention variables, this interventional density can be written as

f (x | doD(XI =UI)) = ∏
i/∈I

f (xi|xpaD(i)
)∏

i∈I

f̃ (xi) . (1)

By denoting with I = /0 and using the convention f (x|do(X/0 =U/0)) = f (x), we also encompass the

observational case as an intervention target.

Definition 5 (Intervention graph) Let D = ([p],E) be a DAG with vertex set [p] and edge set E

(see Appendix A.1), and I ⊂ [p] an intervention target. The intervention graph of D is the DAG

D(I) = ([p],E(I)), where E(I) := {(a,b) | (a,b) ∈ E,b /∈ I}.

For a causal model (D, f ), an interventional density f (·|doD(XI =UI)) obeys the Markov property

of D(I): the Markov property of the observational density is inherited. Figure 1 shows an example

of a DAG and two corresponding intervention graphs.

As foreshadowed in the introduction, we are interested in causal inference based on data sets

originating from multiple interventions, that means from a set of the form S = {(I j, f̃ j)}
J
j=1, where

I j ⊂ [p] is an intervention target and f̃ j a level density on XI j
for 1 ≤ j ≤ J. We call such a set an

intervention setting, and the corresponding (multi)set of intervention targets I = {I j}
J
j=1 a family

of targets. We often use the family of targets as an index set, for example to write a corresponding

intervention setting as S = {(I, f̃I)}I∈I .

We consider interventional data of sample size n produced by a causal model (D, f ) under an

intervention setting S = {(I, f̃I)}I∈I . We assume that the n samples X (1), . . . ,X (n) are independent,

and write them as usual as rows of a data matrix X. However, they are not identically distributed

1 2 3 4

5 6 7
(a) D

1 2 3 4

5 6 7

(b) D({4})

1 2 3 4

5 6 7

(c) D({3,5})

Figure 1: A DAG D and the corresponding intervention graphs D({4}) and D({3,5}).
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as they arise from different interventions. The interventional data set is fully specified by the pair

(T ,X),

T =







T (1)

...

T (n)






∈ In, X =







—X (1) —
...

—X (n) —






, (2)

where for each i∈ [n], T (i) denotes the intervention target under which the sample X (i) was produced.

This data set can potentially contain observational data as well, namely if /0 ∈ I. To summarize, we

consider the statistical model

X (1),X (2), . . . ,X (n) independent,

X (i) ∼ f
(

· | doD(X
(i)

T (i) =UT (i))
)

, UT (i) ∼ f̃T (i) , i = 1, . . . ,n , (3)

and we assume that each target I ∈ I appears at least once in the sequence T .

2.2 Interventional Markov Equivalence: New Concepts and Results

An intervention at some target a ∈ [p] destroys the original causal influence of other variables of

the system on Xa. Interventional data thereof can hence not be used to determine the causal parents

of Xa in the (undisturbed) system. To be able to estimate at least the complete skeleton of a causal

structure (as in the observational case), an intervention experiment has to be performed based on a

conservative family of targets:

Definition 6 (Conservative family of targets) A family of targets I is called conservative if for all

a ∈ [p], there is some I ∈ I such that a /∈ I.

In this paper, we restrict our considerations to conservative families of targets; see Section 2.3 for a

more detailed discussion. Note that every experiment in which we also measure observational data

corresponds to a conservative family of targets.

If a family of targets I contains more than one target, interventional data as in Equation (3)

are not identically distributed. Whereas the distribution of observational data is determined by a

single density, we need tuples of densities as in the following definition to specify the distribution

of interventional data.

Definition 7 Let D be a DAG on [p], and let I be a family of targets. Then we define

MI(D) :=
{

( f (I))I∈I ∈M
|I|

∣

∣ ∀ I ∈ I : f (I) ∈M(D(I)), and

∀ I,J ∈ I, ∀ a /∈ I∪ J : f (I)(xa|xpaD(a)
) = f (J)(xa|xpaD(a)

)
}

.

Although the do() operator does not appear in Definition 7, the elements inMI(D) are exactly the

tuples ( f (·|doD(XI =UI)))I∈I that can be realized as interventional densities of some causal model

(D, f ). The first condition in the definition reflects the fact that an intervention at a target I gener-

ates a density obeying the Markov property of D(I); the second condition is a consequence of the

truncated factorization in Equation (1). These considerations are formalized in the following lemma

and motivate Definition 9 of interventional Markov equivalence in analogy to the observational case.

Note that for I = { /0}, Definition 7 equals its observational counterpart: M{ /0}(D) =M(D) (see

Definition 1).
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Lemma 8 Let D be a DAG on [p], and I a conservative family of targets.

(i) Let (D, f ) be a causal model (that is, f ∈M(D)), S = {(I, f̃I)}I∈I an intervention setting

and UI ∼ f̃I intervention variables for I ∈ I. Then, we have

(

f (· | do(XI =UI))
)

I∈I
∈MI(D) .

(ii) Let ( f (I))I∈I ∈MI(D). Then there is some positive density f ∈M(D) and an intervention

setting S = {(I, f̃I)}I∈I such that f (·|do(XI = UI)) = f (I)(·) for random variables UI with

density f̃I , for all I ∈ I.

Definition 9 (Interventional Markov equivalence) Let D1 and D2 be DAGs, and I a family of

targets. D1 and D2 are called I-Markov equivalent (notation: D1 ∼I D2) ifMI(D1) =MI(D2).
The I-Markov equivalence class of a DAG D is denoted by [D]I .

Alternatively, we will also use the term “interventionally Markov equivalent” when it is clear which

family of targets is meant. For the simplest conservative family of targets, I = { /0}, we get back

Definition 2 for the observational case. We now generalize Theorem 3 for the interventional case in

order to get a purely graph theoretic criterion for interventional Markov equivalence of two given

DAGs, the main result of this section.

Theorem 10 Let D1 and D2 be two DAGs on [p], and I a conservative family of targets. Then, the

following statements are equivalent:

(i) D1 ∼I D2;

(ii) for all I ∈ I, D
(I)
1 ∼ D

(I)
2 (in the observational sense);

(iii) for all I ∈ I, D
(I)
1 and D

(I)
2 have the same skeleton and the same v-structures;

(iv) D1 and D2 have the same skeleton and the same v-structures, and D
(I)
1 and D

(I)
2 have the same

skeleton for all I ∈ I.

2.3 Discussion

Throughout this paper, we always assume the observational density f of a causal model to be strictly

positive. This assumption makes sure that the conditional densities in Equation (1) are well-defined.

The requirement of a strictly positive density can, however, be a restriction for example for discrete

models (where the density is with respect to the counting measure). In the observational case, the

notion of Markov equivalence remains the same when we also allow densities that are not strictly

positive (Lauritzen, 1996). We conjecture that the notion of interventional Markov equivalence

(Definition 9 and Theorem 10) also remains valid for such densities; corresponding proofs would,

however, require more caution to avoid the aforementioned problems with (truncated) factorization.

To illustrate the importance of a conservative family of targets for structure identification, let

us consider the simplest non-trivial example of a causal model with 2 variables X1 and X2. Under

observational data, we can distinguish two Markov equivalence classes: one in which the variables

are independent (represented by the empty DAG D0), and one in which they are not independent

(represented by the DAGs D1 := 1 2 and D2 := 1 2). D1 and D2 can be distinguished if we

can measure data from an intervention at one of the vertices in addition to observational data; this

experimental setting corresponds to the (conservative) family of targets I = { /0,{1}}. However, an
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1 2 3 4

5 6 7
(a) D

1 2 3 4

5 6 7
(b) D1

1 2 3 4

5 6 7
(c) D2

Figure 2: Three DAGs having equal skeletons and a single v-structure, 3 6 5, hence being

observationally Markov equivalent. For I = { /0,{4}}, we have D ∼I D1, but D 6∼I D2

since the skeletons of D({4}) (Figure 1(b)) and D
({4})
2 do not coincide.

intervention at, say, X1 alone (that is, in the absence of observational data), corresponding to the

non-conservative family I = {{1}}, only allows a distinction between the models D2 and D0 on

the one hand (which do not show dependence between X1 and X2 under the intervention) and D1

on the other hand (which does show dependence between X1 and X2 under the intervention). Note

that the two indistinguishable models D0 and D2 do not even have the same skeleton, and that it

is impossible to determine the influence of X2 on X1 in the undisturbed system. In this setting, it

would be more natural to consider the intervened variable X1 as an external parameter rather than

a random variable of the system, and to perform regression to detect or determine the influence of

X1 on X2. Note, however, that full identifiability of the models does not require observational data;

interventions at X1 and X2 (corresponding to the conservative family I = {{1},{2}} in our notation)

are also sufficient.

Theorem 10 is of great importance for the description of Markov equivalence classes under

interventions. It shows that two DAGs which are interventionally Markov equivalent under some

conservative family of targets are also observationally Markov equivalent:

D1 ∼I D2⇒ D1 ∼ D2. (4)

This implication is not true anymore for non-conservative families of targets. This is an explanation

for the term “conservative”: a conservative family of targets yields a finer partitioning of DAGs into

equivalence classes compared to observational Markov equivalence, but it preserves the “borders”

of observational Markov equivalence classes. Figure 2 shows three DAGs that are observationally

Markov equivalent, but which fall into two different interventional Markov equivalence classes

under the family of targets I = { /0,{4}}.

Theorem 10 agrees with Theorem 3 of Tian and Pearl (2001) for single-variable interventions.

While we also make a statement about interventions at several variables, they prove their theorem

for perturbations of the system at single variables only, but for a wider class of perturbations called

mechanism changes that go beyond our notion of interventions. While an intervention destroys

the causal dependence of a variable from its parents (and hence replaces a conditional density by

a marginal one in the Markov factorization, see Equation (1)), a mechanism change (also known

as “imperfect” or “soft” interventions; see Eaton and Murphy, 2007) alters the functional form of

this dependence (and hence replaces a Markov factor by a different one which is still a conditional

distribution). The fact that Theorem 10 is true for mechanism changes on single variables motivates

the conjecture that it also holds for mechanism changes on several variables.
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3. Essential Graphs

Theorem 10 represents a computationally fast criterion for deciding whether two DAGs are interven-

tionally Markov equivalent or not. However, given some DAG D, it does not provide a possibility for

quickly finding all equivalent ones, and hence does not specify the equivalence class as a whole. In

this section, we give a characterization of graphs that uniquely represent an interventional Markov

equivalence class (Theorem 18). Our characterization of these interventional essential graphs is in-

spired by and similar to the one developed by Andersson et al. (1997) for the observational case and

allows for handling equivalence classes algorithmically. Furthermore, we present a linear time al-

gorithm for constructing a representative of the equivalence class corresponding to an interventional

essential graph (Proposition 16 and discussion thereafter), as well as a polynomial time algorithm

for constructing the interventional essential graph of a given DAG (Algorithm 1). Throughout this

section, I always stands for a conservative family of targets.

3.1 Definitions and Motivation

All DAGs in an I-Markov equivalence class share the same skeleton; however, arrow orientations

may vary between different representatives (Theorem 10). Varying and common arrow orientations

are represented by undirected and directed edges, respectively, in I-essential graphs.

Definition 11 (I-essential graph) Let D be a DAG. The I-essential graph of D is defined as

EI(D) :=
⋃

D′∈[D]I D′. (The union is meant in the graph theoretic sense, see Appendix A.1).

When the family of targets I in question is clear from the context, we will also use the term in-

terventional essential graph, while “observational essential graph” shall refer to the concept of

essential graphs as introduced by Andersson et al. (1997) in the observational case. Simply speak-

ing of “essential graphs”, we mean interventional or observational essential graphs in the following.

Definition 12 (I-essential arrow) Let D be a DAG. An edge a b ∈ D is I-essential in D if a

b ∈ D′ ∀ D′ ∈ [D]I .

An I-essential graph typically contains directed as well as undirected edges. Directed ones corre-

spond to arrows that are I-essential in every representative of the equivalence class; in other words,

I-essential arrows are those whose direction is identifiable. A first sufficient criterion for an edge

to be I-essential follows immediately from Lemma 47 (Appendix B.1).

Corollary 13 Let D be a DAG with a b ∈ D. If there is an intervention target I ∈ I such that

|{a,b}∩ I|= 1, then a b is I-essential.

The investigation of essential graphs has a long tradition in the observational case (Anders-

son et al., 1997; Chickering, 2002a). Due to increased identifiability of causal structures, Markov

equivalence classes shrink in the interventional case; Equation (4) implies EI(D)⊂ E{ /0}(D) for any

conservative family of targets I (see also Figure 8 in Section 5). Essential graphs, interventional as

well as observational ones, are mainly interesting because of two reasons:

• It is important to know which arrow directions of a causal model are identifiable and which

are not since arrow directions are relevant for the causal interpretation.
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1 2 3 4

5 6 7

(d)
(b)

(b)

(c)

Figure 3: A graph with six arrows. Four of them are strongly I-protected for any conservative

family of targets I (in parentheses: arrow configurations according to Definition 14).

Arrows 3 4 and 4 7 are strongly I-protected for I = { /0,{4}}, but not for I = { /0}.

• Markov equivalent DAGs encode the same statistical model. Hence the space of DAGs is

no suitable “parameter” or search space for statistical inference and computation. The natural

search space is given by the set of the equivalence classes, the objects that can be distinguished

from data. Essential graphs uniquely represent these equivalence classes and are efficiently

manageable in algorithms.

The characterization of I-essential graphs (Theorem 18) relies on the notion of strongly I-

protected arrows (Definition 14) which reproduces the corresponding definition of Andersson et al.

(1997) for I = { /0}; an illustration is given in Figure 3.

Definition 14 (Strong protection) Let G be a graph. An arrow a b ∈ G is strongly I-protected

in G if there is some I ∈ I such that |I∩{a,b}|= 1, or the arrow a b occurs in at least one of the

following four configurations as an induced subgraph of G:

(a): a b

c

(b): a b

c

(c): a b

c

(d): a b

c1

c2

We will see in Theorem 18 that every arrow of an I-essential graph (that is, every edge corre-

sponding to an I-essential arrow in the representative DAGs) is strongly I-protected. The config-

urations in Definition 14 guarantee the identifiability of the edge orientation between a and b: if

there is a target I ∈ I such that |I∩{a,b}|= 1, turning the arrow would change the skeleton of the

intervention graph D(I) (see also Corollary 13); in configuration (a), reversal would create a new

v-structure; in (b), reversal would destroy a v-structure; in (c), reversal would create a cycle; an

in (d) finally, at least one of the arrows between a and c1 or c2 must point away from a in each

representative, hence turning the arrow a b would create a cycle. We refer to Andersson et al.

(1997) for a more detailed discussion of the configurations (a) to (d).

3.2 Characterization of Interventional Essential Graphs

As in the observational setting, we can show that interventional essential graphs are chain graphs

with chordal chain components (see Appendix A.1). For the observational case I = { /0}, Proposi-

tions 15 and 16 below correspond to Propositions 4.1 and 4.2 of Andersson et al. (1997).

Proposition 15 Let D be a DAG on [p]. Then:

(i) EI(D) is a chain graph.
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(ii) For each chain component T ∈ T(EI(D)), the induced subgraph EI(D)[T ] is chordal.

Proposition 16 Let D be a DAG. A digraph D′ is acyclic and I-equivalent to D if and only if D′

can be constructed by orienting the edges of every chain component of EI(D) according to a perfect

elimination ordering.

This proposition is not only of theoretic, but also of algorithmic interest. According to the expla-

nation in Appendix A.2, perfect elimination orderings on the (chordal) chain components of EI(D)
can be generated with LexBFS (Algorithm 6); doing this for all chain components yields compu-

tational complexity O(|E|+ p), where E denotes the edge set of EI(D) (see Appendix A.2).

As an immediate consequence of Proposition 16, interventional essential graphs are in one-to-

one correspondence with interventional Markov equivalence classes. We will therefore also speak

about “representatives of I-essential graphs”, where we mean representatives (that is, DAGs) of

the corresponding equivalence class. Propositions 15 and 16 give the justification for the following

definition; note that in order to generate a representative of some I-essential graph, the family of

targets I need not be known.

Definition 17 Let G be the I-essential graph of some DAG. The set of representatives of G is

denoted by D(G):

D(G) :={D a DAG | D⊂ G,Du = Gu,D[T ] oriented according to some

perfect elimination ordering for each chain component T ∈ T(G)}.

Here, Du denotes the skeleton of D (Appendix A.1). We can now state the main result of this section,

a graph theoretic characterization of I-essential graphs. For the observational case I = { /0}, this

theorem corresponds to Theorem 4.1 of Andersson et al. (1997).

Theorem 18 A graph G is the I-essential graph of a DAG D if and only if

(i) G is a chain graph;

(ii) for each chain component T ∈ T(G), G[T ] is chordal;

(iii) G has no induced subgraph of the form a b c;

(iv) G has no line a b for which there exists some I ∈ I such that |I∩{a,b}|= 1;

(v) every arrow a b ∈ G is strongly I-protected.

The graph G of Figure 3 satisfies points (i) to (iii) of Theorem 18. For I = { /0,{4}}, it also

fulfills points (iv) and (v); in this case, it is the I-essential graph EI(D) of the DAG D of Figure

1(a) by Proposition 16.

3.3 Construction of Interventional Essential Graphs

In this section, we show that there is a simple way to construct the I-essential graph EI(D) of a DAG

D: we need to successively convert arrows that are not strongly I-protected into lines (Algorithm

1). By doing this, we get a sequence of partial I-essential graphs.

Definition 19 (Partial I-essential graph) Let D be a DAG. A graph G with D ⊂ G ⊂ EI(D) is

called a partial I-essential graph of D if a b c does not occur as an induced subgraph of G.
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The following lemma can be understood as a motivation for looking at such graphs. Note that due to

the condition G⊂ EI(D), and because G and EI(D) have the same skeleton, every arrow of EI(D)
is also present in G, hence statement (ii) below makes sense.

Lemma 20 Let D be a DAG. Then:

(i) D and EI(D) are partial I-essential graphs of D.

(ii) Let G be a partial I-essential graph of D. Every arrow a b∈ EI(D) is strongly I-protected

in G.

(iii) Let G be a partial I-essential graph of two DAGs D1 and D2. Then, D1 ∼I D2.

Algorithm 1 constructs the I-essential graph G from a partial I-essential graph of any DAG

D ∈ D(G). The algorithm is indeed valid and calculates EI(D), since the graph produced in each

iteration is a partial I-essential graph of D (Lemma 21), and the only partial I-essential graph that

has only strongly I-protected arrows is EI(D) (Lemma 22).

Lemma 21 Let D be a DAG and G a partial I-essential graph of D. Assume that a b ∈ G is not

strongly I-protected in G, and let G′ := G+(b,a) (that is, the graph we get by replacing the arrow

a b by a line a b; see Appendix A.1). Then G′ is also a partial I-essential graph of D.

Lemma 22 Let D be a DAG. There is exactly one partial I-essential graph of D in which every

arrow is strongly I-protected, namely EI(D).

To construct EI(D) from some DAG D = ([p],E), we must, in the worst case, execute the itera-

tion of Algorithm 1 for every arrow in the DAG; at each step, we must check every 4-tuple of vertices

to see whether some arrow occurs in configuration (d) of Definition 14. Therefore Algorithm 1 has

at most complexity O(|E| · p4); by exploiting the partial order �G on T(G) (see Appendix A.1),

more efficient implementations are possible. Note that some checks only need to be done once. If,

for example, an edge a b is part of a v-structure (configuration (b) of Definition 14), or if there is

some I ∈ I such that |I ∩{a,b}| = 1 in the first iteration of Algorithm 1, this will also be the case

in every later iteration.

3.4 Example: Identifiability under Interventions

A simple example illustrates how much identifiability can be gained with a single intervention. We

consider a linear chain as observational essential graph:

G = E{ /0}(D) : 1 2 3 · · · p .

We can easily count the number of representatives of G using the following lemma.

Input : G: partial I-essential graph of some DAG D (not known)

Output: EI(D)
while ∃ a b ∈ G s.t. a b not strongly I-protected in G do

G← G+(b,a);

return G;

Algorithm 1: ReplaceUnprotected(I,G). Iterative construction of an I-essential graph
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Lemma 23 (Source lemma) Let G be a connected, chordal, undirected graph, and let D⊂ G be a

DAG without v-structures and with Du = G. Then D has exactly one source.

Proof Let σ be a topological ordering of D; then, σ(1) is a source, see Appendix A.1. It re-

mains to show that there is at most one such source. Assume, for the sake of contradiction,

that there are two different sources u and v. Since G is connected, there is a shortest u-v-path

γ = (a0 ≡ u,a1, . . . ,ak ≡ v). Let ai ai+1 ∈ D be the first arrow that points away from v in the

chain γ in D (note i≥ 1 since u a1 ∈ D by assumption). The v-structure ai−1 ai ai+1 is not

allowed as an induced subgraph of D, hence ai−1 and ai+1 must be adjacent in D and in G; however,

γ is then no shortest u-v-path, a contradiction.

For our linear chain G and any s ∈ [p], there is exactly one DAG D ∈D(G) that has the (unique)

source s, namely the DAG we get by orienting all edges of G away from s; other edge orientations

would produce a v-structure. We conclude G has p representatives.

Assume that the true causal model producing the data is (D, f ), and denote the source of D

by s ∈ [p]. Consider the conservative family of targets I = { /0,{v}} with v ∈ [p]. If v < s, the

interventional essential graph EI(D) is

1 2 . . . v+1 . . . p ,

and |D(EI(D))|= p−v by the same arguments as above; analogously, if v> s, we find |D(EI(D))|=
v−1. On the other hand, if v= s, all edges of D are strongly I-protected: those incident to s because

of the intervention target, all others because they are in configuration (a) of Definition 14; therefore,

we have EI(D) = D.

In the best case, all edge orientations in the chain can be identified by a single intervention,

while the observational essential graph E{ /0}(D) that is identifiable from observational data alone

contains p representatives. However, this needs an intervention at the a priori unknown source s.

Choosing the central vertex ⌈ p
2
⌉ as intervention target ensures that at least half of the edges become

directed in EI(D), independent of the position s of the source.

4. Greedy Interventional Equivalence Search

Different algorithms have been proposed to estimate essential graphs from observational data. One

of them, the Greedy Equivalence Search (GES) (Meek, 1997; Chickering, 2002b), is particularly

interesting because of two properties:

• It is score-based; it greedily maximizes some score function for given data over essential

graphs. It uses no tuning-parameter; the score function alone measures the quality of the

estimate. Chickering (2002b) chose the BIC score because of consistency; technically, any

score equivalent and decomposable function (see Definition 24) is adequate.

• It traverses the space of essential graphs which is the natural search space for model inference

(see Section 3). We will see in Section 5 that a greedy search over equivalence classes yields

much better estimation results than a naı̈ve greedy search over DAGs.

GES greedily optimizes the score function in two phases (Chickering, 2002b):
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• In the forward phase, the algorithm starts with the empty essential graph, G0 := ([p], /0). It

then sequentially steps from one essential graph Gi to a larger one, Gi+1, for which there are

representatives Di ∈ D(Gi) and Di+1 ∈ D(Gi+1) such that Di+1 has exactly one arrow more

than Di.

• In the backward phase, the sequence (Gi)i is continued by gradually stepping from one

essential graph Gi to a smaller one, Gi+1, for which there are representatives Di ∈ D(Gi) and

Di+1 ∈ D(Gi+1) such that Di+1 has exactly one arrow less than Di.

In both phases, the respective candidate with maximal score is chosen, or the phase is aborted if no

candidate scores higher than the current essential graph Gi.

We introduce in addition a new turning phase which proved to enhance estimation (see Section

5). Here, the sequence (Gi)i is elongated by gradually stepping from one essential graph Gi to a new

one with the same number of edges, denoted by Gi+1, for which there are representatives Di ∈D(Gi)
and Di+1 ∈ D(Gi+1) such that Di+1 can be constructed from Di by turning exactly one arrow. As

before, we choose the highest scoring candidate. Such a turning phase had already been proposed,

but not characterized or implemented, by Chickering (2002b).

Because GES is an optimization algorithm working on the space of observational essential

graphs, and because the characterization of interventional essential graphs is similar to that of ob-

servational ones (Theorem 18), GES can indeed be generalized to handle interventional data as well

by operating on interventional instead of observational essential graphs. We call this generalized

algorithm Greedy Interventional Equivalence Search or GIES. An overview is shown in Algorithm

2: the forward, backward and turning phase are repeatedly executed in this order until none of them

can augment the score function any more.

A naı̈ve search strategy would perhaps traverse the space of DAGs instead of essential graphs,

greedily adding, removing or turning single arrows from DAGs. It is well-known in the observa-

tional case that such an approach performs markedly worse than one accounting for Markov equiv-

alence (Chickering, 2002b; Castelo and Kočka, 2003), and we will see in our simulations (Section

5.2) that the same is true in the interventional case as long as few interventions are made. Ignoring

Markov equivalence cuts down the search space of successors at haphazard; since all DAGs in a

Markov equivalence class represent the same statistical model, there is no justification for consider-

ing neighbors (that is, DAGs that can be reached by adding, removing or turning an arrow) of one

of the representatives but not of the other ones.

GIES can be used with general score functions. It goes without saying that the chosen score

function should be a “reasonable” one which has favorable statistical properties such as consistency.

We denote the score of a DAG D given interventional data (T ,X) by S(D;T ,X), and we assume

that S is score equivalent, that is, it assigns the same score to I-equivalent DAGs; I always stands

for a conservative family of targets in this section. Furthermore, we require S to be decomposable.

Definition 24 A score function S is called decomposable if for each DAG D, S can be written as a

sum

S(D;T ,X) =
p

∑
i=1

s(i,paD(i);T ,X),

where the local score s depends on X only via X i and X paD(i)
, with X i denoting the ith column of

X and X paD(i)
the submatrix of X corresponding to the columns with index in paD(i).
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Throughout the rest of this section, S always denotes a score equivalent and decomposable score

function. Such a score function needs only be evaluated at one single representative of some inter-

ventional Markov equivalence class. Indeed, a key ingredient for the efficiency of the observational

GES as well as our interventional GIES is an implementation that computes the greedy steps to

the next equivalence class in a local fashion without enumerating all corresponding DAG members.

Chickering (2002b) found a clever way to do that in the forward and backward phase of the obser-

vational GES. In Sections 4.1 and 4.2, we generalize his methods to the interventional case, and in

Section 4.3, we propose an efficient implementation of the new turning phase.

4.1 Forward Phase

A step in the forward phase of GIES can be formalized as follows: for an I-essential graph Gi, find

the next one Gi+1 := EI(Di+1), where

Di+1 := argmax
D′∈D+(Gi)

S(D′;T ,X), and

D+(Gi) := {D′ a DAG | ∃ an arrow u v ∈ D′ : D′− (u,v) ∈ D(Gi)} .

If no candidate DAG D′ ∈ D+(Gi) scores higher than Gi, abort the forward phase.

We denote the set of candidate I-essential graphs by EEE+
I
(Gi) := {EI(D

′) | D′ ∈ D+(Gi)}. In

the next proposition, we show that each graph G′ ∈EEE+
I
(Gi) can be characterized by a triple (u,v,C),

where u v is the arrow that has to be added to a representative D of Gi in order to get a repre-

sentative D′ of G′, and C specifies the edge orientations of D within the chain component of v in

G.

Input : (T ,X): interventional data for family of targets I
Output: I-essential graph

G← ([p], /0);
repeat

DoContinue← FALSE;

repeat

Gold← G;

G← ForwardStep(G;T ,X) ; // See Algorithm 3

until Gold = G;

repeat

Gold← G;

G←BackwardStep(G;T ,X) ; // See Algorithm 4

if Gold 6= G then DoContinue← TRUE;

until Gold = G;

repeat

Gold← G;

G←TurningStep(G;T ,X) ; // See Algorithm 5

if Gold 6= G then DoContinue← TRUE;

until Gold = G;

until ¬DoContinue;

Algorithm 2: GIES(T ,X). Greedy Interventional Equivalence Search. The steps of the dif-

ferent phases of the algorithms are described in Algorithms 3–5.
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Proposition 25 Let G be an I-essential graph, let u and v be two non-adjacent vertices of G, and

let C ⊂ neG(v). Then there is a DAG D ∈ D(G) with {a ∈ neG(v) | a v ∈ D} = C such that

D′ := D+(u,v) ∈ D+(G) if and only if

(i) C is a clique in G[TG(v)];
(ii) N := neG(v)∩ adG(u)⊂C;

(iii) and every path from v to u in G has a vertex in C.

For given G, u, v and C determine D′ uniquely up to I-equivalence.

Note that points (i) and (ii) imply in particular that N is a clique in G[TG(v)]. Proposition 25 has

already been proven for the case of observational data (Chickering, 2002b, Theorem 15); it is not

obvious, however, to see that this characterization of a forward step is also valid for interventional

essential graphs, so we give a new proof in Appendix B.3 using the results developed in Sections 2

and 3.

The DAGs D and D′ in Proposition 25 only differ in the edge (u,v); v is the only vertex whose

parents are different in D and D′. Since the score function S is assumed to be decomposable, the

score difference between D and D′ can be expressed by the local score change at vertex v, as stated

in the following corollary.

Corollary 26 Let G, u, v, C, D and D′ be as in Proposition 25. The score difference ∆S :=
S(D′;T ,X)−S(D;T ,X) can be calculated as follows:

∆S = s(v,paG(v)∪C∪{u};T ,X)− s(v,paG(v)∪C;T ,X).

In the observational case, this corollary corresponds to Corollary 16 of Chickering (2002b).

Input : G = ([p],E): I-essential graph; (T ,X): interventional data for I
Output: G′ ∈EEE+

I
(G), or G

∆Smax← 0;

2 foreach v ∈ [p] do

foreach u ∈ [p]\ adG(v) do

N← neG(v)∩ adG(u);
foreach clique C ⊂ neG(v) with N ⊂C do // Proposition 25(i) and (ii)

if 6 ∃ path from v to u in G[[p]\C] then // Proposition 25(iii)

∆S← s(v,paG(v)∪C∪{u};T ,X)− s(v,paG(v)∪C;T ,X);
if ∆S > ∆Smax then

∆Smax← ∆S;

10 (umax,vmax,Cmax)← (u,v,C);

if ∆Smax > 0 then

σ← LexBFS((Cmax,vmax, . . .),E[TG(vmax)]);
Orient edges of G[TG(vmax)] according to σ;

Insert edge (umax,vmax) into G;

return ReplaceUnprotected(I,G) ; // See Algorithm 1

else return G;

Algorithm 3: ForwardStep(G;T ,X). One step of the forward phase of GIES.
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Figure 4: DAGs D, D′ and EI(D
′) illustrating a possible forward step of GIES for the family of

targets I = { /0,{4}}, applied to the I-essential graph G of Figure 3 for the parameters

(u,v,C) = (4,2,{3}) (notation according to Proposition 25). In parentheses in Figure

(c): arrow configurations according to Definition 14; arrows incident to 4 are strongly

I-protected by the intervention target {4}.

The most straightforward way to construct an I-essential graph G′ ∈ EEE+
I
(G) characterized by

the triple (u,v,C) as defined in Proposition 25 would be to create a representative D ∈ D(G) by

orienting the edges of TG(v) as indicated by the set C, add the arrow u v to get D′, and finally

construct EI(D
′) with Algorithm 1. The next lemma suggests a novel shortcut to this procedure: it

is sufficient to orient the edges of the chain component TG(v) only to get a partial I-essential graph

of D′ after adding the arrow u v.

Lemma 27 Let G, u, v, C, D and D′ be as in Proposition 25. Let H be the graph that we get by

orienting all edges of TG(v) as in D (leaving other chain components unchanged) and inserting the

arrow (u,v). Then H is a partial I-essential graph of D′.

Algorithm 3 shows our implementation of the forward phase of GIES, summarizing the results

of Proposition 25, Corollary 26 and Lemma 27. Figure 4 illustrates one forward step, applied to

the I-essential graph G (for I = { /0,{4}}) of Figure 3 and characterized by the triple (u,v,C) =
(4,2,{3}). Note that this triple is indeed valid in the sense of Proposition 25: {3} is clearly a clique

(point (i)), neG(2)∩ adG(4) = {3} (point (ii)), and there is no path from 2 to 4 in G[[p] \C] (point

(iii)).

4.2 Backward Phase

In analogy to the forward phase, one step of the backward phase can be formalized as follows: for

an I-essential graph Gi, find its successor Gi+1 := EI(Di+1), where

Di+1 := argmax
D′∈D−(Gi)

S(D′;X), and

D−(Gi) := {D′ a DAG | ∃ D ∈ D(Gi),u v ∈ D : D′ = D− (u,v)} .

If no candidate DAG D′ ∈ D+(Gi) scores higher than Gi, the backward phase is aborted.

Whenever we have some representative D ∈ D(G) of an I-essential graph G, we get a DAG

in D−(G) by removing any arrow of D. This is in contrast to the forward phase where we do not

necessarily get a DAG in D+(G) by adding an arbitrary arrow to D. By adding arrows, new directed

cycles could be created, something which is not possible by removing arrows. This is the reason

why the backward phase is generally simpler to implement than the forward phase.

2424



INTERVENTIONAL MARKOV EQUIVALENCE CLASSES OF DAGS

In Proposition 28 (corresponding to Theorem 17 of Chickering (2002b) for the observational

case), we show that we can, similarly to the forward phase, characterize an I-essential graph of

EEE−
I
(G) := {EI(D

′) | D′ ∈ D−(G)} by a triple (u,v,C), where C is a clique in neG(v). As in the

forward phase, we see that the score difference of D and D′ is determined by the local score change

at the vertex v (Corollary 29), and that lines in chain components other than TG(v) remain lines in

G′ = EI(D
′) (Lemma 30). Algorithm 4 summarizes the results of the propositions in this section.

Proposition 28 Let G = ([p],E) be an I-essential graph with (u,v) ∈ E (that is, u v ∈ G or

u v ∈ G), and let C ⊂ neG(v). There is a DAG D ∈ D(G) with u v ∈ D and {a ∈ neG(v) \
{u} | a v ∈ D}=C such that D′ := D− (u,v) ∈ D−(G) if and only if

(i) C is a clique in G[TG(v)];
(ii) C ⊂ N := neG(v)∩ adG(u).

Moreover, u, v and C determine D′ uniquely up to I-equivalence for a given G.

Corollary 29 Let G, u, v, C, D and D′ be as in Proposition 28. The score difference ∆S :=
S(D′;T ,X)−S(D;T ,X) is:

∆S = s(v,(paG(v)∪C)\{u};T ,X)− s(v,paG(v)∪C∪{u};T ,X).

In the observational case, this corresponds to Corollary 18 in Chickering (2002b). The analogue to

Lemma 27 for a computational shortcut in the forward phase reads as follows:

Lemma 30 Let G, u, v, C, D and D′ be as in Proposition 28. Let H be the graph that we get by

orienting all edges of TG(v) as in D and removing the arrow (u,v). Then H is a partial I-essential

graph of D′.

Input : G = ([p],E): I-essential graph; (T ,X): interventional data for I
Output: G′ ∈EEE−

I
(G), or G

∆Smax← 0;

foreach v ∈ [p] do

foreach u ∈ neG(v)∪paG(v) do

N← neG(v)∩ adG(u);
foreach clique C ⊂ N do

∆S← s(v,(paG(v)∪C)\{u};T ,X)− s(v,paG(v)∪C∪{u};T ,X);
if ∆S > ∆Smax then

∆Smax← ∆S;

(umax,vmax,Cmax)← (u,v,C);

if ∆Smax > 0 then

if umax ∈ neG(vmax) then σ← LexBFS((Cmax,umax,vmax, . . .),E[TG(vmax)]);
else σ← LexBFS((Cmax,vmax, . . .),E[TG(vmax)]);
Orient edges of G[TG(vmax)] according to σ;

Remove edge (umax,vmax) from G;

return ReplaceUnprotected(I,G) ; // See Algorithm 1

else return G;

Algorithm 4: BackwardStep(G;T ,X). One step of the backward phase of GIES.
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Figure 5: DAGs D, D′ and EI(D
′) illustrating a possible backward step of GIES for the family of

targets I = { /0,{4}}, applied to the I-essential graph G of Figure 3 for the parameters

(u,v,C) = (2,5, /0) (notation according to Proposition 28). Figure (c), in parentheses:

arrow configurations according to Definition 14.

A backward step of GIES is summarized in Algorithm 4 and illustrated in Figure 5. The triple

(u,v,C) = (2,5, /0) used there to characterize the backward step obviously fulfills the requirements

of Proposition 28.

4.3 Turning Phase

Finally, we characterize a step of the turning phase of GIES, in which we want to find the successor

Gi+1 := EI(Di+1) for an I-essential graph Gi by the rule

Di+1 := argmax
D′∈D	(Gi)

S(D′;T ,X), where

D	(Gi) :={D′ a DAG |D′ /∈ D(Gi), and ∃ an arrow u v ∈ D′ :

D′− (u,v)+(v,u) ∈ D(Gi)} .

When the score cannot be augmented anymore, the turning phase is aborted. The additional con-

dition “D′ /∈ D(Gi)” is not necessary in the definitions of D+(Gi) and D−(Gi); when adding or

removing an arrow from a DAG, the skeleton changes, hence the new DAG is certainly not I-

equivalent to the previous one. However, when turning an arrow, the skeleton remains the same,

and the danger of staying in the same equivalence class exists.

Again, we are looking for an efficient method to find a representative D′ for each G′ ∈EEE	
I
(Gi) :=

{EI(D
′) | D′ ∈ D	(Gi)}. It makes sense to distinguish whether the arrow that should be turned in

a representative D ∈ D(Gi) is I-essential or not. We start with the case where we want to turn an

arrow which is not I-essential.

Proposition 31 Let G be an I-essential graph with u v ∈ G, and let C ⊂ neG(v) \ {u}. Define

N := neG(v)∩ adG(u). Then there is a DAG D ∈ D(G) with u v ∈ D and {a ∈ neG(v) | a v ∈
D}=C such that D′ := D− (v,u)+(u,v) ∈ D	(G) if and only if

(i) C is a clique in G[TG(v)];
(ii) C \N 6= /0;

(iii) C∩N separates C \N and N \C in G[neG(v)].

For a given G, u, v and C determine D′ up to I-equivalence.
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Figure 6: DAGs D, D′ and EI(D
′) illustrating a possible turning step of GIES applied to the I-

essential graph G (I = { /0,{4}}) of Figure 3 for the parameters (u,v,C) = (5,2,{3})
(notation of Proposition 31). The arrow 2 5 is not I-essential in D. Figure (c): arrow

configurations in parentheses, see Definition 14.

There are now two vertices that have different parents in the DAGs D and D′, namely u and v; thus

the calculation of the score difference between D and D′ involves two local scores instead of one.

Corollary 32 Let G, u, v, C, D and D′ be as in Proposition 31. Then the score difference ∆S :=
S(D′;T ,X)−S(D;T ,X) can be calculated as follows:

∆S = s(v,paG(v)∪C∪{u};T ,X)+ s(u,paG(u)∪ (C∩N);T ,X)

− s(v,paG(v)∪C;T ,X)− s(u,paG(u)∪ (C∩N)∪{v};T ,X).

Lemma 33 Let G, u, v, C, D and D′ be as in Proposition 31. Let H be the graph that we get by

orienting all edges of TG(v) as in D and turning the arrow (v,u). Then H is a partial I-essential

graph of D′.

A possible turning step is illustrated in Figure 6, where a non-I-essential arrow (for I =
{ /0,{4}}) of a representative of the graph G of Figure 3 is turned. The step is characterized by

the triple (u,v,C) = (5,2,{3}) which satisfies the conditions of Proposition 31: {3} is obviously a

clique (point (i)), C\N =C since N = {1} (point (ii)), and C\N = {3} and N \C = {1} are separated

in G[neG(2)] (point (iii)). In contrast, the triple (u,v,C) = (5,2,{1}) fulfills points (i) and (iii) of

Proposition 31, but not point (ii). There is a DAG D ∈ D(G) with {a ∈ neG(2) | a 2 ∈ D}= {1},
and turning the arrow 2 5 in D yields another DAG D′ (that is, does not create a new cycle). This

new DAG D′, however, is I-equivalent to D, and hence not a member of D	(G) (see the discussion

above).

We now proceed to the case where an I-essential arrow of a representative of G is turned; here

there is no danger to remain in the same Markov equivalence class. The characterization of this case

is similar to the forward phase.

Proposition 34 Let G be an I-essential graph with u v ∈G, and let C ⊂ neG(v). Then there is a

DAG D ∈ D(G) with {a ∈ neG(v) | a v ∈ D} = C such that D′ := D− (v,u)+ (u,v) ∈ D	(G) if

and only if

(i) C is a clique;

(ii) N := neG(v)∩ adG(u)⊂C;

(iii) every path from v to u in G except (v,u) has a vertex in C∪neG(u).

Moreover, u, v and C determine D′ up to I-equivalence.
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1 2 3

4 5

(a) G

1 2 3

4 5

(b) D

1 2 3

4 5

(b) (b)

(c) (b)

(b)

(c) D′ = EI(D
′)

Figure 7: Graphs G, D, D′ and EI(D
′) illustrating a possible turning step of GIES for the family

of targets I = { /0,{4}} and the parameters (u,v,C) = (1,2,{3}) (notation of Proposition

34). The arrow 2 1 is I-essential in D. Figure (c): arrow configurations in parentheses,

see Definition 14.

Chickering (2002a) has already proposed a turning step for essential arrows in the observational

case; however, he did not provide necessary and sufficient conditions specifying all possible turning

steps as Proposition 34 does.

Lemma 35 Let G, u, v, C, D and D′ be as in Proposition 34, and let H be the graph that we get by

orienting all edges of TG(v) and TG(u) as in D and by turning the edge (v,u). Then H is a partial

I-essential graph of D′.

To construct a G′ ∈EEE	
I
(G) out of G, we must possibly orient two chain components of G instead

of one (Lemma 35). In the example of Figure 7, we see that it is indeed not sufficient to orient the

edges of TG(v) alone in order to get a partial I-essential graph of G′. The arrow 1 5 is not I-

essential in D, hence 5∈ TG(1). However, the same arrow is I-essential in D′ and hence also present

in EI(D
′).

Despite the fact that we need to orient the edges of TG(v) and TG(u) to get a partial I-essential

graph of D′, EI(D
′) is nevertheless determined by the orientation of edges adjacent to v (determined

by the clique C) alone. This comes from the fact that in D, defined as in Proposition 34, all arrows

of D[TG(u)] must point away from u.

Corollary 36 Let G, u, v, C, D and D′ be as in Proposition 34. Then the score difference ∆S :=
S(D′;T ,X)−S(D;T ,X) can be calculated as follows:

∆S = s(v,paG(v)∪C∪{u};T ,X)+ s(u,paG(u)\{v};T ,X)

−s(v,paG(v)∪C;T ,X)− s(u,paG(u);T ,X).

The entire turning step, for essential and non-essential arrows, is shown in Algorithm 5.

4.4 Discussion

Every step in the forward, backward and turning phase of GIES is characterized by a triple (u,v,C),
where u and v are different vertices and C is a clique in the neighborhood of v. To identify the

highest scoring movement from one I-essential graph G to a potential successor in EEE+
I
(G), EEE−

I
(G)

or EEE	
I
(G), respectively, one potentially has to examine all cliques in the neighborhood neG(v) of

all vertices v ∈ [p]. The time complexity of any (forward, backward or turning) step applied to an

I-essential graph G hence highly depends on the size of the largest clique in the chain components
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of G. By restricting GIES to I-essential graphs with a bounded vertex degree, the time complexity

of a step of GIES is polynomial in p; otherwise, it is in the worst case exponential. We believe,

however, that GIES is in practice much more efficient than this worst-case complexity suggests.

Some evidence for this claim is provided by the runtime analysis of our simulation study, see Section

5.2.

A heuristic approach to guarantee polynomial runtime of a greedy search has been proposed

by Castelo and Kočka (2003) for the observational case. Their Hill Climber Monte Carlo (HCMC)

algorithm operates in DAG space, but to account for Markov equivalence, the neighborhood of a

number of randomly chosen DAGs equivalent to the current one is scanned in each greedy step.

Input : G = ([p],E): I-essential graph; (T ,X): interventional data for I
Output: G′ ∈EEE	

I
, or G

∆Smax← 0;

foreach v ∈ [p] do

foreach u ∈ neG(v) do // Consider arrows that are not I-essential for turning

N← neG(u)∩ adG(v);
foreach clique C ⊂ neG(v)\{u} do // Proposition 31(i)

if C \N 6= /0 and {u,v} separates C and N \C in G[TG(v)] then

// Proposition 31(ii) and (iii)

∆S← s(v,paG(v)∪C∪{u};T ,X)+ s(u,paG(u)∪ (C∩N);T ,X);
∆S← ∆S− s(v,paG(v)∪C;T ,X)− s(u,paG(u)∪ (C∩N)∪{v};T ,X);
if ∆S > ∆Smax then

∆Smax← ∆S;

(umax,vmax,Cmax)← (u,v,C);

foreach u ∈ chG(v) do // Consider I-essential arrows for turning

N← neG(v)∩ adG(u);
foreach clique C ⊂ neG(v) with N ⊂C do // Proposition 34(i) and (ii)

if 6 ∃ path from v to u in G[[p]\ (C∪neG(u))]− (v,u) then // Proposition 34(iii)

∆S← s(v,paG(v)∪C∪{u};T ,X)+ s(u,paG(u)\{v};T ,X);
∆S← ∆S− s(v,paG(v)∪C;T ,X)− s(u,paG(u);T ,X);
if ∆S > ∆Smax then

∆Smax← ∆S;

(umax,vmax,Cmax)← (u,v,C);

if ∆Smax > 0 then

if vmax umax ∈ G then

σu := LexBFS((umax, . . .),E[TG(umax)]);
Orient edges of G[TG(umax)] according to σ;

σv := LexBFS((Cmax,vmax, . . .),E[TG(vmax)]);

else σv := LexBFS((Cmax,vmax,umax, . . .),E[TG(vmax)]);
Orient edges of G[TG(vmax)] according to σv;

Turn edge (vmax,umax) in G;

return ReplaceUnprotected(I,G) ; // See Algorithm 1

else return G;

Algorithm 5: TurningStep(G;T ,X). One step of the turning phase of GIES.
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The equivalence class of the current DAG is explored by randomly turning “covered arrows”, that

is, arrows whose reversal does not change the Markov property. In our (interventional) notation, an

arrow is covered if and only if it is not strongly I-protected (Definition 14). By limiting the number

of covered arrow reversals, a polynomial runtime is guaranteed at the cost of potentially lowering the

probability of investigating a particular successor in EEE+
I
(G), EEE−

I
(G) or EEE	

I
(G), respectively. HCMC

hence enables a fine tuning of the trade-off between exploration of the search space and runtime, or

between greediness and randomness.

The order of executing the backward and the turning phase seems somewhat arbitrary. In the

analysis of the steps performed by GIES in our simulation study (Section 5.2), we saw that the

turning phase can generally only augment the score when very few backward steps were executed

before. For this reason, we believe that changing the order of the backward and the turning phase

would have little effect on the overall performance of GIES.

As already discussed by Chickering (2002b) for the observational case, caching techniques can

markedly speed up GES; the same holds for GIES. The basic idea is the following: in a forward

step, the algorithm evaluates a lot of triples (u,v,C) to choose the best one, (umax,vmax,Cmax) (lines

1 to 9 in Algorithm 3). After performing the forward move corresponding to (umax,vmax,Cmax),
many of the triples evaluated in the step before are still valid candidates for next step in the sense

of Proposition 25 and lead to the same score difference as before (see Corollary 26). Caching those

values avoids unnecessary reevaluation of possible forward steps. The same holds for the backward

and the turning phase; since the forward step is most frequently executed, a caching strategy in this

phase yields the highest speed-up though.

We emphasize that the characterization of “neighboring” I-essential graphs in EEE+
I
(G), EEE−

I
(G) or

EEE	
I
(G), respectively, by triples (u,v,C) is of more general interest for structure learning algorithms,

for example for the design of sampling steps of an MCMC algorithm. Also the beforementioned

HCMC algorithm could be extended to interventional data by generalizing the notion of “covered

arcs” using Definition 14.

The prime example of a score equivalent and decomposable score function is the Bayesian infor-

mation criterion (BIC) (Schwarz, 1978) which we used in our simulations (Section 5). It penalizes

the complexity of causal models by their number of free parameters (ℓ0 penalization); this number

is the sum of free parameters of the conditional densities in the Markov factorization (Definition 1),

which explains the decomposability of the score. Using different penalties, for example, ℓ2 penal-

ization, can lead to a non-decomposable score function. GIES can also be adapted to such score

functions; the calculation of score differences becomes computationally more expensive in this case

since it cannot be done in a local fashion as in Corollaries 26, 29, 32 and 36.

GIES only relies on the notion of interventional Markov equivalence, and on a score function

that can be evaluated for a given class of causal models. As we mentioned in Section 2.1, we

believe that interventional Markov equivalence classes remain unchanged for models that do not

have a strictly positive density. For this reason it should be safe to also apply GIES to such a model

class.

5. Experimental Evaluation

We evaluated the GIES algorithm on simulated interventional data (Section 5.2) and on in silico

gene expression data sets taken from the DREAM4 challenge (Marbach et al., 2010) (Section 5.3).
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In both cases, we restricted our considerations to Gaussian causal models as summarized in Section

5.1.

5.1 Gaussian Causal Models

Consider a causal model (D, f ) with a Gaussian density of the form N (0,Σ). The observational

Markov property of such a model translates to a set of linear structural equations

Xi =
p

∑
j=1

βi jX j + εi, εi
indep.
∼ N (0,σ2

i ), 1≤ i≤ p , (5)

where βi j = 0 if j /∈ paD(i). When the DAG structure D is known, the covariance matrix Σ can be

parameterized by the weight matrix

B := (βi j)
p
i, j=1 ∈ B(D) := {A = (αi j) ∈ R

p×p | αi j = 0 if j /∈ paD(i)}

that assigns a weight βi j to each arrow j i ∈ D, and the vector of error covariances σ2 :=
(σ2

1, . . . ,σ
2
p):

Σ = Cov(X) = (1−B)−1 diag(σ2)(1−B)−T .

This is a consequence of Equation (5).

We always assume Gaussian intervention variables UI (see Section 2.1). In this case, not only

the observational density f is Gaussian, but also the interventional densities f (x | doD(XI = UI)).
An interventional data set (T ,X) as defined in Equation (2) then consists of n independent, but not

identically distributed Gaussian samples.

We use the Bayesian information criterion (BIC) as score function for GIES:

S(D;T ,X) := sup{ℓD(B,σ
2;T ,X) | B ∈ B(D),σ2 ∈ R

p
>0}−

kD

2
log(n) ,

where ℓD denotes the log-likelihood of the density in Equation (3):

ℓD(B,σ
2;T ,X) :=

n

∑
i=1

log f
(

X (i) | doD(X
(i)

T (i) =UT (i))
)

(6)

=
n

∑
i=1

[

∑
j/∈T (i)

log f (X
(i)
j | X

(i)
paD( j))+ ∑

j∈T (i)

log f̃ (X
(i)
j )

]

= −
1

2

n

∑
i=1

∑
j/∈T (i)

[

logσ2
j +

1

σ2
j

(

X
(i)
j −B j X (i)

)2 ]

+C

= −
1

2

p

∑
j=1

[

|{i | j /∈ T (i)}| logσ2
j +

1

σ2
j

∑
i: j/∈T (i)

(

X
(i)
j −B j X (i)

)2 ]

+C ,

where the constant C is independent of the parameters (B,σ2) of the model. Since Gaussian causal

models with structure D are parameterized by B ∈ B(D) and σ2 ∈ R
p
>0, we have kD = p+ |E| free

parameters, where E denotes the edge set of D. It can be seen in Equation (6) that the maximum

likelihood estimator (MLE) (B̂, σ̂2), the maximizer of ℓD, minimizes the residual sum of squares

for the different structural equations; for more details we refer to Hauser and Bühlmann (2012).
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The DAG D̂ maximizing the BIC yields a consistent estimator for the true causal structure D in

the sense that P[D̂∼I D]→ 1 in the limit n→∞ as long as the true density f is faithful with respect

to D, that is, every conditional independence relation of f is encoded in the Markov property of D

(Hauser and Bühlmann, 2012). Note that the BIC score is even defined in the high-dimensional

setting p > n; however, we only consider low-dimensional settings here.

5.2 Simulations

We simulated interventional data from 4000 randomly generated Gaussian causal models as de-

scribed in Section 5.2.1. In Sections 5.2.2 and 5.2.3, we present our methods for evaluating GIES;

the results are discussed in Section 5.2.4. As a rough summary, GIES markedly beat the conceptu-

ally simpler greedy search over the space of DAGs as well as the original GES of Chickering (2002b)

ignoring the interventional nature of the simulated data sets. Its learning performance could keep

up with a provably consistent exponential time dynamic programming algorithm at much lower

computational cost.

5.2.1 GENERATION OF GAUSSIAN CAUSAL MODELS

For some number p of vertices, we randomly generated Gaussian causal models parameterized by

a structure D, a weight matrix B ∈ B(D) and a vector of error covariances σ2 ∈ R
p
>0 by a procedure

slightly adapted from Kalisch and Bühlmann (2007):

1. For a given sparseness parameter s ∈ (0,1), draw a DAG D with topological ordering

(1, . . . , p) and binomially distributed vertex degrees with mean s(p−1).

2. Shuffle the vertex indices of D to get a random topological ordering.

3. For each arrow j i∈D, draw β′i j ∼U([−1,−0.1]∪ [0.1,1]) using independent realizations;

for other pairs of (i, j), set β′i j = 0 (see Equation (5)). This yields a weight matrix B′ =
(β′i j)

p
i, j=1 ∈ B(D) with positive as well as negative entries which are bounded away from 0.

4. Draw error variances σ′2i
i.i.d.
∼ U([0.5,1]).

5. Calculate the corresponding covariance matrix Σ′ = (1−B′)−1 diag(σ′2)(1−B′)−T.

6. Set H := diag((Σ′11)
−1/2, . . . ,(Σ′pp)

−1/2), and normalize the weights and error variances as

follows:

B := HB′H−1, (σ2
1, . . . ,σ

2
p)

T := H2(σ′21 , . . . ,σ
′2
p )

T .

It can easily be seen that the corresponding covariance matrix fulfills

Σ = (1−B)−1 diag(σ2)(1−B)−T = HΣ′H ,

ensuring the desired normalization Σii = 1 for all i.

Steps 1 and 3 are provided by the function randomDAG() of the R-package pcalg (Kalisch et al.,

2012).

We considered families of targets of the form I = { /0, I1, . . . , Ik}, where I1, . . . , Ik are k different,

randomly chosen intervention targets of size m; the target size m had values between 1 and 4.
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For a fixed sample size n, we produced approximately the same number of data samples for each

target in the family I by using a level density N ((2, . . . ,2),(0.2)21m) in each case (see the model

in Equation (1)). With this choice and the aforementioned normalization of Σ, the mean values

of the intervention levels lay 2 standard deviations above the mean values of the observational

marginal distributions. In total, we considered 4000 causal models and simulated 128 observational

or interventional data sets from each of them by combining the following simulation parameters:

• (p,s) ∈ {(10,0.2),(20,0.1),(30,0.1),(40,0.1)} with 1000 DAGs each.

• k = 0,0.2p,0.4p, . . . , p for each value of p; the first setting is purely observational.

• m ∈ {1,2,4}.

• n ∈ {50,100,200,500,1000,2000,5000,10000}.

In addition, we generated causal models with p ∈ {50,100,200} (100 DAGs each) and p = 500 (20

DAGs) with an expected vertex degree of 4 (which corresponds to a sparseness parameter of s =
4/(p− 1)) and simulated 6 data sets for the parameters k = 0.4 and n ∈ {1000,2000,5000,10000,
20000,50000} from each of these models. We only used these additional data sets for the investi-

gation of the runtime of GIES.

5.2.2 ALTERNATIVE STRUCTURE LEARNING ALGORITHMS

We compare GIES with three alternative greedy search algorithms. The first one is the original GES

of Chickering (2002b) which regards the complete interventional data set as observational (that is,

ignores the list T of an interventional data set (T ,X) as defined in Equation (2)). The second one,

which we call GIES-NT (for “no turning”), is a variant of GIES that stops after the first forward

and backward phase and lacks the turning phase. The third algorithm, called GDS for “greedy DAG

search”, is a simple greedy algorithm optimizing the same score function as GIES, but working

on the space of DAGs instead of the space of I-essential graphs; GDS simply adds, removes or

turns arrows of DAGs in the forward, backward and turning phase, respectively. Furthermore,

for p ≤ 20, we compare with a dynamic programming (DP) approach proposed by Silander and

Myllymäki (2006), an algorithm that finds a global optimum of any decomposable score function

on the space of DAGs. Because of the exponential growth in time and memory requirements, we

could not calculate DP estimates for models with p ≥ 30 variables. For GDS and DP, we examine

the I-essential graph of the returned DAGs.

5.2.3 QUALITY MEASURES FOR ESTIMATED ESSENTIAL GRAPHS

The structural Hamming distance or SHD (Tsamardinos et al., 2006; we use the slightly adapted

version of Kalisch and Bühlmann, 2007) is used to measure the distance between an estimated I-

essential graph Ĝ and a true I-essential graph or DAG G. If A and Â denote the adjacency matrices

of G and Ĝ, respectively, the SHD between G and Ĝ reads

SHD(Ĝ,G) := ∑
1≤i< j≤p

(

1−1{(Ai j=Âi j)∧(A ji=Â ji)}

)

.

The SHD between Ĝ and G is the sum of the numbers of false positives of the skeleton, false

negatives of the skeleton, and wrongly oriented edges. Those quantities are defined as follows. Two

2433



HAUSER AND BÜHLMANN

vertices which are adjacent in Ĝ but not in G count as one false positive, two vertices which are

adjacent in G but not in Ĝ as one false negative. Two vertices which are adjacent in both G and Ĝ,

but connected with different edge types (that is, by a directed edge in one graph, by an undirected

one in the other; or by directed edges with different orientations in both graphs) constitute a wrongly

oriented edge.

5.2.4 RESULTS AND DISCUSSION

As we mentioned in Section 3.1, the undirected edges in the I-essential graph EI(D) of some causal

structure D are the edges with unidentifiable orientation. The number of undirected edges in EI(D)
analyzed in the next paragraph is therefore a good measure for the identifiability of D. Later on, we

study the performance of GIES and compare it to the other algorithms mentioned in Section 5.2.2.

Identifiability under Interventions

In Figure 8, the number of non-I-essential arrows is plotted as a function of the number k of

non-empty intervention targets (k = |I|−1, see Section 5.2.1). With single-vertex interventions at

80% of the vertices, the majority of the DAGs used in the simulation are completely identifiable;

with target size m = 2 or m = 4, this is already the case for k = 0.6p or k = 0.4p, respectively. For

the small target sizes used, the identifiability under k targets of size m is similar to the identifiability

under k ·m single-vertex targets.

A certain prudence is advisable when interpreting Figure 8 since the number of orientable edges

also reflects the characteristics of the generated DAGs. Nevertheless, the plots show that the iden-
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Figure 8: Number of non-I-essential arrows as a function of the number k of intervention vertices.

In parentheses: number of outliers in the corresponding boxplot.
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Figure 9: SHD between I-essential graph Ĝ estimated from n = 1000 data points and true DAG

D as a function of the number k of single-vertex intervention targets. “Oracle estimates”

denote the respective true I-essential graph EI(D), the best possible estimate under some

family of targets I (see also Figure 8). DP estimates are missing in the two lower plots.

tifiability of causal models increases quickly even with few intervention targets. In regard of appli-

cations this is an encouraging finding since it illustrates that even a small number of intervention

experiments can strongly increase the identifiability of causal structures.

Performance of GIES

Figure 9 shows the structural Hamming distance between true DAG D and estimated I-essential

graph Ĝ for different algorithms as a function of the number k of intervention targets. Single-vertex

interventions are considered; for larger targets, the overall picture is comparable (data not shown).

In 10 out of 12 cases for p≤ 20, the median SHD values of GIES and DP estimates are equal; in the

remaining cases, too, GIES yields estimates of comparable quality—at much lower computational

costs.

In parallel with the identifiability, the estimates produced by the different algorithms improve for

growing k. This illustrates that interventional data arising from different intervention targets carry

more information about the underlying causal model than observational data of the same sample

size.

For complete interventions, that is, k = p, every DAG is completely identifiable and hence its

own I-essential graph. Therefore, GDS and GIES are exactly the same algorithm in this case. With

shrinking k, the performance of GDS compared to that of GIES gets worse. On the other hand,

GES coincides with GIES in the observational case (k = 0). For growing k, the estimation per-

formance of GES stays approximately constant; it can, as opposed to GIES, not make use of the

additional information coming from interventions. To sum up, both the price of ignoring interven-

tional Markov equivalence (GDS) and ignoring the interventional nature of the provided data sets

(GES) are apparent in Figure 9.
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Figure 10: SHD between estimated and true I-essential graph for different numbers k of interven-

tion targets of size m = 4 for the DAGs with p = 20 vertices. The abscissa denotes the

total sample size n. For example, a data set with n = 1000 and k = 4 consists of 200

observational samples and 200 interventional samples each arising from interventions at

four different targets, see Section 5.2.1.

The performance of GIES as a function of the sample size n is plotted in Figure 10 for the DAGs

with p = 20 vertices and intervention targets of size m = 4. The quality of the GIES estimates is

comparable to that of the DP estimates. The behavior of the SHD values for growing n is a strong

hint for the consistency of GIES in the limit n→∞ (note that the DP algorithm is consistent; Hauser

and Bühlmann, 2012). In contrast, the plots for k = 0 and k = 4 again reveal the weak performance

of GDS for small numbers of intervention vertices; the plots suggest that GDS, in contrast to GIES,

does not yield a consistent estimator of the I-essential graph due to being stuck in a bad local

optimum.

The most striking result in Figure 10 is certainly the fact that the estimation performance of

GES heavily decreases with growing n as long as the data is not observational (k > 0). This is

not an artifact of GES, but a problem of model-misspecification: running DP for an observational

model (that is, considering all data as observational as GES does) yields SHD values maximally

14% below that of GES (data not shown). For single-vertex interventions, the SHD values of the

GES estimates stay approximately constant with growing n; for target size m = 2, its SHD values

also increase, but not to the same extent as for m = 4.

In Figure 11, we compare the SHD between true and estimated I-essential graphs with p = 30

vertices for estimates produced by different greedy algorithms; other vertex numbers give a similar

picture. In most settings, GIES beats both GDS and GIES-NT. It combines both the advantage of

GIES-NT, using the space of interventional Markov equivalence classes as search space, and GDS,

the turning phase apparently reducing the risk of getting stuck in local maxima of the score function.
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Figure 11: Mean SHD between estimated and true I-essential graph for different greedy algorithms

as a function of n and k; data for DAGs with p = 30 and single-vertex interventions.

Shading: algorithm yielded significantly better estimates than one (�) or two (�) of its

competitors, respectively (paired t-test on a significance level of α = 5%).

Figure 12: False positives (FP) and false negatives (FN) of the skeleton and wrongly oriented edges

(WO; Section 5.2.3) of the GIES estimates compared to the true I-essential graphs with

p = 30 vertices; mean values as a function of k and n for single-vertex interventions.

Shading: ratio of each quantity and the SHD between estimated and true I-essential

graph (dark means a large contribution to the SHD).

As noted in Section 5.2.3, the SHD between true and estimated interventional essential graphs

can be written as the sum of false positives of the skeleton, false negatives of the skeleton and

wrongly oriented edges. Those numbers are shown in Figure 12, again for GIES estimates under

single-vertex interventions for DAGs with p = 30 vertices. False positives of the skeleton are the

main contribution to the SHD values. In 60% of the cases, especially for large n and small k,

wrongly oriented edges represent the second-largest contribution.

Runtime Analysis

All algorithms evaluated in this section were implemented in C++ and compiled into a library

using the GNU compiler g++ 4.6.1. The simulations—that is, the generation of data and the library

calls—were performed using R 2.13.1. All simulations were run on an AMD Opteron 8380 CPU

with 2.5 GHz and 2 GB RAM.
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Figure 13: Runtime of GIES and DP as a function of the vertex number.

Figure 13 shows the running times of GIES and DP as a function of the number p of ver-

tices. GDS had running times of the same order of magnitude as GIES; they were actually up

to 50% higher since we used a basic implementation of GDS compared to an optimized version

of GIES (running times of GDS are not plotted for this reason). The linearity of the GIES val-

ues in the log-log plot (see the solid line in Figure 13) indicate a polynomial time complexity of

the approximate order O(p2.8), in contrast to the exponential complexity of DP; note that GIES

also has an exponential worst case complexity (see Section 4.4). The multiple linear regression

log(t) = β0 +β1 log(p)+β2 log(|E|)+ε, where t denotes the runtime and E the edge set of the true

DAG, yields coefficients β̂1 = 1.01 and β̂2 = 0.94.

5.3 DREAM4 Challenge

We also measured the performance of GIES on synthetic gene expression data sets from the DREAM4

in silico challenge (Marbach et al., 2010; Prill et al., 2010). Our goal here was to evaluate predic-

tions of expression levels of gene knockout or knockdown experiments by cross-validation based

on the provided interventional data.

5.3.1 DATA

The DREAM4 challenge provides five data sets with an ensemble of interventional and observa-

tional data simulated from five biologically plausible, possibly cyclic gene regulatory networks with

10 genes (Marbach et al., 2009). The data set of each network consists of

• 11 observational measurements, simulated from random fluctuations of the system parameters

(resembling observational data measured in different individuals);

• 10 measurements from single-gene knockdowns, one knockdown per gene;

• 10 measurements from single-gene knockouts, one knockout per gene;

• five time series with 21 time points each, simulated from an unknown change of parameters

in the first half (corresponding to measurements under a perturbed chemical environment

having unknown effects on the gene regulatory network) and from the unperturbed system in

the second half.
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Figure 14: Standardized intervention levels in the different DREAM4 data sets. Data is scaled such

that the observational samples have empirical mean 0 and standard deviation 1.

Since our framework can not cope with uncertain interventions (that is, interventions with unknown

target), we only used the 50 observational measurements of the second half of the time series. Alto-

gether, we have, from each network, a total of 81 data points, 61 observational and 20 interventional

ones. We normalized the data such that the observational samples of each gene have mean 0 and

standard deviation 1. In this normalization, 95% of the intervention levels (that is, the expression

levels of knocked out or knocked down genes) lie between −8.37 and −0.62 with a mean of −3.30

(Figure 14).

5.3.2 METHODS

We used each interventional measurement (20 per network) as one test data point and predicted its

value from a network estimated with training data consisting either of the 80 remaining data points,

or the 61 observational measurements alone. We used GIES, GES and PC (Spirtes et al., 2000) to

estimate the causal models and evaluated the prediction accuracy by the mean squared error (MSE).

We will use abbreviations like “GES(80)” or “PC(61)” to denote GES estimates based on a training

set of size 80 or PC estimates based on an observational training set of size 61, respectively.

For a given DAG, we predicted interventional gene expression levels based on the estimated

structural equation model after replacing the structural equation of the intervened variable by a con-

stant one; see Section 5.1 for connection between Gaussian causal models and structural equations,

especially Equation (5). GES and PC regard all data as observational and yield an observational

essential graph. For those algorithms, we enumerated all representative DAGs of the estimated

equivalence class using the function allDags() of the R package pcalg (Kalisch et al., 2012), cal-

culated an expression level with each of them, and took the mean of those predictions. GIES(80)

yields a single DAG in each case since the 19 interventional measurements in the training data

ensure complete identifiability.

Furthermore, we used the evaluation script provided by the DREAM4 challenge to assess the

quality of our network predictions to those sent in to the challenge by participating teams. This

evaluation is based on the area under the ROC curve (AUROC) of the true and false positive rate of

the edge predictions.
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Figure 15: Upper row: MSE values of GIES and competitors; lower row: differences of MSE

values as defined in Equation (7); large values indicate a good performance of GIES.

(A) GIES(80), (B) PC(80), (C) PC(61), (D) GES(80), (E) GES(61). Numbers below the

boxplots: p-values of a one-sided sign test.

5.3.3 RESULTS

Figure 15 shows boxplots of MSE differences between GIES(80) and its competitors; that is, we

consider quantities of the form

∆MSEcomp := MSEcomp−MSEGIES(80), (7)

where comp stands for one of the competitors. Since the MSE differences showed a skewed distri-

bution in general, we used a sign test for calculating their p-values.

Except for one case (PC(61) in network 1), GIES(80) always yielded the best predictions of all

competitors. Although all data sets are dominated by observational data (61 observational measure-

ments versus 20 interventional ones), GIES can make use of the additional information carried by

interventional data points to rule out its observational competitors. On the other hand, the domi-

nance of observational data is probably one of the reasons for the fact that GIES does not outperform

the observational methods more clearly but has an overall performance which is comparable with

that of its competitors. Another reason could be the fact that the underlying networks used for data

generation are not acyclic as assumed by GIES. Interestingly, the winning margin of GIES in net-

work 5 was not smaller than in other networks although the corresponding data set has the smallest

intervention levels (in absolute values; see Figure 14).

29 teams participated in the DREAM4 challenge. Their AUROC values are available from the

DREAM4 website;1 adding our values gives a data set of 30 evaluations. Among those, our results

had overall rank 10, and ranks 8, 4, 21, 10 and 3, respectively, for networks 1 to 5. Except for net-

work 3, we could keep up with the best third of the participating teams despite the beforementioned

model misspecification given by the assumption of acyclicity, and despite the fact that we ignored

the time series structure and half of the time series data.

6. Conclusion

We gave a definition and a graph theoretic criterion for the Markov equivalence of DAGs under mul-

tiple interventions. We characterized corresponding equivalence classes by their essential graph,

1. DREAM4 can be found at http://wiki.c2b2.columbia.edu/dream/index.php/D4c2.
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defined as the union of all DAGs in an equivalence class in analogy to the observational case. Using

those essential graphs as a basis for the algorithmic representation of interventional Markov equiv-

alence classes, we presented a new greedy algorithm (including a new turning phase), GIES, for

learning causal structures from data arising from multiple interventions.

In a simulation study, we showed that the number of non-orientable edges in causal structures

drops quickly even with a small number of interventions; our description of interventional essential

graphs makes it possible to quantify the gain in identifiability. For a fixed sample size n, GIES

estimates got closer to the true causal structure as the number of intervention vertices grew. For

DAGs with p ≤ 20 vertices, the GIES algorithm could keep up with a consistent, exponential-time

DP approach maximizing the BIC score. It clearly beat GDS, a simple greedy search on the space of

DAGs, as well as GES which cannot cope with interventional data. Our novel turning phase proved

to be an improvement of GES even on observational data, as it was already conjectured by Chick-

ering (2002b). Applying GIES to synthetic data sets from the DREAM4 challenge (Marbach et al.,

2010), we got better predictions of gene expression levels of knockout or knockdown experiments

than with observational estimation methods.

The accurate structure learning performance of GIES in the limit of large data sets raises the

question whether GIES is consistent. Chickering (2002b) proved the consistency of GES on obser-

vational data. However, the generalization of his proof for GIES operating on interventional data is

not obvious since such data are in general not identically distributed.
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Appendix A. Graphs

In this appendix, we shortly summarize our notation (mostly following Andersson et al., 1997) and

basic facts concerning graphs. All statements about perfect elimination orderings that are used in

Sections 3 and 4 are listed or proven in Section A.2.

A.1 Definitions and Notation

A graph is a pair G = (V,E), where V is a finite set of vertices and E ⊂ E∗(V ) := (V ×V ) \
{(a,a)|a ∈ V} is a set of edges. We use graphs to denote causal relationships between random

variables X1, . . . ,Xp. To keep notation simple, we always assume V = {1,2, . . . , p} =: [p], in order

to represent each random variable by its index in the graph.

An edge (a,b) ∈ E with (b,a) ∈ E is called undirected (or a line), whereas an edge (a,b) ∈ E

with (b,a) /∈ E is called directed (or an arrow). Consequently, a graph G is called directed (or

undirected, resp.) if all its edges are directed (or undirected, resp.); a directed graph is also called
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digraph for short. We use the short-hand notation

a b ∈ G :⇔ (a,b) ∈ E ∧ (b,a) /∈ E,

a b ∈ G :⇔ (a,b) ∈ E ∧ (b,a) ∈ E,

a b ∈ G :⇔ (a,b) ∈ E ∨ (b,a) ∈ E.

A subgraph of some graph G is a graph G′= (V ′,E ′) with the property V ′⊂V , E ′⊂ E, denoted

by G′⊂G. For a subset A⊂V of the vertices of G, the induced subgraph on A is G[A] := (A,E[A]),
where E[A] := E∩(A×A). A v-structure (also called immorality by, for example, Lauritzen, 1996)

is an induced subgraph of G of the form a b c. The skeleton of a graph G is the undirected

graph Gu := (V,Eu), Eu := {(a,b) ∈ V ×V | a b ∈ G}. For two graphs G1 = (V,E1) and G2 =
(V,E2) on the same vertex set, we define the union and the intersection as G1∪G2 := (V,E1∪E2)
and G1 ∩G2 := (V,E1 ∩E2), respectively. For a graph G = (V,E) and (a,b) ∈ E∗(V ), we use the

shorthand notation G− (a,b) := (V,E \{(a,b)}) and G+(a,b) := (V,E ∪{(a,b)}).
The following sets describe the local environment of a vertex a in a graph G:

paG(a) := {b ∈V | b a ∈ G}, the parents of a,

chG(a) := {b ∈V | a b ∈ G}, the children of a,

neG(a) := {b ∈V | a b ∈ G}, the neighbors of a,

adG(a) := {b ∈V | a b ∈ G}, the vertices adjacent to a.

The subscripts “G” in the above definitions are omitted when it is clear which graph is meant. For

a set A⊂V of vertices, we generalize those definitions as follows:

paG(A) :=
⋃

a∈A

paG(a)\A, neG(A) :=
⋃

a∈A

neG(a)\A, etc.

The degree of a vertex a ∈V is defined as degG(a) := |adG(a)|.
For two distinct vertices a and b ∈ V , a chain of length k from a to b is a sequence of distinct

vertices γ = (a ≡ a0,a1, . . . ,ak ≡ b) such that for each i = 1, . . . ,k, either ai−1 ai ∈ G or ai−1

ai ∈ G; if for all i, (ai−1,ai) ∈ E (that is, ai−1 ai ∈ G or ai−1 ai ∈ G), the sequence γ is called

a path. If at least one edge ai−1 ai is directed in a path, the path is called directed, otherwise

undirected. A (directed) cycle is defined as a (directed) path with the difference that a0 = an. Paths

define a preorder on the vertices of a graph: a�G b :⇔ ∃ a path γ from a to b in G. Furthermore,

a≈G b :⇔ (a�G b)∧ (b�G a) is an equivalence relation on the set of vertices.

An undirected graph G = (V,E) is complete if all pairs of vertices are adjacent. A clique is a

subset of vertices C ⊂V such that G[C] is complete; a vertex a ∈V is called simplicial if ne(a) is a

clique. An undirected graph G is called chordal if every cycle of length k≥ 4 contains a chord, that

means two nonconsecutive adjacent vertices. For pairwise disjoint subsets A,B,S ⊂ V with A 6= /0

and B 6= /0, A and B are separated by S in G if every path from a vertex in A to a vertex in B contains

a vertex in S.

A directed acyclic graph, or DAG for short, is a digraph that contains no cycle. In the paper,

we mostly use the symbol D for DAGs, whereas arbitrary graphs are, as in this appendix, mostly

named G. Chain graphs can be viewed as something between undirected graphs and DAGs: a

graph G = (V,E) is a chain graph if it contains no directed cycle; undirected graphs and DAGs are
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1 2 3 4

5 6 7

Figure 16: A chain graph G with three chain components A = TG(1) = [1]≈G
= {1,2,3,5}, B =

TG(6) = {6} and C = TG(4) = {4,7}. The arrows induce the partial order A �G B,

A �G C. The graph is no chain graph anymore when we replace the arrow 3 4 by a

line since this would create a directed cycle: (3,7,4,3).

special cases of chain graphs. The equivalence classes in V w.r.t. the equivalence relation ≈G are

the connected components of G after removing all directed edges. We denote the quotient set of V

by T(G) := V/ ≈G, and its members T ∈ T(G) are called chain components of G. For a vertex

a ∈V , TG(a) stands for [a]≈G
. The preorder �G on V induces in a canonical way a partial order on

T(G) which we also denote by �G: TG(a)�G TG(b) :⇔ a�G b. An illustration is shown in Figure

16.

An ordering of a graph is a bijection [p]→V , hence, since we assume V = [p] here, a permu-

tation σ ∈ Sp. An ordering σ canonically induces a total order on V by the definition a ≤σ b :⇔
σ−1(a)≤ σ−1(b). An ordering σ = (v1, . . . ,vp) is called a perfect elimination ordering if for all i,

vi is simplicial in Gu[{v1, . . . ,vi}]. A graph G = (V,E) is a DAG if and only if the previously defined

preorder�G is a partial order; such a partial order can be extended to a total order (Szpilrajn, 1930).

Thus every DAG has at least one topological ordering, that is an ordering σ whose total order ≤σ

extends �G: a�G b⇒ a≤σ b. For σ ∈ Sp, a DAG D = ([p],E) is said to be oriented according to

σ if σ is a topological ordering of D. In a DAG D with topological ordering σ, the arrows point from

vertices with low to vertices with high ordered indices. The vertex σ(1) is a source, that means all

arrows point away from it.

A.2 Perfect Elimination Orderings

Perfect elimination orderings play an important role in the characterization of interventional Markov

equivalence classes of DAGs as well as in the implementation of the Greedy Interventional Equiv-

alence Search (GIES). In this section, we provide all results for this topic that are used as auxiliary

tools in the proofs of Sections 3 and 4.

Lemma 37 Let D = (V,E) be a DAG. D has no v-structures if and only if any topological ordering

of D is a perfect elimination ordering.

The proof of this lemma follows easily from the definitions of a v-structure and a perfect elimination

ordering. Moreover, if any topological ordering of a DAG is a perfect elimination ordering, this is

automatically the case for every topological ordering.

Proposition 38 (Rose, 1970) Let G = (V,E) be an undirected graph. Then G is chordal if and only

if it has a perfect elimination ordering.
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Input : An undirected graph G = (V,E)
Output: An ordering σ of the vertices V , called a LexBFS-ordering

Σ← (V ); // Initialize sequence Σ of vertex sets to contain the single set V in

the beginning

σ← (); // Initialize output sequence of vertices

3 while Σ 6= /0 do

4 Remove a vertex a from the first set in the sequence Σ;

if first set of Σ is empty then remove first set from Σ;

Append a to σ;

Mark all sets of Σ as not visited;

foreach b ∈ neG(a) s.t. b ∈ S for some S ∈ Σ do

if S not visited then

Insert empty set T into Σ in front of S;

Mark S as visited;

else let T be the set preceding S in Σ;

13 Move b from S to T ;

14 if S = /0 then remove S from Σ;

Algorithm 6: LexBFS(V,E). Lexicographic breadth-first search in the so-called “partition-

ing paradigm” (Rose et al., 1976; Corneil, 2004)

Perfect elimination orderings of chordal graphs can be produced by a variant of the breadth-first

search algorithm, the so-called lexicographic breadth-first search (LexBFS; see Algorithm 6). The

term “lexicographic” reflects the fact that the algorithm visits edges in lexicographic order w.r.t. the

produced ordering σ.

Proposition 39 (Rose et al., 1976) Let G=(V,E) be an undirected chordal graph with a LexBFS-

ordering σ. Then σ is also a perfect elimination ordering on G.

Corollary 40 Let G be an undirected chordal graph with a LexBFS-ordering σ. A DAG D ⊂ G

with Du = G that is oriented according to σ has no v-structures.

Corollary 40 is a consequence of Lemma 37 and Proposition 39. According to this corollary,

LexBFS-orderings can be used for constructing representatives of essential graphs (see Propo-

sition 16). Corollary 40 as well as Algorithm 6 are therefore of great importance for the proofs and

algorithms of Sections 3 and 4.

Figure 17 shows an undirected chordal graph G and a DAG D that has the skeleton G and is

oriented according to a LexBFS-ordering σ of G. The functioning of Algorithm 6 when producing

a LexBFS-ordering on G is illustrated in Table 1. Note that the “sets” in Σ are written as tuples.

We use this notation to ensure that we can always remove the first (leftmost) vertex from the first

“set” of Σ (line 3 in Algorithm 6), and that we keep the relative order of vertices when moving

them from one set S to the preceding one, T , in Σ (line 12 in Algorithm 6). Throughout the text,

we always assume an implementation of Algorithm 6 in which the data structure used to represent

the “sets” in the sequence Σ guarantees this “first in, first out” (FIFO) behavior. In particular, the

start sequence (v1,v2, . . . ,vp) of the vertices in V provided to the algorithm determines the vertex

the LexBFS-ordering σ := LexBFS((v1, . . . ,vp),E) starts with: σ(1) = v1. It is often sufficient
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1 2 3 4

5 6 7
(a) G

1 2 3 4

5 6 7
(b) D

Figure 17: An undirected, chordal graph G = ([7],E) and the DAG D we get by orienting all edges

of G according to the ordering σ := LexBFS((6,3,1,2,4,5,7),E).

i Σ σ

0 ((6,3,1,2,4,5,7)) ()
1 ((3,2,5),(1,4,7)) (6)
2 ((2),(5),(4,7),(1)) (6,3)
3 ((5),(4,7),(1)) (6,3,2)
4 ((4,7),(1)) (6,3,2,5)
5 ((7),(1)) (6,3,2,5,4)
6 ((1)) (6,3,2,5,4,7)
7 () (6,3,2,5,4,7,1)

Table 1: State of the sequences Σ and σ after the ith run (i = 0, . . . ,7) of the while loop (lines 2 to

13) of Algorithm 6 applied to the graph G of Figure 17 with start order (6,3,1,2,4,5,7).

to specify the start order of LexBFS up to arbitrary orderings of some subsets of vertices. For a

set A = {a1, . . . ,ak} ⊂V and an additional vertex v ∈V \A, for example, we use the notation

LexBFS((A,v,V \ (A∪{v})),E), or even LexBFS((A,v, . . .),E)

to denote a LexBFS-ordering produced from a start order of the form (a1, . . . ,ak,v, . . .), without

specifying the orderings of A and V \ (A∪{v}).
By using appropriate data structures (for example, doubly linked lists for the representation of Σ

and its sets, and a pointer at each vertex pointing to the set in Σ in which it is contained), Algorithm

6 has complexity O(|E|+ |V |) (Corneil, 2004).

For the rest of this section, we state further consequences of Lemma 37 and Proposition 39

which are relevant for the proofs of Sections 3 and 4.

Corollary 41 Let G = (V,E) be an undirected chordal graph, and let a b ∈G. There exist DAGs

D1 and D2 with D1,D2 ⊂ G and Du
1 = Du

2 = G without v-structures such that a b ∈ D1 and

a b ∈ D2.

Proof Set σ1 := LexBFS((a,V \{a}),E) and σ2 := LexBFS((b,V \{b}),E), and let D1 and D2

be two DAGs with skeleton G and oriented according to σ1 and σ2, resp. Then, by Corollary 40, D1

and D2 have the requested properties; in particular, all edges point away from a in D1, whereas all

edges point away from b in D2.
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Corollary 42 (Andersson et al., 1997) Let G = (V,E) be an undirected chordal graph, a ∈V and

C ⊂ ne(a). Then there is a DAG D⊂ G with Du = G and {b ∈ ne(a) | b a ∈ D}=C that has no

v-structures if and only if C is a clique.

Proof “⇒”: Assume that there are non-adjacent vertices b,c ∈C. Then, b a c is an induced

subgraph of G, and by construction, the same vertices occur in configuration b a c in D, which

means that D has a v-structure, a contradiction.

“⇐”: Let (c1, . . . ,ck) be an arbitrary ordering of C. Run LexBFS on a start order of the form

(c1, . . . ,ck,a, . . .). After the first run of the while loop (lines 2 to 13 of Algorithm 6), σ = (c1),
and the first set in the sequence Σ contains (C∪{a}) \ {c1} as a subset (all vertices in this set are

adjacent to c1), in an unchanged order c2, . . . ,ck,a due to our FIFO convention. After the second

run of the while loop, σ = (c1,c2), and the first set in Σ contains (C∪{a})\{c1,c2}, and so on. In

the end, we get a LexBFS-ordering of the form σ = (c1, . . . ,ck,a, . . .). Orienting the edges of G

according to σ yields a DAG with the requested properties by Corollary 40.

ba

C
N

P

Figure 18: Configuration of vertices in Proposition 43.

Proposition 43 Let G = (V,E) be an undirected, chordal graph, a b ∈ G, and C ⊂ neG(a)\{b}
a clique. Let N := neG(a)∩neG(b), and assume that C∩N separates C \N and N \C in G[neG(a)]
(see Figure 18). Then there exists a DAG D⊂ G with Du = G such that

(i) D has no v-structures;

(ii) all edges in D[C∪{a}] point towards a;

(iii) all other edges of D point away from vertices in C∪{a} (in particular, a b ∈ D);

(iv) b d ∈ D for all d ∈ P := neG(b)\ (C∪{a}).

Proof Set σ := LexBFS((C,a,b, . . .),E), and let D be the DAG that we get by orienting the edges

of G according to σ. As in Corollary 42, properties (i) to (iii) are met.

It remains to show that b occurs before any d ∈ P in σ (that means b <σ d ∀ d ∈ P) in order that

D obeys property (iv). W.l.o.g., we can assume C = {1,2, . . . ,k}, a = k+1 and b = k+2. The start

order of the vertices for LexBFS is then (1,2, . . . , p). Due to the FIFO convention for the sets of

the sequence Σ in Algorithm 6, b always precedes any d ∈ P whenever they appear in the same set;

hence we only must show that the set containing b is never preceded by a set containing some d ∈ P

in Σ.

Suppose, for the sake of contradiction, that this is the case for some d ∈ P; name v1 := d. At the

beginning, b is in the same set as v1 in the sequence Σ; there is some vertex v2 that forces LexBFS

to move v1 into the set preceding the one containing b. A careful inspection of Algorithm 6 shows

that v2 is the vertex which is minimal w.r.t. ≤σ in

S(v1) := {v ∈V | v ∈ neG(v1)\neG(b),v <σ b}.
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If v2 > b (that is, if v2 /∈C∪{a} due to our convention), v2, as v1, always follows b whenever they

are in the same set in Σ. Therefore, v2 <σ b implies that there is some vertex v3 that moves v2 in the

set preceding the one of b in Σ during the execution of LexBFS; as before, we see that this is the

vertex which is minimal w.r.t. ≤σ in S(v2).

We can now continue to construct this sequence vi+1 := minS(vi) (always taking the minimum

w.r.t. ≤σ) until we find some vertex vm < b; this is a vertex in C∪{a}. Even more, vm ∈ C \N,

since, by definition of S(vm−1), we only consider vertices that are not adjacent to b. We now have

constructed a path γ = (v1, . . . ,vm) of length m ≥ 2 in G such that v1 ∈ P, vi /∈ neG(b) ∀ i > 1,

vi > b ∀ i < m and vm ∈ C \N; furthermore, we have vm <σ . . . <σ v1 <σ b. The path γ can be

elongated to a cycle (a,v0 := b,v1,v2, . . . ,vm,a):

a b

v1

vm−1

vm

PC

We now claim that vi a ∈ G for all 0 ≤ i ≤ m. This is clearly the case for i = 0 and i = m by

construction. Assume, for the sake of contradiction, that there is some i, 0 < i < m, that is not

adjacent to a. Let r be the largest index smaller than i such that vr a ∈ G and s be the smallest

index larger than i such that vs a ∈ G. Then the following is an induced subgraph of G:

a

vr

vr+1

vs

Note that a chord between different vl’s, say, a chord of the form vl vl+h with h≥ 2, would violate

the minimality of vl+1 in the set S(vl). This means that G contains an induced cycle of length 4 or

more, contradicting the chordality.

This proves the claim that vi a ∈ G for all 0 ≤ i ≤ m, or, in other words, vi ∈ neG(a) for all

0≤ i≤ m. Hence v1 ∈ N \C, and γ is a path from N \C to C \N in G[neG(a)] that has no vertex in

C∩N, in contradiction with the assumption.

Proposition 44 Let G = (V,E) be a chain graph with chordal chain components that does not

contain a b c as an induced subgraph, and let D⊂G be a digraph with Du = Gu. D is acyclic

and has the same v-structures as G if and only if D[T ] is oriented according to a perfect elimination

ordering for each chain component T ∈ T(G).

Proof “⇒”: let T ∈ T(G). G[T ] obviously does not have any v-structures, hence D[T ] has no

v-structures, either. It follows from Lemma 37 that D[T ] must be oriented according to a perfect

elimination ordering.
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“⇐”: for each T ∈ T(G), D[T ] is acyclic by construction. Assume that D has some directed cycle

γ; this cycle must reach different chain components of G, so it contains at least one edge a b that

is also present in G. Because of D⊂ G and Du = Gu, γ is also a cycle in G; and since a b ∈ G, it

is even a directed cycle in G, a contradiction. So D is acyclic.

By construction, every v-structure in G is also present in D. Suppose that D has some v-structure

a b c that G has not. a, b and c cannot belong to the same chain component of G according to

Lemma 37. So, w.l.o.g., a b c must be an induced subgraph of G, contradicting the assump-

tion. Hence D and G have the same v-structures.

Appendix B. Proofs

In this appendix, the technically interested reader finds all proofs that were left out in Sections 2 to

4 for better readability.

B.1 Proofs for Section 2

We start with the proof of Lemma 8 which motivates Definition 7 by showing that, for some DAG D

and some (conservative) family of targets I, the elements ofMI(D) are exactly the density tuples

that can be realized as interventional densities of a causal model with structure D. Note that we use

the conservativeness of I only in the proof of point (ii); it can even be proven without assuming

conservativeness, although the proof becomes harder.

Proof of Lemma 8

(i) f (x|do(XI =UI)) obeys the Markov property of D(I) (Section 2.1). Furthermore, for I,J ∈ I
and a /∈ I∪ J, we have

f (xa | xpaD(a)
;do(XI =UI)) = f (xa | xpaD(a)

) = f (xa | xpaD(a)
;do(XJ =UJ))

by the truncated factorization of Equation (1).

(ii) Let a∈ [p]. Since I is conservative, there is some I ∈I such that a /∈ I. Define ha(xa,xpaD(a)
) :=

f (I)(xa|xpaD(a)
). Note that, due to Definition 7, the function ha does not depend on the choice

of I.

Let f (x) :=∏
p
a=1 ha(xa,xpaD(a)

); this is a positive density onX with f (xa|xpaD(a)
)= ha(xa,xpaD(a)

),
hence f ∈M(D) and (D, f ) is a causal model.

By defining level densities f̃I(xI) := ∏i∈I f (I)(xi), we can construct an intervention setting

S := {(I, f̃I)}I∈I with the requested properties.

The proof of the main result of Section 2, the graph theoretic criterion for two DAGs being

interventionally Markov equivalent (Theorem 10), requires additional lemmas.

Lemma 45 Let D be a DAG, I a family of targets and I ∈ I a target in this family. Define

M(I)(D) := { f (I) | ( f (J))J∈I ∈MI(D)} ,

the projection ofMI(D) to the density component associated with the intervention target I. Then,

M(I)(D) =M(D(I)).
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Proof The inclusion “⊂” is immediately clear from Definition 7. It remains to show “⊃”.

Let f ∈ M(D(I)). Since D(I) ⊂ D, f also obeys the Markov property of D; this means f ∈
M(D). Set f̃I(xI) := f (xI); since f ∈M(D(I)), the components of f̃I are independent. For J ∈ I,

J 6= I, let f̃J be an arbitrary level density on XJ . By Lemma 8(i), we know that, for intervention

variables UJ ∼ f̃J (J ∈ I),

(

f (· | doD(XJ =UJ))
)

J∈I
∈MI(D) ,

hence f (· | doD(XI = UI)) ∈M
(I)(D) by definition ofM(I)(D). Moreover, by construction of f̃I ,

we have f (x | doD(XI =UI)) = f (x) and hence f ∈M(I)(D).

Lemma 46 Let D be a DAG, f ∈M(D), and A⊂ [p]. Then,

∏
a∈A

f (xa | xpa(a)) = f (xA | xpa(A)).

Proof Let σ ∈ Sp be a topological ordering of D. Then, for a ∈ A,

pa(a)⊂ pa(A)∪
[

A∩σ−1({1, . . . ,a−1})
]

(8)

holds: every b ∈ pa(a) either lies in Ac and hence in pa(A) by the definition given in Appendix A.1,

or in A∩σ−1({1, . . . ,a−1}) by the definition of a topological ordering.

Hence we conclude

f (xA | xpa(A)) = ∏
a∈A

f (xa | xA∩σ−1({1,...,a−1}),xpa(A)) = ∏
a∈A

f (xa | xpa(a));

the first equality is the usual factorization of a density, the second equality follows from the Markov

properties of f and Equation (8).

Lemma 47 Let I be a family of targets. Assume D1 and D2 are DAGs with the same skeleton and

the same v-structures such that D
(I)
1 and D

(I)
2 have the same skeleton for all I ∈ I. Moreover, let

a b ∈ D1. If there is some I ∈ I such that |I ∩{a,b}| = 1, then the arrow is also present in D2:

a b ∈ D2.

Proof Since D1 and D2 have the same skeleton, we have at least a b ∈ D2. Suppose a b ∈ D2.

If a ∈ I, b /∈ I, a and b are adjacent in D
(I)
1 , but not in D

(I)
2 , hence D

(I)
1 and D

(I)
2 have a different

skeleton, a contradiction. On the other hand, if a /∈ I but b ∈ I, a and b are not adjacent in D
(I)
1 , but

in D
(I)
2 , a contradiction, too.

Proof of Theorem 10 (i)⇒ (ii): Let I ∈I, and letM(I)(D1) andM(I)(D2) be defined as in Lemma

45. By Definition 9 of interventional Markov equivalence, it follows thatM(I)(D1) =M
(I)(D2);

henceM(D
(I)
1 ) =M(D

(I)
2 ) by Lemma 45.

(ii)⇒ (iii): this implication follows from Theorem 3.
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(iii) ⇒ (iv): Let a b ∈ D1 be an arrow. Since I is conservative, there is some I ∈ I such that

b /∈ I. For this I, a b ∈ D
(I)
1 , so a b ∈ D

(I)
2 by assumption and hence a b ∈ D2 because of

D
(I)
2 ⊂ D2. Similarly, we can show the implication a b ∈ D2 ⇒ a b ∈ D1, what proves that

D1 and D2 have the same skeleton.

It remains to show that D1 and D2 also have the same v-structures. Let a b c be a v-

structure of D1. There is some I ∈ I that does not contain b; a b c is then an induced subgraph

of D
(I)
1 and hence by assumption also of D

(I)
2 . By consequence, a b c is also an induced

subgraph of D2 since D2 has the same skeleton as D1. The argument is of course symmetric w.r.t.

exchanging D1 and D2.

(iv)⇒ (i): Let ( f (I))I∈I ∈MI(D1). By Lemma 8(ii), there is some density f ∈M(D1) and some

intervention setting S = {(I, f̃I)}I∈I such that f (I)(·) = f (·|doD1
(XI = UI)) for random variables

UI ∼ f̃I , I ∈ I.

The truncated factorization in Equation (1) tells us

f (x | doD1
(XI =UI)) = ∏

a/∈I

f (xa | xpaD1
(a))∏

a∈I

f̃I(xa) = f (x)∏
a∈I

f̃I(xa)

f (xa | xpaD1
(a))

= f (x)
f̃I(xI)

f (xI | xpaD1
(I))

. (9)

The last step uses Lemma 46.

We now claim that paD1
(I) = paD2

(I). Indeed, if b ∈ I and a ∈ paD1
(b)\ I, a b is an arrow in

D1 with |I∩{a,b}| = 1, hence a b ∈ D2 by Lemma 47 and therefore a ∈ paD2
(I); the argument

is symmetric w.r.t. exchanging D1 and D2. It follows that f (xI|xpaD1
(I)) = f (xI|xpaD2

(I)), and by

repeating the calculation in (9) for D2 instead of D1, we find f (x|doD1
(XI =UI)) = f (x|doD2

(XI =
UI)).

Since this equality is true for all I ∈ I, we have f (I)(·) = f (·|doD2
(XI = UI)) for all I ∈ I, so

( f (I))I∈I ∈MI(D2) by Lemma 8(i), which proves MI(D1) ⊂MI(D2). The other direction is

completely analogous.

Points (i) to (iii) are even equivalent under non-conservative families of targets. The proof is

more difficult in this case though.

B.2 Proofs for Section 3

All statements of Section 3.2 are similar to analogous statements for the observational case devel-

oped by Andersson et al. (1997). Some of the proofs given there are even literally valid also for

our interventional setting; in such cases, we will not repeat them here, but just refer to the original

ones. However, in most cases, the generalization from the observational to the interventional case

is not obvious and requires adapted techniques presented in this section. Here, I always stands for

a conservative family of targets.

First, we show that for some DAG D, EI(D) is a chain graph (Proposition 15). For that purpose,

we define EI(D)∗ as the smallest chain graph containing EI(D). EI(D)∗ is obtained from EI(D)
by converting all arrows that are part of a directed cycle in EI(D) into lines (Andersson et al.,
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1997). We first state a couple of properties of EI(D) and EI(D)∗ (Lemma 48), and then show that

EI(D)∗ = EI(D) (Proposition 15).

Lemma 48 (adapted from Andersson et al., 1997) Let D be a DAG. Then:

(i) EI(D) has no induced subgraph of the form a b c.

(ii) If EI(D) has an induced subgraph of the form

a b

c

,

then there exist D1,D2 ∈ [D]I such that

a b

c

⊂ D1, a b

c

⊂ D2.

(iii) EI(D)∗ has the same v-structures as D (and hence as EI(D)).
(iv) EI(D) and EI(D)∗ do not have any undirected chordless k-cycle of length k ≥ 4.

(v) EI(D)∗ has no induced subgraph of the form a b c.

(vi) If two vertices a and b are adjacent in EI(D)∗ and there is some I ∈I such that |I∩{a,b}|= 1,

then the edge between a and b is directed in EI(D) and EI(D)∗.

Proof Points (i) to (v) correspond to Facts 1 to 5 of Andersson et al. (1997) where these properties

were proven for observational essential graphs. A thorough inspection of the proofs given there

reveals that they only make use of the fact that two Markov equivalent DAGs have the same skeleton

and the same v-structures, which is also true in the interventional case by Theorem 10. Thanks

to this, the proofs of Andersson et al. (1997) can be literally used here. (Note that the inverse

implication also holds in the observational case, but not in the interventional one; see the discussion

after Theorem 10.)

It remains to prove point (vi). The edge between a and b in EI(D) is directed since the arrow

between a and b is I-essential in D by Corollary 13. It remains to show that the edge is also directed

in EI(D)∗, that is, to show that it is not part of a directed cycle in EI(D).
Let’s suppose, for the sake of contradiction, that the edge between a and b is part of a directed

cycle γ = (a,b ≡ b0,b1, . . . ,bk ≡ a) in EI(D). W.l.o.g., we can assume that a b ∈ EI(D), and

that γ is the shortest such cycle containing a directed edge with one end point in I and the other one

outside I.

Case 1: k = 2. Then γ is of the form

a b

b1

since two or three directed edges would imply the existence of a digraph with a cycle in the equiva-

lence class of D. By point (ii), there are DAGs D1 and D2 in [D]I such that

a b

b1

⊂ D1 , a b

b1

⊂ D2.

The condition |I∩{a,b}|= 1 leaves four possibilities:
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a) a ∈ I;b,b1 /∈ I: then, a b

b1

⊂ D
(I)
1 , a b

b1

⊂ D
(I)
2 ;

b) a,b1 ∈ I;b /∈ I: then, a b

b1

⊂ D
(I)
1 , a b

b1

⊂ D
(I)
2 ;

c) b ∈ I;a,b1 /∈ I: then, a b

b1

⊂ D
(I)
1 , a b

b1

⊂ D
(I)
2 ;

d) b,b1 ∈ I;a /∈ I: then, a b

b1

⊂ D
(I)
1 , a b

b1

⊂ D
(I)
2 .

In all four cases, (D
(I)
1 )u 6= (D

(I)
2 )u, hence D1 6∼I D2, a contradiction.

Case 2: k≥ 3. Let i be the smallest index such that bi bi+1 ∈ EI(D) (there must be such an index,

otherwise γ would be a directed cycle in D).

Case 2.1: i = 0. Since a b b1 cannot be an induced subgraph of EI(D) by point (i), we must

have a b1 ∈ EI(D). More precisely, we must have a b1 ∈ EI(D), otherwise (a,b,b1,a) would

form a shorter directed cycle than γ, in contradiction to the assumption. This means that there exist

DAGs D1,D2 ∈ [D]I such that

a b

b1

⊂ D1, a b

b1

⊂ D2.

Again, the condition |I∩{a,b}|= 1 leaves four possibilities:

a) a ∈ I;b,b1 /∈ I: then, a b

b1

⊂ D
(I)
1 , a b

b1

⊂ D
(I)
2 ;

b) a,b1 ∈ I;b /∈ I: then, a b

b1

⊂ D
(I)
1 , a b

b1

⊂ D
(I)
2 ;

c) b ∈ I;a,b1 /∈ I: then, a b

b1

⊂ D
(I)
1 , a b

b1

⊂ D
(I)
2 ;

d) b,b1 ∈ I;a /∈ I: then, a b

b1

⊂ D
(I)
1 , a b

b1

⊂ D
(I)
2 .

Cases b) and c) are not compatible with the condition (D
(I)
1 )u = (D

(I)
2 )u. In cases a) and d), the

arrow a b1 is part of a directed cycle (a,b1,b2, . . . ,bk ≡ a), furthermore |I ∩{a,b1}| = 1; this

contradicts the assumption of minimality of the larger cycle γ.
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Case 2.2: i ≥ 1. Since bi−1 bi bi+1 cannot be an induced subgraph of EI(D), we must have

bi−1 bi+1 ∈ EI(D). Either bi−1 bi+1 ∈ EI(D), that is

bi−1 bi

bi+1

⊂ EI(D) ,

which would imply the existence of a digraph with a directed 3-cycle in the equivalence class of

D, a contradiction. The other cases are bi−1 bi+1 ∈ EI(D) or bi−1 bi+1 ∈ EI(D) which would

mean that a b would be part of a shorter directed cycle (a,b≡ b0, . . . ,bi−1,bi+1, . . . ,bk ≡ a), con-

tradicting the assumption of minimality of the cycle γ.

Proof of Proposition 15 We only prove the first point; the second one is an immediate consequence

of Lemma 48(iv). We have to show that EI(D) = EI(D)∗, that means that

a b ∈ EI(D)∗ ⇒ a b ∈ EI(D) .

By Lemma 48(iv), all chain components of EI(D)∗ are chordal. Let D1 and D2 be two DAGs that

are obtained by orienting all chain components of EI(D)∗ according to some perfect elimination

ordering, such that a b ∈ D1 and a b ∈ D2; such orientations exist by Proposition 44 and

Corollary 41.

We now claim that D1 ∼I D2 by verifying the criteria of Theorem 10(iv); it then follows that

a b ∈ EI(D) because of D1∪D2 ⊂ EI(D):

• By Proposition 44, D1 and D2 have the same skeleton and the same v-structures.

• D
(I)
1 and D

(I)
2 have the same skeleton for all I ∈ I: suppose, for the sake of contradiction,

that (D
(I)
1 )u has some edge c d that (D

(I)
2 )u has not. W.l.o.g., we then have c d ∈ D1,

c d ∈ D2, c ∈ I, d /∈ I. But then c and d are adjacent in EI(D)∗ with |I∩{c,d}|= 1, hence

the edge between c and d must be oriented in EI(D)∗ by point (vi) of Lemma 48, and hence it

is not possible that this edge has two different orientations in D1 and D2 by their construction.

Proof of Proposition 16 “⇐”: By the construction of EI(D), we know that D ⊂ EI(D) and

Du = EI(D)u. Furthermore, D has the same v-structures as EI(D). Let D′ be another digraph that

is obtained by orienting all chain components of EI(D) according to a perfect elimination ordering;

by Proposition 44, D′ is acyclic and has the same v-structures as EI(D) and hence as D. It remains

to show that D(I) and D′(I) have the same skeleton for all I ∈ I; this can be done similarly to the

proof of Proposition 15.

“⇒”: let D′ be a DAG with D′ ∼I D. In particular, D′ and D have the same skeleton and the same

v-structures, so D′ also has the same skeleton and the same v-structures as EI(D). It follows, with

Proposition 44, that D′ is oriented according to a perfect elimination ordering on all chain compo-

nents of EI(D).

Lemma 49 Let D be a DAG and a b an I-essential arrow in D. Then a b is strongly I-

protected in EI(D).
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This lemma is an auxiliary result needed to prove Theorem 18. In its proof, we first show the weaker

statement that every I-essential arrow of D is I-protected in EI(D).

Definition 50 (Protection) Let G be a graph. An arrow a b ∈ G is I-protected in G if there is

some intervention target I ∈ I such that |I∩{a,b}|= 1, or paG(a) 6= paG(b)\{a}.

This definition is again a generalization of the notion of protection of Andersson et al. (1997); for

I = { /0}, we gain back their definition. A strongly I-protected arrow (Definition 14) is also I-

protected. In a chain graph G, an arrow a b is I-protected if and only if there is some I ∈ I such

that |I ∩{a,b}| = 1, or the arrow a b occurs in at least one subgraph of the form (a), (b), (c) in

the notation of Definition 14, or in a subgraph of the form (d’) (Andersson et al., 1997), where

(d’): a b

c

.

Proof of Lemma 49 As foreshadowed, we prove this lemma in two steps, corresponding to Facts

6 and 7 of Andersson et al. (1997): in a first step, we show that a b must be I-protected, in a

second step, we strengthen the result by showing that it must even be strongly I-protected. For

notational convenience, we abbreviate G := EI(D). We skip some steps of the proof that can be

literally copied from proofs in Andersson et al. (1997).

Suppose, for the sake of contradiction, that a b is not I-protected. Let D1 be a digraph that

is gained by orienting all chain components of G according to a perfect elimination ordering, where

the edges of TG(a) and TG(b) are oriented such that all edges point away from a or b, respectively.

Then D1 is acyclic and I-equivalent to D by Proposition 16.

Let D2 be another digraph, differing from D1 only by the orientation of the edge between a and

b. It can be shown that D2 is acyclic too (Andersson et al., 1997, proof of Fact 6). We now claim

that D1 ∼I D2:

• D1 and D2 clearly have the same skeleton.

• D1 and D2 have the same v-structures. Otherwise, there would be some v-structure c a b

in D2, or some v-structure a b c in D1. In both cases, this would imply paG(a) 6=
paG(b) \ {a}, contradicting the assumption: in the first case, c /∈ TG(a) by construction (all

edges of TG(a) point away from a in D2), so c ∈ paG(a), but c /∈ paG(b); in the second case,

c ∈ paG(b), but c /∈ paG(a) by analogous arguments.

• (D
(I)
1 )u = (D

(I)
2 )u for all I ∈ I. Otherwise, there would be some I ∈ I such that the skeletons

of D
(I)
1 and D

(I)
2 differ in the edge between a and b. This could only happen if |I∩{a,b}|= 1,

in contradiction with the assumption.

Hence, since D1,D2 ∈ [D]I , we have D1∪D2 ⊂G and thus a b ∈G, a contradiction. This proves

that a b is I-protected in G.

In the second step, we show that a b is even strongly I-protected. If this was not the case,

a b would occur in configuration (d’) in G, but not in configuration (a), (b), (c) or (d) (see the

comment following Definition 50). Define Pa := {d ∈ TG(a) | d b ∈ G}. It can be shown that Pa

is a clique G[TG(a)] (Andersson et al., 1997, proof of Fact 7).

Let D1 be the DAG that we get by orienting all chain components of G according to a perfect

elimination ordering, such that, additionally,
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• all edges of D1[TG(b)] point away from b,

• all edges of D1[Pa] point towards a,

• and all other edges of D1[TG(a)] point away from a.

Such an orientation exists by Corollary 42. Let D2 be the digraph that we get by changing the

orientation of the edge a b in D1; as in the first part, it can be shown that D2 is acyclic (Andersson

et al., 1997, proof of Fact 7). Again, we claim that D1 ∼I D2:

• D1 and D2 clearly have the same skeleton.

• D1 and D2 have the same v-structures. Otherwise, there would be some v-structure d a b

in D2, or a v-structure a b d in D1. In the first case, d /∈ Pa (otherwise, d b ∈ G by

definition of Pa, and hence d b ∈ D2 since D2 ⊂ G), and d /∈ TG(a) \Pa by construction

(edges in TG(a)\Pa point away from a in D2), hence d a ∈G and a b is in configuration

(a) in G; in the second case, d /∈ TG(b) by construction (all edges of TG(b) point away from b

in D1), so a b is in configuration (b) (notation of Definition 14) in G. Both cases contradict

the assumption.

• Exactly as in the first part, (D
(I)
1 )u = (D

(I)
2 )u for all I ∈ I.

We can conclude that, since D1,D2 ∈ [D]I , D1∪D2 ⊂ G, so a b ∈ G, a contradiction.

Proof of Theorem 18 “⇒”: (i) and (ii) follow from Proposition 15, (iii) from Lemma 48(v), (iv)

from Corollary 13 and (v) from Lemma 49.

“⇐”: Consider the set D(G) of all DAGs that can be obtained by orienting the chain components

of G according to a perfect elimination ordering; we have
⋃

D(G)⊂G. On the other hand, for each

undirected edge a b ∈ G, there are DAGs D1 and D2 in D(G) such that a b ∈ D1, a b ∈ D2

(Corollary 41), hence G⊂
⋃

D(G). Together, we find G =
⋃

D(G).

We claim that D1 ∼I D2 for any two DAGs D1,D2 ∈ D(G):

• D1 and D2 have the same skeleton and the same v-structures by Proposition 44.

• (D
(I)
1 )u = (D

(I)
2 )u for all I ∈ I. Otherwise, there would be arrows a b∈D1, a b∈D2, and

some I ∈I such that |I∩{a,b}|= 1; this would mean that a b∈G although |I∩{a,b}|= 1,

contradicting property (iv).

Let D ∈ D(G). We have shown that D(G)⊂ [D]I , hence G =
⋃

D(G)⊂ EI(D). It remains to show

that G⊃ EI(D).

Assume, for the sake of contradiction, that G has some arrow a b where EI(D) has an undi-

rected edge a b. According to property (v), a b is strongly I-protected in G. If there was some

I ∈ I such that |I∩{a,b}| = 1, the edge between a and b was also directed in EI(D) by Corollary

13, a contradiction. Hence a b occurs in G in one of the configurations depicted in Definition

14. Exactly as in the proof of Theorem 4.1 of Andersson et al. (1997), we can construct a contra-

diction for each of the four configurations. Although the proof given there can be used literally, we

reproduce it here since since we will use the following steps again in the proof of Lemma 22.
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We assume w.l.o.g. that TG(a) is minimal in

A := {T ∈ T(G)| ∃ a ∈ T,b ∈V (G) : a b ∈ G,a b ∈ EI(D)}

w.r.t. �G, and that TG(b) is minimal in

B := {T ∈ T(G)| ∃ a ∈ T (a),b ∈ T : a b ∈ G,a b ∈ EI(D)}.

Each configuration (a) to (d) of Definition 14 leads to a contradiction (c, c1 and c2 denote the vertices

involved in the respective configuration):

(a) Because of the minimality of TG(a), c a must be oriented in EI(D), hence c a b is an

induced subgraph of EI(D), contradicting Lemma 48(i).

(b) a b c is then a v-structure in D, hence it is also a v-structure in EI(D), that means

a b ∈ EI(D), a contradiction.

(c) Because of the minimality of TG(b), the edge between a and c must be oriented in EI(D), so

the vertices a, b and c are in one of the following configurations in EI(D):

a b

c

, a b

c

.

Both possibilities violate Proposition 15(i).

(d) The v-structure c1 b c2 of D is also a v-structure of EI(D), hence EI(D) has two directed

3-cycles (c1,b,a,c1) and (c2,b,a,c2), a contradiction.

Proof of Lemma 20

(i) This immediately follows from Theorem 18(iii).

(ii) Let a b be an arrow in EI(D); by Theorem 18(v), it is strongly I-protected in EI(D).
If there is some I ∈ I such that |I ∩{a,b}| = 1, the arrow is by definition also strongly I-

protected in G. Otherwise, a b occurs in one of the configurations (a) to (d) of Definition

14 in EI(D). In configurations (a) to (c), the other arrows involved (a c; c b; or a c

and c b, resp.) are also present in G, hence a b is strongly I-protected in G by the same

configuration as in EI(D).
It remains to show that if a b is in configuration (d) in EI(D), it is also strongly I-protected

in G. In D, the vertices {a,c1,c2} as defined in Definition 14 can occur in one of the following

configurations:

c1 a c2, c1 a c2, c1 a c2.

The first and the third case are symmetric w.r.t. exchanging c1 and c2, hence we only consider

the first two. Table 2 lists all possible configurations for the vertices {a,c1,c2} in the graph

G according to the condition D ⊂ G ⊂ EI(D). There is only one possibility for the arrow

a b not to occur in one of the configurations (a) to (d) of Definition 14, and hence not being

strongly I-protected in G; however, the corresponding subgraph of {a,c1,c2}, c1 a c2,

is forbidden by Definition 19.
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(iii) According to Theorem 10, we have to check the following properties:

• D1 and D2 have the same skeleton, namely Du
1 = Du

2 = Gu.

• D1 and D2 have the same v-structures: let a b c be a v-structure in D1. This v-

structure is then also present in EI(D1). Because of D2 ⊂ G ⊂ EI(D1), we find it also

in G and in D2. The argument is completely symmetric w.r.t. exchanging D1 and D2.

• For all I ∈ I, D
(I)
1 and D

(I)
2 have the same skeleton: assume, for the sake of contradic-

tion, that there is some I ∈ I and an edge a b that is present in (D
(I)
1 )u, but not in

(D
(I)
2 )u. W.l.o.g., we can assume that a b ∈ D1, a b ∈ D2, a ∈ I, b /∈ I. Because

of Theorem 18(iv), we then have a b ∈ EI(D1) and a b ∈ EI(D2); however, this is

not compatible with the requirements G⊂ EI(D1) and G⊂ EI(D2).

Proof of Lemma 21 If a b ∈ EI(D), it would be strongly I-protected by Theorem 18(v), and

hence also strongly I-protected in G by Lemma 20(ii), contradicting the assumption. Therefore,

a b ∈ EI(D) and hence D⊂ G′ ⊂ EI(D).

Suppose that G′ contains an induced subgraph of the form c d e. Since G does not contain

such an induced subgraph, it must be of the form c a b or c b a in G′. In both cases,

a b is then strongly I-protected in G, either by configuration (a) or (b), a contradiction.

Proof of Lemma 22 Let D ⊂ G ⊂ EI(D) be a partial I-essential graph that only has strongly

I-protected arrows. We can literally use the second part of the proof of Theorem 18 to show

G⊃ EI(D); there, we only used the fact that every arrow in G is strongly I-protected.

B.3 Proofs for Section 4

Proof of Proposition 25 “⇒”:

(i) This claim follows from Corollary 42.

Induced subgraph of {a,c1,c2}. . . Configuration

. . . in D . . . in G of a b in G

c1 a c2 c1 a c2 (c)

c1 a c2 —

c1 a c2 (c)

c1 a c2 (d)

c1 a c2 c1 a c2 (c)

c1 a c2 (c)

c1 a c2 (c)

c1 a c2 (d)

Table 2: Possible configurations for the vertices {a,c1,c2} in the proof of Lemma 20(ii). The labels

in the last column refer to the configurations of Definition 14.
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(ii) Suppose that there is some vertex a ∈ N \C, that is a vertex a ∈ N with a v ∈ D. D′ would

have a directed cycle if u a ∈ D, so u a ∈ D. But then, u a v is a v-structure in D,

hence also in G, and consequently a /∈ neG(v), a contradiction.

(iii) Assume that γ = (v ≡ a0,a1, . . . ,ak ≡ u) is a shortest path from v to u in G that does not

intersect with C. We claim that γ is a directed path in D, which means that D′ has a directed

cycle, a contradiction.

Suppose that the claim is wrong, and let ai ai+1 ∈ D be the first edge of (the chain) γ

that points away from u in D; i ≥ 1 holds by the assumption that, in particular, a1 /∈ C.

ai−1 ai ai+1 cannot be an induced subgraph of D, otherwise it would also be present in G

and hence γ would not be a path in G. Hence ai−1 ai+1 ∈G; more precisely, ai−1 ai+1 ∈
G (and hence also in D), otherwise there would be a shorter path from v to u in G than γ that

does not intersect with C. Because γ is a path in G, ai−1, ai and ai+1 can occur in G only in

one of the following configurations:

ai−1 ai+1

ai

, ai−1 ai+1

ai

.

However, both graphs cannot be an induced subgraph of the chain graph G.

“⇐”: Since C is a clique in G[TG(v)], there is a DAG D ∈D(G) with {a ∈ neG(v) | a v ∈D}=C

by Proposition 44 and Corollary 42. It remains to show that D′ is a DAG.

Assume, for the sake of contradiction, that D′ has a directed cycle going through u v. The

return path from v to u, γ = (v≡ a0,a1, . . . ,ak ≡ u), must come from a path in G and must therefore,

by assumption, contain a vertex ai ∈C (i≥ 2). Since ai v ∈D by construction, this means that D

has a directed cycle (a0,a1, . . . ,ai,a0), a contradiction.

Uniqueness of EI(D
′): Let D1,D2 ∈D(G) with {a ∈ neG(v) | a v ∈D1}= {a ∈ neG(v) | a v ∈

D2} =C, and set D′i := Di +(u,v), i = 1,2; we assume that D′1,D
′
2 ∈ D+(G). To prove D′1 ∼I D′2,

we have to check the following three points according to Theorem 10(iv):

• D′1 and D′2 obviously have the same skeleton.

• D′1 and D′2 have the same v-structures. We already know that D1 and D2 have the same v-

structures. Let’s assume, for the sake of contradiction, that (w.l.o.g.) D′1 has a v-structure

u v a that D′2 has not. In G, we must then have a line a v, hence a∈ neG(v). However,

the arrow between a and v would then have the same orientation in D1 and D2 by construction,

a contradiction.

• For all I ∈ I, D
′(I)
1 and D

′(I)
2 have the same skeleton. If this was not the case, there would be

some vertices a,b∈ [p] and some I ∈ I such that a b∈D′1, a b∈D′2 and |I∩{a,b}|= 1.

The arrow u v is part of D′1 and D′2 by construction, so the arrows between a and b must

be present in D1 and D2; however, D
(I)
1 and D

(I)
2 would then not have the same skeleton, a

contradiction.

Corollary 26 is an immediate consequence of Proposition 25 and the fact that we assume the

score function to be decomposable, so we skip the proof here.
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Proof of Lemma 27 Obviously, we have D′ ⊂ H. To show H ⊂ EI(D
′), we look at some edge

a b∈G with a,b /∈ TG(v) and show that a b∈ EI(D
′). W.l.o.g., we can assume that a b∈D.

By Corollary 41, there exists a D2 ∈ D(G) that has the same orientation of edges in TG(v), but

an orientation of edges in TG(a) such that a b ∈ D2. By Proposition 25, we know that D′2 :=
D2 +(u,v) is I-equivalent to D′, so in particular a b ∈ D′∪D′2 ⊂ EI(D

′).

It remains to show that a b c does not occur as an induced subgraph of H. The inserted

arrow u v cannot be part of such a subgraph, since all other edges incident to v are oriented in

H by construction. Since G has no such subgraph either (Theorem 18), it could only appear in

H through one of the newly oriented edges of TG(v). This means that if H had an induced sub-

graph of the form a b c, the corresponding vertices would be in configuration a b c in G;

however, c∈ TG(v) then, and so the edge between b and c would be oriented in H, a contradiction.

Proof of Proposition 28 “⇒”:

(i) By Corollary 42, {a ∈ neG(v) | a v ∈ D} is a clique, hence every subset—in particular,

C—is a clique, too.

(ii) Assume that there is some a ∈C \ adG(u); then u ∈ neG(v), otherwise u v a would be

an induced subgraph of G. Nevertheless, a ∈C means that u v a is a v-structure in D,

which should hence also be present in G.

“⇐”: We only must prove the existence of the claimed D∈D(G), see the comment in the beginning

of Section 4.2. We distinguish two cases:

• u v ∈ G. The existence of the DAG D ∈ D(G) with the requested properties follows from

Corollary 42.

• u v ∈ G, hence u a ∈ G for all a ∈ N because G is a chain graph. Therefore, C∪{u} is

a clique in G[neG(v)], and the existence of the claimed D again follows from Corollary 42.

Uniqueness of EI(D
′): Let D1,D2 ∈ D(G) with u v ∈ D1,D2 and {a ∈ neG(v) \ {u} | a v ∈

D1}= {a ∈ neG(v)\{u} | a v ∈D2}=C, and set D′i := Di− (u,v), i = 1,2. To prove D′1 ∼I D′2,

we have to check the following three points according to Theorem 10(iv):

• D′1 and D′2 have the same skeleton, namely Gu− (u,v)− (v,u).

• D′1 and D′2 have the same v-structures. Otherwise, w.l.o.g., D′1 would have a v-structure

a b c that D′2 has not. D1 and D2 have the same v-structures, so a b c is no

induced subgraph of D1; this implies a = u, c = v. Since D′2 does not have the v-structure

u b v, the vertices u, b and v must occur in configuration u b v or u b v in D′2
(the configuration u b v is not consistent with the acyclicity of D2). However, all edges

incident to v must have the same orientation in D′1 and D′2 by construction, a contradiction.

• Let I ∈ I. Because of (D
(I)
1 )u = (D

(I)
2 )u and (D

′(I)
i )u = (D

(I)
i )u− (u,v)− (v,u) for i = 1,2, we

have (D
′(I)
1 )u = (D

′(I)
2 )u.
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Corollary 29 follows quickly from Proposition 28, and the proof of Lemma 30 is very similar to

that of Lemma 27. Therefore we skip both proofs here and proceed with the proofs of Section 4.3.

Proof of Proposition 31 Note that we can write N = neG(v)∩ adG(u) = neG(v)∩neG(u) because

u v ∈ G and G is a chain graph.

“⇒”:

(i) This follows from Corollary 42.

(ii) D and D′ have the same skeleton; the same is true for D(I) and D′(I) for all I ∈ I. To see

the latter, assume that for some I ∈ I, the intervention graphs D(I) and D′(I) have a different

skeleton. Since D and D′ only differ in the orientation of the arrow between u and v, the

skeletons of D(I) and D′(I) can only differ in that u and v are adjacent in one of them and not

adjacent in the other one. However, this would imply that |I∩{u,v}|= 1, and hence the edge

between u and v would be directed in G by Theorem 18(iv), contradicting the assumption of

the proposition. Finally, D′ has at least all v-structures that D has by construction.

As a consequence D′ 6∼I D if and only if D′ has more v-structures than D (Theorem 10). An

additional v-structure in D′ must be of the form u v a. The edge between v and a cannot

be directed in G, otherwise u v a would be an induced subgraph of G, which is forbidden

by Theorem 18(iii). Hence a ∈ neG(v), or, more precisely, a ∈C \N.

(iii) If N \C is empty, the statement is trivial. Otherwise, assume that there is some shortest path

γ = (a0,a1, . . . ,ak) from N \C to C \N in G[neG(v)] that has no vertex in C∩N.

By definition of C, ak v ∈ D; furthermore, u a0 ∈ D must hold, otherwise (v,a0,u,v)
would be a directed cycle in D′. Therefore, γ must not be a path from a0 to ak in D. Let

ai ai+1 be the first arrow in γ that points away from ak in D. If i = 0, u a0 a1 would

be a v-structure in D since a1 /∈ N: by assumption, a1 /∈ N∩C, and a1 /∈ N \C because of the

minimality of γ. Hence i > 0 (and k > 1) must hold, and ai−1 ai+1 in D and G, otherwise

there would be a v-structure in D. However, γ is not the shortest path with the requested

properties then, a contradiction.

“⇐”: From Proposition 43, we see that there exists a DAG D that has the requested properties,

and in which, in addition, {a ∈ neG(u) | a u ∈ D} = (C ∩N)∪ {v} (point (iv) of Proposition

43). The fact that D′ := D− (v,u)+ (u,v) 6∼I D can be seen by an argument very similar to the

proof of point (ii) above; it remains to show that D has no v-u-path except (v,u). Suppose that

γ = (a0 ≡ v,a1, . . . ,ak ≡ u), k ≥ 2, is such a path. In particular, γ is then also a v-u-path in G, hence

γ lies completely in TG(v).

If k = 2, then a1 ∈N, and so the vertices u, v and a1 occur in one of the following configurations

in D by Proposition 43:

v u

a1

, v u

a1

.

Both configurations contradict the assumption that γ=(v,a1,u) forms a path in D. Thus we conclude

k ≥ 3, and we notice ak−1 ∈ neG(u) \ {v}. If ak−1 ∈ C, ak−1 v ∈ D, hence (a0,a1, . . . ,ak−1,a0)
would be a cycle in D. On the other hand, if ak−1 /∈C, we would have ak−1 u ∈ D, so γ would

not be a path in D.
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Uniqueness of EI(D
′): Let D1,D2 ∈ D(G) with u v ∈ D1,D2 and {a ∈ neG(v) | a v ∈ D1} =

{a ∈ neG(v) | a v ∈ D2}=C, and set D′i := Di− (v,u)+(u,v), i = 1,2; we assume that D′1,D
′
2 ∈

D	(G). As in the proofs of Proposition 25, we can check that D′1 ∼I D′2:

• D′1 and D′2 obviously have the same skeleton.

• D1 and D2 have the same v-structures. If this does not hold for D′1 and D′2, (w.l.o.g.) D′1
must have a v-structure u v a that D′2 has not. Since u v a cannot be an induced

subgraph of G, a ∈ neG(v); however, the edges between v and its neighbors are oriented in

the same way in D′1 and D′2 by construction, a contradiction.

• For all I ∈ I, D
′(I)
1 and D

′(I)
2 have the same skeleton: this can be seen by an argument very

similar to that in the proof of Proposition 25.

Proof of Corollary 32 We have to show paD(v) = paG(v)∪C and paD(u) = paG(u)∪(C∩N)∪{v}.
The first identity is immediately clear. For the second identity, note that for any vertex a∈C∩N, the

arrow between a and u must be oriented as a u ∈ D because the other orientation would induce a

3-cycle. On the other hand, we have a u ∈ D for a ∈ N \C because a different orientation would

induce a 3-cycle in D′. Finally, we also have a u ∈ D for any a ∈ neG(u) \ (neG(v)∪{v}) since

the other orientation would induce a v-structure v u a in D.

Lemma 33 can be proven very similarly as Lemma 27. Finally, we finish this proof section with

the proof of Proposition 34 characterizing a step of the turning phase of GIES for the case that we

turn an I-essential arrow in some representative D ∈ D(G). We will omit the proof of Lemma 35

since it can be proven similarly to Lemma 27.

Proof of Proposition 34 When v u ∈ G (that is, u and v lie in different chain components),

N = neG(v)∩ adG(u) = neG(v)∩paG(u) holds because G is a chain graph.

“⇒”:

(i) This point follows from Corollary 42.

(ii) If this was not true, D′ would have a cycle of the form (u,v,a,u) for some a ∈ N since N ⊂
paG(u).

(iii) Suppose that the path γ = (a0 ≡ v,a1, . . . ,ak ≡ u) is a shortest counterexample of a path with-

out vertex in C∪neG(u).
Assume that k = 2. Since u and v lie in different chain components, the vertices u, v and a1

can occur in one of the following configurations in G:

v u

a1

, v u

a1

, v u

a1

.

The first case implies the existence of a directed cycle in D′; in the second case, a1 ∈ N ⊂C,

in the third case, a1 ∈ neG(u).
Therefore k ≥ 3. In complete analogy to the proof of Proposition 25, we can show that γ is

also a v-u-path in D, hence D′ has a directed cycle, a contradiction.
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“⇐”: Let D ∈ D(G) be a DAG with {a ∈ neG(v) | a v ∈ D} = C and in which all edges of

D[TG(u)] point away from u; such a DAG exists by Corollary 42 and meets the requirements of

Proposition 34. It remains to show that D′ is acyclic, that means that D has no v-u-path except (v,u).

Suppose, for the sake of contradiction, that D has such a path γ = (a0 ≡ v,a1, . . . ,ak ≡ u). γ is

then also a v-u-path in G, hence there is, by assumption, some ai ∈C∪P. If ai ∈C, (a0,a1, . . . ,ai,a0)
would be a cycle in D; on the other hand, if ai ∈ P, (ai,ai+1, . . . ,ak,ai) would be a cycle in D, a

contradiction.

Uniqueness of EI(D
′): The proof given for Proposition 31 is also valid here.

Proof of Corollary 36 The fact that paD(v) = paG(v)∪C is clear from Proposition 34; it remains

to show that paD(u) = paG(u). Any neighbor a of u must also be a child of v, otherwise G would

have a subgraph of the form v u a, which is forbidden by Theorem 18(iii). Hence a u ∈ D

for all a ∈ neG(u) since the other orientation would imply a directed cycle in D′.
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R. Castelo and T. Kočka. On inclusion-driven learning of Bayesian networks. Journal of Machine

Learning Research, 4:527–574, 2003.

D. M. Chickering. Learning equivalence classes of Bayesian-network structures. Journal of Ma-

chine Learning Research, 2(3):445–498, 2002a.

D. M. Chickering. Optimal structure identification with greedy search. Journal of Machine Learning

Research, 3(3):507–554, 2002b.

G. F. Cooper and C. Yoo. Causal discovery from a mixture of experimental and observational data.

In Uncertainty in Artificial Intelligence, pages 116–125, 1999.

D. G. Corneil. Lexicographic breadth first search—a survey. In Graph-Theoretic Concepts in Com-

puter Science, volume 3353 of Lecture Notes in Computational Science, pages 1–19. Springer,

Berlin, 2004.

D. Eaton and K. Murphy. Exact Bayesian structure learning from uncertain interventions. In Artifi-

cial Intelligence and Statistics, volume 2, pages 107–114, 2007.

F. Eberhardt. Almost optimal intervention sets for causal discovery. In Uncertainty in Artificial

Intelligence, pages 161–168, 2008.

2462



INTERVENTIONAL MARKOV EQUIVALENCE CLASSES OF DAGS

F. Eberhardt, C. Glymour, and R. Scheines. On the number of experiments sufficient and in the worst

case necessary to identify all causal relations among N variables. In Uncertainty in Artificial

Intelligence, pages 178–184, 2005.

F. Eberhardt, P. O. Hoyer, and R. Scheines. Combining experiments to discover linear cyclic models

with latent variables. In Artificial Intelligence and Statistics, pages 185–192, 2010.
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T. Silander and P. Myllymäki. A simple approach for finding the globally optimal Bayesian network

structure. In Uncertainty in Artificial Intelligence, San Francisco, 2006.

P. Spirtes, C. N. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT Press, 2000.

E. Szpilrajn. Sur l’extension de l’ordre partiel. Fundamenta Mathematicae, 16:386–389, 1930.

J. Tian and J. Pearl. Causal discovery from changes. In Uncertainty in Artificial Intelligence, pages

512–521, 2001.

S. Tong and D. Koller. Active learning for structure in Bayesian networks. In International Joint

Conference on Artificial Intelligence, volume 17, pages 863–869, 2001.

I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bayesian network

structure learning algorithm. Machine Learning, 65(1):31–78, 2006.

T.S. Verma and J. Pearl. Equivalence and synthesis of causal models. In Uncertainty in Artificial

Intelligence, page 270, 1990.

S. Wright. Correlation and causation. Journal of Agricultural Research, 20(7):557–585, 1921.

2464


