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Abstract
We find the minimax rate of convergence in Hausdorff distancefor estimating a manifoldM of
dimensiond embedded inRD given a noisy sample from the manifold. Under certain conditions,
we show that the optimal rate of convergence isn−2/(2+d). Thus, the minimax rate depends only
on the dimension of the manifold, not on the dimension of the space in whichM is embedded.
Keywords: manifold learning, minimax estimation

1. Introduction

We consider the problem of estimating a manifoldM given noisy observations near the manifold.
The observed data are a random sampleY1, . . . ,Yn whereYi ∈ RD. The model for the data is

Yi = ξi +Zi

whereξ1, . . . ,ξn are unobserved variables drawn from a distribution supported on a manifold M
with dimensiond < D. The noise variablesZ1, . . . ,Zn are drawn from a distributionF . Our main
assumption is thatM is a compact,d-dimensional, smooth Riemannian submanifold inRD; the
precise conditions onM are given in Section 2.1.

A manifold M and a distribution for(ξ,Z) induce a distributionQ≡ QM for Y. In Section 2.2,
we define a class of such distributions

Q =
{

QM : M ∈M
}
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whereM is a set of manifolds. Given two setsA andB, the Hausdorff distance betweenA andB is

H(A,B) = inf
{

ε : A⊂ B⊕ ε and B⊂ A⊕ ε
}

where

A⊕ ε =
⋃
x∈A

BD(x,ε)

andBD(x,ε) is an open ball inRD centered atx with radiusε. We are interested in the minimax risk

Rn(Q ) = inf
M̂

sup
Q∈Q

EQ[H(M̂,M)]

where the infimum is over all estimatorŝM. By an estimator̂M we mean a measurable function of
Y1, . . . ,Yn taking values in the set of all manifolds. Our first main result is the following minimax
lower bound which is proved in Section 3.

Theorem 1 Under assumptions (A1)-(A4) given in Section 2, there is a constant C1 > 0 such that,
for all large n,

inf
M̂

sup
Q∈Q

EQ

[
H(M̂,M)

]
≥C1

(
1
n

) 2
2+d

where the infimum is over all estimatorŝM.

Thus, no method of estimatingM can have an expected Hausdorff distance smaller than the
stated bound. Note that the rate depends ond but not onD even though the support of the distribution
Q for Y has dimensionD. Our second result is the following upper bound which is proved in Section
4.2.

Theorem 2 Under assumptions (A1)-(A4) given in Section 2, there exists an estimatorM̂ such that,
for all large n,

sup
Q∈Q

EQ

[
H(M̂,M)

]
≤C2

(
logn

n

) 2
2+d

for some C2 > 0.

Thus the rate is tight, up to logarithmic factors. The estimator in Theorem 2 is of theoretical
interest because it establishes that the lower bound is tight. But, the estimator constructed in the
proof of that theorem is not practical and so in Section 5, we construct avery simple estimator̂M
such that

sup
Q∈Q

EQ

[
H(M̂,M)

]
≤
(

C logn
n

)1/D

.

This is slower than the minimax rate, but the estimator is computationally very simple andrequires
no knowledge ofd or the smoothness ofM.
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1.1 Related Work

There is a vast literature on manifold estimation. Much of the literature deals with using manifolds
for the purpose of dimension reduction. See, for example, Baraniuk andWakin (2007) and refer-
ences therein. We are interested instead in actually estimating the manifold itself. There is a large
literature on this problem in the field of computational geometry; see, for example, Dey (2006),
Dey and Goswami (2004), Chazal and Lieutier (2008) Cheng and Dey (2005) and Boissonnat and
Ghosh (2010). However, very few papers allow for noise in the statistical sense, by which we mean
observations drawn randomly from a distribution. In the literature on computational geometry, ob-
servations are called noisy if they depart from the underlying manifold in a very specific way: the
observations have to be close to the manifold but not too close to each other.This notion of noise is
quite different from random sampling from a distribution. An exception is Niyogi et al. (2008) who
constructed the following estimator. LetI = {i : p̂(Yi) > λ} where p̂ is a density estimator. They
defineM̂ =

⋃
i∈I BD(Yi ,ε) and they show that ifλ andε are chosen properly, then̂M is homologous

to M. (This means thatM andM̂ share certain topological properties.) However, the result does not
guarantee closeness in Hausdorff distance. Note that

⋃n
i=1BD(Yi ,ε) is precisely the Devroye-Wise

estimator for the support of a distribution (Devroye and Wise, 1980).

1.2 Notation

Given a setS, we denote its boundary by∂S. We let BD(x, r) denote aD-dimensional open ball
centered atx with radiusr. If A is a set andx is a point then we writed(x,A) = infy∈A ||x−y|| where
|| · || is the Euclidean norm. Let

A◦B= (A∩Bc)
⋃

(Ac∩B)

denote symmetric set difference between setsA andB.
The uniform measure on a manifoldM is denoted byµM. Lebesgue measure onRk is denoted

by νk. In casek=D, we sometimes writeV instead ofνD; in other wordsV(A) is simply the volume
of A. Any integral of the form

∫
f is understood to be the integral with respect to Lebesgue measure

onRD. If P andQ are two probability measures onRD with densitiesp andq then theHellinger
distancebetweenP andQ is

h(P,Q)≡ h(p,q) =

√∫
(
√

p−√
q)2 =

√
2

(
1−

∫ √
pq

)

where the integrals are with respect toνD. Recall that

ℓ1(p,q)≤ h(p,q)≤
√

ℓ1(p,q) (1)

whereℓ1(p,q) =
∫ |p−q|. Let p(x)∧q(x) = min{p(x),q(x)}. TheaffinitybetweenP andQ is

||P∧Q||=
∫

p∧q= 1− 1
2

∫
|p−q|.

Let Pn denote then-fold product measure based onn independent observations fromP. In the
appendix Section 7.1 we show that

||Pn∧Qn|| ≥ 1
2

(
1− 1

2

∫
|p−q|

)2n

. (2)
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Figure 1: The condition number∆(M) of a manifold is the largest numberκ such that the normals
to the manifold do not cross as long as they are not extended beyondκ. The plot on the
left shows a one-dimensional manifold (a curve) and some normals of lengthr < κ. The
plot on the right shows the same manifold and some normals of lengthr > κ.

We writeXn =OP(an) to mean that, for everyε> 0 there existsC> 0 such thatP(||Xn||/an >C)≤ ε
for all largen. Throughout, we use symbols likeC,C0,C1,c,c0,c1 . . . to denote generic positive
constants whose value may be different in different expressions.

2. Model Assumptions

In this section we describe all the assumptions on the manifold and on the underlying distributions.

2.1 Manifold Conditions

We shall be concerned withd-dimensional compact Riemannian submanifolds without boundary
embedded inRD with d < D. (Informally, this means thatM looks likeRd in a small neighborhood
around any point inM.) We assume thatM is contained in some compact setK ⊂ RD.

At eachu ∈ M let TuM denote the tangent space toM and letT⊥
u M be the normal space. We

can regardTuM as ad-dimensional hyperplane inRD and we can regardT⊥
u M as theD−d dimen-

sional hyperplane perpendicular toTuM. Define thefiber of size a at uto beLa(u) ≡ La(u,M) =
T⊥

u M
⋂

BD(u,a).
Let ∆(M) be the largestr such that each point inM ⊕ r has a unique projection ontoM. The

quantity∆(M) will be small if eitherM highly curved or ifM is close to being self-intersecting. Let
M ≡M (κ) denote alld-dimensional manifolds embedded inK such that∆(M) ≥ κ. Throughout
this paper,κ is a fixed positive constant. The quantity∆(M) has been rediscovered many times. It is
called thecondition numberin Niyogi et al. (2006), thethicknessin Gonzalez and Maddocks (1999)
and thereachin Federer (1959).

An equivalent definition of∆(M) is the following: ∆(M) is the largest numberr such that the
fibersLr(u) never intersect. See Figure 1. Note that ifM is a sphere then∆(M) is just the radius of
the sphere and ifM is a linear space then∆(M) = ∞. Also, if σ < ∆(M) thenM⊕σ is the disjoint
union of its fibers:

M⊕σ =
⋃

u∈M

Lσ(u). (3)

Definetube(M,a) =
⋃

u∈M La(u). Thus, ifσ < ∆(M) thenM⊕σ = tube(M,σ).
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Let p,q∈ M. The angle between two tangent spacesTp andTq is defined to be

angle(Tp,Tq) = cos−1
(

min
u∈Tp

max
v∈Tq

|〈u− p,v−q〉|
)

where〈u,v〉 is the usual inner product inRD. Let dM(p,q) denote the geodesic distance between
p,q∈ M.

We now summarize some useful results from Niyogi et al. (2006).

Lemma 3 Let M⊂K be a manifold and suppose that∆(M) = κ > 0. Let p,q∈ M.

1. Letγ be a geodesic connecting p and q with unit speed parameterization. Then the curvature
of γ is bounded above by1/κ.

2. cos(angle(Tp,Tq))> 1−dM(p,q)/κ. Thus,angle(Tp,Tq)≤
√

2dM(p,q)/κ+o(
√

dM(p,q)/κ).

3. If a= ||p−q|| ≤ κ/2 then dM(p,q)≤ κ−κ
√

1− (2a)/κ = a+o(a).

4. If a= ||p−q|| ≤ κ/2 then a≥ dM(p,q)− (dM(p,q))2/(2κ).

5. If ||q− p||> ε and v∈ BD(q,ε)∩T⊥
p M∩BD(p,κ) then||v− p||< ε2/κ.

6. Fix anyδ > 0. There exists points x1, . . . ,xN ∈ M such that M⊂⋃N
j=1BD(x j ,δ) and such that

N ≤ (c/δ)d.

For further information about manifolds, see Lee (2002).

2.2 Distributional Assumptions

The distribution ofY is induced by the distribution ofξ andZ. We will assume thatξ is drawn
uniformly on the manifold. Then we assume thatZ is drawn uniformly on the normal toM. More
precisely, givenξ, we drawZ uniformly onLσ(ξ). In other words, the noise is perpendicular to the
manifold. The result is that, ifσ < κ, then the distributionQ= QM of Y has support equal toM⊕σ.

The distributional assumption onξ is not critical. Any smooth density bounded away from 0 on
the manifold will lead to similar results. However, the assumption on the noiseZ is critical. We have
chosen the simplest noise distribution here. (Perpendicular noise is also assumed in Niyogi et al.,
2008.) In current work, we are deriving the rates for more complicated noise distributions. The
rates are quite different and the proofs are more complex. Those resultswill be reported elsewhere.

The set of distributions we consider is as follows. Letκ andσ be fixed positive numbers such
that 0< σ < κ. Let

Q ≡ Q (κ,σ) =
{

QM : M ∈M (κ)
}
.

For anyM ∈M (κ) consider the corresponding distributionQM, supported onSM = M⊕σ. Let
qM be the density ofQM with respect to Lebesgue measure. We now show thatqM is bounded above
and below by a uniform density.

Recall that the essential supremum and essential infimum ofqM are defined by

esssup
y∈A

qM = inf
{

a∈ R : νD({y : qM(y)> a}∩A) = 0
}
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and
ess inf

y∈A
qM = sup

{
a∈ R : νD({y : qM(y)< a}∩A) = 0

}
.

Also recall that, by the Lebesgue density theorem,qM(y) = limε→0QM(BD(y,ε))/V(BD(y,ε)) for
almost ally. LetUM be the uniform distribution onM⊕σ and letuM = 1/V(M⊕σ) be the density
of UM. Note that, forA⊂ M⊕σ, UM(A) =V(A)/V(M⊕σ).

Lemma 4 There exist constants0<C∗ ≤C∗ < ∞, depending only onκ and d, such that

C∗ ≤ inf
M∈M

ess inf
y∈SM

qM(y)
uM(y)

≤ sup
M∈M

esssup
y∈SM

qM(y)
uM(y)

≤C∗.

Proof Choose anyM ∈M (κ). Let x by any point in the interior ofSM. Let B = BD(x,ε) where
ε > 0 is small enough so thatB ⊂ SM = M ⊕σ. Let y be the projection ofx ontoM. We want to
upper and lower boundQ(B)/V(B). Then we will take the limit asε → 0. Consider the two spheres
of radiusκ tangent toM at y in the direction of the line betweenx andy. (See Figure 2.) Note that
Q(B) is maximized by takingM to be equal to the upper sphere andQ(B) is minimized by takingM
to be equal to the lower sphere. Let us consider first the case whereM is equal to the upper sphere.
Let

U =
{

u∈ M : Lσ(u)∩B 6= /0
}

be the projection ofB ontoM. By simple geometry,U = M∩BD(y, rε) where

(
1+

σ
κ

)−1
≤ r ≤

(
1+

σ
κ

)
.

Let Vol denoted-dimensional volume onM. ThenVol(BD(y, rε)∩M) ≤ c1rdεdωd whereωd is
the volume of a unitd-ball andc1 depends only onκ and d. To see this, note that becauseM
is a manifold and∆(M) ≥ κ, it follows that neary, M may be locally parameterized as a smooth
function f = ( f1, . . . , fD−d) over B∩ TyM. The surface area of the graph off over B∩ TyM is

bounded by
∫

BD(y,rε)∩TyM

√
1+‖∇ fi‖2, which is bounded by a constantc1 uniformly over M .

Hence,Vol(BD(y, rε)∩M)≤ c1Vol(BD(y, rε)∩TyM) = c1rdεdωd.
Let ΛM be the uniform distribution onM and letΓu denote the uniform measure onLσ(u). Note

that, foru∈U , Lσ(u)∩B is a(D−d)-ball whose radius is at mostε. Hence,

Γu(Lσ(u)∩B)≤ εD−dωD−d

σD−dωD−d
=
( ε

σ

)D−d
.

Thus,

QM(B) =
∫

M
Γu(B∩Lσ(u))dΛM(u) =

∫
U

Γu(B∩Lσ(u))dΛM(u)

≤
( ε

σ

)D−d
Λ(U) =

( ε
σ

)D−d Vol(BD(y, r)∩M)

Vol(M)

≤
( ε

σ

)D−d εdrdωd

Vol(M)
≤
( ε

σ

)D−d εd(1+σ/κ)dωd

Vol(M)
.
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Figure 2: Figure for proof of Lemma 4.x is a point in the supportM⊕σ. y is the projection ofx
ontoM. The two spheres are tangent toM aty and have radiusκ.

Now,UM(B) =V(B)/V(M⊕σ) = εDωD/(σD−dVol(M)). Hence,

QM(B)
UM(B)

≤
(

1+
σ
κ

)d
ωd.

Taking limits asε → 0 we have thatqM(y)≤C∗uM(y) for almost ally.
The proof of the lower bound is similar to the upper bound except for the following changes: let

U0 denote allu∈U such that the radius ofB∩Lσ(u) is at leastε/2. ThenΛ(U0)≥ Λ(U)(1−O(ε))
and the projection ofU0 ontoM is again of the formBD(y, rε)∩M. By Lemma 5.3 of Niyogi et al.
(2006),

Vol(BD(y, r)∩M)≥
(

1− r2ε2

4κ2

)d/2

rdεdωd

and the latter is larger than 2−d/2rdεdωd for all smallε. Also, Γu(Lσ(u)∩B)≥ (ε/(2σ))D−d for all
u∈U0.

Of course, an immediate consequence of the above lemma is that, for everyM ∈ M (κ) and
every measurable setA, C∗UM(A)≤ QM(A)≤C∗UM(A). We conclude this section by recording all
the assumptions in Theorems 1 and 2:
(A1)The manifoldM is d-dimensional and is contained in a compact setK ⊂ RD with d < D.
(A2)The manifoldM satisfies∆(M)≥ κ > 0.
(A3) The observed dataY1, . . . ,Yn are iid observations withYi = Xi + ξi . Here,ξ1, . . . ,ξn are drawn
uniformly onM. Xi givenξi is drawn uniformly onLσ(ξi) = T⊥

ξi

⋂
BD(ξi ,σ).
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(A4)The noise levelσ satisfies 0< σ < κ.
Remark: As noted by a referee, the assumptions are very specific and the results do depend criti-
cally on the assumptions especially the assumption thatd is known.
Remark: A referee has pointed out that another reasonable model is to assume thattheYi have a
uniform distribution on the tube of sizeσ around the manifold. To the best of our knowledge, this
does not correspond to our model except in the special case where∆(M) = ∞. However, all the
results of our paper still apply in this case as long asσ < κ.

3. Minimax Lower Bound

In this section we derive a lower bound on the minimax rate of convergence for this problem. We
will make use of the following result due to LeCam (1973). The following version is from Lemma
1 of Yu (1997).

Lemma 5 (Le Cam 1973)LetQ be a set of distributions. Letθ(Q) take values in a metric space
with metricρ. Let Q0,Q1 ∈ Q be any pair of distributions inQ . Let Y1, . . . ,Yn be drawn iid from
some Q∈ Q and denote the corresponding product measure by Qn. Let θ̂(Y1, . . . ,Yn) be any estima-
tor. Then

sup
Q∈Q

EQn

[
ρ(θ̂(Y1, . . . ,Yn),θ(Q))

]
≥ ρ
(
θ(Q0),θ(Q1)

)
||Qn

0∧Qn
1||.

To get a useful bound from Le Cam’s lemma, we need to construct an appropriate pairQ0 and
Q1. This is the topic of the next subsection.

3.1 A Geometric Construction

In this section, we construct a pair of manifoldsM0,M1 ∈M (κ) and corresponding distributions
Q0,Q1 for use in Le Cam’s lemma. An informal description is as follows. Roughly speaking, M0

andM1 minimize the Hellinger distanceh(Q0,Q1) subject to their Hausdorff distanceH(M0,M1)
being equal to a given valueγ.

Let
M0 =

{
(u1, . . . ,ud,0, . . . ,0) : −1≤ u j ≤ 1, 1≤ j ≤ d

}

be ad-dimensional hyperplane inRD. Hence∆(M0) = ∞. Place a hypersphere of radiusκ below
M0. Push the sphere upwards intoM0 causing a bump of heightγ at the origin. This creates a new
manifoldM′

0 such thatH(M0,M′
0) = γ. However,M′

0 is not smooth. We will roll a sphere of radius
κ aroundM′

0 to get a smooth manifoldM1 as in Figure 3. We re-iterate that this is only an informal
description and the reader should see Section 7.2 for the formal details.

Theorem 6 Let γ be a small positive number. Let M0 and M1 be as defined in Section 7.2. Let Qi

be the corresponding distributions on Mi ⊕σ for i = 0,1. Then:

1. ∆(Mi)≥ κ, i = 0,1.

2. H(M0,M1) = γ.

3.
∫ |q0−q1|= O(γ(d+2)/2).

Proof See Section 7.2.
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A

B

C

D

Figure 3: A sphere of radiusκ is pushed upwards into the planeM0 (panel A). The resulting mani-
fold M′

0 is not smooth (panel B). A sphere is then rolled around the manifold (panelC) to
produce a smooth manifoldM1 (panel D).
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3.2 Proof of the Lower Bound

Now we are in a position to prove the first theorem. Let us first restate the theorem.
Theorem 1.Under assumptions (A1)-(A4), there is a constant C> 0 such that, for all large n,

inf
M̂

sup
Q∈Q

EQ

[
H(M̂,M)

]
≥Cn−

2
2+d

where the infimum is over all estimatorŝM.
Proof of Theorem 1.Let M0 andM1 be as defined in Section 3.1. LetQi be the uniform distribution
onMi ⊕σ, i = 0,1. Letqi be the density ofQi with respect to Lebesgue measureνD, i = 0,1. Then,
from Theorem 6,H(M0,M1) = γ and

∫ |q0−q1|= O(γ(d+2)/2). Le Cam’s lemma then gives, for any
M̂,

sup
Q∈Q

EQn[H(M,M̂)]≥ H(M0,M1) ||Qn
0∧Qn

1|| ≥
γ
2
(1−cγ(d+2)/2)2n

where we used Equation (2). Settingγ = n−2/(d+2) yields the result.�

4. Upper bound

To establish the upper bound, we will construct an estimator that achieves the appropriate rate. The
estimator is intended only for the theoretical purpose of establishing the rate.(A simpler but non-
optimal method is discussed in Section 5.) Recall thatM =M (κ) is the set of alld-dimensional
submanifoldsM contained inK such that∆(M) ≥ κ > 0. Before proceeding, we need to discuss
sieve maximum likelihood.

4.1 Sieve Maximum Likelihood

Let P be any set of distributions such that eachP ∈ P has a densityp with respect to Lebesgue
measureνD. Recall thath denotes Hellinger distance. A set of pairs of functionsB = {(ℓ1,u1), . . . ,
(ℓN,uN)} is anε-Hellinger bracketing forP if, (i) for each p ∈ P there is a(ℓ,u) ∈ B such that
ℓ(y)≤ p(y)≤ u(y) for all y and (ii)h(ℓ,u)≤ ε. The logarithm of the size of the smallestε-bracketing
is called thebracketing entropyand is denoted byH[ ](ε,P ,h).

We will make use of the following result which is Example 4 of Shen and Wong (1995).

Theorem 7 (Shen and Wong, 1995)Letεn solve the equationH[ ](εn,P ,h) = nε2
n. Let(ℓ1,u1), . . . ,

(ℓN,uN) be anεn bracketing where N= H[ ](εn,P ,h). Define the set of densities S∗
n = {p∗1, . . . , p

∗
N}

where p∗t = ut/
∫

ut . Let p̂∗ maximize the likelihood∏n
i=1 p∗t (Yi) over the set S∗n. Then

sup
P∈P

Pn({h(p, p̂∗)≥ εn})≤ c1e−c2nε2
n.

The sequence{S∗n} in Theorem 7 is called asieveand the estimator̂p∗ is called asieve-maximum
likelihood estimator. The estimator̂p∗ need not be inP . We will actually need an estimator that
is contained inP . We may construct one as follows. Letp̂∗ be the sieve mle corresponding toS∗n.
Then p̂∗ = p∗t for somet. Let (ℓ̂, û)≡ (ℓt ,ut) be the corresponding bracket.

Lemma 8 Assume the conditions in Theorem 7. Letp̂ be any density inP such that̂ℓ ≤ p̂≤ û. If
εn ≤ 1 then

sup
P∈P

Pn({h(p, p̂)≥ cεn})≤ c1e−c2nε2
n.
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Proof By the triangle inequality,h(p, p̂) ≤ h(p, p̂∗) + h(p̂, p̂∗) = h(p, p̂∗) + h(p̂,ut/
∫

ut) where
p̂∗ = ut/

∫
ut for somet. From Theorem 7,h(p, p̂∗) ≤ εn with high probability. Thus we need to

show thath(p̂,ut/
∫

ut)≤Cεn. It suffices to show that, in general,h(p,u/
∫

u)≤Ch(ℓ,u) whenever
ℓ≤ p≤ u.

Let (ℓ,u) be a bracket and letδ2 = h2(ℓ,u)≤ 1. Letℓ≤ p≤ u. We claim thath2(p,u/
∫

u)≤ 4δ2.
(Taking δ = εn then proves the result.) Letc2 =

∫
u. Then 1≤ c2 =

∫
u =

∫
p+

∫
(u− p) = 1+∫

(u− p) = 1+ ℓ1(u, p)≤ 1+2h(u, ℓ) = 1+2δ. Now,

h2
(

p,
u∫
u

)
=

∫
(
√

u/c−√
p)2 =

1
c2

∫
(
√

u−c
√

p)2 ≤
∫
(
√

u−c
√

p)2

=
∫
((
√

u−√
p)+(c−1)

√
p)2 ≤ 2

∫
(
√

u−√
p)2+2(c−1)2

≤ 2δ2+2(
√

1+2δ−1)2 ≤ 2δ2+2δ2 = 4δ2

where the last inequality used the fact thatδ ≤ 1.

In light of the above result, we define modified maximum likelihood sieve estimatorp̂ to be any
p ∈ P such that̂ℓ ≤ p̂ ≤ û. For simplicity, in the rest of the paper, we refer to the modified sieve
estimatorp̂, simply as the maximum likelihood estimator (mle).

4.2 Outline of Proof

We are now ready to find an estimatorM̂ that converges at the optimal rate (up to logarithmic terms.)
Our strategy for estimatingM has the following steps:

Step 1.We split the data into two halves.
Step 2.Let Q̃ be the maximum likelihood estimator using the first half of the data. DefineM̃ to be

the corresponding manifold. We call̃M, the pilot estimator. We show that̃M is a consistent

estimator ofM that converges at a sub-optimal ratean = n−
2

D(d+2) . To show this we:

a. Compute the Hellinger bracketing entropy ofQ . (Theorem 9, Lemmas 10 and 11).
b. Establish the rate of convergence of the mle in Hellinger distance, using the bracketing
entropy and Theorem 7.

c. Relate the Hausdorff distance to the Hellinger distance and hence establish the rate of
convergencean of the mle in Hausdorff distance. (Lemma 13).

d. Conclude that the true manifold is contained, with high probability, inMn = {M ∈
M (κ) : H(M,M̃)≤ an} (Lemma 14). Hence, we can now restrict attention toMn.

Step 3.To improve the pilot estimator, we need to control the relationship between Hellinger and
Hausdorff distance and thus need to work over small sets on which the manifold cannot vary
too greatly. Hence, we cover the pilot estimator with long, thin slabsR1, . . . ,RN. We do this by
first coveringM̃ with spheres1ג, . . . Nג, of radiusδn = O((logn/n)1/(2+d)). We define a slab
Rj to be the union of fibers of sizeb= σ+an within one of the spheres:Rj = ∪x∈ג j Lb(x,M̃).
We then show that:

a. The set of fibers oñM cover eachM ∈Mn in a nice way. In particular, ifM ∈Mn then
each fiber fromM̃ is nearly normal toM. (Lemma 15).
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b. As M cuts through a slab, it stays nearly parallel toM̃. Roughly speaking,M behaves
like a smooth, nearly linear function within each slab. (Lemma 16).

Step 4.Using the second half of the data, we apply maximum likelihood within each slab. This
defines estimatorŝM j , for 1≤ j ≤ N. We show that:

a. The entropy of the set of distributions within a slab is very small. (Lemma 18).
b. Because the entropy is small, the maximum likelihood estimator within a slab con-
verges fairly quickly in Hellinger distance. The rate isεn = (logn/n)1/(2+d). (Lemma
19).

c. Within a slab, there is a tight relationship between Hellinger distance and Hausdorff
distance. Specifically,H(M1,M2)≤ ch2(Q1,Q2). (Lemma 20).

d. Steps (4b) and (4c) imply thatH(M∩Rj ,M̂ j) = OP(ε2
n) = OP((logn/n)2/(d+2)).

Step 5.Finally we defineM̂ =
⋃N

j=1M̂ j and show that̂M converges at the optimal rate because each

M̂ j does within its own slab.

The reason for getting a preliminary estimator and then covering the estimator withthin slabs is
that, within a slab, there is a tight relationship between Hellinger distance and Hausdorff distance.
This is not true globally but only in thin slabs. Maximum likelihood is optimal with respect to
Hellinger distance. Within a slab, this allows us to get optimal rates in Hausdorffdistance.

4.3 Step 1: Data Splitting

For simplicity assume the sample size is even and denote it by 2n. We split the data into two halves
which we denote byX = (X1, . . . ,Xn) andY = (Y1, . . . ,Yn).

4.4 Step 2: Pilot Estimator

Let q̃ be the maximum likelihood estimator overQ . Let M̃ be the corresponding manifold. To
study the properties of̃M requires two steps: computing the bracketing entropy ofQ and relating
H(M,M̃) to h(q, q̃). The former allows us to apply Theorem 7 to boundh(q, q̃), and the latter allows
us to control the Hausdorff distance.

4.5 Step 2a: Computing the Entropy ofQ

To compute the entropy ofQ we start by constructing a finite net of manifolds to coverM (κ). A
finite set ofd-manifoldsMγ = {M1, . . . ,MN} is aγ-net (or aγ-cover) if, for eachM ∈M there exists
M j ∈Mγ such thatH(M,M j) ≤ γ. Let N(γ) = N(γ,M ,H) be the size of the smallest covering set,
called the (Hausdorff) covering number ofM .

Theorem 9 The Hausdorff covering number ofM satisfies the following:

N(γ)≡ N(γ,M ,H)≤ c1 κ2(κ,d,D)exp
(

κ3(κ,d,D)γ−d/2
)
≡ cexp

(
c′γ−d/2

)

whereκ2(κ,d,D) =
(D

d

)(c2/κ)D

andκ3(κ,d,D) = 2d/2(D−d)(c2/κ)D, for a constant c2 that depends
only onκ and d.
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Proof Recall that the manifolds inM all lie within K . Consider any hypercube containingK .
Divide this cube into a grid ofJ = (2c/κ)D sub-cubes{C1, . . . ,CJ} of side lengthκ/c, wherec≥ 4
is a positive constant chosen to be sufficiently large. Our strategy is to show that within each of
these cubes, the manifold is the graph of a smooth function. We then only needcount the number
of such smooth functions.

In thinking about the manifold as (locally) the graph of a smooth function, it helps to be able
to translate easily between the natural coordinates inK and the domain-range coordinates of the
function. To that end, within each subcubeCj for j ∈ {1, . . . ,J}, we defineK =

(D
d

)
coordinate

frames,Fjk for k ∈ {1, . . . ,K}, in which d out of D coordinates are labeled as “domain” and the
remainingD−d coordinates are labeled as “range.”

Each frame is associated with a relabeling of the coordinates so that thed “domain” coordinates
are listed first andD− d “range” coordinates last. That is,Fjk is defined by a one-to-one corre-
spondence betweenx ∈ Cj and(u,v) ∈ π jk(x) whereu ∈ Rd andv ∈ RD−d andπ jk(x1, . . . ,xD) =
(xi1, . . . ,xid ,x j1, . . . ,x jD−d) for domain coordinate indicesi1 < .. . < id and range coordinate indices
j1 < .. . < jD−d.

We define domain(Fjk) = {u∈ Rd : ∃v∈ RD−d such that(u,v) ∈ Fjk}, and letG jk denote the
class of functions defined on domain(Fjk) whose second derivative (i.e., second fundamental form)
is bounded above by a constantC(κ) that depends only onκ. To say that a setR⊂Cj is the graph of
a function on ad-dimensional subset of the coordinates inCj is equivalent to saying that for some
frameFjk and some setA⊂ domain(Fjk), R= π−1

jk {(u, f (u)) : u∈ A}.
We will prove the theorem by establishing the following claims.

Claim 1. Let M ∈ M andCj be a subcube that intersectsM. Then: (i) for at least onek ∈
{1, . . . ,K}, the setM ∩Cj is the graph of a function (i.e., single-valued mapping) defined on a
setA ⊂ domain(Fjk), of the form(u1, . . . ,ud) 7→ π−1

jk ((u, f (u))) for some functionf on A , and
(ii) this function lies inG jk.
Claim 2. M is in one-to-one correspondence with a subset ofG = ∏J

j=1
⋃K

k=1G jk.
Claim 3. TheL∞ covering number ofG satisfies

N(γ,G ,L∞)≤ c1

(
D
d

)(2c/κ)D

exp
(
(D−d)(2c/κ)Dγ−d/2

)
.

Claim 4. There is a one-to-one correspondence between anγ/2 L∞-cover ofG and anγ Hausdorff-
cover ofM .

Taken together, the claims imply that

N(γ,M ,H)≤ c1

(
D
d

)(2c/κ)D

exp((D−d)(2c/κ)D2d/2γ−d/2).

Takingc2 = 2c proves the theorem.

Proof of Claim 1. We begin by showing that (i) implies (ii). By part 1 of Lemma 3, each
M ∈ M has curvature (second fundamental form) bounded above by 1/κ. This implies that the
function identified in (i) has uniformly bounded second derivative and thus lies in the corresponding
G jk.

We prove (i) by contradiction. Suppose that there is anM ∈ M such that for everyj with
M∩Cj 6= /0, the setM∩Cj is not the graph of a single-valued mapping for any of theK coordinate
frames.
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Fix j ∈ {1, . . . ,J}. Then in each domain(Fjk), there is a pointu such thatCj ∩π−1
jk (u×RD−d)

intersectsM in at least two points, call themak andbk. By construction‖ak−bk‖ ≤
√

D−d ·κ/c,
and hence by choosingc large enough (making the cubes small), part 3 of Lemma 3 tells us that
dM(ak,bk)≤ 2

√
D−dκ/c. Then we argue as follows:

1. By parts 2 and 3 of Lemma 3 and the fact thatCj has diameter
√

Dκ/c and

max
p,q∈Cj∩M

cos(angle(TpM,TqM))≥ 1− 2
√

D
c

.

For large enoughc, the maximum angle between tangent vectors can be made smaller than
π/3.

2. By part 2 of Lemma 3, any pointzalong a geodesic betweenak andbk,

cos(angle(TakM,TzM))≥ 1− 2
√

D−d
c

.

It follows that there is a point inCj ∩ M and a tangent vectorvk at that point such that
angle(vk,bk−ak) = O(1/

√
c).

3. We have for each ofK =
(D

d

)
coordinate frames and associated tangent vectorsv1, . . . ,vK that

are each nearly orthogonal to at leastd of the others. Consequently, there are≥ d+1 nearly
orthogonal tangent vectors ofM within Cj . This contradicts point 1 and proves the claim.

Proof of Claim 2. We construct the correspondence as follows. For each cubeCj , let k∗j be
the smallestk such thatM ∩Cj is the graph of a functionφ jk ∈ G jk as in Claim 1. MapM to
ϕ=(φ1k∗1, . . . ,φJk∗J), and letF ⊂G be the image of this map. IfM 6=M′ ∈M , then the corresponding
ϕ and ϕ′ must be distinct. If not, thenM ∩Cj = M′ ∩Cj for all j, contradictingM 6= M′. The
correspondence fromM toF is thus a one-to-one correspondence.

Proof of Claim 3. From the results in Birman and Solomjak (1967), the set of functions defined
on a pre-compactd-dimensional set that take values in a fixed dimension spaceRm with uniformly
bounded second derivative hasL∞ covering number bounded above byc1em(1/γ)d/2

for somec1.
Part 1 of Lemma 3 shows that eachM ∈ M has curvature (second fundamental form) bounded
above by 1/κ, so eachG jk satisfies Birman and Solomjak’s conditions. Hence,N(γ,G jk,L∞) ≤
c1e(D−d)(1/γ)d/2

. Because all theG jk’s are disjoint, simple counting arguments show thatN(γ,G ,L∞)=((D
d

)
N(γ,G jk,L∞)

)J
, whereJ is the number of cubes defined above. The claim follows. (Note that

the functions in Claim 1 are defined on a subset of domain(Fjk). But because all such functions have
an extension inG jk, a covering ofG jk also covers these functions defined on restricted domains.)

Proof of Claim 4. First, note that if two functions are less thanγ distant inL∞, their graphs are
less thanγ distant in Hausdorff distance, and vice versa. This implies that aγ L∞-cover of a set of
functions corresponds directly to anγ Hausdorff-cover of the set of the functions’ graphs. Hence, in
the argument that follows, we can work with functions or graphs interchangeably.

For k ∈ {1, . . . ,K}, letG γ
jk be a minimalL∞ cover ofG jk by γ/2 balls; specifically, we assume

thatG γ
jk is the set of centers of these balls. For eachg jk ∈ G

γ
jk, define f jk(u) = π−1

jk (u,g jk(u)).
For every j, choose one suchf jk, and define a setM′ =

⋃
j(Cj ∩ range( f jk j )), which is a union

of manifolds with boundary that have curvature bounded by 1/κ. That is, such anM′ is piecewise
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smooth (smooth within each cube) but may fail to satisfy∆(M′)≥ κ globally. LetA be the collection
of M′ constructed this way. There areN(γ/2,G ,L∞) elements in this collection.

By construction and Claim 2, for eachM ∈M , there exists anM′ ∈A such thatH(M,M′)≤ γ/2.
In other words, the set ofγ/2 Hausdorff balls around the manifolds inA coversM but the elements
of A are not themselves necessarily inM . Let BH(A,γ/2) denote the set of alld-manifoldsM ∈M
such thatH(A,M)≤ γ/2. Let

A0 =
{

A∈ A : BH(A,γ/2)∩M 6= /0
}
.

For eachA∈A0, choose somẽA∈ BH(A,γ/2)∩M . By the triangle inequality, the set{Ã : A∈A0}
forms anγ Hausdorff-net forM . This proves the claim.

We are almost ready to compute the entropy. We will need the following lemma.

Lemma 10 Let0< γ < κ−σ. There exists a constant K> 0 (depending only onK ,κ andσ) such
that, for any M1,M2 ∈M (κ), H(M1,M2) ≤ γ implies that|V(M1⊕σ)−V(M2⊕σ)| ≤ Kγ. Also,
for any M∈M (κ), |V(M⊕ (σ+ γ))−V(M⊕σ)| ≤ Kγ.

Proof Let Sj = M j ⊕σ, j = 1,2. Then, using (3),

S2 ⊂ M1⊕ (σ+ γ) =
⋃

u∈M1

Lσ+γ(u).

Hence, uniformly overM ,

V(S2)≤
∫

M1

νD−d(Lσ+γ(u))dµM1 ≤
∫

M1

νD−d(Lσ(u))dµM1 +Kγ =V(S1)+Kγ

sinceνD−d(B(u,σ+ γ)) ≤ νD−d(B(u,σ))+Kγ for someK > 0 not depending onM1 or M2. By a
symmetric argument,V(S1) ≤ V(S2)+Kγ. Hence,|V(M1⊕σ)−V(M2⊕σ)| ≤ Kγ. The second
statement is proved in a similar way.

Now we construct a Hellinger bracketing. Letγ = ε2. LetMγ = {M1, . . . ,MN} be aγ-Hausdorff

net of manifolds. Thus, by Theorem 9,N = N(ε2,M ,H)≤ c1ec2(1/ε)d
. Let ω denote the volume of

a sphere of radiusσ. Let q j be the density corresponding toM j . Define

u j(y) =

(
q j(y)+

2ε2

V(M j ⊕ (σ+ ε2))

)
I(y∈ M j ⊕ (σ+ ε2))

and

ℓ j(y) =

(
q j(y)−

2ε2

V(M j ⊕ (σ− ε2))

)
I(y∈ M j ⊕ (σ− ε2)).

LetB = {(ℓ1,u1), . . . ,(ℓN,uN)}.

Lemma 11 B is anε-Hellinger bracketing ofQ . Hence,H[ ](ε,Q ,h)≤C(1/ε)d.
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Proof LetM ∈M (κ) and letQ=QM be the corresponding distribution. Letq be the density ofQ. Q
is supported onS=M⊕σ. There existsM j ∈Mγ such thatH(M,M j)≤ ε2. Lety be inS. Then there
is ax∈M such that||y−x|| ≤σ. There is ax′ ∈M j such that||x−x′|| ≤ ε2. Hence,d(y,M j)≤σ+ε2

and thusy is in the support ofu j . Now, fory∈ S, u j(y)−q(y) = 2ε2/V(M j ⊕ (σ+ε2))≥ 0. Hence,
q(y)≤ u j(y). By a similar argument,ℓ j(y)≤ q(y). ThusB is a bracketing. Now

ℓ1(ℓ j ,u j) =
∫

u j −
∫

ℓ j =

(
1+

2Kε2

ω

)
−
(

1− 2Kε2

ω

)
=

4Kε2

ω
.

Finally, by (1),h(u j , ℓ j)≤
√
ℓ1(ℓ j ,u j) =Cε. ThusB is aCε-Hellinger bracketing.

4.6 Step 2b. Hellinger Rate

Lemma 12 Let Q̃ be the mle. Then

sup
Q∈Q

Qn
({

h(Q,Q̃)>C0n−
1

d+2

})
≤ exp

{
−Cn

d
2+d

}
.

Proof We have shown (Lemma 11) thatH[ ](ε,Q ,h)≤C(1/ε)d. Solving the equationH[ ](εn,Q ,h)=

nε2
n from Theorem 7 we getεn = (1/n)1/(d+2). From Lemma 8, for allQ

Qn
({

h(Q,Q̃)>C0n−
1

d+2

})
≤ c1e−c2nε2

n = exp
{
−Cn

d
2+d

}
.

4.7 Step 2c. Relating Hellinger Distance and Hausdorff Distance

Lemma 13 Let c= (κ−σ)
√

πC∗/(2Γ(D/2+1)). If M1,M2 ∈M (κ) and h(Q1,Q2)< c then

H(M2,M2)≤
[

2√
π

(
Γ(D/2+1)

C∗

)1/D
]

h
1
D (Q1,Q2)

Proof Let b= H(M1,M2) andγ = min{κ−σ,b}. Let S1,S2 be the supports ofQ1 andQ2. Because
H(M1,M2) = b, we can find pointsx∈ M1 andy∈ M2 such that‖y−x‖ = b. Note thatTxM1 and
TyM2. are parallel, otherwise we could movex or y and increase‖y−x‖. It follows that the line
segment[x,y] is along a common normal vector of the two manifolds and we can writey= x±bu
for someu ∈ Lσ(u,M). Without loss of generality, assume thaty = x+ bu. Let x′ = x+σu and
y′ = y+σu. Hence,x′ ∈ ∂S1, y′ ∈ ∂S2 and ||x′− y′|| = b. Note that∂S1 and∂S2 are themselves
smoothD-manifolds with∆(∂Si)≥ κ−σ > 0.

We now make the following three claims:

1. y′ ∈ S2−S1.

2. (x′,y′]⊂ S2−S1

3. interiorB
(

x′+y′

2 , γ
2

)
⊂ S2−S1
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First, note thaty′ differs fromy along a fiber ofM2 by exactlyσ, therefore[x′,y′]⊂ S2. Second,
becausex′ ∈ ∂S1, there is a neighborhood ofx′ in [x′,y′] that is not contained inS1. Hence, if there is
a point inS1∩ [x′,y′] there must be a pointz′ ∈ ∂S1∩ [x′,y′], with z′ 6= x′. This implies the existence
of two distinct points whose fibers of length less thanκ−σ cross, which contradicts the fact that
∆(∂S1)≥ κ−σ. Claims 1 and 2 follows.

Let B = B
(

x′+y′

2 , γ
2

)
. By construction,B is tangent to∂S1 at x′ and tangent to∂S2 at y′, and

B contains[x′,y′]. The ball has radiusγ/2 = (1/2)min{κ−σ,b} < κ−σ. BecauseB intersects
S2−S1, the interior ofB cannot intersect either∂S1 or ∂S2. Claim 3 follows by a similar argument
as in the proof of Claim 2. (In particular, if there were a point in the interior of B that is either inS1

or outsideS2, a line segment from(x′+y′)/2 to that point would have to intersect the corresponding
boundary, which cannot happen.)

Now V(B) = (γ/2)DπD/2/Γ(D/2+1). So

h(Q1,Q2) ≥ ℓ1(Q1,Q2) =
∫

|q1−q2| ≥
∫

S1∩Sc
2

|q1−q2|

=
∫

S1∩Sc
2

q1 = Q1(S1∩Sc
2)≥C∗V(S1∩Sc

2) =C∗(γ/2)DπD/2/Γ(D/2+1).

Hence,

γ = min{κ−σ,b} ≤
[

2√
π

(
Γ(D/2+1)

C∗

)1/D
]

h1/D(Q1,Q2).

If κ−σ ≤ b this implies thath(Q1,Q2) > c which contradicts the assumption thath(Q1,Q2) < c.
Therefore,γ = b and the conclusion follows.

4.8 Step 2d. Computing The Hausdorff Rate of the Pilot

Lemma 14 Let an =
(

C0
n

) 2
D(d+2)

. For all large n,

sup
Q∈Q

Qn
(
{H(M,M̃)> an}

)
≤ exp

{
−Cn

d
2+d

}
.

Proof Follows by combining Lemma 12 and Lemma 13.

We conclude that, with high probability, the true manifoldM is contained in the setMn =
{

M ∈

M (κ) : H(M̃,M)≤ an

}
.

4.9 Step 3: Cover With Slabs

Now we cover the pilot estimator̃M with (possibly overlapping) slabs. Letδn =
(

C logn
n

) 1
2+d

. It

follows from part 6 of Lemma 3 that there exists a collection of pointsF = {x1, . . . ,xN} ⊂ M̃, such
thatN = (cδn)

−d = (Cn/ logn)d/(2+d) and such that̃M ⊂⋃N
j=1BD(x j ,cδ).
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Figure 4: Figure for the proof of part 1 of Lemma 15.

4.10 Step 3a. The Fibers of̃M Cover M Nicely

Lemma 15 Let b= σ+an. For x̃ ∈ M̃, let Lb(x̃) = T⊥
x̃ M̃ ∩BD(x̃,b) be a fiber at̃x of size b. Let

M ∈Mn. Then:

1. If x̃∈ M̃ and x∈ M are such that‖x− x̃‖ ≤ an, thenangle(TxM, T̃xM̃)< π/4.

2. Lb(x̃)∩M 6= /0.

3. If x∈ Lb(x̃)∩M, then‖x− x̃‖ ≤ 2an.

4. For anyx̃∈ M̃, #{Lb(x̃)∩M}= 1.

5. We have M⊂⋃
x̃∈M̃ Lb(x̃).

Proof 1. Let x and x̃ be as given in the statement of the lemma and letθ = angle(TxM, T̃xM̃).
Suppose thatθ ≥ π/4. There exists unit vectorsu ∈ T̃xM̃ and v ∈ TxM such thatangle(u,v) =
θ. Without loss of generality, we can assume thatx = x̃. (The extension to the casex 6= x̃ is
straightforward.)

Consider the plane defined byu andv as in Figure 4. We assume, without loss of generality, that
(u+ v)/2 generates thex-axis in this plane and thatv lies above thex-axis andu lies below thex
axis. Letℓ denote the horizontal line, parallel to thex-axis and lying 2an units above the horizontal
axis. Hence,u andv each make an angle greater thanπ/8 with respect to thex-axis.

Consider the two circlesC1 andC2 tangent toM atx with radiusκ whereC1 lies belowv andC2

lies abovev. Let w be the point at whichC1 intersectsℓ. The arclength ofC1 from x to w is Can for
someC > 1. Let γ be the geodesic onM throughx with gradientv. The projection̂γ of γ into the
plane must fall betweenC1 andC2. Let y= γ(Can) andŷ be the projection ofy into the plane.

Now ||y− x̃|| ≥ ||ŷ− x̃|| ≥ ||w− x̃|| ≥ 2an > an. There exists̃z∈ M̃ such that||z̃− y|| ≤ an.
Hence,||ẑ− ŷ|| ≤ an whereẑ is the projection of̃z into the plane. Letq be the point on the plane
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with coordinates(an
√

C2−1,an). Thus,||q− x̃||=Can. Note thatangle(ẑ− x̃,u) is larger than the

angle betweenq− x̃ and thex-axis which is arctan
(

1√
C2−1

)
≡ α > 0. Hence,

angle(z̃− x̃,u)≥ angle(ẑ− x̃,u)≥ α.

Let γ̃ be a geodesic oñM, parameterized by arclength connectingx̃ and z̃. Thusγ̃(0) = x̃ and
γ̃(T) = z̃ for someT. There exists some 0≤ t ≤ T such thatγ′(t) ∝ z̃− x̃. So

angle(γ′(t),γ′(0)) = α > 0.

However,||z̃− x̃|| ≤ (C+1)an which implies, by part 2 of Lemma 3, thatangle(γ′(t),γ′(0)) =
O(

√
an)< α which is a contradiction.

2. For anyx̃ ∈ M̃, the closest pointx ∈ M must satisfy‖x− x̃‖ ≤ an. Let y be the projection ofx

onto T̃xM̃. Let U = T̃xM̃∩Bd(y,an). Let Cyl=
⋃

u∈U BD(u,3an)∩
(

T̃xM̃
)⊥

. Cyl is a small hyper-

cylinder containingy andx̃, with the former in the center.M cannot intersect the top or bottom faces
of the cylinder. Otherwise, we can find a pointp∈ M such thatangle(T̃xM̃,TpM)> arctan(1) = π/4
contradicting1. Thus, any path throughx onM must intersect the sides of Cyl. Hence,Lb(x̃)∩M 6=
/0.
3. Let x ∈ M ∩ Lb(x̃). Suppose that||x− x̃|| > 2an. There existsq ∈ M̃ such that||q− x|| ≤ an.
Note that||q− x̃|| > an. Now we apply part 5 Lemma 3 withp = x̃ andv = x. This implies that
||v− p||= ||x− x̃||< a2

n/κ which contradicts the assumption that||x− x̃||> 2an.
4. Suppose that more than one point ofM were inLb(x̃). Pick two and call themx1 andx2. By 3,
‖xi − x̃‖≤ 2an. It follows that‖x1−x2‖≤ 4an and thus they areO(an) close in geodesic distance by
part 3 of Lemma 3. Hence, there is a geodesic onM connectingx1 andx2 that is contained strictly
within theCan ball. Becausex2−x1 lies inLb(x̃) and is consequently orthogonal toT̃xM̃, there must
exist a point on the geodesic whose angle withT̃xM̃ equalsπ/2, contradicting part1.
5. BecauseH(M̃,M)≤ an, we have thatM ⊂ tube(M̃,an). Becausean < κ, the fibersLb(x̃) partition
tube(M̃,an). Hence, eachx∈ M must lie on one (and only one)Lb(x̃).

4.11 Step 3b. Construct Slabs that CoverM Nicely

Let ג j = BD(x j ,δn)∩ M̃. Define the slab

Rj =
⋃
x∈ג j

Lb(x,M̃).

Lemma 16 The collection of slabs R1, . . . ,RN has the following properties. Let M∈Mn.

1. M⊂⋃N
j=1Rj .

2. M∩Rj is function-like over Rj . That is, there exists a function gj : ג j → RD−d such that
M∩Rj = {g j(x) : x∈ ג j}.

3. For each x∈ ג j , Lb(x)∩M 6= /0.

4. There exists a linear functionℓ j : ג j → RD−d such thatsupx∈ג j
||g j(x)− ℓ j(x)|| ≤Cδ2

n.
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5. supM∈Mn
diam(M∩Rj)≤Cδn.

Thus the slabs coverM andM cuts acrossRj is a function-like way. Moreover,M∩Rj is nearly
linear.
Proof The first three claims follow immediately from Lemma 15. In particular,g j in claim 2 is
defined byg j(x) = {M ∩Lb(x)}. Now we show4. We can writeg j(x) = g j(x j)+ (x− x j)

T∇g+
1
2(x− x j)

THess(x− x j) whereHess is the Hessian matrix ofg j evaluated at some point between
x andx j . By part 1 of Lemma 3, the largest eigenvalue ofHess is bounded above by 1/κ. Since
||x−x j || ≤ cδ2

n, the claim follows. Part5 follows easily.

4.12 Step 4: Local Conditional Likelihood

Recall thatMn = {M ∈M (κ) : H(M̃,M)≤ an}. Let

Qn = {QM : M ∈Mn}.

Consider a slabRj . For eachQ∈ Qn defineQ j ≡ Q(·|Rj) by Q j(A) = Q(A∩Rj)/Q(Rj). Note that
Q j is supported overtube(M,σ)∩Rj . Let Qn, j = {Q j : Q∈ Qn}. Before we proceed we need to
establish the following.

Lemma 17 Let I j(M) = tube(M,σ)∩Rj . Then there exists c0 > 0 such that

inf
M∈Mn

V(I j(M))≥ c0δd
n.

Proof By Lemma 16,M∩Rj lies in a slab of sizean orthogonal toג j . Because the angle between
the two manifolds on this set must be no more thanπ/4 and becausean > δn, the manifoldM
cannot intersect both the “top” and “bottom” surfaces of the slab. Hence, for large enoughC > 0,
J j =

⋃
x∈ג j

BD(x,σ/C)⊂ I j . By construction,V(I j)≥V(J j)≥ cδd
n.

4.13 Step 4a. The Entropy ofQn, j

Lemma 18 H[ ](ε,Qn, j ,h)≤ c1 log(c2/ε).

Proof We begin by creating aγ Hausdorff net forQn, j . To do this, we will parameterize the support
of these distributions. EachQ∈ Qn, j has support in the collectionSn, j = {(M⊕σ)∩Rj : M ∈Mn}.
We will construct aγ-Hausdorff net forSn, j .

Let x̃∈ M̃ be the center ofג j . Let y1, . . . ,yr be ac1γ-net ofLb(x̃), and letθ1 < θ2 < · · ·< θs <
π/2−η for a small, fixedη > 0 whereθ j −θ j−1 ≤ c2γ. Note thatr = O(γ−(D−d)) ands= O(1/γ).
For every pairyi andθ j , let Mi j be aM ∈Mn that crosses throughyi with angle(Tyi M, T̃xM̃) = θ j .
These manifolds comprise a collection of sizeO((1/γ)D−d−1) which we will denote byNet(γ).

Let M ∈Mn. Let y be the point whereM crossesLb(x̃). Let yi be the closest point in the net
to y and letθ j be the closest angle in the net toangle(TyM, T̃xM̃). Because the angle betweenM
andMi j is strictly less thanπ/4 (part 1 of Lemma 15) and the slabRj has radiusδn, it follows that
H(M,Mi j )≤C1γ+δnC2γ ≤Cγ. Hence,Net(γ) is aγ-Hausdorff net.
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Now considerNet(γ) with γ = ε2. For eachMi j ∈ Net(γ) let qi j be the corresponding density
and defineui j andℓi j by

ui j (y) =

(
qi j (y)+

Cε2

V(Mi j ⊕ (σ+ ε2))

)
I(y∈ Mi j ⊕ (σ+ ε2))

and

ℓi j (y) =

(
qi j (y)−

Cε2

V(Mi j ⊕ (σ− ε2))

)
I(y∈ M j ⊕ (σ− ε2)).

LetB = {(ℓi j ,ui j )}.
Let M ∈Mn and letMi j be the element of the net closest toM. It follows easily thatui j ≥ qM ≥

ℓi j . ThusB is a bracketing. Now,
∫

ui j − ℓi j = 1+Cε2− (1−Cε2) = 2Cε2.

Hence,h(ui j , ℓi j )≤
√∫ |ui j − ℓi j |=

√
2Cε. Hence,B is an

√
2C− ε-bracketing. So,

H[ ](ε,Qn, j ,h)≤ (D−d−1) log(c/ε),

which proves the lemma.

4.14 Step 4b. Hellinger Rate of the Conditional MLE

Let q̂ be the mle overQn, j using theYi ’s in Rj . Let M̂ be the manifold corresponding tôq and let
M̂ j = M̂∩Rj .

Lemma 19 For all Q, all A> 0 and all large n,

Qn

({
h(Q,Q̂)>

(
C0 logn

n

) 1
2+d

})
≤ n−A.

Proof Let Nj be the number of observations from the second half of the data that are inRj . Let

µj = E(Nj) and definemn = n
2

2+d . First, we claim thatNj ≥ µj/2 = O(mn) for all j, except on a

set of probabilitye−cn2/(2+d)
. Let π j = Q(Rj). By Lemma 17 and Lemma 4,π j ≥ cδd

n for some
c> 0. Hence,µj ≥ mn. Note thatσ2 ≡ Var(Nj)/n= π j(1−π j)≤ π j . Let t = µj/2. By Bernstein’s
inequality,

P(Nj ≤ µj/2) = P(Nj −µj ≤−µj/2)≤ exp

{
− t2

2nσ2+2t/3

}
≤ exp

{
−cn2/(2+d)

}
.

Hence, by the union bound,

P(Nj ≤ µj/2 for somej)≤ 1
N

exp
{
−cn2/(2+d)

}
≤ exp

{
−c′n2/(2+d)

}

since there areN = O(1/δn) slabs. Thus we can assume that there are at least ordermn observations
in eachRj .
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SinceH[ ](ε,Qn, j ,h) ≤ log(C(1/ε)), solving the equationH[ ](ε,Qn, j ,h) = mnε2 we getεm ≥√
C logmn/mn = (logn/n)2/(2(2+d)) = δn. From Lemma 8, we have, for allQ∈ Qn, j ,

Qn
({

h(Q,Q̂)> δn

})
= Qn

({
h(Q,Q̂)> εm

})
≤ c1e−c2mnε2

m ≤ n−A.

4.15 Step 4c. Relating Hausdorff Distance to Hellinger Distance Within a Slab

Lemma 20 For each M1,M2 ∈Mn, H(M1∩Rj ,M2∩Rj)≤Ch2(Q j1,Q j2).

Proof Letg1 andg2 be defined as in Lemma 16. There existsx∈ ג j such thatg1(x)∈M1, g2(x)∈M2

and||g1(x)−g2(x)||= γ. We claim there existsג′ ⊂ ג j such that infx∈ג′ ||g1(x)−g2(x)|| ≥ γ/2 and
such thatV(ג′) ≥ cδd

n. This follows sinceg1 andg2 are smooth, they both lie in a slab of sizean

aroundג j and the angle between the tangent ofg j(x) andג j is bounded byπ/4.
Create a modified manifoldM′

2 such thatM′
2 differs fromM1 overג′ by aγ/2 shift orthogonal

to ג j and such thatM′
2 is otherwise equal toM1. It follows that ℓ1(M1,M2) ≥ ℓ1(M1,M′

2) and
h(Q1,Q2)≥ h(Q1,Q′

2).
Every point in the support of the conditioned distributions can be written as an ordered pair

(x,y) wherex∈ ג j andy lies in ad′ ball of radiusσ. M′
2 is shifted a distance ofγ/2 in the direction

orthogonal toג j . As a result, theℓ1 distance betweenM1 andM′
2 equals the integral overC′ of the

volume difference between twod′ balls of the same radius that are shifted byγ/2 relative to each
other. This volumeδd

nγ. Hence,V(M1∩ ג j) ◦ (M2∩ ג j) ≥ γδd
n. Let A= {x∈ ג j : q1 > 0,q2 = 0},

B= {x∈ ג j : q1 > 0,q2 > 0}, C = {x∈ ג j : q1 = 0,q2 > 0}. At least one ofA or B has volume at
leastγδd

n/2. Without loss of generality, assume that it isA. Then

h2(q1,q2) =
∫
(
√

q1−
√

q2)
2 ≥

∫
A
(
√

q1−
√

q2)
2 =

∫
A

q1

≥ C∗cδd
nγ

δd
n

= cC∗γ = cC∗H(M1,M2).

4.16 Step 4d. The Hausdorff Rate

Lemma 21 For any A> 0 there exists C0 such that

Qn

({
H(M∩Rj ,M̂ j)>

(
C0 logn

n

) 2
2+d

})
≤ 1

nA .

Proof This follows by combining Lemma 20 and Lemma 19.
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4.17 Step 5: Final Estimator

Now we can combine the estimators from the difference slabs. LetM̂ =
⋃N

j=1M̂ j . Recall that the

number of slabs isN = (cδn)
−d = (Cn/ logn)d/(2+d).

Proof of Theorem 2.Choose anA> 2/(2+d). We have:

Qn

({
H(M̂,M)>

(
C0 logn

n

) 2
2+d

})
≤ ∑

j

Qn

({
H(M̂ j ,M∩Rj)>

(
C0 logn

n

) 2
2+d

})

≤ N
nA

=

(
n

C logn

) 1
2+d

× 1
nA ≤ c

nA .

Let rn =
(

C0 logn
n

)2/(2+d)
. SinceM andM̂ are contained in a compact set,H(M̂,M) is uniformly

bounded above by a constantK0. Hence,

EQH(M̂,M) = EQ[H(M̂,M)I(H(M̂,M)> rn)]+EQ[H(M̂,M)I(H(M̂,M)≤ rn)]

≤ K0Qn(H(M̂,M)> rn)+ rn

≤ c
nA + rn = O

((
logn

n

)2/(2+d)
)
.

�

5. A Simple, Consistent Estimator

Here we give a practical, consistent estimator, one that does not converge at the optimal rate. It is
a generalization of the estimator in Genovese et al. (2010) and is similar to the estimator in Niyogi
et al. (2006). Let

Ŝ=
n⋃

i=1

BD(Yi ,ε)

and definê∂S= ∂(Ŝ), σ̂ = maxy∈Ŝd(y, ∂̂S) and

M̂ =
{

y∈ Ŝ: d(y, ∂̂S)≥ σ̂−2ε
}
.

Lemma 22 Let εn =C(logn/n)1/D in the estimatorM̂. Then

H(M,M̂) = O

(
logn

n

)1/D

almost surely for all large n.

Before proving the lemma we need a few definitions. Following Cuevas and Rodŕıguez-Casal
(2004), we say that a setS is (χ,λ)-standardif there exist positive numbersχ andλ such that

νD(BD(y,ε)∩S)≥ χ νD(B(y,ε)) for all y∈ S, 0< ε ≤ λ.

We say thatS is partly expandableif there existr > 0 andR≥ 1 such thatH(∂S,∂(S⊕ ε))≤ Rε for
all 0≤ ε < r. A standard set has no sharp peaks while a partly expandable set has not deep inlets.
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Lemma 23 If σ < ∆(M) then S=M⊕σ is standard withχ = 2−D andλ = σ and partly expandable
with r = ∆(M)−σ and R= 1.

Proof Let χ = 2−D. Let y be a point inSand letΛ(y)≤ σ be its distance from the boundary∂S. If
Λ(y)≥ ε thenBD(y,ε)∩S= BD(y,ε) so thatνD(BD(y,ε)∩S) = νD(BD(y,ε))≥ χνD(BD(y,ε)).

Suppose thatΛ(y) < ε. Let v be a point on the manifold closest toy and lety∗ be the point on
the segment joiningy to v such that||y−y∗||= ε/2. The ballA= BD(y∗,ε/2) is contained in both
BD(y,ε) andS. Hence,νD(BD(y,ε)∩S)≥ νD(A)≥ χνD(BD(y,ε)). This is true for allε ≤ σ, hence
S is (χ,λ)-standard forχ = 1/2D andλ = σ.

Now we show thatS is partly expandable. By Proposition 1 in Cuevas and Rodrı́guez-Casal
(2004) it suffices to show that a ball of radiusr rolls freely outsideS for somer, meaning that, for
eachy ∈ ∂S, there is ana such thaty ∈ B(a, r) ⊂ Sc, whereSc is the complement ofS. Let Oy be
the ball of radius∆−σ tangent toy such thatOy ⊂ Sc. Such a ball exists by virtue of the fact that
σ < ∆(M).

Theorem 24 (Cuevas and Rodŕıguez-Casal, 2004)Let Y1, . . . ,Yn be a random sample from a dis-
tribution with support S. Let S be compact,(λ,χ)-standard and partly expandable. Let

Ŝ=
n⋃

i=1

B(Yi ,εn)

and let ∂̂S be the boundary of̂S. Letεn = C(logn/n)1/D with C > (2/(χ ωD))
1/D whereωD =

V(BD(0,1)). Then, with probability one,

H(S, Ŝ)≤C

(
logn

n

)1/D

and H(∂S, ∂̂S)≤C

(
logn

n

)1/D

for all large n. Also, S⊂ Ŝ almost surely for all large n.

Proof of Lemma 22. Theorem 24 and Lemma 23 imply thatH(S, Ŝ) ≤ C(logn/n)1/D and

H(∂S, ∂̂S) ≤ C(logn/n)1/D. It follows that σ̂ ≥ σ − ε. First we show thaty ∈ M̂ implies that

d(y,M) ≤ 4ε. Let y ∈ M̂. Thend(y,∂S) ≥ d(y, ∂̂S)− ε ≥ σ̂− 2ε− ε ≥ σ− ε− 2ε− ε = σ− 4ε.
So d(y,M) = σ− d(y,∂S) ≤ σ−σ+ 4ε = 4ε. Now we show thatM ⊂ M̂. Suppose thaty ∈ M.
Then,

d(y, ∂̂S)≥ d(y,∂S)− ε = σ− ε ≥ σ̂−2ε

so thaty∈ M̂. �

6. Conclusion and Open Questions

We have established that the optimal rate for estimating a smooth manifold in Hausdorff distance is
n−

2
2+d . We conclude with some comments and open questions.

1. We have assumed that the noise is perpendicular to the manifold. In current work we are
deriving the minimax rate under the more general assumption thatε is drawn from a general,

1286



M INIMAX MANIFOLD ESTIMATION

spherically symmetric distribution. We also allow the distribution along the manifold to be
any smooth density bounded away from 0. The rates are quite different and the methods for
proving the rates are substantially more involved. Moreover, the rates depends on the behavior
of the noise density near the boundary of its support. We will report on thiselsewhere.

2. Perhaps the most important open question is to find a computationally tractableestimator that
achieves the optimal rate. It is possible that combining the estimator in Section 5 withone
of the estimators in the computational geometry literature (Dey, 2006) could work. However,
it appears that some modification of such an estimator is needed. This is a difficult question
which we hope to address in the future.

3. It is interesting to note that Niyogi et al. (2006) have a Gaussian noise distribution. While
it is possible to infer the homology ofM with Gaussian noise it is not possible to inferM
itself with any accuracy. The reason is that manifold estimation is similar to (and in fact,
more difficult than) nonparametric regression with measurement error. Inthat case, it is well
known that the fastest possible rates under Gaussian noise are logarithmic. This highlights an
important distinction between estimating the topological structure ofM versus estimatingM
in Hausdorff distance.

4. The current results take∆(M), d andσ as known (or at least bounded by known constants).
In practice these must be estimated. We do not know whether there exist minimaxestimators
that are adaptive overd,∆(M) andσ.
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7. Appendix

This appendix contains proofs of some technical results used earlier in thepaper.

7.1 Proof of Equation 2

We will use the following two results (see Section 2.4 of Tsybakov, 2008):

h2(Pn,Qn) = 2

(
1−
[
1− h2(P,Q)

2

]n)

and

||P∧Q|| ≥ 1
2

(
1− h2(P,Q)

2

)2

.

We have

||Pn∧Qn|| ≥ 1
2

(
1− h2(Pn,Qn)

2

)2

=
1
2

(
1− h2(P,Q)

2

)2n

≥ 1
2

(
1− ℓ1(P,Q)

2

)2n
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sinceh2(P,Q)≤ ℓ1(P,Q).

7.2 Proof of Theorem 6

We define two manifoldsM0 and M1 with corresponding distributionsQ0 and Q1 such that (i)
∆(Mi) ≥ κ i = 0,1, (ii) H(M0,M1) = γ and (iii) such that the volume ofS0 ◦S1 is of orderγ d

2+1,
whereSi is the support ofQi .

We write a genericD-dimensional vector asy= (u,v,z), with u∈ Rd, v∈ R, z∈ RD−d−1. For
eachu∈ Rd with ||u|| ≤ 1, define the disk inRd+1

D0 =
{
(u,0) ∈ R

d+1 : u∈ Bd(0,1)
}

and let

F0 = ∂


 ⋃

(u,v)∈D0

Bd+1((u,v),κ)


 .

Now define the followingd-dimensional manifold inRD

M0 =
{
(u,v,0D−d−1) : (u,v) ∈ F0

}

=
{
(u,a(u),0D−d−1) : u∈ Bd(0,1+κ)

}
∪
{
(u,−a(u),0D−d−1) : u∈ Bd(0,1+κ)

}

where

a(u) =

{
κ if ||u|| ≤ 1√

κ2− (||u||−1)2 if 1 < ||u|| ≤ 1+κ.
The manifoldM0 has no boundary and, by construction,∆(M0)≥ κ.

Now define a second manifold that coincides withM0 but has a small perturbation. Letγ ∈
(0,4κ) and define

M1 =
{
(u,b(u),0D−d−1) : u∈ Bd(0,1+κ)

}
∪
{
(u,−a(u),0D−d−1) : u∈ Bd(0,1+κ)

}

where

b(u) =





γ+
√

κ2−||u||2 if ||u|| ≤ 1
2

√
4γκ− γ2

2κ−
√

κ2− (||u||−
√

4γκ− γ2)2 if 1
2

√
4γκ− γ2 < ||u|| ≤

√
4γκ− γ2

a(u) if
√

4γκ− γ2 < ||u|| ≤
√

4γκ− γ2+κ.

Note that∆(M1)≥ κ since the perturbation is obtained using portions of spheres of radiusκ. In fact

• for ||u|| ≤ 1
2

√
4γκ− γ2, b(u) is thed+1-th coordinate of the “upper” portion of the(d+1)-

dimensional sphere with radiusκ centered at(0, · · · ,0,γ), henceb(u) satisfies

||u||2+(b(u)− γ)2 = κ2 with b(u)≥ γ;

• for 1
2

√
4γκ− γ2 < ||u|| ≤

√
4γκ− γ2, b(u) is the(d+1)-th coordinate of the “lower” portion

of the(d+1)-dimensional sphere with radiusκ centered at(u·
√

4γκ− γ2/||u||,2κ) (note that
the center of the sphere differs according to the direction ofu), henceb(u) satisfies

∣∣∣∣
∣∣∣∣u−

u
||u||

√
4γκ− γ2

∣∣∣∣
∣∣∣∣
2

+(b(u)−2κ)2 = κ2 with b(u)≤ 2κ.
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To summarize,M0 andM1 are both manifolds with no boundary,∆(M0) ≥ κ and∆(M1) ≥ κ.
See Figure 5. Now

E0 = M0−M1 =
{
(u,a(u),0D−d−1) : u∈ Bd(0,

√
4γκ− γ2)

}

E1 = M1−M0 =
{
(u,b(u),0D−d−1) : u∈ Bd(0,

√
4γκ− γ2)

}
.

Figure 5: One section of manifoldsM0 andM1. The common part is dashed,E0 is dotted andE1

solid. R1 andR2 denote the regions where the different definitions of the perturbation
apply: R1 is ||u|| ≤ 1

2

√
4γκ− γ2 while R2 denotes1

2

√
4γκ− γ2 < ||u|| ≤

√
4γκ− γ2.

Note that for each pointy∈ E0 there existsy′ ∈ E1 such that||y−y′|| ≤ |a(u)−b(u)| ≤ γ. Also,
y0 = (0,a(0),0) ∈ M0 has as its closestM1 point y1 = (0,b(0),0), so that||y0− y1|| = γ. Hence
H(M0,M1) = H(E0,E1) = γ.

To find an upper bound forV(S0 ◦S1), we show that eachy = (u,v,z) ∈ S1 −S0 satisfies the
following conditions:

(i) u∈ Bd(0,
√

4γκ− γ2);

(ii) z∈ BD−d−1(0,σ);

(iii) κ+σ−||z||< v≤ κ+ γ+σ−||z||.
If y = (u,v,z) belongs toS1 and has||u|| >

√
4γκ− γ2, then there is a point ofM0 ∩ M1

within distanceσ, hencey 6∈ S1 −S0. This proves (i). Before proving (ii) and (iii), note that if
u∈ Bd(0,

√
4γκ− γ2) then

κ = a(u)≤ b(u)≤ κ+ γ.

Now, lety′ = (u′,b(u′),0) ∈ E1 be the point inS1 closest toy. We have

d(y,S1) = ||y−y′|| ≤ ||u−u′||+ |v−b(u′)|+ ||z|| ≤ σ.
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This gives condition (ii) above||z|| ≤ σ and also

|v−b(u′)| ≤ σ−||z||. (4)

Sinceb(u′)≤ κ+ γ, we obtain

v≤ b(u′)+σ−||z|| ≤ κ+ γ+σ−||z||

which is the right inequality in (iii). Finally,

σ < d(y,M0)≤ ||y− (u,a(u),0)|| ≤ |v−a(u)|+ ||z||

which implies eitherv < a(u)− (σ− ||z||) or v > a(u)+ (σ− ||z||). The former inequality would
imply

v< a(u)− (σ−||z||) = κ− (σ−||z||)≤ inf
u′

b(u′)− (σ−||z||)

so that|v− b(u′)| > σ− ||z|| for all u′, which is in contradiction with (4). Hence we havev >
a(u)+(σ−||z||) = κ+(σ−||z||) that is the left inequality in (iii).

As a consequence,

S1−S0⊂Bd(0,
√

4γκ− γ2)×
{
(v,z)∈R

D−d : κ−γ+σ−||z||< v≤ κ+γ+σ−||z||,z∈BD−d−1(0,σ)
}

and
V(S0−S1)≤C · (

√
4γκ− γ2)d · γ ·σD−d−1.

Hence,V(S0−S1) = O(γ d
2+1).

With similar arguments one can show thatV(S1−S0) = O(γ d
2+1) so that

V(S0◦S1) = O(γ
d
2+1).

It then follows that
∫ |q0−q1|= O(γ(d+2)/2).
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