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Abstract

We study the theoretical advantages of active learning passive learning. Specifically, we prove
that, in noise-free classifier learning for VC classes, amgsjve learning algorithm can be trans-
formed into an active learning algorithm with asymptotigatrictly superior label complexity for
all nontrivial target functions and distributions. We fgt provide a general characterization of
the magnitudes of these improvements in terms of a novelrgkretion of the disagreement co-
efficient. We also extend these results to active learnintpénpresence of label noise, and find
that even under broad classes of noise distributions, wéyparally guarantee strict improvements
over the known results for passive learning.

Keywords: active learning, selective sampling, sequential desigristical learning theory, PAC
learning, sample complexity

1. Introduction and Background

The recent rapid growth in data sources has spawned an equally rggidséon in the number of
potential applications of machine learning methodologies to extract usefaépts from these data.
However, in many cases, the bottleneck in the application process is théona®din accurate an-
notation of the raw data according to the target concept to be learnedndtance, in webpage
classification, it is straightforward to rapidly collect a large number of vaglep, but training an
accurate classifier typically requires a human expert to examine and labetlzer of these web-
pages, which may require significant time and effort. For this reason, @tisad to look for ways
to reduce the total number of labeled examples required to train an acclasg#ier. In the tradi-
tional machine learning protocol, here referred tgpassive learningthe examples labeled by the
expert are sampled independently at random, and the emphasis is orirdgEgming algorithms
that make the most effective use of the number of these labeled exampleblavaHowever, it
is possible to go beyond such methods by altering the protocol itself, allowinbpénning algo-
rithm to sequentiallyselectthe examples to be labeled, based on its observations of the labels of
previously-selected examples; this interactive protocol is referreddotas learning The objec-
tive in designing this selection mechanism is to focus the expert's effortsddadaeling only the
most informative data for the learning process, thus eliminating some defgregundancy in the
information content of the labeled examples.

x. Some of these (and related) results previously appeared in the autbotoral dissertation (Hanneke, 2009b).
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It is now well-established that active learning can sometimes provide significactical and
theoretical advantages over passive learning, in terms of the numbdretd lequired to obtain a
given accuracy. However, our current understanding of actar@ieg in general is still quite limited
in several respects. First, since we are lacking a complete understaridhmgy potential capabil-
ities of active learning, we are not yet sure to what standards we shepicke for active learning
algorithms to meet, and in particular this challenges our ability to characteriza hgaod” active
learning algorithm should behave. Second, since we have yet to idemtifjnplete set of general
principles for the design of effective active learning algorithms, in maisgsahe most effective
known active learning algorithms have problem-specific designs (e.ggnéeisspecifically for lin-
ear separators, or decision trees, etc., under specific assumptions datahdistribution), and it
is not clear what components of their design can be abstracted ancetradsto the design of
active learning algorithms for different learning problems (e.g., with difietypes of classifiers,
or different data distributions). Finally, we have yet to fully understardstope of the relative
benefits of active learning over passive learning, and in particularahéitions under which such
improvements are achievable, as well as a general characterizationpujtdrgial magnitudes of
these improvements. In the present work, we take steps toward closingphisgur understanding
of the capabilities, general principles, and advantages of active Igarnin

Additionally, this work has a second theme, motivated by practical concémdate, the ma-
chine learning community has invested decades of research into congjreclic, reliable, and
well-behavedpassivdearning algorithms, and into understanding their theoretical properties. We
might hope that an equivalent amount of efforhi required in order to discover and understand
effective active learning algorithms. In particular, rather than startiog fscratch in the design
and analysis of active learning algorithms, it seems desirable to leverageasiiknowledge of
passive learning, to whatever extent possible. For instance, it maydsgbfgto design active
learning algorithms thanhherit certain desirable behaviors or properties of a given passive learning
algorithm. In this way, we can use a given passive learning algorithmrefence pointand
the objective is to design an active learning algorithm with performancegtess strictly superior
to those of the passive algorithm. Thus, if the passive learning algoritlsnptaaen effective in
a variety of common learning problems, then the active learning algorithmdsbeueven better
for thosesamelearning problems. This approach also has the advantage of immediatelyisgpp
us with a collection of theoretical guarantees on the performance of tive &eirning algorithm:
namely, improved forms of all known guarantees on the performance givbe passive learning
algorithm.

Due to its obvious practical advantages, this general line of informal trgntt@minates the
existing literature on empirically-tested heuristic approaches to active lgaasrmost of the pub-
lished heuristic active learning algorithms make use of a passive learnioftlahg as a subroutine
(e.g., SVM, logistic regression, k-NN, etc.), constructing sets of labedachples and feeding them
into the passive learning algorithm at various times during the execution atthve learning algo-
rithm (see the references in Section 7). Below, we take a more rigorokisidois general strategy.
We develop a reduction-style framework for studying this approach todbigul of active learning
algorithms relative to a given passive learning algorithm. We then procev&op and analyze a
variety of such methods, to realize this approach in a very general.sense

Specifically, we explore the following fundamental questions.

1470



ACTIVIZED LEARNING

Is there a general procedure that, given any passive learningthigotransforms it into an
active learning algorithm requiring significantly fewer labels to achieverenghccuracy?

If so, how large is the reduction in the number of labels required by thdtiregactive learn-
ing algorithm, compared to the number of labels required by the originamgssigjorithm?

What are sufficient conditions for amxponentiafeduction in the number of labels required?

e To what extent can these methods be made robust to imperfect or noisPlabe

In the process of exploring these questions, we find that for many ititegésarning problems, the
techniques in the existing literature are not capable of realizing the full paiteh active learn-
ing. Thus, exploring this topic in generality requires us to develop novijhitsand entirely new
techniques for the design of active learning algorithms. We also developsponding natural
complexity quantities to characterize the performance of such algorithmerabev the results we
establish here are more general than any related results in the existing l#eeatd in many cases
the algorithms we develop use significantly fewer labels than any previouslisped methods.

1.1 Background

The termactive learningrefers to a family of supervised learning protocols, characterized by the
ability of the learning algorithm to pose queries to a teacher, who has aoctimstarget concept
to be learned. In practice, the teacher and queries may take a varietynef. fa human expert,
in which case the queries may be questions or annotation tasks; naturdcimosbe the queries
may be scientific experiments; a computer simulation, in which case the queriesenayticu-
lar parameter values or initial conditions for the simulator; or a host of othssipilities. In our
present context, we will specifically discuss a protocol knowpa-basedactive learning, a type
of sequential design based on a collection of unlabeled examples; this gebmthe most com-
mon form of active learning in practical use today (e.qg., Settles, 2010riBgé&land Palmer, 2009;
Gangadharaiah, Brown, and Carbonell, 2009; Hoi, Jin, Zhu, and28@6; Luo, Kramer, Goldgof,
Hall, Samson, Remsen, and Hopkins, 2005; Roy and McCallum, 2001;arahKoller, 2001; Mc-
Callum and Nigam, 1998). We will not discuss alternative models of activaiteg such asnline
(Dekel, Gentile, and Sridharan, 2010)exact(Hegedis, 1995). In the pool-based active learning
setting, the learning algorithm is supplied with a large collection of unlabeledgea (thepool),
and is allowed to select any example from the pool to request that it be dab&feer observing
the label of this example, the algorithm can then select another unlabeleglexaom the pool to
request that it be labeled. This continues sequentially for a numbermdsawntil some halting con-
dition is satisfied, at which time the algorithm returns a function intended to xippaitely mimic
and generalize the observed labeling behavior. This setting contrastpagiive learningwhere
the learning algorithm is supplied with a collectionlalbeledexamples without any interaction.
Supposing the labels received agree with some true target concept j¢lativiebis to use this
returned function to approximate the true target concept on futureigoigy unobserved) data
points. The hope is that, by carefully selecting which examples should Hedaltee algorithm can
achieve improved accuracy while using fewer labels compared to pdsaiveng. The motivation
for this setting is simple. For many modern machine learning problems, unlabeletples are
inexpensive and available in abundance, while annotation is time-consuméxgensive. For in-
stance, this is the case in the aforementioned webpage classification protlera the pool would
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be the set of all webpages, and labeling a webpage requires a hunsnhtex@xamine the website
content. Settles (2010) surveys a variety of other applications for whkidredearning is presently
being used. To simplify the discussion, in this work we focus specificallyioary classificationin
which there are only two possible labels. The results generalize naturallyitiolass classification
as well.

As the above description indicates, when studying the advantages of &dining, we are
primarily interested in the number of label requests sufficient to achiewea gtcuracy, a quantity
referred to as thiabel complexitfDefinition 1 below). Although active learning has been an active
topic in the machine learning literature for many years now,thaoreticalunderstanding of this
topic was largely lacking until very recently. However, within the past fearg, there has been an
explosion of progress. These advances can be grouped into twocasegramely, theealizable
caseand theagnostic case

1.1.1 THE REALIZABLE CASE

In the realizable case, we are interested in a particularly strict scendrarewvthe true label of
any example isleterminedoy a function of the features (covariates), and where that function has
a specific known form (e.g., linear separator, decision tree, union afvaisg etc.); the set of
classifiers having this known form is referred to as thacept spaceThe natural formalization
of the realizable case is very much analogous to the well-known PAC modpasgsive learning
(Valiant, 1984). In the realizable case, there are obvious examplesrafrggroblems where
active learning can provide a significant advantage compared to edsaining; for instance, in
the problem of learninghresholdclassifiers on the real line (Example 1 below), a kindbwfary
searchstrategy for selecting which examples to request labels for naturally leaggptmential
improvements in label complexity compared to learning from random labeledpaa (passive
learning). As such, there is a natural attraction to determine how gen&gbttanomenon is.
This leads us to think about general-purpose learning strategies (i.eh gdnde instantiated for
more than merely threshold classifiers on the real line), which exhibit thisybsearch behavior in
various special cases.

The first such general-purpose strategy to emerge in the literature wasicularly elegant
strategy proposed by Cohn, Atlas, and Ladner (1994), typicallyrexfaio as CAL after its dis-
coverers (Meta-Algorithm 2 below). The strategy behind CAL is the follgwiThe algorithm
examines each example in the unlabeled pool in sequence, and if therecackassifiers in the
concept space consistent with all previously-observed labels, babhwfsagree on the label of this
next example, then the algorithm requests that label, and otherwise it dibodon this reason, be-
low we refer to the general family of algorithms inspired by CALdésagreement-basadethods.
Disagreement-based methods are sometimes referred to as “mellow” aathiadeaince in some
sense this is thieastwe can expect from a reasonable active learning algorithm; it neveests)
the label of an example whose label it dafer from information already available, but otherwise
makes no attempt to seek out particularly informative examples to requesbéie ¢d. That is, the
notion ofinformativenesémplicit in disagreement-based methods sigary one, so that an exam-
ple is either informative or not informative, but there is no further rankihthe informativeness
of examples. The disagreement-based strategy is quite general, andshpiéads to algorithms
that are at leageasonablebut Cohn, Atlas, and Ladner (1994) did not study the label complexity
achieved by their strategy in any generality.
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In a Bayesian variant of the realizable setting, Freund, Seung, Sharhifjghby (1997) studied
an algorithm known agjuery by committeéQBC), which in some sense represents a Bayesian
variant of CAL. However, QB@oesdistinguish between different levels of informativeness beyond
simple disagreement, based on #mountof disagreement on a random unlabeled example. They
were able to analyze the label complexity achieved by QBC in terms of a typé&aifiation gain,
and found that when the information gain is lower bounded by a positivetant) the algorithm
achieves a label complexity exponentially smaller than the known results $sivpdearning. In
particular, this is the case for the threshold learning problem, and alsoefg@rdiolem of learning
higher-dimensional (nearly balanced) linear separators when the atity @ certain (uniform)
distribution. Below, we will not discuss this analysis further, since it is f@lightly different
(Bayesian) setting. However, the results below in our present settingvéditeresting implications
for the Bayesian setting as well, as discussed in the recent work of ¥ammeke, and Carbonell
(2011).

The first general analysis of the label complexity of active learning inlba-Bayesian) real-
izable case came in the breakthrough work of Dasgupta (2005). In trkt dasgupta proposed a
guantity, called theplitting index to characterize the label complexities achievable by active learn-
ing. The splitting index analysis is noteworthy for several reasons. Bmstcan show it provides
nearly tight bounds on thminimaxlabel complexity for a given concept space and data distribution.
In particular, the analysis matches the exponential improvements known tssile for threshold
classifiers, as well as generalizations to higher-dimensional homogetieear separators under
near-uniform distributions (as first established by Dasgupta, KalaiMordeleoni, 2005, 2009).
Second, it provides a novel notion offormativenes®f an example, beyond the simple binary
notion of informativeness employed in disagreement-based methods. Splrtiicdescribes the
informativeness of an example in terms of the numbepafs of well-separated classifiers for
which at least one out of each pair will be contradicted, supposing teeflzorable label. Finally,
unlike any other existing work on active learning (present work inclydi¢ghrovides an elegant
description of therade-off between the number of label requests and the number of unlabeled ex-
amples needed by the learning algorithm. Another interesting byproducasgupta’s work is a
better understanding of thmtureof the improvements achievable by active learning in the general
case. In particular, his work clearly illustrates the need to study the labgblesity as a quantity
that varies depending on the particular target concept and data distribWeowill see this issue
arise in many of the examples below.

Coming from a slightly different perspective, Hanneke (2007a) latalyaad the label com-
plexity of active learning in terms of an extension of thaching dimensiofGoldman and Kearns,
1995). Related quantities were previously used by Hégétl995) and Hellerstein, Pillaipakkam-
natt, Raghavan, and Wilkins (1996) to tightly characterize the number of mehip&ueries suf-
ficient for Exactlearning; Hanneke (2007a) provided a natural generalization tBAl@earning
setting. At this time, it is not clear how this quantity relates to the splitting index. Frpnactical
perspective, in some instances it may be easier to calculate (see the wddwak, 2008 for a
discussion related to this), though in other cases the opposite seems true.

The next progress toward understanding the label complexity of actiugteg came in the work
of Hanneke (2007b), who introduced a quantity calleddisagreement coefficie(iDefinition 9 be-
low), accompanied by a technique for analyzing disagreement-basee laetining algorithms. In
particular, implicit in that work, and made explicit in the later work of Hanne@1(), was the
first general characterization of the label complexities achieved by thmar CAL strategy for
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active learning in the realizable case, stated in terms of the disagreem€itieie The results of
the present work are direct descendants of that 2007 paper, andlvdéscuss the disagreement
coefficient, and results based on it, in substantial detail below. Disagntdrased active learners
such as CAL are known to be sometimes suboptimal relative to the splitting inddysen and
therefore the disagreement coefficient analysis sometimes results inl&rgkecomplexity bounds
than the splitting index analysis. However, in many cases the label complexitydbdased on
the disagreement coefficient are surprisingly good considering the siiypliiche methods. Fur-
thermore, as we will see below, the disagreement coefficient has thealfenefit of often being
fairly straightforward to calculate for a variety of learning problems, paldity when there is a
natural geometric interpretation of the classifiers and the data distributiolaftve®/ smooth. As
we discuss below, it can also be used to bound the label complexity of &e#ikiging in noisy
settings. For these reasons (simplicity of algorithms, ease of calculatiompgtidability beyond
the realizable case), subsequent work on the label complexity of actingrg has tended to favor
the disagreement-based approach, making use of the disagreemdicierdeb bound the label
complexity (Dasgupta, Hsu, and Monteleoni, 2007; Friedman, 2009; éawger, Dasgupta, and
Langford, 2009; Wang, 2009; Balcan, Hanneke, and VaughdiQ;28anneke, 2011; Koltchinskii,
2010; Beygelzimer, Hsu, Langford, and Zhang, 2010; Mahalanabisl; Wang, 2011). A signif-
icant part of the present paper focuses on extending and geneagdliamlisagreement coefficient
analysis, while still maintaining the relative ease of calculation that makes thgrekisaent coeffi-
cient so useful.

In addition to many positive results, Dasgupta (2005) also pointed outsdeenative results,
even for very simple and natural learning problems. In particular, foryrpasblems, the minimax
label complexity of active learning will be no better than that of passiveniegr In fact, Balcan,
Hanneke, and Vaughan (2010) later showed that, for a certain typeiedé &earning algorithm—
namely,self-verifyingalgorithms, which themselves adaptively determine how many label requests
they need to achieve a given accuracy—there are even particular ¢argepts and data distribu-
tions for whichno active learning algorithm of that type can outperform passive leariSige all
of the above label complexity analyses (splitting index, teaching dimensiagrdisment coeffi-
cient) apply to certain respective self-verifying learning algorithms, thegative results are also
reflected in all of the existing general label complexity analyses.

While at first these negative results may seem discouraging, Balcamekianand Vaughan
(2010) noted that if we do not require the algorithm to be self-verifyingieiad simply measuring
the number of label requests the algorithm needéntha good classifier, rather than the number
needed to both find a good classifaard verifythat it is indeed good, then these negative results
vanish. In fact, (shockingly) they were able to show that for any gonspace with finite VC
dimension, and any fixed data distribution, for any given passive leamgorithm there is an
active learning algorithm with asymptotically superior label complexitydogrynontrivial target
concept! A positive result of this generality and strength is certainly aitieg@advance in our
understanding of the advantages of active learning. But perhap#iyeguciting are the unresolved
guestions raised by that work, as there are potential opportunities tgtsteengeneralize, simplify,
and elaborate on this result. First, note that the above statement allows Wledeantning algorithm
to be specialized to the particular distribution according to which the (unlgeded are sampled,
and indeed the active learning method used by Balcan, Hanneke, agdava(2010) in their proof
has a rather strong direct dependence on the data distribution (whisbtdamremoved by simply
replacing some calculations with data-dependent estimators). One interpstisiion is whether
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an alternative approach might avoid this direct distribution-dependenttesialgorithm, so that
the claim can be strengthened to say that the active algorithm is superiorpgadbige algorithm

for all nontrivial target conceptand data distributions This question is interesting both theoreti-
cally, in order to obtain the strongest possible theorem on the advanteaets/e learning, as well

as practically, since direct access to the distribution from which the datsaampled is typically

not available in practical learning scenarios. A second question left op&alayan, Hanneke, and
Vaughan (2010) regards theagnitudeof the gap between the active and passive label complexities.
Specifically, although they did find particularly nasty learning problems avtier label complexity

of active learning will be close to that of passive learning (though advieeyter), they hypothesized
that for most natural learning problems, the improvements over passivenigahould typically

be exponentially larggas is the case for threshold classifiers); they gave many examples to illus-
trate this point, but left open the problem of characterizing generatarfficonditions for these
exponential improvements to be achievable, even when they are not aukidy self-verifying
algorithms. Another question left unresolved by Balcan, Hanneke, anghan (2010) is whether
this type of general improvement guarantee might be realized by a compuligtieffizientactive
learning algorithm. Finally, they left open the question of whether suchrgeresults might be
further generalized to settings that involve noisy labels. The presettpicks up where Balcan,
Hanneke, and Vaughan (2010) left off in several respects, makivgygss on each of the above
guestions, in some cases completely resolving the question.

1.1.2 THE AGNOSTICCASE

In addition to the above advances in our understanding of active ledamting realizable case, there
has also been wonderful progress in making these methods robust tdentgeachers, feature
space underspecification, and model misspecification. This generabtmsdy the namagnostic
active learning from its roots in the agnostic PAC model (Kearns, Schapire, and Sel®)1t
contrast to the realizable case, in #ignostic casgthere is not necessarily a perfect classifier of a
known form, and indeed there may evenlaeel noiseso that there is no perfect classifierafy
form. Rather, we have a given set of classifiers (e.g., linear sepgratodepth-limited decision
trees, etc.), and the objective is to identify a classifier whose accuraoy imuth worse than the
best classifier of that type. Agnostic learning is strictly more general, ##ad more difficult, than
realizable learning; this is true for both passive learning and activeiteprrlowever, for a given
agnostic learning problem, we might still hope that active learning can a&chigiven accuracy
using fewer labels than required for passive learning.

The general topic of agnostic active learning got its first taste of remrpss from Balcan,
Beygelzimer, and Langford (2006a, 2009) with the publication ofth@gnostic active) algorithm.
This method is a noise-robust disagreement-based algorithm, which caplslavith essentially
arbitrary types of classifiers under arbitrary noise distributions. It isestang both for its effec-
tiveness and (as with CAL) its elegance. The original work of BalcaggBlimer, and Langford
(20064a, 2009) showed that, in some special cases (thresholds, exogdrmeous linear separators
under a uniform distribution), th&? algorithm does achieve improved label complexities compared
to the known results for passive learning.

Using a different type of general active learning strategy, Hanrd@7@a) found that thieach-
ing dimensioranalysis (discussed above for the realizable case) can be extenadsd libe real-
izable case, arriving at general bounds on the label complexity umbligéragy noise distributions.
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These bounds improve over the known results for passive learning iy czses. However, the
algorithm requires direct access to a certain quantity that depends ooisieadistribution (namely,
the noise rate, defined in Section 6 below), which would not be available iy realkworld learning
problems.

Later, Hanneke (2007hb) established a general characterizationlabtieomplexities achieved
by A?, expressed in terms of the disagreement coefficient. The result holdsbitrary types of
classifiers (of finite VC dimension) and arbitrary noise distributions, apeeents the natural gen-
eralization of the aforementioned realizable-case analysis of CAL. In wes8s, this result shows
improvements over the known results for passive learning. Furtherimecause of the simplicity of
the disagreement coefficient, the bound can be calculated for a varietyuwal learning problems.

Soon after this, Dasgupta, Hsu, and Monteleoni (2007) proposed actéve learning strat-
egy, which is also effective in the agnostic setting. L% the new algorithm is a noise-robust
disagreement-based method. The work of Dasgupta, Hsu, and Monté&806id) is significant for
at least two reasons. First, they were able to establish a general labplexity bound for this
method based on the disagreement coefficient. The bound is similar in forra pyatious label
complexity bound forA? by Hanneke (2007b), but improves the dependence of the bound on the
disagreement coefficient. Second, the proposed method of Dasgugptaamtl Monteleoni (2007)
set a new standard for computational and aesthetic simplicity in agnostic leetiméeng algorithms.
This work has since been followed by related methods of Beygelzimer,uptesgand Langford
(2009) and Beygelzimer, Hsu, Langford, and Zhang (2010). Itiquéar, Beygelzimer, Dasgupta,
and Langford (2009) develop a method capable of learning undesantély arbitrary loss func-
tion; they also show label complexity bounds similar to those of Dasgupta, dtsuiMonteleoni
(2007), but applicable to a larger class of loss functions, and statechis t#ra generalization of
the disagreement coefficient for arbitrary loss functions.

While the above results are encouraging, the guarantees reflected énlabes complexity
bounds essentially take the form of (at best) constant factor improvensgasifically, in some
cases the bounds improve the dependence on the noise rate factoeddefidection 6 below),
compared to the known results for passive learning. In faghriginen (2006) showed that any
label complexity bound depending on the noise distribution only via the ndiseaanot do better
than this type of constant-factor improvement. This raised the question dfi@rhwith a more de-
tailed description of the noise distribution, one can show improvements asymaptotic fornof the
label complexity compared to passive learning. Toward this end, Casirb@amnak (2008) studied
a certain refined description of the noise conditions, related to the margiitioos of Mammen
and Tsybakov (1999), which are well-studied in the passive learningtiiter. Specifically, they
found that in some special cases, under certain restrictions on the isir#gution, the asymptotic
form of the label complexitganbe improved compared to passive learning, and in some cases the
improvements can even lexponentialin magnitude; to achieve this, they developed algorithms
specifically tailored to the types of classifiers they studied (threshold ctassifind boundary frag-
ment classes). Balcan, Broder, and Zhang (2007) later extendedshlsto general homogeneous
linear separators under a uniform distribution. Following this, Hanne@92, 2011) generalized
these results, showing that both of the published general agnostic ketiming algorithms (Bal-
can, Beygelzimer, and Langford, 2009; Dasgupta, Hsu, and Momiel2d07) can also achieve
these types of improvements in the asymptotic form of the label complexity; teefuproved
general bounds on the label complexities of these methods, again bagexldisagreement coef-
ficient, which apply to arbitrary types of classifiers, and which refletahgpes of improvements
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(under conditions on the disagreement coefficient). Wang (2009) latexded the label complexity
of A% under somewhat different noise conditions, in particular identifying weakise conditions
sufficient for these improvements to be exponential in magnitude (agaiey godditions on the
disagreement coefficient). Koltchinskii (2010) has recently improvesbome of Hanneke'’s results,
refining certain logarithmic factors and simplifying the proofs, using a slighifgrent algorithm
based on similar principles. Though the present work discusses ongesla$ finite VC dimen-
sion, most of the above references also contain results for various ofg@nparametric classes
with infinite VC dimension.

At present, all of the published bounds on the label complexity of agnasfiedearning also
apply toself-verifyingalgorithms. As mentioned, in the realizable case, it is typically possible to
achieve significantly better label complexities if we do not require the actarailey algorithm to
be self-verifying, since the verification of learning may be more difficulhttize learning itself
(Balcan, Hanneke, and Vaughan, 2010). We might wonder whethesthiso true in the agnostic
case, and whether agnostic active learning algorithms that are notes#firng might possibly
achieve significantly better label complexities than the existing label complexitydsodescribed
above. We investigate this in depth below.

1.2 Summary of Contributions

In the present work, we build on and extend the above results in a vafiebays, resolving a
number of open problems. The main contributions of this work can be summaszellows.

¢ We formally define a notion of a universal activizer, a meta-algorithm thastorms any pas-
sive learning algorithm into an active learning algorithm with asymptotically stricterior
label complexities for all nontrivial distributions and target concepts in dmeept space.

e We analyze the existing strategy of disagreement-based active learamgHis perspec-
tive, precisely characterizing the conditions under which this strategleeato a universal
activizer for VC classes in the realizable case.

e We propose a new type of active learning algorithm, based on shatteesb)e@usd construct
universal activizers for all VC classes in the realizable case bas#udwitea; in particular,
this overcomes the issue of distribution-dependence in the existing resulismegirabove.

e We present a novel generalization of the disagreement coefficienyy afitima new asymp-
totic bound on the label complexities achievable by active learning in the relgizase; this
new bound is often significantly smaller than the existing results in the publisheatuite.

e \We state new concise sufficient conditions for exponential improvemestpasgsive learn-
ing to be achievable in the realizable case, including a significant weakehkagwn con-
ditions in the published literature.

e \We present a new general-purpose active learning algorithm for tiestg case, based on
the aforementioned idea involving shatterable sets.

e We prove a new asymptotic bound on the label complexities achievable bg lining in
the presence of label noise (the agnostic case), often significantly sthalhesiny previously
published results.
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e We formulate a general conjecture on the theoretical advantages &f katining over pas-
sive learning in the presence of arbitrary types of label noise.

1.3 Outline of the Paper

The paper is organized as follows. In Section 2, we introduce the basitaroused throughout,
formally define the learning protocol, and formally define the label compleWs also define the
notion of anactivizer, which is a procedure that transforms a passive learning algorithm into an
active learning algorithm with asymptotically superior label complexity. In Se@iowe review
the established technique disagreement-basedktive learning, and prove a new result precisely
characterizing the scenarios in which disagreement-based active gpaamirbe used to construct
an activizer. In particular, we find that in many scenarios, disagreeb@s®d active learning is not
powerful enough to provide the desired improvements. In Section 4, we beyond disagreement-
based active learning, developing a new type of active learning algobttz®d orshatterablesets

of points. We apply this technique to construct a simple 3-stage procechich we then prove is a
universal activizer for any concept space of finite VC dimension gctiSn 5, we begin by review-
ing the known results for bounding the label complexity of disagreememidbastive learning in
terms of the disagreement coefficient; we then develop a somewhat moresshpoocedure, again
based on shatterable sets, which takes full advantage of the sequehiral of active learning. In
addition to being an activizer, we show that this procedure often achikaezatically superior la-
bel complexities than achievable by passive learning. In particular, firedienovel generalization
of the disagreement coefficient, and use it to bound the label complexitysoptbcedure. This
also provides us with concise sufficient conditions for obtaining expgaalemprovements over
passive learning. Continuing in Section 6, we extend our framework to &iovabel noise (the
agnostic case), and discuss the possibility of extending the results fexiops sections to these
noisy learning problems. We first review the known results for noisestdisagreement-based ac-
tive learning, and characterizations of its label complexity in terms of the disagent coefficient
and Mammen-Tsybakov noise parameters. We then proceed to develaptypeeof noise-robust
active learning algorithm, again based on shatterable sets, and prawshmuits label complexity
in terms of our aforementioned generalization of the disagreement cosfficdelditionally, we
present a general conjecture concerning the existence of actifiwarertain passive learning al-
gorithms in the agnostic case. We conclude in Section 7 with a host of enticargppblems for
future investigation.

2. Definitions and Notation

For most of the paper, we consider the following formal setting. There is asunable space
(X,Fx), whereX is called theinstance spacefor simplicity, we suppose this is a standard Borel
space (Srivastava, 1998) (e B under the usual Boref-algebra), though most of the results gen-
eralize. Aclassifieris any measurable functidm: X — {—1,+1}. There is a se€ of classifiers
called theconcept spaceln therealizable casgthe learning problem is characterized as follows.
There is a probability measufeon X', and a sequenc8x = { X1, X, ...} of independen#’-valued
random variables, each with distributidh We refer to these random variables as the sequence
of unlabeled exampleslthough in practice, this sequence would typically be large but finite, to
simplify the discussion and focus strictly on counting labels, we will suppassdguence is inex-
haustible. There is additionally a special elemeatC, called thearget functionand we denote by
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Y; = f(X); we further denote by = {(X1,Y1), (X2, Y2),...} the sequence débeled examplesand
for me N we denote byZm = {(X1,Y1), (X2,Y2), ..., (Xm, Ym) } the finite subsequence consisting of
the firstm elements ofZ. For any classifieh, we define thesrror rate er(h) = P(x: h(x) # f(x)).
Informally, the learning objective in the realizable case is to identify sbmih small efh) using
elements fronZ, without direct access tbé.

An active learning algorithmA is permitted direct access to tli& sequence (the unlabeled
examples), but to gain access to thevalues it must request them one at a time, in a sequential
manner. Specifically, given access to the values, the algorithm selects any indexN, requests
to observe th&; value, then having observed the valueYpfselects another inde% observes the
value ofY;/, etc. The algorithm is given as input an integecalled thdabel budgetand is permitted
to observe at most labels total before eventually halting and returning a clasdifiet A(n); that
is, by definition, an active learning algorithm never attempts to access morthdgiven budget
number of labels. We will then study the valuesndfufficient to guaranteE[er(h,)] < €, for any
given valueg € (0,1). We refer to this as thiabel complexity We will be particularly interested in
the asymptotic dependence oin the label complexity, as — 0. Formally, we have the following
definition.

Definition 1 An active learning algorithmd achieves label complexity(-,-,-) if, for every target
function f, distributioriP, € € (0,1), and integer > A(g, f,P), we haveE [er(A(n))] < €.

This definition of label complexity is similar to one originally studied by Balcan, e, and
Vaughan (2010). It has a few features worth noting. First, the labmlptaxity has an explicit
dependence on the target functibrand distributionP. As noted by Dasgupta (2005), we need
this dependence if we are to fully understand the range of label complexdigsvable by active
learning; we further illustrate this issue in the examples below. The secahgdeo note is that
the label complexity, as defined here, is simply a sufficient budget sizehievacthe specified
accuracy. That is, here we are asking only how many label requesteguired for the algorithm
to achieve a given accuracy (in expectation). However, as noted logiBdianneke, and Vaughan
(2010), this number might not be sufficiently largedietectthat the algorithm has indeed achieved
the required accuracy based only on the observed data. That isjskeeitee number of labeled
examples used in active learning can be quite small, we come across therptbatehe number
of labels needed tlearn a concept might be significantly smaller than the number of labels needed
to verify that we have successfully learned the concept. As such, this notionedfdaimplexity
is most useful in thelesignof effective learning algorithms, rather than for predicting the number
of labels an algorithm should request in any particular application. Spabyfito design effective
active learning algorithms, we should generally desire small label complexditgs, so that (in the
extreme case) if some algorithi has smaller label complexity values than some other algorithm
A’ for all target functions and distributions, then (all other factors being equaghwald clearly
prefer algorithmA over algorithmA’; this is true regardless of whether we have a meanetect
(verify) how large the improvements offered by algorithtover algorithmA'’ are for any particular
application. Thus, in our present context, performance guaranteeasria tf this notion of label
complexity play a role analogous to concepts sucardagersal consistenoyr admissibility which
are also generally useful in guiding the design of effective algorithmisaitgunot intended to be
informative in the context of any particular application. See the work of &gl¢tianneke, and
Vaughan (2010) for a discussion of this issue, as it relates to a definftlahel complexity similar

1479



HANNEKE

to that above, as well as other notions of label complexity from the activeitepliterature (some
of which include a verification requirement).

We will be interested in the performance of active learning algorithms, rel&ithe perfor-
mance of a givempassive learning algorithmin this context, a passive learning algoritbdrntakes
as input a finite sequence of labeled examgles |J,(X x {—1,+1})", and returns a classifier
h= A(L). We allow both active and passive learning algorithms to be randomizedisthat
have independent internal randomness, in addition to the given randtam \We define the label
complexity for a passive learning algorithm as follows.

Definition 2 A passive learning algorithmll achieves label complexity(-,-,-) if, for every target
function f, distributiorP, € € (0,1), and integer > A(g, f,P), we haveE [er(A (Zn))] < €

Although technically some algorithms may be able to achieve a desired aceuithout any
observations, to make the general results easier to state (namely, thosgiam S unless oth-
erwise stated we suppose label complexities (both passive and actiwestiigkly positive values,
amongN U {oc}; note that label complexities (both passive and active) can be infinite ativttic
that the corresponding algorithm might not achieve expected erroe fateany ne N. Both the
passive and active label complexities are defined as a number of laffal®stito guarantee the
expectecerror rate is at most. It is also common in the literature to discuss the number of label
requests sufficient to guarantee the error rate is at megth high probabilityl — d (e.g., Bal-
can, Hanneke, and Vaughan, 2010). In the present work, we fatenour results in terms of the
expected error rate because it simplifies the discussion of asymptoticst imethreeed only study
the behavior of the label complexity as the single argungsempproaches 0, rather than the more
complicated behavior of a function efandd as bothe andd approach 0 at various relative rates.
However, we note that analogous results for these high-probabilitagteas on the error rate can
be extracted from the proofs below without much difficulty, and in seydeales we explicitly state
results of this form.

Below we employ the standard notation from asymptotic analysis, including o(-), Q(-),
w(-), ©(+), <, and>>. In all contexts below not otherwise specified, the asymptotics are always
considered as — 0 when considering a function &f and an — oo when considering a function
of n; also, in any expression of the forrr “» 0,” we always mean the limftom above(i.e.,x | 0).
For instance, when considering nonnegative functions, di(¢) andAp(g), the above notations
are defined as follows. We sa\(€) = o(Ap(g)) when gILrgjzgg = 0, and this is equivalent to
writing Ap(€) = w(Aa(€)), Aa(€) K Ap(€), Or Ap(&) > Aa(€). We sayAa(€) = O(Ap(€)) when

limsup a( ; < oo, which can equivalently be expresseddsgs) = (2(Aa(€)). Finally, we write
e—0

Aa(€) = ©(Ap(&)) to mean that botiA,(g) = O(Ap(€)) andAa(€) = Q2(Ap(€)) are satisfied. We
also use the standard notation for the limit of a sequence of sets, such/as tiefined by the

property]lhmAr = I|m ILA, (if the latter exists), where, is the indicator functlon for the sét

Define the class of functions Polylfly¢) as thoseg : (0,1) — [0,00) such that, for some
ke [0,00), g(g) = O(log¥(1/¢)). For a label complexity\, also define the set Nontrivig) as the
collection of all pairg f,P) of a classifier and a distribution such thét, > 0,A (¢, f,P) < oo, and

Vg € Polylog(1/¢), A(g, f,P) = w(g(€)).
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In this context, aractive meta-algorithnis a procedured, taking as input a passive algorithm
Ap and a label budget, such that for any passive algorithdy, Aa(Ayp,-) is an active learning
algorithm. We define aactivizerfor a given passive algorithm as follows.

Definition 3 We say an active meta-algorithuy, activizesa passive algorithnd,, for a concept
spaceC if the following holds. For any label complexity, achieved byA, the active learning
algorithm.A4( Ay, -) achieves a label complexify, such that, for every & C and every distribution
P on X with (f,P) € Nontrivial(Ap), there exists a constante[1, co) such that

Na(ce, £,P) =0(Np(g, T,P)).

In this case,Aj is called anactivizerfor A, with respect taC, and the active learning algorithm
Aa(Ap,-) is called thed,-activized Ay,

We also refer to any active meta-algorith#g that activizesverypassive algorithnd, for C
as auniversal activizefor C. One of the main contributions of this work is establishing that such
universal activizers do exist for any VC claSs

A bit of explanation is in order regarding Definition 3. We might interpret ifadows: an
activizerfor Ay strongly improves (in a little-o sense) the label complexity fonalhtrivial target
functions and distributions. Here, we seek a meta-algorithm that, when diyas input, results
in an active learning algorithm with strictly superior label complexities. Howedtere is a sense
in which some distribution® or target functiond aretrivial relative to.Ap. For instance, perhaps
Ap has adefaultclassifier that it is naturally biased toward (e.g., with minif®gk : h(x) = +1),
as in the Closure algorithm of Helmbold, Sloan, and Warmuth, 1990), so tia whis default
classifier is the target functiond, achieves a constant label complexity. In these trivial scenarios,
we cannot hope tanproveover the behavior of the passive algorithm, but instead can only hope
to competewith it. The sensdn which we wish to compete may be a subject of some controversy,
but the implication of Definition 3 is that the label complexity of the activized algorighould be
strictly better than every nontrivial upper bound on the label complexity eptssive algorithm.
For instance, ifAp(g, f,P) € Polylog(1/¢), then we are guarantedt(e, f,P) € Polylog1/¢)
as well, but ifAp(g, f,P) = O(1), we are still only guaranteefla(¢, f,P) € Polylog(1/€). This
serves the purpose of defining a framework that can be studied wittuiting too much obsession
over small additive terms in trivial scenarios, thus focusing the analyivg®toward nontrivial
scenarios whered, has relativelylarge label complexity, which are precisely the scenarios for
which active learning is truly needed. In our proofs, we find that in Ralylog(1/¢) can be
replaced withO(log(1/¢)), giving a slightly broader definition of “nontrivial,” for which all of the
results below still hold. Section 7 discusses open problems regarding thesasgivial problems.

The definition of Nontrivia(-) also only requires the activized algorithm to be effective in sce-
narios where the passive learning algorithm re@sonabldehavior (i.e., finite label complexities);
this is only intended to keep with the reduction-based style of the framewodkinafact this re-
striction can easily be lifted using a trick from Balcan, Hanneke, and \@au@®010) (aggregating
the activized algorithm with another algorithm that is always reasonable).

Finally, we also allow a constant factofoss in thee argument to\,. We allow this to be an
arbitrary constant, again in the interest of allowing the analyst to focusamljne most signifi-
cant aspects of the problem; for most reasonable passive learninghatgx) we typically expect
Np(€, f,P) =Poly(1/¢€), in which case can be set to 1 by adjusting the leading constant factors of
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Na. A careful inspection of our proofs reveals tltatan always be set arbitrarily close to 1 without
affecting the theorems below (and in fact, we can evertgetl+0(1)), a function ofe).

Throughout this work, we will adopt the usual notation for probabilitieshsasP(er(h) > ),
and as usual we interpret this as measuring the corresponding evest ([imitiicit) underlying
probability space. In particular, we make the usual implicit assumption thaetsllisvolved in
the analysis are measurable; where this assumption does not hold, we mag turter prob-
abilities, though we will not make further mention of these technical details. Wealso use
the notationPX(-) to represenk-dimensional product measures; for instance, for a measurable set
AC XX PYA) =P((X],...,X)) € A), for independenP-distributed random variables, ..., X,.
Additionally, to simplify notation, we will adopt the convention th&f = {2} andP°(x°) = 1.
Throughout, we will denote bya(z) the indicator function for a s&, which has the value 1 when
z € Aand 0 otherwise; additionally, at times it will be more convenient to use the bipalEator
function, defined agx (z) = 21a(z) — 1.

We will require a few additional definitions for the discussion below. Fgraassifierh: X' —
{—1,+1} and finite sequence of labeled examples [ J,,(X x {—1,+1})™, define theempirical
error rate erg(h) = |£|*1E(X7y)€£]1{_y}(h(x)); for completeness, definey¢h) = 0. Also, for
L = Zny, the firstmlabeled examples in the data sequence, abbreviate thig@g ererz, (h). For
any probability measur® on X, set of classifierg{, classifierh, andr > 0, define B, p(h,r) =
{ge H: P(x:h(xX) #g(x)) <r}, whenP = P, the distribution of the unlabeled examples, &hd
is clear from the context, we abbreviate this gg(B,r) = By, »(h,r); furthermore, wher? = P
and# = C, the concept space, and bdthandC are clear from the context, we abbreviate this
as Bh,r) = B¢ p(h,r). Also, for any set of classifierd, and any sequence of labeled examples
L e Un(X x{=1,+1})™, defineH[L] = {h e H : erg(h) = 0}; for any (x,y) € X x {-1,+1},
abbreviateH[(x,y)] = H[{(X,y)}] = {h € H : h(x) =y}.

We also adopt the usual definition of “shattering” used in learning thesogy, (Vapnik, 1998).
Specifically, for any set of classifie?$, k € N, andS= (x1,...,X) € X% we sayH shatters 3f,
V(y1,.--,¥k) € {—1,+1} 3h € A such thawi € {1,...,k}, h(x) = yi; equivalently,H shattersS
if 3{hy,...,hx} C H such that for each j € {1,...,2¢} with i # j, 3¢ € {1,...,k} with hj(x;) #
hj(x,). To simplify notation, we will also say th&{ shattersz if and only if # # {}. As usual,
we define the/C dimensiorof C, denoted], as the largest integ&rsuch thaBS e X' shattered by
C (Vapnik and Chervonenkis, 1971; Vapnik, 1998). To focus on maatmproblems, we will only
consider concept spac€&swith d > 0 in the results below. Generally, any such concept sfiace
with d < oo is called avVC class

2.1 Motivating Examples

Throughout this paper, we will repeatedly refer to a few canonicahgkes. Although themselves
quite toy-like, they represent the boiled-down essence of some impoissinctions between var-
ious types of learning problems. In some sense, the process of grappimghe fundamental
distinctions raised by these types of examples has been a driving fdmselbrauch of the recent
progress in understanding the label complexity of active learning.

The first example is perhaps the most classic, and is clearly the first tm@&sao mind when
considering the potential for active learning to provide strong improvenoetspassive learning.

Example 1 In the problem of learningthreshold classifiers, we consideft = [0,1] and

C={h.(x) =1} (¥ : 2 € (0,1)}.
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There is a simple universal activizer for threshold classifiers, baseadkind of binary search.
Specifically, suppose € N and thatA4, is any given passive learning algorithm. Consider the
points in{Xy, Xz, ..., Xm}, for m=2"-1, and sort them in increasing ordedi), X), - - -, X(m)- Also
initialize £ = 0 andu = m+ 1, and defin&) = 0 andXn,1) = 1. Now request the label o§; for
i=[({+u)/2] (i.e., the median point betweérandu); if the label is—1, let/ =i, and otherwise
let u =i; repeat this (requesting this median point, then updatiogu accordingly) until we have
u=/(+1. Finally, let= X, construct the labeled sequente- { (X1, hz(X1)) ..., (Xm,hz(Xm)) },
and return the classifiér=4,(L).

Since each label request at least halves the set of integers betveeeu, the total number
of label requests is at most lggn) + 1 = n. Supposingf € C is the target function, this proce-
dure maintains the invariant th&{X) = —1 andf(Xy,) = +1. Thus, once we readh=/(+1,
since f is a threshold, it must be sontge with z € (¢,u]; therefore ever)b((j) with j < ¢ has
f(X(j)) = —1, and likewise everyj with j >u hasf(X(j)) = +1; in particular, this meang
equalsZy, thetrue labeled sequence. But this medns: Ap(Zm). Sincen = log,(m) + 1, this
active learning algorithm will achieve an equivalent error rate to whaachieves withm labeled
examples, but using only lggm) + 1 label requests. In particular, this implies tha#if achieves
label complexity/\p, then this active learning algorithm achieves label comple&itysuch that
Na(g, T,P) <log,Ap(€, f,P)+2; as long as & NAp(g, f,P) < oo, this iso(Ap(g, f,P)), so that
this procedure activized,, for C.

The second example we consider is almost equally simple (only increasingttiénénsion
from 1 to 2), but is far more subtle in terms of how we must approach its asahyactive learning.

Example 2 In the problem of learninginterval classifiers, we considett = [0,1] and
C = {hpp(x) = 1j,(x):0<a<b<1}.

For the intervals problem, we can also construct a universal actiizengh slightly more
complicated. Specifically, suppose again that N and that.A, is any given passive learning
algorithm. We first request the lab€l¥y, Y, . .., Y21 } of the first[n/2] examples in the sequence.
If every one of these labels is1, then we immediately return the all-negative constant classifier
h(x) = —1. Otherwise, consider the poinf¥, Xz, ..., Xm}, for m= max{2l"/4-% nl, and sort
them in increasing ordeX 1), Xy), .., Xm). For some value € {1,...,[n/2]} with ¥ = +1, let
j+ denote the corresponding indgxsuch thatX ;) = X. Also initialize /, =0, u; = {, = j4, and
u, =m+1, and defin@(((,) =0 andX(mH) =1. Now if /1 + 1 < u, request the label dﬁ(i) for
i = [(f1+u1)/2] (the median point betweefy anduy); if the label is—1, let¢; =i, and otherwise
let u; = i; repeat this (requesting this median point, then updatingr u; accordingly) until we
haveu; = /1 +1. Now if £;+1 < up, request the label of; for i = | (¢2+u2) /2] (the median point
betweer?, andu,); if the label is—1, letu, =i, and otherwise let, = i; repeat this (requesting this
median point, then updating or ¢, accordingly) until we havey, = /> + 1. Finally, letd'= u; and
b = ¢, construct the labeled sequente- { (Xl, h[é-,B] (Xl)) e, (er h[éﬁ] (X@) } and return the
classifierth = Ap(L).

Since each label request in the second phase halves the set of vetwee either; and
ug or ¢; andup, the total number of label requests is at most fnm[n/2] + 2log,(m) +2} < n.
Supposef € C is the target function, and let(f) = P(x: f(x) = +1). If w(f) =0, then with
probability 1 the algorithm will return the constant classifiex) = —1, which has gih) = 0 in this
case. Otherwise, ifi(f) > 0, then for anyn > ﬁ In % with probability at least 1 &, there exists
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ie{1,...,[n/2]} with Y, = +1. LetH, denote the event that such aexists. Supposing this is
the case, the algorithm will make it into the second phase. In this case, ttedpre maintains the
invariant thatf (X)) = —1, f(Xy,)) = f(Xy,)) = +1, andf (X,)) = —1, where/; < u; < /7 < Up.
Thus, once we have; = /1 +1 andu, = (> + 1, sincef is an interval, it must be sonte, ; with
a € (f1,u] andb € [(2,uy); therefore, ever ;) with j < /¢y or j > up hasf(X;)) = —1, and like-
wise everyx(j) withuy < j<4p hasf(X(j)) = 41; in particular, this mean§ equalsz,, thetrue
labeled sequence. But this medns Ap(Zm). SupposingA, achieves label complexitfxp, and

thatn > max{8+4|ogz/\p(e, f,P), ﬁln%}, thenm > 2("4-1 > Ay (e, f,P) andE [er(h)] <

E [er(h)1n,] +(1—P(H,)) < Eler(Ap(Zm))] + € < 2¢. In particular, this means this active learn-
ing algorithm achieves label complexity, such that, for any € C withw(f) =0,A\4(2¢, f,P) =0,

and for anyf € C with w(f) > 0,Aa(2¢, f,P) < max{8+4logzl\p(£, f,P),ﬁln%}. If (f,P) ¢

Nontrivial(Ap), thenﬁ In$ =o0(Ap(g, f,P)) and 8+ 4log, Ap (e, f,P) = o(Ap(e, f,P)), so that
Na(2e,T,P) =0(Ap(g, T,P)). Therefore, this procedure activizes, for C.

This example also brings to light some interesting phenomena in the analysisatb¢heom-
plexity of active learning. Note that unlike the thresholds example, we hawech stronger de-
pendence on the target function in these label complexity bounds, via(thequantity. This
issue is fundamental to the problem, and cannot be avoided. In partistien?([0,x]) is con-
tinuous, this is the very issue that makes thmimaxlabel complexity for this problem (i.e.,
mina, maxsec Aa(€, f,P)) no betterthan passive learning (Dasgupta, 2005). Thus, this problem
emphasizes the need for any informative label complexity analysis of detiveing to explicitly
describe the dependence of the label complexity on the target functiadyvasated by Dasgupta
(2005). This example also highlights theverifiability phenomenon explored by Balcan, Hanneke,
and Vaughan (2010), since in the casewf) = 0, the error rate of the returned classifiezésq
but (for nondegenerat®) there is no way for the algorithm to verify this fact based only on the
finite number of labels it observes. In fact, Balcan, Hanneke, andizau(2010) have shown that
under continuou®, for any f € C with w(f) = 0, the number of labels required to bdithd a clas-
sifier of small error ratand verifythat the error rate is small based only on observable quantities is
essentiallyno betterthan for passive learning.

These issues are present to a small degree in the intervals example,rewgagdy handled
in a very natural way. The target-dependence shows up only in an intitzepof waiting for a
positive example, and the always-negative classifiers were handkstting adefaultreturn value.
However, we can amplify these issues so that they show up in more subtlievaheed ways.
Specifically, consider the following example, studied by Balcan, HanragiceVaughan (2010).

Example 3 In the problem of learningunions of i intervals we considerX = [0,1] and
(C:{hz(x):]li- }(x):0<zlgz2§...§22i<1}.

j=1l22-1,22]

The challenge of this problem is that, because sometimes:j 1 for somej values, we do not
know how many intervals are required to minimally represent the target functigy that it is at
mosti. This issue will be made clearer below. We can essentially think of anytieiestrategy here
as having two components: one component that searches (perhdpstgnwith the purpose of
identifying at least one example from each decision region, and anaihmgranent that refines our
estimates of the end-points of the regions the first component identifies, watevill go through
the behavior of a universal activizer for this problem in detalil.
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3. Disagreement-Based Active Learning

At present, perhaps the best-understood active learning algorithniscae choosing their label
requests based on disagreement among a set of remaining candidafierda3fie canonical algo-
rithm of this type, a version of which we discuss below in Section 5.1, wgsogesl by Cohn, Atlas,
and Ladner (1994). Specifically, for any gétof classifiers, define theegion of disagreement

DIS(H) = {xe€ X :3hy,hy € H s.t.hy(X) # ha(X)}.

The basic idea of disagreement-based algorithms is that, at any given timeafgtmghm,
there is a subsat C C of remaining candidates, called tkiersion spacewhich is guaranteed to
contain the target. When deciding whether to request a particular labethe algorithm simply
checks whetheX; € DIS(V): if so, the algorithm reques, and otherwise it does not. This gen-
eral strategy is reasonable, since for afyt DIS(V), the label agreed upon By must bef (X),
so that we would get no information by requestigthat is, forX; ¢ DIS(V), we can accurately
infer ¥, based on information already available. This type of algorithm has receudfjved sub-
stantial attention, not only for its obvious elegance and simplicity, but alsaused(as we discuss
in Section 6) there are natural ways to extend the technique to the geradstam of learning with
label noise and model misspecification (dmgnosticsetting). The details of disagreement-based
algorithms can vary in how they update the ¥eand how frequently they do so, but it turns out
almost all disagreement-based algorithms share many of the same fundapnepéaties, which
we describe below.

3.1 A Basic Disagreement-Based Active Learning Algorithm

In Section 5.1, we discuss several known results on the label complexitievable by these types
of active learning algorithms. However, for now let us examine a verig ladgorithm of this type.
The following is intended to be a simple representative of the family of disaggeebased active
learning algorithms. It has been stripped down to the bare essentials tinakeas such algorithms
work. As a result, although the gap between its label complexity and thatvadhi®y passive
learning is not necessarily as large as those achieved by the more sepbistisagreement-based
active learning algorithms of Section 5.1, it has the property that whettey®s more sophisticated
methods have label complexities asymptotically superior to those achieveddiyepkearning, that
guarantee will also be true for this simpler method, and vice versa. Thathlgaperates in only
2 phases. In the first, it uses one batch of label requests to reducertiiemspac¥ to a subset of
C; in the second, it uses another batch of label requests, this time onlystemukabels for points
in DIS(V). Thus, we have isolated precisely that aspect of disagreement-bzsedearning that
involves improvements due to only requesting the labels of examples in the tdglimagreement.
The procedure is formally defined as follows, in terms of an estimat(tIS(V)) specified below.

1485



HANNEKE

Meta-Algorithm 0

Input: passive algorithmip, label budgeh

Output; classifieh

0. Request the firdin/2] labels{Yi,...,Y|n/2 }, and lett < [n/2]
1. LetV ={he C:ery (h) =0}

2. LetA + Pn(DIS(V))

3. Letl + {}

4. Form=[n/2] +1,...|n/2] 4+ |n/(4d)]

5. If Xy € DIS(V) andt < n, request the labé&t, of Xy, and lety« Y, andt «+t+1
6. Else lety« h(Xm) for an arbitraryh € V

7. LetlL«+ LU{(Xn¥)}

8. ReturnA, (L)

Meta-Algorithm 0 depends on a data-dependent estimattIS(V)) of P(DIS(V)), which
we can define in a variety of ways using oniglabeledexamples. In particular, for the theorems
below, we will take the following definition fo,(DIS(V)), designed to be a confidence upper
bound onP(DIS(V)). Letln = { X241, .., Xon2}. Then define

SN

Py(DIS(V)) = max{nzz > Ipis) (%), } : 1)
XEUR

Meta-Algorithm 0 is divided into two stages: one stage where we focusducirgV, and a
second stage where we construct the sarfgte the passive algorithm. This might intuitively seem
somewhat wasteful, as one might wish to use the requested labels fronstrstdge to augment
those in the second stage when constructinghus feeding all of the observed labels into the
passive algorithrdp. Indeed, this can improve the label complexity in some cases (albeit only by
a constant factor); however, in order to get tfemeralproperty of being an activizer f&ll passive
algorithmsA,, we construct the sample so that the conditional distribution of tké components
in £ given|L|is PI£l so that it is (conditionally) an i.i.d. sample, which is essential to our analysis.
The choice of the number of (unlabeled) examples to process in the sstzm@dguarantees (by a
Chernoff bound) that thet“< n” constraint in Step 5 is redundant; this is a trick we will employ in
several of the methods below. As explained above, bechgsé, this implies that everyx,y) € £
hasy = f(x).

To give some basic intuition for how this algorithm behaves, consider thamreof learning
threshold classifiers (Example 1); to simplify the explanation, for now wergytite fact that?,
is only an estimate, as well as thie< n” constraint in Step 5 (both of which will be addressed in
the general analysis below). In this case, suppose the target functioa is.. Leta= max{X; :

X <z,1<i<|n/2|}andb=min{X : X >2,1<i<|n/2]}. ThenV ={h, :a< 2 <b} and
DIS(V) = (a,b), so that the second phase of the algorithm only requests labels for a nofmbe
points in the regiona,b). With probability 1— &, the probability mass in this region is at most
O(log(1/€)/n), so thati £| > ¢n e = Q2(n?/log(1/€)); also, since the labels i are all correct, and
the Xy, values inC are conditionally iid (with distributiorP) given |L|, we see that the conditional
distribution of £ given|L| = ¢ is the same as the (unconditional) distributionZf In particular, if
Ap achieves label complexitxp, andh, is the classifier returned by Meta-Algorithm 0 applied to
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Ap, then for anyn = O (/Ay(e, f,P)log(1/€)) chosen so that, ¢ > Ay(e, f,P), we have

Eler(h)] < e+ supEler(Ap(2:)] <e+ sup Eler(Ap(2))] < 2e.
(>l (>Ap(e.1.P)

This indicates the active learning algorithm achieves label complexityvith Aa(2¢, f,P) =
O(y/No(g, T, P)log(1/€)). In particular, ifoc > Ap(e, f,P) = w(log(1/¢)), thenAy(2¢, f,P) =
o(Ap(g, f,P)). Therefore, Meta-Algorithm 0 is a universal activizer for the spactheshold
classifiers.

In contrast, consider the problem of learning interval classifiers (El@2)p In this case,
suppose the target functidnhasP (x: f(x) = +1) = 0, and thafP is uniform in[0, 1]. Since (with
probability one) every; = —1, we have/ = {hjyp, : {X1,...,X|n/2)} N[a,b] = 0}. But this contains
classifiershy, 5 for everya € (0,1) \ {Xy,...,X|n/2/}, SO that DISV) = (0,1) \ {Xy,...,X|n/2) }-
Thus,P(DIS(V)) = 1, and|£| = O(n); that is, A, gets run with no more labeled examples than
simple passive learning would use. This indicates we should not expaatMgorithm O to be
a universal activizer for interval classifiers. Below, we formalize thiscbnstructing a passive
learning algorithmA, that Meta-Algorithm O does not activize in scenarios of this type.

3.2 The Limiting Region of Disagreement

In this subsection, we generalize the examples from the previous sulns&iecifically, we prove
that the performance of Meta-Algorithm 0 is intimately tied to a particular limiting sédrned to

as thedisagreement coreA similar definition was given by Balcan, Hanneke, and Vaughan (2010)
(there referred to as theoundary for reasons that will become clear below); it is also related to
certain quantities in the work of Hanneke (2007b, 2011) described hrel8ection 5.1.

Definition 4 Define thedisagreement coref a classifier f with respect to a set of classifigtsand
probability measure’ as
onpf= Iinz)DIS(BH_p(f, r)) .
' r— ’

When P = P, the data distribution oit’, andP is clear from the context, we abbreviate this as
oyt = 0y pf; if additionally H = C, the full concept space, which is clear from the context, we
further abbreviate this a#f = 0cf = 0c pf.

As we will see, disagreement-based algorithms often tend to focus theiré&hedsts around
the disagreement core of the target function. As such, the concepé afisgagreement core will
be essential in much of our discussion below. We therefore go througlv @Xamples to build
intuition about this concept and its properties. Perhaps the simplest examgtirttavith isC
as the class ofhresholdclassifiers (Example 1), undét uniform on|0,1]. For anyh, € C and
sufficiently smallr > 0, B(f,r) = {h, : |2’ —z|] <r}, and DISB(f,r)) = [z —r,z+T). There-
fore, oh, = li_%DIS(B(hZ,r)) = !i_%[z —r,z+r) ={z}. Thus, in this case, the disagreement core
of h, with respect taC andP is precisely the decision boundary of the classifier. As a slightly
more involved example, consider again the examplmtefrval classifiers (Example 2), again un-
der P uniform on(0,1]. Now for anyhy,p, € C with b—a > 0, for any sufficiently smalf > 0,
B(hap:r) = {Nap :la—&|+|b—b| <r}, and DISB(hay,r)) = [@a—r,a+r)U(b—r,b4r].
Therefore,ohjy ) = LnE)DIS(B(h[a’b],r)) = Ln%[a— r,a+r)uU(b—r,b+r]={ab}. Thus, in this
case as well, the disagreement corégf; with respect taC and’ is again the decision boundary
of the classifier.
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As the above two examples illustratef often corresponds to the decision boundaryf oh
some geometric interpretation &f and f. Indeed, under fairly general conditions @hand P,
the disagreement core df does correspond to (a subset of) the set of points dividing the two
label regions off; for instance, Friedman (2009) derives sufficient conditions, undhéch this is
the case. In these cases, the behavior of disagreement-based astiveglalgorithms can often
be interpreted in the intuitive terms of seeking label requests near the debmimdary of the
target function, to refine an estimate of that boundary. However, in some subtle scenarios
this is no longer the case, for interesting reasons. To illustrate this, letntiswe the example of
interval classifiers from above, but now consid@[a] (i.e., h[a,b] with a=h). This time, for any
r € (0,1) we have Bhjy 4,r) = {hjz ) € C:b'—a <r}, and DISB(hfz 4,1)) = (0,1). Therefore,
ah[&a] = !i%nE)DIS(B(h[a_’a],r)) = !ILT})(O, 1) = (0, 1)

This example shows that in some cases, the disagreement core doegegpaad to the de-
cision boundary of the classifier, and indeed ®48f) > 0. Intuitively, as in the above example,
this typically happens when the decision surface of the classifier is in samesmplerthan it
could be. For instance, consider the spécef unions of two interval§Example 3 withi = 2)
under uniformP. The classifierd € C with P(9f) > 0 are precisely those representable (up to
probability zero differences) as a single interval. The others (WithQ < 2> < 23 < z4 < 1) have
Ohy = {z1,22, 23, 24}. In these examples, thiec C with P(9f) > 0 are not only simpler than other
nearby classifiers ift, but they are also in some sertagenerateelative to the rest of ; however,
it turns out this is not always the case, as there exist scen@id3), even withd = 2, and even
with countableC, for whichevery fe C hasP(0f) > 0; in these cases, every classifier is in some
important senseimplerthan some other subset of nearby classifiefs.in

In Section 3.3, we show that the label complexity of disagreement-based Barning is in-
timately tied to the disagreement core. In particular, scenarios wR&vé) > 0, such as those
mentioned above, lead to the conclusion that disagreement-based methedmatienes insuffi-
cient for activized learning. This motivates the design of more sophisticaétidods in Section 4,
which overcome this deficiency, along with a corresponding refinemethteoflefinition of “dis-
agreement core ” in Section 5.2 that eliminates the above issue with “simpleifieliass

3.3 Necessary and Sufficient Conditions for Disagreement-Based#vized Learning

In the specific case of Meta-Algorithm O, for largeve may intuitively expect it to focus its second
batch of label requests in and around the disagreement core of theftargéon. Thus, when-
everP(0f) =0, we should expect the label requests to be quite focused, and tieetiedoalgo-
rithm should achieve smaller label complexity compared to passive learnmthedther hand, if
P(0of) > 0, then the label requests wilbt become focused beyond a constant fraction of the space,
so that the improvements achieved by Meta-Algorithm O over passive lgashould be, at best, a
constant factor. This intuition is formalized in the following general theorempthof of which is
included in Appendix A.

Theorem 5 For any VC clas€, Meta-Algorithm 0 is a universal activizer f@r if and only if every
f € C and distributionP hasP (0c»f) = 0.

While the formal proof is given in Appendix A, the general idea is simple. Asalways have
f eV, anyyinferred in Step 6 must equdlx), so that all of the labels if are correct. Also, as
grows large, classic results on passive learning imply the diameter of thevaditbecome small,
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shrinking to zero as — oo (Vapnik and Chervonenkis, 1971; Vapnik, 1982; Blumer, Ehrerffeuc
Haussler, and Warmuth, 1989). Thereforepas oo, DIS(V) should converge to a subsetf,
so that in the cas®(df) = 0, we havel — 0; thus|£| > n, which implies an asymptotic strict
improvement in label complexity over the passive algoritdgthat £ is fed into in Step 8. On the
other hand, sincéf is defined by classifiers arbitrarily closeftpit is unlikely that any finite sample
of correctly labeled examples can contradict enough classifiers to m&ke [ignificantly smaller
thandf, so that we always have(DIS(V)) > P(df). Therefore, ifP(f) > 0, thenA converges
to some nonzero constant, so thét = O(n), representing only a constant factor improvement in
label complexity. In fact, as is implied from this sketch (and is proven in AgpeA), the targets
f and distributionsP for which Meta-Algorithm 0 achieves asymptotic strict improvements for all
passive learning algorithms (for whidhandP are nontrivial) are precisely those (and only those)
for whichP(0c »f) = 0.

There are some general conditions under which the zero-probabilityrdesaent cores con-
dition of Theorem 5 will hold. For instance, it is not difficult to show this wilvalys hold when
X is countable. Furthermore, with some effort one can show it will hold fortrolasses having
VC dimension one (e.g., any countalilewith d = 1). However, as we have seen, not all spaces
C satisfy this zero-probability disagreement cores property. In partjdolathe interval classifiers
studied in Section 3.2, we ha@(dhj4) = P((0,1)) = 1. Indeed, the aforementioned special
cases aside, fanostnontrivial space§’, one can construct distributiofsthat in some sense make
C mimic the intervals problem, so that we should typically expect disagreemeed-breethods will
not be activizers. For detailed discussions of various scenarios whef(thep f) = 0 condition
is (or is not) satisfied for various, P, andf, see the works of Hanneke (2009b), Hanneke (2007b),
Hanneke (2011), Balcan, Hanneke, and Vaughan (2010), Frie(@088), Wang (2009) and Wang
(2011).

4. Beyond Disagreement: A Basic Activizer

Since the zero-probability disagreement cores condition of Theorenobddways satisfied, we are
left with the question of whether there could be other techniques for detiveing, beyond simple
disagreement-based methods, which could actigimrypassive learning algorithm faveryVC
class. In this section, we present an entirely new type of active learfgogtam, unlike anything
in the existing literature, and we show that indeed it is a universal actifozeny classC of finite
VC dimension.

4.1 A Basic Activizer

As mentioned, the cage(df) = 0 is already handled nicely by disagreement-based methods, since
the label requests made in the second stage of Meta-Algorithm 0 will becausei® into a small
region, andl therefore grows faster than Thus, the primary question we are faced with is what
to do whenP(9f) > 0. Since (loosely speaking) we have NS — 0f in Meta-Algorithm O,
P(0f) > 0 corresponds to scenarios where the label requests of Meta-Algdrithithnot become
focused beyond a certain extent; specifically, as we show in AppendbeBirfias 35 and 36),
P(DIS(V) & 0f) — 0 almost surely, where is the symmetric difference, so that we expect Meta-
Algorithm 0 will request labels for at least some constant fraction of thengkes inC.

On the one hand, this is definitely a major problem for disagreement-baseddsetiince it
prevents them from improving over passive learning in those cases.e(thér hand, if we do not
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restrict ourselves to disagreement-based methods, we may actually be ekpéoibproperties of
this scenario, so that it works to cadvantage In particular, in addition to the fact th&(DIS(V) &
dcf) — 0, we show in Appendix B (Lemma 35) th&(dy f & 0cf) = 0 (almost surely) in Meta-
Algorithm 0; this implies that for sufficiently large, a random poink; in DIS(V) is likely to be in
ov f. We can exploit this fact by using to splitV into two subsetsV[(x1,+1)] andV[(x1,—1)].

Now, if x; € A f, then (by definition of the disagreementcore)  inferth)= inf er(h)=
heV(x1,+1)] heV[(xq,—1)]

0. Therefore, for almost every poire DIS(V[(x1,+1)]), the label agreed upon farby classifiers

in V[(x1,+1)] should bef(x). Likewise, for almost every point ¢ DIS(V[(x1,—1)]), the label
agreed upon fox by classifiers itV [(x1, —1)] should bef (x). Thus, we can accurateiyfer the label

of any pointx ¢ DIS(V[(x1,+1)]) "DIS(V[(x1,—1)]) (except perhaps a zero-probability subset).
With these set¥[(x1,+1)] andV[(x1, —1)] in hand, there is no longer a need to request the labels of
points for which either of them has agreement about the label, and wecas éur label requests
to the region DI®V [(x1,+1)]) NDIS(V[(x1, —1)]), which may bemuch smallethan DISV). Now

if P(DIS(V[(x1,+1)]) NDIS(V[(x1,—1)])) — O, then the label requests will become focused to a
shrinking region, and by the same reasoning as for Theorem 5 we yauptadically achieve strict
improvements over passive learning by a method analogous to Meta-Algditinith the above
changes).

Already this provides a significant improvement over disagreement-basétbds in many
cases; indeed, in some cases (such as intervals) this fully addresses#ezo-probability dis-
agreement core issue in Theorem 5. In other cases (such as unitwe oftervals), it does
not completely address the issue, since for some targets we do noPBENS(V[(x1,+1)]) N
DIS(V[(x1,—1)])) — 0. However, by repeatedly applying this same reasoningcaveaddress
the issue in full generality. Specifically, ®P(DIS(V[(x1,+1)]) N DIS(V[(x1,—1)])) -~ O, then
DIS(V[(x1,+1)]) N DIS(V[(x1,—1)]) essentially converges to a regidk, +1)f N dcjp,—1)
which has nonzero probability, and is nearly equivaler@tg, 1) f N dy(x,,—1) f- Thus, for suffi-
ciently largen, a randomx; in DIS(V [(x1, +1)]) N DIS(V [(x1, —1)]) will likely be in Gy, +1f N
HN(x,—1) - In this case, we can repeat the above argument, this time sphttimgo four sets
(V[(X17 +1)] [(X27 +1)] WV [(Xl, +1)] [(X27 _1)] , V[(XL _1)] [(XZ’ +1)]' andV[(xl, _l)] [(XZ, _l)])' each
with infimum error rate equal zero, so that for a poirih the region of agreement of any of these
four sets, the agreed-upon label will (almost surely)fke), so that we can infer that label. Thus,
we need only request the labels of those points inirtkersectionof all four regions of disagree-
ment. We can further repeat this process as many times as needed, urgilayeagtition oV with
shrinking probability mass in the intersection of the regions of disagreembitt\fas above) can
then be used to obtain asymptotic improvements over passive learning.

Note that the above argument can be written more concisely in terstgatkring That is, any
x € DIS(V) is simply anx such tha¥ shattergx}; a pointx € DIS(V[(x1,+1)]) NDIS(V[(x1,—1)])
is simply one for which/ shattergx;, x}, and for anyx ¢ DIS(V[(x1,+1)]) "DIS(V[(x1,—1)]), the
labely we infer abouk has the property that the 3éf(x, —y)] does not shattefrx; }. This continues
for each repetition of the above idea, witlin the intersection of the four regions of disagreement
simply being one for whicN shatters{xs, X2, X}, and so on. In particular, this perspective makes it
clear that we need only repeat this idea at nabines to get a shrinking intersection region, since
no set ofd + 1 points is shatterable. Note that there may be unobservable factors (e.targét
function) determining the appropriate number of iterations of this idea suffimérave a shrinking
probability of requesting a label, while maintaining the accuracy of inferieel$a To address this,
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we can simply try ald 4+ 1 possibilities, and then select one of the resultingl classifiers via a
kind of tournament of pairwise comparisons. Also, in order to reducerthteapility of a mistaken
inference due tog ¢ oy f (or similarly for laterx;), we can replace each singtewith multiple
samples, and then take a majority vote over whether to infer the label, and labi&ho infer if

we do so; generally, we can think of this as estimating certain probabilitieshelod we write
these estimators a&n, and discuss the details of their implementation later. Combining Meta-
Algorithm 0 with the above reasoning motivates a new type of active learigogithm, referred to

as Meta-Algorithm 1 below, and stated as follows.

Meta-Algorithm 1
Input: passive algorithmt, label budgen
Output: classifieh

0. Request the firsty, = |n/3] labels,{Yi,...,Yn,}, and lett < m,

1. LetV ={heC:em,(h)=0}

2. Fork=1212,...,d+1

3. AW+ Py, (x: P(Se xk1:V shattersSU {x}|V shattersS) > 1/2)

4 Letly + {}

5.  Form=m,+1,...,my+|n/(6-2¢AM)|

6 If Pm(S€ X%V shattersSU {Xm}|V shattersS) > 1/2 andt < [2n/3]

7 Request the lab#}, of X, and lety« Yyandt <+ t+1

8 Else, letys— argmaxPm(S€ X*1:V[(Xm, —y)] does not shatteBV shattersS)
ye{—1,+1}

9. Let Ly < Lk U{(Xm,¥)}

10. Return ActiveSele¢fAp(L1), Ap(L2), .., Ap(Ld+1)}, [N/3], { X+ mas |2 +25 -+ - })

Subroutine: ActiveSelect
Input: set of clas§ifier$h1, hy,...,hn}, label budgetn, sequence of unlabeled examplés
Output: classifieh

o

. Foreach,ke {1,2,... N} s.t. ] <Kk,
LetR;k be the first{mj points in/N{x: hj(x) # hk(x)} (if such values exist)
Request the labels f&jx and letQjx be the resulting set of labeled examples
Letmy; = erg; (Ahk)

. Returnhg, wherek = max{k € {1,...,N} : maxj«xm; < 7/12}

own P

Meta-Algorithm 1 is stated as a function of three types of estimated probabititiesely,

P (Se X*1:V shatterssu {x}‘v shatter§> :
P (Se X*1:V[(x,—y)] does not shatt(ﬁ’V shatter§) ,

and Py, (x: P (Se X*1:V shatterssu {x}’V shatter§) > 1/2) :

These can be defined in a variety of ways to make this a universal actigiz€. Generally, the
only requirement seems to be that they converge to the appropriate tresgeobabilities at a
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sufficiently fast rate. For the theorem stated below regarding Meta-ifthgorl, we will take the
specific definitions stated in Appendix B.1.

Meta-Algorithm 1 requests labels in three batches: one to initially prune dogvetsion
spaceV, a second one to construct the labeled samglgsand a third batch to select among the
d +1 classifiersdp(Ly) in the ActiveSelect subroutine. As before, the choice of the number of
(unlabeled) examples to process in the second batch guarantees (lrreof€bound) that the
“t < [2n/3]” constraint in Step 6 is redundant. The mechanism for requesting labels getond
batch is motivated by the reasoning outlined above, using the shatterablg teetplit V into
2¢-1 subsets, each of which approximates the target with high probability (fge fdr and then
checking whether the new poirts in the regions of disagreement for a2 subsets (by testing
shatterability ofSU {x}). To increase confidence in this test, we use many Ss#ts, and let them
vote on whether or not to request the label (Step 6). As mentionedisiinot in the region of
disagreement for one of thes& 2 subsets (call i/'), the agreed-upon labghas the property that
VI(x,—Yy)] does not shatte® (sinceV[(x,—y)] does not intersect witkl’, which represents one of
the 21 labelings required to shatt&). Therefore, we infer that this labglis the correct label
of x, and again we vote over many suSlsets to increase confidence in this choice (Step 8). As
mentioned, this reasoning leads to correctly inferred labels in Step 8 asdarig sufficiently large
and Pk 1(Se Xk-1:V shattersS) - 0. In particular, we are primarily interested in the largest value
of k for which this reasoning holds, since this is the value at which the probabiligogoiesting a
label (Step 7) shrinks to zero as— oo. However, since we typically cannot predict a priori what
this largest valick value will be (as it is target-dependent), we tryal- 1 values ok, to generate
d + 1 hypotheses, and then use a simple pairwise testing procedure to selagttaem; note that
we need at most trgl + 1 values, sinc® definitely cannot shatter arye X9+1. We will see that
the ActiveSelect subroutine is guaranteed to select a classifier with ateonever significantly
larger than the best among the classifiers given to it (say within a factomaft2high probability).
Therefore, in the present context, we need only consider whetherlsbaga selx with correct
labelsand | Lx| > n.

4.2 Examples

In the next subsection, we state a general result for Meta-Algorithmut fil8t, to illustrate how
this procedure operates, we walk through its behavior on our usualiptes; as we did for the
examples of Meta-Algorithm 0, to simplify the explanation, for now we will igntite fact that
the P, values are estimates, as well as the<*|2n/3|” constraint of Step 6, and the issue of
effectiveness of ActiveSelect; in the proofs of the general resultssbeve will show that these
issues do not fundamentally change the analysis. For now, we merely docghowing that some
k hasL correctly labeled aniCy| > n.

For threshold classifiers (Example 1), we hale- 1. In this case, th& = 1 round of the
algorithm is essentially identical to Meta-Algorithm 0 (recall our conventiorsg &° = {o},
P(X°% =1, andV shattersz iff V # {}), and we therefore haviet;| > n, as discussed previ-
ously, so that Meta-Algorithm 1 is a universal activizer for thresholdsifeers.

Next consider interval classifiers (Example 2), wRhuniform on|[0, 1]; in this case, we have
d=2. If f =hpgy for a <b, then again thé = 1 round behaves essentially the same as Meta-
Algorithm 0, and since we have se@{oh(,p ) = 0 in this case, we havel,| > n. However, the
behavior becomes far more interesting wien hy, 5, which was precisely the case that prevented
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Meta-Algorithm O from improving over passive learning. In this case, akmow from above,
thek = 1 round will have|£1]| = O(n), so that we need to consider larger valuek o identify
improvements. In this case, tike= 2 round behaves as follows. With probability 1, the initial
|n/3] labels used to definé will all be negative. Thusy is precisely the set of intervals that do
not contain any of the initialn/3] points. Now consider an§= {x;} € X1, with x; not equal to
any of these initia| n/3] points, and consider any¢ {x1,X1,...,X|n/3/}. First note thaV shatters
S, since we can optionally put a small interval arouadising an element of. If there is a point
X' among the initial n/3] between »xandx;, then anyhy, € V with x € [a,b] cannot also have
X1 € [a,b], as it would also contain the observed negative point between them. rdegsnot
shatter{x;,x} = SU{x}, so that thisSwill vote to infer (rather than request) the labeldh Step 6.
Furthermore, we see thd{(x,+1)] does not shatte®, whileV[(x,—1)] does shatte$, so that this
Swould also vote for the labgl= —1 in Step 8. For sufficiently large, with high probability, any
givenx not equal one of the initialn/3] should havemost(probability at least - O(n~*logn))

of the possiblex; values separated from it by at least one of the initil3] points, so that the
outcome of the vote in Step 6 will be a decision to infer (not request) the labelthe vote in
Step 8 will be for—1. Since, with probability one, evei, # a, we have every, = —1, so that
every point in£ is labeled correctly. This also indicates that, for sufficiently langeve have
P(x: PH(Se X1:V shattersSU {x}|V shattersS) > 1/2) = 0, so that the size of; is only limited
by the precision of estimation iIAS?,Th in Step 3. Thus, as long as we implemém; so that its value
is at mosio(1) larger than the true probability, we can guaranég > n.

The unions ofi intervals example (Example 3), again und@runiform on[0,1], is slightly
more involved; in this case, the appropriate valué td consider for any given target depends on
the minimum number of intervals necessary to represent the target funggi@a zero-probability
differences). Ifj intervals are required for this, then the appropriate valke=d — j + 1. Specifi-
cally, suppose the target is minimally representable as a unipedfL, ... ,i} intervals of nonzero
width: [z1, 22| U [23,24] U--- U [sz,]_,sz}Z thatis,z1 < 20 < ... < z2j—1 < z2j. Every target inC
has distance zero to some classifier of this type, and will agree with thatfielasg all samples
with probability one, so we lose no generality by assuming aitervals have nonzero width. Then
consider any € (0,1) andS= {x,...,%_j} € X'~J such that, between any pair of elements of
SU{X}U{z1,...,22j}, there is at least one of the initigh/3| points, and none dBU {x} are them-
selves equal to any of those initial points. First note thahattersS, since for anyx, not in one of
the[z2p-1, 22p] intervals (i.e., negative), we may optionally add an intepxak,| while staying inv,
and for anyx, in one of the{zzp_1, 20p] intervals (i.e., positive), we may optionally splibp_1, z2p]
into two intervals to barely exclude the poit(and a small neighborhood around it), by adding at
most one interval to the representation; thus, in total we need to add at m@sntervals to the
representation, so that the largest number of intervals used by anysef2héclassifiers involved
in shattering id, as required; furthermore, note that one of thésé @assifiers actually requirés
intervals. Now for any suck andS as above, since one of the 2 classifiers iV used to shatter
Srequiresi intervals to represent it, andis separated from each elementSaf {2,..., 2} by a
labeled example, we see thatcannot shatteBU {x}. Furthermore, iff (x) =y, then any labeled
example to the immediate left or right wis also labeled, and in particular among thé 2 classi-
fiersh fromV that shattef§ the oneh that requires intervals to represent must also ha&) =,
so thatV[(x, —y)] does not shatte8. Thus, any se$ satisfying this separation property will vote to
infer (rather than request) the labelin Step 6, and will vote for the labdl(x) in Step 8. Fur-
thermore, for sufficiently large, for any givenx separated fronfzy, ..., 22j} by {X,...,X|n/3) },

1493



HANNEKE

with high probability most of the seSe X'~ will satisfy this pairwise separation property, and
therefore so will most of the shatterable s8ts X'~1, so that the overall outcome of the votes will
favor inferring the label ok, and in particular inferring the labélx) for x. On the other hand, foc
not satisfying this property (i.e., not separated from segiey any of the initial n/3] examples),
for any setSas abovey canshatterSU {x}, since we can optionally increase or decreasezhts
include or exclude from the associated interval, in addition to optionally adding the extra intervals
to shatterS, therefore, by the same reasoning as above, for sufficiently fargey suchx will sat-
isfy the condition in Step 6, and thus have its label requested. Thus,ffmiently largen, every
example inZ;_j;1 will be labeled correctly. Finally, note that with probability one, the set of fsoin
x separated from each of thg values by at least one of th&/3] initial points has probability
approaching one as— oo, so that again we hay&;_; 1| > n.

The above examples give some intuition about the operation of this pracddext, we turn to
general results showing that this type of improvement generally holds.

4.3 General Results on Activized Learning

Returning to the abstract setting, we have the following general theorgnesenting one of the
main results of this paper. Its proof is included in Appendix B.

Theorem 6 For any VC clas<C, Meta-Algorithm 1 is a universal activizer f@i.

This result is interesting both for its strength and generality. Recall that ingrtbat given any
passive learning algorithid, the active learning algorithm obtained by provididg as input to
Meta-Algorithm 1 achieves a label complexity that strongly dominates that,dbr all nontrivial
distributionsP and target functiong € C. Results of this type were not previously known. The
specific technical advance over existing results (namely, those of Balieameke, and Vaughan,
2010) is the fact that Meta-Algorithm 1 has no direct dependence ornstnddtion’?; as mentioned
earlier, the (very different) approach proposed by Balcan, Hamraald Vaughan (2010) has a strong
direct dependence on the distribution, to the extent that the distributicendepce in that approach
cannot be removed by merely replacing certain calculations with data-depesstimators (as we
did in Meta-Algorithm 1). In the proof, we actually show a somewhat more rgénesult: namely,
that Meta-Algorithm 1 achieves these asymptotic improvements for any tangetidn f in the
closureof C (i.e., anyf such that/r > 0,B(f,r) # ().

The following corollary is one concrete implication of Theorem 6.

Corollary 7 For any VC clas<C, there exists an active learning algorithm achieving a label com-
plexity A, such that, for all target functions &€ C and distributionsp,

Na(g, f,P) =0(1/¢).

Proof Theone-inclusion graptpassive learning algorithm of Haussler, Littlestone, and Warmuth
(1994) is known to achieve label complexity at mdgg, for every target functiorf € C and dis-
tribution P. Thus, Theorem 6 implies that the (Meta-Algorithm 1)-activized one-imztugraph
algorithm satisfies the claim. |

As a byproduct, Theorem 6 also establishes the basic fact thatdkistactivizers. In some
sense, this observation opens up a new realm for exploration: namatgctérizing the@roperties
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that activizers can possess. This topic includes a vast array of questiany of which deal with
whether activizers are capablepmEservingvarious properties of the given passive algorithm (e.g.,
margin-based dimension-independence, minimaxity, admissibility, etc.). Sedesciibes a vari-
ety of enticing questions of this type. In the sections below, we will considantifying how large
the gap in label complexity between the given passive learning algorithrthamdsulting activized
algorithm can be. We will additionally study the effects of label noise on tissipiity of activized
learning.

4.4 Implementation and Efficiency

Meta-Algorithm 1 typically also has certain desirable efficiency guarantgpscifically, suppose
that for anym labeled example®, there is an algorithm with po{g - m) running time that finds
someh € C with erg(h) = 0 if one exists, and otherwise returns a value indicating that no such
h exists inC; for many concept spaces there are known methods with this capability lijeegu,

or polynomial separators, rectangl&ed)NF) (Khachiyan, 1979; Karmarkar, 1984; Valiant, 1984;
Kearns and Vazirani, 1994), while for others this is known to be hard, fetgrm DNF, bounded-
size decision trees) (Pitt and Valiant, 1988; Alekhnovich, Bravermddpfan, Klivans, and Pitassi,
2004). Given such a subroutine, we can create an efficient implementdtibe main body of
Meta-Algorithm 1. Specifically, rather than explicitly representhin Step 1, we can simply store
the setQo = {(X1,Y1),...,(Xm,,Ym,)}- Then for any step in the algorithm where we need to test
whetherV shatters a seR, we can simply try all & possible labelings oR, and for each one
temporarily add thesgR| additional labeled examples @y and check whether there is &re C
consistent with all of the labels. Atfirst, it might seem that thésavaluations would be prohibitive;
however, supposiné’mh is implemented so that it i©2(1/poly(n)) (as it is in Appendix B.1), note
that the loop beginning at Step 5 executes a nonzero number of times orifyff > 2%, so that

2% < poly(n); we can easily add a condition that skips the step of calcul&ﬁ'ﬁg’f 2K exceeds this
poly(n) lower bound om/A®, so that even those shatterability tests can be skipped in this case.
Thus, for the actual occurrences of it in the algorithm, testing whathamnattersk requires only
poly(n) - poly(d- (|Qo| + |R])) time. The total number of times this test is performed in calculating
A® (from Appendix B.1) is itself only polgn), and the number of iterations of the loop in Step 5 is
at mostn/A(") = poly(n). Determining the labg} ih Step 8 can be performed in a similar fashion.
So in general, the total running time of the main body of Meta-Algorithm 1 is(ooly).

The only remaining question is the efficiency of the final step. Of coursecam required,
to have running time polynomial in the size of its input set (dhdBut beyond this, we must con-
sider the efficiency of the ActiveSelect subroutine. This actually turh$ooiave some subtleties
involved. The way it is stated above is simple and elegant, but not alwageet. Specifically,
we have no a priori bound on the number of unlabeled examples the alganitistprocess before
finding a pointXym whereh; (Xm) # he(Xm). Indeed, ifP(x: hj(x) # hx(x)) = 0, we may effectively
need to examine the entire infinite sequenci¥plalues to determine this. Fortunately, these prob-
lems can be corrected without difficulty, simply by truncating the searchdepermined number
of points. Specifically, rather than taking the n@x‘g/(';')J examples for whicth; andhy disagree,
simply restrict ourselves to at most this number, or at most the number ofpsirts among the
nextM unlabeled examples. In Appendix B, we show that ActiveSelect, as dltigstated, has
a high-probability (- exp{—2(m)}) guarantee that the classifier it selects has error rate at most
twice the best of thél it is given. With the modification to truncate the searcMainlabeled exam-
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ples, this guarantee is increased to peirihy) + max{er(hx),m/M}. For the concrete guarantee of
Corollary 7, it suffices to taki > m?. However, to guarantee the modified ActiveSelect can still
be used in Meta-Algorithm 1 while maintaining (the stronger) Theorem 6, wdMeat least as big
asQ (min{exp{m°} ,m/minger(hy)}), for any constant > 0. In general, if we have a/poly(n)
lower bound on the error rate of the classifier produceddigyfor a given number of labeled ex-
amples as input, we can Set as above using this lower bound in place of garthy), resulting

in an efficient version of ActiveSelect that still guarantees TheorehidBvever, it is presently not
known whether there always exist universal activizersGdhat are efficient (either pol{d - n) or
poly(d/€) running time) when the above assumptions on efficiencylpaind findingh € C with
erg(h) =0 hold.

5. The Magnitudes of Improvements

In the previous section, we saw that we can always improve the label cxitypdé a passive
learning algorithm by activizing it. However, there remains the question wflame the gap is
between the passive algorithm’s label complexity and the activized algoritabres complexity.
In the present section, we refine the above procedures to take gadatartage of the sequential
nature of active learning. For each, we characterize the improvemenmsiévas relative to any
given passive algorithm.

As a byproduct, this provides concise sufficient conditionsefionentialgains, addressing
an open problem of Balcan, Hanneke, and Vaughan (2010). Spdlgificonsider the following
definition, essentially similar to one explored by Balcan, Hanneke, andnzmu@010).

Definition 8 For a concept spac€ and distribution?, we say tha(C,P) is learnable at an ex-
ponential ratef there exists an active learning algorithm achieving label compleXiguch that,
Vf e C, A\(g, f,P) € Polylog1/¢). We further sayC is learnable at an exponential rate if there
exists an active learning algorithm achieving label compleAityuch that, for all distributiong?
and all fe C, A(g, f,P) € Polylog(1/¢).

5.1 The Label Complexity of Disagreement-Based Active Learning

As before, to establish a foundation to build upon, we begin by studying lleédamplexity gains
achievable by disagreement-based active learning. From above gadwknow that disagreement-
based active learning is not sufficient to achieve the best possible batras before, it will serve as
a suitable starting place to gain intuition for how we might approach the prollenpooving Meta-
Algorithm 1 and quantifying the improvements achievable over passiveithgghy the resulting
more sophisticated methods.

The upper bounds on the label complexity of disagreement-based learirig subsection are
essentially already known and available in the published literature (thouglsligtaly less gen-
eral form). Specifically, we review (a modified version of) the method dirCétlas, and Ladner
(1994), referred to as Meta-Algorithm 2 below, which was historically thegimal disagreement-
based active learning algorithm. We then state the known results on the dahglexities achiev-
able by this method, in terms of a quantity known as the disagreement coéffibtrresult is due
to Hanneke (2011, 2007b). We further provide a novel lower boumithe label complexity of this
method, again in terms of the disagreement coefficient; in particular, thissshaithe stated upper
bounds represent a fairly tight analysis of this method.

1496



ACTIVIZED LEARNING

5.1.1 THE CAL ACTIVE LEARNING ALGORITHM

To begin, we consider the following simple disagreement-based method, Ilyp&f@rred to as
CAL after its discoverers Cohn, Atlas, and Ladner (1994), thougheh&ian here is slightly modi-
fied compared to the original (see below). It essentially representamednt of Meta-Algorithm
0 to take greater advantage of the sequential aspect of active leaftiapis, rather than request-
ing only two batches of labels, as in Meta-Algorithm 0, this method updates thionespace after
every label request, thus focusing the region of disagreement (arefdireethe region in which it
requests labels) after each label request.

Meta-Algorithm 2
Input: passive algorithmt, label budgen
Output: classifieh

0. V<« C,t+<0,m«0,L<«+{}
Whilet < [n/2] andm < 2"
m<+ m+1
If Xm € DIS(V)
Request the lab#, of X, and lett «+—t+1
LetV « V[(Xm, Ym)]
LetA < Pn(DIS(V))
Do [n/(6A)| times
m<+—m+1
9. IfXneDIS(V)andt <n
10. Request the lab¥}, of X, and lety«~ Ynandt <t +1
11. Else lety= h(X;,) for an arbitraryh € V
12.  LetL «+ LU{(Xm,¥)} andV « V[(Xn,)]
13. ReturnA,(£)

=

©ONOOA~WN

The procedure is specified in terms of an estimatgy for our purposes, we define this as in
(13) of Appendix B.1 (withk = 1 there). Every examplé,, added to the sef in Step 12 either has
its label requested (Step 10) or inferred (Step 11). By the same Chbowrfd argument mentioned
for the previous methods, we are guaranteed (with high probability) thdt then” constraint in
Step 9 is always satisfied wheh, € DIS(V). Since we assumge C, an inductive argument shows
that we will always havd €V as well; thus, every label requestedinferred will agree withf,
and therefore the labels ifare all correct.

As with Meta-Algorithm 0, this method has two stages to it: one in which we focuedurcing
the version spac¥, and a second in which we focus on constructing a set of labeled exataples
feed into the passive algorithm. The original algorithm of Cohn, Atlas, awthkr (1994) essen-
tially used only the first stage, and simply returned any classifiérafter exhausting its budget for
label requests. Here we have added the second stage (Steps @H8)vge can guarantee a certain
conditional independence (givéd|) among the examples fed into the passive algorithm, which is
important for the general results (Theorem 10 below). Hanneke j2Hdwed that the original
(simpler) algorithm achieves the (less general) label complexity boundrofl@y 11 below.
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5.1.2 EXAMPLES

Not surprisingly, by essentially the same argument as Meta-Algorithm O,caneshow Meta-
Algorithm 2 satisfies the claim in Theorem 5. That is, Meta-Algorithm 2 is aarsal activizer
for Cif and only if P(0f) = O for everyP andf € C. However, there are further results known on
the label complexity achieved by Meta-Algorithm 2. Specifically, to illustrate thegyf improve-
ments achievable by Meta-Algorithm 2, consider our usual toy examplésfase, to simplify the
explanation, for these examples we ignore the factkhds only an estimate, as well as the< n”
constraint in Step 9 (both of which will be addressed in the general rdsltig/).

First, consider threshold classifiers (Example 1) under a unifBron [0,1], and suppose
f =h, € C. Suppose the given passive algorithm has label compléxtylo get expected error at
moste in Meta-Algorithm 2, it suffices to hav&| > Ap(g/2, f,P) with probability at least - £/2.
Starting from any particuldy' set obtained in the algorithm, calM, the set DISVp) is simply the
region between the largest negative example observed so far;Jsad the smallest positive exam-
ple observed so far (say). With probability at least + £/n, at least one of the ne@(log(n/¢))
examples in thiszy, z| region will be in[z; + (1/3)(2r — 2¢), 2z — (1/3) (2 — z¢)], S0 that after pro-
cessing that example, we definitely ha¥€&DIS(V)) < (2/3)P(DIS(Vo)). Thus, upon reaching Step
6, since we have mad¥ 2 label requests, a union bound implies that with probabilityel/2, we
haveP(DIS(V)) < exp{—Q(n/log(n/¢))}, and thereforel| > exp{2(n/log(n/€))}. Thus, for
some valueN,(g, f,P) = O(log(Ap(e/2, f,P))log(log(Ap(e/2,T,P))/€)), anyn > Ny(g, T,P)
gives|L| > NAp(g/2, f,P) with probability at least - £/2, so that the activized algorithm achieves
label complexityAa(€, f,P) € PolylogAp(£/2, f,P)/€).

Consider also the intervals problem (Example 2) under a unifBrion [0,1], and suppose
f =hgy € C, for b>a. In this case, as with any disagreement-based algorithm, until the al-
gorithm observes the first positive example (i.e., the Kgte [a,b]), it will request the label of
every example (see the reasoning above for Meta-Algorithm 0). Howatevery time after ob-
serving this first positive point, say the region DI$V) is restricted to the region between the
largest negative point less tharand smallest positive point, and the region between the largest
positive point and the smallest negative point larger tkarFor each of these two regions, the
same arguments used for the threshold problem above can be applieditthahavith probability
1—-0(¢), the region of disagreement is reduced by at least a constant fracgon@(log(n/¢))
label requests, so thaf| > exp{2(n/log(n/¢e))}. Thus, again the label complexity is of the form
O(log(Ap(g/2,T,P))log(log(Ap(e/2, T,P))/€)), which is PolylogAp(e/2, f,P)/¢€), though this
time there is a significant (additive) target-dependent term (rouglgﬁg1 log(1/¢€)), accounting for
the length of the initial phase before observing any positive examples. éutlter hand, as with
anydisagreement-based algorithm, whes: h, 5, because the algorithm never observes a positive
example, it requests the label of every example it considers; in this gages same argument given
for Meta-Algorithm 0, upon reaching Step 6 we h&®€DIS(V)) = 1, so thatL| = O(n), and we
observe no improvements for some passive algoritdms

A similar analysis can be performed for unions aftervals undefP uniform on|0,1]. In that
case, we find that arty, € C not representable (up to zero-probability differences) by a unios @f
or fewer intervals allows for the exponential improvements of the type wbddn the previous two
examples; this time, the phase of exponentially decreaBifiyS(V)) only occurs after observing
an example in each of thantervals and each of thie- 1 negative regions separating the intervals,
resulting in an additive term of roughb,«rninl<1_<1 log(i/€) in the label complexity. However,

2i Zj+1—Z]
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anyh; € C representable (up to zero-probability differences) by a unidn-df or fewer intervals
hasP(0h;) = 1, which mean$C| = O(n), and therefore (as with any disagreement-based algorithm)
Meta-Algorithm 2 will not provide improvements for some passive algorithtps

5.1.3 THE DISAGREEMENT COEFFICIENT
Toward generalizing the arguments from the above examples, considetitivgng definition of

Hanneke (2007b).

Definition 9 For € > 0, thedisagreement coefficienf a classifier f with respect to a concept space
C under a distributiorP is defined as
61(6) = 1\/supP(DIS(rB(f’r))).

r>¢&

Also abbreviateéd; = 0;(0).

Informally, the disagreement coefficient describes the rate of colldbke cegion of disagree-
ment, relative to the distance frofn It has been useful in characterizing the label complexities
achieved by several disagreement-based active learning algorithmedké&a 2007b, 2011; Das-
gupta, Hsu, and Monteleoni, 2007; Beygelzimer, Dasgupta, and Lahg2609; Wang, 2009;
Koltchinskii, 2010; Beygelzimer, Hsu, Langford, and Zhang, 2010y #self has been studied
and bounded for various families of learning problems (Hanneke, 2@WA,; Balcan, Hanneke,
and Vaughan, 2010; Friedman, 2009; Beygelzimer, Dasgupta, argfdrdn2009; Mahalanabis,
2011; Wang, 2011). See the paper of Hanneke (2011) for a detasleaksdion of the disagreement
coefficient, including its relationships to several related quantities, as wellariety of general
properties that it satisfies. In particular, below we use the fact that,nfpcanstant € [1,00),
0:(g) < B;(g/c) < cb(€). Also note thatP(0f) =0 if and only if Bs (€) = 0(1/¢€). See the papers
of Friedman (2009) and Mahalanabis (2011) for some general coralitinf and?, under which
every f € C hasf; < oo, which (as we explain below) has particularly interesting implications for
active learning (Hanneke, 2007b, 2011).

To build intuition about the behavior of the disagreement coefficient, wélyoge through its
calculation for our usual toy examples from above. The first two of thekmilations are taken from
Hanneke (2007b), and the last is from Balcan, Hanneke, and Vaug@bao0). First, consider the
thresholds problem (Example 1), and for simplicity suppose the distrib@isnuniform on[0, 1].

In this case, as in Section 3.2(lB,r) = {h,, € C: |z’ — z| <r}, and DISB(h,,r)) C [z —r,z+T)
with equality for sufficiently smalt. ThereforeP(DIS(B(h.,r))) < 2r (with equality for smalr),
and6,_(g) < 2 with equality for sufficiently smak. In particular,6,, = 2.

On the other hand, consider the intervals problem (Example 2), again Bnd@form on|[0, 1].
This time, forh;z ) € C with b—a > 0, we have for 0<r <b—a, B(hjgp,r) = {hay € C:|a—
d|+[b—0| <r}, DIS(B(hjgp,r)) € [a—r,a+r)U(b—r,b+r],andP(DIS(B(hjap,r))) < 4r (with
equality for sufficiently smali). Butfor 0O< b—a<r, we have Bhjy,r) 2 {hjz 4 : & € (0,1)},
so that DI§B(hja 1)) = (0,1) andP(DIS(B(hjap),r))) = 1. Thus, we generally havéh,,, (€) <
max{ bfla, 4}, with equality for sufficiently smald. However, this last reasoning also indicates-

0, B(h[a"a],r) D) {h[a/7a/] a e (0, 1)}, so that DI$B(h[aa],r)) = (0, 1) andP(DIS(B(h[aya],r))) =1;
therefore B, (€) = % the largest possible value for the disagreement coefficient; in partithikar
also meansh, , = oc.
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Finally, consider the unions ofntervals problem (Example 3), again unduniform on[0, 1].
First take anyh, € C such that anyn, € C representable as a unioniof 1 intervals hasP({x:
hz(x) # hz(x)}) > 0. Then for 0<r < min zj;1—2j, B(h,r) ={hy € C: >° |zj—zj| <r},

1<j<2i 1<j<2i

so thatP(DIS(B(hz,r))) < 4ir, with equality for sufficiently smalt. Forr > an.inz.ZHl - zj,
<j<2i

B(hz,r) contains a set of classifiers that flips the labels (comparég) io that smallest region and
uses the resulting extra interval to disagree \iitlon a tiny region at an arbitrary location (either
by encompassing some point with a small interval, or by splitting an interval intartteovals
separated by a small gap). Thus, [B®h;,r)) = (0,1), andP(DIS(h,,r)) =1. Sointotalf,, (&) <

1
1My 24172
represented by a union bf 1 (or fewer) intervals, then we can use the extra interval to disagree with
h; on a tiny region at an arbitrary location, while still remaining ithBr), so that DI$B(hz,r)) =

(0,1), P(DIS(B(hz,r))) =1, andbh, (&) = %; in particular, in this case we ha¥g, = cc.

max 4i}, with equality for sufficiently smalk. On the other hand, i, € C can be

5.1.4 (ENERAL UPPERBOUNDS ON THELABEL COMPLEXITY OF META-ALGORITHM 2

As mentioned, the disagreement coefficient has implications for the labellexitigs achievable

by disagreement-based active learning. The intuitive reason for thistjsagthe number of label
requests increases, thmmeterof the version space shrinks at a predictable rate. The disagreement
coefficient then relates the diameter of the version space to the size ofids glisagreement,
which in turn describes the probability of requesting a label. Thus, thecteghérequency of label
requests in the data sequence decreases at a predictable rate relaatidagreement coefficient,

so that|£| in Meta-Algorithm 2 can be lower bounded by a function of the disagreeousfticient.
Specifically, the following result was essentially established by HanneXel(2007b), though
actually the result below is slightly more general than the original.

Theorem 10 For any VC classC, and any passive learning algorithtd, achieving label com-
plexity Ap, the active learning algorithm obtained by applying Meta-Algorithm 2 wAthas input
achieves a label complexity, that, for any distributiori? and classifier fe C, satisfies

Na(e,£.7) =081 (nofe/2.1.7) Hlog M /2L,

The proof of Theorem 10 is similar to the original result of Hanneke (2@007b), with only
minor modifications to account for using, instead of returning an arbitrary element\of The
formal details are implicit in the proof of Theorem 16 below (since Meta-Atgor 2 is essentially
identical to th&k = 1 round of Meta-Algorithm 3, defined below). We also have the following &mp
corollaries.

Corollary 11 For any VC clas<, there exists a passive learning algorithp such that, for every
f € C and distributionP, the active learning algorithm obtained by applying Meta-Algorithm 2 with
Ap as input achieves label complexity

Na(g,f,P) = 0(65(¢)log? (1/¢)).
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Proof The one-inclusion graph algorithm of Haussler, Littlestone, and Warm@8+{ls a passive
learning algorithm achieving label complexity,(¢, f,P) < d/e. Plugging this into Theorem 10,
using the fact thabs (¢ /2d) < 2d6;(€), and simplifying, we arrive at the result. In fact, we will see
in the proof of Theorem 16 that incurring this extra constant factariefnot actually necessari

Corollary 12 For any VC clas<C and distributionP, if Vf € C, 6t < oo, then(C,P) is learnable
at an exponential rate. If this is true for &R, thenC is learnable at an exponential rate.

Proof The first claim follows directly from Corollary 11, sinék (¢) < 6;. The second claim then
follows from the fact that Meta-Algorithm 2 is adaptivef(has no direct dependence Brexcept
via the data). |

Aside from the disagreement coefficient ahglterms, the other constant factors hidden in the
big-O in Theorem 10 are onl§-dependent (i.e., independentfodnd?P). As mentioned, if we are
only interested in achieving the label complexity bound of Corollary 11, weotsain this result
more directly by the simpler original algorithm of Cohn, Atlas, and Ladne®4) ®ia the analysis
of Hanneke (2011, 2007b).

5.1.5 GENERAL LOWERBOUNDS ON THELABEL COMPLEXITY OF META-ALGORITHM 2

It is also possible to prove a kind @wer boundon the label complexity of Meta-Algorithm 2 in
terms of the disagreement coefficient, so that the dependence on theedinagt coefficient in
Theorem 10 is unavoidable. Specifically, there are two simple observdtianstuitively explain
the possibility of such lower bounds. The first observation is that thectsggenumber of label
requests Meta-Algorithm 2 makes among the fjiste] unlabeled examples is at leat(g)/2
(assuming it does not halt first). Similarly, the second observation is thatrive at a region of
disagreement with expected probability mass less ?@DIS(B(f,¢)))/2, Meta-Algorithm 2 re-
quires a budgen of size at leasB;(g)/2. These observations are formalized in Appendix C as
Lemmas 47 and 48. The relevance of these observations in the contextivohgl lower bounds
based on the disagreement coefficient is clear. In particular, we eaghefatter of these insights to
arrive at the following theorem, which essentially complements Theorenh@@jisg that it cannot
generally be improved beyond reducing the constants and logarithmicdaaitiout altering the
algorithm or introducing additionall,-dependent quantities in the label complexity bound. The
proof is included in Appendix C.

Theorem 13 For any set of classifier€, f € C, distribution?, and nonincreasing functioa :
(0,1) — N, there exists a passive learning algorith#}, achieving a label complexith, with
Np(g, T,P) = A(¢g) for all € > 0, such that if Meta-Algorithm 2, with,, as its argument, achieves
label complexity\,, then

Na(e, T,P) = (6; (Np(2¢,1,P)7h)).

Recall that there are many natural learning problems for wlick- co, and indeed where
s (€) = 2(1/¢): for instance, intervals with = hj, 5 under uniforniP, or unions of intervals un-
der uniformP with f representable as- 1 or fewer intervals. Thus, since we have just seen that the
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improvements gained by disagreement-based methods are well-charachgrite disagreement
coefficient, if we would like to achieve exponential improvements over passarning for these
problems, we will need to move beyond these disagreement-based methtigdssluibsections that
follow, we will use an alternative algorithm and analysis, and prove argeresult that is always
at least as good as Theorem 10 (in a big-O sense), and often sigthjficatter (in a little-o sense).
In particular, it leads to a sufficient condition for learnability at an expbiaérate, strictly more

general than that of Corollary 12.

5.2 An Improved Activizer

In this subsection, we define a new active learning method based onislgatisiin Meta-Algorithm

1, but which also takes fuller advantage of the sequential aspect @€ detirning, as in Meta-
Algorithm 2. We will see that this algorithm can be analyzed in a manner anadgdhe disagree-
ment coefficient analysis of Meta-Algorithm 2, leading to a new and oftamdtically-improved

label complexity bound. Specifically, consider the following meta-algorithm.

Meta-Algorithm 3
Input: passive algorithmt, label budgen
Output: classifieh

0. V«—V=C,To«+ [2n/3],t < 0,m«0
1. Fork=1,2,...,d+1
2. LetLy < {}, Ta < Tk_1—t,and lett + O

3 Whilet < [Tx/4] andm < k- 2"

4 m<<— m+1

5 If Prm(S€ X%V shattersSU {Xm}|V shattersS) > 1/2

0. Request the lab#}, of X, and lety« Y andt <t +1

7 Else lety— argmaxPp(S€ X*1:V[(Xm, —y)] does not shatte8V shattersS)
ye{—-1,+1}

8.  LetV 4+ Vin=Vin1[(Xn.9)]

9. AW« Pp(x: P(Se x%1:V shattersSU {x}|V shattersS) > 1/2)

10. Do|Ty/(3AM)] times
11. m+—m+1

12. If P (S€ X 1:V shattersSU {Xn}|V shattersS) > 1/2 andt < | 3Ty /4]

13. Request the Iabélf.h1 of Xm, and lety’« Yy andt «+t+1

14, Else, lety % argmaxPm(Se A% 1:V[(Xm, —y)] does not shatte3V shatterss)
ye{—-1,+1}

15. LetLy < Lk U{(Xm,¥)} andV < Vin = Vin_1[(%m, ¥)]
16. Return ActiveSele¢fAp(L1), Ap(L2),..., Ap(Ld+1)}, [N/3], { X1, Xmi2,---})

As before, the procedure is specified in terms of estimafarsAgain, these can be defined in a
variety of ways, as long as they converge (at a fast enough rate)togbpective true probabilities.
For the results below, we will use the definitions given in Appendix B.1: th#éssame definitions
used in Meta-Algorithm 1. Following the same argument as for Meta-Algorithon& can show
that Meta-Algorithm 3 is a universal activizer f@¥, for any VC classC. However, we can also
obtain more detailed results in terms of a generalization of the disagreem#itienegiven below.
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As with Meta-Algorithm 1, this procedure has three main components: oneiaghwile focus
on reducing the version spa¥eone in which we focus on collecting a (conditionally) i.i.d. sample
to feed into.Ap, and one in which we select from among tthe- 1 executions ofd,. However,
unlike Meta-Algorithm 1, here the first stage is also broken up based oralhe ofk, so that each
k has its own first and second stages, rather than sharing a single fiest Azain, the choice of the
number of (unlabeled) examples processed in each second stagetgesi@y a Chernoff bound)
that the t < |3Tx/4|” constraint in Step 12 is redundant. Depending on the type of label coityplex
result we wish to prove, this multistage architecture is sometimes avoidablerticufz, as with
Corollary 11 above, to directly achieve the label complexity bound in Coyoll@rbelow, we can
use a much simpler approach that replaces Steps 9-16, instead simplingeauriarbitrary element
of V upon termination.

Within each value ok, Meta-Algorithm 3 behaves analogous to Meta-Algorithm 2, requesting
the label of an example only if it cannot infer the label from known infornmgtend updating the
version spac¥ after every label request; however, unlike Meta-Algorithm 2, for valoik > 1,
the mechanism for inferring a label is based on shatterable sets, as irAMet&hm 1, and is mo-
tivated by the same argument of splittidgnto subsets containing arbitrarily good classifiers (see
the discussion in Section 4.1). Also unlike Meta-Algorithm 2, even the irddaieels can be used
to reduce the sat (Steps 8 and 15), since they are not only correct but also potentiallymatoe
in the sense thate DIS(V). As with Meta-Algorithm 1, the key to obtaining improvement guaran-
tees is that some value kfhas|Lx| > n, while maintaining that all of the labels ifix are correct;
ActiveSelect then guarantees the overall performance is not too mudle Waan that obtained by
Ap(Ly) for this value ofk.

To build intuition about the behavior of Meta-Algorithm 3, let us considerusural toy exam-
ples, again under a uniform distributi@hon [0, 1]; as before, for simplicity we ignore the fact that
Pm is only an estimate, as well as the constraint inStep 12 and the effectiveness of ActiveSelect,
all of which will be addressed in the general analysis. First, for theviehaf the algorithm for
thresholds and nonzero-width intervals, we may simply refer to the discustideta-Algorithm
2, since th&k = 1 round of Meta-Algorithm 3 is essentially identical to Meta-Algorithm 2; in this
case, we have already seen thag| grows as exp(2(n/log(n/¢))} for thresholds, and does so for
nonzero-width intervals after some initial period of slow growth related to tidghvof the target
interval (i.e., the period before finding the first positive example). As witiavAlgorithm 1, for
zero-width intervals, we must look to tike= 2 round of Meta-Algorithm 3 to find improvements.
Also as with Meta-Algorithm 1, for sufficiently large everyXm, processed in thke= 2 round will
have its label inferred (correctly) in Step 7 or 14 (i.e., it does not rdqusslabels). But this means
we reach Step 9 witm= 2-2" + 1; furthermore, in these circumstances the definitio®gfrom
Appendix B.1 guarantees (for sufficiently largethatA?) = 2/m, so that|Lo|xcn-m=Q (n-2").
Thus, we expect the label complexity gains toex@onentially improvedompared toA,.

For a more involved example, consider unions of 2 intervals (Example 8grumiform?P
on [0,1], and supposé = hapap) for b—a > 0; that is, the target function is representable as
a single nonzero-width intervah, b] C (0,1). As we have seerjf = (0,1) in this case, so that
disagreement-based methods are ineffective at improving over pa3$igealso means thie= 1
round of Meta-Algorithm 3 will not provide improvements (i.&;| = O(n)). However, consider
thek = 2 round. As discussed in Section 4.2, for sufficiently langafter the first roundi(= 1) the
setV is such that any label we infer in the= 2 round will be correct. Thus, it suffices to determine
how large the sef, becomes. By the same reasoning as in Section 4.2, for sufficientlyriatige
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examplesXy, whose labels are requested in Step 6 are precisely traseparated from bothand

b by at least one of then— 1 examples already processed (si¥ds consistent with the labels of all
m— 1 of those examples). But this is the same set of points Meta-Algorithm 2 woweld dor the
intervalsexample in Section 5.1; thus, the same argument used there implies that in thespwd
have|Lz| > exp{2(n/log(n/¢€))} with probability 1— /2, which means we should expect a label
complexity ofO (log(Ap(g/2, f,P))log(log(Ap(e/2, f,P))/€)), whereA, is the label complexity

of Ap. For the casd = h(y 544), k= 3 is the relevant round, and the analysis goes similarly to the
hia,a Scenario for intervals above. Unionsiof 2 intervals can be studied analogously, with the
appropriate value df to analyze being determined by the number of intervals required to represen
the target up to zero-probability differences (see the discussion in S&c8p

5.3 Beyond the Disagreement Coefficient

In this subsection, we introduce a new quantity, a generalization of therdesagnt coefficient,
which we will later use to provide a general characterization of the improntsrachievable by
Meta-Algorithm 3, analogous to how the disagreement coefficient clegized the improvements
achievable by Meta-Algorithm 2 in Theorem 10. First, let us define the fatigweneralization of
the disagreement core.

Definition 14 For an integer k> 0, define the {dimensional shatter coref a classifier f with
respect to a set of classifiet and probability measur® as

o, pf = erg){Se X¥: By p(f,r) shatters %

As before, whenP = P, and?P is clear from the context, we will abbreviattétf = 31).‘{'pf, and
when we also inten@{ = C, thefull concept space, ard is clearly defined in the given context,
we further abbreviaté*f = 0k f = 0K ,, f. We have the following definition, which will play a key
role in the label complexity bounds below.

Definition 15 For any concept spacg, distributionP, and classifier fyk € N, Ve > 0, define

k(se xk:B(f,r) shatters
ef(k)(s):l\/supp (S¢ (.0 $

r>¢ r

Then define
and

Also abbreviated* = 6 (0) and 65 = 6;(0).

We might refer to the quantitﬁf(k)(s) as the ordek (or k-dimensional) disagreement coeffi-
cient, as it represents a direct generalization of the disagreementizefi (¢). However, rather
than merely measuring the rate of collapse of the probabilitdisdigreemen{one-dimensional
shatterability),ef(k)(s) measures the rate of collapse of the probabilitig-oimensional shatterabil-

ity. In particular, we havé; () = Qﬁdf)(s) < 9151)(8) = 0¢(€), so that this new quantity is never
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larger than the disagreement coefficient. However, unlike the disagnéeoefficient, wealways
have 6; (£) = o(1/¢) for VC classesC. In fact, we could equivalently defing (¢) as the value
of Qf(k)(s) for the smallesk with 9§k>(£) = 0(1/¢). Additionally, we will see below that there are
many interesting cases wheflg = co (even6s (&) = Q(1/¢)) but 6; < oo (e.g., intervals with a
zero-width target, or unions afintervals where the target is representable as a unian-df or
fewer intervals). As was the case fy, we will see that showinéf < oo for a given learning prob-
lem has interesting implications for the label complexity of active learning (@oydl8 below). In
the process, we have also defined the quaﬁtitwhich may itself be of independent interest in the
asymptotic analysis of learning in general. For VC clasdeslways exists, and in fact is at most
d + 1 (sinceC cannot shatter any+ 1 points). Wherd = oo, the quantityff might not be defined
(or defined asw), in which caséd; (¢) is also not defined; in this work we restrict our discussion to
VC classes, so that this issue never comes up; Section 7 discusse$epadsibsions to classes of
infinite VC dimension.

We should mention that the restriction émff(s) > 1 in the definition is only for convenience, as
it simplifies the theorem statements and proofs below. It is not fundamentad ttefmition, and
can be removed (at the expense of slightly more complicated theorem statenrefatst, this only
makes a difference to the value éff(s) in some (seemingly unusual) degenerate cases. The same
is true of Bs (¢) in Definition 9.

The process of calculatinéf(e) is quite similar to that for the disagreement coefficient; we
are interested in describing B r), and specifically the variety of behaviors of elements (f B)
on points inX, in this case with respect to shattering. To illustrate the calculatich @f), con-
sider our usual toy examples, again un@uniform on[0,1]. For the thresholds example (Ex-
ample 1), we havel; = 1, so thatb (&) = 9]51)(8) = 0¢(&), which we have seen is equal 2 for
smalle. Similarly, for the intervals example (Example 2), ahy= hpp € C with b—a > 0 has
di = 1, so thatbs(g) = 9;1)(8) = 6+ (g), which for sufficiently smalle, is equal max 1,4}
Thus, for these two exampled; (€) = 6; (). However, continuing the intervals example, consider
f =hjag € C. In this case, we have seéif = 0f = (0,1), so thatP(9'f) = 1> 0. For any
X1,%2 € (0,1) with 0 < |[x1 —X2| <'r, B(f,r) can shattefxs,xz), specifically using the classifiers
M%) Nixaxals Mol s Nxa g - fOr @Ny 3 € (0,1) \ {x1,%2}. However, for anyx,x, € (0,1) with
Ix1 —X2| > r, no element of Bf,r) classifies both as-1 (as it would need width greater than
and thus would have distance frdig 5 greater tham). Therefore{Se X2 :B(f,r) shattersS} =
{(x1,%2) € (0,1)?:0< |x; — Xo| < r}; this latter set has probability 2L —r)+r? = (2—r) -r, which
shrinks to 0 as — 0. Therefored; = 2. Furthermore, this show (¢) = 6f<2) () =sup..(2—r)=
2— g < 2. Contrasting this with; (&) = 1/¢, we seef;(¢) is significantly smaller than the dis-

agreement coefficient; in particuldl; = 2 < oo, while 6; = cc.
Consider also the space of unionsidhtervals (Example 3) undeP uniform on[0,1]. In
this case, we have already seen that, for &ry h, € C not representable (up to zero-probability

differences) by a union df— 1 or fewer intervals, we havB(9'f) = P(9f) = 0, so thatd; = 1,

and 6; = Qf(l) = 6; = max{w,m}. To generalize this, suppode= h, is minimally
1<p<2i

representable as a union of any numpeti of intervals of nonzero widthfz1, zo] U [23,24] U - - - U

[22j—1,22j], With 0 < 21 < 2p < --- < 2pj < 1. For our purposes, this is fully general, since every

element ofC has distance zero to sorhgof this type, andd, = 6 for anyh, i with P(x: h(x) #

h'(x)) = 0. Now for anyk < i — j+1, and anyS= (xg,...,X) € XX with all elements distinct, the
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set B(f,r) can shatte6, as follows. Begin with the intervals,,_1, 20p] as above, and modify the
classifier in the following way for each labeling 8f For any of thex, values we wish to labe}-1,
ifitis already in an intervalzop_1, 22p], we do nothing; if it is not in one of thigop_1, 22p] intervals,
we add the intervalx,, x,] to the classifier. For any of the values we wish to label 1, if it is not
in any interval{zop_1, 22p], we do nothing; if it is in some intervatop 1, 22p], we split the interval
by setting to—1 the labels in a small regiofx, — y,x; + y), for y < r/k chosen small enough so
that (X, — y, X, + y) does not contain any other elementfThese operations add at méshew
intervals to the minimal representation of the classifier as a union of interviaishwherefore has
at mostj + k < i intervals. Furthermore, the classifier disagrees Wwitin a set of size at mos{ so
that it is contained in Bf,r). We therefore hav@X(Se Xk : B(f,r) shattersS) = 1. However, note
that for O<r < l<ng)i<n2j Zp+1 — 2p, for anyk andSe XK with all elements oSU {zp:1<p<2j}

separated by a distance greater thaslassifying the points ir§ opposite tof while remaining

r-close tof requires us to increase to a minimumjef k intervals. Thus, fok=i— j+1, anyS=

(X1,...,X) € XX with min ly1 —Y2| > r is notshatterable by Bf,r). We therefore have
Y1.Y2€SH{ 2p} p:V17#Y2

Se X%:B(f,r) shattersS Q{Se Xk min — gr}. Forr < min zp.1— 2p,
{ (.0 4 Y1,Y26SU{2p} py17Y2 yi=yel 1<p<2] PP
we can bound the probability of this latter set by considering sampling the peistxjuentially;

the probability the/'™ point is withinr of one ofxy,...,X;_1,21, . ..,%z2j is at most 2(2j + ¢ — 1),

so (by a union bound) the probability any of tk@ointsx,, ..., X is within r of any other or any
Of 21,..., 22 is at mostyX_ 2r(2j + ¢ — 1) = 2r (2jk+ (;)) — (1+i—j)(i+3j)r. Since this
i—j+1)

approaches zero as— 0, we haved; =i— j + 1. Furthermore, this analysis shofis= Qf( <
max{minzlw_zp, (I+i—j)(i +3j)}. In fact, careful further inspection reveals that this upper
1<p<2j

bound is tight (i.e., this is the exact value&f). Recalling tha®; () =1/efor j <i, we see that
again6; (¢) is significantly smaller than the disagreement coefficient; in partic8fas; co while
0 = oo.

Of course, for the quantitﬁf(s) to be truly useful, we need to be able to describe its behav-
ior for families of learning problems beyond these simple toy problems. Faelynas with the
disagreement coefficient, for learning problems with simple “geometric” irggapons, one can
typically bound the value of; without too much difficulty. For instance, consid&rthe surface of
a unit hypersphere ip-dimensional Euclidean space (wiph> 3), with 2 uniform onx’, andC the
space of linear separatofS:= {hy p(X) = ]l[io’oo)(W‘X—l- b):we RP,be R}. Balcan, Hanneke, and
Vaughan (2010) proved tha€,P) is learnable at an exponential rate, by a specialized argument
for this space. In the process, they established that forfanyC with P(x: f(x) = +1) € (0,1),

B; < oo; in fact, a similar argument showds < 4mt,/p/minyP(x: f(x) =y). Thus, in this case,
df =1, andfs = 6; < co. However, considef € C with P(x: f(x) =y) =1 forsomey € {—1,+1}.
In this case, everlg € C with P(x: h(x) = —y) <r hasP(x: h(x) # f(x)) <r and is therefore con-
tained in B f,r). In particular, for ank € X, there is such ahthat disagrees witfi on only a small
spherical cap containing so that DI$B(f,r)) = X for all r > 0. But this mean®f = X', which

implies 6 (¢) = 1/& andd; > 1. However, let us examine the value&ﬁ). LetAp, = % denote
2

the surface area of the unit spherelifi, and letCy(z) = %ApIZZ_Zz (p%l, %) denote the surface
area of a spherical cap of height (0,1) (Li, 2011), wherelx(a,b) = %ﬁ‘ta—l(l—t)b—ld’[
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is the regularized incomplete beta function. In particular, suvﬁ < e
2

‘o

)
probability mass%p) = % Tl rgf)(l) 2:-2* 18 (1 _t)~3dt contained in a spherical cap of height
2 2

z satisfies
2222 2 p-1 2 p-1
Cp(z)Z} E/ 22t — P (2= 2)22(22 2)27 o
A, —2V12/)o 12 p-1 V12p
and lettingz = min{ z,1/2}, also satisfies
Co(z) _2Co(2) _1 /25—52 b3 1
< < —+/p—-2 1—
Ay S A, SpVPTZ) tE(-p
22—2%2 — 8 2 Bt p-1
< p—2/‘ ﬁngZ p ZQZ—ff%S(& 24) 2 §(&)2. 3)
0 p—1 p/6 p/6

Consider any linear separatoe B(f,r) forr < 1/2, and letz(h) denote the height of the spherlcal

cap whereh(x) = —y. Then (2) indicates the probability of this region is at Iegé@i
Sinceh € B(f,r), we know this probability mass is at mastand we therefore have:th) — z( )2 <
2
(v/I2pr) 1. Now for anyx; € X, the set of, € X for which B(f,r) shattergxy, x,) is equivalent
to the set DIS{h € B(f,r) : h(x1) = —y}). Butif h(x1) = —y, thenx; is in the aforementioned
spherical cap associated with A little trigonometry reveals that, for any spherical cap of height
1
z(h), any two points on the surface of this cap are within distang@2h) — z(h)2 < 2 (/12pr) »*
1
of each other. Thus, for any poimg further than Z/12pr)?* from x, it must be outside the
spherical cap associated withwhich meandi(xz) =y. But this is true for everyn € B(f,r) with
h(x1) = —y, sothat DI${h € B(f,r) : h(x;) = —y}) is contained in the spherical cap of all elements
1
of X within distance Z/12pr) > of xq; a little more trigonometry reveals that the height of this
spherical cap is Q 12 r)ﬁ. Then (3) indicates the probability mass in this region is at most

2L = P18 Thus P2(, %) B(1,1) shattersx, xo)) = [ P(DIS({he B(f,r) th(x) =

—y}))P(dx;) < 2P\/18r. In particular, since this approaches zera as 0, we haved; = 2. This
also shows thafl; = Gf(z) < 2P\/18, a finite constant (albeit a rather large one). Following similar
reasoning, using the opposite inequalities as appropriate, and takinjciently small, one can
also showd; > 2P/(12V/2).

5.4 Bounds on the Label Complexity of Activized Learning

We have seen above that in the context of several examples, MetatAlgd can offer signif-
icant advantages in label complexity over any given passive learnimgithign, and indeed also
over disagreement-based active learning in many cases. In this subse&ipresent a general re-
sult characterizing the magnitudes of these improvements over passiviedgdn terms ofd (€).
Specifically, we have the following general theorem, along with two immediatlades. The
proof is included in Appendix D.
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Theorem 16 For any VC clas€, and any passive learning algorithu, achieving label complex-
ity Ap, the (Meta-Algorithm 3)-activized , algorithm achieves a label complexity that, for any
distribution’? and classifier fe C, satisfies

Aa(e. f,P) = O (éf (Aole/a. 1. 7)) |ogZ"p(5/j’f’7’>> .

Corollary 17 For any VC classC, there exists a passive learning algorithdy, such that, the
(Meta-Algorithm 3)-activized!, algorithm achieves a label complexity that, for any distribution
‘P and classifier fe C, satisfies

Na(, f,P) = O(B¢(e)log?(1/¢)) -

Proof The one-inclusion graph algorithm of Haussler, Littlestone, and Warm@84{ls a passive
learning algorithm achieving label complexity,(¢, f,P) < d/e. Plugging this into Theorem 16,
using the fact thas (£/4d) < 4dBs (¢), and simplifying, we arrive at the result. In fact, we will see
in the proof of Theorem 16 that incurring this extra constant factarisfnot actually necessari

Corollary 18 For any VC clas<C and distributionP, if Vf € C, 6; < oo, then(C,P) is learnable
at an exponential rate. If this is true for &R, thenC is learnable at an exponential rate.

Proof The first claim follows directly from Corollary 17, sincésp(e) < éf. The second claim then
follows from the fact that Meta-Algorithm 3 is adaptivef(has no direct dependence Brexcept
via the data). |

Actually, in the proof we arrive at a somewhat more general result, inttieabound of The-
orem 16 actually holds for any target functidnin the “closure” of C: that is, anyf such that
vr > 0,B(f,r) # (. As previously mentioned, if our goal is only to obtain the label complexity
bound of Corollary 17 by a direct approach, then we can use a simmgeegure (which cuts out
Steps 9-16, instead returning an arbitrary elemei)pfinalogous to how the analysis of the orig-
inal algorithm of Cohn, Atlas, and Ladner (1994) by Hanneke (20b13ins the label complexity
bound of Corollary 11 (see also Algorithm 5 below). However, the gdnesult of Theorem 16 is
interesting in that it applies to any passive algorithm.

Inspecting the proof, we see that it is also possible to state a result tetsepthe prob-
ability of success from the achieved error rate, similar to the PAC model ofi¥ali®84) and
the analysis of active learning by Balcan, Hanneke, and Vaugha)2®pecifically, suppose
Ap is a passive learning algorithm such theg, o € (0,1), there is a valuel (¢,6,f,P) € N
such that'n > A (g,0, f,P), P(er(Ap(2n)) > €) < 0. Supposén, is the classifier returned by the
(Meta-Algorithm 3)-activized4,, with label budgen. Then for som&C, P, f)-dependent constant
ce[1,00), Ve, 0 € (0,e73), lettingA = A(g/2,6/2,f,P),

vn>chs (A1) log?(A/3), P(er(hn) >¢€) < 4.

For instance, if4, is an empirical risk minimization algorithm, then thisoids (e)polylog(%).
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5.5 Limitations and Potential Improvements

Theorem 16 and its corollaries represent significant improvements over known results for
the label complexity of active learning, and in particular over Theoremntlita corollaries. As
for whether this also represents the best possible label complexity gdilevaue by any active
learning algorithm, the answer is mixed. As with most algorithms and analysea;Aligorithm
3, Theorem 16, and corollaries, represent one set of solutions ircirsm that trades strength
of performance guarantees with simplicity. As such, there are sevessaibi® modifications one
might make, which could potentially improve the performance guarantee® wiesketch a few
such possibilities. This subsection can be skipped by the casual reitldentloss of continuity.

Even with Meta-Algorithm 3 as-is, various improvements to the bound of Emedr6 should
be possible, simply by being more careful in the analysis. For instance, atiormexl, Meta-
Algorithm 3 is auniversal activizerfor any VC classC, so in particular we know that whenever
Bt (£) # 0(1/ (elog?(1/€))), the above bound is not tight (see the work of Balcan, Hanneke, and
Vaughan, 2010 for a construction leading to ségte) values), and indeed any bound of the form
éf(e)polylog(l/e) will not be tight in some cases of this type. A more refined analysis may close
this gap.

Another type of potential improvement is in the constant factors. Specificaliige case when
B; < oo, if we are only interested iasymptotidabel complexity guarantees in Corollary 17, we can
replace “supin Definition 15 with “limsup” which can sometimes be significantly smaller and/or

easier tor>s?udy. This is true for the (rJITsoagreement coefficient in Coroltaigsiwell. Additionally,

the proof (in Appendix D) reveals that there are significedtP, f)-dependent constant factors
other thanéf(s), and it is quite likely that these can be improved by a more careful analysis of
Meta-Algorithm 3 (or in some cases, possibly an improved definition of the etsiriﬂfan).

However, even with such refinements to improve the results, the apprbasing 65 to prove
learnability at an exponential rate has limits. For instance, it is known that@mtableC is learn-
able at an exponential rate (Balcan, Hanneke, and Vaughan, 28b@)ever, there are countable
VC classe<C for which 8; = oo for some elements df (e.g., take the tree-paths concept space of
Balcan, Hanneke, and Vaughan (2010), except instead of all infleji¢h paths from the root, take
all of the finite-depth paths from the root, but keep one infinite-depth faethr this modified space
C, which is countable, evetly e C hasd, = 1, and for that one infinite-depthwe haved; = ).

Inspecting the proof reveals that it is possible to make the results slightlyesHaypeplacing
B¢ (ro) (forro = Np(g/4, f,P)~1) with a somewhat more complicated quantity: namely,

minsupr—*- P (x € X Pk (Se XX:B(f,r) shattersSU {x}) >P <8kf> /16) : (4)

k<ds r>rg

This quantity can be bounded in termsé;’(ro) via Markov's inequality, but is sometimes smaller.
As for improving Meta-Algorithm 3 itself, there are several possibilities. @m@ediate im-

provement one can make is to replace the condition in Steps 5 and 12 by;mifim(Se X1-1:

V shattersSU { Xy} |V shattersS) > 1/2, likewise replacing the corresponding quantity in Step 9,

and substituting in Steps 7 and 14 the quantity {g@q(f?m(Se X171 V[(Xm, —y)] does not shat-

ter S|V shattersS); in particular, the results stated for Meta-Algorithm 3 remain valid with this

substitution, requiring only minor modifications to the proofs. However, it isctear what gains

in theoretical guarantees this achieves.
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Additionally, there are various quantities in this procedure that can bedhbrest arbitrarily,
allowing room for fine-tuning. Specifically, the/2 in Step 0 and A3 in Step 16 can be set to
arbitrary constants summing to 1. Likewise, thelin Step 3, 13 in Step 10, and 8} in Step 12
can be changed to any constantgnl), possibly depending ok, such that the sum of the first
two is strictly less than the third. Also, thg¢Zin Steps 5, 9, and 12 can be set to any constant in
(0,1). Furthermore, th&- 2" in Step 3 only prevents infinite looping, and can be set to any function
growing superlinearly im, though to get the largest possible improvements it should at least grow
exponentially inn; typically, any active learning algorithm capable of exponential improvements
over reasonable passive learning algorithms will require access to eenaininlabeled examples
exponential im, and Meta-Algorithm 3 is no exception to this.

One major issue in the design of the procedure is an inherent tradeto#dre the achieved
label complexity and the number of unlabeled examples used by the algorithsns Tloteworthy
both because of the practical concerns of gathering such large quaotitialabeled data, and also
for computational efficiency reasons. In contrast to disagreementimasthods, the design of the
estimators used in Meta-Algorithm 3 introduces such a trade-off, thougbnitnasst to the splitting
index analysis of Dasgupta (2005), the trade-off here seems only iotistant factors. The choice
of thesePy, estimators, both in their definition in Appendix B.1, and indeed in the very quantitie
they estimate, is such that we can (if desired) limit the number of unlabeled &&the main body
of the algorithm uses (the actual number it needs to achieve Theorenm b& extracted from the
proofs in Appendix D.1). However, if the number of unlabeled exampled by the algorithm is
not a limiting factor, we can suggest more effective quantities. Specifi¢allgwing the original
motivation for using shatterable sets, we might consider a greedily-coteddrdistribution over the
set{Sc X1 :V shatterss 1< j <k, and eitherj =k—1 or P(s:V shattersSU{s}) = 0}. We can
construct the distribution implicitly, via the following generative model. First e&Ss={}. Then
repeat the following. If§ =k—1 orP(se X :V shattersSu{s}) = 0, outputS, otherwise, sample
saccording to the conditional distribution ¥fgiven thatv shattersSU {X}. If we denote this distri-
bution (overS) asPy, then replacing the estimatét, (Se xk-1l:v shattersSU {Xm}V shattersS)
in Meta-Algorithm 3 with an appropriately constructed estimatoPpfS:V shattersSU {Xn})
(and similarly replacing the other estimators) can lead to some improvements imgtardgdactors
of the label complexity. However, such a modification can also dramaticallgaserthe number
of unlabeled examples required by the algorithm, since rejection-sampling sopgént from the
conditional distribution ofX givenV shattersSU {X} can be costly, as can determining whether
P(se X :V shattersSU {s}) ~ 0.

Unlike Meta-Algorithm 1, there remain serious efficiency concerns aldeta-Algorithm 3. If
we knew the value of; andd; < clog,(d) for some constard, then we could potentially design an
efficient version of Meta-Algorithm 3 still achieving Corollary 17. Spea@ifig, suppose we can find
a classifier inC consistent with any given sample, or determine that no such classifier, @xistse
polynomial in the sample size (addl, and also thatl, efficiently returns a classifier i@l consistent
with the sample it is given. Then restricting the loop of Step 1 to tHosed; and returning
Ap(Lg,), the algorithm becomes efficient, in the sense that with high probability, itsmgrtime
is poly(d/¢€), wheree is the error rate guarantee from inverting the label complexity at the value
of n given to the algorithm. To be clear, in some cases we may obtain vaixexp{2(n)}, but
the error rate guaranteed by, is (3(1/m) in these cases, so that we still hawegpolynomial in
d/e. However, in the absence of this accessitpthe values ok > d; in Meta-Algorithm 3 may
reach values ofn much larger than polyl/¢), since the error rates obtained from the$g(Ly)
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evaluations are not guaranteed to be better thandthieC;, ) evaluations, and yet we may have
|Lk| > |Lg,|- Thus, there remains a challenging problem of obtaining the results abogerem 16
and Corollary 17) via an efficient algorithm, adaptive to the valuérof

6. Toward Agnostic Activized Learning

The previous sections addressed learning inr¢adizablecase, where there is a perfect classifier
f € C (i.e., ef) = 0). To move beyond these scenarios, to problems in whighnot a perfect
classifier (i.e., stochastic labels) or not well-approximatedbyequires a change in technique to
make the algorithms more robust to such issues. As we will see in Section 6.2sthis we can
prove in this more general setting are not quite as strong as those of theugreections, but in
some ways they are more interesting, both from a practical perspedivee axpect real learning
problems to involve imperfect teachers or underspecified instancesegpia¢ions, and also from a
theoretical perspective, as the class of problems addressed is sighjfivare general than those
encompassed by the realizable case above.

In this context, we will be largely interested in more general versions of dheesypes of
questions as above, such as whether one can activize a giveneplessiving algorithm, in this
case guaranteeing strictly improved label complexities for all nontrivial jdistributions over
X x{-1,4+1}. In Section 6.3, we present a general conjecture regarding this tygieoofj dom-
ination. To approach such questions, we will explore techniques for makaabove algorithms
robust to label noise. Specifically, we will use a natural generalizatiantethnique developed for
noise-robust disagreement-based active learning. Toward this €mallaas for the sake of com-
parison, we will review the known techniques and results for disagretelsesed agnostic active
learning in Section 6.5. We then extend these techniques in Section 6.6 toplavedw type of ag-
nostic active learning algorithm, based on shatterable sets, which relatesdisdalgreement-based
agnostic active learning algorithms in a way analogous to how Meta-Algorithelags to Meta-
Algorithm 2. Furthermore, we present a bound on the label complexitiesvachby this method,
representing a natural generalization of both Corollary 17 and the knesults on disagreement-
based agnostic active learning (Hanneke, 2011).

Although we present several new results, in some sense this sectionabdegsvhat we know
and more about what we do not yet know. As such, we will focus legsresenting a complete
and elegant theory, and more on identifying potentially promising directionsxjploration. In
particular, Section 6.8 sketches out some interesting directions, which potddtially lead to a
resolution of the aforementioned general conjecture from Section 6.3.

6.1 Definitions and Notation

In this setting, there is a joint distributidRxy on X' x {—1,+1}, with marginal distributior’® on
X. For any classifieh, we denote by €h) = Pxy((X,y) : h(x) #y). Also, denote bw*(Pxy) =

- i{nfl 1}er(h) theBayes error rateor simplyv* whenPxy is clear from the context; also define
X —={—1+

the conditional label distribution (x; Pxy) = P(Y = +1|X = x), where(X,Y) ~ Pxy, or n(x) =
n(x; Pxy) whenPxy is clear from the context. For a given concept sp@ceenotev(C; Pxy) =
Ang: er(h), called thenoise rateof C; whenC and/orPxy is clear from the context, we may abbreviate
IS

v =V(C) = v(C;Pxy). ForH C C, thediameteris defined as diaf#;P) = sup P(x: hi(x) #

hl,h2€H
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ha(x)). Also, for anye > 0, define thee-minimal setC(e;Pxy) = {he C:erth) <v-+¢&}. For
any set of classifiers{, define theclosure denoted di*; P), as the set of all measuralile X —
{—=1,+1} suchthavr > 0,By p(h,r) # 0. WhenPxy is clear from the context, we will simply refer
to C(g) = C(&; Pxy), and wherP is clear, we write diart#) = diam(?; P) and c[#*) = cl(H; P).
In the noisy setting, rather than beingparfectclassifier, we will letf denote an arbitrary
element of (C; P) with er(f) = v(C;Pxy): thatis, f € N cl(C(g;Pxy);P). Such a classifier
>0

&
must exist, since ¢C) is compactin the pseudo-metrip(h,g) = [ |h— g|dPxP(x: h(x) # g(x))
(in the usual sense of the equivalence classes being compactgririlaced metric). This can be
seen by recalling that is totally bounded (Haussler, 1992), and thus so(€gland that (IC) is
a closed subset af(P), which is complete (Dudley, 2002), s @) is also complete (Munkres,
2000). Total boundedness and completeness together imply compadinessds, 2000), and this
implies the existence df since monotone sequences of nonempty closed subsets of a compact spac
have a nonempty limit set (Munkres, 2000).

As before, in the learning problem there is a sequefice {(X1,Y1),(X2,Y2),...}, where the
(Xi,Y;) are independent and identically distributed, and we denoigby {(X,Yi)} ;. As before,
the X; ~ P, but rather than having eadh value determined as a function X, instead we have
each pail(X,Y;) ~ Pxy. The learning protocol is defined identically as above; that is, the algorithm
has direct access to th& values, but must request thg(label) values one at a time, sequentially,
and can request at mastotal labels, whera is a budget provided as input to the algorithm. The
label complexity is now defined just as before (Definition 1), but genedly replacing f,P)
with the joint distributionPxy. Specifically, we have the following formal definition, which will be
used throughout this section (and the corresponding appendices).

Definition 19 An active learning algorithmA4 achieves label complexit(-,-) if, for any joint
distribution Pxy, for anye € (0,1) and any integer > A(g, Pxy), we haveE [er(A(n))] < e.

However, because there may not be any classifier with error rate lesarnlarbitrarye € (0,1),
our objective changes here to achieving error rate at mast for any givene € (0,1). Thus, we
are interested in the quantify(v + €, Pxy), and will be particularly interested in this quantity’s
asymptotic dependence @nase — 0. In particular/\(€, Pxy) may often be infinite foe < v.

The label complexity for passive learning can be generalized anallygagain replacingf, P)
by Pxy in Definition 2 as follows.

Definition 20 A passive learning algorithri achieves label complexit(-,-) if, for any joint
distributionPxy, for anye € (0,1) and any integer > A(€, Pxy), we havek [er(A(Z2;))] < &.

For any label complexity\ in the agnostic case, define the set NontrivialC) as the set of all
distributionsPxy on X’ x {—1,+1} such that'e > 0, A(v + &, Pxy) < oo, andvg € Polylog(1/¢),
A(v+¢€,Pxy) = w(g(€)). In this context, we can define activizerfor a given passive algorithm
as follows.

Definition 21 We say an active meta-algorithii, activizesa passive algorithmA, for C in
the agnostic case if the following holds. For any label comple&ityachieved byA,, the ac-
tive learning algorithmA,(Ap, -) achieves a label complexity, such that, for every distribution
Pxy € Nontrivial(Ap; C), there exists a constante[1, co) such that

Na(V +cg,Pxy) = 0(Ap(V+€,Pxy)).
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In this case,A, is called anactivizerfor A, with respect taC in the agnostic case, and the active
learning algorithmAa(Ap, ) is called theAds-activized Ap.

6.2 A Negative Result

First, the bad news: we cannot generally hope for universal aativiaeVC classes in the agnostic
case. In fact, there even exist passive algorithmsaaanot be activizedeven by any specialized
active learning algorithm.

Specifically, consider again Example 1, whéfe= [0,1] andC is the class of threshold clas-
sifiers, and Iebip be a passive learning algorithm that behaves as follows. Givewints 2, =

{(%0, Y1), (%2,¥2), .., (X, Yo)}, Ap(Zn) returns the classifie: € C, wherez = 52 andfp =

<‘{'G&il’ej{"l?}fﬁ}f%iozﬁl}‘ Vv %) A3, takingflo = 1/8 if {i € {1,...,n} : X; = 0} = (. For most distri-
butionsPxy, this algorithm clearly would not behave “reasonably,” in that its errte veould be
quite large; in particular, in the realizable case, the algorithm’s worst-cqeeed error rate does
not converge to zero as— oo. However, for certain distributiorByy engineered specifically for
this algorithm, it has near-optimal behavior in a strong sense. Specific&lfjawe the following

result, the proof of which is included in Appendix E.1.

Theorem 22 There is no activizer fonévlp with respect to the space of threshold classifiers in the
agnostic case.

Recall that threshold classifiers were, in some sense, one of the singaeatiss for activized
learning in the realizable case. Also, since threshold-like problems aredeedbén most “geo-
metric” concept spaces, this indicates we should generally not expeettthexist activizers for
arbitrary passive algorithms in the agnostic case. However, this leagedlopquestion of whether
certain families of passive learning algorithms can be activized in the agiasts a topic we turn
to next.

6.3 A Conjecture: Activized Empirical Risk Minimization

The counterexample above is interesting, in that it exposes the limits on tgnearthe agnostic
setting. However, the passive algorithm that cannot be activized thierensny ways not very rea-
sonable, in that it has suboptimal worst-case expected excess ¢er(aimraong other deficiencies).
It may therefore be more interesting to ask whether some family of “realdnadssive learning
algorithms can be activized in the agnostic case. It seems that, ui]yl»above, certain passive
learning algorithms should not have too peculiar a dependence on thetabe] so that they use
Y; to help determind (X;) and that is all. In such cases, aniyalue for which we can already infer
the valuef (X;) should simply be ignored as redundant information, so that we needni¢sesuch
values. While this discussion is admittedly vague, consider the following foramgécture.

Recall that armpirical risk minimizatioralgorithm forC is a type of passive learning algorithm
A, characterized by the fact that for any ge¢ (X x {—1,+1})™, A(L) € argminerz(h).

heC

Conjecture 23 For any VC class, there exists an active meta-algorithgnand an empirical risk

minimization algorithmA,, for C such that4, activizesA,, for C in the agnostic case.
Resolution of this conjecture would be interesting for a variety of reastirthe conjecture

is correct, it means that the vast (and growing) literature on the label critypdd empirical risk
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minimization has direct implications for the potential performance of activeilggtmder the same
conditions. We might also expect activized empirical risk minimization to be quieetefe in
practical applications.

While this conjecture remains open at this time, the remainder of this section mighavized
as partial evidence in its favor, as we show that active learning is abl@i@admprovements over
the known bounds on the label complexity of passive learning in many.cases

6.4 Low Noise Conditions

In the subsections below, we will be interested in stating bounds on the laiglexity of active
learning, analogous to those of Theorem 10 and Theorem 16, butdiaring with label noise.
As in the realizable case, we should expect such bounds to have sofit elgpendence on
the distributionPxy. Initially, one might hope that we could state interesting label complexity
bounds purely in terms of a simple quantity suchvé€; Pxy). However, it is known that any
label complexity bound for a nontrividl (for either passive or active) depending Bry only via
V(C; Pxy) will be 2 (¢2) whenv(C;Pxy) > 0 (Kzariainen, 2006). Since passive learning can
achieve any—independenO(S‘Z) label complexity bound for any VC class (Alexander, 1984),
we will need to discuss label complexity bounds that depen#pnvia more detailed quantities
than merely (C; Pxy) if we are to characterize the improvements of active learning over passive

In this subsection, we review an index commonly used to describe certgierfigs of Pxy
relative toC: namely, the Mammen-Tsybakov margin conditions (Mammen and Tsybake9; 19
Tsybakov, 2004; Koltchinskii, 2006). Specifically, we have the followfagnal condition from
Koltchinskii (2006).

Xl

Condition 1 There exist constanis, k € [1,00) such thatve > 0, diam(C(g; Pxy); P) < U - Ek.

This condition has recently been studied in depth in the passive learninguitsras it can be
used to characterize scenarios where the label complexity of passimaps between the worst-
cased(1/€?) and the realizable cag(1/¢) (e.g., Mammen and Tsybakov, 1999; Tsybakov, 2004;
Massart and Bdelec, 2006; Koltchinskii, 2006). The condition can equivalently be stated a

Ju’ € (0,1],k € [1,00) s.t. Yh € C,er(h) — v(C; Pxy) > p'- P(x: h(x) # f(x))~.

The condition is implied by a variety of interesting special cases. For instanssatisfied when
V(C;Pxy) = v*(Pxy) and

Ju”,a € (0,00) s.t.Ve > 0,P(X: [n(X;Pxy) —1/2| < &) < u”- €%,

wherek and u are functions ofa and u” (Mammen and Tsybakov, 1999; Tsybakov, 2004); in
particular,k = (1+ a)/a. This can intuitively be interpreted as saying that very noisy points
are relatively rare. Special cases of this condition have also beendtadikepth; for instance,
bounded noiseonditions, whereirv(C; Pxy) = v*(Pxy) andvx,|n(x; Pxy) —1/2| > c for some
constant > 0 (e.g., Gie and Koltchinskii, 2006; Massart ancebelec, 2006), are a special case of
Condition 1 withk = 1.

Condition 1 can be interpreted in a variety of ways, depending on the ¢of@xxinstance, in
certain concept spaces with a geometric interpretation, it can often beerkakiza kind ofarge
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margincondition, under some condition relating the noisiness of a point’s label to tedisfrom
the optimal decision surface. That is, if the magnitude of noig@ {1|n(x; Pxy) — 1/2|) for a
given point depends inversely on its distance from the optimal decisifacgyso that points closer
to the decision surface have noisier labels, a small valug of Condition 1 will occur if the
distribution’? haslow densitynear the optimal decision surface (assumii@; Pxy) = v*(Pxy))
(e.g., Dekel, Gentile, and Sridharan, 2010). On the other hand, whemnistiegh density near the
optimal decision surface, the value wfmay be determined by how quickly(x; Pxy) changes as
x approaches the decision boundary (Castro and Nowak, 2008). Seetks of Mammen and
Tsybakov (1999), Tsybakov (2004), Koltchinskii (2006), Massad Necelec (2006), Castro and
Nowak (2008), Dekel, Gentile, and Sridharan (2010) and Bartlettafoahd McAuliffe (2006) for
further interpretations of Condition 1.

In the context of passive learning, one natural method to study is teatpifical risk minimiza-
tion. Recall that a passive learning algoritbdnis called an empirical risk minimization algorithm
for C if it returns a classifier fronC making the minimum number of mistakes on the labeled sam-
ple itis given as input. It is known that for any VC claSsfor any Pxy satisfying Condition 1 for
finite u andk, every empirical risk minimization algorithm f& achieves a label complexity

A(V + €, Pxy) =O<£52-Iogi>. (5)

This follows from the works of Koltchinskii (2006) and Massart angiddlec (2006). Furthermore,
for nontrivial concept spaces, one can show thammppxy/\(v +&Pxy) =0 <s%‘2), where the
supremum ranges over &y satisfying Condition 1 for the givep andk values, and the infimum
ranges over all label complexities achievable by passive learning algarif@astro and Nowak,
2008; Hanneke, 2011); that is, the bound (5) cannot be significantlyoired by any passive al-
gorithm, without allowing the label complexity to have a more refined depereden®yy than
afforded by Condition 1.

In the context of active learning, a variety of results are presently khasich in some cases
show improvements over (5). Specifically, for any VC cl@sand anyPxy satisfying Condition 1,
a certain noise-robust disagreement-based active learning algoritiieves label complexity

A(V+¢£,Pxy)=0 <6f (s%) -sf‘z-logzb .

This general result was established by Hanneke (2011) (analyzinglgloeithm of Dasgupta,
Hsu, and Monteleoni, 2007), generalizing earlizspecific results by Castro and Nowak (2008)
and Balcan, Broder, and Zhang (2007), and was later simplified antbdefn some cases by
Koltchinskii (2010). Comparing this to (5), whefy < oo this is an improvement over passive
learning by a factor o+ -log(1/¢). Note that this generalizes the label complexity bound of
Corollary 11 above, since the realizable case entails Condition 1 avithu/2 = 1. It is also
known that this type of improvement is essentially the best we can hope tor wh describ®yy
purely in terms of the parameters of Condition 1. Specifically, for any naakiconcept spac€,
infp suprYA(v +&,Pxy) =0 <max{£%*2, Iog% , Where the supremum ranges overfall sat-
isfying Condition 1 for the giveu andk values, and the infimum ranges over all label complexities
achievable by active learning algorithms (Hanneke, 2011; Castro andiy@008).

In the following subsection, we review the established techniques anltsrisudisagreement-
based agnostic active learning; the algorithm presented here is slighélyedifffrom that originally
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analyzed by Hanneke (2011), but the label complexity bounds of Han(®911) hold for this
new algorithm as well. We follow this in Section 6.7 with a new agnostic active ilrgmethod
that goes beyond disagreement-based learning, again generalizirajitmeai disagreement to the
notion of shatterability; this can be viewed as analogous to the generalizatMdeta-Algorithm
2 represented by Meta-Algorithm 3, and as in that case the resulting tabplexity bound replaces
65 (-) with 8¢ (-).

For both passive and active learning, results under Condition 1 arkrad®on for more general
scenarios than VC classes: namely, under entropy conditions (Mammérsginakov, 1999; Tsy-
bakov, 2004; Koltchinskii, 2006, 2011; Massart angdBlec, 2006; Castro and Nowak, 2008; Han-
neke, 2011; Koltchinskii, 2010). For a nonparametric class knowwoasdary fragmentgCastro
and Nowak (2008) find that active learning sometimes offers advantsgepassive learning, un-
der a special case of Condition 1. Furthermore, Hanneke (2011)sshgeneral result on the label
complexity achievable by disagreement-based agnostic active learnifgly sdmetimes exhibits
an improved dependence on the parameters of Condition 1 under conditidghe disagreement
coefficient and certain entropy conditions @, P) (see also Koltchinskii, 2010). These results
will not play a role in the discussion below, as in the present work we restiiselves strictly to
VC classes, leaving more general results for future investigations.

6.5 Disagreement-Based Agnostic Active Learning

Unlike the realizable case, here in the agnostic case we cannot eliminatsifietl®m the version
space after making merely a single mistake, since even the best classifiegnsiglly imperfect.
Rather, we take a collection of samples with labels, and eliminate those classidikirsy signifi-
cantly more mistakes relative to some others in the version space. This is ih@kasunderlying
most of the known agnostic active learning algorithms, including those diedus the present
work. The precise meaning of “significantly more,” sufficient to guaratite version space always
contains some good classifier, is typically determined by established bouaritte aeviation of
excess empirical error rates from excess true error rates, takartlimpassive learning literature.

The following disagreement-based algorithm is slightly different from anhénexisting lit-
erature, but is similar in style to a method of Beygelzimer, Dasgupta, and cwah(f009); it also
bares resemblance to the algorithms of Koltchinskii (2010); DasguptaaiduMonteleoni (2007);
Balcan, Beygelzimer, and Langford (2006a, 2009). It should bsidered as representative of the
family of disagreement-based agnostic active learning algorithms, andualis®elow concerning
it have analogous results for variants of these other disagreemertibatieods.
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Algorithm 4
Input: label budgen, confidence parametér
Output: classifieh

0.Mm<+0,i+0,Vo«C, L1+ {}

1. Whilet <nandm< 2"

2. m+<m+1

3. IfXneDIS(V)

4. Request the lab#, of Xy, and letli 1 « Liy1U{(Xm,Ym)} andt <t +1

5. Else letybe the label agreed upon by classifier¥irand i1 < Li+1U{(Xm,¥)}
6. lfm=2+1
7 Vi+1 — {h eVi: erﬁi+1(h> - rﬁg\?erﬁwl(h/) < lji-l-l (Vlvé)}
8

9.

i < i+1,and therCi;q « {}
Return amh €V,

The algorithm is specified in terms of an estimatér, The definition ofJ; should typically be
based on generalization bounds known for passive learning. Idspréhe work of Koltchinskii
(2006) and applications thereof in active learning (Hanneke, 201lichoskii, 2010), we will take
a definition ofU; based on a data-dependent Rademacher complexity, as followsty,éef. ..
denote a sequence of independent Rademacher random variablesficem in {—1,+1}), also
independent from all other random variables in the algorithm (£¢., Then for any se# C C,
define

2i

R(H)= sup 27" D" &n- (ha(Xm) —h2(Xm)),

hher  oim1yg
2l

Di(#)= sup 2 Z 101 (Xm) — h2(Xm)],

huheer 5T

In(3212/5) N 752In(3212/9)

2i-1 2i-1 (6)

Ui(H,0) = 12R(H) + 34\/ Di(H)

Algorithm 4 operates by repeatedly doubling the sample |€iza |, while only requesting the
labels of the points in the region of disagreement of the version spack tifeeit doubles the size
of the sampleC;, 1, it updates the version space by eliminating any classifiers that make sigtijfica
more mistakes oif;, 1 relative to others in the version space. Since the labels of the examples we
infer in Step 5 are agreed upon by all elements of the version spaadfftvenceof empirical error
rates in Step 7 is identical to the difference of empirical error rates undeuhlabels. This allows
us to use established results on deviations of excess empirical errdroatesxcess true error rates
to judge suboptimality of some of the classifiers in the version space in Stepsrretiucing the
version space.

As with Meta-Algorithm 2, for computational feasibility, the s&tsand DISV;) in Algorithm
4 can be represented implicitly by a set of constraints imposed by previondsof the loop. Also,
the update taCi;1 in Step 5 is included only to make Step 7 somewhat simpler or more intuitive;
it can be be removed without altering the behavior of the algorithm, as long @®mpensate by
multiplying er;, ., by an appropriate renormalization constant in Step 7: namely£2 1|.
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We have the following result about the label complexity of Algorithm 4; it isespntative of
the type of theorem one can prove about disagreement-based aathiadaander Condition 1.

Lemma 24 LetC be a VC class and suppose the joint distributi®gy on X x {—1,+1} satisfies
Condition 1 for finite parameterg andk. There is & C, Pxy)-dependent constant€(0, co) such
that, for anye, § € (0,e3), and any integer

n>c- 6 (e%> -e%*z-logzé,

if hy is the output of Algorithm 4 when run with label budget n and confiden@npeters, then on
an event of probability at leadt— 9,

er(ﬁn) <v+e.

The proof of this result is essentially similar to the proof by Hanneke (2Gdihbined with
some simplifying ideas from Koltchinskii (2010). It is also implicit in the proof.eimma 26 below
(by replacing ;" with “1” in the proof). The details are omitted. This result leads immediately to
the following implication concerning the label complexity.

Theorem 25 LetC be a VC class and suppose the joint distributig, on X' x {—1,+1} satisfies
Condition 1 for finite parameterg, kK € (1,00). With an appropriatgn, K )-dependent setting @,
Algorithm 4 achieves a label complexity with

1
Na(V+&,Pxy) =0 (Bf <s%) gx 2. Iogze) .

Proof Takingd =n— a2, the result follows by simple algebra. |

We should note that it is possible to design a kind of wrapper to adaptividyndime an appro-
priated value, so that the algorithm achieves the label complexity guarantee ofefh@% without
requiring any explicit dependence on the noise paramet8pecifically, one can use an idea simi-
lar to the model selection procedure of Hanneke (2011) for this purpt®sever, as our focus in
this work is on moving beyond disagreement-based active learning, wat daciude the details of
such a procedure here.

Note that Theorem 25 represents an improvement over the known resufiassive learning
(namely, (5)) wheneveds (¢) is small, and in particular this gap can be large wBer< co. The
results of Lemma 24 and Theorem 25 represent the state-of-the-aotlagarithmic factors) in our
understanding of the label complexity of agnostic active learning for V€sels Thus, any signif-
icant improvement over these would advance our understanding ofridlarfental capabilities of
active learning in the presence of label noise. Next, we provide suth@ovement.

6.6 A New Type of Agnostic Active Learning Algorithm Based on Shatgrable Sets

Algorithm 4 and Theorem 25 represent natural extensions of Metariftign2 and Theorem 10 to
the agnostic setting. As such, they not only benefit from the advantddbese methods (small
6¢ (&) implies improved label complexity), but also suffer the same disadvant@jéd { > 0 im-
plies no strong improvements over passive). It is therefore natural éstigate whether the im-
provements offered by Meta-Algorithm 3 and the corresponding Theafecan be extended to the
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agnostic setting in a similar way. In particular, as was possible for TheoBenith respect to The-
orem 10, we might wonder whether it is possible to repl&céﬁ) in Theorem 25 withBs £x

by a maodification of Algorithm 4 analogous to the modification of Meta-Algorithnmibedied in
Meta-Algorithm 3. As we have seef (ﬁ) is often significantly smaller in its asymptotic depen-

dence ore, compared t®s (e%), in many cases even bounded by a finite constant v@me{ﬁ)

is not. This would therefore represent a significant improvement ovekritven results for active
learning under Condition 1. Toward this end, consider the following alguarith

Algorithm 5
Input: label budgen, confidence parametér
Output: classifieh

0.m«+0,ig+ 0,Vg+C
1. Fork=12...,d+1
2. t+0,ix iK1, M 2%, Vi1 < Vi, Lioy1+ {}
3. Whilet < [27%n| andm < k- 2"
4 m<«—m+ 1
5. If Pam(S€ X*1: Vi 41 shattersSU {Xm}|Vi 1 shatterss) > 1/2
6. Request the Iqbéﬂn of Xm, and letli, 1 < Li,+1U{(Xm,Ym)} andt <t +1
7 Elsey%— argmaxPsm(S€ X*1:V; 1 1[(Xm,—y)] does not shatteBV;, ;1 shatterss)
ye{-1,+1}
8 L1+ Ligr1 U{(Xm,¥) } andVi 11 < Vi 11[(Xm, )]
9 If m= 2+l
10. Vig+1 ¢ {h € Vigr1: el’gikﬂ(h) - h/lg\l/in erﬁikﬂ(h/) < lji|<+1 (\/ik7 5)}
i+l
11. ik <—jk+1, thenV,, ;1 < Vi, andLi 11 + {}
12. Returnanh € Vi, , 11

For the argmax in Step 7, we break ties in favor gfaalue withV;, . 1[(Xm,¥)] # 0 to maintain
the invariant tha¥ 1 # () (see the proof of Lemma 59); when botlvalues satisfy this, we may
break ties arbitrarily. The procedure is specified in terms of several éstend hePsm estimators,
as usual, are defined in Appendix B.1. K&y we again use the definition (6) above, based on a
data-dependent Rademacher complexity.

Algorithm 5 is largely based on the same principles as Algorithm 4, combined wéta-M
Algorithm 3. As in Algorithm 4, the algorithm proceeds by repeatedly doulihegize of a labeled
sampleL;1, while only requesting a subset of the label<Ljn, inferring the others. As before, it
updates the version space every time it doubles the size of the sémpland the update eliminates
classifiers from the version space that make significantly more mistakés pnompared to others
in the version space. In Algorithm 4, this is guaranteed to be effectivee $ive classifiers in the
version space agree on all of the inferred labels, so that the diffesepicempirical error rates
remain equal to thérue differences of empirical error rates (i.e., under the trgdabels for all
elements ofZ;;); thus, the established results from the passive learning literature inguitin
deviations of excess empirical error rates from excess true errarcatebe applied, showing that
this does not eliminate the best classifiers. In Algorithm 5, the situation is scaemdre subtle,
but the principle remains the same. In this casegw®rcethat the classifiers in the version space
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agree on the inferred labels ify ;1 by explicitly removing the disagreeing classifiers in Step 8.
Thus, as long as Step 8 does not eliminate all of the good classifiers, titieerwall Step 10. To
argue that Step 8 does not eliminate all good classifiers, we appeal tontieersasoning as for
Meta-Algorithm 1 and Meta-Algorithm 3. That is, fér< d¢ and sufficiently largen, as long as
there exist good classifiers in the version space, the |ghbeferfed in Step 7 will agree with some
good classifiers, and thus Step 8 will not eliminate all good classifiers. vower k > d, the
labelsy’in Step 7 have no such guarantees, so that we are only guaranteesdrieaassifier in
the version space is not eliminated. Thus, determining guarantees ondheaggrof this algorithm
hinges on bounding the worst excess error rate among all classifiers wethion space at the
conclusion of thé& = d¢ round. This is essentially determined by the siz€pfat the conclusion of
that round, which itself is largely determined by how frequently the algorittamests labels during
this k = d; round. Thus, once again the analysis rests on bounding the rate attwhifrequency
of label requests shrinks in the= Jf round, which determines the rate of growth 6f |, and thus
the final guarantee on the excess error rate.

As before, for computational feasibility, we can maintain the Seisplicitly as a set of con-
straints imposed by the previous updates, so that we may perform thesvaaioulations required
for the estimators® as constrained optimizations. Also, the updateCig 1 in Step 8 is merely
included to make the algorithm statement and the proofs somewhat more eiegantbe omit-
ted, as long as we compensate with an appropriate renormalization ofdkllg wlues in Step 10
(i.e., multiplying by Z‘k|£ik+1\). Additionally, the same potential improvements we proposed in
Section 5.5 for Meta-Algorithm 3 can be made to Algorithm 5 as well, again with mipr mod-
ifications to the proofs. We should note that Algorithm 5 is certainly not the magonable way to
extend Meta-Algorithm 3 to the agnostic setting. For instance, another haxteasion of Meta-
Algorithm 1 to the agnostic setting, based on a completely different ideaaeppethe author’s
doctoral dissertation (Hanneke, 2009b); that method can be improvethinial way to take advan-
tage of the sequential aspect of active learning, yielding an agnostitsexteof Meta-Algorithm
3 differing from Algorithm 5 in several interesting ways (see the discudsi@ection 6.8 below).

In the next subsection, we will see that the label complexities achieved loyitkio 5 are often
significantly better than the known results for passive learning. In fagy, dhe often significantly
better than the presently-known results for astivelearning algorithms in the published literature.

6.7 Improved Label Complexity Bounds for Active Learning with Noise

Under Condition 1, we can extend Lemma 24 and Theorem 25 in an analaggu® how The-
orem 16 extends Theorem 10. Specifically, we have the following reseltpttof of which is
included in Appendix E.2.

Lemma 26 LetC be a VC class and suppose the joint distributi®g, on X x {—1,+1} satisfies
Condition 1 for finite parameterg andk. There is & C, Pxy)-dependent constant€(0, co) such
that, for anye, d € (0,e73), and any integer

~ 1
n>c-0 (ﬁ) gk 2.Jog? —,
> f g 5

if hy, is the output of Algorithm 5 when run with label budget n and confiden@peterd, then on
an event of probability at leadt— 9,

er(hn) <v+e.
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This has the following implication for the label complexity of Algorithm 5.

Theorem 27 LetC be a VC class and suppose the joint distributdg, on X’ x {—1,+1} satisfies
Condition 1 for finite parameterg, kK € (1,00). With an appropriaten, K )-dependent setting @f,
Algorithm 5 achieves a label complexity with

~ 1
Na(V+E€,Pxy) =0 <6f (e%) ge2. Iogzg> .

Proof Takingd = n~z-2, the result follows by simple algebra. |

Theorem 27 represents an interesting generalization beyond the reatiaab, and beyond the
disagreement coefficient analysis. Note thaife) = 0(8‘1Iog‘2(1/s)), Theorem 27 represents
an improvement over the known results for passive learning (Massarmacelec, 2006). As we
always haveéf(e) =0(1/¢), we should typically expect such improvements for all but the most
extreme learning problems. Recall that¢) is oftennot o(1/¢), so that Theorem 27 is often a
much stronger statement than Theorem 25. In particular, this is a significgrdvement over the
known results for passive learning whenefer oo, and an equally significant improvement over
Theorem 25 whenevel; < o but 6s(g) = (2(1/¢) (see above for examples of this). However,
note that unlike Meta-Algorithm 3, Algorithm 5 isot an activizer. Indeed, it is not clear (to the
author) how to modify the algorithm to make it a universal activizer@qeven for the realizable
case), while maintaining the guarantees of Theorem 27.

As with Theorem 16 and Corollary 17, Algorithm 5 and Theorem 27 camgiatly be improved
in a variety of ways, as outlined in Section 5.5. In particular, Theorem B7beamade slightly

sharper in some cases by replacl?hg(s%) with the sometimes-smaller (though more complicated)

quantity (4) (withrg = e%).

6.8 Beyond Condition 1

While Theorem 27 represents an improvement over the known resultghostc active learn-
ing, Condition 1 is not fully general, and disallows many important and integestienarios. In
particular, one key property of Condition 1, heavily exploited in the labet@exity proofs for
both passive learning and disagreement-based active learning, is thrligs dian{C(¢)) —

0 ase¢ — 0. In scenarios where this shrinking diameter condition is not satisfied,xibéng
proofs of (5) for passive learning break down, and furthermore, disagreement-based algo-
rithms themselves cease to give significant improvements over passivinggdior essentially
the same reasons leading to the “only if” part of Theorem 5 (i.e., the sam@aigrr never fo-
cuses beyond some nonzero-probability region). Even more alarmiriigs(aglance) is the fact
that this same problem can sometimes be observed fdk thes round of Algorithm 5; that is,

P (x: Pdi-1(se xdi-1 :Vid'f+1 shattersSu {x} ]Vi&fJ,l shatterss) > 1/2) is no longer guaranteed
to approach 0 as the budgeincreases (as doeswhen dianiC(g)) — 0). Thus, if we wish to ap-
proach an understanding of improvements achievable by active learngmgaral, we must come
to terms with scenarios where di&B1¢)) does not shrink to zero.

Interestingly, it seems that didfd(e)) - 0 might not be a problem for some algorithms based
on shatterable sets, such as Algorithm 5. In particular, Algorithm 5 appeaontinue exhibiting
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reasonable behavior in such scenarios. That is, even if there is hrimdiisg probability that the
query condition in Step 5 is satisfied flar= d¢, on any given sequencg there must besome
smallest value ok for which this probabilitydoesshrink asn — oo. For this value ok, we should
expect to observe good behavior from the algorithm, in that (for suffigiéargen) the inferred
labels in Step 7 will tend to agree wigomeclassifierf € cl(C) with er(f) = v(C; Pxy). Thus, the
algorithm addresses the problem of multiple optimal classifiers by effectadfctingone of the
optimal classifiers.

To illustrate this phenomenon, consider learning with respect to the sptwesiiold classifiers
(Example 1) with? uniform in [0,1], and let(X,Y) ~ Pxy satisfy P(Y = +1|X) = 0 for X <
1/3, P(Y = +1|X) =1/2 for 1/3 < X < 2/3, andP(Y = +1|X) =1 for 2/3 < X. As we know
from above,d; = 1 here. However, in this scenario we have (%)) — [1/3,2/3] ase — 0.
Thus, Algorithm 4 never focuses its queries beyond a constant fraaitidi) and therefore cannot
improve over certain passive learning algorithms in terms of the asymptotiodiepee of its label
complexity ong (assuming a worst-case choicefdh Step 9). However, fok = 2 in Algorithm 5,
everyXm will be assigned a labsf ih Step 7 (since no two points are shattered); furthermore, for
sufficiently largen we have (with high probability) DI&/4,) not too much larger thafl/3,2/3],
so that most points in DI¥;,) can be labeled either1 or —1 by some optimal classifier. For us,
this has two implications. First, one can show that with very high probabilityStbe1/3,2/3]*
will dominate the votes foy in Step 7 (for allm processed whild& = 2), so that they inferred
for any Xm ¢ [1/3,2/3] will agree with all of the optimal classifiers. Second, the inferred labels
y for Xm € [1/3,2/3] will definitely agree withsomeoptimal classifier. Since we also impose the
h(Xm) = ¥ constraint foV,,;1 in Step 8, the inferred labels must all be consistent with teame
optimal classifier, so thaf,. 1 will quickly converge to within a small neighborhood around that
classifier, without any further label requests. Note, however, thapanigcular optimal classifier
the algorithm converges to will be a random variable, determined by the ydartisequence of
data points processed by the algorithm; thus, it cannot be determined iawhimh significantly
complicates any general attempt to analyze the label complexity achieved laygtréhm for
arbitraryC andPxy. In particular, for somé& andPxy, even this minimak for which convergence
occurs may be a nondeterministic random variable. At this time, it is not entilesdly know general
this phenomenon is (i.e., Algorithm 5 providing improvements over certainyeeaigjorithms even
for distributions with dianiC(g)) - 0), nor how to characterize the label complexity achieved by
Algorithm 5 in general settings where di&81¢)) - 0.

However, as mentioned earlier, there are other natural ways to geedviia-Algorithm 3 to
handle noise, some of which have more predictable behavior. In partithéasriginal thesis work
of Hanneke (2009b) explores a technique for active learning, whtkeuAlgorithm 5, only uses
the requestedabels, not the inferred labels, and as a consequence never elimingteptanal
classifier fromV. Because of this fact, the sampling region for ekaonverges to a predictable
limiting region, so that we have an accurat@riori characterization of the algorithm’s behavior.
However, it is not immediately clear (to the author) whether this alternativaiged might lead to
a method achieving results similar to Theorem 27.

To get a better understanding of the scenario where didg)) - 0, it will be helpful to par-
tition the distributions into two distinct categories, which we will refer to astteign noisecase
and themisspecified modehse. ThéPxy in the benign noise case are characterized by the property
thatv(C; Pxy) = v*(Pxy); this is in some ways similar to the realizable case, inheaan approx-
imate an optimal classifier, except that the labels are stochastic. In the lmesgncase, the only
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reason diarfC(¢g)) would not shrink to zero is if there is a nonzero probability set of pointéth
n(x) =1/2; that is, there are at least two classifiers achieving the Bayes eteoaral they are at
nonzero distance from each other, which must mean they disagree orpsartethat have equal
probability of either label occurring. In contrast, the misspecified modsd acharacterized by
v(C;Pxy) > v*(Pxy). In this case, if the diameter does not shrink, it is because of the exisiénce
two classifierdhy, hy € cl(C) achieving error rate(C; Pxy), with P(x: hy(X) # ha(x)) > 0. How-
ever, unlike above, since they do not achieve the Bayes error ratgadsssble that a significant
fraction of the set of points they disagree on may hape # 1/2.

Intuitively, the benign noise case is relatively easier for active learsiimge the noisy points
that prevent diarfC(¢)) from shrinking can essentially be assigned arbitrary labels, as in théthres
olds example above. For instance, as in Algorithm 5, we could assign adghahts in this region
and discard any classifiers inconsistent with the label, confident thaaveekept at least one opti-
mal classifier. Another possibility is simply to ignore the points in this region, simttee end they
are inconsequential for the excess error rate of the classifier weyétusome sense, this is the
strategy taken by the method of Hanneke (2009b).

In contrast, the misspecified model case intuitively makes the active learrobiem more
difficult. For instance, ih; andh; in cl(C) both have error rate(C; Pxy), the original method of
Hanneke (2009b) has the possibility of inferring the latp¢k) for some poink when in facthy (x)
is better for that particulat, and vice versa for the pointsvherehy(x) would be better, thus getting
the worst of both and potentially doubling the error rate in the processritign5 may fare better
in this case, since imposing the inferred labe@s™a constraint in Step 8 effectivedglectsone of
h; or hy, and discards the other one. As before, whether Algorithm 5 séigctsh, will generally
depend on the particular data sequegcavhich therefore makes any a priori analysis of the label
complexity more challenging.

Interestingly, it turns out that, for the purpose of exploring Conject@rev2 can circumvent all
of these issues by noting that there is a trivial solution to the misspecified maske| Specifically,
since in our present context we are only interested in the label complexiachieving error rate
better tharnv + €, we can simply turn to any algorithm that asymptotically achieves an error rate
strictly better tharv (e.g., Devroye et al., 1996), in which case the algorithm should requiye on
a finite constant number of labels to achieve an expected error rate better.thifo make the
algorithm effective for the general case, we simply split our budget eethone part for an active
learning algorithm, such as Algorithm 5, for the benign noise case, ohéopdhe method above
handling the misspecified model case, and one part to select among theisodipe full details of
such a procedure are specified in Appendix E.3, along with a proof oéifsgmance guarantees,
which are summarized as follows.

Theorem 28 Fix any concept spac€. Suppose there exists an active learning algoritdm

achieving a label complexitf,. Then there exists an active learning algorith#) achieving a
label complexity\] such that, for any distributioPxy on X x {—1,+1}, there exists a function
A (&) € Polylog(1/¢) such that

max{2A\a(v +€/2,Pxy),A(€)}, inthe benign noise case

NL(V + €, Pxy) < :
al xy) < {/\ (e), in the misspecified model case
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The main point of Theorem 28 is that, for our purposes, we can safelyeéghe misspecified
model case (as its solution is a trivial extension), and focus entirely oretfermance of algorithms
for the benign noise case. In particular, for any label compleXjtyeveryPxy € Nontrivial(Ap; C)
in the misspecified model case Wagv + &, Pxy) = o(Ap(V + &, Pxy)), for A; as in Theorem 28,
Thus, if there exists an active meta-algorithm achieving the strong improveyuarantees of an
activizer for some passive learning algoritbfy (Definition 21) for all distributionsPxy in the
benign noise case, then there exists an activizedfowith respect taC in the agnostic case.

7. Open Problems

In some sense, this work raises more questions than it answers. Hdigt, se@eral problems that
remain open at this time. Resolving any of these problems would make a sighificdribution to
our understanding of the fundamental capabilities of active learning.

¢ We have established the existence of universal activizers for VCed&sshe realizable case.
However, we have not made any serious attempt to characterize thetjg®pleat such ac-
tivizers can possess. In particular, as mentioned, it would be interestikigote whether
activizers exist thapreservecertain favorable properties of the given passive learning algo-
rithm. For instance, we know that some passive learning algorithms (séipear separators)
achieve a label complexity that is independent of the dimensionality of the gpaander
a large margin condition of andP (Balcan, Blum, and Vempala, 2006b). Is there an ac-
tivizer for such algorithms that preserves this large-margin-based diomeimslependence in
the label complexity? Similarly, there are passive algorithms whose label catggias a
weak dependence on dimensionality, due to sparsity considerationsaBlsybakov, and
Wegkamp, 2009; Wang and Shen, 2007). Is there an activizer fag #igerithms that pre-
serves this sparsity-based weak dependence on dimension? Is thetiwiaer that preserves
adaptiveness to the dimension of the manifold to whitks restricted? What about an ac-
tivizer that issparsisten{Rocha, Wang, and Yu, 2009), given any sparsistent passivangar
algorithm as input? Is there an activizer that preserves admissibility, in ithext gny ad-
missible passive learning algorithm, the activized algorithm is an admissible d&etikning
algorithm? Is there an activizer that, given any minimax optimal passive |gpatgorithm
as input, produces a minimax optimal active learning algorithm? What abadrpneg other
notions of optimality, or other properties?

e There may be some waste in the above activizers, since the label regsedts their ini-
tial phase (reducing the version space) are not used by the palkgivithan to produce the
final classifier. This guarantees the examples fed into the passive ahganéhconditionally
independent given the number of examples. Intuitively, this seems regdes the gen-
eral results, since any dependence among the examples fed to thes @dgsiithm could
influence its label complexity. However, it is not clear (to the author) hawndttic this effect
can be, nor whether a simpler strategy (e.g., slightly randomizing the buidgbtbrequests)
might yield a similar effect while allowing a single-stage approach where aldatre used in
the passive algorithm. It seems intuitively clear that some special typessit/palgorithms
should be able to use the full set of examples, from both phases, while stillaiming the
strict improvements guaranteed in the main theorems above. What gerogattjgs must
such passive algorithms possess?
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e As previously mentioned, the vast majority of empirically-tedtedristicactive learning al-
gorithms in the published literature are designed in a reduction style, usindj-aneen
passive learning algorithm as a subroutine, constructing sets of labeletples and feed-
ing them into the passive learning algorithm at various points in the execlitithe @active
learning algorithm (e.g., Abe and Mamitsuka, 1998; McCallum and Nigam,; B9®hn and
Cohn, 2000; Campbell, Cristianini, and Smola, 2000; Tong and Koller,; &l and McCal-
lum, 2001; Muslea, Minton, and Knoblock, 2002; Lindenbaum, Markoyitsfd Rusakov,
2004; Mitra, Murthy, and Pal, 2004; Roth and Small, 2006; Schein andtJ2§07; Har-
Peled, Roth, and Zimak, 2007; Beygelzimer, Dasgupta, and Langf@®d) 2However, rather
than including some examples whose labels are requested and other exainm@edabels
areinferredin the sets of labeled examples given to the passive learning algorithm (as in o
rigorous methods above), these heuristic methods typically only input to Ssivpaalgo-
rithm the examples whose labels weeguested We should expect that meta-algorithms of
this type could not beniversalactivizers forC, but perhaps there do exist meta-algorithms
of this type that are activizers for every passive learning algorithromesspecial type. What
are some general conditions on the passive learning algorithm so thansetaalgorithm
of this type (i.e., feeding in only theequestedabels) can activize every passive learning
algorithm satisfying those conditions?

e As discussed earlier, the definition of “activizer” is based on a traflbetiveen the strength
of claimed improvements for nontrivial scenarios, and ease of analysis itnframework.
There are two natural questions regarding the possibility of strongemnsatid‘activizer.” In
Definition 3 we allow a constant factarloss in thes argument of the label complexity. In
most scenarios, this loss is inconsequential (e.g., typidallig/c, f,P) = O(Ap(g, f,P))),
but one can construct scenarios where it does make a differenceir iroofs, we see that
it is possible to achieve = 3; in fact, a careful inspection of the proofs reveals we can even
getc = (1+0(1)), a function ofe, converging to 1. However, whether there exist universal
activizers for every VC class that hage= 1 remains an open question.

A second question regards our notion of “nontrivial problems.” In #6in 3, we have
chosen to think of any target and distribution with label complexity growingefathan
Polylog(1/¢€) asnontrivial, and do not require the activized algorithm to improve over the
underlying passive algorithm for scenarios that are trivial for theigaslgorithm. As men-
tioned, Definition 3 does have implications for the label complexities of thedaigms,

as the label complexity of the activized algorithm will improve over every maatrup-

per bound on the label complexity of the passive algorithm. However, iardcdallow for
various operations in the meta-algorithm that may introduce additive Polylegterms due

to exponentially small failure probabilities, such as the test that selects argpaothhses in
ActiveSelect, we do not require the activized algorithm to achieve the sadee of label
complexity in trivial scenarios. For instance, there may be cases in whiassvp algo-
rithm achieve€D(1) label complexity for a particularf, P), but its activized counterpart has
O(log(1/¢€)) label complexity. The intention is to define a framework that focuses on non-
trivial scenarios, where passive learning uses prohibitively manydataher than one that
requires us to obsess over extra additive logarithmic terms. Nonethekmssigh question of
whether these losses in the label complexities of trivial problems are regdésgjain these
improvements in the label complexities of nontrivial problems.
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There is also the question of how much the definition of “nontrivial” can kexesl. Specifi-
cally, we have the following question: to what extent can we relax the notioroatrivial” in
Definition 3, while still maintaining the existence of universal activizers f@r fasses? We
see from our proofs that we can at least replace Pof{{lcg with O(log(1/€)). However, it

is not clear whether we can go further than this in the realizable case (esgy; toontrivial”
meansw(1)). When there is noise, it is clear that we cannot relax the notion of “nentri
ial” beyond replacing Polylad./€) with O(log(1/¢)). Specifically, whenever DIE) # 0,

for any label complexity\, achieved by an active learning algorithm, there must be some
Pxy with Aa(v + €, Pxy) = Q(log(1/¢)), even with the support oP restricted to asingle
point x e DIS(C); the proof of this is via a reduction from sequential hypothesis testing for
whether a coin has biasor 1— a, for somea € (0,1/2). Since passive learning via empiri-
cal risk minimization can achieve label complexfty(v + &, Pxy) = O(log(1/¢)) whenever

the support ofP is restricted to a single point, we cannot further relax the notion of “nontriv
ial,” while preserving the possibility of a positive outcome for Conjecturel®i8.interesting

to note that this entire issue vanishes if we are only interested in methods tiexeaer-

ror at moste with probability at least + J, whered € (0,1) is some acceptable constant
failure probability, as in the work of Balcan, Hanneke, and Vaughad@R0in this case,

we can simply take “nontrivial” to meaw(1) label complexity, and both Meta-Algorithm

1 and Meta-Algorithm 3 remain universal activizers orunder this alternative definition,
and achievé®(1) label complexity in trivial scenarios.

Another interesting question concerns efficiency. Suppose there arigtigorithm to find

an element ofC consistent with any labeled sequengen time polynomial in|£| andd,

and thatA,(£) has running time polynomial inC| andd. Under these conditions, is there
an activizer forAp capable of achieving an error rate smaller than ang running time
polynomial in /¢ andd, given some appropriately large budgét Recall that if we knew
the value ofd; andd; < clogd, then Meta-Algorithm 1 could be made efficient, as discussed
above. Therefore, this question is largely focused on the issue ofiaglap the value ofi;.
Another related question is whether there is an efficient active learniogithlg achieving
the label complexity bound of Corollary 7 or Corollary 17.

One question that comes up in the results above is the minimum numbatabiesof label
requests necessary for a universal activizetGorn Meta-Algorithm 0 and Theorem 5, we
saw that sometimes two batches are sufficient: one to reduce the versoa apd another
to construct the labeled sample by requesting only those points in the regi@agfeement.
We certainly cannot use fewer than two batches in a universal actifgzemy nontrivial
concept space, so that this represents the minimum. However, to geteasahigctivizer
for everyconcept space, we increased the number of batchésdein Meta-Algorithm 1.
The question is whether this increase is really necessary. Is theressdwayversal activizer
using onlytwo batches of label requests, for every VC cl@ss

For someC, the learning process in the above methods might be viewed in two components:
one component that performs active learning as usual (say, disagmedased) under the
assumption that the target function is very simple, and another componésetirahes for
signs that the target function is in fact more complex. Thus, for some hatasses such

as linear separators, it would be interesting to find simpler, more specializédasewhich
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explicitly execute these two components. For instance, for the first compememight con-
sider the usual margin-based active learning methods, which querg naaient guess of the
separator (Dasgupta, Kalai, and Monteleoni, 2005, 2009; BalcadeBrand Zhang, 2007),
except that we bias toward simple hypotheses via a regularization penalgyoptilmization
that defines how we update the separator in response to a query.cbne semponent might
then be a simple random search for points whose correct classificatjoina® larger values
of the regularization term.

Can we construct universal activizers for some concept spacesnifiitte VC dimension?
What about under some constraints on the distribufoor Pxy (e.g., the usual entropy
conditions)? It seems we can still run Meta-Algorithm 1, Meta-Algorithm &, Algorithm

5 in this case, except we should increase the number of rounds (vdlkgs® a function
of n; this may continue to have reasonable behavior even in some casescfmhe@, es-
pecially whenP*(9%f) — 0 ask — co. However, it is not clear whether they will continue
to guarantee the strict improvements over passive learning in the realizeae ror what
label complexity guarantees they will achieve. One specific question is erhttére is a
method always achieving label complexﬁ;(skTp*2>, wherep is from the entropy condi-
tions (van der Vaart and Wellner, 1996) and from Condition 1. This would be an improve-
ment over the known results for passive learning (Mammen and Tsybh869; Tsybakov,
2004; Koltchinskii, 2006). Another related question is whether we can wepover the
known results for active learning in these scenarios. Specifically, ékan(2011) proved a

bound of® <6f <£%> S}Tp‘z) on the label complexity of a certain disagreement-based active

learning method, under entropy conditions and Condition 1. Do there estige dearning
methods achieving asymptotically smaller label complexities than this, in particulamympr

ing the 6¢ (s%) factor? The quantity (e%) is no longer defined whed; = oo, so this
might not be a direct extension of Theorem 27, but we could perhapshessequence of
QW)< ;) . 1Y\ . .

¢ ( €x ) values in some other way to replaﬁe(sK) in this case.

Generalizing the previous question, we might even be so bold as to askewttetle exists a
universal activizer for the space all classifiers. Let us refer to such a method amizersal
activizer (in general). The present work shows that there is a universalizatifor every
VC class. Furthermore, Lemma 34 implies that, for any sequénhc€,,... of concept
spaces for which there exist universal activizers, there also exigtévarsal activizer for
UiZ1 Ci: namely, the method that runs each of the activizersTowith respective budgets
|3n/(mi)?], fori=1,2,...,[v/3n/m]|, producing hypotheselsy, ..., h =5/, then returns
the value of ActiveSele¢{hy, ..., h[\/ﬁ/ﬂJ}’ n/2],{Xv,Xm+1,...}), whereM is larger than

any index accessed by thels¢3n/ | activizers. In fact, the proof of Theorem 6 entails that
theo(Ap(€, f,P)) guarantee holds fof in the closurecl(C) of any VC classC. Combined
with the above trick, it follows that we can achieve i@\,(&, f,P)) strong improvement
guarantee over passive learning for &lin |J2; cl(C;), where theC; sets are VC classes.
We can always construct a sequence of VC clagse€y, ... such that c{ 2, C;) is the

set of all classifiers. Howevelr)i2; cl(C;) is generally not the same as(icJ°; C;), so that
achieving\a(ce, f,P) =0o(Ap(€, f,P)) forall f € [JZ2, cl(C;) does not necessarily guarantee
the same for alff € cl(UUi2,Ci). Thus, constructing a general universal activizer would be
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a nontrivial extension of the present work, and the fundamental questithe existence (or
nonexistence) of such meta-algorithms remains a fascinating open question.

There is also a question about generalizing this approach to label spheethan{ —1, +1},
and possibly other loss functions. It should be straightforward to extesse results to the
setting of multiclass classification. However, it is not clear what the implicatianddibe
for general structured prediction problems, where the label space enguite large (even
infinite), and the loss function involves a notiondi$tancebetween labels. From a practical
perspective, this question is particularly interesting, since problems with coonplicated
label spaces are often the scenarios where active learning is mostnasdt takes substan-
tial time or effort to label each example. At this time, there are no publishedédties results
on the label complexity improvements achievable for general structurdecpom problems.

All of the claims in this work also hold whew, is a semi-supervise@assive learning al-
gorithm, simply by withholding a set of unlabeled data points in a preprocessipg and
feeding them into the passive algorithm along with the labeled set genexatied activizer.
However, itis not clear whether further claims are possible when activ&semi-supervised
algorithm, for instance by taking into account specific details of the learnagmused by the
particular semi-supervised algorithm (e.g., a cluster assumption).

The splitting index analysis of Dasgupta (2005) has the interesting fedtdna@cterizing a
trade-off between the number of label requests and the number of unlabeled exasgdes
by the active learning algorithm. In the present work, we do not charaeteny such trade-
off. Indeed, the algorithms do not really have any parameter to adjustithbear of unlabeled
examples they use (aside from the precision offt’nestimators), so that they simply use as
many as they need and then halt. This is true in both the realizable case ancdgntstic
case. It would be interesting to try to modify these algorithms and their analystsas
when there are more unlabeled examples available than would be used bgveaeethods,
the algorithms can take advantage of this in a way that can be reflected in gdpiahel
complexity bounds, and when there are fewer unlabeled examples avaitebkgorithms
can alter their behavior to compensate for this, at the cost of an incriedssccomplexity.
This would be interesting both for the realizable and agnostic cases. t)rirfdle agnostic
case, there are no known methods that exhibit this type of trade-off.

Finally, as mentioned in the previous section, there is a serious questioarcmgcwhat
types of algorithms can be activized in the agnostic case, and how large ttwvangents in
label complexity will be. In particular, Conjecture 23 hypothesizes thaarfgrVC class, we
can activize some empirical risk minimization algorithm in the agnostic case. Regtiis
conjecture (either positively or negatively) should significantly advanrainderstanding of
the capabilities of active learning compared to passive learning.
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Appendix A. Proofs Related to Section 3: Disagreement-Basddarning

The following result follows from a theorem of Anthony and Bartlett (199#ased on the clas-
sic results of Vapnik (1982) (with slightly better constant factors); see this work of Blumer,
Ehrenfeucht, Haussler, and Warmuth (1989).

Lemma 29 For any VC classC, me N, and classifier f such thatr > 0,B(f,r) # 0, let Vi, =
{he C:Vvi<mh(X)=f(X)}; foranyd € (0,1), there is an event {(d) with P(Hy(d)) > 1-9
such that, on K(d), Vi, € B(f,@(m; d)), where

o8 = 28 E Y +In(2/9)
] m .

A fact we will use repeatedly is that, for ah(€) = w(log(1/¢€)), we havep(N(¢g);€) = o(1).
Lemma 30 For P, (DIS(V)) from (1), on an event with P(J,) > 1—2-exp{—n/4},
max{P(DIS(V)),4/n} < Pn(DIS(V)) <max{4P(DIS(V)),8/n}.

Proof Note that the sequenég from (1) is independent from both and£. By a Chernoff bound,
on an evend, with P(J,) > 1—2-exp{—n/4},

P(DIS(V))
,le > xetds ]lo|5( y(X)
andP(DIS(V)) <2/n = Z Loisv)(X) < 4/n.

XEZ/{n

P(DIS(V)) >2/n =

€[1/2,2],

This immediately implies the stated result. |

Lemma 31 LetA : (0,1) — (0,00) and L: N x (0,1) — [0,00) be s.t.A(€) = w(1), L(1,6) =0and
L(n,&) — oo as h— oo for everye € (0,1), and for anyN-valued N¢) = w(A (€)), L(N(g),€) =
w(N(g)). Let L"Y(m;e) = max{ne N:L(n,e) <m} for every me (0,00). Then for anyA :
(0,1) — (0,00) with A(€) = w(A (€)), we have L1(A(g);€) = o(A(¢)).

Proof First note that.~* is well-defined and finite, due to the facts thah, ) can be 0 and is
diverging inn. LetA(g) = w(A(g)). Itis fairly straightforward to shok~1(A(g); €) # Q(A(€)),
but the strongeo(A(¢)) result takes sllghtly more work. Léi(n,&) = min{L(n,&),n?/A(¢)} for
everyn € N ande € (0,1), and letL-%(m; &) = max{ne N: L(n,&) < m}. We will first prove the
result forL. B

Note that by definition of. =, we know

(CHAE):e)+1)*/A(e) = LLH(A(e):) +1e) = Ale) = w(A(e)):
which impliesL 1 (A(g); &) = w(A (¢)). But, by definition ofL~* and the condition oh,
AE)>L (L (A(e)€),€) = w(L L (A(e);€)).

SinceL(m; &) > L~Y(m; ¢) for all m> 0, this impliesA(e) = w (L (A(€);€)), or equivalently
L~ (A(e); € ) 0(A(¢)). u
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Lemma 32 For any VC classC and passive algorithmd,, if Ap achieves label complexitp,

then Meta-Algorithm 0, with4, as its argument, achieves a label complexiy such that, for
every fe C and distribution over X, if P(dcpf)=0andoo > Ap(€, f,P) = w(log(1/¢)), then
Na(2e,f,P) =0(Np(g, T, P)).

Proof This proof follows similar lines to a proof of a related result of Balcan, Hden and
Vaughan (2010). Supposé, achieves a label complexitf,, and thatf € C and distribution
P satisfy co > Ap(g, f,P) = w(log(1l/e)) and P(Ocpf) =0. Lete € (0,1). Forne N, let
An(g) = P(DIS(B(f,@(|n/2];€/2)))), L(n;€) = [n/max{32/n,16Ax(¢)}]|, and form e (0,00)

letL=1(m;¢) = max{n € N: L(n;€) < m}. Suppose

n> max{lz In(6/€),1+ L1 (Ap(e, f,P); ) }

Consider running Meta-Algorithm O witid, andn as arguments, whilé is the target function and
P is the data distribution. L&t and£ be as in Meta-Algorithm 0, and Iét, = Ap(L) denote the
classifier returned at the end.

By Lemma 29, on the eveht, 5 (£/2),V C B(f, @([n/2];€/2)), so thatP(DIS(V)) < An(e).
Letting! = {Xn/2+1; - -- ,th/zjﬂn/(mj}, by Lemma 30, o, /2 (€/2) N Jn we have

n/ max{32/n,16An(&)}| < |U| < [n/max{4P(DIS(V)),16/n}|. (7)

By a Chernoff bound, for an eveit, with P(Kn) > 1 —exp{—n/12}, onH,/2(€/2) NI N Ky,
[UNDIS(V)| <2P(DIS(V)) - [n/ max{4P(DIS(V)),16/n} | < [n/2]. Defining the evenGy(€) =
Hin/2)(€/2) NI N Kn, we see that ofeq(€), every timeXm € DIS(V) in Step 5 of Meta-Algorithm

0, we have < n; therefore, sincd €V implies that the inferred labels in Step 6 are correct as well,
we have that oGy (€),

V(x.y) € L,y = f(x). 8
Noting that

P(Gn(g)°) <P (Hin/2(€/2)%) +P(I5) +P(KS) < £/242-exp{—n/4} + exp{—n/12} <,

we have
E [er(ﬁn)]
<E[Lg,)L[|L] > Ap(e, T,P)]er(hn)] +P(Gn(e) N{|£] < Ap(€, f,P)}) +P(Gn(€)°)
<E L) L[IL] > Ap(e, f,P)]er(Ap(L))] +P(Gn(e) N{|L] < Ap(e, f,P)}) + €. (9)

On Gy(¢g), (7) implies|£| > L(n;€), and we chosa large enough so thai(n;g) > Ap(g, f,P).
Thus, the second term in (9) is zero, and we have

E [er(hy)] <E[Le,)1[L] > Ap(e, f,P)]er(Ap(L))] +€
= [E [, er(4p (£ ]yzy} [1£1= Agle. £,P)]] +& (10)

For any/ € Nwith P(|£| = ¢) > 0, the conditional of/|{|1/| = ¢} is a product distributio®’; that is,
the samples itf are conditionally independent and identically distributed with distribugiowhich
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is the same as the distribution §X1, Xy, ..., X,}. Therefore, for any suchwith ¢ > Ap(e, f,P),
by (8) we have

E [Loye) er(Ap (£))|{I£] = £}] < Eler(4p(20)] <.

In particular, this means (10) is at most Z'his implies Meta-Algorithm 0, withd; as its argument,
achieves a label complexity, such that

Na(2e,1,P) < max{lzln(e/g), 1+L L (Ap(e, ,P);e) }

SinceAp(g, f,P) = w(log(1l/€)) = 12In(6/¢) = o(Ap(&, f,P)), it remains only to show that
L= (Ap(g, T, P);€) = o(Ap(e, f,P)). Note thatve € (0,1), L(1;e) = 0 andL(n; ¢) is diverging in
n. Furthermore, by the assumpti@{dc » f) = 0, we know that for an\N(¢) = w(log(1/¢€)), we
haveAy g (€) = 0(1) (by continuity of probability measures), which impliefN(¢); €) = w(N(¢)).
Thus, since\y (¢, f,P) = w(log(1/€)), Lemma 31 impliex 1 (Ap(e, f,P);€) = 0(Ap(g, T, P)),
as desired. [

Lemma 33 For any VC clas<C, target function fe C, and distributionP, if P(dc »f) > 0, then
there exists a passive learning algorithdy, achieving a label complexitf, such that(f,P)
Nontrivial(Ap), and for any label complexit, achieved by running Meta-Algorithm 0 with, as
its argument, and any constantg(0, o),

Na(ce, f,P) #o(NAp(g, T, P)).

Proof The proof can be broken down into three essential claims. First, it follooms £emma 35
below that, on an evet’ of probability one,P(dy f) > P(dcf); sinceP(DIS(V)) > P(dy f), we
haveP(DIS(V)) > P(dcf) onH’.

The second claim is that ad’ N Jy, |£]| = O(n). This follows from Lemma 30 and our first
claim by noting that, o’ N Jn, |£] = |n/(43)| < n/(4P(DIS(V))) < n/(4P(dcT)).

Finally, we construct a passive algorithAy, whose label complexity is not significantly im-
proved when|£| = O(n). There is a fairly obvious randomized, with this property (simply

with a deterministicA, as follows. Let = {h;}7°; be any sequence of classifiers (not necessarily
in C) with 0 < P(x: hi(x) # f(x)) strictly decreasing to 0, (say witly = —f). We know such a
sequence must exist sing&dc f) > 0. Now define, for nonempt$,

Ap(s)za;gginP(XZhi(X)# FX)) +2L01)15) (P(x:hi(x) # f(x))).

Ap is constructed so that, in the special case that this partidularthe target function and this
particularP is the data distributiond,(S) returns théy, € # ¢ with minimal er(h;) such that gfh;) >
1/|S. For completeness, letp(0) = hy. Defineg; = er(hy) = P(x: hi(x) # f(X)).

Now leth, be the returned classifier from running Meta-Algorithm O withandn as inputs, let
N\p be the (minimal) label complexity achieved By, and letA\, be the (minimal) label complexity
achieved by Meta-Algorithm 0 wittd, as input. Take ang € (0,00), andi sufficiently large so
that&_1 < 1/2. Then we know that for anyg € [&,&_-1), Ap(g, f,P) = [1/&]. In particular,
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Np(g,T,P) > 1/¢, so that(f,P) € Nontrivial(Ap). Also, by Markov’s inequality and the above
results onL|,
- 1 4P(Oct) (1 4P(dcf)
Elerth) | >E| —| > ——P — > ———~
et > 7| > e (7> 25
S 47’(f<cf)

P(Oct)
n

P(H N3 > (1—2-exp{—n/4}).
2P(0c 1)

This implies that for 41(4) < n < ==, we haveE [er(ﬁn)] > cg;, so that for all sufficiently large

I, C&i
ZP((:z:cf) . P(ficf) hﬂ _ P(ac@f)/\p(si, £,P).

Since this happens for all sufficiently largeand thus for arbitrarily smal; values, we have
Na(ce, f,P) £ o(Np(g, f,P)).

/\a(cgi 9 f )P) Z

Proof [Theorem 5] Theorem 5 now follows directly from Lemmas 32 and 33,esponding to the
“if” and “only if” parts of the claim, respectively. |

Appendix B. Proofs Related to Section 4: Basic Activizer

In this section, we provide detailed definitions, lemmas and proofs relatedtte Mgorithm 1.

In fact, we will develop slightly more general results here. Specificallyfiwan arbitrary
constanty € (0,1), and will prove the result for a family of meta-algorithms parameterized by the
valuey, used as the threshold in Steps 3 and 6 of Meta-Algorithm 1, which wete & above to
simplify the algorithm. Thus, setting= 1/2 in the statements below will give the stated theorem.

Throughout this section, we will assurfids a VC class with VC dimensioth, and letP denote
the (arbitrary) marginal distribution of; (vi). We also fix an arbitrary classifidre cl(C), where
(as in Section 6) ¢IC) = {h: ¥vr > 0,B(h,r) # 0} denotes the closure @f. In the present context,

f corresponds to the target function when running Meta-Algorithm 1. Ttweswill study the
behavior of Meta-Algorithm 1 for this fixed andP; since they are chosen arbitrarily, to establish
Theorem 6 it will suffice to prove that for any passif, Meta-Algorithm 1 with.A, as input
achieves superior label complexity compareddtofor this f andP. In fact, because here we only
assumef € cl(C) (rather thanf € C), we actually end up proving a slightly more general version
of Theorem 6. But more importantly, this relaxation t¢(&) will also make the lemmas developed
below more useful for subsequent proofs: namely, those in Appendix [or this same reason,
many of the lemmas of this section are substantially more general than is ngdessiae proof of
Theorem 6; the more general versions will be used in the proofs disesulater sections.

For anym e N, we defineV; = {he C: Vi <m,h(X;) = f(X)}. Additionally, for# C C, and
an integek > 0, we will adopt the notation

SKH) = {Se X<H shatterss} ,
SK(H) = A\ SK(H),
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and as in Section 5, we define tkelimensional shatter core dfwith respect tdH (andP) as
K& _ i oK
ot = lim S* (Bu(f.1)).

and further define
oK, f = ak\ ok f.

Also as in Section 5, define
di =min{keN: P (okf) =0}
For convenience, we also define the abbreviation
& =P (o8 ).

Also, recall that we are using the convention tht = {@}, P°(A°) = 1, and we say a set of
classifiers shattersg iff H # {}. In particular, SO(H) # {} iff H # {}, and &5, f # {} iff
infhez P(X: h(X) # f(x)) = 0. For any measurable s&8s S, C X'* with PX(S;) > 0, as usual we
definePX(S1|S) = PX(S1N'S)/PX(S); in the situation wheréPX(S,) = 0, it will be convenient
to definePX(S|S) = 0. We use the definition of én) from above, and additionally define the
conditionalerror rate efh|S) = P ({x: h(x) # f(x)}|S) for any measurabl8C X'. We also adopt the
usual short-hand for equalities and inequalities involving conditionala@agfens and probabilities
given random variables, wherein for instance, we Wi |Y] = Z to mean that there is a version
of E[X|Y] that is everywhere equal # so that in particular, any version BfX|Y] equalsZ almost
everywhere (see, e.g., Ash and Bahs-Dade, 2000).

B.1 Definition of Estimators for Meta-Algorithm 1

While the estimated probabilities used in Meta-Algorithm 1 can be defined in a vafietsys to
make it a universal activizer fdt, in the statement of Theorem 6 above and proof thereof below,
we take the following specific definitions. After the definition, we discussratare possibilities.

Though it is a slight twist on the formal model, it will greatly simplify our discusshme-
low to suppose we have access to two independent sequences of i.ilieladlaxamplesVy, =
{wi,wy, ...} andWs = {wy, W, ...}, also independent from the main sequefi®g, Xz, ...}, with
Wi, W, ~ P. Since the data sequen{¥;, Xo,...} is i.i.d., this is distributionally equivalent to sup-
posing we partition the data sequence in a preprocessing step, into thseggences, alternatingly
assigning each data point to eith&, Wy, orW,. Then, if we suppos€y = {X{,X5,...}, and we
replace all references ¥ with X' in the algorithms and results, we obtain the equivalent statements
holding for the model as originally stated. Thus, supposing the existenlbesd#M sequences sim-
ply serves to simplify notation, and does not represent a further assumaptimp of the previously
stated framework.

For eactk > 2, we partitiorVb into subsets of sizk— 1, as follows. For € N, let

K
Sﬂ( = {V\/lJr(ifl)(kfl)?‘"7V\/i(k—1)}'
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We define the’,, estimators in terms of three types of functions, defined below. FokaayC,
xe X,ye {-1,+1}, me N, we define

Prm (Se X*1: 4 shattersSU {x}|H shattersS) = AR (x, W, ), (11)
P (Se X1 #[(x,—y)] does not shatte$# shatter§) =F{ Xy,Wo, H),  (12)
P (x: P (Se X*1: 4 shattersSU {x}|H shatter§) > y) =AM W, W, ). (13)

The quantitie\ (xWa, H), [ (x yWo, H), andA{ (Wi, Ws, H) are specified as follows.
Fork=1, Fﬁn)(x, y,Wo, ) is simply an indicator for whether evetye # hash(x) =y, while
AP (x, W, H) is an indicator for whethex € DIS(H). Formally, they are defined as follows.

Py We, H) = 1 heo3 (Y)-
heH
& Wa, 1) = Lpis(ze)(X)-
Fork > 2, we first define
m
K _ k)
MW () = max{l,z Lswr) (S%) } .
i—1
Then we take the following definitions for% andA®.

P8 (x,y,Wo, H) = (k Znskl o (8%) Lser (8¥). (14)

M (#) *

(k)1 : IZ_; sk (ék) U {X}> : (15)

YISy

For the remaining estimator, for akywe generally define

(Wl VVZ H) 2 rng Z]]- ly/4,00) (Am (W|,VV2 /H))

The above definitions will be used in the proofs below. However, thereantainly viable al-
ternative definitions one can consider, some of which may have interestioigetital properties. In
general, one has the same sorts of trade-offs present whenevettiestismeonditional probability.

For instance, we could replaca® in (14) and (15) by mir{ﬁ eN: Mék)(H) = m3}, and then nor-

malize bym? instead oﬂ\/lr(#) (#); this would give usm® samples from the conditional distribution
with which to estimate the conditional probability. The advantages of this agpreauld be its
simplicity or elegance, and possibly some improvement in the constant factbeslabel complex-
ity bounds below. On the other hand, the drawback of this alternativeiti@finvould be that we
do not know a priori how many unlabeled samples we will need to processian to calculate it;
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indeed, for some values &fand?#, we expectPk~1 (Sk"1(H)) =0, so thaﬂ\/lék) (H) is bounded,

and we might technically need to examine the entire sequence to distinguishsthisara the case

of very smallP*-1 (S*-1(%)). Of course, these practical issues can be addressed with small mod-
ifications, but only at the expense of complicating the analysis, thus losindethenee factor. For
these reasons, we have opted for the slightly looser and less elegampigupractical, definitions
above in (14) and (15).

B.2 Proof of Theorem 6

At a high level, the structure of the proof is the following. The primary conembs of the proof
are three lemmas: 34, 37, and 38. Setting aside, for a moment, the fact that wsing the’y,
estimators rather than the actual probability values they estimate, Lemma 38 isdhcdténe num-
ber of data points iy, grows superlinearly im (the number of label requests), while Lemma 37
guarantees that the labels of these points are correct, and Lemma 34 telis te tblassifier re-
turned in the end is never much worse thdp(Lg ). These three factors combine to prove the

result. The rest of the proof is composed of supporting lemmas and detslslirey thePy, esti-
mators. Specifically, Lemmas 35 and 36 serve a supporting role, with thegaugb showing that
the set olV-shatterablé-tuples converges to tHedimensional shatter core (up to probability-zero
differences). The other lemmas below (39—45) are needed primarily tocettie above basic idea
to the actual scenario where th estimators are used as surrogates for the probability values. Ad-
ditionally, a sub-case of Lemma 45 is needed in order to guarantee thedghebt budget will not
be reached prematurely. Again, in many cases we prove a more gemensd ldhan is required for
its use in the proof of Theorem 6; these more general results will be déedabsequent proofs:
namely, in the proofs of Theorem 16 and Lemma 26.

We begin with a lemma concerning the ActiveSelect subroutine.

Lemma 34 For any K,M,N € N with k* <N, and N classifierghs,hy, ..., hy} (themselves pos-
sibly random variables independent frdiu, Xm+1, - .. }), a call to ActiveSelect{hy, hy,... hn},
m, {Xu,Xu+1,...}) makes at most m label requests, and;iihthe classifier it returns, then with
probability at leastl — eN- exp{—m/(72k*NIn(eN))}, we haveer(h;) < 2er(h: ).

Proof This proofis essentially identical to a similar result of Balcan, HannekeYanghan (2010),
but is included here for completeness.

Let My = LWmIn(eN)J First note that the total number of label requests in ActiveSelect is at
mostm, since summing up the sizes of the batches of label requests made in atiexecf Step
2 yields

N-1

_ N N-1
m J m
D oL e LN
i L(N —1)In(eN) | ~ <= jin(eN)
Letk™ =argmincyy . iy erth). Foranyj € {1,2,..., k™ —1} with P(x: hj(x) # hi«(x)) > 0,
the law of large numbers implies that with probability a#w, Xpm1, ...} N {X: hj(X) # e (X) }| >
Mj, and since dh |{X: h;(X) # he+(X)}) < 1/2, Hoeffding’s inequality implies that

P (me-j > 7/12) < exp{—M;/72} < exp{1—m/(72'NIn(eN))}.
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A union bound implies
P (mgxm@*j > 7/12) <Kk™-exp{l—m/(72Z&"NIn(eN))}.
J< Kok

In particular, note that when maxe- me-j < 7/12, we must havi > K,

Now supposg € {k**+1,...,N} has eth;) > 2erhe-). In particular, this implies ¢h;|{x:
hie+ (X) # hj(x)}) > 2/3 andP(x: hj(x) # he(x)) > 0, which again means (with probability one)
H{XM, X1, - N X hj(X) # he (X) }| > M= By Hoeffding’s inequality, we have that

P (Mjie < 7/12) < exp{—Me+/72} < exp{1—m/ (72NIn(eN))}.
By a union bound, we have that
P (3j > k™ :er(hj) > 2er(h-) andmj-- < 7/12) < (N—k™)-exp{1—m/(72'NIn(eN))} .

In particular, wherk > k**, andmje- > 7/12 for all j > k** with er(h;) > 2er(h-), it must be true
that efh;) < 2er(he+) < 2erh).

So, by a union bound, with probability 1— eN-exp{—m/ (72k*NIn(eN))}, thek chosen by
ActiveSelect has ¢h;) < 2er(h). [ |

The next two lemmas describe the limiting behaviorSstVy;). In particular, we see that its
limiting value is preciselyo f (up to zero-probability differences). Lemma 35 establishes that
SX(V;) does not decrease beltﬂ@f (except for a zero-probability set), and Lemma 36 establishes
that its limit is not larger tha@!(‘:f (again, except for a zero-probability set).

Lemma 35 There is an event Hvith P(H’) = 1 such that on B Yme N, Yk € {0, ..., d; — 1}, for
anyH with Vi CH C C,

PH (K)ol t) =P (ol tfokr) =1
and
VieN. s (S(k+l)> — 1 (Sawl)) .

Also, on H, every suct{ hasPk (87"{ f) = pk (&'éf), and I\/E'O (H) — 0o asl — .

Proof We will show the first claim for the séty, and the result will then hold fof, by mono-
tonicity. In particular, we will show this for any fixeld € {0,...,d; — 1} andm € N, and the

existence oH’ then holds by a union bound. Fix any st 6(‘éf. Suppose B:(f,r) does not
shatterS for somer > 0. There is an infinite sequence of s@{dn(l'),h(z'), . ..,h(z'k)}}i with vj < 2%,
P(x: hg')(x) # f(x)) 4 0, such that eacl@h(l'),...,h(z'k)} C B(f,r) and shatterS. Since B (f,r)
does not shattes,

1=inf1[3j:h" ¢ Bvr;(f,r)} =inf1 [aj <2 e<m:h (X) # f(xg)]
I |
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But
i (iriml [aj <2 0<mih (%) # f (xg)} - 1) < ir;ﬂp(aj <2 r<mh () # f (xz))

= .ILTOZ mp (X5 h?)(X) # f(X)) => mlim P (x: h?)(x) = f(x)> —0,
' j<ox

j<ak

where the second inequality follows by a union bound. Therefare, 0, P (S¢ Sk (By;(f.r))) =
0. Furthermore, sincs* (By: (f,r)) is monotonic inr, the dominated convergence theorem gives
us that

P(s¢dl,)=E [Lng,ﬂskm%(fm(sﬂ —limP (S¢ 8 (By;(f.,r))) =0.

r—0

This implies that (lettings ~ PX be independent froi:)

P (Pk (S\k,n*qf

dkt) > 0) =P (PH(a, fnokf) > 0)
:yLnO]P’(P"<5\‘}"*]fma('éf> > &)

< éiLnO;E [Pk (é\k,n*j ma}éf)] (Markov)

1 y
= lim 2 [1%45)1@ (s¢ o, f

=|lim0=0.
&—0

s)} (Fubini)

This establishes the first claim fof;, on an event of probability 1, and monotonicity extends the
claim to anyH 2 V3. Also note that, on this event,

P (0l 1) = P* (0l okt ) = P (af flokt) P* (ol ) = PX(okf),
where the last equality follows from the first claim. Noting that#1C C, &)'Elf C 0K f, we must
have
P (ol 1) = P*(okt).
This establishes the third claim. From the first claim, for any given valiecdf the second claim

holds for§ ™™ (with 7 = V%) on an additional event of probability 1; taking a union bound over
alli € N extends this claim to eversfk) on an event of probability 1. Monotonicity then implies

Lokt (§(k+1)> =Ty ¢ <§<k+1)) < T <s(k+1)) < g (S(k-&-l)) ,

extending the result to genefdl Also, ask < Jf, we knowPK (8('5 f) > 0, and since we also know
V7 is independent frori\,, the strong law of large numbers implies the final claim {gy on an
additional event of probability 1; again, monotonicity extends this claim tdtamyV,;,. Intersecting
the above events over valugss N andk < ds gives the eventl’, and as each of the above events
has probability 1 and there are countably many such events, a union bouresif(pl’) =1. W
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Note that one specific implication of Lemma 35, obtained by takirg0, is that orH’, V5, # ()
(evenif f € cl(C)\ C). This is because, fof € cl(C), we haved2 f = &0 so thatP? (52 f) = 1,

which meangP? (8\9%0 =1 (onH’), so that we must ha\/@(}%f = X9, which impliesV # (0. In
particular, this also mearfse cl (V).

Lemma 36 There is a monotonic function(ig = o(1) (as r — 0) such that, on event Hifor any
ke {0,...,df —1}, me N, r > 0, and setH such that }}, C % C B(f,r),

P (3F[S4 () <alr).
In particular, fort € Nandd > 0, on H(8) NH’ (where H(d) is from Lemma 29), every m ©
and ke {0,...,df — 1} hasPX (d‘éf‘S"(V@)) <q(e(t;9)).
Proof Fix anyk € {0,.. . df — 1}. By Lemma 35, we know that on eveit,

P (1|5 0) = PH(OKTNS (1) _ PH (KT NS (W)

PR(SK(H) T PRk
_ PR(AETNSK(H)) - PR(EFNSH(B(f,r)))
A Pk (0 T)

Defineg(r) as this latter quantity. Sincek (5¢'§f NSX(B(f,r))) is monotonic irr,

_ k(3K £ A lim .Sk _
PRk fnsk(B(f.r) T <0<Cm1'ﬂ%5 (B(f’r>)) PK (DK oK)
jim - - . - —c)_g
r=0 PX (0 T) PK (9 T) Pk (0¢T)
This provesy(r) = o(1). Defining
q(r) = max{ak(r) : ke {0,1,....ds — 1} } = o(1)

completes the proof of the first claim.
For the final claim, simply recall that by Lemma 29, BHiR(J), everym > 1 hasV; C V; C
B(f,9(1:9)). =

Lemma 37 For { € (0,1), define
re=sup{re(0,1):q(r) < {}/2
OnH,vke {0,...,d; —1},VZ € (0,1), Yme N, for any setH such that}, C H C B(f,r;),
P (x Pk (§< (H[(x, F(x))]) \sk (H)) > z)
:P<x:7?k (S—R(H[(x,f(x))]) ‘8'7‘{f) > z) —0. (16)

In particular, for & € (0,1), definingt({;d) = min{r € N:supp(m;d) < rz}, VT >1((;0),and
m>T1
Ym> 1, on H () NH’, (16) holds forH = V.
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Proof Fix k,m,H as described above, and suppgse P* (5@\8"(7—[)) < {; by Lemma 36, this
happens o’. Since 0¥ f C SK(#), we have thatx € X,

Pk (s—km[(xf ‘sk )sz (§R(H[(xf ]aH ) (aH ]sk )
+PK(S (A0 TX) \sk @f)@k(aﬂf)sk(ﬂ)).
Since all probability values are bounded by 1, we have
P (S (A% F(x \sk )) < P*(SKMI(x, (x \aH )+ P (Bl f \sk ). an
Isolating the right-most term in (17), by basic properties of probabilitiesave h
Pk (57'; f ‘5"(%))
= pk (5§{f (3"(%) mé}éf) Pk @‘Cf ’S"(H)) +PX (%f‘Sk(’H) m&'{;f) Pk (a}gf ]5“(%))
< Pk (%f)sk(ﬂ)) +pK (éggf)sk(%) magf) . (18)
By assumption, the left term in (18) equalsExamining the right term in (18), we see that
Pk (%f‘sk(ﬂ) nokt) =P (s m%f‘@éf) /P (sk(H)‘anf)
gP"(%f‘aéf)/Pk(a';{f)aéf). (19)

By Lemma 35, orH’ the denominator in (19) is 1 and the numerator is 0. Thus, combining this fact
with (17) and (18), we have that a4,

P(x:Pk<§k(’H[(xf \sk )>Z)§P(X:Pk<5—‘k(7{[(xf \aﬂ)>z q) (20)

Note that proving the right side of (20) equals zero will suffice to estaltiisliesult, since it upper
boundsboth the first expression of (16) (as just establishaddl the second expression of (16)
(by monotonicity of measures). Letting ~ P be independent from the other random variables
(2, W, W), by Markov’s inequality, the right side of (20) is at most

Zf]E [Pk (5 (HIX, £(X))]) laﬁf) M -

E [Pk (SK(HIX, F(X))) Nk 1) ‘7—[]
(¢ —ayPk (a5 f) 7

and by Fubini’s theorem, this is (lettirg~ P* be independent from the other random variables)

E [1185”(5)73 (x: S¢ SK(H[(x, T(X)))) \H}
(L —ayPk (k1) '

Lemma 35 implies this equals

E [ ((SP (x: S¢ S“(HI(, F(0)) [#]

(¢ —a)P*(9ET) “
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For any fixedSe 8" f, there is an infinite sequence of s{t%h(li), (zi), ,h(z'k)}} with Vj <
ieN

2, P(x h ( ) # f( )) 10, such that eacl{uh(li), ,hék)} C H and shatterS. If H[(x, f(x))] does
not shattels then

1=inf1 [3j: b ¢ HI(x, F00)]] =inf1 [35: 0 (0 # F)] .

In particular,
P (x:S¢ S*(Hlix F0))) <P (x:int1 3130 # 10] =1)
—P(O{x 3j:hl (x ) (x:3isth (9 #1(x)
<.'LTO§ZK7’(X 09 7 F(x ):; P (x:h00 £ 109) =0

Thus (21) is zero, which establishes the result.
The final claim is then implied by Lemma 29 and monotonicity/gfin m: that is, onH;(9),

Vr;gvr*gB(quo(r;é))gB(f?rZ)' u

Lemma 38 For any { € (0,1), there are values{A(O( ):neN,ee (0, 1)} such that, for any
ne Nande >0, on event i, 3 (¢/2) NH’, letting V = Via

P(x:Pdf*l (Se Xd”l:SU{X}ES‘If(V)‘S&f Lv )) >z) <),

and for anyN-valued N ¢) = w(log(1/¢)), AE\IZ()E)(S) =0(1).
Proof Throughout, we suppose the evéht, 5 (¢/2) NH’, and fix some € (0,1). We havevx,

PIL(se X% isu{xp e ST (V)[sH V)

=Pt (se %50 (g € 5T (v)|sF vy nad ) P (e [sd i)

+ P8t (se X9t su(x) e 8% (V)| ST vy gl ) pA (G |sE L))

< PU(seadt:sufx} e STV ‘Sdf “Lvynat 't)+P%(9 o )sdf V). (@2)

By Lemma 35, the left term in (22) equals
ot (se a9t sux) e % (v)[sHHv)nol ) P (st dw)[of )

— pdi- 1(86 a1 SU{X}GSOIf ‘adf K )
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and by Lemma 36, the right term in (22) is at maép(|n/3];€/2)). Thus, we have
P (x  pdi-1 (SE X915y x) e 8% (V)‘S&f’l(V)> > z)

<P (x: Pt (sead%tisu(x) e s (V)‘ag“lf) >Z-de(n/3ie/2)).  (23)

Forn<3t1({/2;¢/2) (for 1(-;-) defined in Lemma 37), we defimﬁo(s) = 1. Otherwise, suppose
n>31({/2;¢/2), so thaty(¢@(|n/3];€/2)) < {/2, and thus (23) is at most

P (x L pdi-l (Se x8-1: gy {x} € SO (V)‘agf_lf) > Z/2> .
By Lemma 29, this is at most
P (x: I (se ¥% 250 {x) € S% (B(1,0(|n/3);2/2)) ‘ag“lf) >¢/2).

Letting X ~ P, by Markov’s inequality this is at most

ZE[PI (sea% i (x) e ST (B(1glln/3)ie/2)) [of 1)

2_pd (SU (x} € X9 : SU{x} € S¥ (B(f,0(|n/3];£/2))) andSe agf‘lf)

N
N_?”

<

P (s (B(1,0(n/3];£/2)))) (24)

O

4

f

Thus, definingﬁﬁf)(s) as (24) fom > 31({/2;¢/2) establishes the first claim.
It remains only to prove the second claim. Wéte) = w(log(1/¢€)). Sincet({/2;¢/2) <

[& (dln (%) +1In (g)ﬂ = O(log(1/€)), we have that for all sufficiently smadl > 0, N(g) >

31({/2;¢/2), so thatAf\f)g)(s) equals (24) (withn = N(¢)). Furthermore, sincé; > 0, while

(
P (8(?; f) =0, and(|N(¢g)/3];€/2) = o(1), by continuity of probability measures we know
(24) iso(1) whenn = N(¢), so that we generally ha\lé\,il)(s) =0(1). [

For anym € N, define
M(m) = m5¢ /2.

Lemma 39 There is a(C, P, f)-dependent constant'te (0,00) such that, for anyr € N there is
an event B C H’ with

P(Hr(i)) > 1—c . exp{—Ni(1)/4}
such that on 1, if d; > 2, thenvk € {2,...,d¢}, Ym> 1, V£ € N, for any setH such that ' C

HCC,
M (1) > M(m).
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Proof OnH’, Lemma 35 implies every g1 <$(k)) > Ly <S1(k)> = Lok (S(k)), SO we
focus on showiné({s(k) i< m3} ﬁa('é‘lf‘ > l\7|(m) on an appropriate event. We know

P(Vke {2,....d¢} ,vm>T,

{§¥ i <mfnokte] = M(m)
- 1—]P’<er {2,....d¢ },m>1: Hsfk) i< m3}ﬂ6('§*1f‘ < l\7|(m))
dr
> 1—%2}?(‘{5@ i< m3}ﬂ8¢";1f’ < I\7I(m)) ,
where the last line follows by a union bound. Thus, we will focus on boundin
dr
n%;;;w(){a(k):ignﬁ}maglf‘ <Ni(m)) (25)

Fix anyk € {2,...,d¢ }, and integem > 1. Since
E[[{§ i <mtfnokte]] = Pt (o) m > Sy,
a Chernoff bound implies that
P(|{s":i<mPhnak ] < Ni(m) < exp{ -t (021 /8}
< exp{—m35f /8}.
Thus, we have that (25) is at most

Ziexp{—m35f/8} < de -exp{—m35f/8} < Z ds -exp{—me/S}

m>T k=2 m>1 m>T3
< df -exp{—M(1)/4} +d ~/:exp{—x3f/8} dx
ds - <1+8/5f) -exp{—M(t)/4}
9df/5f) -exp{—Ni(1)/4}.

IN

Note that sincé(H’) = 1, defining

Hl(.l) = {VKE {27-"7&f}>vm2 T,

{S(k) i< m3}m8('é‘1f‘ > I\7I(m)}mH’

has the required properties. |
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Lemma 40 For anyTt € N, there is an event @ with
P (Hﬁi) \G@) < (121&f/8f) -exp{—M(1)/60}
such that, on &, if d; > 2, then for every integer 5 T and ke {2,....d;}, vr € (0,ry/6),

ME (B(,r) < (3/2) Ha(k) < §}m8('é*1f).

Proof Fixintegerss> 1 andk € {2 .,d}, and letr =r, 6. Define the se§ ! = {s(k) i < 53}ﬁ

S<1(B(f,r)). Note|S<1| = M (B(f,r)) and the elements &~ are conditionally i.i.d. given
Y (B(f,r)), each with cond|t|onal distribution equivalent to the conditional distributioéﬁf

given{S<.lk) € Sk‘l(B(f,r))}. In particular,

E[[$<Lnak | [ME (B ()| = P2 (ol | S (B (F,r) ) MY (B(T,N)).

Define the event
G\ (k s) = {|3k—1} < (3/2) |3"‘1m‘3('é‘1f\}.

By Lemma 36 (indeed by definition ofr) andr,s) we have

1-P (6! (k9)|MY (B(F,))

<P (|82 nak | < (4/5) (1—a(r) MY (B(f,r)) M
<P (|Stnak | < (4/5)Pt (alt

)
é” (B(f.1)))
HB(1,0)) MEB(1,0) | MIB(F,1)). (26)

(
:P<|3k*1ﬂ8(‘é*1f\<(2/3 )(B(f,r)) ’MS
(

(

By a Chernoff bound, (26) is at most

exp{— ME (B (f,r)) Pk 1(8" 1f)3'< L(B(f ,r)))/so}
<exp{-M{ (B(f,r)) (1-q(r)) /50} < exp{ M (B(f.1)) /60} .

Thus, by Lemma 39,

P (Hﬁ” \Gg)(k,s)) <P ({Mé“> (B(f,r) > |\7|(s)} \G(Ti)(k,s))
_E [(1—1@ (Gg)(k,s)’Mék) (B(f,r)))) Lii9.00) (MS‘> (B(f,r)))}
<E[exp{ M (B(1.1)) /60} 133y o) (ME? (B(F.1)) )| < exp{-Ni(s)/60} .
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Now deflnlngGT = ﬂs>rﬂk ,G (k S), a union bound implies

P (Hﬁi) \G(Ti)) <) dr-exp{—M(s)/60}

< d; (exp{—l\7|(r)/60} + /T:O exp{—xsf/lzo} dx>
= df <1+ 120/5f> -exp{—M(1)/60}

(121df/5f) -exp{—Ni(1)/60} .

This completes the proof far=r, 5. Monotonicity extends the result to any (0, rl/e]. |

Lemma 41 There existC, P, f,y)- dependent constants € N and ¢ € (0, 00) such that, for any
integert > 1%, there is an event H C G; M with

P (HO\H) <o exp{ —Ni(r)¥2/60} 27)

such that, on |§P N Hﬁ“), vs,m ¢,k € N with £ < m and k< ds, for any set of classifiers/ with
V) CH, ifeitherk=1,ors>tandH C B(f,r_, /), then

8 (X Wo, H) < y = FL) (X, — (X)W, H) < FL) (X, £ (X)W, H)

In particular, for & € (0,1) and T > max{t((1—y)/6;8), 1%}, on H(8) NHY NH, this is true

for H =V for every k/,m,s € N satisfyingr </ <m, 1 <s, and k< ds.

~\1/3
Proof Lett* = (6/(1—Y))- (2/5f> , and consider any, k, ¢, m, s, as described above. K= 1,

the result clearly holds. In particular, Lemma 35 implies that-léiﬁ, H[(Xm, T(Xm))] 2 Vi # 0, so
that someh € H hash(Xm) = f(Xm), and therefore

FEY (X, — (X)W, H) = Ty ey (— F (X)) = 0,

heH

and smcaﬁs (Xm Wo,H) = Ipis(u )(X,TQ if As (Xm Wo,H) <y, then sincey < 1 we haveXy, ¢
DIS(#), so that

) K T (Xen) Vo, 1) = T 1y (s (F (X)) = 1.

heH
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Otherwise, suppose2 k < d¢. Note that orHﬁi) N G(Ti), vme N, and anyH with V) CH C
B(f,ri—y)e) for somel € N,

I:ék) (XfTh - f (Xm)7\/v25 H)

$
> LS (34 (n f Xe)) (Sﬂ( k)> Lsia(z) (ék)>

1 ..
: {S(k) < ss}ma';;lf Zl‘sk V) (S’<k> SK1(B(fry)6)) (S(k)) (monotonicity)
1
<

1

{S(k):i§§}ﬂa"*1f -
3 Zﬂ—k 1f< )Skl B(f e ) (S“‘) (Lemma 40)

— 2ME(B(F,rayye))

i=1
s
{S(k) i< Sg} mal;{—lf ;18—5%11‘ (S(k)) g 1(B(f.r (1 yy6)) (S“() (monotonicity)
s
2
i=1

Lgcs (S(k)) Lsi1(8(friy0)) (s(k> (Lemma 35)

For brevity, leti” denote this last quantity, and I&t = M (B(f,r(1-y)y6)). By Hoeffding’s
inequality, we have

P <<z/3>f > PR (O[S (B (o)) + MG

Mks) < exp{—ZMlif} .

Thus, by Lemmas 36, 39, and 40,

({(2/3> ) Oken, = (k) W, ) > 0 (11 6) +M(8) 2 M G

<P ({@3)f > P (T[S B (Fraye) ) M9 2 nH)
<P ({(2/3)F > P (S B (Frayye) ) + M} N {Me> N(9)})
—E ]P’((Z/B)F > pk= 1<5k 1f‘Sk (B (f,r(lfy)/e))>+|\/|k_sl/3 Mks) Li(s),00) (Mis)

<E [exp{ 2M1/3} Ki(5).00) (Mks)} < exp{—2l\7| (5)1/3}.
Thus, there is an eveht!" (k, s) with P (Hg) NG\ 1Y (K, s)) < exp{—2M(s)*/3} such that

P89 (X, — F (%) W, 1) < (3/2) ((rayyj6) + Ni(9) )

holds for these particular valuesloands.
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To extend to the full range of values, we simply t&lkféi) = ﬂms>rﬂk<df H )(k s). Since
T > (2/8¢)Y/3, we haveNi(1) > 1, so a union bound implies

P(H NG\ H) < 3 di-exp{ 2N (9}

ST
< ds- (exp{—2|\7l(r)1/3} + /TOO exp{—2l\7| (x)1/3} dx)
= d (1+ 2’2/35{1/3) -exp{—ZM(T)1/3} < 2d~f5f_1/3'exp{—2|\7l(r)1/3}.
Then Lemma 40 and a union bound imply
P (Hﬁ” \ Hﬁ‘”) < 2d; 573, exp{—zm(r)1/3} +121d; 8, exp{—M(1)/60}
< 123061 exp{ M(T )1/3/60}
On Hp) N Hpi), every suchs,m, ¢,k and# satisfy
8 O, = £ ) W, 1) < (3/2) (a(r 1y 0) + M (9)°)
<(3/2)((1-y)/6+(1-y)/6)=(1-V)/2, (28)

where the second inequality follows by definitionref ) s ands> 1 > 1~
If A (Xm Wo,H) <y, then

1—y <1 AY (X, Wo, H) = Zﬂskl (s“‘) (éku{xm}) (29)

Finally, noting that we always have

50 (80 D} < 1536061000 (8) + 15204106 100 (8)

we have that, on the evth?) mHT if As (Xm,Wo, H) < y, then

L9 (X, —  (Xim), W, 1)
<(1-y)/2=—(1-y)/2+(1-Yy) by (28)
$

—(1-y)/2+ I\/I(k)l(H) > s <§1k>) 1) <5<1k> U {Xm}> by (29)
S i=1

$

;nsk L (5 )Jlsk L(H[ (X, T (Xm))]) (3“())
$

T Zﬂsu (3( )18k (Ot O] (5@)

s i=1

—(1- v>/2+r< — (X)W, ) + T8 (Xen, £ (X)W, H)
é (xm,f<xm»vvz,’+z>. by (28)

—(1-y /2+

S
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The final claim in the lemma statement is then implied by Lemma 29, since wevjiavé/ C
B(f,p(1;0)) CB(f,ra_ye) onH(d). [ |

For anyk, ¢, me N, and anyx € X, define

ﬁX(kagvm) = AETI? (X’VV27V€*)
pu(k,£) = P (Se 2R 1 SUx) e SK(Vp)

SHV).

Lemma 42 For any € (0,1), there is a(C,P, f,{)-dependent constantt'({) € (0,00) such
that, for anyt € N, there is an event H')(Z) with

P (H\HM Q) < c™(Q) - exp{~¢2Ni(1)}
such that on |§1’> N Hﬁi“)(Z), Vk,/, me Nwitht </ <mand k< ds, for any xe X,
P (x: |pe(k, ) — Pu(k, £, m)| > ) < exp{ ~ZNi(m)}.

Proof Fix anyk,¢,me N with T < ¢ < mandk < d;. Recall our convention that® = {&} and
PO (X0) = 1; thus, ifk = 1, py(k, £,m) = ]lDIS(V;)(x) = ﬂsl(vf*)(x) = px(k, ¢), so the result clearly
holds fork = 1.

For the remaining case, suppos€ R < ch. To simplify notation, letri= Mr(]'q‘) (V) X = Xes1,
px = px(Kk,¢) andpx = Px(k, £,m). Consider the event

HO (k,6,m,¢) = {P (x: [px— Bx| > {) < exp{-{*M(m)}}.

We have

P (Hgl) \ H (i) (k7€a m, Z)

Vi) (30)
{m>M(m)} \H® (k,¢,m,{)
({mg Ni(m)} 1 {p (esm\px—ﬁx\ - eﬂ?‘z‘vvz,v;) N e_ZZM(m)}

Vé*) (by Lemma 39)

Vi), @Y

for any values > 0. Proceeding as in Chernoff’'s bounding technique, by Markov'guaéty (31)
is at most
Vi)

W2,Ve*} > e—ZZM(m)}

P ({mZ |\7|(m)} e {e*SmZE [es'ﬂpxﬁ”)x\ VVZ,VZ(} > e,ZZM(m)}

<P {mZ I\7I(m)} N {e_stE [esm(px—f)x) _|_e5m(ﬁx—|0x)

v;)

1) () P (& SV [P0 1 €50 [ /| > @€ ‘rﬁ,Vg*)

A
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By Markov’s inequality, this is at most

\%

Lm0 f) e Mmg [e—ssz :esrﬁ(px—f)x) 4 e5M(Px—Px)

W,V |

m v;}

Lgi(rm.cc) () e 2M(m) s g :esm(px—ﬁx) 4 e5M(Px—Px)

i, v;] Vi

X, i, v;}

=E [ﬂ[m(m)m) () 7MiM oS :E [esm(px—ﬁx) 4 3M(Px—Px) rﬁ,V[} v (32)

The conditional distribution ofpx given (X,m,V/") is Binomial(f, px), so letting{B;( px)}J 1

denote a sequence of random variables, conditionally independent(iyh,V/;), with the condi-
tional distribution of eactB; (px) being Bernoullipx) given (X, m,V/), we have

E [esmmx—ﬁx) 1 eM(Px—px)
-F -esm(pX*f)X)

xmv}

X, M\ | +E [P

va[}

M
e3(Bi(Px)—Px)
N

X, m,vg} " E [esu?’l(px)—px)

[ 'm
-E I_!es(pX*Bi(pX)) X, MV | +E X, m\V/
_i:

m
X, m,v;} . (33)

—F [es(Px—B1(px))

Itis known that forB ~ Bernoulli(p), E [¢X8-P)] andE [e%P~B)] are at mose®/2 (see, e.g., Lemma

8.1 of Devroye, G¥rfi, and Lugosi, 1996). Thus, takirsg= 4, (33) is at most 82 and (32) is
at most

o 20\ 472 om72
E l[M(m)’OO) (m) ZGZ M(m)e 4mZ ezmZ

. . 217 o2
Vi ] =B 1 ) () 266 2%
< 2exp{—{*M(m)}.

v;}

Since this bound holds for (30), the law of total probability implies

P (HS) \H (k £,m, z)> —E [IP (Hﬁ” \H (k £,m, )

*ﬂ <2-exp{-{*°M(m)}.
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DefiningH") (7) = NestNimse ﬂgfzz H () (k,¢,m, Z), we have the required property for the claimed
ranges ok, £ andm, and a union bound implies

P(H\HM (@) <303 2d; - exp{—¢Ni(m)}

0>T m>/

<2di- ) (exp{—ZZI\7I(£)} +/£:o exp{—xZZSf/Z} dx>

>1

—2di- 30 (1420775 - exp{ N (0)

>1
< 2ds - (1+ 25_25{1) : <exp{—Z2|\7I(T)} +/:O exp{—xZZSf/Z} dx>
= 2d; - (1+ 25’25;1>2-exp{—521\7l(r)}
< 18d~fZ*45f*2~exp{—Zzl\7l(r)}.

Fork,/,me Nand{ € (0,1), define
Pz (K, £,m) =P (x: px(k,£,m) > ). (34)

Lemma 43 For anya,{,5 € (0,1), B € (0,1 /@], and integerr > 7(B; 3), on H(3) NH{" N
HM™ (BZ), forany k£,¢/,me Nwith T < ¢ < ¢ < m and k< df,

Pe (k. £, m) < P (x: pe(k,€) > ad) +exp{—BZ{*M(m) }. (35)

Proof Fixanya,{,d € (0,1), 8 € (0,1—v/a], T,k (,¢’,me Nwith 7(B;3) <1 < ¢ < ¢ <mand
k < ds.
If k=1, the result clearly holds. In particular, we have

55(1,6’,m) =P (DIS(V;)) <P (DIS(V})) =P (x: px(1,£) > al).
Otherwise, suppose2 k < Jf. By a union bound,

pz (k. ¢, m) =P (x: px(k, ¢’ ,m) > )
<P (x: pu(k, ) = Vald) +P(x: |puk, &) = px(k £/, m)| > (1—va)l).  (36)

Since
P (X: ‘pX(k7£/) - ﬁx(k7€/7m)‘ > (1_ \/E)Z) < P (X: ‘px(kagl) - ﬁx(k7£/7m)} > BZ) )
Lemma 42 implies that, oHﬁi) N Hﬁi“)(BZ),

P (x: | px(k, ") — Pe(k,£',m)| > (1—/a){) < exp{—B2{*M(m)}. (37)
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It remains only to examine the first term on the right side of (36). For thig*if (S*-1 (V1)) =0,
then the first term is O by our aforementioned convention, and thus (849;laiherwise, since

VX e X, {SE X1 SUx) e s (v;)} C Sy,
we have

P (x: px(k,0) = vVag) =P (x: P2 (Se X1 Sufxp € S(Vp)

sV = vag)
=P (x: P (sexktisuixt e SV;) ) = VagP (s ). (38)
By Lemma 35 and monotonicity, dﬂp) C H’, (38) is at most
P (x Pkt (SG 241 sU{x) e S (v;)) > Vag Pkl (a('glf)) ,
and monotonicity implies this is at most
P (x Pkt (SE 241 sU{x) e S (vg)) > Vag Pkl (a('glf)) . (39)
By Lemma 36, forr > 1(; ), onH;(d)N HY,
P (IS v))) < ale(1:8) < B<1-Va,
which implies
pk-1 (aéflf) > pk-1 (@Iéflf NSk g*)>
_ (1_ pk-1 (akc—lf ‘Sk—l (V[))) pk-1 (5k—1 (Ve*)) > Japkt <8k—1 (Vg*)) .
Altogether, fort > 1(B; ), onH¢(d) N Hg), (39) is at most
P (x : Pk’1<86 %1 su{x}esk (V[)) > azpkfl(skfl (v;))) =P (x: pu(k,0) > aQ),
which, combined with (36) and (37), establishes (35). |

Lemma 44 There are event{Hgv) TE N} with

P (Hﬁi")) > 1—3d; -exp{—21}

s.t. for anyé € (0,y/16], & € (0,1), letting TV)(&;8) = max{r(4£/v,5) (6452 In (6 62)>1/3}’

for any integert > 1¥)(&;8), on H(8) NHY NHM™ (&) HM, vk e {1,...,d¢}, V¢ € N with
{>1,

P(x Pe(k, €)>y/2>+exp{ V2Ni(0) 256} < A% (Wi, W, V) (40)
<P pe(k 0) > y/8)+4h  (41)
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Proof For anyk,/ € N, by Hoeffding’s inequality and the law of total probability, on an event
GV (k, ) with P (GMV)(k,£)) > 1— 2exp{—2¢}, we have

Bya(k, £,0) — le[y/4oo ( (Wi, Wb, vﬁ)) <t (42)

Define the everit-lr ﬂ£>rmk LG (k, ). By a union bound, we have

1- ]P’(H 'V)<2df 3 exp{—2¢}

(>T

< 2ds - (exp{—ZT} + /OO exp{—2x} dx) = 3ds -exp{—21}.

Now fix any/ > andk € {1,...,ds }. By a union bound,
P (x: px(k,€) = y/2) <P (x: Pu(k £, 0) > v/4) + P (x: [px(k. ) — Px(k, £,0)| > y/4). (43
By Lemma 42, orHﬁi) N Hﬁi" ) (&),
P (x: [px(k,0) = Bx(k, £, 0)| > y/4) < P (x: |px(k, £) = Bu(k, £, )| > &) < exp{—E?M(0)}. (44)
Also, onHT , (42) implies

P (x: Px(k,£,0) > y/4) = pya(k,£,0)
2
< “_362 Liy/a.00) (Aék) (WnVVz,VZ))
i=1
=AM (Wi, W, V) — 7, (45)
Combining (43) with (44) and (45) yields
P (x: pu(k,£) > y/2) < BN (Wa, W, V) — 071+ exp{ —E2NI(0) } . (46)

For > tV)(&;5), exp{—&2M(¢)} — (71 < —exp{—y?M(¢)/256}, so that (46) implies the first
inequality of the lemma: namely (40). _
For the second inequality (i.e., (41)), Bi", (42) implies we have

AP (Wi, Wa, V) < Byalk, £,0) +307 (47)
Also, by Lemma 43 (withr = 1/2,{ = y/4,=¢&/{ <1-+/a),forT > T)(&;5), onHy(8) N
Hﬁ')ﬁHﬁ"')(E), )
Pya(k ,0) <P (x: pu(k,£) > y/8) +exp{—&E°M(0)}. (48)
Thus, combining (47) with (48) yields

Aék) (Wi, Wo, V) < P (x: pu(k,£) > y/8) + 3¢t +exp{—&*M(¢)}.
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Fort > tV)(&;5), we have exg—&2M(¢)} < ¢~1, which establishes (41). u

Forne Nandk € {1,...,d+ 1}, define the set

U = {rm+1,...,rm+ {n/ (6-2‘<A§T‘§3(W1,V\/2,V))J }

wherem, = |n/3J; U represents the set of indices processed in the inner loop of Meta-Algorith

1 for the specified value &.

Lemma 45 There are(f,C, P, y)-dependent constanés, ¢; € (0,00) such that, for ang € (0,1)
and integer n> €;In(€;/¢€), on an evenHy (&) with

P(Hn(e)) > 1— (3/4)¢, (49)

we have, forV:Vr;n,
vke {1 di}, [{me AR Mo V) 2 v} < |0/ (3:29) | (50)
A (Wi W, V) < AP (£) + amy L, (51)

andvme uéd”,

B e Wa,V) < y = ) OXeny = £ i) M V) < F87) (e, £ (e MEV). (52)

Proof Supposen > €;1In(€z/¢€), where

2di+12 24 24
€1 = max{ ———, , , 31"
Sty? Taae Ta-y/e

d d
andcazmax{4<c(‘)+c(”)+c(”i)(V/16)+60Tf>,4( de ) ,4( de ) }

F(1/16) F1-y)/6

In particular, we have chosen 4ndc; large enough so that
My > max{r(1/16;e/2), W) (y/16:€/2), T((1— y)/6;€/2), r*} .
We begin with (50). By Lemmas 43 and 44, on the event
HAY (€) = Hm, (£/2) N Hiw N Hiw, (v/16) NHE .
vme U, vk e {1,....ds},
By (k.M m) < P (x: pe(k, M) > y/2) + exp{ —y’Ni(m) /256}
VM(

<P (x: px(k,My) > y/2) + exp{ —y?M(m,) /256} < Al (Wi, We,V).  (53)
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Recall that{xm : meur(]k)} is a sample of size{n/(G.Z"Aﬁ'ﬂ(Wl,\Nz,V))J, conditionally i.i.d.
(given (Wi, Ws,V)) with conditional distributions. Thus,vk € {1,...,ds }, on A (e),

P (‘{me UF - AR (KXo Wo, V) > y}‘ >n/ (3'2'<> Wl,Wz,V>
gp(‘{meué LAY (X Wa, V) > y}\ > 2|UY| Al (Wa Wa, V) Wl,vvz,V>
<P ( (o1 AR WL e, V) ) > 2[043 | B (Ws, W, V) wl,vvz,V) , (54)

where this last inequality follows from (53), a®{u, p) ~ Binomial(u, p) is independent from
Wi, Wo,V (for any fixedu and p). By a Chernoff bound, (54) is at most

exp{ Ln/ (6 2AK (Wi, We, V))J A (Wl,\Ng,V)/3} < exp{l— n/ <18- 2") }
By the law of total probability and a union bound, there exists an engTitwith
P (I—]r(]l)(s) \ I:|r<,2)) < ds -exp{l— n/ <18- 2&f> }

such that, otd{! (€) N H{?, (50) holds.
Next, by Lemma 44, o#l{Y (),

A (Wi, Vo, V) < P (x: py (dif, ) > /8) + 4mp L,

and by Lemma 38, oﬁlr(]l)(s), this is at mosﬂﬁy/s)( €) +4m L, which establishes (51).

Finally, Lemma 41 implies that oﬁr(]l)(e) N H( ) , Vme L{n (52) holds.
Thus, defining

Hin(e) = Y (£) AP NHY,
it remains only to establish (49). By a union bound, we have
1=P (Fo) < (1= P (H,(£/2)) + (1-P (M) ) + P (R \ Hi))
+IP>(H%\H “'>(y/16)) (1 IP)(H”',X )) ( W)\ A2 ) .
< &/2+c0)- exp{—Ni(my)/4} + ¢ exp{ —Ni(my)"/?/60}
+c(y/16) - exp{ —M(mn)y?/256} -+ 3d; - exp{—2my}
+di -exp{l— n/ (18- ZJf) }
<g/2+ (c(i) +c® ¢l (y/16) + 60Tf) .exp{—nSf y22*d~f*12} . (55)

We have chosen large enough so that (55) is at m@3f4)e, which establishes (49). [ |

The following result is a slightly stronger version of Theorem 6.
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Lemma 46 For any passive learning algorithmi, if A, achieves a label complexit, with
oo > Np(g, f,P) = w(log(1/¢)), then Meta-Algorithm 1, wittd, as its argument, achieves a label
complexityA\, such that\,(3e, f,P) = o(Ap(e, f,P)).

Proof SupposeA, achieves label complexiti, with co > Ap(g, f,P) = w(log(1l/¢)). Lete €
(0,1), defineL(nm;e) = Ln/ (6-2df (Aﬁy/s)(s)+4m;1))J (for anyn € N), and letL=(m; &) =
max{n e N:L(n;&) <m} (foranyme (0,00)). Define

¢ =max{¢,2-63(d+1)dsIn(e(d+1))} and c=max{E,ded+1)},

and suppose
n> max{clln(cz/s), 1+L Y (Aple, £,P);€) }

Consider running Meta-Algorithm 1 withl, andn as inputs, whilef is the target function an®
is the data distribution.

Letting hn denote the classifier returned from Meta-Algorithm 1, Lemma 34 implies thahon a
eventE, with P(E;) > 1—e(d+1) -exp{—[n/3| | /(72ds(d+1)In(e(d + 1)))} > 1—¢€/4, we have

er(fn) < 2er(Ap (£g,) )
By a union bound, the evefiy(g) = EnNHn(€) hasP (Gy(€)) > 1—&. Thus,

E[er(ﬁn)}SE[l [|£d|>/\ (e, f,P } ( )]
+B (Gole)n{ILq | < Mol 1. P) }) +F (Gale))
f, P

(
)| 2er( 45 (24)) |
(

( ; s)ﬂ{]ﬁc;f] </\p(s,f,7>)})+s. (56)

gu-«:[]l [|£df|>/\

Gn(€), (51) of Lemma 45 impliesCg | > L(n;€), and we chosa large enough so that(n; &) >
Np(€, f,P). Thus, the second term in (56) is zero, and we have
E[er(hy)] <2-E []16 {\Edf\ > Ap(e, f,P)} er(Ap (ﬁdf)ﬂ +e
=2-E[E |14, er(4p (L4 )) }|cd~f [1[1£q| = Aot 1.P)]] +e. D)

Note that for any with P(|Lg [ = ¢) > O, the conditional distribution o{xm ‘me Z/lr(ldf)} given
{]L‘C;f | = E} is simply the producP’ (i.e., conditionally i.i.d.), which is the same as the distribution

of {Xg,Xz,...,X;}. Furthermore, orG,(¢), (50) implies that the < [2n/3| condition is always
satisfied in Step 6 of Meta-Algorithm 1 while< ds, and (52) implies that the inferred labels from
Step 8 fork = dy are all correct. Therefore, for any su€lwith ¢ > Ap(g, f,P), we have

E g er(4Ap(£4)) [{1£a] = ¢}] <Eler(4p(z))] <
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In particular, this means (57) is at most.3This implies that Meta-Algorithm 1, wittd,, as its
argument, achieves a label complexity such that

Aa(3e, T, P) <max{ciIn(cz/€), 1+ L (Ap(e, f,P);€)} .

SinceNp (g, f,P) = w(log(1/g)) = c1In(cz/e) = 0(Ap(e, f,P)), it remains only to show that
L= (Ap(g, f,P);€) = 0(Ap(g, f,P)). Note thatve € (0,1), L(1;¢) = 0 andL(n;¢) is diverging
in n. Furthermore, by Lemma 38, we know that for afyaluedN(e) = w(log(1/¢€)), we have

A,(\ly(/f))(s) = 0(1), which impliesL(N(¢);&) = w(N(g)). Thus, sincehp(, f,P) = w(log(1/g)),
Lemma 31 impliet 1 (Ap(g, f,P);€) = o(Ap(e, f,P)), as desired.
This establishes the result for an arbitrar (0,1). To specialize to the specific procedure

stated as Meta-Algorithm 1, we simply take= 1/2. [ |

Proof [Theorem 6] Theorem 6 now follows immediately from Lemma 46. Specificalyhave
proven Lemma 46 for an arbitrary distributioh on X, an arbitraryf € cl(C), and an arbitrary
passive algorithmA,. Therefore, it will certainly hold for everf? and f € C, and since every
(f,P) e Nontrivial(Ap) hasoo > Ap(g, f,P) = w(log(1/¢)), the implication that Meta-Algorithm
1 activizes every passive algorith#y, for C follows. |

Careful examination of the proofs above reveals that the “3” in Lemma Aeaset to any
arbitrary constant strictly larger than 1, by an appropriate modificationef}12” threshold
in ActiveSelect. In fact, if we were to replace Step 4 of ActiveSelect Isyeiad selectindg =
argmin max.kM;j (Whereny; = erq,;(hq) whenk < j), then we could even make this a certain
(1+0(1)) function of ¢, at the expense of larger constant factor8in

Appendix C. The Label Complexity of Meta-Algorithm 2

As mentioned, Theorem 10 is essentially implied by the details of the proof afréhel6 in Ap-
pendix D below. Here we present a proof of Theorem 13, along with sedulirelated lemmas.
The first, Lemma 47, lower bounds the expected number of label requesasAigorithm 2 would
make while processing a given number of random unlabeled examplessetbad, Lemma 48,
bounds the amount by which each label request is expected to redymeliadility mass in the re-
gion of disagreement. Although we will only use Lemma 48 in our proof of Témedl3, Lemma 47
may be of independent interest, as it provides additional insights into tleioelof disagreement
based methods, as related to the disagreement coefficient, and is in@udtlgd feason.

Throughout, we fix an arbitrary clags a target functionf € C, and a distributior?, and we
continue using the notational conventions of the proofs above, sih-aghe C: Vi <m/h(X) =
f(X)} (with Vj = C). Additionally, fort € N, define the random variable

M(t) = min{m EN:) Lpis(v: ) (Xe) = t} ,

(=1

which represents the index of th8 unlabeled example Meta-Algorithm 2 would request the label
of (assuming it has not yet halted).
The two aforementioned lemmas are formally stated as follows.
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Lemma 47 Foranyre (0,1) and/ € N,
E[P (DIS(VNB(f,r)))] > (1—r)"P(DIS(B(f,r))),

S P (DIS(B(f,r)))
- 2r

[1/r]
and E {Z ]lDIS(V,;,lmB(f,r)) (Xm)
m=1

Lemma 48 Forany re (0,1) and ne N,
E [73 (Dls (v“;(n) n B(f,r)))} > P (DIS(B(f,r))) —nr.

Note these results immediately imply that

[1/r]
E !Z ]lDIS(vn*H) (Xm)
m=1

S P (DIS(B(f,r)))
. 2r

and
E [P (o1 (vg(n)))} > P (DIS(B(f,r))) —nr,

which are then directly relevant to the expected number of label requedtsimavieta-Algorithm
2 among the firsin data points, and the probability Meta-Algorithm 2 requests the label of thte nex
point, after already making label requests, respectively.

Before proving these lemmas, let us first mention their relevance to the elsagnt coefficient
analysis. Specifically, for ang € (0,r], we have

S P (DIS(B(f,r)))
. 2r

[1/€] [1/r]
E { Lois(vs, 1) (xm)] >E [Z Lois(ys, ;) (Xm)
m=1

m=1

In particular, maximizing over > &, we have

[1/€]
£ {Z Lois(vs ) (Xm)] > 65 (g)/2.
m=1

Thus, the expected number of label requests among théZTijtst unlabeled examples processed by
Meta-Algorithm 2 is at least; (€)/2 (assuming it does not halt first). Similarly, for aay (0,r],
for anyn < P(DIS(B(f,r)))/(2r), Lemma 48 implies
E [P (DIS (vh;(n)))} > P (DIS(B(f,r))) /2> P (DIS(B(f,£))) /2.
Maximizing overr > €, we see that

n<6(e)/2 — E [73 (DIS(V,G(”))H > P (DIS(B(f,£))) /2.

In other words, for Meta-Algorithm 2 to arrive at a region of disagrestgth expected probability
mass less thaR (DIS(B(f,¢)))/2 requires a budgetof at leastd; (€)/2.
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We now present proofs of Lemmas 47 and 48.
Proof [Lemma 47] LetDym = DIS (V;NB(f,r)). Since

1r [1/r]
Pt >]w<xmeomlvm>}
m=1

[1/r]
= > E(P(On-) (58)

we focus on lower bounding [P (Dm)] for me NU {0}. Note that for any € DIS(B(f,r)), there
exists somén, € B(f,r) with hy(x) # f(x), and if thishy € Vi3, thenx € Dy, as well. This means

VX, I, (X) > Tpisa(t,r) (X) - Ly (hx) = Tpisa(f,r)) (X) - T1721 Lois(ghy 11)c(Xe). Therefore,

E[P (D)) = P (X1 € D) = E |E 1, ns2) X

>E !E Lpis(a(f,r)(Xm+1) 'ﬂﬂDIS({hxml-,f})C(xf) Xm+1”
= !ﬂ]? (hxml(xé = (X ‘Xerl) Lpis(t,) (Xm+1)] (59)
> E[(1-1)"Lois((f.r) (Xms1)] = (1—1)"P(DIS(B(f,r))), (60)

where the equality in (59) is by conditional independence oﬂmg({hxmwf})c(xg) indicators, given
Xm+1, and the inequality in (60) is due te,,,, € B(f,r). This indicates (58) is at least

rr]
m— _ 1\ P(DIS(B(f,r)))
3 (1-n™P(DIS(B(f.N) = (1—(1—r)“/ 1) :

m=1
<l_e> P (DIS(B(f,r))) > P(DIS(B(f,r)))'

AV

r 2r

Proof [Lemma 48] For eachm € NU {0}, let Dy, = DIS(B(f,r)nV;). For convenience, let
M(0) = 0. We prove the result by induction. We clearly ha¢P (Dy(q))] = E[P (Do)] =
P(DIS(B(f,r))), which serves as our base case. Now fix any N and take as the inductive
hypothesis that

E [P (Dmn-1))] > P(DIS(B(f,r)))—(n—1)r.

As in the proof of Lemma 47, for anye Dy 1), there existsy € B(f,r) mV,\;(nfl) with hy(x) #
f(x); unlike the proof of Lemma 47, hetg is a random variable, determined ¥, ;. If hyis
also inVy ), thenx € Dy as well. Thusyx, Ip,,, (X) = Tpy (%) - Lv; | (hx) = Loy (X) -
Lpis({hy, f})c(Xm(n)), Where this last equality is due to the fact that everyg {M(n—1)+1,...,
M(n) — 1} hasXy ¢ DIS (V;5,_,), so that in particulahy(Xm) = f(Xm). Therefore, letting ~ P be
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independent of the dat&,
E [P (Dmm)] =E {HDM@ (X)] >E [HDWM (X)- ]lDIS({hx,f})C(XM(n))]
) [EDWH) (X) .]P’<hx(XM(n)) = (Xu(m) x,vgl(nin)} . (61)

The conditional distribution oy ) given V,\’;I( ) is merely P but with support restricted to

n-1
DIS(V,\’;I(nfl)) and renormalized to a probability measure: tha‘Pié-’DlS (thl(nfl)>>' Thus,

since anyx € Dy n_1) has DI§{hy, f}) C DIS (V,\jl(nflﬂ , we have

Vi 1) = POIS({hef}) _

P <hx(XM(n)) # F(Xvm) T (DIS (Vﬁ(n—l)» ~ P (Dm(n-1))

where the inequality follows frorhy € B(f,r) andDy,—1) € DIS (V,\jl(nfl)). Therefore, (61) is at
least

=100 (1= 51033
E []P’ (X € DM(nfl)’DM(nfl)) ' <1_ P(Dh;(nl))ﬂ

r )ﬂ =E[P (Dupn-1)] -r.

E|P(Dumn.p) (1—-—=——"—
[ (Pun-2) ( P(Dmn-1)

By the inductive hypothesis, this is at le@tDIS(B(f,r))) —nr. [ |

With Lemma 48 in hand, we are ready for the proof of Theorem 13.

Proof [Theorem 13] LetC, f, P, andA be as in the theorem statement. Foe N, let A —1(m) =
inf{e >0:A(g) <mj}, or 1if this is not defined. We defing, as a randomized algorithm such that,
forme NandL € (X x {-1,+1})™, Ap(L) returnsf with probability 1- A ~1(|£|) and returns- f
with probability A ~1(| £|) (independent of the contents 6j. Note that, for any integem > A (¢),
Eler(Ap(Zm))] =A~1(m) < A~1(A(¢g)) < e. Therefore, A, achieves some label complexity,
with Ap(g, f,P) = A(g) for all € > 0.

If 65 (A(g)1) # w(1), then monotonicity implie®s (A () ) = O(1), and since every label
complexity/\, is Q2(1), the result clearly holds. Otherwise, supp6$eé)\ (s)‘l) = w(1); in partic-
ular, this meansleg € (0,1/2) such thaifs (A (2e0) 1) > 12. Fix anye € (0, &), letr > A(2¢)~*
be such thaf®SBUD) > g, (X (2¢)~1) /2, and letn € N satisfyn < 6 (A (2¢)~1) /4.

Consider running Meta-Algorithm 2 with argumemg andn, and letZ denote the final value
of the setZ, and letmi denote the value ah upon reaching Step 6. Note that amx A (2¢) and
L€ (X x {-=1,+1})™has efAp(L)) = A~1(m) > inf{e’ > 0:A (&) < A(2¢)} > 2¢. Therefore,
we have

>

E[er(Ap(£))] > 2P (|£] < A(2¢)) = 2¢P(|n/ (63) | <

[I—

(2¢))
— 2P <A> 6/\?28)> —2¢ (1—P(Ag 6A?2£)>). (62)
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Sincen < 6 (A(2¢6)~1) /4 < P(DIS(B(f,r)))/(2r) < A(2e)P(DIS(B(f,r)))/2, we have

P(Ag o ?2£)> <P (A< P(DIS(B(f,r)))/12)
< p({@(mg(vﬁﬁ)) < P(DIS(B(f,r)))/lZ} U{A< P(DlS(v,;))}) . (63)

Sincem < M([n/2]), monotonicity and a union bound imply this is at most

i (73 (DIS(V,\jl([n/ZD)) < P(DIS(B(f,r)))/lZ) +P (A< P (DIS(VE))). (64)
Markov’s inequality implies

P(P (D18 (w2 ) ) < P(DIS(B(F,1)))/12)

(P(DIS( (£.0) =P (015 (i ap)) ) > ;P(DIS( (f,r))))
gp(P(DlS( (f,1)) (DIS(V (o2 (B(f r))) >EP(DIS(B(f,r)))>

}E[P(DIS( (f,1))) ( 1S (Vi o2, NB(f r)m
1%77(DIS B(f,r)))

_12 (1 E [P (IS (Vi gn2) NB(F0) )| ) |

IA

P(DIS(B(f,r)))

Lemma 48 implies this is at mo%mé‘iﬂm)) <12 [P(Dlsg?(f,r))w POy Since any >

3/2 has[a] < (3/2)a, andb; (A (2¢)71) > 12 mphes% >3/2, we have[ww

< 3M, so that}2 [P(D'Sf(f’r)))w POSEI) < 5. Combining the above, we have
. 9
IP(P (DIS(VMUH/Z]))) < P(DIS(B(f, )))/12) o5 (65)

Examining the second term in (64), Hoeffding’s inequality and the definitiadlfoom (13) imply

P(A<P(DIS(V3)) =E [1@ (A <P (DIS(VL))

Vi) <E[e® <ef<1/11  (66)
Combining (62), (63), (64), (65), and (66) implies
A 9 1
E [er(Ap (£))] > 2¢ (1_ o 11) _
Thus, for any label complexitix, achieved by running Meta-Algorithm 2 with, as its argument,

we must haveha(g, f,P) > 6 (A(2¢6) 1) /4. Since this is true for alf € (0, &), this establishes
the result. |
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Appendix D. The Label Complexity of Meta-Algorithm 3

As in Appendix B, we will assumé& is a fixed VC classP is some arbitrary distribution, and
f € cl(C) is an arbitrary fixed function. We continue using the notation introducedeabin
particular,SK(H) = {Se X*: H shattersS}, SK(H) = XK\ SK(H), 9%, f = A\ 0K f, andor =
pdi-1 <8gf_lf>. Also, as above, we will prove a more general result replacing tji2"ih Steps

5, 9, and 12 of Meta-Algorithm 3 with an arbitrary valye (0, 1); thus, the specific result for the
stated algorithm will be obtained by takinpg=1/2.

For the estimator#y, in Meta-Algorithm 3, we take precisely the same definitions as given in
Appendix B.1 for the estimators in Meta-Algorithm 1. In particular, the quantﬁ@ix,\/\/zﬂ),
AW (W, Wo, H), F (XY, W, H), andM{ (H) are all defined as in Appendix B.1, and thg esti-
mators are again defined as in (11), (12) and (13).

Also, we sometimes refer to quantities defined above, sugh @s/,m) (defined in (34)), as

we_‘I_I as the \_/arious e\_/ents from the lemmas of the previous appendix, stizli@), H’, Hﬁi), Hﬁ"),
Hﬁ"')(Z), HY) andG!.

D.1 Proof of Theorem 16

Throughout the proof, we will make reference to the 8&tslefined in Meta-Algorithm 3. Also
let V(K denote the final value &f obtained for the specified value kin Meta-Algorithm 3. Both
Vim andV® are implicitly functions of the budgeh, given to Meta-Algorithm 3. As above, we
continue to denote by = {he C: Vi <mh(Xy) = f(Xn)}. One important fact we will use
repeatedly below is that W,, = Vi, for somem, then since Lemma 35 implies thgt, = 0 on H’,
we must have that all of the previoys/dlues were consistent with, which means that/ < m,
V, =V/. In particular, ifv (K) =V; for the largestvalue obtained whil& =k’ in Meta-Algorithm
3, thenV, =V for all £ obtained whilek < K in Meta-Algorithm 3.

Additionally, definent, = |n/24/, and note that the valua = [n/6] is obtained whil&k =1 in
Meta-Algorithm 3. We also define the following quantities, which we will shovtgipically equal
to related quantities in Meta-Algorithm 3. Defing = 0, T = [2n/3], andfy, = 0, and for each
ke {1,...,d+1}, inductively define
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Tk* = Tk*fl _fkflv
1* =1 AY (X0 Wo, Vi vme N
k= Liyoo) (Bm' (XmWo, Vi 1) ) ,YmEN,

m
My = mln{m M1 Z = [T /4] }U{max{k-2"+1,rﬁk1}},
=M1

= et | T/ (3R (Wa eV ))J,

U = (M1, M NN,
Uy = (M, M NN,
m-1
Cﬁqk— 3Tk /4 Z IZ*k
=y _1+1
Q= Z Ik Gt
melic
andfc = Q¢+ > I
mGZ;lk

The meaning of these values can be understood in the context of Met&atiigd, under the
condition thatvy, = V,;, for values ofm obtained for the respective value kf Specifically, under
this condition, T, corresponds tdy, fx represents the final valuefor roundk, iy represents the
value ofmupon reaching Step 9 in roukgwhile iy represents the value ofat the end of round,
Ui corresponds to the set of indices arrived at in Step 4 during rlandile Ui corresponds to the
set of indices arrived at in Step 11 during rodgdor m € Uy, 1%, indicates whether the label &,
is requested, while fom € uk, - Gk indicates whether the label of, is requested. Finall®y
corresponds to the number of Iabel requests in Step 13 during foungbarticular, notery > M.

Lemma 49 For anyTt € N, on the event FhGg), vk, ¢, me N with k< dr, Vx € X, for any sets{
and#’ with V} € H C H' C B(f,ry), if either k=1 or m> 1, then

& (6 Wo, H) < (3/2)A) (x,Wo, H') .

In particular, for anyd € (0,1) andt > 1(1/6;9), on H NH(J) mGg), vk, £, ¢/, me Nwithm> T,
0> 0 >1,and k< dr, ¥x e X, AR (x Wo,V}") < (3/2)A%) (x, W, V).

Proof First note thavme N, Yxe X,

Ig%) (X7V\/27H) = ]1D|S(H) (X) < 1D|S('H’) (X) = AT(T:‘II-) (X7VV27H/) )
so the _result holds fok = 1. Lemma 35, Lemma 40, and monotonicityMﬁp(-) imply that on
H’HGQ), foranym> 1 andk € {2,...,Jf},

>Z]16k 1 (89) = (@73 (B(1.r1y6) > (/3K ().
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so thatvx € X,
) (xWe, H) = 12 Lsvao (S9010)
<M 12 Lo (890 00)
< (3/2)M Z]l s (s“‘) u{x}) = (3/2)A%) (x,Wo, ') .
The final claim follows from Lemma 29. |

Lemma 50 Forany ke {1,...,d+1}, ifn>3-41, then T > 41-¥(2n/3) andf < | 3T /4].

Proof RecallT; = [2n/3] >2n/3. If n> 2, we also haveé3T;" /4] > [T]/4], so that (due to the
Cr, factors)t; < |3T;/4]. For the purpose of induction, suppose sdo@e{2,...,d+ 1} hasn >
3-4<1 Tx | >42K2n/3), andfy_; < [3T ,/4]. ThenTr =T, — 1 > T /4> 47K(2n/3),
and sincen > 3-4"1, we also have 3T, /4| > [T /4], so thafy < | 3T /4| (again, due to thE,,
factors). Thus, by induction, this holds for &lE {1,...,d+1} with n > 3. 41, [ |

The next lemma indicates that thie | 3T /4" constraint in Step 12 is redundant flox ds. It
is similar to (50) in Lemma 45, but is made only slightly more complicated by the factitbAt¥)
estimate is calculated in Step 9 based on &/gatifferent from the ones used to decide whether or
not to request a label in Step 12.

Lemma 51 There exist(C, 73, f, y) dependent constanféi%ég) € [1,00) such that, for anyd €
(0,1), and any integer n> c ( /5) on an event

D

H(8) € G NHay (8) NHEY NHE (y/16) NHEY

) m,
WlthIP’( ,Q(é)) >1-25,vke {1,....di}.f= Y 15, <3T /4
m=my_1+1

Proof Define the constants

~() _ 192 3.49176 ~() _
6 =max{ ;22 3 ), & =max

(()+c'“ (y/16) + 12508 )}
r(3/32)

and letn®(8) = &V In (C(Zi)/é). Fix any integen > n()(&) and consider the event

HY(8) =G
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By Lemma 49 and the fact that > iy, for all k > 1, sincen > n® (&) > 241 (1/6;5), on Y (8),
vke {1,...,ds }, vme U,

B (X Wa, Vi 1) < (3/2)AK) (X, W, Vi ) - (67)
Now fix anyk € {1,...,ds }. Sincen>n(5) > 27-4< 1, Lemma 50 impIieQ’k > 18, which means
3T /4~ [Ty /4] > 4T /9. Also noted iy Iy < [Ty /4]. LetNe = (4/3)A¢ (W1,VV2 ) 12
and note thait| = LTk /( (Wl W,V ))J , so that\y < (4/9)Ty. Thus, we have

My
P (Fir(,l)(é)m{ S e 3Tk*/4})
m=Iy_1+1

<P<H,§ {ZI k>4Tk/9}) ( {Zl*k>Nk}>

<P (l:'rgl)@) N { > e (Ar(#) (me\NZaVr%()) > Nk}) : (68)

melflk

where this last inequality is by (67). To simplify notation, defifie= (Tk*,rm,wl,vvz,vgk). By
Lemmas 43 and 44 (witl = 3/32, { = 2y/3, a = 3/4, and& = y/16), sincen > n()(&) >
24-max{t™ (y/16:5),7(3/32;8)}, onH\" (3), Ym e Tk,

P (x: px (K, TK) > y/2) + exp{—y*M(m) /256}
P (x: pe(k, 1) > y/2) +exp{ —y*M(rfy) /256}
80 e )

FTZV/3(k7 rh(y m) S
<

Letting G, (k) denote the everpy, 3(k, M, m) < Ag;) (Wl,\Nz,Vﬁ*O, we see tha6’ (k) 2 H{Y(8).
Thus, since thé ;53 ) (Am (Xm Ws,V )) variables are conditionally independent gi&rfor

m € U, each with respective conditional distribution Berno(j, 3 (k, i, m)), the law of total
probability and a Chernoff bound imply that (68) is at most

P (éﬁ(k) N { > lpyae) (Aﬂ? (Xma\/VZ’Vﬁ*l()) > Nk})

melffk
zk) 'ﬂémk)]

<E [exp{—AR (W4, W5V, )‘Z/A{k‘/27H§E[exp{—Tk*/162}}§exp{_n/<243.4k—1>}7

=E !P ( Loy/aoe) (B (XmWeiVin) ) > Ne
mele
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where the last inequality is by Lemma 50. Thus, there exip(&) with P (Hn (8)\ Gn( )) <
exp{—n/ (243-451)} such that, orti\" (8) N Gn(K), we havey M i1 lmk < 3T /4. Defining
HY (8) = ALY (8) NN, Ga(K), a union bound implies

P (H,ﬁ”(é) \AY (5)) <ds - exp{—n/ (243- 4&f—1) } , (69)

and o\ (), everyk e {1,...,d¢} hasZm:er 11lm < 3T /4. In particular, this means ti@,

factors are redundant @;, so thafy = Zm:mHH Ik

To get the stated probability bound, a union bound implies that
1-P (AY(3)) < (1—P(H,(3)) + (1-P (H“)) +P (Hi \Hiy (v/16))

(())( an)

<5+c.exp{-M /4}
+cli(y/16)- exp{ M () y?/256} + 3d; - exp{—2rfn}
+121d¢8; - exp{ —Mi (1) /60}

<5+ (c<‘>+c'" (v/16) + 124d; & ) -exp{—mhsf y2/512}. (70)
Sincen > n()(&) > 24, we havan; > n/48, so that summing (69) and (70) gives us
1—IP’(I:Ir(,i)(6)) < 5+( )¢l (y/16) + 12507 8- ) exp{—nSfyz/ (512-48-4df‘1)}. (71)

Finally, note that we have choseﬁ)(d) sufficiently large so that (71) is at mosd2 |

The next lemma indicates that the redundancy of the {3Ty/4|" constraint, just established
in Lemma 51, implies that alf Abels obtained whil& < d; are consistent with the target function.

Lemma 52 Consider running Meta-Algorithm 3 with a__budgeErN, while f is the target func-
tion and P is the data distribution. There is an evefif'’ and (C, P, f,y)-dependent constants
& &V ¢ [1,00) such that, for any € (0,1),if n > & In (cz" /5) thenP (Hn (8)\ A ) <3,

and onfi{" (&) A", we have ) = Viny, —V*

Proof Definec!" _max{c(l),r<192:j/6 ;f;},ﬁgi):max{&g),w ), exp{r* }} letn()(5) =

&Vin (6(2”) /5), supposa > n(i)(5), and define the eveit!" — H{\.
By Lemma 41, since > n(")(5) > 24-max{1((1-y)/6;5),7*}, onH AV (8) NHAM, vme N
andk € {1,...,ds } with eitherk = 1 orm> i,

A (X Wo, V1) < y = E8 (X — F (X Wa, Vi 1) < F 8 (Xen, F(Xen), Wo, Vit 1) . (72)
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Recall thatml,; < min{[T1/4],2"} = [[2n/3] /4]. Therefore Vi, is obtained purely byn; exe-
cutions of Step 8 whil&kk = 1. Thus, for everym obtained in Meta-Algorithm 3, eithde= 1 or
m > M,. We now proceed by induction an. We already know/p = C = V{, so this serves as
our base case. Now consider some vatue N obtained in Meta-Algorithm 3 whilé < df, and
suppose everg’ < mhasVyy = V. But this means thél’k Tk and the value of upon obtaining

this particularm hast < Ze el In partlcular |fA (Xm,Wa,Vin—1) >y, thenl, = 1, so
thatt <> "5 1156 by Lemma 51, oy (&) nAY, DY MRS Zz 1 lmk S 3T /4,
so thatt < 3T//4, and thereforgy = Yy, = f(Xn); this impliesViy, = V3. On the other hand, on
A (8) A, if AR (X, Wb, Vin_1) < y, then (72) implies

§=argmaxf ¥ (Xm, YW, Vin_1) = f(Xm),

ye{-1,+1}
so that agaiiVm = V. Thus, by the prlnC|pIe of induction, oI|='|n ~(5) , for everyme N
obtained whilek < d, we haveV,, = V: in particular, this implie®/ (99) =, —V* . The bound

onP <Hn (&) \ A ) then follows from Lemma 41, as we have choaé‘ﬁ( ) suff|C|entIy large so
that (27) (witht = 1fy,) is at most. |

Lemma 53 Consider running Meta-Algorithm 3 with a budgetrN, while f is the target func-
tion and is the data distribution. There exi&E, P, f, y)-dependent constan&’ ), &") e [1, 00)
such that, for anyd € (0,e73), A € [1,00), and ne N, there exists an eveﬂﬂrﬁ"')(é,/\) having
P <H~,§i)(5) AAM \ H~,§i“)(5,)\ )) < & with the property that, if

. (i)
n> & (d/A)In2 (‘:25}‘) ,

then ontiy (8) NHS NF{™ (5,1, at the conclusion of Meta-Algorithm chf ‘ > A

8e

) i) odra' I 1o | i)
I(3/32)

Proof Let &") = max{ &’ ¢ ’W’@ » ©2
)

(0,673), A € [1,00), letn()(5,2) = &") 8 (d/A)In2(e)") A /5), and supposa > n(i) (5, 7).
Define a sequencg = 2' for integersi > 0, and letl = {Iog2 (42+df/\/y6fﬂ. Also define
@(m,3,A) = max{@(m;5/2),d/A}, wheregis defined in Lemma 29. Then define the events

= max{(”:(zi),égi),

}, fix any & €

A= (M (8720, A (6,0) = AC 3,200 {mg, = 61},
i=1

Note thati < n, so that/; < 2", and therefore the truncation in the definitiomcl@‘f , which enforces
My, < max{df -2"+1,fy_1}, will never be a factor in whether or not; "> ¢ is satisfied.

Sincen > nlii)(A 5) > 6(1") In (Cgi)/é), Lemma 52 implies that oA (5) N F{", Vitg, = Vi, -
f
Recall that this implies that &yl values obtained whilen < i, are consistent with their respective
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f(Xm) values, so that every suchhasVi, =V, as well. In particularvmd~f =V - Also note that
f

n(3,1) > 24. 1™ (y/16;8), so thatt™)(y/16;8) < i, and recall we always have, < g .

Thus, onfi{ (&) N A NE™ (8, 1), (takingA® as in Meta-Algorithm 3)

Al — Af;’;f ) (Wl,VVZ,Vﬁ*E> (Lemma 52)
<P (x: Px (&f,ﬁ'ld’f) > y/8) +4rﬁgf1 (Lemma 44)
o ()
< : +4mzt (Markov’s ineq.)
W)df*l (Safl (V* )) f
< (8/y5f) P (S‘ff <vﬁ*]d} >> + 4t (Lemma 35)
< (8/y”f) P (3 L (v/;)) +art (defn of Ai{™ (5,1))
< (8/y8) P (% (B(f,6(45.5.))) ) +46* (Lemma 29)
< (8/y ) ((d/A)@(6,8,7) + 461 (defn of ¢ (d/A))
< (12/y8;) 81(0/0)(4:,5.)) (@(6,8.4) > 6%
126f gd/)\) ax{ZdIn (2emax{€;,zi}/d) +In(4i/9) d/A } . 73)
144 i

Plugging in the definition of and/;,

dIn(2emax{¢;,d} /d) +In(4i/d)
9

< (d/A)y8i4 0 (41+de /5y3f) < (d/A)In(A/3).
Therefore, (73) is at most B4(d/A)(d/A)In(A/3) /ySf. Thus, since

ni(5,1) > max{c(l)ln (02 /5) & In (cz /5)}
Lemmas 51 and 52 imply that a#\ (5) N F{" N A (8,1),

= 13/ (0%) = [#-52n (08)
- 43-dty&in
= 9.24-6¢(d/A)(d/A)In(A/d)

&

> AIn(A/8) > A

Now we turn to bounding® <H~,§i)(6) AHEMN A (5, )\)). By a union bound, we have
i
1-P(A®(5,2)) <> (1-P(H, (8/21) < 8/2. (74)

i=1
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Thus, it remains only to bouriﬂ( £>(5)mﬂé">mﬁ<3>(5,A)m{mdf <£;}).

Foreachi € {0,1,...,71 — 1}, letQ; = Hme (6, bia) U, - I = 1}’ Now consider the set
Tofalli€{0,1,...,7 — 1} with ¢; > My, and (¢, £i1] Ny, # 0. Note thain(™)(5,1) > 48, so that
(o < M. Fixanyi € Z. Sinceni) (A, §) > 24-1(1/6;5), we havar, > 1(1/6;), so that Lemma 49
implies that o\ (8) NAM NA®)(5,1), letting Q = 2. 46+ (d/y25f) B (d/A)In(A/3),

P(H,Q(a) AN NA®(5,A) n{Q.>Q}\VVzV;,)

gP(Hme(ﬁi,ﬁiHMN Al (xmvvzvg)>2y/3}‘>civv2,vg>. (75)

Form > /;, the variabledl /3 ) (Am <Xm Wo, V*)) are conditionally (giveWs, V") indepen-

dent, each with respective conditional distribution Bernoulli with mW3(Jf 4, ) Since
nli) (5 1) > 24-1(3/32;6), we havent, > 1(3/32;6), so that Lemma 43 (wit§ = 2y/3, a = 3/4,
andp = 3/32) implies that oy’ (8) NHY" NH® (8,1 ), each of thesen values has

P2ys3 (di, ti,m) <P (x: px(dy, 4) > y/2) +exp{ —M(m)y?/256}

2pdi (5df (vg))

< i (gd?fl( *)) +exp{—M(4)y?/256} (Markov's ineq.)
< (2/y8¢) PY (8% (V) ) + exp{—M(£:)y/256} (Lemma 35)
< (2/v81) PY (5% (B (1,0(61,6,1))) ) +exp{ —Ni(4))*/256} (Lemma 29)
< (2/y )é (d/A)@(6i, 3, A) +exp{ —Ni((;)y?/256} (defn of & (d/1)).

Denote the expression in this last line py and letB(4;, pi) be a Binomial4i, pi) random vari-
able. Noting thatfi.; — £ = £, we have that ori{" (8) N F{" nA®(5,A), (75) is at most
P (B(4, pi) > Q). Next, note that

lipi = (2/y8) 85 (d/A)6 (4, 5,4) + 4 -exp{—f?& V2/512} -
Sinceu-exp{—u} < (3e)~/3 for anyu, lettingu = ¢ ry/8 we have

4 -exp{—ﬁ?SfyZ/512} < (8/y5f) u-exp{—u’} <8/ (ySf(3e)l/3) < 4/yb;.
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Therefore, sincep(4i,5,A) > £, we have that; p; is at most

iéf(d//\)eifﬁ(zi,a,)\)g 5l 65 (d/)\)max{ZdIn(Ze€ )+2In<4l>,£;d//\}
yor yOr o
. 3+df 3+Jf 3+d}
< 5 8,(d/2)max{ 2din AN o[22 94
y6f Yo yd:0 yor
o 3+d} 3+df
< Ei 0t (d/A)maxq 4dIn 4 < A ,d4~
yOr yo:d yor
6 dg+dr /) 46+diq . A
< —=B¢(d/A)- |n< )g Gf(d//\)ln< ) Q/2.
Yot VO o Y257

Therefore, a Chernoff bound impli@B(4;, pi) > Q) < exp{—Q/6} < 5/2, so that ot (8)N
AV AFG)(8,4), (75) is at mos®/2i. The law of total probability implies there exists an event
¥, 5,1) with IP(Hé”(a)mﬁ,ﬁ'”mH~<3>(5,/\)\Hr<,4>(i,5,A)) < 5/21 such that, o\ (5) N
e NA®(6,0)NAY(,8,4), G < Q
Note that
iQ < log, (42°9\ /y& ) -47 (d/287) Bi(d/A)In(A /)
< (df49+5f /y38f3) dBs(d/A)In2(A/8) < 4--9n/12 (76)

Sinced meam, g, <n/12, ifd; = 1 then (76) implies that on the eve’ () NH NF®)(8,A)n
Nicz FSY G, 5, ), Smer i /124 3.7 Q < n/12+7Q < n/6 < [T7 /4], so thatmy > 4.
Otherwise, iid; > 1, then everyneZ:{&f hasm> 21, so thaty;_; @ = 3., Qi; thus, ol (8) N
A AE® (8,2) N Nier ALY (1,8, 1), s Q <TQ < 4+-9in/12; Lemma 50 implies4 din/12 <
{Tdff /4} , so that again we haveg” > ¢;. Combined with a union bound, this implies

P (A(3) A A8, n{mg < })

g[P’(I:hgi)(é) NAMY NA®(3,A)\ A |5)\)>

ieT
<> P(A @) A NAR(3,2)\FR¥(1,8,1)) < 5/2 )
i€z
ThereforeP (I:I,Q”(a) A \ Hrgiii)(@)\ )) < 9, obtained by summing (77) and (74). [

Proof [Theorem 16] IfAp(e/4, f,P) = oo then the result trivially holds. Otherwise, suppose
€ (0,10e°3), let 5 = £/10, A = Ap(g/4,1,P), & max{loé” 106" 106", 10e(d+1)}

andc = max{c(l),c(1 >,c(1"'),2 63(d+1)dln(e(d+1))}, and consider running Meta-Algorithm
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3 with passive algorithm4, and budgen > €10¢(d/A)In?(&A /), while f is the target func-

tion and P is the data distribution. On the everit (5) N H{" NH™ (5,1), Lemma 53 im-

plies ‘ﬁd} > A, while Lemma 52 implies/ (@) = Vﬁ*]d~ ; recalling that Lemma 35 implies that
f

ng # () on this event, we must haveLgfr(f) = 0. Furthermore, ifh is the classifier returned
f

by Meta-Algorithm 3, then Lemma 34 implies that(ier is at most 2€tAp(Lg,)), on a high

probability event (call itE, in this context). LettingEs(3) = E2n A (8) nEM N A (8, 1),
a union bound implies the total failure probability-1P(E3(3)) from all of these events is at
most & +e(d+ 1) -exp{—|n/3]/ (72d¢ (d+ 1)In(e(d+1))) } <56 = /2. Since, forl € N with

P (‘E(;f‘ = K) > 0, the sequence 0y, values appearing i, are conditionally distributed B!

given|Lg, | = ¢, and this is the same as the (unconditional) distributiofXaf Xz, ..., X}, we have
that

Eler(R)] <E [2 er(Ap (z:&f>) 1&(5)} te/2=E [E [2 er(Ap (£d~f)> Iy \ L4, \H +e/2

<2 sup ElerAp(2)))+e/2<¢.
(>Np(e/4,1,P)

To specialize to the specific variant of Meta-Algorithm 3 stated in Section k@yta 1/2. |

Appendix E. Proofs Related to Section 6: Agnostic Learning

This appendix contains the proofs of our results on learning with noisif8ally, Appendix E.1
provides the proof of the counterexample from Theorem 22, demonstthtinthere is no activizer
for the flp passive learning algorithm described in Section 6.2 in the agnostic capendig E.2
presents the proof of Lemma 26 from Section 6.7, bounding the label coitypté#xAlgorithm

5 under Condition 1. Finally, Appendix E.3 presents a proof of Theor@nd@monstrating that any
active learning algorithm can be modified to trivialize the misspecified model CHse notation
used throughout Appendix E is taken from Section 6.

E.1 Proof of Theorem 22: Negative Result for Agnostic Activized karning

It suffices to show tha.t;évlp achieves a label complexitf, such that, for any label complexity
N4 achieved by any active learning algorith#a, there exists a distributioRxy on X' x {—1,+1}
such thatPxy € Nontrivial(Ap; C) and yet\, (v +ce, Pxy) # 0(Ap(v + €, Pxy)) for every constant
c € (0,00). Specifically, we will show that there is a distributi@tyy for which Ap(v + €, Pxy) =
©(1/¢) andAa(v +&,Pxy) # o(1/€).

Let P({0}) = 1/2, and for any measurabkeC (0,1], P(A) = A(A)/2, whereA is Lebesgue
measure. LeD be the family of distribution®xy on X’ x {—1,+1} characterized by the properties
that the marginal distribution oft’ is P, n(0;Pxy) € (1/8,3/8), andvx € (0, 1],

N(%Pxy) = N(0;Pxy) + (%/2) - (1— 0 (0;Pxy)).
Thus, n(xPxy) is a linear function. For anPxy € D, since the point:* = 31370 has

n(z*;Pxy) = 1/2, we see thaf = h,- is a Bayes optimal classifier. Furthermore, for apyc
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[1/8,3/8],

‘1—2'70_1—2'7(0i7’xv) _ _[n(0:Pxy) = nol
1=no  1=n(0;Pxy) | (1-no)(1—n(0;Pxv))’

and sincg(1— o) (1— 1 (0;Pxy)) € (25/64,49/64) C (1/3,1), the value: = 5210 satisfies

n
[No—n(0;Pxv)| < [z — 2" < 3[No—n(0;Pxy)|. (78)
Also note that undePxy, since(1—2n(0;Pxy)) = (L—n(0;Pxy))z*, anyz € (0,1) has

er(h,) —er(h,:) = /Z*(l— 2n(x; Pxy) ) dx = /Z*(l— 2n(0;Pxy) —x(1—n(0; Pxy)))dx

= (1—'7(0;77xv))/:* (2" —X)dx = (]‘r'(g’PXY))(z* _22,

so that 5 -
M0 k2 < _ D)< (o 2'
16(2 z*)% <erth,)—er(h,-) < 16(Z z") (79)
Finally, note that any, X' € (0,1] with |[x— z*| < |X' — z*| has
11=2n (% Pxy)| = [x—2"|(1=n(0;Pxy)) < [X' = 2"[(1—n(0;Pxy)) = [1—2n (X Pxy)|.

Thus, for anyg € (0,1/2], there exists; € [0,1] such that* € [zg, 2+ 2q] C [0,1], and the clas-
sifier hy(x) = h,«(x) - (1_21(/2&%&*2(1] (x)) has e(h) > er(hg) for every classifieh with h(0) =
—1 andP(x: h(x) # h.«(x)) = g. Noting that efhy) — er(h.-) = (Iimz%er(hz) —er(hz*)> +
(er(hzaﬂq) — er(hz*)> , (79) implies that gihy) —er(h..) > 5 <(z{1 - z*)z + (2q+29— z*)2> , and
since maxz* — zq, 24+ 29— 2"} > q, this is at Ieastl%qz. In general, anyh with h(0) = +1 has
er(h) —er(h,-) > 1/2—n(0;Pxy) >1/8 > (1/8)P(x: h(x) # h.(x))2. Combining these facts, we
see that any classifiérhas

er(h) —er(h,.) > (1/8)P (x: h(x) # h.(x))?. (80)
Lemma 54 The passive learning algorithutip achieves a label complexity, such that, for every
Pxy € D, /\p(V —I-S,ny) = @(1/8).

Proof Consider the valuegg and z from ,th(Zn) for somen € N. Combining (78) and (79),
we have efh;) —er(h.) < (2 — 2)%2 < (o — n(0;Pxy))? < 4(flo — N(0;Pxy))?. LetN, =
Hic{l,...,n}: X =0}, andno =Ny Y|{i € {1,...,n} : X% =0,Y; = +-1}| if N, >0, orno =0 if
Nn = 0. Note thatjo = (noV 3) A 3, and since) (0; Pxy) € (1/8,3/8), we havefjo—n(0;Pxy)| <
|No — N (0; Pxy)|. Therefore, for anPxy € D,

E[er(h;) —er(h..)] < 4E [(Ao— N (0;Pxv))?] < 4E [(Mo— N (0;Pxy))?]
< 4E [E [(ﬁo— N(0; Pxy))? Nn} 11[n/4,n]<Nn)} FAP(N, < n/4).  (81)

By a Chernoff boundP(N, < n/4) < exp{—n/16}, and since the conditional distribution Nfno
givenN, is BinomialNy, 1 (0;Pxy)), (81) is at most

(0;Pxy)(1— n(O;ny))] +4-exp{—n/16} < 4. 4 E-’+4- 16 < @

4F, .
n 64 n n

Nov /4"
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For anyn > [68/¢], this is at mosk. Therefore,,évlp achieves a label complexity, such that, for
anyPxy € D, Ap(v +&,Pxy) = [68/] = O(1/¢). u

Next we establish a corresponding lower bound for any active leaahijzgithm. Note that this
requires more than a simple minimax lower bound, since we must have an asyrgtetibound
for a fixed Pxy, rather than selecting a differefy for eache value; this is akin to thetrong
minimax lower bounds proven by Antos and Lugosi (1998) for passamieg in the realizable
case. For this, we proceed by reduction from the task of estimating a binora&i; toward this
end, the following lemma will be useful.

Lemma 55 For any nonemptya,b) C [0,1], and any sequence of estimatgys: {0,1}" — [0,1],
there exists [ (a,b) such that, if B, By, ... are independerBernoulli(p) random variables, also
independent from everl,, thenE [(ﬁn(Bl, .ooyBn) — p)z} #0(1/n).

Proof We first establish the claim when= 0 andb = 1. For anyp € [0,1], let B1(p),B2(p),. ..
be i.i.d. Bernoullip) random variables, independent from any internal randomness g, tasti-
mators. We proceed by reduction from hypothesis testing, for which #rerenown lower bounds.
Specifically, it is known (e.g., Wald, 1945; Bar-Yossef, 2003) thasforp,q < (0,1), 6 € (0,e71),
any (possibly randomized): {0,1}" — {p,q}, and anyn € N,

(1—85)In(1/83) o * *
8KL (p|a) p*@{%f;}P(q(Bl(p )s--5Bn(P*)) # P°) > 9,

where KL(p||q) = pIn(p/q)+(1—p)In((1—p)/(1—q)). Itis also known (e.g., Poland and Hutter,
2006) that forp, q € [1/4,3/4], KL(p||q) < (8/3)(p— g)2. Combining this with the above fact, we
have that fop, q € [1/4,3/4],

Jmax. P(a(B(p"),..,Bn(P7) # p) 2 (1/16) - exp{—128(p—0q)°n/3} . (82)
Given the estimatop, from the lemma statement, we construct a sequence of hypothesis tests as
follows. Fori € N, let a; = exp{—2'} andn; = |1/a?|. Definep; = 1/4, and fori € N, induc-
tively defineqji(by, ..., by) =argminye e o gy [Pri(ba,... . br) — p[ forby,... by € {0,1}, and
P = argma%e{pﬁl’pﬁﬁm}]?(qi(Bl(p), ...,Bn(p)) # p). Finally, definep* = lim;_,», p{". Note that
VieN, p<1/2,p 4,p 4 +ai €[1/4,3/4], and 0< p* — pf <3777, 0) < 20i41 = 202. We
generally have

E |(Pn (Ba(P").-.Bn (p) — )]

v

E[(Pn(Bu(p"),-,Ba (7)) = )| = (P = pi)?

E (P (Ba(P); - Ba(p") — pi)?] — 4ar

v
WP wle

Furthermore, note that for amg € {0,...,n;},
(p*)m(l— p*)ni—m - <1_ p*)ni - <1_ pl* _2ai2>ni
(PH)™L—pHn-m = \1-p) — 1-pf
> (1-4a?)" > exp{-8aZn;} >e®,
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so that the probability mass function @ (p*), ...,Bn (p*)) is never smaller thae8 times that of
(B1(pi),---,Bn(P)), which implies (by the law of the unconscious statistician)

E (P (Ba(p').--Bn (p)) = P)°| = € ®E [ (Pn (Ba(p)...Ba (1) — P

By a triangle inequality, we have

2
E [(Pn (BB (P) — B)] > - (G (Ba(p),- B (PY) # ).

By (82), this is at least

a? e
T‘(1/16) -exp{—128afn;/3} > 2% Ba?.

Combining the above, we have

E [(Bo(Ba(p)..Ba (p7)) — P")?] > 3722 % Sla? — 4 > 2 % Siny L —an 2

Fori > 5, this is larger than 2e~5In"1. Sincen; diverges as — oo, we have that

E[(Bn (Bu(p"),..Bn (7)) — P7)°] #0(1/),

which establishes the result fa= 0 andb = 1.

To extend this result to general nonempty ran¢gg®), we proceed by reduction from the
above problem. Specifically, suppogec (0,1), and consider the following independent random
variables (also independent from tBgp’) variables andp, estimators). For eache N, Cij ~
Bernoulli(a), Ci ~ Bernoulli(b—a)/(1—a)). Then forb; € {0,1}, defineB;(b;) = max{Ci1,Ciz -
bi}. For any givenp’ € (0,1), the random variableB{(B;j(p')) are i.i.d. Bernoull{p), with p=
a+ (b—a)p’ € (a,b) (which forms a bijection betwegi®, 1) and(a, b)). Defining g, (b1, ...,bn) =
(pn(By(b1),...,Bn(bn)) —a)/(b—a), we have

E|(Pn(Ba(P).--.Ba(P) — P)°| = (b—a)2-E | (By(Bu(P)..-.Ba(P) — P)?].  (83)

We have already shown there exists a valugof (0,1) such that the right side of (83) is not
o(1/n). Therefore, the corresponding valuemt a+ (b—a)p’ € (a,b) has the left side of (83) not
0(1/n), which establishes the result. [

We are now ready for the lower bound result for our setting.

Lemma 56 For any label complexity\, achieved by any active learning algorithiy, there exists
aPxy € D such thath\,(v + €, Pxy) # 0(1/¢€).

Proof The idea here is to reduce from the task of estimating the mean of iid BernouHi tria
corresponding to th¥ values. Specifically, consider any active learning algorifynwe useA, to
construct an estimator for the mean of iid Bernoulli trials as follows. SuppedeaveB,,B,,...,B,
i.i.d. Bernoulli(p), for somep € (1/8,3/8) andn € N. We take the sequence Xf, X, ... random
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variables i.i.d. with distributior? defined above (independent from tBe variables). For each
i, we additionally have a random varialile with conditional distribution BernoulX;/2) given
Xi, where theC; are conditionally independent given tkesequence, and independent from Bye
sequence as well.

We run A, with this sequence oX; values. For the™ label request made by the algorithm,
say for theY; value corresponding to som¥, if it has previously requested thi already, then
we simply repeat the same answer Yoagain, and otherwise we return to the algorithm the value
2maxB;,Ci} —1 for Y. Note that in the latter case, the conditional distribution of {BuC;} is
Bernoulli(p+ (1— p)Xi/2), given theX; that. A, requests the label of; thus, theresponse has the
same conditional distribution giveX as it would have for théxy € D with n(0;Pxy) = p (i.e.,
n(X;Pxy) = p+ (1—p)X/2). Since thisy; value is conditionally (giverX;) independent from the
previously returned labels an{] sequence, this is distributionally equivalent to runniigunder
the Pxy € D with n(0; Pxy) = p.

Let ﬁn be the classifier returned hy,(n) in the above context, and let denote the value
of z € [2/5,6/7] with minimum P(x : h.(X) # hq(x)). Then definep; = 32 € [1/8,3/8] and
z* =2 ¢ (2/5,6/7). By a triangle inequality, we havié, — 2*| = 2P(x: hz, (X) # h.-(x)) <
4P(x: ﬁn(x) # h.-(x)). Combining this with (80) and (78) implies that

1 2
Z@(Dn—p) : (84)

~

er(fn) —er(h..) > Bn—2")?

1, . 2
1 (x:hn(X) # hae (%) > 128 %

In particular, by Lemma 55, we can chogse (1/8,3/8) so thatk [( Pn— p)z] #0(1/n), which, by

(84), implieskE [er(ﬁn)] —V #0(1/n). This means there is an increasing infinite sequence of values
n« € N, and a constant € (0,0) such thatk € N, E [er(hn, )] — v > ¢/n. Supposingd, achieves
label complexity/A\s, and taking the values = c/(2ny), we haveN, (v + &, Pxy) > Nk = ¢/ (2&).
Sincegg > 0 and approaches 0 Bs— oo, we have\a(v + €, Pxy) # 0(1/¢). [

Proof [of Theorem 22] The result follows from Lemmas 54 and 56. |

E.2 Proof of Lemma 26: Label Complexity of Algorithm 5

The proof of Lemma 26 essentially runs parallel to that of Theorem 16, wiiants of each lemma
from that proof adapted to the noise-robust Algorithm 5.

As before, in this section we will fix a particular joint distributi@txy on X' x {—1,+1} with
marginalP on X', and then analyze the label complexity achieved by Algorithm 5 for that pkaticu
distribution. For our purposes, we will suppd8gy satisfies Condition 1 for some finite parameters
pu andk. We also fix anyf € () cl(C(¢g)). Furthermore, we will continue using the notation of

>0

Appendix B, such a&S"(’H), etc., and in particular we continue to denMg={he C: V¢ <
m,h(X;) = f(X,)} (though note that in this case, we may sometimes li@4g) # Y;, so thatV;;, #
C[Zm]). As in the above proofs, we will prove a slightly more general result iickvkhe “1/2”
threshold in Step 5 can be replaced by an arbitrary congtar{0, 1).

For the estimatori%;m used in the algorithm, we take the same definitions as in Appendix B.1.
To be clear, we assume the sequentesndW, mentioned there are independent from the entire
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(X1,Y1), (X2,Y2),... sequence of data points; this is consistent with the earlier discussion of how
theseW, andW, sequences can be constructed in a preprocessing step.

We will consider running Algorithm 5 with label budgete N and confidence parametérc
(0,e73), and analyze properties of the internal 4tsWe will denote by, £i, andiy, thefinal
values ofV;, £, andik, respectively, for each andk in Algorithm 5. We also denote bm(@
andV ¥ the final values ofn andV,, .1, respectively, obtained whilke has the specified value in
Algorithm 5, V(Y may be smaller thak; whenm® is not a power of 2. Additionally, define

= {(Xm, Ym)}wz, 1,,- After establishing a few results concerning these, we will show that for
n satlsfylng the condition in Lemma 26, the conclusion of the lemma holds. First, veeahew
auxiliary definitions. Fof{ C C, and anyi € N, define

@(H) = Eh ShUSH | (er(hy) —erz; (hy)) — (er(hz) —erz; (hy)) |

and Ui(H,0) = min{K (mm)ﬂ/diamm)ln(’o’ziz_zl/é) N |n(32iz_21/5)> ’1}7

where for our purposes we can take= 8272. It is known (see, e.g., Massart anédslec, 2006;
Giné and Koltchinskii, 2006) that for some universal constast [2, 00),

A+1(H) < c’max{ \/dian(H)Z—idlogzcm%(m,Zidi}. (85)

We also generally havey(#) < 2 for everyi € N. The next lemma is taken from the work of
Koltchinskii (2006) on data-dependent Rademacher complexity bountteaexcess risk.

Lemma 57 For any é € (0,e3), anyH C C with f € cl(#), and any ic N, on an event Kwith
P(K;) > 1—/4i%, Yhe H,

erg:(h) — mlnerﬁ*( /) <
er(h) —er(f)
min {U;(#,),1}

er(h) —er(f) +Uj(#, )

<e () erz: () +Ui(#,5)
g

Lemma 57 essentially follows from a version of Talagrand’s inequality. Etaild of the proof
may be extracted from the proofs of Koltchinskii (2006), and related/atémns have previously
been presented by Hanneke (2011) and Koltchinskii (2010). Theraimgr twist here is thaf
need only be in ¢H), rather than ir itself, which easily follows from Koltchinskii’s original
results, since the Borel-Cantelli lemma implies that with probability one, ezery0 has some
g € H(e) (very close tof) with er:(g) = erg:(f).

For our purposes, the important implications of Lemma 57 are summarized bygllhifg
lemma.

Lemma 58 For anyd € (0,e2) and any ne N, when running Algorithm 5 with label budget n and
confidence paramete, on an eventy] ) with P(J,(8)) > 1—6/2,Vi € {0,1,... 1441}, if V; CV,

1574



ACTIVIZED LEARNING

thenvh € Vi,

Clci

(h) —minerz: (W) <er(h)—er(f)+Ui11(V,8)
eV

er(h) —er(f) <erz () —erz, (f)+Ui(V,0)
min{Ui;1(V,8),1} < Ui11(V;, ).

Proof For eachi, consider applying Lemma 57 under the conditional distribution giWernrhe
setL;, ; is independent from;, as are the Rademacher variables in the definitidR of(V;). Fur-
thermore, by Lemma 35, ad’, f € cl (Vz*i), so that the conditions of Lemma 57 hold. The law of
total probability then implies the existence of an ev&mdf probabilityP(J) > 1— &6/4(i + 1), on
which the claimed inequalities hold for that valud @fi < iq.1. A union bound over values othen
implies the existence of an evel(§) = " J with probability P(Jn(8)) > 1>, 8/4(i +1)% >
1—6/2 on which the claimed inequalities hold for at 1. |

Lemma 59 For some(C, Pxy, y)-dependent constantsa € [1,00), for anyd € (0,e73) and inte-
gern>c* In(l/é), when running Algorithm 5 with label budget n and confidence parandeten
event J(8) NHY NHY, every i {0,1,..., g, } satisfies

Vi CV gc<c<o”+';(1/5>>2{1),

and furthermore V; - C V().
id)

K K K% K
Proof Definec = (Zmzd\/ﬁ)%, ct = max{r*,Sd( uc )2 "log, <4“°l/ )} and suppose

Fa-y)/e la-y)/6
n>c*In(1/d). We now proceed by induction. As the right side equ@l®r i = 0, the claimed
inclusions are certainly true fafy = C, which serves as our base case. Now suppose $@me

{0,1,....ig } satisfies
R i pres
Vﬁgvig@<c<cn+';<1/6>> ) )

In particular, Condition 1 implies

diam(V}) < diam ((C (c <d|+|r2]|(1/5)> 2“)) < uc% <d|+|;(1/5)> - . (87)

If i <ig, then letk be the integer for which_; < i < iy, and otherwise lek = dr. Note that we

certainly have; > |log,(n/2)], sincem= |[n/2| > 2'°%("/2)] is gbtained whil&k = 1. Therefore,
if k>1,
di+In(1/3) _ 4dlogy(n) +4In(1/3)

2i n ’
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so that (87) implies

diam(V;) < pcr (40”092(”) rT4In(1/5)> 5 .
By our choice ot*, the right side is at most; ) 5. Therefore, since Lemma 35 implié cl (Vz*i)
onHY, we haveVi C B (f,r1_y)6) whenk > 1. Combined with (86), we have thes C Vi, and
eitherk =1, orV; C B(f,r(l_y)/e) and 4n > 4|n/2| > n. Now consider anynwith 2' +1 < m<
min{z”l,rﬁ(&f)}, and for the purpose of induction suppd&g ; C Vi, 1 upon reaching Step 5 for
that \(/i?lr:(la_'(()ign in Algorithm 5. SinceVi, 1 CV; andn > 7%, Lemma 41 (with/ = m— 1) implies that
onHp n’,

AP X Wo,Vi1) <y = F) (X, — F (Xen), Wa, Vi 1) < T8 (e, £ (Xin), Wo, Vi1)

so that after Step 8 we haWg, C Vi, . _Since (86) implies that th\g;_l C Vi1 condition holds if
Algorithm 5 reaches Step 5 witlm = 2' + 1 (at which timeVi, 1 =V,), we have by induction that

onHY nHM™, v+ < Vi, 1 upon reaching Step 9 witi = min{z”l, @) L. This establishes the
final claim of the lemma, given that the first claim holds. For the remainderiS)frtductive proof,
suppose < ig,. Since Step 8 enforces that, upon reaching Step 9with2 1, everyhy, hy € Viyq

have ep,  (hi) —erz  (h) =erg;,  (hi) —erz:  (hz), ondn(d)N HY N HY we have

Vi1 € {h eVirerz (h)— min erz (W) <Uiy (\7i,5)}

&Vjin

C {h eVizers, (h)—er: (f)<Ui, (\7i,5)}

CViNC (241 (,68)) € C (2011 (V,9)), (88)
where the second line follows from Lemma 35 and the last two inclusions foflmmy Eemma 58.

Focusing on (88), combining (87) with (85) (and the fact tai (Vi) < 2), we can bound the value
of Ui;1 (M, 9) as follows.

. L /di s R :
\/dianm(\Z)In(?’z(I;l)Z/é)S\/HCZK <d|+|;(1/5)> <In(32(|;1) /5))

< Juck (2di+22il+nl(l/6)> (8(i + 1);;+21In(1/6)>2

< 4fick <d(i+l)2:1n(1/5)>a1’

@1(V) < ¢/\/HeH (d'+|;(1/5)> w2 <d(i24irz))%

1 /d(i+1)+In(1/8)\ * T
§4c’\/ﬁczK<( >2i+1(/)> 7
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and thus
Giy1(V, ) < min {skc'\/gczi (d(‘ + 1;1”(1/ 9) ) =3 g2 . 1?/8). 1}
< 12R¢ \/ic (d(i + 1)2:1”(1/5)> =1 _ ©/2) (d(i + 1)2:1n(1/5)> 1 |

Combining this with (88) now implies

Gacc (C <d(i + 1)2:1n(1/6)> ) |

To complete the inductive proof, it remains only to shdjv, C Viy1. Toward this end, recall

we have shown above that bﬁi) N Hr(fi), Vz*i+1 C Vi;1 upon reaching Step 9 witim= 21+1 and that
everyhy, hy € Vi ; at this point have %Ll(hl) — erﬁi+l(h2) = erﬁi*+l(h1) - ergi*ﬂ(hz). Consider any

h € V1, and note that any othere V;,, has ezal(g) =erg , (h). Thus, orH,gi) N H,&‘”,
A — i A / = * — i * /
erz,., () — min erz (W) =erc:, () — min erz;, (i)
. / . ; /
<er ,(h) - rfpel\[/?efz:al(h )= o erz,,(9) — r?qel\[/?erﬁi*“(h ). (89)

2i+1

Lemma 58 and (86) imply that od,(d) N H,ﬁi) N H,ﬁii), the last expression in (89) is not larger
than infey; , er(g) — er(f) +Ui;1(V,8), and Lemma 35 implieg € cl (Vj,,) on HY’, so that
infgevz*i+1 er(g) = er(f). We therefore have

erﬁwl(h) B hrg\i/irllerﬁiﬂ(h/) < 0i+1(\7i’5)’

so thath € \7i+1 as well. Since this holds for artye VZ*iH, we have\/z*i+1 - \7i+1. The lemma now
follows by the principle of induction. |

Lemma 60 There exist(C, Pxy, y)-dependent constants,c; € [1,00) such that, for any,d €
(0,e73) and integer

n> c; +c0; (s%) g 2log’ (;) ,

when running Algorithm 5 with Igbel budget n and confidence parandten an event J,9d)
with P(J;i(g,0)) > 1—-9, we have\/;d~ C C(e).
f

Proof Define

i uct/x et duc/s 2 2\ 120 "
ci=max{ 245 ( == | dlog,——,—=In (80(')) <5 (80(”)>
fay)/6 fa-y/e 57 &/
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and

; pcl/x K=L pc2d
¢, =max{ ¢, 205 | = L2915 22 " log(4dc) § .
F(1-v)/6 yOs

2

Fix anye, d € (0,e%) and integen > ¢} + c;0; (s%) «2logs ().
1

For eacti € {0,1,...}, letf; = pick (W) “=_ Also define

~ 1 2dc
_KZ_K) Iog2 +Iog2 {Sdlog2 5”

and leti = min{i € N:sup;fj <r_ye}. Foranyi {T,...,fgf}, let

Qi1 ={me {2 +1,... 271 AL (X, Wo, B(1,7)) > 27/3)

Also define

~ 96 1 dC 7_2
Q= y6f ( )Zuc <8dI092 5) £

By Lemma 59 and Condition 1, ala(8) NHY nHW, if i < iAd~f,

Vgc<c("“+'g(”5)>> CB(f,). (90)

Lemma 59 also implies that, aly(8) NHY NH", for i with Ig_1 <i<ig, all of the sets/i1
obtained in Algorithm 5 whil& = d; andme {2+1,...,2+1} satisfyV,;,; CVip1 C V;. Recall that
i1> [log,(n/2)], so that we have eithelf = 1 or else everyne {2/ +1,...,21} has 4n> n. Also
recall that Lemma 49 impIies that when the above conditions are satisfied >andn H’ N GQ),

(Xm Wo,Viqg) < (3/2) (Xm W, B (f,Fi)), so that|Q;1| upper bounds the number wfe
{2' +1,. 2'*1} for which Algorlthm 5 requests the labg} in Step 6 of thek = d; round. Thus,

onJy(d)N H AR, 274 E } |Qi+1| upper bounds the total number of label requests

i= max{lvfdf
by Algorithm 5 whilek = ds ; therefore, by the constraint in Step 3, we know that either this quantity

is at least as big aFZ*‘ff nJ, or else we have'2 ™ >d;-2" In particular, on this event, if we can
show that
mln{lde}

2+ Y Q< [2—& nJ and 3+1 < §; . 2", (91)
i:max{iv,f&ffl}

then it must be true that< fdf. Next, we will focus on establishing this fact.
Consider any € {max{f, i}f?l} .. ..,min{fdf,f}} and anyme {2 +1,....241 1f d =1,

then -, -
P (g’ O W, B(1,70)) > 20/3)e) = P (8T (B(1.77)))
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Otherwise, ifd; > 1, then by Markov’s inequality and the definition&f" (-, -, ) from (15),

P (A (X5, B (1, >>2v/3\vvz)<‘°’y[ ) (X Wo,B(1,71)) [ W5

(4m)®

— T S (ST U ) € 5% (B(1.1))[87).

2V M) (B(f,F)) &
By Lemma 39, Lemma 59, and (90), n(d) N H,ﬁi) N H,ﬁ“), this is at most

2 e 3P (8 U s w11 4)

4323I+3

< 24 1 Z (édf U {Xn} GSdf ‘Sédf )

=5 y4323|+3

Note that this value is invariant to the choicemt {2' +1,... 2'+1}. By Hoeffding’s inequality,
on an evend; (i) of probabilityP (J:(i)) > 1— &/(16i?), this is at most

24 ( o) i (s (B(f,ﬂ))>> - ©2)

oty

Sincei > i1 > log,(n/4) andn > In(1/3), we have

In(4i/8) _ \/In 4logy(n/4)/8) _ i [In(n/9)
4323'+3 - 128 . 12&

<27
Thus, (92) is at most
24
Sry
In either cased; = 1 ord; > 1), by definition off; <£%>, onJa(8) NHY A HW NI (i), vm e
{2+1,.. .,2‘*1} we have

(27 + P (s% (B(1,7))).

P (B 46, B (F,71)) > 2y/3’VV2) :/ (27+6 (e7) -max{rie}).  (93)

Furthermore, thé (/3 ) (AE&;) (Xm, Wa, B(f,Fi))) indicators are conditionally independent given
W5, so that we may bounél (]Qi+1| > Q‘\Nz) via a Chernoff bound. Toward this end, note that on
In(8) HY NHMY N3 (D), (93) implies

SERITES S (Bl (X W B(1.7)) > 29/3| o)
m=2+1
<2 ;:;(2 +9f( >~max{r~i,s%}) ;y(i—kef( )-max{zir”i,zre%}). (94)
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Note that

2 = pcx (di+In(1/8))% 1 - 2(1-a1)

1
< IJCK (dl+|n(1/6 )zK 1. 9i(1-%1) < uck (8d|og2 2déc> w1 i(1-zt)

1
K

- L
Then since 2/t < (£)* . (8dlog, 2) %1, we have that the rightmost expression in (94) is at

most

y2; (1+6f ( ) _u'2f£%> < ;;‘f <1+ O (g%) - 2Uc?- <8d|0922d§c> 22) <9/2.

Therefore, a Chernoff bound implies that &) N HY AR NJ;(i), we have
2d
(!Q.+1I > Q‘Wz> <exp{-9/6} < exp{ 8log, < C)}
< exp{—logz <48|ng (;dc/e5)> } < 3/(80).

Combined with the law of total probability and a union bound awezlues, this implies there exists
an eventl;(g,8) C Jn(8) NHY NHY with

P <Jn(5) ARD AR 37 e 5)) <3 (8/(16%)+5/(80) < 5/4,

on which everyi e {max{f, fdf_l} mln{ }} has|Qj.1| < Q.
We have choset; andc; large enough that 2! < di - 2" and 2 < 2-9i-2n_ In particular, this

means that od; (g, d),
min{f,f&f}
2+ Y Qi <27%?n+id.
i=max{iv,ihd-f71}

Furthermore, since< 3Iog2 55 , we have

5 23y o ay 2, pdde
(gx) L€k .|og2 o~

Q<
Yo

13 2 . -
L2 ucdlogs(4dc) 3, (ﬁ),g%z,,oggingdﬁz
yOs €0

Combining the above, we have that (91) is satisfied)(z,d), so thatiAd; > i. Combined with
Lemma 59, this implies that adj (g, 9),

\A/-r&f cvcc (C(W>“> )
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and by definition of we have

& ﬁ ﬁ ~ K
c <d| + In51/6)> <c <8d log, 2:';) 27 1

2I
2dc 2KK—1 2dc\ ~ 2KK—1
< - . . —_— =
<c <8dI092 5 ) (g/c) (8dI092 5 ) g,

so thatv: C C(e).
f
Finally, to prove the stated bound &J; (&, d)), by a union bound we have

1-P(J(,8)) < (1-P(3(3))) + (1—1@( g”)) 4P (Hé”\Hn(”))
4P (Jn(é)ﬁHr(,i) AR \J;;(s,a))
<35/4+cW -exp{—n33f/8} +cl) -exp{—n5f1/3/120} <d.

We are now ready for the proof of Lemma 26.
Proof [Lemma 26] First, note that because we break ties in the argmax of Step dirofay value
with Vi, 11[(Xm,¥)] # 0, if Vi, 11 # 0 before Step 8, then this remains true after Step 8. Furthermore,
the Uik+1 estimator is nonnegative, and thus the update in Step 10 never remove¥;frorthe
minimizer of ngikH(h) amongh € V,, ;1. Therefore, by induction we hawg, # () at all times in

Algorithm 5. In particular,\A/;dHJr1 £ () so that the return classifiérexists. Also, by Lemma 60, for
nasin Lemma 60, od; (&, d), running Algorithm 5 with label budget and confidence parameter
0 results in\/iAd~ C C(¢g). Combining these two facts implies that for such a value,@n J;;(¢,9),

f

ey, CV, CC(e), sothateff) <v-+e. -

E.3 The Misspecified Model Case

Here we present a proof of Theorem 28, including a specification eh#tkodA,, from the theorem
statement.
Proof [Theorem 28] Consider a weakly universally consistent passiveiteaalgorithmA, (De-

vroye, Gyorfi, and Lugosi, 1996). Such a method must exist in our setting; for iostdtoeffding’s

inequality and a union bound imply that it suffices to takg L) = argmiryl§i el’[;(]léti)-i- '”%‘;if‘) '

where{By,B,, ...} is a countable algebra that generatés

Then A, achieves a label complexity, such that for any distributio®xy on X’ x {—1,+1},
Ve € (0,1), Au(e + v¥(Pxy),Pxy) < co. In particular, if v*(Pxy) < v(C;Pxy), then we have
Au((V¥(Pxy) + V(C; Pxy)) /2, Pxy) < 0.

Fix anyn € N and describe the execution gf,(n) as follows. In a preprocessing step, with-
hold the firstmy, = n—[n/2] — [n/3] > n/6 examples{Xy,...,Xn,} and request their labels
{M1,...,.Ym,}- RunAa(|n/2]) on the remainder of the sequenféy, 1, Xm,+2;---} (i.e., shift

1581



HANNEKE

any index references in the algorithm by,), and leth, denote the classifier it returns. Also re-
quest the label¥y, 11, . . - Yim,,+n/3), @nd let

hu = ALI ({ (XTT\JnJrl)YmJn+l)a ey (XI’T\Jn+ [n/3] ’YmJnJan/3J ) }) .

If efm, (ha) — €M, (hu) > n~%/3, returnh = hy; otherwise, returth = h,. This method achieves the
stated result, for the following reasons.

First, let us examine the final step of this algorithm. By Hoeffding’s inequaiiityy probability
at least 1- 2- exp{ —n%/3/12},

[(€fnn(ha) —€fim,,(hu)) — (er(ha) —er(hy))| < n~*/°,

When this is the case, a triangle inequality impliehgr min{er(h,), er(hy) + 2n~/3},
If Pxy satisfies the benign noise case, then for any

n>2Na(/2+ v(C;Pxy), Pxy),

we haveEer(h,)] < V(C; Pxy) +£/2, soE[er(h)] < v(C; Pxy) +&£/2+ 2-exp{—n¥/3/12}, which
is at mostv(C; Pxy) + € if n > 12%In3(4/¢). So in this case, we can takde) = [128In3(4/¢)].

On the other hand, iPxy is not in the benign noise case (i.e., the misspecified model case), then
for anyn > 3Au((v*(Pxy) + V(C;Pxy))/2, Pxy), E[er(hy)] < (v*(Pxy) + v(C;Pxy))/2, so that

Eler(h)] < E[er(hy)] +2n~ Y3 + 2. exp{—n*/3/12}
< (V¥(Pxy) +V(C; Pxy))/2+2n Y3 4 2. exp{ —n1/3/12}.

Again, this is at most (C; Pxy) + ¢ if n> max{12%In2,64(v(C; Pxy) — v*(Pxy))3}. Soin this
case, we can take

o) = [ma{ 120 Lo, (SEATERL P ) e e |

In either case, we havk(¢) € Polylog1/¢). [ |
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