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Abstract

The lasso is an important method for sparse, high-dimensional regression problems, with efficient

algorithms available, a long history of practical success, and a large body of theoretical results

supporting and explaining its performance. But even with the best available algorithms, finding the

lasso solutions remains a computationally challenging task in cases where the number of covariates

vastly exceeds the number of data points.

Marginal regression, where each dependent variable is regressed separately on each covariate,

offers a promising alternative in this case because the estimates can be computed roughly two orders

faster than the lasso solutions. The question that remains is how the statistical performance of the

method compares to that of the lasso in these cases.

In this paper, we study the relative statistical performance of the lasso and marginal regression

for sparse, high-dimensional regression problems. We consider the problem of learning which

coefficients are non-zero. Our main results are as follows: (i) we compare the conditions under

which the lasso and marginal regression guarantee exact recovery in the fixed design, noise free

case; (ii) we establish conditions under which marginal regression provides exact recovery with

high probability in the fixed design, noise free, random coefficients case; and (iii) we derive rates

of convergence for both procedures, where performance is measured by the number of coefficients

with incorrect sign, and characterize the regions in the parameter space recovery is and is not

possible under this metric.

In light of the computational advantages of marginal regression in very high dimensional prob-

lems, our theoretical and simulations results suggest that the procedure merits further study.

Keywords: high-dimensional regression, lasso, phase diagram, regularization

1. Introduction

Consider a regression model,

Y = Xβ+ z, (1)

with response Y = (Y1, . . . ,Yn)
T , n× p design matrix X , coefficients β = (β1, . . . ,βp)

T , and noise

variables z = (z1, . . . ,zn)
T . A central theme in recent work on regression is that sparsity plays a
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critical role in effective high-dimensional inference. Loosely speaking, we call the model sparse

when most of β’s components equal 0, and we call it high dimensional when p ≫ n.

An important problem in this context is variable selection: determining which components of β

are non-zero. For general β, the problem is underdetermined, but recent results have demonstrated

that under particular conditions on X , to be discussed below, sufficient sparsity of β allows (i) exact

recovery of β in the noise-free case (Tropp, 2004) and (ii) consistent selection of the non-zero

coefficients in the noisy-case (Chen et al., 1998; Cai et al., 2010; Candés and Tao, 2007; Donoho,

2006; Donoho and Elad, 2003; Fan and Lv, 2008; Fuchs, 2005; Knight and Fu, 2000; Meinshausen

and Bühlmann, 2006; Tropp, 2004; Wainwright, 2006; Zhao and Yu, 2006; Zou, 2006). Many of

these results are based on showing that under sparsity constraints, the lasso—a convex optimization

procedure that controls the ℓ1 norm of the coefficients—has the same solution as an (intractable)

combinatorial optimization problem that controls the number of non-zero coefficients.

Recent years, the lasso (Tibshirani, 1996; Chen et al., 1998) has become one of the main practi-

cal and theoretical tools for sparse high-dimensional variable selection problems. In the regression

problem, the lasso estimator is defined by

β̂lasso = argmin
β

‖Y −Xβ‖2
2 +λ‖β‖1, (2)

where ‖β‖1 = ∑ j |β j| and λ ≥ 0 is a tuning parameter that must be specified. The lasso gives rise

to a convex optimization problem and thus is computationally tractable even for moderately large

problems. Indeed, the LARS algorithm (Efron et al., 2004) can compute the entire solution path as

a function of λ in O(p3 + np2) operations. Gradient descent algorithms for the lasso are faster in

practice, but have the same computational complexity. The motivation for our study is that when p

is very large, finding the lasso solutions is computationally demanding.

Marginal regression, which is also called correlation learning, simple thresholding (Donoho,

2006), and sure screening (Fan and Lv, 2008), is an older and computationally simpler method

for variable selection in which the outcome variable is regressed on each covariate separately and

the resulting coefficient estimates are screened. To compute the marginal regression estimates for

variable selection, we begin by computing the marginal regression coefficients which, assuming X

has been standardized, are

α̂ ≡ XTY.

Then, we threshold α̂ using the tuning parameter t > 0:

β̂ j = α̂ j1{|α̂ j| ≥ t}. (3)

The procedure requires O(np) operations, two orders faster than the lasso for p ≫ n. This is a

decided advantage for marginal regression because the procedure is tractable for much larger prob-

lems than is the lasso. The question that remains is how the statistical performance of marginal

regression compares to that of the lasso. In this paper, we begin to address this question.

We study the relative performance of the lasso and marginal regression for variable selection

in three regimes: (a) exact variable selection in the noise-free and noisy cases with fixed design

and coefficients, (b) exact variable selection in the noise-free case with fixed design and random

coefficients, and (c) statistical variable selection in the noisy case where performance is measured

by the number of coefficients with incorrect sign. Our goal is to reopen the case for marginal

regression as a plausible alternative to the lasso for large problems. If marginal regression exhibits
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comparable statistical performance, theoretically and empirically, then its computational advantages

make it a good choice in practice. Put another way: for very high dimensional problems, marginal

regression only needs to tie to win.

Our main results are as follows:

• In the fixed design (X fixed), noise free (z = 0), and fixed effects (β fixed) case, both pro-

cedures guarantee exact reconstruction of |sgnβ| under distinct but generally overlapping

conditions.

We analyze these conditions and give examples where each procedure fails while the other

succeeds. The lasso has the advantage of providing exact reconstruction for a somewhat

larger class of coefficients, but marginal regression has a better tolerance for collinearity and

is easier to tune. These results are discussed in Sections 2.

• In the fixed design, noise free, and random effects (β random) case, we give conditions under

which marginal regression gives exact reconstruction of |sgnβ| with overwhelming probabil-

ity.

Our condition is closely related to both the Faithfulness condition (Spirtes et al., 1993; Mein-

shausen and Bühlmann, 2006) and the Incoherence condition (Donoho and Elad, 2003). The

latter depends only on X , making it easy to check in practice, but in controlling the worst

case it is quite conservative. The former depends on the unknown β but is less stringent. Our

condition strikes a compromise between the two. These results are discussed in Section 3.

• In the random design, noisy, random effects case, we obtain convergence rates of the two

procedures in Hamming distance between the sign vectors sgnβ and sgn β̂.

Under a stylized family of signals, we derive a new “phase diagram” that partitions the pa-

rameter space into regions in which (i) exact variable selection is possible (asymptotically);

(ii) reconstruction of most relevant variables, but not all, is possible; and (iii) successful vari-

able selection is impossible. We show that both the lasso and marginal regression, properly

calibrated, perform similarly in each region. These results are described in Section 4.

To support these theoretical results, we also present simulation studies in Section 5. Our simulations

show that marginal regression and the lasso perform similarly over a range of parameters in realistic

models. Section 6 gives the proofs of all theorems and lemmas in the order they appear.

Notation. For a real number x, let sgn(x) be -1, 0, or 1 when x < 0, x = 0, and x > 0; and for

vector u,v∈Rk, define sgn(u) = (sgn(u1), . . . ,sgn(uk))
T , and let (u,v) be the inner product. We will

use ‖ · ‖, with various subscripts, to denote vector and matrix norms, and | · | to represent absolute

value, applied component-wise when applied to vectors. With some abuse of notation, we will write

minu (min |u|) to denote the minimum (absolute) component of a vector u. Inequalities between

vectors are to be understood component-wise as well.

Consider a sequence of noiseless regression problems with deterministic design matrices, in-

dexed by sample size n,

Y (n) = X (n)β(n). (4)

Here, Y (n) is an n×1 response vector, X (n) is an n× p(n) matrix and β(n) is a p(n)×1 vector, where

we typically assume p(n) ≫ n. We assume that β(n) is sparse in the sense that it has s(n) nonzero

components where s(n) ≪ p(n). By rearranging β(n) without loss of generality, we can partition each
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X (n) and β(n) into “signal” and “noise” pieces, corresponding to the non-zero or zero coefficients,

as follows:

X (n) =
(

X
(n)
S ,X

(n)
N

)
β(n) =

(
βS

βN

)
.

Finally, define the Gram matrix C(n) = (X (n))T X (n) and partition this as

C(n) =

(
C
(n)
SS C

(n)
SN

C
(n)
NS C

(n)
NN

)
,

where of course C
(n)
NS = (C

(n)
SN )

T . Except in Sections 4–5, we suppose X (n) is normalized so that all

diagonal coordinates of C(n) are 1.

These (n) superscripts become tedious, so for the remainder of the paper, we suppress them

unless necessary to show variation in n. The quantities X , C, p, s, ρ, as well as the tuning parameters

λ (for the lasso; see (2)) and t (for marginal regression; see (3)) are all thus implicitly dependent on

n.

2. Noise-Free Conditions for Exact Variable Selection

We restrict our attention to a sequence of regression problems in which the signal (non-zero) com-

ponents of the coefficient vector have large enough magnitude to be distinguishable from zero.

Specifically, assume that βS ∈ M s
ρ for a sequence ρ(≡ ρ(n)) > 0 (and not converging to zero too

quickly) with

M
k

a =
{

x = (x1, . . . ,xk)
T ∈ Rk : |x j| ≥ a for all 1 ≤ j ≤ k

}
,

for positive integer k and a > 0. (We use Mρ to denote the space M s
ρ ≡ M s(n)

ρ(n) .)

We will begin by specifying conditions on C, ρ, λ, and t such that in the noise-free case, exact

reconstruction of β is possible for the lasso or marginal regression, for all coefficient vectors for

which the (non-zero) signal coefficients βS ∈ Mρ. These in turn lead to conditions on C, p, s, ρ,

λ, and t such that in the case of homoscedastic Gaussian noise, the non-zero coefficients can be

selected consistently, meaning that for all sequences β
(n)
S ∈ M s(n)

ρ(n) ≡ Mρ,

P

(∣∣∣sgn(β̂(n))
∣∣∣=
∣∣∣sgn(β(n))

∣∣∣
)
→ 1,

as n → ∞. (This property was dubbed sparsistency by Pradeep Ravikumar, 2007.) Our goal in

this section is to compare the conditions for the two procedures. We focus on the noise-free case,

although we comment on the noisy case briefly.

2.1 Exact Reconstruction Conditions for the Lasso in the Noise-Free Case

We begin by reviewing three conditions in the noise-free case that are now standard in the literature

on the lasso:

Condition E. The minimum eigenvalue of CSS is positive.

Condition I. max
∣∣CNSC−1

SS sgn(βS)
∣∣≤ 1.
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Condition J. min
∣∣βS − λC−1

SS sgn(βS)
∣∣> 0.

Because CSS is symmetric and non-negative definite, Condition E is equivalent to CSS being invert-

ible. Later we will strengthen this condition. Condition I is sometimes called the irrepresentability

condition; note that it depends only on sgnβ, a fact that will be important later.

For the noise-free case, Wainwright (2006, Lemma 1) proves that Conditions E, I, and J are

necessary and sufficient for exact reconstruction of the sign vector, that is, for the existence of a

lasso solution β̂ such that sgn β̂ = sgnβ. (See also Zhao and Yu, 2006). Note that this result is

stronger than correctly selecting the non-zero coefficients, as it gets the signs correct as well.

It will be useful in what follows to give strong forms of these conditions. Maximizing the left

side of Condition I over all 2s sign patterns gives ‖CNSC−1
SS ‖∞, the maximum-absolute-row-sum

matrix norm. It follows that Condition I holds for all βS ∈ Mρ if and only if ‖CNSC−1
SS ‖∞ ≤ 1.

Similarly, one way to ensure that Condition J holds over Mρ is to require that every component of

λC−1
SS sgn(βS) be less than ρ. The maximum component of this vector over Mρ equals λ‖C−1

SS ‖∞,

which must be less than ρ. A simpler relation, in terms of the smallest eigenvalue of CSS is

√
s

eigen
min
(CSS)

=
√

s‖C−1
SS ‖2 ≥ ‖C−1

SS ‖∞ ≥ ‖C−1
SS ‖2 =

1

eigen
min
(CSS)

,

where the inequality follows from the symmetry of CSS and standard norm inequalities. This yields

the following:

Condition E’. The minimum eigenvalue of CSS is no less than λ0 > 0, where λ0 does not

depend on n.

Condition I’. ‖CNSC−1
SS ‖∞ ≤ 1−η, for 0 < η < 1 small and independent of n.

Condition J’. λ <
ρ

‖C−1
SS ‖∞

. (Under Condition E’, we can instead use λ < ρ λ0√
s
.)

Theorem 1 In the noise-free case, Conditions E’ (or E), I’ (or I), and J’ imply that for all βS ∈ Mρ,

there exists a lasso solution β̂ with sgn(β̂) = sgn(β).

These conditions can be weakened in various ways, but we chose these because they transition

nicely to the noisy case. For instance, Wainwright (2006) shows that a slight extension of Conditions

E’, I’, and J’ gives sparsistency in the case of homoscedastic Gaussian noise.

2.2 Exact Reconstruction Conditions for Marginal Regression in the Noise-Free Case

As above, define α̂ = XTY and β̂ j = α̂ j1{|α̂ j| ≥ t}, 1 ≤ j ≤ p. Exact reconstruction for variable

selection requires that β̂ j 6= 0 whenever β j 6= 0, or equivalently |α̂ j| ≥ t whenever β j 6= 0. In the

literature on causal inference (Spirtes et al., 1993), this assumption has been called faithfulness

and is also used in Bühlmann et al. (2009) and Fan and Lv (2008). The usual justification for this

assumption is that if β is selected at random from some distribution, then faithfulness holds with

high probability. Robins et al. (2003) has criticized this assumption because results which hold

under faithfulness cannot hold in any uniform sense. We feel that despite the lack of uniformity, it

is still useful to investigate results that hold under faithfulness, since as we will show, it holds with

high probabilty under weak conditions.
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By simple algebra, we have that

α̂ =

(
α̂S

α̂N

)
=

(
XT

S XSβS

XT
N XSβS

)
.

The following condition is thus required to correctly identify the non-zero coefficients:

Condition F. max |CNSβS| < min |CSSβS|. (5)

Because this is reminiscent of (although distinct from) the faithfulness condition mentioned above,

we will refer to Condition F as the Faithfulness Condition.

Theorem 2 Condition F is necessary and sufficient for exact reconstruction to be possible for some

t > 0 with marginal regression.

Unfortunately, as the next theorem shows, Condition F cannot hold for all βS ∈ Mρ. Applying

the theorem to CSS shows that for any ρ > 0, there exists a βS ∈ Mρ that violates equation (5).

Theorem 3 Let D be an s× s positive definite, symmetric matrix that is not diagonal. Then for any

ρ > 0, there exists a β ∈ M s
ρ such that min |Dβ|= 0.

Despite the seeming pessimism of Theorem 3, the result is not as grim as it seems. Since

Cβ ≡ XTY , the theorem says that if we fix X and let Y = Xβ range through all possible β ∈ M s
ρ ,

there exists a Y such that min |XTY |= 0. However, to mitigate the pessimism, note that once X and

Y are are observed, if we see that min |XTY |> 0, we can rule out the result of Theorem 3.

2.3 Comparison of the Conditions for Exact Recovery of Sign Vector in the Noise-Free Case

In this subsection, we use several simple examples to get insight into how the exact-recovery con-

ditions for the lasso and marginal regression compare. The examples illustrate the following points:

• (Examples 1 and 2) The conditions for the two procedures are generally overlapping.

• (Example 3) When CSS = I, the lasso conditions are relatively weaker.

• (Example 4) Although the conditions for marginal regression do not hold uniformly over any

Mρ, they have the advantage that they do not require invertibility of CSS and hence are less

sensitive to small eigenvalues.

The bottom line is that the two conditions appear to be closely related, and that there are cases where

each succeeds while the other fails.

Example 1. For s = 2, assume that

CSS =

(
1 ρ

ρ 1

)
, βS =

(
2

1

)
.

For a = (a1,a2) a row of CNS, Conditions I and J require that we choose λ > 0 small enough so that

|a1+a2| ≤ 1+ρ, while Condition F requires |2a1+a2| ≤ min{(2+ρ), |1+2ρ|}. For many choices

of ρ, both of these inequalities are satisfied (e.g., ρ = −0.75). Figure 1 shows the sets of (a1,a2)
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Figure 1: Let CSS and βS be as in Section 2.3 Example 2, where ρ = −0.75. For a row of CNS,

say, (a1,a2). The interior of the parallelogram and that of the hexagon are the regions of

(a1,a2) satisfying the conditions of the lasso and marginal regression, respectively; see

Example 1.

for which the respective conditions are satisfied. The two regions show significant overlap, and to

a large extent, the conditions continue to overlap as ρ and βS vary. Examples for larger s can be

constructed by letting CSS be a block diagonal matrix, where the size of each main diagonal block is

small. For each row of CNS, the conditions for the lasso and marginal regression are similar to those

above, though more complicated.

Example 2. In the special case where βS ∝ 1S, Condition I for the lasso becomes |CNSC−1
SS 1N | ≤

1N , where the inequality should be interpreted as holding component-wise, and the condition for

marginal regression (Condition F) is max{|CNS1S|} ≤ min{|CSS1S|}. Note that if in addition 1S is

an eigen-vector of CSS, then the two conditions are equivalent to each other. This includes but is not

limited to the case of s = 2.

Example 3. Fix n and consider the special case in which CSS = I. For the lasso, Condition E’

(and thus E) is satisfied, Condition J’ reduces to λ < ρ, and Condition I becomes ‖CNS‖ ≤ 1. Under

these conditions, the lasso gives exact reconstruction, but Condition F can fail. To see how, let

β̃ ∈ {−1,1}s be the vector such that max |CNSβ̃|= ‖CNS‖∞ and let ℓ be the index of the row at which

the maximum is attained, choosing the row with the biggest absolute element if the maximum is not

unique. Let u be the maximum absolute element of row ℓ of CNS with index j. Define a vector δ to

be zero except in component j, which has the value ρβ̃ j/(u‖CNS‖∞). Let β = ρβ̃+ρδ. Then,

|(CNSβ)ℓ|= ρ

(
‖CNS‖∞ +

1

‖CNS‖∞

)
> ρ = min |βS|,

so Condition F fails.

On the other hand, suppose Condition F holds for all βS ∈ {−1,1}s. (It cannot hold for all

Mρ by Theorem 3). Then, for all βS ∈ {−1,1}s, max |CNSβS| ≤ 1, which implies that ‖CNS‖∞ ≤ 1.
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Choosing λ < ρ, we have Conditions E’, I, and J’ satisfied, showing by Theorem 1 that the lasso

gives exact reconstruction. It follows that the conditions for the lasso are weaker in this case.

Example 4. For simplicity, assume that βS ∝ 1S, although the phenomenon to be described below

is not limited to this case. For 1 ≤ i ≤ s, let λi and ξi be the i-th eigenvalue and eigenvector of CSS.

Without loss of generality, we can take ξi to have unit ℓ2 norm. By elementary algebra, there are

constants c1, . . . ,cs such that 1S = c1ξ1 + c2ξ2 + . . .+ csξs. It follows that

C−1
SS ·1S =

s

∑
i=1

ci

λi

ξi and CSS ·1S =
s

∑
i=1

(ciλi)ξi.

Fix a row of CNS, say, a = (a1, . . . ,as). Respectively, the conditions for the lasso and marginal

regression require

|(a,
s

∑
i=1

ci

λi

ξi)| ≤ 1 and |(a,1S)| ≤ |
s

∑
i=1

ciλiξi|. (6)

Without loss of generality, we assume that λ1 is the smallest eigenvalue of CSS. Consider the

case where λ1 is small, while all other eigenvalues have a magnitude comparable to 1. In this case,

the smallness of λ1 has a negligible effect on ∑s
i=1(ciλi)ξi, and so has a negligible effect on the

condition for marginal regression. However, the smallness of λ1 may have an adverse effect on the

performance of the lasso. To see the point, we note that ∑s
i=1

ci

λi
ξi ≈ c1

λ1
ξ1. Compare this with the

first term in (6). The condition for the lasso is roughly |(a,ξ1)| ≤ c1λ1, which is rather restrictive

since λ1 is small.

Figure 2 shows the regions in a = (a1,a2,a3), a row of CNS, where the respective exact recover

sequences hold for

CSS =




1 −1/2 c

−1/2 1 0

c 0 1


 .

To better visualize these regions, we display their 2-D section (i.e., setting the first coordinate of

a to 0). The Figures suggest that as λ1 gets smaller, the region corresponding to the lasso shrinks

substantially, while that corresponding to marginal regression remains the same.

While the examples in this subsection are low dimensional, they shed light on the high di-

mensional setting as well. For instance, the approach here can be extended to the following high-

dimensional model: (a) |sgn(β j)| iid∼ Bernoulli(ε), (b) each row of the design matrix X are iid sam-

ples from N(0,Ω/n), where Ω is a p× p correlation matrix that is sparse in the sense that each row

of Ω has relatively few coordinates, and (c) 1 ≪ pε ≪ n ≪ p (note that pε is the expected number

of signals). Under this model, it can be shown that (1) CSS is approximately a block-wise diagonal

matrix where each block has a relatively small size, and outside these blocks, all coordinates of CSS

are uniformly small and have a negligible effect, and (2) each row of CNS has relatively few large

coordinates. As a result, the study on the exact reconstruction conditions for the lasso and marginal

regression in this more complicated model can be reduced to a low dimensional setting, like those

discussed here. And the point that there is no clear winner between the to procedures continues to

hold in greater generality.

2.4 Exact Reconstruction Conditions for Marginal Regression in the Noisy Case

We now turn to the noisy case of model (1), taking z to be N(0,σ2
n · In), where we assume that the

parameter σ2
n is known. The exact reconstruction condition for the lasso in the noisy case has been

2114



A COMPARISON OF THE LASSO AND MARGINAL REGRESSION

Figure 2: The regions sandwiched by two hyper-planes are the regions of a = (a1,a2,a3) satisfying

the respective exact-recovery conditions for marginal regression (MR, panel 1) and for the

lasso (panels 2–4). See Section 2.3 Example 4. Here, c = 0.5,0.7,0.85 and the smallest

eigenvalues of CSS are λ1(c) = 0.29,0.14,0.014. As c varies, the regions for marginal

regression remain the same, while the regions for the lasso get substantially smaller.

studied extensively in the literature (see for example Tibshirani, 1996). So in this section, we focus

on marginal regression. First, we consider a natural extension of Condition F to the noisy case:

Condition F′. max |CNSβS|+2σn

√
2log p < min |CSSβS|. (7)

Second, when Condition F’ holds, we show that with an appropriately chosen threshold t (see (3)),

marginal regression fully recovers the support with high probability. Finally, we discuss how to

determine the threshold t empirically.

Condition F’ implies that it is possible to separate relevant variables from irrelevant variables

with high probability. To see this, let X = [x1,x2, . . . ,xp], where xi denotes the i-th column of X .

Sort |(Y,xi)| in the descending order, and let ri = ri(Y,X) be the ranks of |(Y,xi)| (assume no ties for

simplicity). Introduce

Ŝn(k) = Ŝn(k;X ,Y, p) = {i : ri(X ,Y )≤ k}, k = 1,2, . . . , p.

Recall that S(β) denotes the support of β and s = |S|. The following lemma says that, if s is known

and Condition F’ holds, then marginal regression is able to fully recover the support S with high

probability.

Lemma 4 Consider a sequence of regression models as in (4). If for sufficiently large n, Condition

F’ holds and p(n) ≥ n, then

lim
n→∞

P

(
Ŝn(s

(n);X (n),Y (n), p(n)) 6= S(β(n))

)
= 0.
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Figure 3: Displayed are the 2-D sections of the regions in Figure 2, where we set the first coordinate

of a to 0. As c varies, the regions for marginal regression remain the same, but those for

the lasso get substantially smaller as λ1(c) decrease. x-axis: a2. y-axis: a3.

Lemma 4 is proved in Section 6. We remark that if both s and (p− s) tend to ∞ as n tends to ∞, then

Lemma 4 continues to hold if we replace 2σn

√
2log p in (7) by σn(

√
log(p− s)+

√
logs). See the

proof of the lemma for details.

The key assumption of Lemma 4 is that s is known so that we know how to set the threshold

t. Unfortunately, s is generally unknown. We propose the following procedure to estimate s. Fix

1 ≤ k ≤ p, let ik be the unique index satisfying rik(X ,Y ) = k. Let V̂n(k) = V̂n(k;X ,Y, p) be the linear

space spanned by xi1 ,xi2 , . . . ,xik , and let Ĥn(k) = Ĥn(k;X ,Y, p) be the projection matrix from Rn to

V̂n(k) (here and below, thêsign emphasizes the dependence of indices ik on the data). Define

δ̂n(k) = δ̂n(k;X ,Y, p) = ‖(Ĥn(k+1)− Ĥn(k))Y‖, 1 ≤ k ≤ p−1.

The term δ̂2
n(k) is closely related to the F-test for testing whether βik+1

6= 0. We estimate s by

ŝn = ŝn(X ,Y, p) = max

{
1 ≤ k ≤ p : δ̂n(k)≥ σn

√
2logn

}
+1

(in the case where δ̂n(k)< σn

√
2logn for all k, we define ŝn = 1).

Once ŝn is determined, we estimate the support S by

Ŝ(ŝn,X ,Y, p) = {ik : k = 1,2, . . . , ŝn}.

It turns out that under mild conditions, ŝn = s with high probability. In detail, suppose that the

support S(β) consists of indices j1, j2, . . . , js. Fix 1 ≤ k ≤ s. Let ṼS be the linear space spanned by

x j1 , . . . ,x js , and let ṼS,(−k) be the linear space spanned by x j1 , . . . ,x jk−1
,x jk+1

, . . . ,x js . Project β jk x jk

to the linear space ṼS ∩ Ṽ⊥
S,(−k). Let ∆n(k,β,X , p) be the ℓ2 norm of the resulting vector (which can

be interpreted as the strength of the k-th signal after the collinearity between the k-th predictor and
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other predictors removed), and let

∆∗
n(β,X , p) = min

1≤k≤s
∆n(k,β,X , p).

The following theorem says that if ∆∗
n(β,X , p) is slightly larger than σn

√
2logn, then ŝn = s and

Ŝn = S with high probability. In other words, marginal regression fully recovers the support with

high probability. Theorem 5 is proved in Section 6.

Theorem 5 Consider a sequence of regression models as in (4). Suppose that for sufficiently large

n, Condition F’ holds, p(n) ≥ n, and

lim
n→∞

(
∆∗

n(β
(n),X (n), p(n))

σn

−
√

2logn

)
= ∞.

Then

lim
n→∞

P

(
ŝn(X

(n),Y (n), p(n)) 6= s(n)
)
→ 0,

and

lim
n→∞

(
Ŝn(ŝn(X

(n),Y (n), p(n));X (n),Y (n),n, p(n)) 6= S(β(n))

)
→ 0.

Theorem 5 says that the tuning parameter for marginal regression (i.e., the threshold t) can be set

successfully in a data driven fashion. In comparison, how to set the tuning parameter λ for the lasso

has been a longstanding open problem in the literature.

We briefly discuss the case where the noise variance σ2
n is unknown. The topic is addressed

in some of recent literature (e.g., Candés and Tao, 2007; Sun and Zhang, 2011). It is noteworthy

that in some applications, σ2
n can be calibrated during data collection and so it can be assumed as

known (Candés and Tao, 2007, Rejoinder). It is also noteworthy that in Sun and Zhang (2011),

they proposed a procedure to jointly estimate β and σ2
n using scaled lasso. The estimator was show

to be consistent with σ2
n in rather general situations, but unfortunately it is computationally more

expensive than either the lasso or marginal regression. How to find an estimator that is consistent

with σ2
n in general situations and has low computational cost remains an open problem, and we leave

the study to the future.

With that being said, we conclude this section by mentioning that both the lasso and marginal

regression have their strengths and weakness, and there is no clear winner between these two in

general settings. For a given data set, whether to use one or the other is a case by case decision,

where a close investigation of (X ,β) is usually necessary.

3. The Deterministic Design, Random Coefficient Regime

In this section, we study how generally the Faithfulness Condition holds. We approach this question

by modeling the coefficients β as random (the matrix X remains fixed) and deriving a condition (F”)

under which the Faithfulness Condition holds with high probability. The discussion in this section

is closely related to the work by Donoho and Elad (2003) on the Incoherence condition. Compared

to the Faithfulness Condition, the advantage of the Incoherence Condition is that it does not involve

the unknown support of β, so it is checkable in practice. The downside of the Incoherence Condition
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is that it aims to control the worst case so it is conservative. In this section, we derive a condition—

Condition F”—which can be viewed as a middle ground between the Faithfulness Condition and

the Incoherence Condition: it is not tied to the unknown support so it is more tractable than the

Faithfulness Condition, and it is also much less stringent than the Incoherence Condition.

In detail, we model β as follows. Fix ε ∈ (0,1), a > 0, and a distribution π, where

the support of π ⊂ (−∞,−a]∪ [a,∞). (8)

For each 1 ≤ i ≤ p, we draw a sample Bi from Bernoulli(ε). When Bi = 0, we set βi = 0. When

Bi = 1, we draw βi ∼ π. Marginally,

βi
iid∼ (1− ε)ν0 + επ, (9)

where ν0 denotes the point mass at 0. This models the case where we have no information on the

signals, so they appear at locations generated randomly. In the literature, it is known that the least

favorable distribution for variable selection has the form as in (9), where π is in fact degenerate. See

Candès and Plan (2009) for example.

We study for which quadruples (X ,ε,π,a) the Faithfulness Condition holds with high probabil-

ity. Recall that the design matrix X = [x1, . . . ,xp], where xi denotes the i-th column. Fix t ≥ 0 and

δ > 0. Introduce

gi j(t) = Eπ[e
tu·(xi,x j)]−1, ḡi(t) = ∑

j 6=i

gi j(t),

where the random variable u ∼ π and (xi,x j) denotes the inner product of xi and x j. As before, we

have suppressed the superscript (n) for gi j(t) and ḡi(t). Define

An(δ,ε, ḡ) = An(δ,ε, ḡ;X ,π) = min
t>0

(
e−δt

p

∑
i=1

[eεḡi(t)+ eεḡi(−t)]

)
,

where ḡ denotes the vector (ḡ1, . . . , ḡp)
T . Note that 1+gi j(t) is the moment generating function of π

evaluated at the point (xi,x j)t. In the literature, it is conventional to use moment generating function

to derive sharp inequalities on the tail probability of sums of independent random variables. The

following lemma is proved in Section 6.

Lemma 6 Fix n, X, δ > 0, ε ∈ (0,1), and distribution π. Then

P(max |CNSβS| ≥ δ)≤ (1− ε)An(δ,ε, ḡ;X ,π), (10)

and

P(max |(CSS − IS)βS| ≥ δ)≤ εAn(δ,ε, ḡ;X ,π). (11)

Now, suppose the distribution π satisfies (8) for some a > 0. Take δ = a/2 on the right hand

side of (10)-(11). Except for a probability of An(a/2,ε, ḡ),

max |CNSβS| ≤ a/2, min |CSSβS| ≥ min |βS|−max |(CSS − I)βS| ≥ a/2,

so max |CNSβS| ≤ min |CSSβS| and the Faithfulness Condition holds. This motivates the following

condition, where (a,ε,π) may depend on n.

Condition F′′. lim
n→∞

An(an/2,εn, ḡ
(n);X (n),πn) = 0.

The following theorem says that if Condition F” holds, then Condition F holds with high probability.
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Theorem 7 Consider a sequence of noise-free regression models as in (4), where the noise compo-

nent z(n) = 0 and β(n) is generated as in (9). Suppose Condition F” holds. Then as n tends to ∞,

except for a probability that tends to 0,

max |CNSβS| ≤ min |CSSβS|.

Theorem 7 is the direct result of Lemma 6 so we omit the proof.

3.1 Comparison of Condition F” with the Incoherence Condition

Introduced in Donoho and Elad (2003) (see also Donoho and Huo, 2001), the Incoherence of a

matrix X is defined as

max
i6= j

|Ci j|,

where C = XT X is the Gram matrix as before. The notion is motivated by the study in recovering

a sparse signal from an over-complete dictionary. In the special case where X is the concatenation

of two orthonormal bases (e.g., a Fourier basis and a wavelet basis), maxi6= j |Ci j| measures how

coherent two bases are and so the term of incoherence; see Donoho and Elad (2003) and Donoho

and Huo (2001) for details. Consider Model (1) in the case where both X and β are deterministic,

and the noise component z = 0. The following results are proved in Chen et al. (1998), Donoho and

Elad (2003) and Donoho and Huo (2001).

• The lasso yields exact variable selection if s <
1+maxi 6= j |Ci j|
2maxi 6= j |Ci j| .

• Marginal regression yields exact variable selection if s < c
2maxi 6= j |Ci j| for some constant c ∈

(0,1), and that the nonzero coordinates of β have comparable magnitudes (i.e., the ratio be-

tween the largest and the smallest nonzero coordinate of β is bounded away from ∞).

In comparison, the Incoherence Condition only depends on X so it is checkable. Condition F

depends on the unknown support of β. Checking such a condition is almost as hard as estimating

the support S. Condition F” provides a middle ground. It depends on β only through (ε,π). In

cases where we either have a good knowledge of (ε,π) or we can estimate them, Condition F” is

checkable (for literature on estimating (ε,π), see Jin, 2007 and Wasserman, 2006 for the case where

we have an orthogonal design, and Ji and Jin, 2012, Section 2.6 for the case where XT X is sparse

in the sense that each row of XT X has relatively few large coordinates. We note that even when

successful variable selection is impossible, it may be still possible to estimate (ε,π) well).

At the same time, the Incoherence Condition is conservative, especially when s is large. In fact,

in order for either the lasso or marginal regression to have an exact variable selection, it is required

that

max
i6= j

|Ci j| ≤ O

(
1

s

)
,

In other words, all coordinates of the Gram matrix C need to be no greater than O(1/s). This is

much more conservative than Condition F.

However, we must note that the Incoherence Condition aims to control the worst case: it sets out

to guarantee uniform success of a procedure across all β under minimum constraints. In comparison,

Condition F aims to control a single case, and Condition F” aims to control almost all the cases in

a specified class. As such, Condition F” provides a middle ground between Condition F and the
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Incoherence Condition, applying more broadly than the former, while being less conservative than

the later.

Below, we use two examples to illustrate that Condition F” is much less conservative than

the Incoherence Condition. In the first example, we consider a weakly dependent case where

maxi6= j |Ci j| ≤ O(1/ log(p)). In the second example, we suppose the matrix C is sparse, but the

nonzero coordinates of C may be large.

3.1.1 THE WEAKLY DEPENDENT CASE

Suppose that for sufficiently large n, there are two sequence of positive numbers an ≤ bn such that

the support of πn is contained in [−bn,−an]∪ [an,bn], and that

bn

an

·max
i6= j

|Ci j| ≤ c1/ log(p), c1 > 0 is a constant.

For k ≥ 1, denote the k-th moment of πn by

µ
(k)
n = µ

(k)
n (πn).

Introduce mn = mn(X) and v2
n = v2

n(X) by

mn(X) = pεn · max
1≤i≤p

{∣∣∣∣
1

p
∑
j 6=i

Ci j

∣∣∣∣
}
, v2

n(X) = pεn · max
1≤i≤p

{
1

p
∑
j 6=i

C2
i j

}
.

Corollary 3.1 Consider a sequence of regression models as in (4), where the noise component

z(n) = 0 and β(n) is generated as in (9). If there are constants c1 > 0 and c2 ∈ (0,1/2) such that

bn

an

·max
i6= j

{|Ci j|} ≤ c1/ log(p(n)),

and

lim
n→∞

(
µ
(1)
n (πn)

an

mn(X
(n))

)
≤ c2, lim

n→∞

(
µ
(2)
n (πn)

a2
n

v2
n(X

(n)) log(p(n))

)
= 0, (12)

then

lim
n→∞

An(an/2,εn, ḡ
(n);X (n),πn) = 0,

and Condition F” holds.

Corollary 3.1 is proved in Section 6. For interpretation, we consider the special case where there is

a generic constant c > 0 such that bn ≤ can. As a result, µ
(1)
n /an ≤ c, µ

(2)
n /a2

n ≤ c2. The conditions

reduce to that, for sufficiently large n and all 1 ≤ i ≤ p,

|1
p

p

∑
j 6=i

Ci j| ≤ O(
1

pεn

),
1

p

p

∑
j 6=i

C2
i j = o(1/pεn).

Note that by (9), s = s(n) ∼ Binomial(p,εn), so s ≈ pεn. Recall that the Incoherence Condition is

max
i6= j

|Ci j| ≤ O(1/s).

In comparison, the Incoherence Condition requires that each coordinate of (C− I) is no greater than

O(1/s), while Condition F” only requires that the average of each row of (C− I) is no greater than

O(1/s). The latter is much less conservative.
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3.1.2 THE SPARSE CASE

Let N∗
n (C) be the maximum number of nonzero off-diagonal coordinates of C:

N∗
n (C) = max

1≤i≤p
{Nn(i)}, Nn(i) = Nn(i;C) = #{ j : j 6= i,Ci j 6= 0}.

Suppose there is a constant c3 > 0 such that

lim
n→∞

(− log(εnN∗
n (C))

log(p(n))

)
≥ c3. (13)

Also, suppose there is a constant c4 > 1 such that for sufficiently large n,

the support of πn is contained in [−c4an,an]∪ [an,c4an]. (14)

The following corollary is proved in Section 6.

Corollary 3.2 Consider a sequence of noise-free regression models as in (4), where the noise com-

ponent z(n) = 0 and β(n) is randomly generated as in (9). Suppose (13)-(14) hold. If there is a

constant δ > 0 such that

max
i6= j

|Ci j| ≤ δ, and δ <
c3

2c4

,

then

lim
n→∞

An(an/2,εn, ḡ
(n);X (n),πn) = 0,

and Condition F” holds.

For interpretation, consider a special case where εn = p−ϑ. In this case, the condition reduces

to N∗
n (C)≪ pϑ−2c4δ. As a result, Condition F” is satisfied if each row of (C− I) contains no more

than pϑ−2c4δ nonzero coordinates each of which ≤ δ. Compared to the Incoherence Condition

maxi6= j |Ci j| ≤ O(1/s) = O(p−ϑ), our condition is much weaker.

In conclusion, if we alter our attention from the worst-case scenario to the average scenario,

and alter our aim from exact variable selection to exact variable selection with probability ≈ 1,

then the condition required for success—Condition F”—is much more relaxed than the Incoherence

Condition.

4. Hamming Distance for the Gaussian Design and the Phase Diagram

So far, we have focused on exact variable selection. In many applications, exact variable selection

is not possible. Therefore, it is of interest to study the Type I and Type II errors of variable selection

(a Type I error is a misclassified 0 coordinate of β, and a Type II error is a misclassified nonzero

coordinate).

In this section, we use the Hamming distance to measure the variable selection errors. Back to

Model (1),

Y = Xβ+ z, z ∼ N(0, In), (15)

where without loss of generality, we assume σn = 1. As in the preceding section (i.e., (9)), we

suppose

βi
iid∼ (1− ε)ν0 + επ.
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For any variable selection procedure β̂ = β̂(Y ;X), the Hamming distance between β̂ and the true β

is

d(β̂|X) = d(β̂;ε,π|X) =
p

∑
j=1

Eε,π(Ez[1(sgn(β̂ j) 6= sgn(β j))|X ]).

Note that by Chebyshev’s inequality,

P(non-exact variable selection by β̂(Y ;X))≤ d(β̂|X).

So a small Hamming distance guarantees exact variable selection with high probability.

How to characterize precisely the Hamming distance is a challenging problem. We approach

this by modeling X as random. Assume that the coordinates of X are iid samples from N(0,1/n):

Xi j
iid∼ N(0,1/n). (16)

The choice of the variance ensures that most diagonal coordinates of the Gram matrix C = XT X are

approximately 1. Let PX(x) denote the joint density of the coordinates of X . The expected Hamming

distance is then

d∗(β̂) = d∗(β̂;ε,π) =
∫

d(β̂;ε,π|X = x)PX(x)dx.

We adopt an asymptotic framework where we calibrate p and ε with

p = n1/θ, pεn = n(1−ϑ)/θ ≡ p1−ϑ, 0 < θ,ϑ < 1. (17)

This models a situation where p ≫ n and the vector β gets increasingly sparse as n grows. Note that

the parameter ϑ calibrates the sparsity level of the signals. We assume πn in (9) is a point mass

πn = ντn
. (18)

In the literature (e.g., Donoho and Jin, 2004; Meinshausen and Rice, 2006), this model was found

to be subtle and rich in theory. In addition, compare two experiments, in one of them πn = ντn
, and

in the other the support of πn is contained in [τn,∞). Since the second model is easier for inference

than the first one, the optimal Hamming distance for the first one gives an upper bound for that for

the second one.

With εn calibrated as above, the most interesting range for τn is O(
√

2log p): when τn ≫√
2log p, exact variable selection can be easily achieved by either the lasso or marginal regres-

sion. When τn ≪ √
2log p, no variable selection procedure can achieve exact variable selection.

See, for example, Donoho and Jin (2004). In light of this, we calibrate

τn =
√

2(r/θ) logn ≡
√

2r log p, r > 0. (19)

Note that the parameter r calibrates the signal strength. With these calibrations, we can rewrite

d∗
n(β̂;ε,π) = d∗

n(β̂;εn,τn).

Definition 8 Denote L(n) by a multi-log term which satisfies that limn→∞(L(n) · nδ) = ∞ and that

limn→∞(L(n) ·n−δ) = 0 for any δ > 0.
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Figure 4: The regions as described in Section 4. In the region of Exact Recovery, both the lasso and

marginal regression yield exact recovery with high probability. In the region of Almost

Full Recovery, it is impossible to have large probability for exact variable selection, but

the Hamming distance of both the lasso and marginal regression ≪ pεn. In the region of

No Recovery, optimal Hamming distance ∼ pεn and all variable selection procedures fail

completely. Displayed is the part of the plane corresponding to 0 < r < 4 only.

We are now ready to spell out the main results. Define

ρ(ϑ) = (1+
√

1−ϑ)2, 0 < ϑ < 1.

The following theorem is proved in Section 6, which gives the lower bound for the Hamming dis-

tance.

Theorem 9 Fix ϑ ∈ (0,1), θ > 0, and r > 0 such that θ > 2(1 − ϑ). Consider a sequence of

regression models as in (15)-(19). As n → ∞, for any variable selection procedure β̂(n),

d∗
n(β̂

(n);εn,τn)≥
{

L(n)p1− (ϑ+r)2

4r , r ≥ ϑ,
(1+o(1)) · p1−ϑ, 0 < r < ϑ.

Let β̂mr be the estimate of using marginal regression with threshold

tn =

{
ϑ+r
2
√

r

√
2log p, if r > ϑ,

tn =
√

2r̃ log p, if r < ϑ,
(20)

where r̃ is some constant ∈ (ϑ,1) (note that in the case of r < ϑ, the choice of tn is not necessarily

unique). We have the following theorem.

Theorem 10 Fix ϑ ∈ (0,1), r > 0, and θ > (1−ϑ). Consider a sequence of regression models as

in (15)-(19). As p → ∞, the Hamming distance of marginal regression with the threshold tn given in
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(20) satisfies

d∗
n(β̂

(n)
mr ;εn,τn)≤

{
L(n)p1− (ϑ+r)2

4r , r ≥ ϑ,
(1+o(1)) · p1−ϑ, 0 < r < ϑ.

In practice, the parameters (ϑ,r) are usually unknown, and it is desirable to set tn in a data-driven

fashion. Towards this end, we note that our primary interest is in the case of r > ϑ (as when r < ϑ,

successful variable selection is impossible). In this case, the optimal choice of tn is (ϑ+ r)/(2r)τp,

which is the Bayes threshold in the literature. The Bayes threshold can be set by the approach of

controlling the local False Discovery Rate (Lfdr), where we set the FDR-control parameter as 1/2;

see Efron et al. (2001) for details.

Similarly, choosing the tuning parameter λn = 2(ϑ+r
2
√

r
∧√

r)
√

2log p in the lasso, we have the

following theorem.

Theorem 11 Fix ϑ ∈ (0,1), r > 0, and θ > (1−ϑ). Consider a sequence of regression models as in

(15)-(19). As p → ∞, the Hamming distance of the lasso with the tuning parameter λn = 2tn where

tn is given in (20), satisfies

d∗
n(β̂

(n)
lasso;εn,τn)≤

{
L(n)p1− (ϑ+r)2

4r , r ≥ ϑ,
(1+o(1)) · p1−ϑ, 0 < r < ϑ.

The proofs of Theorems 10-11 are routine and we omit them.

Theorems 9-11 say that in the ϑ-r plane, we have three different regions, as displayed in Figure

4.

• Region I (Exact Recovery): 0 < ϑ < 1 and r > ρ(ϑ).

• Region II (Almost Full Recovery): 0 < ϑ < 1 and ϑ < r < ρ(ϑ).

• Region III (No Recovery): 0 < ϑ < 1 and 0 < r < ϑ.

In the Region of Exact Recovery, the Hamming distance for both marginal regression and the lasso

are algebraically small. Therefore, except for a probability that is algebraically small, both marginal

regression and the lasso give exact recovery.

In the Region of Almost Full Recovery, both the Hamming distance of marginal regression and

the lasso are much smaller than the number of relevant variables (which ≈ pεn). Therefore, almost

all relevant variables have been recovered. Note also that the number of misclassified irrelevant

variables is comparably much smaller than pεn. In this region, the optimal Hamming distance is

algebraically large, so for any variable selection procedure, the probability of exact recovery is

algebraically small.

In the Region of No Recovery, the Hamming distance ∼ pεn. In this region, asymptotically, it

is impossible to distinguish relevant variables from irrelevant variables, and any variable selection

procedure fails completely.

In practice, given a data set, one wishes to know that which of these three regions the true

parameters belong to. Towards this end, we note that in the current model, the coordinates of XTY

are approximately iid samples from the following two-component Gaussian mixture

(1− εp)φ(x)+ εnφ(x− τn),
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where φ(x) denotes the density of N(0,1). In principle, the parameters (εn,τn) can be estimated

(see the comments we made in Section 3.1 on estimating (ε,π)). The estimation can then be used

to determine which regions the true parameters belong to.

k = 4 k = 10

(a1, a2) lasso MR lasso MR

(0, 0) 0 0 0.8 3.8

(-0.85, 0.85) 0 4 0.6 10.4

(0.85, -0.85) 0 4 0.6 11.2

(-0.4, 0.8) 4 0 10 3.6

(0.4, -0.8) 4 0 10 4.8

Table 1: Comparison of the lasso and marginal regression for different choices of (a1,a2) and k.

The setting is described in Experiment 1a. Each cell displays the corresponding Hamming

error.

The results improve on those by Wainwright (2006). It was shown in Wainwright (2006) that

there are constants c2 > c1 > 0 such that in the region of {0 < ϑ < 1,r > c2}, the lasso yields exact

variable selection with overwhelming probability, and that in the region of {0 < ϑ < 1,r < c2}, no

procedure could yield exact variable selection. Our results not only provide the exact rate of the

Hamming distance, but also tighten the constants c1 and c2 so that c1 = c2 = (1+
√

1−ϑ)2. The

lower bound argument in Theorem 9 is based on computing the L1-distance. This gives better results

than in Wainwright (2006) which uses Fano’s inequality in deriving the lower bounds.

To conclude this section, we briefly comment on the phase diagram in two closely related set-

tings. In the first setting, we replace the identity matrix Ip in (16) by some general correlation matrix

Ω, but keep all other assumptions unchanged. In the second setting, we assume that as n → ∞, both

ratios pεp/n and n/p tend to a constant in (0,1), while all other assumptions remain the same. For

the first setting, it was shown in Ji and Jin (2012) that the phase diagram remains the same as in the

case of Ω = Ip, provided that Ω is sparse; see Ji and Jin (2012) for details. For the second setting,

the study is more more delicate, so we leave it to the future work.

5. Simulations and Examples

We conducted a small-scale simulation study to compare the performance of the lasso and marginal

regression. The study includes three different experiments (some have more than one

sub-experiments). In the first experiment, the rows of X are generated from N(0, 1
n
C) where C

is a diagonal block-wise matrix. In the second one, we take the Gram matrix C = X ′X to be a

tridiagonal matrix. In the third one, the Gram matrix has the form of C = Λ+ aξξ′ where Λ is a

diagonal matrix, a > 0, and ξ is a p×1 unit-norm vector. Intrinsically, the first two are covered in

the theoretic discussion in Section 2.3, but the last one goes beyond that. Below, we describe each

of these experiments in detail.

Experiment 1. In this experiment, we compare the performance of the lasso and marginal re-

gression with the noiseless linear model Y = Xβ. We generate the rows of X as iid samples from
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k = 2 k = 7

Method (a2, a3) c = 0.5 c = 0.7 c = 0.85 c = 0.5 c = 0.7 c = 0.85

MR (0,0) 0 0 0 3 3.8 4.6

Lasso (0, 0) 0 0 2 0 0 7

MR (-0.4, -0.1) 1 1 1 5.4 5.8 5.4

Lasso (-0.4, -0.1) 0 0 2 0.4 2 7

MR (0.4, 0.1) 1 1.2 1.2 5.4 5.8 6

Lasso (0.4, 0.1) 0 0 2 1.2 1.4 7.6

MR (-0.5, -0.4) 2 2 2 9.6 7.8 7.6

Lasso (-0.5, -0.4) 1 0 2 3.6 0.2 7

MR (0.5, 0.4) 2 2 2 9.4 7.4 7.8

Lasso (0.5, 0.4) 1 0 2 3.4 0 7

Table 2: Comparison of the lasso and marginal regression for different choices of (c,a2,a3). The

setting is described in Experiment 1b. Each cell displays the corresponding Hamming

error.

N(0,(1/n)C), where C is a diagonal block-wise correlation matrix having the form

C =




Csub 0 0 . . .0
0 Csub 0 . . .0

. . . . . .
0 0 0 . . .Csub


 .

Fixing a small integer m, we take Csub to be the m×m matrix as follows:

Csub =

(
D aT

a 1

)
,

where a is an (m− 1)× 1 vector and D is an (m− 1)× (m− 1) matrix to be introduced below.

Also, fixing another integer k ≥ 1, according to the block-wise structure of C, we let β be the vector

(without loss of generality, we assume p is divisible by m)

β = (δ1uT ,δ2uT , . . . ,δp/muT )T ,

where u = (vT ,0) for some (m−1)×1 vector v and δi = 0 for all but k different i, where δi = 1.

The goal of this experiment is to investigate how the theoretic results in Section 2.3 shed light

on models with more practical interests. To see the point, note that when k ≪ n, the signal vector β

is sparse, and we expect to see that

X ′Xβ ≈Cβ, (21)

where the right hand side corresponds to the idealized model where X ′X = C. In this idealized

model, if we restrict our attention to any block where the corresponding δi is 1, then we have

exactly the same model as in Example 1 of Section 2.3, with CSS = D and βS = v. As a result, the

theoretic results discussed in Section 2.3 apply, at least when the approximation error in Equation

(21) is negligible. Experiment 1 contains two sub-experiments, Experiment 1a and 1b.
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Figure 5: Critical values of exact recovery for the lasso (dashed) and marginal regression (solid).

See Experiment 2 for the setting and the definition of critical value. For any given set of

parameters (ϑ,a,d), the method with a smaller critical value has the better performance

in terms of Hamming errors.

In Experiment 1a, we take (p,n,m) = (999,900,3). At the same time, for some numbers a1 and

a2, we set a, v, and D by

a = (a1,a2)
T , v = (2,1)T , D =

(
1 −.75

−.75 1

)
.

We investigate the experiment with two different values of k (k = 4 and k = 10) and five different

choices of (a1,a2): (0,0),±(−0.85,0.85), and ±(−0.4,0.8). When k = 4, we let δi = 1 if and only

if i ∈ {40,208,224,302}, and when k = 10, we let δi = 1 if and only if i ∈ {20,47,83,86,119,123,
141,250,252,281} (such indices are generated randomly; also, note that i are the indices for the

blocks, not the indices for the signals).
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Consider for a second the idealized case where X ′X =C (i.e., n is very large). If we restrict our

attention to any block of β where the corresponding δi is 1, the setting reduces to that of Example

1 of Section 2.3. In fact, in Figure 1, our first choice of (a1,a2) falls inside both the parallelogram

and hexagon, our next two choices fall inside the hexagon but outside the parallelogram, and our

last two choices fall outside the hexagon but inside the parallelogram. Therefore, at least when k

is sufficiently small (so that the setting can be well-approximated by that in the idealized case), we

expect to see that the lasso outperforms marginal regression with the second and the third choices,

and expect to see the other way around with the last two choices of (a1,a2). In the first choice, both

methods are expected to perform well.

We now investigate how well these expectations are met. For each combination of these parame-

ters, we generate data and compare the Hamming errors of the lasso and marginal regression, where

for each method, the tuning parameters are set ideally. The ‘ideal’ tuning parameter is obtained

through rigorous search from a range. The error rates over 10 repetitions are tabulated in Table 1.

More repetitions is unnecessary, partially because the standard deviations of the simulation results

are small, and partially because the program is slow (for that we need to choose the ‘ideal’ tuning

parameter through rigorous search. Take the lasso for example. For rigorous search of the ‘ideal’

tuning parameter, we need to run the glmnet R package many times).

The results suggest that the performances of each method are reasonably close to what are ex-

pected for the idealized model, especially in the case of k = 4. Take the cases (a1,a2) =
±(0.85,−0.85) for example. The lasso yields exact recovery, while marginal regression, in each of

the four blocks where the corresponding δi is 1, recovers correctly the stronger signal and mistak-

enly kills the weaker one. The situation is reversed in the cases where (a1,a2) =±(0.4,−0.8). The

discussion for the case of k = 10 is similar, but the approximation error in Equation (21) starts to

kick in.

In Experiment 1b, we take (p,n,m) = (900,1000,4). Also, for some numbers c, a2, and a3, we

set a, v, and D as

aT = (0,a2,a3)
T , v = (1,1,1)T , D =




1 −1/2 c

−1/2 1 0

c 0 1


 .

The primary goal of this experiment is to investigate how different choices of c affect the perfor-

mance of the lasso and marginal regression. To see the point, note that in the idealized situation

where X ′X = C, the model reduces to the one discussed in Figure 3, if we restrict our attention

to any block of β where δi = 1. The theoretic results in Example 4 of Section 2.3 predict that,

the performance of the lasso gets increasingly unsatisfactory as c increases, while that of marginal

regression stay more or less the same. At the same time, which of this method performs better

depends on (a2,a3,c), see Figure 3 for details.

We select two different k for experiment: k = 2 and k = 7. When k = 2, we let δi = 1 if and only

if i ∈ {60,139}, and when k = 7, we let δi = 1 if and only if i ∈ {34,44,58,91,100,183,229}. Also,

we investigate five different choices of (a2,a3): (0,0), (0,0),∓(0.4,0.1), and ∓(0.5,0.4), and three

different c: c = 0.5,0.7, and 0.85. For each combination of these parameters, we apply both the

lasso and marginal regression and obtain the Hamming errors of both methods, where similarly, the

tuning parameters for each method are set ideally. The error rates over 10 repetitions are tabulated

in Table 2. The results suggest that different choices of c have a major role over the lasso, but does
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not have a big influence over marginal regression. The results fit well with the theory illustrated in

Section 2.3; see Figure 3 for comparisons.

Experiment 2. In this experiment, we use the linear regression model Y = Xβ+ z where z ∼
N(0, In). We use a different criterion rather than the Hamming errors to compare two methods: with

the same parameter settings, the method that yields exact recovery in a larger range of parameters

is better. Towards this end, we take p = n = 500, and X = Ω1/2, where Ω is the p× p tridiagonal

matrix satisfying

Ω(i, j) = 1{i = j}+a ·1{|i− j|= 1},

and the parameter a ∈ (−1/2,1/2) so the matrix is positive definite. At the same time, we generate

β as follows. Let ϑ range between 0.25 and 0.75 with an increment of 0.25. For each ϑ, let s

be the smallest even number ≥ p1−ϑ. We then randomly pick s/2 indices i1 < i2 < .. . < is/2.

For parameters r > 0 and d ∈ (−1,1) to be determined, we let τ =
√

2r log p and let β j = τ if

j ∈ {i1, i2, . . . , is/2}, β j = dτ if j−1 ∈ {i1, i2, . . . , is/2}, and β j = 0 otherwise.

To gain insight on how two procedures perform in this setting, we consider the noiseless counter-

part for just a second. Without loss of generality, we assume that the minimum inter-distance of in-

dice i1, i2, . . . , ik ≥ 4. Let Ỹ = X ′Y . For any ik, 1≤ k ≤ s/2, if we restrict Ỹ to {ik−1, ik, ik+1, ik+2}
and call the resulting vector y, then

y = Aα,

where A is the 4 matrix satisfying A(i, j) = 1{i = j}+ a · 1{|i− j| = 1}, 1 ≤ i, j ≤ 4, and α is the

4×1 vector such that α1 = α4 = 0, α2 = τ, and α3 = dτ. In this simple model, the performance of

the lasso and marginal regression can be similarly analyzed as in Section 2.3.

Now, for each of the combination of (d,ϑ), we use the method of exhausting search to determine

the smallest r such that the lasso or marginal regression yields exact recovery with 50 repetition of

simulations, respectively (similarly, the tuning parameters of each method are set ideally). For each

method, we call the resultant value of r the critical value for exact recovery. For each ϑ and choices

of (a,d), we find the critical values for both methods. The results are summarized in Figure 5. For

a given triplet (ϑ,a,d), the method that gives a larger critical value is inferior to the one with a

smaller critical value (as the region of parameters where it yields exact recovery is smaller). Figure

5 suggests that the parameters (a,d) play an important role in determining the performance of the

lasso and marginal regression. For example, the performance of both procedures worsen when a

get larger. This is because that as a increases, the Gram matrix moves away from that the identity

matrix, and the problem of variable selection becomes increasingly harder. Also, the sign of a · d

plays an interesting role. For example, when a · d < 0, it is known that the marginal regression

faces a so-called challenge of signal cancellation (see for example Wasserman and Roeder, 2009).

It seems that the lasso handles signal cancellation better than does marginal regression. However,

when (a,d) range, there is no clear winner between two methods.

Experiment 3. So far, we have focused on settings where the regression problem can be de-

composed into many parallel small-size regression problems. While how to decompose remains

unknown, such insight is valuable, as we can always compare the performance of two methods over

each of these small-size regression problems using the theory developed in Section 2.3; the overall

performance of each method is then the sum of that on these small-size problems.

With that being said, in this experiment, we investigate an example where such a “decompo-

sition” does not exist or at least is non-obvious. Consider an experiment where Y = Xβ+ z, and
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z ∼ N(0, In). We take p = n and X = Ω1/2, where Ω is a correlation matrix having the form

Ω = Λ+aξξ′.

which is a rank one perturbation of the diagonal matrix Λ. Here, ξ is the p× 1 vector where its

p/2 even coordinates are 1, and the remaining coordinates are b, where a > 0 and b are parameters

calibrating the norm and direction of the rank one perturbation, respectively. Experiment 3 contains

two sub-experiments, 3a and 3b.

In Experiment 3a, we investigate how the choices of parameters (a,b) and the signal strength

affect the performance of the lasso and marginal regression. Let p = n = 3000, and let βi = τ when

i ∈ {k : k = 8×(ℓ−1)+1,1≤ ℓ≤ 150} and βi = 0 otherwise, where τ calibrates the signal strength.

For each of the four choices (a,b) = (0.01,0.3),(0.01,0.5),(0,0.5),(0.5,−0.1), we compare the

lasso and marginal regression for τ = 2,3, . . . ,8. The Hamming errors are shown in Figure 6. The

results suggest that the parameters (a,b) play a key role in the performance of both the lasso and

marginal regression. For example, when a increases, the performance of both methods worsen, due

to that the Gram matrix moves away from the identity matrix. Also, for relatively small a, it seems

that marginal regression outperforms the lasso (see Panel 1 and 2 of Figure 6).

In Experiment 3b, we take a different angle and investigate how the levels of the signal sparsity

affect the performance of the lasso and marginal regression. Consider a special case where where

b = 1. In this case, ξ reduces to the vector of ones, and the Gram matrix is an equi-correlation

matrix. This setting can be found in many literature on variable selection. Take n = p = 500. We

generate the coordinates of β from the mixing distribution of point mass at 0 and the point mass at

τ:

βi
iid∼ (1− ε)ν0 + εντ,

where ε calibrates the sparsity level and τ calibrates the signal strength (in this experiment, we take

τ = 5). In Figure 7, we plot the Hamming errors of 10 repetition versus the number of variables

retained (which can be thought of different choices of tuning parameters). Interestingly, it seems that

the performance of two methods are strikingly similar, with relatively small differences (one way or

the other) when the parameters (a,ε) are moderate (neither too close to 0 nor to 1). This is interesting

as when ρ is moderate, the design matrix X is significantly non-orthogonal. Additionally, the results

suggest that the sparsity parameter ε has a major influence over the relative performance of two

methods. When ε get larger (so the signals get denser), marginal regression tends to outperform the

lasso. The underlying reason is that when both the correlation and signals are positive, the strength

of individual signals are amplified due to correlation, and so have a positive effect on marginal

regression.

At the same time, it seems that the correlation parameter a also have a major effect over the

performance of two methods, and the error rate of both methods increase as a increases. How-

ever, somewhat surprisingly, the parameter a does not seem to have a major effect on the relative

performance of two methods.

We conclude this section by mentioning that from time to time, one would like to know for the

data at hand, which method is preferable. Generally, this is a hard problem, and generally, there is

no clear winner between the lasso and marginal regression. However, there are something can be

learned from these simulation examples.

First, the study in this section suggest an interesting perspective, which can be explained as

follows. Suppose that the Gram matrix is sparse in the sense that each row has relatively few large
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Figure 6: Comparison of Hamming errors by the lasso (dashed) and marginal regression (solid).

The setting is described in Experiment 3a.

coordinates, and that the signal is also sparse. It turns out two types of sparsity interact with each

other, and the large-scale regression problem reduces to many small-size regression models, each of

which is obtained by restricting the rows of X ′Y to a small set of indices. In general, each of such

of small-size regression models can be discussed in a similar fashion as those in Section 2.3. The

results of these small-size regression problems then decide which of these two methods outperform

the other. Take Experiment 1 for example. The performance of each method is determined by that

of applying the method block-wise to the regression problem. This echos our previous argument in

Section 2.3, where the relative performance of two methods for small-size problems are discussed

in detail. Second, it seems that the lasso is comparably more vulnerable to extreme correlation, as

discussed in Section 2.3 as well as in Example 1b. Last, it seems that in at least some examples,

marginal regression is more vulnerable to the so-called “signal cancellation”, which is illustrated in

Proposition 3 as well as Example 2 in this section.
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Figure 7: Comparison of Hamming errors by the lasso (dashed) and marginal regression (solid).

The x-axis shows the number of retained variables. The setting is described in Experiment

3b.

6. Proofs

This section contains the technical proofs of all theorems and lemmas of the preceding sections.

6.1 Proof of Theorem 3

First, let ki denote the number of non-zero diagonal entries in row i of D. Because D is symmetric

but not diagonal, at least two rows must have non-zero ki. Assume without loss of generality that

the rows and columns of D are arranged so that the rows with non-zero ki form the initial minor. It

follows that the initial minor is itself a positive definite symmetric matrix. And because any such

matrix A satisfies |Ai j|< maxk Dkk for j 6= i, there exists a row i of D with ki > 0 and |Di j|< Dii for

any j 6= i.
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Define β as follows:

β j =





ρDii

Di j
if j 6= i and Di j 6= 0

ρ if j 6= i and Di j = 0

−kiρ if j = i..

Because |Di j| ≤ Dii, this satisfies |β j| ≥ ρ, so β ∈ M s
ρ . Moreover,

(Dβ)i = ∑
j

Di jβ j =−kiDiiρ+ ∑
j 6=i

Di j 6=0

ρDii

Di j

Di j = 0.

This proves the theorem.

6.2 Proof of Lemma 4

By the definition of Ŝn(s), it is sufficient to show that except for a probability that tends to 0,

max |XT
N Y |< min |XT

S Y |.

Since Y = Xβ+ z = XSβS + z, we have XT
N Y = XT

N (XSβS + z) = CNSβS + XT
N z. Note that xT

i z ∼
N(0,σ2

n). By Boolean algebra and elementary statistics,

P(max |XT
N z|> σn

√
2log p)≤ ∑

i∈N

P(|(xi,z)| ≥ σn

√
2log p)≤ C√

log p

p− s

p
.

It follows that except for a probability of o(1),

max |XT
N Y | ≤ max |CNSβS|+max |XT

N z| ≤ max |CNSβS|+σn

√
2log p.

Similarly, except for a probability of o(1),

min |XT
S Y | ≥ min |CSSβS|−max |XT

S z| ≥ min |CSSβS|−σn

√
2log p.

Combining these gives the claim. �

6.3 Proof of Theorem 5

Once the first claim is proved, the second claim follows from Lemma 4. So we only show the first

claim. Write for short Ŝn(s) = Ŝn(s
(n);X (n),Y (n), p(n)), s = s(n), and S = S(β(n)). All we need to

show is

lim
n→∞

P(ŝn 6= s) = 0.

Introduce the event

Dn = {Ŝn(s) = S}.
It follows from Lemma 4 that

P(Dc
n)→ 0.

Write

P(ŝn 6= s)≤ P(Dn)P(ŝn 6= s|Dn)+P(Dc
n).
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It is sufficient to show limn→∞ P(ŝn 6= s|Dn) = 0, or equivalently,

lim
n→∞

P(ŝn > s|Dn) = 0 and lim
n→∞

P(ŝn < s|Dn) = 0. (22)

Consider the first claim of (22). Write for short tn = σn

√
2logn. Note that the event {ŝn > s|Dn}

is contained in the event of ∪p−1
k=s {δ̂n(k)≥ tn|Dn}. Recalling P(Dc

n) = o(1),

P(ŝn > s)≤
p−1

∑
k=s

(δ̂(k)≥ tn|Dn).
p−1

∑
k=s

P(δ̂n(k)≥ tn), (23)

where we say two positive sequences an . bn if limn→∞(an/bn)≤ 1.

Fix s ≤ k ≤ p− 1. By definitions, Ĥ(k+ 1)− Ĥ(k) is the projection matrix from Rn to V̂n(k+
1)∩ V̂n(k)

⊥. So conditional on the event {V̂n(k+ 1) = V̂n(k)}, δn(k) = 0, and conditional on the

event {V̂n(k+1)( V̂n(k)}, δ2
n(k)∼ σ2

nχ2(1). Note that P(χ2(1)≥ 2logn) = o(1/n). It follows that

p−1

∑
k=s

P(δ̂n(k)≥ tn) =
p−1

∑
k=s

P(δ̂n(k)≥ tn|V̂n(k)( V̂n(k+1))P(V̂n(k)( V̂n(k+1))

= o(
1

n
)

p−1

∑
k=s

P(V̂n(k)( V̂n(k+1)). (24)

Moreover,

p−1

∑
k=s

P(V̂n(k)( V̂n(k+1)) =
p−1

∑
k=s

E[1(dim(V̂n(k+1))> dim(V̂n(k)))]

= E[
p−1

∑
k=s

1(dim(V̂n(k+1))> dim(V̂n(k)))].

Note that for any realization of the sequences V̂n(1), . . . ,V̂n(p), ∑
p−1
k=s 1(dim(V̂n(k+1))> dim(V̂n(k)))

≤ n. It follows that
p−1

∑
k=s

P(V̂n(k)( V̂n(k+1))≤ n. (25)

Combining (23)-(25) gives the claim.

Consider the second claim of (22). By the definition of ŝn, the event {ŝn < s|Dn)} is contained in

the event {δ̂n(s−1)< tn|Dn}. By definitions, δ̂n(s−1) = ‖(Ĥ(s)− Ĥ(s−1))Y‖, where ‖·‖= ‖·‖2

denotes the ℓ2 norm. So all we need to show is

lim
n→∞

P(‖(Ĥ(s)− Ĥ(s−1))Y‖< tn|Dn) = 0. (26)

Fix 1 ≤ k ≤ p. Recall that ik denotes the index at which the rank of |(Y,xik)| among all

|(Y,x j)| is k. Denote X̃(k) by the n by k matrix [xi1 ,xi2 , . . . ,xik ], and denote β̃(k) by the k-vector

(βi1 ,βi2 , . . . ,βik)
T . Conditional on the event Dn, Ŝn(s) = S, and βi1 ,βi2 , . . . ,βis are all the nonzero

coordinates of β. So according to our notations,

Xβ = X̃(s)β̃(s) = X̃(s−1)β̃(s−1)+βisxis (27)
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Now, first, note that Ĥ(s)X̃(s) = X̃(s) and Ĥ(s−1)X̃(s−1) = X̃(s−1). Combine this with (27). It

follows from direct calculations that

(Ĥ(s)− Ĥ(s−1))Xβ = (I − Ĥ(s−1))xis . (28)

Second, since xis ∈ V̂n(s), (I − Ĥ(s))xis = 0. So

(I − Ĥs−1)xis = (I − Ĥ(s))xis +(Ĥ(s)− Ĥ(s−1))xis = (Ĥs − Ĥs−1)xis . (29)

Last, split xis into two terms, xis = x
(1)
is

+x
(2)
is

such that x
(1)
is

∈ V̂n(s−1) and x
(2)
is

∈ V̂n(s)∩(V̂n(s−1))⊥.

It follows that (Ĥ(s)− Ĥ(s−1))x
(1)
is

= 0, and so

(Ĥ(s)− Ĥ(s−1))xis = (Ĥ(s)− Ĥ(s−1))x
(2)
is
. (30)

Combining (28)-(30) gives

(Ĥ(s)− Ĥ(s−1))Xβ = (Ĥ(s)− Ĥ(s−1))x
(2)
is
.

Recall that Y = Xβ+ z, it follows that

(Ĥs − Ĥs−1)Y = (Ĥ(s)− Ĥ(s−1))(βisx
(2)
is

+ z). (31)

Now, take an orthonormal basis of Rn, say q̂1, q̂2, . . . , q̂n, such that q̂1 ∈ V̂n(s)∩ V̂n(s − 1)⊥,

q̂2, . . . , q̂s ∈ V̂n(s−1), and q̂s+1, . . . , q̂n ∈ V̂n(s)
⊥. Recall that x

(2)
is

is contained in the one dimensional

linear space V̂n(s)∩V̂n(s−1)⊥, so without loss of generality, assume (x
(2)
is
, q̂1) = ‖x

(2)
is
‖. Denote the

square matrix [q̂1, . . . , q̂n] by Q̂. Let z̃= Q̂z and let z̃1 be the first coordinate of z̃. Note that marginally

z̃1 ∼ N(0,σ2
n). Over the event Dn, it follows from the construction of Q̂ and basic algebra that

‖(Ĥ(s)− Ĥ(s−1))(βisx
(2)
is

+ z)‖2 = (‖βisx
(2)
is
‖+ z̃1)

2. (32)

Combine (31) and (32),

‖(Ĥ(s)− Ĥ(s−1))Y‖2 = (‖βisx
(2)
is
‖+ z̃1)

2, over the event Dn.

As a result,

P(‖(Ĥ(s)− Ĥ(s−1))Y‖< tn|Dn) = P((‖βisx
(2)
is
‖+ z̃1)

2 < tn|Dn). (33)

Recall that conditional on the event Dn, Ŝn(s) = S. So by the definition of ∆∗
n = ∆n(β,X , p),

‖βisx
(2)
is
‖ ≥ ∆∗

n,

and

P((‖βisx
(2)
is
‖+ z̃1)

2 < tn|Dn)≤ P(‖βisx
(2)
is
‖+ z̃1 < tn|Dn)≤ P(∆∗

n + z̃1 < tn|Dn). (34)

Recalling that z̃1 ∼ N(0,σ2
n) and that P(Dc

n) = o(1),

P(∆∗
n + z̃1 < tn|Dn)≤ P(∆∗

n + z̃1 < tn)+o(1). (35)

Note that by the assumption of (∆∗
n

σn
−tn)→∞, P(∆∗

n+ z̃1 < tn) = o(1). Combining this with (34)-(35)

gives

P((‖βisx
(2)
is
‖+ z̃1)

2 < t2
n |Dn) = o(1). (36)

Inserting (36) into (33) gives (26). �
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6.4 Proof of Lemma 6

For 1 ≤ i ≤ p, introduce the random variable

Zi =
p

∑
j 6=i

β j(xi,x j).

When Bi = 0, βi = 0, and so Zi = ∑
p
j=1 β j(xi,x j). By the definition of CNS,

max |CNSβS|= max
1≤i≤p

{(1−Bi) · |
p

∑
j=1

β j(xi,x j)|}= max
1≤i≤p

{(1−Bi)|Zi|}.

Also, recalling that the columns of matrix X are normalized such that (xi,xi) = 1, the diagonal

coordinates of (CSS − I) are 0. Therefore,

max |(CSS − I)βS|= max
1≤i≤p

{Bi · |∑
j 6=i

β j(xi,x j)|}= max
1≤i≤p

{Bi · |Zi|}.

Note that Zi and Bi are independent and that P(Bi = 0) = (1− ε). It follows that

P(max |CNSβS| ≥ δ)≤
p

∑
i=1

P(Bi = 0)P(|Zi| ≥ δ|Bi = 0) = (1− ε)
p

∑
i=1

P(|Zi| ≥ δ),

and

P(max |(CSS − I)βS| ≥ δ)≤
p

∑
i=1

P(Bi = 1)P(|Zi| ≥ δ|Bi = 1) = ε
p

∑
i=1

P(|Zi| ≥ δ).

Compare these with the lemma. It is sufficient to show

P(|Zi| ≥ δ)≤ e−δt [eεḡi(t)+ eεḡi(−t)]. (37)

Now, by the definition of gi j(t), the moment generating function of Zi satisfies that

E[etZi ] = E[et ∑ j 6=i β j(xi,x j)] = Π j 6=i[1+ εgi j(t)].

Since 1+ x ≤ ex for all x, 1+ εgi j(t)≤ eεgi j(t), so by the definition of ḡi(t),

E[etZi ]≤ Π j 6=ie
εgi j(t) = eεḡi(t).

It follows from Chebyshev’s inequality that

P(Zi ≥ δ)≤ e−δtE[etZi ]≤ e−δteεḡi(t). (38)

Similarly,

P(Zi <−δ)≤ e−δteεḡi(−t) (39)

Inserting (38)-(39) into (37) gives the claim. �
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6.5 Proof of Corollary 3.1

Choose a constant q such that q/2 − c2q > 1 and let tn = q log(p)/an. By the definition of

An(an/2,εn, ḡ), it is sufficient to show that for all 1 ≤ i ≤ p,

e−antn/2eεnḡi(tn) = o(1/p), e−antn/2eεnḡi(−tn) = o(1/p).

The proofs are similar, so we only show the first one. Let u be a random variable such that u ∼ πn.

Recall that the support of |u| is contained in [an,bn]. By the assumptions and the choice of tn, for all

fixed i and j 6= i, |tnu(xi,x j)| ≤ q log(p)(bn/an)|(xi,x j)| ≤ c1q. Since ex −1 ≤ x+exx2/2, it follows

from Taylor expansion that

εnḡi(tn) = εn[e
tnu(xi,x j)−1]≤ εn ∑

j 6=i

Eπn
[tnu(xi,x j)+

ec1q

2
t2
n u2(xi,x j)

2].

By definitions of mn(X) and v2
n(X), εn ∑ j 6=i Eπ[tnu(xi,x j)] = tnµ

(1)
n mn(X), and

εn ∑ j 6=i Eπn
[t2

n u2(xi,x j)
2] = t2

n µ
(2)
n v2

n(X). It follows from (12) that

εnḡi(tn)≤ q log(p) · [µ
(1)
n

an

mn(X)+
ec1q

2

µ
(2)
n

a2
n

v2
n(X)q log(p)]. qc2 log(p).

Therefore,

e−antn/2eεnḡi(tn) ≤ e−[q/2−c2q+o(1)] log(p),

and claim follows by the choice of q. �

6.6 Proof of Corollary 3.2

Choose a constant q such that 2 < q < c3

c4δ . Let tn = anq log(p), and u be a random variable such

that u ∼ Πn. Similar to the proof of Lemma 3.1, we only show that

e−antn/2eεnḡi(tn) = o(1/p), for all 1 ≤ i ≤ p.

Fix i 6= j. When (xi,x j) = 0, etu(xi,x j)−1= 0. When (xi,x j) 6= 0, etnu(xi,x j)−1≤ etn(bn/an)δ ≤ ec4qδ log p.

Also, εnN∗
n ≤ e−[c3+o(1)] log(p). Therefore,

εnḡi(t)≤ εnN∗
n ec4qδ log(p) ≤ e−[c3−c4qδ+o(1)] log p.

By the choice of q, c3 − c4qδ > 0, so εnḡi(t) = o(1). It follows that

e−antn/2eεnḡi(tn) ≤ o(e−antn/2) = o(e−q log(p)/2),

which gives the claim by q > 2. �

6.7 Proof of Theorem 9

Write

X = [x1, X̃ ], β = (β1, β̃)
T .

Fix a constant c0 > 3. Introduce the event

Dn(c0) = {1T
S X̃T

S X̃S1S ≤ |S|[1+
√

|S|
n
(1+

√
2c0 log p)]2, for all S}.

The following lemma is proved in Section 6.7.1.
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Lemma 12 Fix c0 > 3. As p → ∞,

P(Dc
n(c0)) = o(1/p2).

Since dn(β̂|X) ≤ p for any variable selection procedure β̂, Lemma 12 implies that the overall con-

tribution of Dc
n to the Hamming distance d∗

n(β̂) is o(1/p). In addition, write

dn(β̂|X) =
p

∑
j=1

E[1(β̂ j 6= β j)].

By symmetry, it is sufficient to show that for any realization of (X ,β) ∈ Dn(c0),

E[1(β̂ j 6= β j)]≥
{

L(n)p−
(ϑ+r)2

4r , r ≥ ϑ,
p−ϑ, 0 < r < ϑ,

(40)

where L(n) is a multi-log term that does not depend on (X ,β).
We now show (40). Toward this end, we relate the estimation problem to the problem of testing

the null hypothesis of β1 = 0 versus the alternative hypothesis of β1 6= 0. Denote φ by the density

of N(0,1). Recall that X = [x1, X̃ ] and β = (β1, β̃)
T . The joint density associated with the null

hypothesis is

f0(y) = f0(y;εn,τn,n|X)φ(y− X̃ β̃)dβ̃ = φ(y)
∫

eyT X̃ β̃−|X̃ β̃|2/2dβ̃,

and the joint density associated with the alternative hypothesis is

f1(y) = f1(y;εn,τn,n|X) =
∫

φ(y− τnx1 − X̃ β̃)dβ̃

= φ(y− τnx1)
∫

eyT X̃ β̃−|X̃ β̃|2/2e−τnxT
1 X̃ β̃dβ̃.

Since the prior probability that the null hypothesis is true is (1−εn), the optimal test is the Neyman-

Pearson test that rejects the null if and only if

f1(y)

f0(y)
≥ (1− εn)

εn

.

The optimal testing error is equal to

1−‖(1− εn) f0 − εn f1‖1.

Compared to (2), ‖·‖1 stands for the L1-distance between two functions, not the ℓ1 norm of a vector.

We need to modify f1 into a more tractable form, but with negligible difference in L1-distance.

Toward this end, let Nn(β̃) be the number of nonzeros coordinates of β̃. Introduce the event

Bn = {|Nn(β̃)− pεn| ≤
1

2
pεn}.

Let

an(y) = an(y;εn,τn|X) =

∫
(eyT X̃ β̃−|X̃ β̃|2/2)(e−τnxT

1 X̃ β̃) ·1{B}dβ̃∫
(e−yT X̃ β̃−|X̃ β̃|2/2) ·1{B}dβ̃

. (41)
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Note that the only difference between the numerator and the denominator is the term e−τnxT
1 X̃ β̃ which

≈ 1 with high probability. Introduce

f̃1(y) = an(y)φ(y− τnx1)
∫

eyT X̃ β̃−|X̃ β̃|2/2dβ̃.

The following lemma is proved in Section 6.7.2.

Lemma 13 As p→∞, there is a generic constant c> 0 that does not depend on y such that |an(y)−
1| ≤ c log(p)p(1−ϑ)−θ/2 and ‖ f1 − f̃1‖1 = o(1/p).

We now ready to show the claim. Define Ωn = {y : an(y)φ(y− τnx1) ≥ φ(y)}. Note that by the

definitions of f0(y) and f̃1(y), y ∈ Ωn if and only if

εn f̃1(y)

(1− εn) f0(y)
≥ 1.

By Lemma 13,

|
∫

f̃1(y)dy−1| ≤ ‖ f̃1 − f1‖1 ≤ o(1/p).

It follows from elementary calculus that

1−‖(1− εn) f0 − εn f̃1‖1 =
∫

Ωn

(1− εn) f0(y)dy+
∫

Ωc
n

εn f̃1(y)dy+o(1/p).

Using Lemma 13 again, we can replace f̃1 by f1 on the right hand side, so

1−‖(1− εn) f0 − εn f̃1‖1 =
∫

Ωn

(1− εn) f0(y)dy+
∫

Ωc
n

εn f1(y)dy+o(1/p).

At the same time, let δp = c log(p)p(1−ϑ)−θ/2 be as in Lemma 13, and let

t0 = t0(ϑ,r) =
ϑ+ r

2
√

r

√
2log p.

be the unique solution of the equation φ(t) = εnφ(t − τn). It follows from Lemma 13 that,

{τnxT y ≥ t0(1+δp)} ⊂ Ωn ⊂ {τnxT
1 y ≥ t0(1−δp)}.

As a result, ∫
Ωn

f0(y)dy ≥
∫

τnxT
1 y≥t0(1+δp)

f0(y)≡ P0(τnxT
1 Y ≥ t0(1+δp)),

and ∫
Ωc

n

f1(y)dy ≥
∫

τnxT
1 y≤t0(1−δp)

f1(y)≡ P1(τnxT
1 Y ≤ t0(1−δp)).

Note that under the null, xT
1 Y = xT

1 X̃ β̃+ xT
1 z. It is seen that given x1, xT

1 z ∼ N(0, |x1|2), and |x1|2 =
1+O(1/

√
n). Also, it is seen that except for a probability of o(1/p), xT

1 X̃ β̃ is algebraically small.

It follows that

P0(τnxT
1 Y ≥ t0(1+δp)). Φ̄(t0) = L(n)p−

(ϑ+r)2

4r ,
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where Φ̄ = 1−Φ is the survival function of N(0,1). Similarly, under the alternative,

xT
1 y = τn(x1,x1)+ xT

1 X̃ β̃+ xT
1 z,

where (x1,x1) = 1+O(1/
√

n). So

εnP1(τnxT
1 y ≤ t0(1−δp)). Φ(t0 − τn) =

{
L(n)p−

(ϑ+r)2

4r , r ≥ ϑ,
L(n)p−ϑ, 0 < r < ϑ,

Combine these gives the theorem. �

6.7.1 PROOF OF LEMMA 12

It is seen that

P(Dc
n(c0))≤

p

∑
k=1

P

(
1T

S XT X1S ≥ k[1+

√
k

n
(1+

√
2c0 log p)]2, for all S with |S|= k

)
.

Fix k ≥ 1. There are
(

p
k

)
different S with |S| = k. It follows from Vershynin (2010, Lecture 9) that

except a probability of 2exp(−c0 log(p) · k) that the largest eigenvalue of XT
S XS is no greater than

[1+
√

k
n
(1+

√
2c0 log p)]2. So for any S with |S|= k, it follows from basic algebra that

P(1T
S XT X1S ≥ k[1+

√
k

n
(1+

√
2c0 log p)]2)≤ 2exp(−c0 log(p) · k).

Combining these with
(

p
k

)
≤ pk gives

P(Dc
n(c0))≤ 2

p

∑
k=1

(
p

k

)
exp(−c0(log p)k)≤ 2

p

∑
k=1

exp(−(c0 −1) log(p)k).

The claim follows by c0 > 3. �

6.7.2 PROOF OF LEMMA 13

First, we claim that for any X in event Dn(c0),

|xT
1 X̃ β̃| ≤ c log(p)(N(β̃)/

√
n), (42)

where c > 0 is a generic constant. Suppose Nn(β̃) = k and the nonzero coordinates of β̃ are

i1, i2, . . . , ik. Denote the (k + 1)× (k + 1) submatrix of XT X containing the 1st , (1+ i1)-th, . . .,
and (1+ ik)-th rows and columns by Uk+1. Let ξ1 be the (k+1)-vector with 1 on the first coordinate

and 0 elsewhere, let ξ2 be the (k+1)-vector with 0 on the first coordinate and 1 elsewhere. Then

xT
1 X̃ β̃ = τnξT

1 Uk+1ξ2 ≡ τnξT
1 (Uk+1 − Ik+1)ξ2.

Let (Uk+1 − Ik+1) = Qk+1Λk+1QT
k+1 be the orthogonal decomposition. By the definition of Dn(c0),

all eigenvalues of (Uk+1 − Ik+1) are no greater than (1+
√

c log(p)k/n)2 − 1 ≤ √
c log p

√
k/n in

absolute value. As a result, all diagonal coordinates of Λk+1 are no greater than

√
c log p

√
k/n
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in absolute value, and

‖ξT
1 (Uk+1 − Ik+1)ξ2‖ ≤ ‖ξT

1 Qk+1Λk+1‖ · ‖Qk+1ξ2‖ ≤
√

c log p
√

k/n‖ξT
1 Qk+1‖ · ‖Qk+1ξ2‖.

The claim follows from ‖ξT
1 Qk+1‖= 1 and ‖Qk+1ξ2‖=

√
k.

We now show the lemma. Consider the first claim. Consider a realization of X in the event

Dn(c0) and a realization of β̃ in the event Bn. By the definitions of Bn, Nn(β̃)≤ pεn +
1
2

pεn. Recall

that pεn = p1−ϑ, n = pθ. It follows that log(p)N(β̃)/
√

n ≤ c log(p)pεn/
√

n = c log(p)p1−ϑ−θ/2.

Note that by the assumption of (1−ϑ)< θ/2, the exponent is negative. Combine this with (42),

|e−τnxT
1 X̃ β̃ −1| ≤ c log(p)(N(β̃)/

√
n), (43)

Now, note that in the definition of an(y) (i.e., (41)), the only difference between the integrand on the

top and that on the bottom is the term e−τnxT
1 X̃ β̃. Combine this with (43) gives the claim.

Consider the second claim. By the definitions of f̃1(y) and an(y),

f̃1(y) = an(y)φ(y− τnx1) ·
[∫

[eyT X̃ β̃−|X̃ β̃|2/21Bn
]dβ̃+

∫
[eyT X̃ β̃−|X̃ β̃|2/21Bc

n
]dβ̃

]

= φ(y− τnx1) ·
[∫

[eyT X̃ β̃−|X̃ β̃|2/2e−τnxT
1 X̃ β̃1Bc

n
]dβ̃+an(y)

∫
[eyT X̃ β̃−|X̃ β̃|2/21Bc

n
]dβ̃

]
.

By the definition of f1(y),

f1(y) = φ(y− τnx1) ·
[∫

[eyT X̃ β̃−|X̃ β̃|2/2e−τnxT
1 X̃ β̃1Bn

]dβ̃+
∫
[eyT X̃ β̃−|X̃ β̃|2/2e−τnxT

1 X̃ β̃1Bc
n
]dβ̃

]
.

Compare two equalities and recall that an(y)∼ 1 (Lemma 12),

‖ f1 − f̃1‖1 .

∫
φ(y− τnx1)[

∫
(eyT X̃ β̃−|X̃ β̃|2/2 + eyT X̃ β̃−|X̃ β̃|2/2e−τnxT

1 X̃ β̃)1Bc
n
dβ̃]dy

=
∫ ∫

φ(y− τnx1 − X̃ β̃)[eτnxT
1 X̃ β̃ +1]1Bc

n
dβ̃dy. (44)

Integrating over y, the last term is equal to
∫
[1+ eτnxT

1 X̃ β̃] ·1Bc
n
dβ̃.

At the same time, by (42) and the definition of Bc
n,

∫
[1+ eτnxT

1 X̃ β̃] ·1Bc
n
dβ̃ ≤ ∑

{k:|k−pεn|≥ 1
2

pεn}
[1+ ec log(p)k/

√
n]P(N(β̃) = k). (45)

Recall that pεn = p1−ϑ, n = pθ, and (1−ϑ) < θ/2. Using Bennett’s inequality for P(N(β̃) = k)
(e.g., Shorack and Wellner, 1986, Page 440), it follows from elementary calculus that

∑
{k:|k−pεn|≥ 1

2
pεn}

[1+ ec log(p)k/
√

n]P(N(β̃) = k) = o(1/p). (46)

Combining (44)–(46) gives the claim. �
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