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Abstract

We find the minimax rate of convergence in Hausdorff distaloceestimating a manifold of
dimensiond embedded iRP given a noisy sample from the manifold. Under certain cooul,
we show that the optimal rate of convergenceig/(2+9). Thus, the minimax rate depends only
on the dimension of the manifold, not on the dimension of fiece in whichM is embedded.
Keywords: manifold learning, minimax estimation

1. Introduction

We consider the problem of estimating a manifdgiven noisy observations near the manifold.
The observed data are a random sanYple. ., Y, whereY; € RP. The model for the data is

Yi=&+Z

wheregy,...,&, are unobserved variables drawn from a distribution supported on a gtthif
with dimensiond < D. The noise variableZ,,...,Z, are drawn from a distributiof. Our main
assumption is tha is a compactgd-dimensional, smooth Riemannian submanifoldRif; the
precise conditions ol are given in Section 2.1.

A manifold M and a distribution fof&, Z) induce a distributiorQ = Qu for Y. In Section 2.2,
we define a class of such distributions

Q:{QM: MeM}
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whered is a set of manifolds. Given two seAsandB, the Hausdorff distance betweérandB is
H(AB) = inf{s: ACB&e and BCA@:»:}

where
Ade=JBp(xe)

XeA

andBp(x, ) is an open ball irRP centered ax with radiuse. We are interested in the minimax risk

Rn(Q) = inf supEq[H (M, M)]
M QeqQ

where the infimum is over all estimatdv By an estimatoM we mean a measurable function of
Y1,..., Yy taking values in the set of all manifolds. Our first main result is the following mirima
lower bound which is proved in Section 3.

Theorem 1 Under assumptions (A1)-(A4) given in Section 2, there is a constant@such that,
for all large n,

. _ 1\ 7
inf supEq [H(M,M)] >C <>
M QeqQ n

where the infimum is over all estimatdvk

Thus, no method of estimating can have an expected Hausdorff distance smaller than the
stated bound. Note that the rate dependd but not onD even though the support of the distribution
QforY has dimensio®. Our second result is the following upper bound which is proved in Section
4.2.

Theorem 2 Under assumptions (A1)-(A4) given in Section 2, there exists an estiMatoch that,
for all large n,
Iogn) 2

supEq [H(I\W,M)} <C ( N

QeQ

for some G > 0.

Thus the rate is tight, up to logarithmic factors. The estimator in Theorem 2 is arfetieal
interest because it establishes that the lower bound is tight. But, the estimattructed in the
proof of that theorem is not practical and so in Section 5, we construetyasimple estimatoM
such that

CIogn)l/D

SupEq [H(M,M)} < ( .

Qe

This is slower than the minimax rate, but the estimator is computationally very simpleaquides
no knowledge ofl or the smoothness of.
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1.1 Related Work

There is a vast literature on manifold estimation. Much of the literature deals siity manifolds
for the purpose of dimension reduction. See, for example, Baraniuk\akeh (2007) and refer-
ences therein. We are interested instead in actually estimating the manifold itsefé i a large
literature on this problem in the field of computational geometry; see, for dearbpy (2006),
Dey and Goswami (2004), Chazal and Lieutier (2008) Cheng and ZB85] and Boissonnat and
Ghosh (2010). However, very few papers allow for noise in the stafisgécese, by which we mean
observations drawn randomly from a distribution. In the literature on cortipagd geometry, ob-
servations are called noisy if they depart from the underlying manifold iera specific way: the
observations have to be close to the manifold but not too close to eachTtigenotion of noise is
quite different from random sampling from a distribution. An exception isoiet al. (2008) who
constructed the following estimator. Let= {i: p(Yi) > A} wherep is a density estimator. They
defineM = Uicl Bo(Yi,€) and they show that ik ande are chosen properly, thew is homologous
to M. (This means thatl andM share certain topological properties.) However, the result does not
guarantee closeness in Hausdorff distance. Note §iatBp(V;,€) is precisely the Devroye-Wise
estimator for the support of a distribution (Devroye and Wise, 1980).

1.2 Notation

Given a setS we denote its boundary 35, We letBp(x,r) denote aD-dimensional open ball
centered ax with radiusr. If Ais a set and is a point then we writél(x, A) = infyca ||[Xx—Y|| where
[| - || is the Euclidean norm. Let

AoB=(ANB°) | J(A°’NB)

denote symmetric set difference between sedasndB.

The uniform measure on a manifol is denoted byy. Lebesgue measure @ is denoted
by vk. In case&k = D, we sometimes writ¥ instead ofup; in other word$/ (A) is simply the volume
of A. Any integral of the form/[ f is understood to be the integral with respect to Lebesgue measure
onRP. If P andQ are two probability measures &P with densitiesp andq then theHellinger
distancebetweerP andQ is

hP.Q =h(p.a) =/ [ (vP-va) =v@<1—/vﬁﬁ

where the integrals are with respecitg. Recall that

{1(p,9) <h(p,q) < v/41(p,0) (1)
wherel1(p,q) = [|p—q|. Let p(x) Aq(x) = min{p(x),q(X) }. Theaffinity betweerP andQ is

1
PAQI= [pra=1-3 [Ip-dl.

Let P" denote then-fold product measure based onindependent observations froR In the
appendix Section 7.1 we show that

1 1 2n
Pz (15 [1-a) - @
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Figure 1: The condition numbéM) of a manifold is the largest numbersuch that the normals
to the manifold do not cross as long as they are not extended beydrtte plot on the
left shows a one-dimensional manifold (a curve) and some normals of lergth The
plot on the right shows the same manifold and some normals of length

We writeX, = Op(a,) to mean that, for every > 0 there exist€ > 0 such thaP(||Xn||/an > C) <&
for all largen. Throughout, we use symbols lik& Cy,Cy,C,Cp,C;1 ... to denote generic positive
constants whose value may be different in different expressions.

2. Model Assumptions

In this section we describe all the assumptions on the manifold and on thedyimglelistributions.

2.1 Manifold Conditions

We shall be concerned witth-dimensional compact Riemannian submanifolds without boundary
embedded ifRP with d < D. (Informally, this means tha#l looks likeR® in a small neighborhood
around any point itM.) We assume thal is contained in some compact skt RP.

At eachu € M let T;M denote the tangent spaceNband letT;"M be the normal space. We
can regardi,M as ad-dimensional hyperplane iR® and we can regardj;-M as theD — d dimen-
sional hyperplane perpendicularTgM. Define thefiber of size a at uo belL,(u) = La(u,M) =
T,"MNBp(u,a).

Let A(M) be the largest such that each point iM & r has a unique projection ontd. The
quantityA(M) will be small if eitherM highly curved or ifM is close to being self-intersecting. Let
M = M (k) denote alld-dimensional manifolds embedded 4G such thatA(M) > k. Throughout
this paperk is a fixed positive constant. The quantltyM) has been rediscovered many times. Itis
called thecondition numbeim Niyogi et al. (2006), thehicknessn Gonzalez and Maddocks (1999)
and thereachin Federer (1959).

An equivalent definition ofA(M) is the following: A(M) is the largest number such that the
fibersL;(u) never intersect. See Figure 1. Note thatlifs a sphere theA(M) is just the radius of
the sphere and i is a linear space thel(M) = «. Also, if 0 < A(M) thenM & o is the disjoint
union of its fibers:

Moo= Ls(u). (3)

ueM

Definetube(M,a) = Uyem La(u). Thus, ifo < A(M) thenM & 0 = tube(M, 0).
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Let p,q € M. The angle between two tangent spatgandT is defined to be

angle(Ty, To) = cos * (minmaxi(u—p.v—aj|)

where(u,V) is the usual inner product iRP. Letdy(p,q) denote the geodesic distance between
p,g € M.
We now summarize some useful results from Niyogi et al. (2006).

Lemma 3 Let M C X be a manifold and suppose thatM) =k > 0. Let pg € M.

1. Letybe a geodesic connecting p and g with unit speed parameterization. Téneuorthature
of yis bounded above bi/k.

cogangle(Tp, Tg)) > 1 —dw(p,q)/k. Thusangle(Tp, Tq) < v/2dw(p,q)/k+0(1/du(p,q)/K).
lfa=||p—q|| <k/2thendu(p,q) <K —K+/1—(2a)/K =a+o0(a).

Ifa=||p—qll <k/2then a> dw(p,q) - (dw(p,a))?/(2«).

5. If||g— p|| > € and ve Bp(g,e) N T;-M N Bp(p,k) then||v—p|| < &2/k.

A wN

6. Fix anyd > 0. There exists pointgx .., Xy € M such that Mc U?‘:l Bp(xj,d) and such that
N < (c/6)d.

For further information about manifolds, see Lee (2002).

2.2 Distributional Assumptions

The distribution ofY is induced by the distribution df andZ. We will assume thaf is drawn
uniformly on the manifold. Then we assume tla drawn uniformly on the normal thl. More
precisely, giverg, we drawZ uniformly onLs(§). In other words, the noise is perpendicular to the
manifold. The resultis that, i < K, then the distributiol® = Qu of Y has support equal td & o.

The distributional assumption dnis not critical. Any smooth density bounded away from 0 on
the manifold will lead to similar results. However, the assumption on the #dsseritical. We have
chosen the simplest noise distribution here. (Perpendicular noise is alsoedin Niyogi et al.,
2008.) In current work, we are deriving the rates for more complicatéserdistributions. The
rates are quite different and the proofs are more complex. Those refillie reported elsewhere.

The set of distributions we consider is as follows. keindo be fixed positive numbers such
that 0< o < K. Let

Q=Q(k,0)= {QM tMe M(K)}.

For anyM € M (k) consider the corresponding distributiQy, supported otgy = M @& 0. Let
gm be the density oQy with respect to Lebesgue measure. We now showgihids bounded above
and below by a uniform density.

Recall that the essential supremum and essential infimugy afre defined by

esssupv = inf{ae R: vp({y: gu(y) >a}NA) = O}
yeA
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and
essinfy = sup{ae R: vp({y: agm(y) <a}nA) = 0}-
YeA

Also recall that, by the Lebesgue density theoreg(y) = lime_o0Qm(Bp(Y,€))/V(Bp(y,€)) for
almost ally. LetUy be the uniform distribution oM & o and letuy = 1/V (M & o) be the density
of Uu. Note that, forA C M@ o, Uu(A) =V(A)/V(M& o).

Lemma 4 There exist constants< C, < C* < o, depending only or and d, such that

qu ) < sup esssu@% <C*.

C. < inf essin
Men YeSu UM(Y) ~ mear yesa Um(Y

Proof Choose anyM € M (k). Let x by any point in the interior o§y. Let B= Bp(X,€) where
€ > 0 is small enough so th&# C Sy = M@ 0. Lety be the projection ok onto M. We want to
upper and lower boun@(B)/V (B). Then we will take the limit as — 0. Consider the two spheres
of radiusk tangent taM aty in the direction of the line betweenandy. (See Figure 2.) Note that
Q(B) is maximized by takind/ to be equal to the upper sphere &@@) is minimized by takingu
to be equal to the lower sphere. Let us consider first the case Whirequal to the upper sphere.
Let

U= {uelvl : Lc(u)mB7A0}

be the projection oB ontoM. By simple geometry) = MNBp(y,re) where

-1
(1+3) == ()
K K

Let Vol denoted-dimensional volume oM. ThenVol(Bp(y,re) "M) < ¢ir9%%wy wherewy is
the volume of a unid-ball andc; depends only ok andd. To see this, note that becauske
is a manifold andA\(M) > K, it follows that neary, M may be locally parameterized as a smooth
function f = (fq,...,fp_q) overBNTyM. The surface area of the graph bfover BN TM is

bounded by [g, (yre)rrm /1 + 10 fi |2, which is bounded by a constant uniformly over 4.
Hence Vol (Bp(y,re) NM) < ¢;1Vol(Bp(y,re) N TyM) = cardedoy.

Let Ay be the uniform distribution oM and letl", denote the uniform measure bg(u). Note
that, foru € U, Ls(u) NBis a(D — d)-ball whose radius is at most Hence,

ru(Lg(U) N B) S O'DTQ)D_d

gD—dcoD_d _ <€)D—d
o .

Thus,

Qm(B) — /M Mu(BA Lo (U))dAwm (1) = /U Mu(B A Lo (U))dAwm (U)
(£>D7d/\(U) B (E)D*d Vol(Bp(y,r) M)

o Vol(M)
(s>D*d 9rdooqg _ (s>D*d ed(1+0/K)%wy

Vol(M) ~ \o Vol(M)

IN
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-
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Figure 2: Figure for proof of Lemma 4 is a point in the suppoitl & 0. y is the projection ok
ontoM. The two spheres are tangentMoaty and have radius.

Now, Uy (B) =V (B)/V(M @ o) = ePwp /(P9 Vol(M)). Hence,

Qu(B)
Um(B)

1 —

Taking limits ass — 0 we have thatjy (y) < C*um(y) for almost ally.

The proof of the lower bound is similar to the upper bound except for fh@rfing changes: let
Uo denote alu € U such that the radius &N Ly (u) is at lease/2. ThenA(Ug) > A(U)(1—0O(¢))
and the projection dfly ontoM is again of the fornBp(y,re) "M. By Lemma 5.3 of Niyogi et al.
(2006),

d/2
Vol(Bp(y,r) M) > (1_K> rdedany

and the latter is larger thanm %/2r9e%uy for all smalle. Also, y(Lg(u)NB) > (g/(20))P~¢ for all
u € Up. [ |

Of course, an immediate consequence of the above lemma is that, forMver§/ (k) and
every measurable s&t C. Uy (A) < Qu(A) <C*Um(A). We conclude this section by recording all
the assumptions in Theorems 1 and 2:

(A1) The manifoldM is d-dimensional and is contained in a compact&et RP with d < D.

(A2) The manifoldM satisfiesA(M) >k > 0.

(A3) The observed dat4, ..., Y, are iid observations withi = X; + &;. Here,&y,...,&, are drawn
uniformly onM. X; giveng; is drawn uniformly orLq(&;) = Tzil NBb(&,0).
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(A4) The noise leveb satisfies 0< 0 < K.

Remark: As noted by a referee, the assumptions are very specific and the resdipend criti-
cally on the assumptions especially the assumptiondiaknown.

Remark: A referee has pointed out that another reasonable model is to assuntieetlfjatave a
uniform distribution on the tube of size around the manifold. To the best of our knowledge, this
does not correspond to our model except in the special case Wlgre= «. However, all the
results of our paper still apply in this case as longask.

3. Minimax Lower Bound

In this section we derive a lower bound on the minimax rate of convergemdhi$ problem. We
will make use of the following result due to LeCam (1973). The followingsi@r is from Lemma
1 of Yu (1997).

Lemma 5 (Le Cam 1973)Let Q be a set of distributions. L&(Q) take values in a metric space
with metricp. Let @), Q1 € Q be any pair of distributions iQ. Let Yi,....Yn be drawn iid from
some Q= Q and denote the corresponding product measure hyl@t0(Y1, ..., Y,) be any estima-
tor. Then

SUPEgy P8+, 0).B(Q)]| = P(B(Q).B(Q1)) 1B Al

To get a useful bound from Le Cam’s lemma, we need to construct an@mdte pairQg and
Q. This is the topic of the next subsection.

3.1 A Geometric Construction

In this section, we construct a pair of manifolsliy, My € M (k) and corresponding distributions
Qo, Q1 for use in Le Cam’s lemma. An informal description is as follows. Roughly lapgaMg
andM; minimize the Hellinger distancle(Qp, Q1) subject to their Hausdorff distané&(Mo, M1)
being equal to a given value
Let
Mo = {(ul,...,ud,o,...,O) L 1<u; <1, 1< gd}

be ad-dimensional hyperplane iRP. HenceA(Mp) = «. Place a hypersphere of radikbelow
Mo. Push the sphere upwards ity causing a bump of heiglytat the origin. This creates a new
manifold Mg such thaH (Mg, Mg) = y. However,M is not smooth. We will roll a sphere of radius
K aroundM, to get a smooth manifol; as in Figure 3. We re-iterate that this is only an informal
description and the reader should see Section 7.2 for the formal details.

Theorem 6 Lety be a small positive number. Letohnd M, be as defined in Section 7.2. Let Q
be the corresponding distributions on Mo for i = 0,1. Then:

1. A(Mj) >k, i=0,1.
2. H(Mg,M;) =Y.
3. []do—au| = O(y+2/2).
Proof See Section 7.2. [ |
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Figure 3: A sphere of radiusis pushed upwards into the plaii (panel A). The resulting mani-
fold My is not smooth (panel B). A sphere is then rolled around the manifold (@rtel
produce a smooth manifol; (panel D).
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3.2 Proof of the Lower Bound

Now we are in a position to prove the first theorem. Let us first restate tbectine
Theorem 1.Under assumptions (Al1)-(A4), there is a constant G such that, for all large n,

inf supEq [H(M,M)] > Cn 2t
M QeQ
where the infimum is over all estimatdvk
Proof of Theorem 1.Let Mg andM; be as defined in Section 3.1. L@tbe the uniform distribution
onM;&@0o,i=0,1. Letq; be the density of); with respect to Lebesgue measugg i =0,1. Then,
from Theorem 6H (Mo, M1) =yand [ [go— 1| = O(y\**?/2). Le Cam’s lemma then gives, for any
M,
SupEn[H(M, )] > H(Mo,My) [|Q8 A Q| = J(1— o/®+2/2)"
QeQ
where we used Equation (2). Setting: n—2/(9+2) yields the resultll

4. Upper bound

To establish the upper bound, we will construct an estimator that achievagppinopriate rate. The
estimator is intended only for the theoretical purpose of establishing the(Patempler but non-
optimal method is discussed in Section 5.) Recall that= 9 (k) is the set of alld-dimensional
submanifoldsV contained inX such thatA(M) > k > 0. Before proceeding, we need to discuss
sieve maximum likelihood.

4.1 Sieve Maximum Likelihood

Let P be any set of distributions such that ed2ke P has a densityp with respect to Lebesgue
measure/p. Recall thah denotes Hellinger distance. A set of pairs of functighs: {(¢1,us),...,
(n,un)} is ane-Hellinger bracketing for? if, (i) for each p € 2 there is a(¢,u) € B such that
£(y) < p(y) < u(y) forallyand (ii)h(¢,u) < €. The logarithm of the size of the smallesbracketing
is called thebracketing entropyand is denoted by (¢, 7, h).

We will make use of the following result which is Example 4 of Shen and WoB@§%)L

Theorem 7 (Shen and Wong, 1995) ete, solve the equatiottt)(&n, P, h) = ne2. Let(f1,u1),. ..,
(fn,un) be anen bracketing where N= 7#(€n, P, h). Define the set of densitie§ S {pi,..., Py}
where §§ = u/ [ u. Let p* maximize the likelihoof]{ ; p; (Y) over the set S Then

supP" ({h(p, p*) > &n}) < c1e” ™%,
Pe®P
The sequencéS;} in Theorem 7 is called sieveand the estimatgp* is called asieve-maximum
likelihood estimatar The estimatop* need not be ir?. We will actually need an estimator that
is contained inP. We may construct one as follows. Lpt be the sieve mle corresponding$
Thenp* = p; for somet. Let (7,0) = (4, ) be the corresponding bracket.

Lemma 8 Assume the conditions in Theorem 7. pdie any density i? such that! < p<ui. If
en < 1lthen

supP" ({h(p, p) > cen}) < e %2R,
PeP
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Proof By the triangle inequalityh(p, p) < h(p,p*) +h(p,p*) = h(p,p*) + h(p,w/ [ w) where
p* = u/ [ u for somet. From Theorem 7h(p, p*) < €, with high probability. Thus we need to
show thath(p,u;/ [ w) < Cep. It suffices to show that, in general,p,u/ [u) < Ch(¢,u) whenever
t<p<u.

Let (¢,u) be abracketand I1&f = h?(¢,u) < 1. Let/ < p < u. We claim that?(p,u/ [ u) < 4%°.
(Taking & = &, then proves the result.) Let = [u. Then 1< = [u= [p+ [(u—p) =1+
Ju—p)=1+4+/1(u,p) <1+42h(u,f) =1+ 25. Now,

c
= J(Wu=yP+(e-DvPP<2 [ (Vi- VPP +2e-1)
< 2824 2(V/1+25—1)% < 25° + 2% = 4%

#(pgy) = fWe- V=G [(Vimeymis [(Vimeyp?

where the last inequality used the fact that 1. |

In light of the above result, we define modified maximum likelihood sieve estinfittobe any
p € P such that < p < 0. For simplicity, in the rest of the paper, we refer to the modified sieve
estimatorp, simply as the maximum likelihood estimator (mle).

4.2 Outline of Proof

We are now ready to find an estimaMithat converges at the optimal rate (up to logarithmic terms.)
Our strategy for estimatinil has the following steps:

Step 1.We split the data into two halves.
Step 2.Let Q be the maximum likelihood estimator using the first half of the data. Défine be
the corresponding manifold. We cdll, the pilot estimator. We show thit is a consistent

2
estimator ofM that converges at a sub-optimal rate=n b@2 ., To show this we:

a. Compute the Hellinger bracketing entropy@f (Theorem 9, Lemmas 10 and 11).

b. Establish the rate of convergence of the mle in Hellinger distance, usingableghing
entropy and Theorem 7.

c. Relate the Hausdorff distance to the Hellinger distance and hence establisitetiof
convergence,, of the mle in Hausdorff distance. (Lemma 13).

d. Conclude that the true manifold is contained, with high probabilityMp= {M €
M(K): H(M, M) < an} (Lemma 14). Hence, we can now restrict attentiofig

Step 3.To improve the pilot estimator, we need to control the relationship between Hellangl
Hausdorff distance and thus need to work over small sets on which theatdacainnot vary
too greatly. Hence, we cover the pilot estimator with long, thin sRbs. ., Ry. We do this by
first coveringM with spheredly, ..., Iy of radiusd, = O((logn/n)Y/(2td)) We define a slab
Rj to be the union of fibers of size= 0 + a, within one of the spherefRj = Uxe;Lo(X, M).
We then show that:

a. The set of fibers oM cover eachM € M, in a nice way. In particular, il € M, then
each fiber fromM is nearly normal tavl. (Lemma 15).
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b. As M cuts through a slab, it stays nearly paralleMoRoughly speakingy! behaves
like a smooth, nearly linear function within each slab. (Lemma 16).

Step 4.Using the second half of the data, we apply maximum likelihood within each slais. Th
defines estimatorsl;, for 1 < j < N. We show that:

a. The entropy of the set of distributions within a slab is very small. (Lemma 18).

b. Because the entropy is small, the maximum likelihood estimator within a slab con-
verges fairly quickly in Hellinger distance. The rategjs= (logn/n)¥ 2+ (Lemma
19).

c. Within a slab, there is a tight relationship between Hellinger distance and bidusd
distance. Specifically (M1, M) < ch?(Q1,Qz). (Lemma 20).

d. Steps (4b) and (4c) imply th&t(M NR;j,M;) = Op(g2) = Op((logn/n)?/(d+2)),

Step 5.Finally we definévl = U’j\‘zl I\ﬁi and show thaM converges at the optimal rate because each
M; does within its own slab.

The reason for getting a preliminary estimator and then covering the estimatdhimigiabs is
that, within a slab, there is a tight relationship between Hellinger distance amstlbiidf distance.
This is not true globally but only in thin slabs. Maximum likelihood is optimal with ezdgo
Hellinger distance. Within a slab, this allows us to get optimal rates in Haustistéince.

4.3 Step 1: Data Splitting

For simplicity assume the sample size is even and denote by split the data into two halves
which we denote bX = (Xg,...,X,) andY = (Y1,...,Yy).

4.4 Step 2: Pilot Estimator

Let  be the maximum likelihood estimator ove). Let M be the corresponding manifold. To
study the properties d¥l requires two steps: computing the bracketing entrop@ afnd relating
H(M,M) to h(qg,q). The former allows us to apply Theorem 7 to botnfd, @), and the latter allows
us to control the Hausdorff distance.

4.5 Step 2a: Computing the Entropy ofQ,

To compute the entropy ap we start by constructing a finite net of manifolds to codé(k). A
finite set ofd-manifoldsMy = {Mj, ..., Mn} is ay-net (or ay-cover) if, for eachVl € M there exists
M; € My such thatH(M,M;) <vy. LetN(y) = N(y, M,H) be the size of the smallest covering set,
called the (Hausdorff) covering number @f .

Theorem 9 The Hausdorff covering number 81 satisfies the following:
N(y) = N(y, M,H) < c1k2(k,d,D) eXp(Kg(K,d, D)y‘d/z) = cexp(c’y‘d/2>

D
wherekz(k,d, D) = () (G2/¥)

only onk and d.

andks(k,d,D) = 29/2(D —d)(c,/k)P, for a constant gthat depends
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Proof Recall that the manifolds ifi/ all lie within %. Consider any hypercube containitig.
Divide this cube into a grid od = (2¢/k)P sub-cubegC;,...,C;} of side lengtk /c, wherec > 4
is a positive constant chosen to be sufficiently large. Our strategy is w stad within each of
these cubes, the manifold is the graph of a smooth function. We then onlycaaetithe number
of such smooth functions.

In thinking about the manifold as (locally) the graph of a smooth function,lgsh® be able
to translate easily between the natural coordinateX iand the domain-range coordinates of the
function. To that end, within each subcuBgfor j € {1,...,J}, we defineK = () coordinate
frames,Fj for k € {1,...,K}, in whichd out of D coordinates are labeled as “domain” and the
remainingD — d coordinates are labeled as “range.”

Each frame is associated with a relabeling of the coordinates so thétdieenain” coordinates
are listed first and — d “range” coordinates last. That i« is defined by a one-to-one corre-
spondence betweenc C; and (u,v) € Tk (x) whereu € RY andv € RP~9 and i (x4, . .., Xp) =
(Xig,--+»Xig>Xj1,- - -, Xjp_q) fOr domain coordinate indicds < ... < ig and range coordinate indices
j1< o< ijd-

We define domaifFj) = {u € RY: 3v e RP~9 such that(u,v) € Fi}, and letGj denote the
class of functions defined on doméi) whose second derivative (i.e., second fundamental form)
is bounded above by a const&@{k) that depends only ok. To say that a s&R C C; is the graph of
a function on ad-dimensional subset of the coordinate<inis equivalent to saying that for some
frameFj and some seA C domair(Fy), R= th‘kl{(u, f(u)): ue A}

We will prove the theorem by establishing the following claims.

Claim 1L LetM € M andC; be a subcube that interseds Then: (i) for at least on&
{1,...,K}, the setM NC; is the graph of a function (i.e., single-valued mapping) defined on a
setA4 C domair(Fj), of the form (ug,...,uq) — nj*kl((u, f(u))) for some functionf on 4, and

(i) this function lies inGjk.

Claim 2 2 is in one-to-one correspondence with a subsef of H?:lUE:l Gik-

Claim 3 TheL* covering number ofj satisfies

N(y, G,L®) < ¢ (2) = exp((D — d)(2c/K)Dy*d/2> .

Claim 4 There is a one-to-one correspondence betwestizh*-cover of G and any Hausdorff-
cover of M.
Taken together, the claims imply that

(2¢c/k)P
N(y, M, H) < Cl<d> exp((D — d)(2c/k)P24/2y~9/2),
Takingc, = 2c proves the theorem.

Proof of Claim 1 We begin by showing that (i) implies (ii). By part 1 of Lemma 3, each
M € M has curvature (second fundamental form) bounded above/by This implies that the
function identified in (i) has uniformly bounded second derivative and liles in the corresponding
Gik-

We prove (i) by contradiction. Suppose that there isMae M such that for everyj with
MNC; # 0, the seM NC; is not the graph of a single-valued mapping for any ofkheoordinate
frames.
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Fix j € {1,...,3}. Then in each domaifrj), there is a point such thatC; mnj‘kl(u x RP~d)
intersectdM in at least two points, call theiay andby. By construction|ax — bx|| < vD—d-K/c,
and hence by choosinglarge enough (making the cubes small), part 3 of Lemma 3 tells us that
dwm (ak, bx) < 2D —dk/c. Then we argue as follows:

1. By parts 2 and 3 of Lemma 3 and the fact Gahas diametet/Dk /c and

2v/D
max cogangle(T,M,TgM)) > 1— ——.
p.GeC; M gangle(TpM, TqM)) > C
For large enougls, the maximum angle between tangent vectors can be made smaller than

/3.
2. By part 2 of Lemma 3, any poiztalong a geodesic betweag andby,

2vD—d

cogangle(Ta,M, T:M)) > 1— c

It follows that there is a point i'€; "M and a tangent vectoy at that point such that
angle(v, by —ax) = O(1/,/C).

3. We have for each &€ = (5) coordinate frames and associated tangent veefors. , vk that
are each nearly orthogonal to at ledgif the others. Consequently, there &rel 4+ 1 nearly
orthogonal tangent vectors bf within C;. This contradicts point 1 and proves the claim.

Proof of Claim 2 We construct the correspondence as follows. For each Cublet ki be
the smallesk such thatM NC; is the graph of a functiopy € Gj as in Claim 1. MapM to
b= (Qug,-- -, Pk ), and let¥ C G be the image of this map. M # M’ € M, then the corresponding
¢ and ¢’ must be distinct. If not, theM NC; = M’ NC; for all j, contradictingM # M’. The
correspondence froM/ to ¥ is thus a one-to-one correspondence.

Proof of Claim 3 From the results in Birman and Solomjak (1967), the set of functions define
on a pre-compaal-dimensional set that take values in a fixed dimension sgdteith uniformly
bounded second derivative hBS covering number bounded above bMem(l/v)d/2 for somec;.
Part 1 of Lemma 3 shows that eabhe M has curvature (second fundamental form) bounded
above by ¥k, so eachGj satisfies Birman and Solomjak’s conditions. Henigy, Gjk,L”) <

c,eC-DW/Y?? Because all thgj’s are disjoint, simple counting arguments show Hét, G,L™) =

J
<('3)N(y, Gik, L°°)> , whereld is the number of cubes defined above. The claim follows. (Note that

the functions in Claim 1 are defined on a subset of doffgin. But because all such functions have
an extension irGjx, a covering ofGjx also covers these functions defined on restricted domains.)
Proof of Claim 4 First, note that if two functions are less thyadistant inL”, their graphs are
less thary distant in Hausdorff distance, and vice versa. This implies that®cover of a set of
functions corresponds directly to gidausdorff-cover of the set of the functions’ graphs. Hence, in
the argument that follows, we can work with functions or graphs integpéinly.
Forke {1,...,K}, let g}’k be a minimalL” cover of Gjx by y/2 balls; specifically, we assume

that G}, is the set of centers of these balls. For egghe G}, define fj(u) = 15, (U, gjk(u)).
For everyj, choose one suchi, and define a sé!!’ = {J;(Cj Nrangé fj,)), which is a union
of manifolds with boundary that have curvature bounded by That is, such aM’ is piecewise
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smooth (smooth within each cube) but may fail to satisfyl’) > k globally. Let4 be the collection
of M’ constructed this way. There axgy/2, G,L*) elements in this collection.

By construction and Claim 2, for eadhe M, there exists aM’ € 4 such thaH (M,M’) <y/2.
In other words, the set gf/2 Hausdorff balls around the manifoldsf#hcoversM but the elements
of 4 are not themselves necessarilyifi. Let By (A,y/2) denote the set of atl-manifoldsM € M
such thaH (A,M) <y/2. Let

A= {Aeﬂ: BH(A,y/Z)mM;é(D}.

For eachA € 4y, choose soma € By (A,y/2) N M. By the triangle inequality, the séA: Ac 4}
forms any Hausdorff-net forM . This proves the claim. |

We are almost ready to compute the entropy. We will need the following lemma.

Lemma 10 Let0 < y< K — 0. There exists a constant K 0 (depending only oK,k andc) such
that, for any M,M, € M (K), H(M1,Mz2) <y implies that)V (M1 @ o) —V(M2® 0)| < Ky. Also,
forany Me M (k), V(M& (0+Yy)) —V(M&0o)| <Ky.

Proof LetSj=M;®0, j=1,2. Then, using (3),

ScMi@(o+y) = |J Lowy(u).

ueMq

Hence, uniformly ovet\,

V(S) g/

[ Vo -alLory(W)di < [ Vo-alLo(u))din, +Ky=V(S1) +Ky

sincevp_4(B(u,0+Y)) < vp_d(B(u,0)) + Ky for someK > 0 not depending oM; or M. By a
symmetric argumeny (S;) <V($) +Ky. Hence,|V(M1@®0) -V (M2@0)| < Ky. The second
statement is proved in a similar way. |

Now we construct a Hellinger bracketing. Lyt €2. LetMy, = {My,...,My} be ay-Hausdorff

net of manifolds. Thus, by Theorem®,= N(2, M | H) < cleCZ(l/E)d. Let w denote the volume of
a sphere of radius. Letq; be the density correspondingy. Define

2¢2
j®(0+¢€2))

uj(y):<qj(y)+V(M )I(yeMj@(oJrsz))

and
2
ily) = <Qj(Y)—V(Mj @2‘;'0_82))> Iy € Mj @ (0 —¢€?)).

Let B = {(fl,ul),. . (fN,UN)}.

Lemma 11 B is ane-Hellinger bracketing oQ. Hence #(g, Q,h) < C(1/¢)".
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Proof LetM € M (k) and letQ = Qu be the corresponding distribution. Legbe the density o). Q
is supported o= M & 0. There existdlj € M, such thaH (M, M;) < €. Letybe inS Then there
is ax € M such thatly—x|| < 0. Thereis & € M; such that|x—x/|| < 2. Henced(y,M;) < 0+ €2
and thusy is in the support ofi;. Now, fory € S, uj(y) —q(y) = 2¢2/V(M; @ (o +€2)) > 0. Hence,
q(y) < uj(y). By a similar argument};(y) < q(y). ThusB is a bracketing. Now

2K g2 2K €2 4K g2
Y — C_ — (1 (1= - )
fall,u) /u, /gl ( T > ( %) ) %)

Finally, by (1),h(uj,¢;) < \/¢1(¢j,u;) = Ce. ThusB is aCe-Hellinger bracketing. [ ]

4.6 Step 2b. Hellinger Rate
Lemma 12 LetQ be the mle. Then

SggQ” ({h(Q, Q) > Con a2 }) < exp{ —Cnﬁ} -

Proof We have shown (Lemma 11) thaf; (¢, Q, h) < C(1/¢)Y. Solving the equatiohlj(en, Q,h) =
ne2 from Theorem 7 we get, = (1/n)Y(@+2 From Lemma 8, for alQ

Q" ({nQ.Q) >con 2 }) < cre ™ = exp{—Cre's }.

4.7 Step 2c. Relating Hellinger Distance and Hausdorff Distance
Lemma 13 Let c= (K — 0)/TC, /(2 (D/2+1)). If M1,M; € M (k) and HQy,Q2) < ¢ then

/
H(M2,M2) < 2 (IW)l D] ho (Q1,Q2)

VT C.

Proof Letb=H(M1,M,) andy=min{k — o,b}. LetS;, S, be the supports dP; andQ,. Because
H(M1,M2) = b, we can find pointx € M; andy € M, such that|y —x|| = b. Note thatTyM; and
TyM,. are parallel, otherwise we could moxer y and increasgly — x||. It follows that the line
segmentx,y] is along a common normal vector of the two manifolds and we can wete+ bu
for someu € Ls(u,M). Without loss of generality, assume that x+ bu. Let X' = x+ ou and
y =y+ou. HencexX €05, Y € 0S and||X —Y|| = b. Note thatdS, and0dS, are themselves
smoothD-manifolds withA(dS) >k — o > 0.
We now make the following three claims:

1.yeS-S.
2' (ley,] C&_Sl

3. interiorB (%,%) cCS-S

1278



MINIMAX MANIFOLD ESTIMATION

First, note thay differs fromy along a fiber oM, by exactlyo, thereforelX,y] C S. Second,
because&’ € 0S5, there is a neighborhood &fin [X,y] that is not contained i;. Hence, if there is
apointin§; N [X,y] there must be a poiat € dS; N [X, Y], with Z # X'. This implies the existence
of two distinct points whose fibers of length less thanr o cross, which contradicts the fact that
A(0S;) > kK — 0. Claims 1 and 2 follows.

LetB=B (Xﬂ/, 2). By construction B is tangent t@S, at X' and tangent t@$; aty, and
B contains[X,y]. The ball has radiug/2 = (1/2) min{k — 0,b} < K — 0. BecauseB intersects
S — S, the interior ofB cannot intersect eith@S; or 0S,. Claim 3 follows by a similar argument
as in the proof of Claim 2. (In particular, if there were a point in the interid that is either inS;
or outsideS;, a line segment fronx’ +y/) /2 to that point would have to intersect the corresponding
boundary, which cannot happen.)

NowV (B) = (y/2)Pm®/2/I(D/2+1). So

NQuQ:) = 4(QuQ)=[los-cel> [ -l

= /slmsgql_Ql (SINS5) > CV(SINSS) =C.(y/2)PmP/?/r(D/2+1).

Hence,
1/D
y=min{k —o,b} < [jﬁ <r(D/C2*+1)> ] h/P(Q1,Q,).
If K — o < b this implies thath(Q1,Q2) > ¢ which contradicts the assumption thg0;,Q2) < ¢
Thereforey = b and the conclusion follows. |

4.8 Step 2d. Computing The Hausdorff Rate of the Pilot

Lemma 14 Let a, = (CnO) oe2) . For all large n,
supQ" ({H(M,M) > an}) < exp{—an%d }
QeQ

Proof Follows by combining Lemma 12 and Lemma 13. |

We conclude that, with high probability, the true manifddds contained in the se;, = {M €
M(K) : H(M, M) gan}.

4.9 Step 3: Cover With Slabs

L
2+

Now we cover the pilot estimatdvl with (possibly overlapping) slabs. L& = (C'Og”> Lt

follows from part 6 of Lemma 3 that there exists a collection of pofts {x1,...,xn} C M, such
thatN = (c8y)~ = (Cn/logn)¥/(2*9 and such thak c UL Bp(xj, cd).
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Figure 4: Figure for the proof of part 1 of Lemma 15.

4.10 Step 3a. The Fibers okl Cover M Nicely

Lemma 15 Let b= o +an. For X M, let Ly(X) = T"M NBp(X,b) be a fiber atx of size b. Let
M € M,. Then:

1. IfXe M and xe M are such that|x — X|| < a,, thenangle(T,M, TyM) < T1/4.
2. L(X)NM #0.

3. Ifxe Lp(X) N M, then||x—X|| < 2ay.

4. ForanyXe M, #{L,(X) "M} = 1.

5. We have MC Uz i Lo(X).

Proof 1. Let x andX be as given in the statement of the lemma andlet angle(TyM, TM).
Suppose thab > /4. There exists unit vectons € TyM andv € TyM such thatangle(u,v) =
0. Without loss of generality, we can assume tkat X. (The extension to the case# X is
straightforward.)

Consider the plane defined yandv as in Figure 4. We assume, without loss of generality, that
(u+Vv)/2 generates the-axis in this plane and thatlies above the-axis andu lies below thex
axis. Let/ denote the horizontal line, parallel to thexis and lying 2, units above the horizontal
axis. Henceu andv each make an angle greater thgi8 with respect to the-axis.

Consider the two circles; and &, tangent tdM atx with radiusk where(; lies belowv and &
lies abovev. Letw be the point at whiclt’; intersectd. The arclength of’; from x to w is Ca,, for
someC > 1. Lety be the geodesic ol throughx with gradientv. The projectiory of y into the
plane must fall betwee; and . Lety = y(Ca,) andy be the projection of into the plane.

Now |ly—X]|| > [ —X|| > ||w—X]|| > 2a, > a,. There exist& € M such that/|z—y|| < an.
Hence,||Z—Y|| < a, whereZ is the projection of into the plane. Let be the point on the plane
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with coordinategan/C2 — 1,ay). Thus,||q— X|| = Ca,. Note thatangle(Z— X, u) is larger than the
angle betweenq — X and thex-axis which is arctaﬁﬁ) =a > 0. Hence,

angle(Z—X,u) > angle(Z—X,u) > o

Lety be a geodesic oN, parameterized by arclength connectiignd?z. Thusy(0) = X and
Y(T) =Zfor someT. There exists someQt < T such that/(t) 0 Z—X. So

angle(Y(t),Y(0)) =a > 0.

However,||Z—X|| < (C+ 1) a, which implies, by part 2 of Lemma 3, thatgle(y(t),Y(0)) =
O(y/an) < o which is a contradiction.
2. For anyX € M, the closest poink € M must satisfy||x—X]| < a,. Lety be the projection ok
onto oM. LetU = T;M N By(y,an). Let Cyl= UJyey Bo(u,3a,) N (Tyl\’/IV)L. Cyl is a small hyper-
cylinder containing andx, with the former in the centeM cannot intersect the top or bottom faces
of the cylinder. Otherwise, we can find a pop M such thabngle(Tng,TpM) > arctar{l) = 1t/4
contradictingl. Thus, any path throughion M must intersect the sides of Cyl. Hentg(X) "M #
0.
3. Let x € MNLp(X). Suppose thalix—X|| > 2a,. There exists) € M such that/|q— x|| < an.
Note that||g— X]| > a,. Now we apply part 5 Lemma 3 with = X andv = x. This implies that
llv—p|| = ||[x—X|| < a2/« which contradicts the assumption thiat— X|| > 2ay.
4. Suppose that more than one point\dfwere inLy(X). Pick two and call themx; andx,. By 3,
|Ixi — X]| < 2an. It follows that||x; — X2|| < 4a, and thus they ar®(an) close in geodesic distance by
part 3 of Lemma 3. Hence, there is a geodesidvboonnectingx; andx, that is contained strictly
within theCa, ball. Because, — x; lies inLy(X) and is consequently orthogonalTN, there must
exist a point on the geodesic whose angle Witk equalsrt/2, contradicting part.
5. Becauséd (M, M) < a,, we have thaM C tube(M, a,). Becaus@, < K, the fiberd,(X) partition
tube(M, a,). Hence, eacl € M must lie on one (and only oné)(X). [ |

4.11 Step 3b. Construct Slabs that CoveM Nicely
Let]j = Bp(x;j,8n) NM. Define the slab

Rj = U Lb(X,M).

XEJJ
Lemma 16 The collection of slabsR. .., Ry has the following properties. Let M M.
1. McULR;.

2. MNR; is function-like over R That is, there exists a functiony gJj; — RP~9 such that
MNR; ={gj(x): xeJj}.

3. For each xc Jj, Lp(x) "M # 0.

4. There exists a linear functiofy : I — RP~4 such thasup., [|g;(x) — £;(x)|| < C33.
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5. supycqy, diam(MNR;) < Coy.

Thus the slabs covérl andM cuts acros&; is a function-like way. MoreoveM NR; is nearly
linear.
Proof The first three claims follow immediately from Lemma 15. In particutgrin claim 2 is
defined byg;(x) = {MNLp(x)}. Now we showd. We can writegj(x) = g;j(X;) + (x— ;)T 0g+
2(x—Xj) THess (x — Xj) whereHess is the Hessian matrix of;j evaluated at some point between
x andx;. By part 1 of Lemma 3, the largest eigenvalueHebs is bounded above by/k. Since
||x—x;|| < cd2, the claim follows. Park follows easily. ]

4.12 Step 4: Local Conditional Likelihood
Recall thatM, = {M € M (k) : H(M,M) < a,}. Let

Qn:{QM: MEMn}.

Consider a slaR;. For eachQ € Q, defineQ; = Q(:|R;) by Q;(A) = Q(ANR;)/Q(R;). Note that
Qj is supported overube(M,0) NR;. Let Q,; = {Q; : Q € Q}. Before we proceed we need to
establish the following.

Lemma 17 Let Ij(M) = tube(M,0) NR;. Then there existgc> 0 such that

inf V/(I;(M)) > cod8.
it V(1(M)) > cod)
Proof By Lemma 16 M NR; lies in a slab of size, orthogonal tal;. Because the angle between
the two manifolds on this set must be no more thed and because, > 8,, the manifoldM
cannot intersect both the “top” and “bottom” surfaces of the slab. Hebcdéarge enougiC > 0,
J; = Uxe, Bo(x,0/C) C I;. By constructiony (1;) >V (J;) > c&. u

4.13 Step 4a. The Entropy ofQ, j
Lemma 18 7 (g, Qnj,h) < cilog(cz/€).

Proof We begin by creating gHausdorff net forQ, j. To do this, we will parameterize the support
of these distributions. Ead@ € Q, ; has support in the collectiash; = {(M®0)NR;: M € M,}.
We will construct ay-Hausdorff net fots, ;.

Let X € M be the center alj. Letys,...,yr be aciy-net of Lp(X), and letb; < 8 < --- < Bs <
/21 for a small, fixedh > 0 whered; — 8;_; < czy. Note thatr = O(y~(P~9) ands= O(1/y).
For every paity; and@;, let Mj; be aM € 2, that crosses througj with angle(TyiM,Tgl\ﬁ) =0;.
These manifolds comprise a collection of s@2g1/y)P~9-1) which we will denote byNet(y).

Let M € M,. Lety be the point wheré crossed p(X). Lety; be the closest point in the net
to y and let8; be the closest angle in the neti@g|e(TyM,T§Mv). Because the angle betwebh
andM;; is strictly less tharr/4 (part 1 of Lemma 15) and the sl&y has radius, it follows that
H(M,M;j) < Ciy+dnCoy < Cy. Hence Net(y) is ay-Hausdorff net.
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Now considemet(y) with y= €2. For eachM;; € Net(y) let gjj be the corresponding density
and definay;; and/jj by

Ce?
Mi; ® (0 +€2))

uij (y) = <qij(y)+v( )I(ye Mij @ (0 +€2))

and
2
tij(y) = <Qij(y> BT ;?0_82)) Iy e M@ (0—¢?)).

Let B = {(4ij,uij)}.
LetM € M, and letM;; be the element of the net closesiMo It follows easily thati; > gv >
¢j. ThusB is a bracketing. Now,

/ui,- 4 =1+ Ce?— (1—Ce?) = 2Ce2.

Henceh(uij,4ij) < +/ [ |uij — 4ij| = V2Ce. Hence,B is any/2C — e-bracketing. So,
-f]{[](su QD-,j ) h) < (D —d-— 1) |Og(C/8>,

which proves the lemma. |

4.14 Step 4b. Hellinger Rate of the Conditional MLE

Let g be the mle overd, j using theYi’s in R;. Let M be the manifold corresponding pand let
Mj =MnN R;.

Lemma 19 For all Q, all A > 0 and all large n,

7 (froa- (=) ) er

Proof Let N; be the number of observations from the second half of the data that &je lret

Hj = E(N;) and definem, = nzfa. First, we claim thatN; > p;/2 = O(my) for all j, except on a
set of probabilitye ™*"" . Let T, = Q(R;). By Lemma 17 and Lemma 47; > c3¢ for some
¢ > 0. Hencey; > my. Note thato? = Var(N;)/n=1;(1— 1) < 1. Lett = /2. By Bernstein’s
inequality,

2

P(N) < 1/2) = P(N; —j < —1/2) < eXp{_ZnGZJth/3

} < exp{—cnz/(2+d)} .
Hence, by the union bound,
P(N; < /2 for somej) < %exp{—cnz/(”d)} < exp{—c’nz/(2+d)}

since there arbl = O(1/d) slabs. Thus we can assume that there are at leastopddyservations
in eachR;.
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Since #{(g, Quj,h) < log(C(1/¢)), solving the equatior?{ (e, Qj,h) = m,e? we geten, >
/Clogm,/m, = (logn/n)%(2+d) = &, From Lemma 8, we have, for & € Qyj,

Q" ({9 >8}) =" ({hQ.Q) >em}) < cre e <n A

4.15 Step 4c. Relating Hausdorff Distance to Hellinger Distance Within al8b
Lemma 20 For each M,M> € Mn, HM1NRj,M2NR;) < ChZ(le,sz).

Proof Letg; andg, be defined as in Lemma 16. There exists]; such thap: (x) € My, g2(x) € M»
and||g1(x) — g2(x)|| = y. We claim there exist§ C J; such that infcy [|91(X) — 92(x)|| > y/2 and
such that/ (I') > ¢dd. This follows sinceg; andg, are smooth, they both lie in a slab of siae
around];j and the angle between the tangenggi) andJ; is bounded byt/4.

Create a modified manifol;, such thatVt;, differs fromM; over]’ by ay/2 shift orthogonal
to J; and such thaM; is otherwise equal td1;. It follows that ¢1(Mq,Mz) > ¢1(M1,M5) and
h(Q1,Q2) > h(Q1, Q).

Every point in the support of the conditioned distributions can be writtemasrdered pair
(x,y) wherex € Jj andy lies in ad’ ball of radiuso. M is shifted a distance of/2 in the direction
orthogonal tal;. As a result, the/; distance betweel; andM, equals the integral ové’ of the
volume difference between twdl balls of the same radius that are shiftedy2 relative to each
other. This volumely. HenceV (M1N3Jj)o (M2N3J;j) > ydY. LetA= {x€ Jj: qu > 0,0 = 0},
B={xeJj: ;. >0, >0}, C={xeJj: qr=0,0 > 0}. At least one oA or B has volume at
leastydd /2. Without loss of generality, assume that itisThen

R = [(VE-vER?: [(Vi-ve?= [

C.coy
> gd”y — cC.y = cC.H (M1, My).
n
[ |
4.16 Step 4d. The Hausdorff Rate
Lemma 21 For any A> 0 there exists gsuch that
2
~ Cologn) 2+ 1
" {H(MNRj,M; < —.
Q({( i J)>( n S
Proof This follows by combining Lemma 20 and Lemma 19. |
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4.17 Step 5: Final Estimator

Now we can combine the estimators from the difference slabsl\ﬁLetUﬂ-\‘:1 M;. Recall that the
number of slabs il = (¢&,)~9 = (Cn/logn)d/(2+d),
Proof of Theorem 2.Choose ah > 2/(2+d). We have:

J
< N
-

n 71 c
= <
(CIogn) S

Cologn) 2/ (@Hd) . o L Gy
Letrn, = (T . SinceM andM are contained in a compact sét(M, M) is uniformly
bounded above by a constdy. Hence,

o~

EQH(M,M) = Eq[H(M,M)I(H(M,M) > ry)] +Eg[H(M,M)I (H(M,M) < rp)]
KoQ (H(M,M) > ry) +rp,

c logn\ %/ 2+9)
A Tn=0 ((n) :

5. A Simple, Consistent Estimator

IN

IN

Here we give a practical, consistent estimator, one that does not geratethe optimal rate. It is
a generalization of the estimator in Genovese et al. (2010) and is similar tatittnates in Niyogi
et al. (2006). Let

n
S= U BD(Yi78)
i=1

~
l

and defin@S= 9(S),0= ma>§,6§d(y,5\8) and
M= {ye S: d(y,0S) > 6—25}.
Lemma 22 Letg, = C(logn/n)'/® in the estimatoM. Then

Iogn)l/D

H(M,M) = o<
n
almost surely for all large n.

Before proving the lemma we need a few definitions. Following Cuevas adddrez-Casal
(2004), we say that a s8tis (X, A)-standardif there exist positive numbepsandA such that

vo(Bp(y,€)NS) > X vp(B(y,e)) forallyeS 0<e<A.

We say thaSis partly expandabléf there existr > 0 andR > 1 such thaH (0S,0(S@¢€)) < Re for
all 0 < e < r. A standard set has no sharp peaks while a partly expandable setttiieep inlets.
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Lemma 23 If 0 < A(M) then S= M @ g is standard withx = 27° andA = o and partly expandable
with r = A(M) —o and R= 1.

Proof Letx =27P. Lety be a pointinSand letA(y) < o be its distance from the boundad$. If
A(y) > e thenBp(y,€) NS= Bp(Y,€) so thatvp(Bp(y,€) NS) = vp(Bp(Y,€)) > XVb(Bp(Y,€)).

Suppose thal\(y) < €. Letv be a point on the manifold closestyand lety* be the point on
the segment joining to v such that|y — y*|| = €/2. The ballA = Bp(y*,€/2) is contained in both
Bo(y,€) andS. Henceyvp(Bp(y,€)NS) > vp(A) > xvp(Bp(Y,€)). This is true for alle < o, hence
Sis (X,A)-standard fo = 1/2° andA = o.

Now we show thaS s partly expandable. By Proposition 1 in Cuevas and Rpiz-Casal
(2004) it suffices to show that a ball of radiusolls freely outsideS for somer, meaning that, for
eachy € 0S there is ara such thaty € B(a,r) C S, whereS’ is the complement o8 Let Oy be
the ball of radiush — o tangent toy such thatOy C S°. Such a ball exists by virtue of the fact that
o < A(M). n

Theorem 24 (Cuevas and Rodiguez-Casal, 2004)Let Y4, ..., Y, be a random sample from a dis-
tribution with support S. Let S be compalt, x)-standard and partly expandable. Let

n

S=JB(Y;,en)
i=1

and letdS be the boundary &. Lete, = C(logn/n)Y/® with C > (2/(X wp))Y/® wherewp =
V(Bp(0,1)). Then, with probability one,

1/D . 1/D
H(S§<C <'°§”‘) and H(0S9S) <C ("f”)

for all large n. Also, Sc S almost surely for all large n.

Proof of Lemma 22. Theorem 24 and Lemma 23 imply theit(S S) < C(logn/n)*/® and
H(9S,0S) < C(logn/n)¥/P. It follows thatG > o — €. First we show thay € M implies that
d(y,M) < 4e. Letye M. Thend(y,0S) > d(y,0S) —€>6—26—€ >0 —&— 26— = 0 — 4,
Sod(y,M) =0 —d(y,0S) < 0 — 0+ 4e = 4. Now we show thatM c M. Suppose thay € M.
Then, .

d(y,08 >d(y,05) —e=0—-€>0—2¢

sothatye M. W

6. Conclusion and Open Questions

We have established that the optimal rate for estimating a smooth manifold in Hifidlstance is
n—z:4. We conclude with some comments and open questions.

1. We have assumed that the noise is perpendicular to the manifold. Imtcwoek we are
deriving the minimax rate under the more general assumptiorg ieatrawn from a general,
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spherically symmetric distribution. We also allow the distribution along the manifole:to b
any smooth density bounded away from 0. The rates are quite diffendrtha methods for
proving the rates are substantially more involved. Moreover, the ratesidepn the behavior
of the noise density near the boundary of its support. We will report oretbésvhere.

2. Perhaps the most important open question is to find a computationally traestiblator that
achieves the optimal rate. It is possible that combining the estimator in Section Beth
of the estimators in the computational geometry literature (Dey, 2006) coukd Womwever,
it appears that some modification of such an estimator is needed. This is alditiestion
which we hope to address in the future.

3. It is interesting to note that Niyogi et al. (2006) have a Gaussian n@sidbdtion. While
it is possible to infer the homology dfl with Gaussian noise it is not possible to infdr
itself with any accuracy. The reason is that manifold estimation is similar to (aratin f
more difficult than) nonparametric regression with measurement errtivatrcase, it is well
known that the fastest possible rates under Gaussian noise are logarithimsibighlights an
important distinction between estimating the topological structuid gérsus estimatinil
in Hausdorff distance.

4. The current results takd§ M), d ando as known (or at least bounded by known constants).
In practice these must be estimated. We do not know whether there exist miestnaators
that are adaptive ovel,A(M) ando.
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7. Appendix

This appendix contains proofs of some technical results used earlier papee.

7.1 Proof of Equation 2
We will use the following two results (see Section 2.4 of Tsybakov, 2008):

h?(P",Q") =2 (1— [1— hz(zQ)} n)

and )
1/, M(PQ
IPaQl=;(1- 02
We have
o 1/, RP.QN° 1/ RPPQ\™
Al = 5 (1-T5H) -5 (1-52)
. 1<1_e1<P,Q>>2”
- 2 2
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sinceh?(P,Q) < /1(P,Q).

7.2 Proof of Theorem 6

We define two manifolddMy and My with corresponding distribution®y and Q; such that (i)
A(M;) >k i=0,1, (ii) H(Mp,M1) =y and (iii) such that the volume & o S is of ordery%”,
wheres§ is the support 06);.

We write a generi®-dimensional vector ag= (u,v,z), withuc RY, ve R, ze RP-9-1, For
eachu € RY with ||ul| < 1, define the disk iR+

Do = {(u,O) eRML: ue Bd(O,l)}

and let

FOa( U Bd+1((U,V),K)).
(

u,v)eDg

Now define the followingl-dimensional manifold ifR®
Mo = {(U,V, OD,d,]_) : (U,V) S Fo}
= {(u, a(u),0p_q-1) : UEBy(0,1+ K)} U {(u, —a(u),0p_g-1) : UEBy(0,1+ K)}

aw) = { ¥ i flul] < 1
T V(U121 < ] <1+

The manifoldMg has no boundary and, by constructidMg) > K.
Now define a second manifold that coincides wifg but has a small perturbation. Letc
(0,4k) and define

My = {(u,b(u),OD_d_l): ueBd(0,1+|<)}u{(u,—a(u),OD_d_l): ueBy(0,1+ K)}

where

where

y+ /K2 —|ul? if [Jul] < 31/4vK —y2
b(u) = {2~ /K2~ (|Jull - VAK—Y)? if /AR = < |lul < VAR
a(u) if /4y —y* < [Ju]| < /4¥K — Y2 +K.
Note thatA(M1) > K since the perturbation is obtained using portions of spheres of radlngact

e for ||ul| < %\/4y|< —V¥?, b(u) is thed + 1-th coordinate of the “upper” portion of the + 1)-
dimensional sphere with radiuscentered ato, - - - ,0,y), henceb(u) satisfies

[Jull?+(b(w) —y)?=k>  with b(u) >y,
o for 31/4yk —y2 < ||u|| < /4yk — ¥, b(u) is the(d + 1)-th coordinate of the “lower” portion

of the(d + 1)-dimensional sphere with radiuscentered atu- \/4yk —y2/||ul|,2k) (note that
the center of the sphere differs according to the directia) dfienceb(u) satisfies

2
iy

- Tl + (b(u)—2k)>=k?  with b(u) < 2.

u
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To summarizeMo andM; are both manifolds with no bounda#(Mg) > kK andA(M1) > K.
See Figure 5. Now

Eo = Mo—Mlz{(U,a(U%OD—d—l)i u e By(0, 4VK—V2)}
Ei = Ml—Moz{(u,b(u),oD,d,l): u € By(0, 4yK—y2)}.

R, R R,

Figure 5: One section of manifolddy andM;. The common part is dashel is dotted ands;
solid. R; and R, denote the regions where the different definitions of the perturbation

apply: Ry is [|u]| < 31/4yk — y2 while R, denotess\/4yk —y2 < [[u]| < \/4yK — 2.

Note that for each point € Eg there existy’ € E; such thatly—y/|| < |a(u) —b(u)| <y. Also,
Yo = (0,a(0),0) € Mg has as its closedil; pointy; = (0,b(0),0), so that||yo —yi|| =Y. Hence

H(Mo,M1) = H(Eo, E1) =Y.
To find an upper bound fov (S0 S;), we show that each = (u,v,z) € § — & satisfies the
following conditions:

(i) ueBg(0, /4y —y2);
(i) z€Bp 4-1(0,0);
(ii)) kK+0—Z| <v<k+y+o—|/Z].

If y= (u,v,2) belongs toS; and has||u|| > \/4yk —¥2, then there is a point oMy N My
within distanceog, hencey ¢ S — &. This proves (i). Before proving (ii) and (iii), note that if

u € By(0, /4y — y2) then
K=a(u) <b(u) <K+y.

Now, lety = (U, b(U'),0) € E; be the point inS; closest toy. We have
dy.S) = lly=YIl < [Ju=u[+|v—b(u)|+]lZ] < 0.
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This gives condition (i) aboviz|| < o and also
v—b(u)| < o—|lZ]. (4)
Sinceb(u') < k +y, we obtain
v<b(u)+o-|lZl <k+y+o—|[z]
which is the right inequality in (iii). Finally,
o <d(y,Mo) <|ly—(u,a(u),0)[| < [v—a(u)[+||Z]

which implies eithev < a(u) — (o —||Z]|) or v > a(u) + (o —||z||). The former inequality would

imply
v<a(u) - (0-2]) =k - (o —[[z]]) < infb(u) — (0 —[[2]])

so that|v—b(u')| > o — ||Z]| for all U, which is in contradiction with (4). Hence we have-
a(u)+ (o —||Z]|) =k + (o —||Z]|) that is the left inequality in (iii).
As a consequence,

S1— S C Ba(0, \/AyK —y2) x {(v,z) eRPY: k—y+o—||Z|<v<K+y+o—|Z|,ze BD,d,l(o,o)}

and
V(S-S5 <C- (VaK— )Ty 0L
HenceV (S — S1) = O(yz*+1).
With similar arguments one can show tN4S; — &) = O(y%“) so that
V(S00S1) = O(y: ).
It then follows that/ [go — gu| = O(y(9+2)/2).
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