
Journal of Machine Learning Research 13 (2012) 3539-3583 Submitted 4/10; Revised 4/12; Published 12/12

Regularized Bundle Methods for Convex and Non-Convex Risks

Trinh-Minh-Tri Do∗ TRI.DO@IDIAP.CH

Idiap Research Institute

Rue Marconi 19

1920 Martigny, Switzerland

Thierry Artières THIERRY.ARTIERES@LIP6.FR
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Abstract

Machine learning is most often cast as an optimization problem. Ideally, one expects a convex ob-

jective function to rely on efficient convex optimizers with nice guarantees such as no local optima.

Yet, non-convexity is very frequent in practice and it may sometimes be inappropriate to look for

convexity at any price. Alternatively one can decide not to limit a priori the modeling expressivity

to models whose learning may be solved by convex optimization and rely on non-convex optimiza-

tion algorithms. The main motivation of this work is to provide efficient and scalable algorithms

for non-convex optimization. We focus on regularized unconstrained optimization problems which

cover a large number of modern machine learning problems such as logistic regression, conditional

random fields, large margin estimation, etc. We propose a novel algorithm for minimizing a regu-

larized objective that is able to handle convex and non-convex, smooth and non-smooth risks. The

algorithm is based on the cutting plane technique and on the idea of exploiting the regularization

term in the objective function. It may be thought as a limited memory extension of convex regu-

larized bundle methods for dealing with convex and non convex risks. In case the risk is convex

the algorithm is proved to converge to a stationary solution with accuracy ε with a rate O(1/λε)
where λ is the regularization parameter of the objective function under the assumption of a Lips-

chitz empirical risk. In case the risk is not convex getting such a proof is more difficult and requires

a stronger and more disputable assumption. Yet we provide experimental results on artificial test

problems, and on five standard and difficult machine learning problems that are cast as convex and

non-convex optimization problems that show how our algorithm compares well in practice with

state of the art optimization algorithms.
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1. Introduction

Machine learning is most often cast as an optimization problem where one looks for the best model

among a parameterized family of models. The best model is defined as the one with the set of pa-

rameters that minimizes an objective function (i.e. criterion). For some years now machine learning

community aimed at designing new models in such a way that the resulting objective function is

convex. Doing so brings the fundamental advantage that one can rely on efficient convex optimiza-
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tion algorithms, with nice guarantees such as no local optima and easier theoretical analysis (e.g.

for the convergence rate). For instance logistic regression, support vector machine, maximum mar-

gin Markov network, and conditional random fields have found widespread use in basic machine

learning applications.

However, such a “simple convex modeling” may actually be outperformed by non-convex mod-

eling in some important applications. For example on MNIST database, convex Gaussian-SVM

reaches 1.4% error rate vs. 0.53% for non-convex convolutional nets (Jarrett et al., 2009).1 Also

non-convexity is much more frequent than convexity “in real life”. A number of problems that

machine learning researchers face today may not be easily cast as convex optimization problems

without limiting a priori the expressivity of the models used and the potential of the models to learn

(LeCun et al., 1998; Collobert et al., 2006; Bengio and Lecun, 2007). First, many real-world prob-

lems need complicated models whose learning requires solving non-convex optimization problems.

For instance, models with non-convex discriminant function such as neural networks and hidden

Markov models (HMMs) have become classical and reference models for many difficult tasks in vi-

sion and speech. Second, non-convexity of objective function naturally arises in learning paradigms

such as unsupervised and semi-supervised learning as well as in transductive SVM, etc (Chapelle

et al., 2006; Joachims, 1999).

Two strategies have been investigated to handle non-convexity in machine learning approaches.

Few works attempted to use convex relaxation technique in order to transform an original non-

convex problem into a convex one, this is a kind of “convexity at any price” strategy. Convex

relaxation mechanics strongly depend on the application, there is no principled method for turning

a non-convex problem to a convex one. It has been used in maximum margin clustering (Xu et al.,

2004), transductive SVM (Xu et al., 2008), discriminative unsupervised structured predictors (Xu

et al., 2006), large margin CDHMM (Sha and Saul, 2007). However, the robustness of this ap-

proach for complex problems is questionable since the use of strong assumptions may lead to poor

approximation quality, thus provide poor performance in practice.

Since convex modeling does not cover all real-world problems and convex relaxation techniques

are not always easy and robust, few researchers proposed to give up convexity and to focus on

non-convex optimization techniques, for instance concave-convex procedure (CCCP) (Yuille and

Rangarajan, 2003) and difference of convex (DC) programming (Horst and Thoai, 1999). These

non-convex optimization techniques have been successfully applied for some tasks such as ramp

loss SVM, non-convex TSVM (Collobert et al., 2006), kernel selection (Argyriou et al., 2006) or

non-convex maximum margin clustering (Zhao et al., 2008). Note that these techniques cover only

a limited class of problems and require an ad-hoc design for every machine learning problem. For

instance, the CCCP can theoretically be applied to any continuous objective function since any

such function can be decomposed into the difference of two convex functions, yet reformulating the

original function to a concave-convex form may call for mathematical efforts. Furthermore not all

decomposition are interesting.

We are concerned here with the development of generic optimization techniques able to deal

with the general unconstrained optimization problem

minw f (w)

with f (w) = λ
2
‖w‖2 +R(w)

(1)

1. A collection of evaluation results on MNIST data is available at: http://yann.lecun.com/exdb/mnist.
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where w ∈ R
D are the model parameters and R(w) (the main objective) is a data-fitting measure-

ment to be minimized which we consider to be not necessarily smooth everywhere nor convex. This

unconstrained formulation covers many mentioned machine learning problems such as SVM, CRF,

M3N, transductive SVM, ramp loss SVM, neural network (Do and Artières, 2010), Gaussian HMM

(Do and Artières, 2009). Note that the formulation in Equation 1 does not apply easily to kernel

methods which are based on an implicit data transformation (e.g. RBF kernel) and are preferably

solved in the dual space. However, there are several methods that can enrich the model flexibility

without considering an implicit data transformation. As an example, for low dimensional or sparse

data, one could have an explicit and efficient transformation for polynomial kernel. Furthermore,

instead of using a predefined implicit transformation one could also learn the explicit data transfor-

mation directly such as latent feature discovery based on Boltzmann machine (Hinton et al., 2006).

At the end, while not covering kernel tricks, our general optimization problem can be used for

learning many powerful non-linear models.

As the problem in Equation 1 is at the heart of many machine learning application, it is important

to have an efficient non-convex optimization method for this class of minimization problem. Among

candidate families of optimization algorithms, cutting plane methods and bundle based methods

are very appealing for optimization problems such as the one in Equation 1 since, as opposed to

many gradient descent based methods, it can naturally deal with its non-smooth everywhere fea-

ture (Kiwiel, 1985; Gaudioso and Monaco, 1992; Makela, 2002; Makela and Neittaanmaki, 1992;

Schramm and Zowe, 1992). However the convergence of bundle methods for non-convex optimiza-

tion is rather slow in practice. And theoretical results on convergence rate are indeed missing for

non-convex objective functions. This explains in our opinion why the use of general non-convex

bundle methods is still limited in machine learning. Another reason is the lack of easy-to-use im-

plementation of non-convex bundle methods.

The recent success of convex regularized bundle methods (CRBMs) in machine learning (Smola

et al., 2008; Weimer et al.; Joachims et al., 2009) motivated us to investigate extensions of bundle

methods for proposing efficient algorithms able to deal with machine learning non-convex optimiza-

tion problems, which is the core idea of this work. To design such an algorithm, we investigated

new optimization algorithms that combines ideas from non-convex bundle methods (NBM) (Ki-

wiel, 1985) and from CRBMs (Smola et al., 2008). Our algorithm relies on two main contributions,

a limited memory variant of bundle methods and the extension of CRBM to non-convex risks.

The limited memory variant may be used in CRBM as well as in our non-convex extension of

CRBM. It allows limiting the algorithmic complexity of a single iteration in bundle methods while

it is usually increasing (at least quadratically) with the number of iteration, which makes bundle

methods not practical for difficult and large scale problems requiring thousands of iterations. We

show that our limited memory variant, when included to CRBM, inherits its fast convergence rate

in O(1/λε) iteration to reach a gap below ε.

Our extension of CRBM to non-convex risks includes the limited memory variant and is de-

signed to make bundle methods scalable for real life non-convex learning problems.2 This is

achieved by making the algorithm focus on the current best solution and by using a specific lo-

cality measure for regularized risks. Such a strategy allows fast convergence in practice on difficult

and large scale machine learning problems that we investigated. Unfortunately this comes with

only weak proof of convergence towards a stationary solution, relying on a moot assumption. In our

2. The MATLAB implementation of the proposed method is available at https://forge.lip6.fr/projects/nrbm.
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opinion it is a kind of trade-off, a price to pay to achieve algorithmic efficiency in practice. As a

consequence though we provide main theoretical results we do not include our convergence proofs

here since these are weak, but these are available in an internal report (Do and Artieres, 2012).

First, in Section 2 we provide background on the cutting plane technique and on bundle meth-

ods, and we describe two main existing extensions, the convex regularized bundle method (CRBM)

and the non-convex bundle method (NBM). Then, we present in Section 3 our two contributions

yielding our algorithm, NRBM, which is a regularized bundle method for non-convex optimization.

We propose few variants of our method in Section 3.3 and we discuss in Section 4 the convergence

behavior of our method both for convex risks and for non-convex risks. Finally we provide in

Section 5 a number of experimental results. We investigate first artificial test problems that show

that our algorithm compares well to standard non-convex bundle methods while converging much

faster, suggesting our algorithm may make large scale problems practical. Second we compare our

algorithms to dedicated state of the arts optimization algorithms for a number of machine learning

problems, including standard problems such as learning of transductive support vector machines

learning, learning of maximum margin Markov networks, learning conditional random fields, as

well as less standard but difficult optimization problems related to discriminative training of com-

plex graphical models for handwriting and speech recognition.

2. Background on Cutting Plane and Bundle Methods

We provide now some background on the cutting plane principle and on optimization methods that

have been built on this idea for convex and non-convex objective functions.

2.1 Cutting Plane Principle

Surely the most powerful method for non-smooth optimization is based on polyhedral approxima-

tions, whose basic element is the cutting plane (CP). For a given function f (w), a cutting plane

cw′(w) is a first-order Taylor approximation computed at a particular point w′:

f (w)≈ cw′(w) = f (w′)+ 〈aw′ ,w−w′〉

where aw′ ∈ ∂ f (w′) is a subgradient of f at w′. For convex function, the subdifferential ∂ f (w′)
is the set of vectors a that satisfies: f (w) ≥ f (w′)+ 〈aw′ ,w−w′〉. The concept of subdifferential

is also generalized for non-convex functions, which is defined as the set of vectors a that satisfies:

f ◦(w′;h) ≥ 〈a,h〉 ∀h, where f ◦(w′,h) denotes the generalized directional derivative of f at w′ in

the direction h.

Go back to the definition of the cutting plane approximation based on Taylor approximation, it

may be rewritten as:

cw′(w) = 〈aw′ ,w〉+bw′

with aw′ ∈ ∂ f (w′)
bw′ = f (w′)−〈aw′ ,w

′〉.
(2)

A cutting plane cw′ is an approximation of f which is accurate for w lying in the vicinity of w′ where

the CP is defined, i.e. where the subgradient is computed. The quality of such an approximation and

the area where it is accurate depend on higher order information on f such as the Hessian matrix.

Figure 1 illustrates the linear approximation implemented by a cutting plane for a one-dimensional

function. Importantly, a cutting plane of a convex function f is an underestimator of f .
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Figure 1: Basic approximation of a function f by a (underestimator) cutting plane at a point w′

(left), and a more accurate approximation by taking the maximum over many cutting

planes of f (right).

2.2 Cutting Plane Method for a Convex Objective

The cutting plane method has been proposed for the minimization of convex functions. In the case

of a convex objective, any cutting plane of the objective f is an underestimator of f . The idea of the

cutting plane method is that one can build an accurate approximation function (named gt hereafter)

of f , which is also an underestimator of f , as the maximum over many cutting plane approximation

built at different points {w1, ...,wt} as follows:

f (w)≈ gt(w) = max
j=1..t
〈aw j

,w〉+bw j
. (3)

Of course gt(w) is an underestimator of f (w). It is called the approximation function of f at iteration

t.

The cutting plane method aims at iteratively building an increasingly accurate piecewise linear

underestimator of the objective function by successively adding new cutting planes to the approx-

imation g of f . If the approximation is good enough, one may hope that the minimum of f and

of its approximation g will be very close or even equal. Every iteration, one adds a new cutting

plane underestimator built at current solution, yielding a new piece-wise linear underestimator of

f as in Equation 3. The minimization of this underestimator approximation is usually called the

approximated problem (it is a linear program) and gives a new current solution, etc.

Note that the approximation function may not have a minimum, then artificial bounds may be

placed on the points of w, so that the minimization will be carried out over a compact set and

consequently a exists.

The cutting plane method is described in Algorithm 1, it is proved to converge in a finite number

of iterations to an ε-solution (Bertsekas et al., 2003).

2.3 Bundle Methods for a Convex Risk

Convex bundle method. One of the drawbacks of the cutting plane method is its instability. It may

make large steps away from the optimum even when the current solution is close to it. Standard con-

vex bundle method (CBM), also called proximal cutting plane method or proximal bundle method,

tries to overcome this problem by adding to the polyhedral approximation function a regularization
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Algorithm 1 Cutting Plane Method (for convex objective function)

1: Input: w1, f , ε

2: Output: w∗

3: for t = 1 to ∞ do

4: Compute awt
and bwt

according to Equation 2

5: Minimize gt(w) (defined as in Equation 3) to get wt+1← argminw gt(w)
6: gap = [min j=1..t f (w j)]−gt(wt+1)
7: if gap < ε then return wt

8: end for

Algorithm 2 Convex Regularized Bundle Method (CRBM)

1: Input: w1, R, ε

2: Output: w∗

3: for t = 1 to ∞ do

4: Compute awt
and bwt

of R at wt

5: w∗t = argminw∈{w1,...wt} f (w)
6: w̃t ← argminw gt(w) where gt(w) is defined as in Equation 6

7: gapt = f (w∗t )−gt(w̃t)
8: wt+1 = w̃t

9: if gapt < ε then return w∗t
10: end for

term. The approximation function becomes:

f (w)≈ gt(w) = (w−wt)
⊤Ht(w−wt)+ max

j=1..t
〈aw j

,w〉+bw j
(4)

where Ht is a positive definite symmetric matrix. The regularization term forces the new solution not

to be too far from the current solution. In addition it makes the approximation function have a unique

minimum (as long as the Hessian matrix of the regularization term is positive-definite as in our

example) without adding artificial constraints. While the approximation function in Equation 4 can

be used to generate new points, the standard bundle method also includes a line-search procedure

which returns either a serious step (the objective at current solution has significantly decreased) or

a null step (the decrease of f is too low and the approximation function should be improved).

Convex regularized bundle method. The convex regularized bundle method (CRBM) (Smola et al.,

2008) is an instance of CBM algorithms for dealing with regularized (and convex) risks as in Equa-

tion 1. It relies on cutting planes that are built on the risk R(w) only and does not use a line search

procedure. Such a linear approximation of the risk R(w) yields a quadratic approximation of the

objective f (w):

f (w)≈
λ

2
‖w‖2 + 〈aw′ ,w〉+bw′ . (5)

These two approximation functions on R(w) and on f (w) are illustrated in Figure 2. Note

that this quadratic approximation of f (w) is more accurate than a cutting plane approximation on

f (w). Furthermore, this trick avoids adding an artificial regularization term into the approximation

problem as in standard bundle methods.
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Figure 2: Cutting plane approximations in CRBM : A linear underestimator of R(w) (a), and a

quadratic underestimator of f (w) = λ
2
‖w‖2 +R(w) derived from this linear underestima-

tor (b) (Cf. Equation 5)

CRBM is very similar to the cutting plane technique described before, where every iteration a

new cutting plane approximation is built (at the current solution) and added to the current approxi-

mation function. The approximation of f (w) at iteration t is then:

f (w)≈ gt(w) =
λ

2
‖w‖2 + max

j=1..t
〈aw j

,w〉+bw j
(6)

and the approximation problem is

w̃t = argmin
w

gt(w) = argmin
w

λ

2
‖w‖2 + max

j=1..t
〈aw j

,w〉+bw j
(7)

where 〈aw j
,w〉+ bw j

is the approximation cutting plane of R built at w j, the solution at iteration

j. Importantly, if R(w) is convex then any cutting plane 〈aw j
,w〉+ bw j

is an underestimator of

R(w), and its maximum, max j=1..t〈aw j
,w〉+ bw j

, is also an underestimator approximation of R.

Hence, gt(w) are monotonically increasing quadratic underestimators of f (w) which converge to-

wards f (w) as cutting planes are added.

Minimizing the approximation problem in CRBM. The approximation problem (Equation 7) at iter-

ation t is an SVM-like optimization problem:

w̃t = argminw minξ
λ
2
‖w‖2 +ξ

s.t. 〈a j,w〉+b j ≤ ξ j = 1..t

with c j(w) = 〈a j,w〉+ b j. We can get its dual form easily through Lagrangian mechanics. The

Lagrangian of the above optimization problem is:

L(w,ξ,α) =
λ

2
‖w‖2 +ξ+ ∑

j=1..t

α j(〈a j,w〉+b j−ξ)

where α = (α1, ...,αt) are Lagrange multipliers. The solution is given by a saddle point of the

Lagrangian, that must be minimized wrt. primal variables (w,ξ) and maximized wrt. Lagrange

multipliers. At a saddle point, the derivative of the Lagrangian wrt. (w,ξ) must satisfy:

∂L
∂ξ

= 0 ⇐⇒ ∑ j=1..t α j = 1,
∂L
∂w

= 0 ⇐⇒ λw =−(∑ j=1..t α ja j).
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By substituting these results back into the Lagrangian, primal variables w and ξ disappear and

we get the dual problem:

αt = argmax
α∈Rt − 1

2λ‖αAt‖
2 +αBt

s.t α j ≥ 0 ∀ j = 1..t

∑ j=1..t α j = 1

(8)

where At = [a1; ...;at ] is a matrix (with a j being row vectors), Bt = [b1; ...;bt ] is the vector of scalars

and α stands for the (row) vector of Lagrange multipliers (of length t at iteration t). Let αt be the

solution of the above dual problem at iteration t, the solution of the primal problem is given by:

w̃t =−αt At

λ ,

gt(w̃t) =− 1
2λ‖αtAt‖

2 +αtBt .

Convergence rate of CRBM. The convergence of CRBM is proved based on the fact that the gap

between the best observed value f (w∗t ) and the minimum of the approximation function gt(w̃t)
decreases every iteration. Since gt(w) is an underestimator of f (w), the gap is greater than or equal

to the difference between the best observed value f (w∗t ) and the minimum of f (w). Therefore, if

gapt ≤ ε then w∗t is an ε-solution of f (w). By characterizing the decrease of the gap after each

iteration, the authors of CRBM proved that the method require O(1/λε) iterations to reach a gap

below ε (Smola et al., 2008).

2.4 Non-Convex Bundle Methods (NBM)

Bundle methods have also been extended to deal with non-convex functions and have become a

standard for minimizing non-smooth and non-convex function.

2.4.1 PRINCIPLE

There are many variants of non-convex bundle algorithm (NBM), with many parameters to tune. We

present here a simple description of the method to better stress its main features. Basically NBM

works similarly as standard bundle methods by building iteratively an approximation function via

the cutting plane technique. However since the objective is no more convex, such an approximation

function is not an underestimator of the objective anymore which makes things harder and requires

a more complicated algorithm.

Every iteration the algorithm updates a number of quantities, whose set is usually called the state

of the algorithm, based on the state in previous iteration. The state of the algorithm at iteration t,

named Bt , is a set of points, subgradients and locality measures to the current solution. At iteration

t, the algorithm performs the following steps:

• Determine the search direction. This is done through minimizing the approximated problem

defined by Bt . The approximation problem is an instance of quadratic programming similar

to the one in Equation 4, except that the raw cutting planes are adjusted to make sure that the

approximation is a local underestimator of the objective function. The minimization of the

approximation problem yields a new point w̃t .

• Perform a line search. The algorithm performs a special line search from the best current

solution w∗t to the minimum of the approximation problem w̃t .
3 The line search outputs a

3. Under some semi-smoothness assumptions it is proved that this line search algorithm terminates in a finite number

of iterations (Luksan and Vlcek, 2000).
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new solution wt+1. Two cases may arise. In a first case, this new solution does not lead to a

significant improvement (i.e. decrease) in the objective function, we say the current iteration

is a null step. In such a case, the best solution does not change (i.e. w∗t+1 ≡w∗t ). Alternatively

the new solution may bring a significant improvement in the objective (iteration is called a

serious step). Then one defines the new best solution as w∗t+1 ≡wt+1. Note that in both cases,

the approximation function is improved by adding a new cutting plane at wt+1. We do not

present in details the line search procedure since it is both rather complicated and standard.

Interested readers may find detailed description in the literature, e.g., (Luksan and Vlcek,

2000).

• Update the bundle and build a new approximation function. The set of cutting planes is

expanded with the new cutting plane built at wt+1. Due to the non-convex feature of the ob-

jective function, the definition of approximation is not trivial, involving additional concepts

such as locality measure, the strategy of NBM to deal with non-convexity will be detailed in

the next subsection. Importantly, note that one gets more cutting planes in the bundle as the

algorithm iterates, and such a ever increasing number of cutting planes may represent a poten-

tial problem wrt. computational and memory cost if many iterations are required. Usually to

overcome such a problem, one uses an aggregated cutting plane in order to accumulate infor-

mation of all cutting planes in previous iterations (Kiwiel, 1985). It allows discarding older

cutting planes and helps limiting the algorithmic complexity. For instance, one may keep a

fixed number of cutting planes in the bundle Bt by removing the oldest cutting plane. Then,

the aggregated cutting plane allows preserving part of the information brought by removed

cutting planes.

2.4.2 HANDLING NON-CONVEX OBJECTIVE FUNCTION

Bundle methods must be adapted to work for non-convex optimization since the core idea of using

a first order Taylor approximation as an underestimator of the objective function does not hold

anymore. Then, the standard approximation function, which is defined as the maximum over a

set of cutting plane approximations, is not an underestimator of the non-convex objective function

anymore. In addition although one may reasonably assume that a cutting plane built at a point w′

is an accurate approximation of f in a small region around w′, such an approximation may become

very poor for w far from w′. At the end, the maximum over cutting plane “approximations” may be

a very poor approximation of the objective.

An example of poor approximation is shown in Figure 3(a). The linearization error ( f (w)−
cw′(w)) of a cutting plane cw′ at a point w′′ may be negative, meaning that the function is overes-

timated at that point. In the following we will say in such a case that there is a conflict between

cutting plane cw′ and w′′. As can be seen, overestimation of a cutting plane at a local minimum will

probably “remove” this minimum from the set of reachable solutions. Figure 3(b) shows that all

three visible local minimums are “removed” by overestimation of the two cutting planes built at w′

and w′′.

Non-convex bundle method strategy. In non-convex bundle methods (Kiwiel, 1985; Gaudioso and

Monaco, 1992; Makela, 2002; Makela and Neittaanmaki, 1992; Schramm and Zowe, 1992) the

solution to overcome conflicts between a cutting plane cw′ and a point w′′ is to lower the cutting

plane cw′ by changing its offset while preserving the normal vector aw′ (see Figure 3(c)). This leads

to an adjusted cutting plane:

c
ad just

w′ (w) = 〈aw′ ,w〉+b
ad just

w′ .
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�✁

�✁

(a) Conflict (b) Bad approximation

�✁

�✁

✂✄☎✆✝✞

(c) Adjusting cutting plane

Figure 3: Cutting planes and linearization errors.

The offset bw′ is changed in b
ad just

w′ so that that the linearization error of c
ad just

w′ at w′′ is greater than

or equal to both, the absolute value of the linearization error between cw′ and f at w′′, and a locality

measure between w′ and w′′:

f (w′′)− c
ad just

w′ (w′′) ≥ | f (w′′)− cw′(w
′′)|, (9)

f (w′′)− c
ad just

w′ (w′′) ≥ γ‖w′′−w′‖ω (10)

where γ≥ 0,ω≥ 1 are locality measure parameters. The condition (9) ensures that if the lineariza-

tion error, f (w′′)− cw′(w
′′), is negative then the cutting plane has to be lowered at least twice the

amount that is required to have linearization error zero. In other words, in the case of negative

linearization error at w′′, the cutting plane is adjusted so that the new linearization error is posi-

tive, with at least the same magnitude as the “old” negative linearization error. The condition (10)

defines another underestimator on the linearization error (of the adjusted cutting plane) which is

based on the distance between two points w′ and w′′. The further the two points are the greater the

linearization error should be. The two conditions lead to the following offset change definition:

b
ad just

w′ = f (w′′)−〈aw′ ,w
′′〉−max

[

| f (w′′)− cw′(w
′′)|,γ‖w′′−w′‖ω

]

.

This is the greatest offset (closest to bw′) that satisfies the two above conditions. Besides, one can

easily check that if cw′ already satisfies both conditions (9) and (10) then b
ad just

w′ = bw′ and c
ad just

w′ (w)
and cw′(w) coincide.

2.5 Conclusion

CRBM are a fast adaptation of bundle methods to convex and regularized risks. Every iteration a

new cutting plane is added to the bundle so that the size of the bundle at iteration t is t. This makes

tackling complex tasks, eventually requiring many iterations, difficult since the cost of solving the

minimization of the approximated function is quadratic in the size of the bundle. To make CRBM

more scalable we will provide a limited memory variant where the size of the bundle is limited to a

given size (theoretically three CP are sufficient) whatever the iteration.

General non-convex bundle methods have been proved to have global convergence to cluster

points which are stationary solutions. Note that a stationary solution is not necessarily a local

minimum but may be a saddle point or even a local maximum. In practice, however, there are

many hyper-parameters to tune (γ,ω, regularization term, and several hyper-parameters for the line

search procedure) and convergence rate is not guaranteed, both drawbacks preventing using such

algorithms for large scale applications. We will propose a variant of regularized bundle method that

is adapted to non-convex risks and which is scalable in practice.
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3. Non-Convex Regularized Bundle Method (NRBM)

The success of convex regularized bundle methods with improved convergence rate over bundle

methods, both in theory and practice, motivated us to investigate their extension to non-convex

optimization, leading to bundle methods for regularized non-convex risks (NRBM). To design such

an algorithm, we propose two main contributions, the extension of CRBM to non-convex risks and

a limited memory variant of bundle methods that allows limiting the algorithmic cost of a single

iteration.

The extension of CRBM for non-convex function is not straightforward since, as we already ob-

served when presenting NBM, the cutting plane approximation does not yield an underestimator of

the objective function. Our proposal is to exploit some techniques of NBM for handling non-convex

function while considering a special design of the algorithm in order to keep the fast convergence

rate of CRBM. On one hand, we use standard techniques such as the introduction of locality mea-

sure and the adjustment of cutting planes in order to build local underestimator of the function at a

given point. On the other hand, we propose novel techniques such as a particular definition of the

locality measure for regularized risk and the introduction of constraints on CPs adjustment when

dealing with conflicts, which guarantee a minimal improvement on the approximation gap within

an iteration. At the end, we come up with a non-convex variant which inherits, in practice, the

convergence rate of CRBM. Note however that we may only provide weak theoretical results on

the convergence to a local minimum for the non-convex case. Convergence analysis is discussed in

Section 4.

The ability of our method, NRBM, to deal with non-convex risk allows tackling a wide range

of application and especially a number of everyday machine learning problems. Yet the algorithmic

cost of a single iteration grows with the number of the iteration. Actually, the dual program of the

approximation problem minimization in Equation 8 has a memory cost of O(tD+ t2) for storing all

the cutting planes and the dot product matrix between cutting planes’ normal vectors (i.e. 〈ai,a j〉),
where t is the number of cutting planes (it is equal to the iteration number in CRBM) and D is the

dimensionality of w. In addition, the computational cost for solving the dual program is usually

quadratic or cubic in t. These costs may be prohibitive especially in situations where the objective

is hard to optimize and the algorithm requires a large number of iterations to converge (e.g. weak

regularization), where t may become very large. For instance, in experiments of training a linear

SVM for adult data set (Teo et al., 2007), CRBM requires thousands of iterations for small values

of λ. To overcome such an issue and to make our NRBM practical for large scale and difficult

optimization problems we propose a limited memory mechanism. It is based on the use of a cutting

plane aggregation method which allows drastically limiting the number of CPs in the working set at

the price of a less accurate underestimator approximation. Note that such a limited memory variant

may be used with convex and non-convex risks. Also, this limited memory variant applied to convex

risks may be shown to inherit the convergence rate (w.r.t. the number of iterations) of CRBM, while

the cost of every iteration does not depend on the iteration number anymore.

To ease the presentation, we will present in Section 3.1 the limited memory variant of bundle

methods for the special case of convex risks. Then, we will consider in Section 3.2 our non-convex

extension of CRBM for dealing with non-convex risks, named Non-convex Regularized Bundle

Method, with includes as a particular feature the limited memory strategy.
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Algorithm 3 Limited memory CRBM

1: Input: w1, R, λ, ε, M

2: Output: w∗

3: Compute aw1
and bw1

of R at w1

4: w̃1 =−a1/λ, ã1 = aw1
; b̃1 = bw1

; J1 = {1}
5: for t = 2 to ∞ do

6: Compute new CP (awt
,bwt

) of R at wt

7: w∗t = argminw∈{w1,...wt} f (w)
8: Jt ← UpdateWorkingSet(Jt−1, t,M)

9: [w̃t , c̃t ]←Minimize gt(w) in Equation 11

10: gapt = f (w∗t )−gt(w̃t)
11: if gapt < ε then return w∗t
12: end for

3.1 Limited Memory for Convex Case

Our goal here is to limit the number of cutting planes used in the approximation function, which can

be done by removing some of the previous cutting planes if the number of cutting planes reaches a

given limit. However, the approximation gap is no more guaranteed to decrease after each iteration

if one removes some of the CPs without care. The subgradient aggregation technique (Kiwiel,

1983) appears then to be an appealing solution since it can be used to accumulate information from

multiple subgradients. Our proposal is to apply a similar technique to the set of cutting planes

approximation of the risk function R, yielding an aggregated cutting plane.4 Interestingly, we can

show that if such an aggregated cutting plane is included in the approximation function, then one

can remove any (or even all) previous cutting plane(s) while preserving the theoretical convergence

rate O(1/λε) iterations of CRBM.

Recall that the approximation function at iteration t is :

gt(w) =
λ

2
‖w‖2 +max

((

max
j∈Jt

c j(w)

)

, c̃t−1(w)

)

(11)

where Jt ⊂{1, .., t} stands for a working set of active cutting plane indexes that we keep at iteration t

and c̃t−1(w) = 〈ãt−1,w〉+ b̃t−1 is the aggregated cutting plane which accumulates information from

previous cutting planes, c1, ...,ct−1.

The limited memory CRBM is described in Algorithm 3. It takes as input an initial solution

w1, the convex risk function R, the regularization parameter λ, the tolerance ε, and the maximum

number of active CPs M ≥ 1. It produces as output a solution of the optimization problem, w∗. The

principle of the algorithm is similar to CRBM except that one has to decide how to define Jt via the

function UpdateWorkingSet(Jt−1, t,M) and how to define the aggregated cutting plane.

UpdateWorkingSet. At iteration t, a new cutting plane is added to the current set of cutting planes

Jt−1, but if Jt−1 is full (i.e., |Jt−1|= M) then we need to select a cutting plane in Jt−1 to remove. A

simple strategy is to replace the oldest cutting plane in Jt−1 by the new one: Jt = Jt−1∪{t} \ {t−
M−1}. Alternately, one may rely on a more sophisticated way for selecting which cutting plane to

4. We prefer this terminology to standard aggregate subgradients to stress that some cutting planes might be fully

artificial and would not correspond to real subgradient of the risk in the non-convex case.
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Figure 4: Quadratic underestimator of gt(w) (solid line) and corresponding aggregated cutting

plane c̃t(w) (dash line)).

remove from Jt−1. In our implementation, we maintain a count for each CP which is the number of

iterations in which the CP does not contribute to the aggregation CP (see below for details about the

definition of the aggregation CP). Then the CP with highest count is selected to be removed.

Cutting plane aggregation. The use of an aggregated cutting plane is a key issue to limit storage

requirements and computational effort per iteration. The technique is inspired by the subgradient

aggregation idea of Kiwiel (1983), which can be viewed as building a low cost approximation of

the piece-wise quadratic function in Equation 4. Basically, by considering a linear combination

of subgradient of f computed in previous iterations, we can discard previous subgradients without

losing all information. In our method, we also use aggregation technique for building a low cost

approximation of the approximation function gt(w). Note that we use a slightly different terminol-

ogy (CP aggregation instead of subgradient aggregation) since our goal is to build an approximation

of f using cutting planes, rather than building an approximation of subdifferential as in standard

bundle methods which aims at finding a solution with small sub-gradient. There are two key differ-

ences between our CP aggregation technique and the subgradient aggregation proposed originally

by Kiwiel (1983). First, our method is specifically designed for quadratically regularized objective

which makes possible to show that our limited memory variant using CP aggregation inherits the

theoretical convergence rate of CRBM (as least for convex risks). Instead the standard subgradient

aggregation technique can be applied to any objective function by using an additional regularization

term in the search direction optimization problem. Second, while the original method focuses on

aggregating subgradients, our algorithm applies the aggregation idea to both the direction, ã, and to

the offset, b̃ (and also to the locality measure in the non convex case, see later in Section 3.2.4).

At iteration t of Algorithm 3, the cutting plane aggregation c̃t(w) is derived from the mini-

mization of gt(w). We use the cutting plane technique to build an underestimator of gt(w) at its

minimum w̃t = argminw gt(w). Although any linear combination of previous cutting planes could

yield an under estimator of gt(w), only one of them, that we note c̃t(w) hereafter, corresponds to a

tight quadratic approximation λ
2
‖w‖2 + c̃t(w) that reaches the same minimum as gt(w):

w̃t = argmin
w

gt(w) = argmin
w

λ

2
‖w‖2 + c̃t(w).

The particular property of c̃t(w) is important since it allows to guarantee that for the limited

memory version of the algorithm, the gap between the best observed objective value and the min-

imum of the approximated function is unchanged even if one discards all previous cutting planes.
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Figure 4 illustrates the quadratic function (in red dash line) derived from the aggregated cutting

plane at iteration t = 2. The cutting plane c̃t(w) can be defined based on the dual solution of the

approximation problem which may be characterized in primal and dual forms as follows:

Primal Dual

minw
λ
2
‖w‖2 +ξ

s.t 〈a j,w〉+b j ≤ ξ ∀ j ∈ Jt

〈ãt−1,w〉+ b̃t−1 ≤ ξ

maxα − 1
2λ‖αAt‖

2 +αBt

s.t α j ≥ 0 ∀ j ∈ Jt ; α̃≥ 0

(∑ j∈Jt
α j)+ α̃ = 1

where At = [...;a j; ..., ãt−1] is a matrix (with a j and ãt−1 being row vectors), Bt = [...;b j; ...; b̃t−1] is

the vector of scalars and α stands for the (row) vector of Lagrange multipliers (of length |Jt |+1 at

iteration t). We denote α j as the Lagrange multiplier associated with the CP c j and we denote α̃ as

the Lagrange multiplier associated with the aggregated CP c̃ j−1. Let αt be the solution of the above

dual program then the minimizer of the primal can be expressed as:

w̃t =−
αtAt

λ
=−

∑ j∈Jt
α ja j + α̃ãt−1

λ
.

The following proposition show how to use αt for defining a tight underestimator of gt(w).

Proposition 1 Let c̃t(w) = 〈ãt ,w〉+ b̃t be the aggregated CP defined by:

ãt =αtAt = ∑ j∈Jt
α ja j + α̃ãt−1,

b̃t =αtBt = ∑ j∈Jt
α jb j + α̃b̃t−1

then the quadratic function λ
2
‖w‖2 + c̃t(w) is an underestimator of gt(w), which reaches the same

minimum value as gt(w) at the same point, w̃t .

Proof First, by construction we have w̃t =−
ãt

λ which implies that the derivative of λ
2
‖w‖2 + c̃t(w)

is null at w̃t . Second, we can show that λ
2
‖w̃t‖

2 + c̃t(w̃t) = gt(w̃t). Actually:

gt(w̃t) =− 1
2λ‖αtAt‖

2 +αtBt =−λ
2
‖ ãt

λ ‖
2 + b̃t

= λ
2
‖ ãt

λ ‖
2−λ‖ ãt

λ ‖
2 + b̃t = λ

2
‖w̃t‖

2−〈ãt ,
ãt

λ 〉+ b̃t

= λ
2
‖w̃t‖

2 + 〈ãt , w̃t〉+ b̃t .

(12)

In other words, the quadratic function λ
2
‖w‖2 + c̃t(w) and the approximation function gt(w) reach

the same minimum value gt(w̃) at the same point w̃t .

Finally, we show that λ
2
‖w‖2 + c̃t(w) is an underestimator of gt(w). Let

ht(w) = max

[

max
j=∈Jt

〈a j,w〉+b j,〈ãt−1,w〉+ b̃t−1

]

be the piecewise linear approximation of R(w) at iteration t, we have:

0 ∈ ∂gt(w̃t)≡ λw̃t +∂ht(w̃t)

since w̃t is the optimum solution of minimizing gt(w). Note that ãt = −λw̃t , the above equation

implies that ãt ∈ ∂ht(w̃t). In other words, ãt is a subgradient of ht(w) at w̃t . Furthermore, since

gt(w̃t) =
λ
2
‖w̃t‖

2 +ht(w̃t), Equation 12 gives:

〈ãt , w̃t〉+ b̃t = ht(w̃t).
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The cutting plane c̃t(w) is then an underestimator of ht(w) built at w̃t (recall that ht(w) is convex),

and thus λ
2
‖w‖2 + c̃t(w) is a quadratic underestimator of gt(w) = λ

2
‖w‖2 + ht(w). Note that since

λ
2
‖w‖2 + c̃t(w) is an underestimator of gt(w) and gt(w) is an underestimator of f (w) at w∗t , the

quadratic function λ
2
‖w‖2 + c̃t(w) is also an underestimator of f (w) at w∗t .

3.2 Regularized Bundle Method for Non-Convex Risks

To handle non-convex objective function, we introduce some new notations in addition to the nota-

tion used in Algorithm 3. In the following, we recall useful notations from previous section, and we

introduce additional notations that will be useful hereafter.

Notations from limited memory CRBM. At iteration t, wt is the current solution and w∗t is the best

observed solution. Jt corresponds to the working set of cutting plane, which is involved in the

definition of the approximation gt(w). w̃t is the solution of the minimization of gt(w), it is also

considered as the solution in the next iteration.

Raw and modified cutting planes. We have to distinguish between a raw linear cutting plane of the

risk cw j
(with cw j

(w) = 〈aw j
,w〉+bw j

) that is built at a particular iteration j of the algorithm and the

eventually modified versions of this cutting plane that might be used in posterior iterations. Indeed

a cutting plane may be modified multiple times for solving conflicts as in standard NBM method.

At iteration t we note ct
j (with ct

j(w) = 〈a j,w〉+ bt
j) the cutting plane which is derived from cw j

,

the raw CP originally built at iteration j. Unlike NBM, the normal vector a j in our algorithm might

be different than the subgradient aw j
computed at w j, due to our particular solving conflict method.

However, once defined at iteration j, the normal vector a j remains fixed over iterations. On the

contrary, the offset might be modified multiple times for solving conflicts occurring after iteration

j, and we use a superscript t indicating the iteration number for the cutting plane’s offset bt
j.

Bundle. The bundle Bt denotes the state of the algorithm at iteration t. It consists in a set of

cutting planes which were built at previous solutions, ct
j for j ∈ Jt . Similarly to non-convex bundle

methods, we define a locality measure which is associated to any active cutting plane. It is related

to the locality measure between the cutting plane (actually the point where the cutting plane was

built) and the best current observed solution. We note st
j the locality measure between cutting plane

ct
j and the best observed solution up to iteration t, w∗t . The full bundle information is:

Bt = {c
t
j,s

t
j} j∈Jt

∪{c̃t
t−1, s̃

t
t−1}

where c̃t
t−1 is an aggregated cutting plane and s̃t

t−1 is its locality measure to the best observed

solution w∗t . Similar to the aggregation technique presented in Section 3.1, the aggregated CP c̃t
t−1

can be viewed as a convex combination of CPs in previous iterations. For non-convex objective

function, each CP in the bundle is associated with a locality measure, including the aggregated CPs

whose locality measure is a convex combinations of locality measures of other CPs.

3.2.1 SKETCH OF ALGORITHM

The main algorithm is described in Algorithm 4, for which the input is similar to the case of

Algorithm 3 except the fact that the risk R can be non-convex. To deal with non-convexity, the key

idea to use CPs in the bundle to build a local underestimator of f around the best observed solution.
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Algorithm 4 NRBM

1: Input: w1,R, λ, ε,M

2: Output: w∗

3: Initialization:

4: Compute cutting plane cw1
of R

5: [c1
1,s

1
1] = [c̃1

1, s̃
1
1] = [cw1

,0]
6: w̃1 =−a1/λ

7: B1 = {c
1
1,s

1
1, c̃

1
1, s̃

1
1}

8: for t = 2 to ∞ do

9: wt ← w̃t−1

10: Compute cutting plane cwt
of R

11: w∗t = argminw∈{w1,...wt} f (w)
12: Bt = UpdateBundle(Bt−1,w

∗
t−1,w

∗
t ,cwt

,wt ,M)

13: (w̃t , c̃
t
t , s̃

t
t) = MinimizeApproximationProblem(Bt ,λ)

14: gapt = f (w∗t )−gt(w̃t)
15: if gapt < ε then return w∗t
16: end for

Similar to CRBM and limited memory CRBM, the approximation problem is designed in such a

way that one can use the minimum of the approximation problem as the new current solution. In

other words, NRBM does not require a dedicated line search procedure to ensure convergence as in

the standard NBM (Kiwiel, 1985). Such a line search is not required for convergence matters in our

method but it may be still used for improving convergence rate in practice (see Section 3.3.2).

Initialization

Initialization consists in providing a first bundle B1. Starting with an initial solution w1, we

build the first cutting plane c1
1 = cw1

= 〈aw1
,w〉+bw1

. Note that at iteration t = 1, there is only one

cutting plane c1
1 and the aggregated cutting plane is also c1

1: [c̃1
1, s̃

1
1] = [c1

1,s
1
1]. The approximation

function is then:

g1(w) =
λ

2
‖w‖2 + 〈a1,w〉+b1

1

which reaches its minimum at w̃1 = −a1/λ. The state of algorithm B1 is set to c1
1 and c̃1

1 (which

coincide) with their corresponding locality mesures to the best solution w1 (s̃1
1 = s1

1 = 0).

Iteration t

Every iteration the algorithm determine a new bundle Bt , the best observed solution up to it-

eration t, w∗t , and the new current (and temporary) solution wt . At iteration t > 1, few steps are

successively performed:

• Build a new cutting plane at w̃t−1 the minimizer of approximation function in previous itera-

tion (gt−1(w)).

• Update the best observed solution w∗t .

• Solve any conflict between the best observed solution,w∗t , and all cutting planes in the bundle.

This is done through a call to UpdateBundle function which we detail later. This yields a

piece-wise quadratic function gt which is a local underestimator approximation of f . As said

before, in addition to cutting planes built at previous solutions (e.g. at w1, ...,wt−1), we use a
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special aggregated cutting plane, c̃t
t−1 for gathering information of previous cutting planes up

to iteration t−1. The approximation function at iteration t is then:

gt(w) =
λ

2
‖w‖2 +max

[

max
j∈Jt

ct
j(w), c̃t

t−1(w)

]

(13)

where, as in Section 3.1, Jt stands for a subset of cutting planes defined in previous iterations

if one wishes to use a limited memory variant.

• Minimize gt . This gives a solution named w̃t which will be used in next iteration. Note that

a side effect of this minimization is the definition of a new aggregated cutting plane and its

locality measure to the best observed solutions.

This procedure is repeated until the gap (i.e. the difference between the best observed value of

objective function and the minimum of the approximation function) is less than a desired accuracy

ε. We say that an ε-solution has been reached.

We detail in the following sections how the approximation is built and procedure for solving

conflict in the update of the bundle. Then we provide details on our definition of the aggregated

cutting plane.

3.2.2 LOCALITY MEASURE AND CONDITIONS ON CPS

Given a set of cutting plane approximation of R, one could build a local underestimator of f in the

vicinity of w by descending CPs that yields non positive linearization error of f at w. Our algorithm

focus on solving conflicts between CPs in the bundle and the best observed solution w∗t . While

sharing some concepts with NBM such as locality measure, null step and descent step our method

is based on a new greedy strategy for solving conflicts which guarantee a minimum improvement

of the approximation gap after each iteration which is similar to CRBM.5

Locality measure definition. We propose to define the locality measure between a cutting plane

previously built at iteration j and the current best solution w∗t based on the trajectory from w j to w∗t .

We exploit the same shape of our regularization term (L2 norm) to define our locality measure.6 At

iteration t, we define the locality measure between CP ct
j built at w j and w∗t as:

st
j = s(w j,w

∗
t ) =

λ

2

(

‖w j−w∗j‖
2 +

t

∑
k= j+1

‖w∗k−w∗k−1‖
2

)

which yields a natural recursive formulate:

st
j = st−1

j +
λ

2
‖w∗t −w∗t−1‖

2,∀ j < t.

Lower bound and upper bound on offset adjustment. As in NBM, raw CP cannot always be used to

build an underestimator of f (w), which is non-convex so that CP need adjustments. We discuss two

conditions that define an upper and an underestimator on a CP’s offset modification when solving a

conflict with respect to w∗t .

5. Note that we use the terminology descent step instead of serious steps since descent step here is not fully similar to

serious step in standard non convex bundle methods.

6. Standard bundle methods use γdω where d is the Euclidean distance and γ > 0 and ω are hyper parameters (Cf.

Equation 10).
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Figure 5: Conflict between w∗t and a cutting plane cw′ .

First, as in standard NBM (recall Equation 10), we consider the following first condition requir-

ing that a CP built at w′, cw′ , gives a positive linearization error at w∗t , which must grow with the

locality measure of the CP to w∗t :

R(w∗t )− c(w∗t )≥ s(w′,w∗t ) (14)

where s(., .) is our non-negative locality measure between the two points. The positive value of

s(w′,w∗t ) ensures that the linear approximation cw′(w) is an underestimator of R(w) at least within

a small region around w∗t . Figure 5 illustrates this case. The cutting plane cw′ which was built at w′

does not satisfy condition 14. This conflict between cutting plane cw′ and w∗t is solved in NBM by

lowering cw′ (by tuning its offset b′) so that the linearization error at w∗t , R(w∗t )−cw′(w
∗
t ), becomes

at least s(w′,w∗t ). This yield an upper bound on the new offset b′:

b′ ≤ R(w∗t )−〈a
′,w∗t 〉− s(w′,w∗t ). (15)

Unfortunately if a cutting plane is lowered too much, the minimum of the approximation func-

tion is not guaranteed to improve every iteration anymore. For instance it may happen that the

minimum of the approximated function is not changed once the new cutting plane has been low-

ered, yielding a infinite loop without any improvement on the solution. Standard non-convex bundle

methods handle this problem with a special line search procedure (between the current best observed

solution and the minimum of the approximation problem) with stopping conditions that ensure some

minimal changes of the approximation problem.

We found instead that there is a simple sufficient condition that guarantees an improvement of

the minimum of the approximation function every iteration (required by Lemma 4). It concerns the

new added cutting plane only and writes: λ
2
‖wt‖

2 + 〈at ,wt〉+bt
t ≥ f (w∗t ). In other words, we need

to ensure that the approximation at wt using the new added cutting plane is greater or equal to the

best observed function value. Note that wt is the minimizer of the approximation in the previous

iteration, gt−1(w), this condition influences directly the gap between the best observed function

value and the minimum of the approximation. The condition can be seen as a lower bound on the

modified offset:

bt
t ≥ f (w∗t )−

λ

2
‖wt‖

2−〈at ,wt〉. (16)
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Algorithm 5 UpdateBundle

1: Input: Bt−1 = {c
t−1
j ,st−1

j } j∈Jt−1
∪{c̃t−1

t−1, s̃
t−1
t−1},w

∗
t−1,w

∗
t ,wt ,cwt

,M
2: Output: Bt = {c

t
j,s

t
j} j∈Jt

∪{c̃t
t−1, s̃

t
t−1}

3: if w∗t 6= w∗t−1 then Descent Step

4: for j ∈ Jt−1

5: st
j = st−1

j + λ
2
‖w∗t −w∗t−1‖

2

6: bt
j = min[bt−1

j ,R(w∗t )−〈a j,w
∗
t 〉− st

j]
7: end

8: s̃t
t−1 = s̃t−1

t−1 +
λ
2
‖w∗t −w∗t−1‖

2

9: b̃t
t−1 = min[b̃t−1

t−1,R(w
∗
t )−〈ãt−1,w

∗
t 〉− s̃t

t−1]
10: c̃t

t−1(w) := 〈ãt−1,w〉+ b̃t
t−1

11: [ct
t ,s

t
t ] = [cwt

,0]
12: else Null Step

13: for j ∈ Jt−1

14: ct
j = ct−1

j ; st
j = st−1

j ;

15: end

16: c̃t
t−1 = c̃t−1

t−1 ; s̃t
t−1 = s̃t−1

t−1 ;

17: if condition (15) is not satisfied for cwt
then

18: [ct
t ,s

t
t ] = SolveConflictNullStep(w∗t ,wt ,cwt

)

19: else [ct
t ,s

t
t ] = [cwt

, λ
2
‖wt −w∗t ‖

2]
20: end

21: Jt =UpdateWorkingSet(Jt−1, t,M)
22: return Bt = {c

t
j,s

t
j} j∈Jt

}∪{c̃t
t−1, s̃

t
t−1}

3.2.3 BUNDLE UPDATE

The approximation function, gt , is refined every iteration, Algorithm 5 describes the U pdateBundle

process. It takes as input:

• The bundle at previous iteration

• The best observed solutions at previous iteration w∗t−1

• The best observed solutions at current iteration w∗t
• The current solution wt and its corresponding raw cutting plane, cwt

.

The algorithm is designed so that at the end of iteration t, all (|Jt |+ 1) cutting planes in the

bundle (i.e. the |Jt | “normal” cutting planes and the aggregated cutting plane) satisfy condition in

Equation 15 while the new added cutting plane ct
t also satisfies condition in Equation 16. Note that

cwt
always satisfies (16) by definition of w∗t , so that ct

t also satisfies (16) in case there is no conflict

(ct
t ≡ cwt

).

As the two conditions (15) and (16) involve the best observed solution, we distinguish two cases

when solving conflict. Either the current solution is the best solution up to now (hence w∗t 6= w∗t−1),

in which case we call the iteration a descent step. Or the current solution is not the best solution

(i.e. w∗t ≡ w∗t−1), then the iteration is said to be a null step. We detail these two cases now.

Descent Step. In the case of a descent step, condition (16) is trivially satisfied for the new added

cutting plane since ct
t ≡ cwt

. Hence solving an eventual conflict is rather simple in this case. It is

done by setting:

bt
j = min[bt−1

j ,R(w∗t )−〈a j,w
∗
t 〉− st

j]
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Algorithm 6 SolveConflictNullStep

1: Input: w∗t ,wt ,cwt
with parameters (awt

,bwt
)

2: Output: ct
t with parameters (at ,b

t
t) and st

t

3: st
t =

λ
2
‖w∗t −wt‖

2

4: Compute L,U according to Equation 17

5: if L≤U then [at ,b
t
t ] = [awt

,L] else

6: at =−λw∗t NullStep2 case

7: bt
t = f (w∗t )−

λ
2
‖wt‖

2−〈at ,wt〉

for all j in the working set. A similar modification may be applied to the aggregated cutting plane:

b̃t
t−1 = min[b̃t−1

t−1,R(w
∗
t )−〈ãt−1,w

∗
t 〉− s̃t

t−1]

where s̃t
t−1 = s̃t−1 +

λ
2
‖w∗t −w∗t−1‖

2. At the end, the adjusted aggregated CP (in the working set of

iteration t) is:

c̃t
t−1(w) = 〈ãt−1,w〉+ b̃t

t−1.

Null Step. In the case of a null step, the best observed solution did not change, so that st
j = st−1

j ,∀ j =

1, ...,(t−1) and s̃t
t−1 = s̃t−1

t−1. Since all cutting planes in Bt−1 were already adjusted to satisfy positive

linearization error condition wrt. the best solution at previous iteration, a conflict (if any) may only

arise between the new cutting plane cwt
and the best observed solution w∗t . So that all CPs (including

aggregated CP) remain unchanged (see Algorithm 5 line 13) except the new added CP which must

be checked for conflict.

In the null step case, solving conflict is not as simple as in a descent step case since as we said

before, for convergence proof matters, we need the new cutting plane to satisfy both conditions (15)

and (16). Algorithm 6 modifies ct
t in such a way that it guarantees that the new cutting plane ct

t with

parameters at and bt
t satisfies conditions (15) and (16). In a first attempt it tries to solve the conflict

by tuning bt
t alone while fixing at = awt

. Indeed conditions (15) and (16) may be rewritten as:

bt
t ≤ R(w∗t )−〈awt

,w∗t 〉− st
t =U,

bt
t ≥ f (w∗t )−

λ
2
‖wt‖

2−〈awt
,wt〉= L

(17)

which define an upper bound U and a lower bound L for bt
t . If L≤U any value in (L,U) works (in

our implementation we set bt
t = L).

However it may happen that L>U , then tuning bt
t is not enough (this is what we call a NullStep2

case in Algorithm 6). Both bt
t and the normal vector at need to be adjusted to make sure that the

conflict is solved (see Line 6 in Algorithm 6).

Figure 6(top-left) illustrates an example of NullStep2 where the gradient information given at wt

is not helpful for building a local underestimator approximation at w∗t . The quadratic approximation

corresponding to cutting plane cwt
is plotted in orange, which is not a local underestimator of f (w)

at w∗t . The conflict is so severe that it cannot be solved by just lowering the cutting plane. It should

be lowered too much with respect to condition in Equation 15 (Figure 6 (top-right)), meaning that

the approximation function would be unchanged and the algorithm would loop without finding a

good solution.

In a NullStep2 case, we propose to ignore the gradient information at wt and to rather focus on

the region around the best observed solution w∗t by adding a particular CP (leading to a quadratic
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Figure 6: Illustration of NullStep2. Top-left: conflict arise at iteration t. Top-right: can not solve

conflict by descend the cutting plane. Bottom-left: Nullstep2, modifying the cutting plane

to solve the conflict at iteration t. Bottom-right: There is no conflict at iteration t +1.

local underestimator, λ
2
‖w‖2 + 〈at ,w〉+bt

t) satisfying both conditions in Equation 15 and 16). This

quadratic function is defined so that it reaches its minimum at w∗t and the linearization error of the

cutting plane 〈at ,w〉+bt
t at w∗t is λ

2
‖wt−w∗t ‖

2 (see the orange quadratic curve in Figure 6 (bottom-

left)). The new cutting plane is defined as:

ct
t(w) = 〈at ,w〉+bt

t ,
at =−λw∗t ,

bt
t = f (w∗t )−

λ
2
‖wt‖

2−〈at ,wt〉,

st
t = λ

2
‖wt −w∗t ‖

2.

This CP satisfies condition (16) by construction. It also satisfies condition (15) as we show now:

〈at ,w
∗
t 〉+bt

t = 〈at ,w
∗
t 〉+ f (w∗t )−

λ
2
‖wt‖

2−〈at ,wt〉

= R(w∗t )+ 〈at ,w
∗
t −wt〉+

λ
2
(‖w∗t ‖

2−‖wt‖
2)

= R(w∗t )+ 〈at +
λ
2
(w∗t +wt),w

∗
t −wt〉

where we used the definition of the objective function f (w∗t ) =
λ
2
‖w∗t ‖

2+R(w∗t ). Then, substituting

−λw∗t for at (Cf. Line 6) we obtain:

〈at ,w
∗
t 〉+bt

t = R(w∗t )−
λ
2
‖w∗t −wt‖

2

⇐⇒ 〈at ,w
∗
t 〉+bt

t = R(w∗t )− st
t

⇐⇒ bt
t = R(w∗t )−〈at ,w

∗
t 〉−

λ
2
‖w∗t −wt‖

2

and condition in Equation 15 is satisfied.

3559



DO AND ARTIÈRES

Figure 7: Quadratic underestimator of gt(w) derived from the aggregated cutting plane c̃t
t(w).

3.2.4 APPROXIMATED PROBLEM AND AGGREGATED CUTTING PLANE

In the non-convex case the aggregated CP is still an underestimator of approximation problem.

Figure 7 illustrates the quadratic function (in orange) derived from the aggregated cutting plane at

iteration t = 2.

Solving the approximated problem and definition of the aggregated cutting plane are completely

similar to the case of limited memory CRBM, with the only difference that we use here at iteration

t the bundle at iteration t that may include cutting planes that have been modified during previous

iterations.The minimization of the approximation function (gt(w) in Equation 13) can be solved in

the dual space as:

Primal Dual

minw
λ
2
‖w‖2 +ξ

s.t 〈at
j,w〉+bt

j ≤ ξ ∀ j ∈ Jt

〈ãt
t−1,w〉+ b̃t

t−1 ≤ ξ

maxα − 1
2λ‖αAt‖

2 +αBt

s.t α j ≥ 0 ∀ j ∈ Jt ; α̃≥ 0

(∑ j∈tJt
α j)+ α̃ = 1

where At = [...;at
j; ...; ãt

t−1] is a matrix (with at
j and ãt

t−1 being row vectors), Bt = [...;bt
j; ...; b̃t

t−1] is

the vector of scalars and α stands for the (row) vector of Lagrange multipliers (of length |Jt |+1 at

iteration t). We denote α j as the Lagrange multiplier associated with the CP ct
j and we denote α̃ as

the Lagrange multiplier associated with the aggregated CP c̃t
j−1. Let αt be the solution of the above

dual program then the minimizer of the primal can be expressed as:

w̃t =−
αtAt

λ
.

Hence the definition of the aggregated cutting plane follows:

ãt =αtAt ,
b̃t =αtBt .

Locality measure associated to the aggregated cutting plane.The aggregated CP c̃t
t accumulates in-

formation from many cutting planes built at different points so that one cannot immediately define a

locality measure s̃t
t between c̃t

t and the current best observed solution w∗t . However, c̃t
t being a con-

vex combination of cutting planes, we chose to define s̃t
t as the corresponding convex combination

of locality measures associated to cutting planes:

s̃t
t = ∑

j∈Jt

α js
t
j + α̃s̃t

t−1.
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Interestingly using this aggregated locality measure, one can show that there is no conflict between

c̃t
t and w∗t since R(w∗t )− c̃t

t(w
∗
t )≥ s̃t

t . Indeed, we have:

R(w∗t )− ct
j(w
∗
t ) ≥ st

j ∀ j ∈ Jt ,

R(w∗t )− c̃t
t−1(w

∗
t ) ≥ s̃t

t−1.

Multiplying these equations by α j’s and α̃ then taking the sum gives the result:

R(w∗t )− c̃t
t(w
∗
t )≥ s̃t

t .

3.3 Variants

In this section we discuss two variants (and their implementations issues) that allow speeding up

convergence in practice.

3.3.1 REGULARIZATION

In previous section we presented our method with a standard L2 regularization term λ
2
‖w‖2. Yet

this choice is not always a good one for non-convex optimization problems where convergence to

a poor local optima is a severe problem. Alternatively one may prefer to regularize around a first

reasonable solution wreg and use a regularization term such as ‖(w−wreg)‖2. For instance to learn

Hidden Markov Models with a large margin criterion using a variant of NRBM, we used a model

learned with Maximum Likelihood as wreg (Do and Artières, 2009). Furthermore, if all parameters

in w do not have the same nature (magnitude) then using only one weight-cost (λ) for all parameters

is not wise. So one may prefer the following regularization term:

λ

2
‖(w−wreg)⊗θ‖2

where θ is a positive vector of regularization weights and ⊗ stands for element-wise product. The

use of different θ values depending on the parameters allows introducing some prior information.

Again, taking our example of learning Hidden Markov Models, we used different θ values for

regularizing transition probabilities and emission probabilities parameters.

3.3.2 FAST VARIANT WITH LINE SEARCH

In Algorithm 4, the minimum point of the approximation function is not guaranteed to be a better

solution than the current best observed solution, which may result in null steps. Few works showed

that one can speed up cutting plane based methods with a linesearch procedure (Franc and Sonnen-

burg, 2008; Do and Artières, 2008), which may be efficient to compute in some cases (e.g. primal

objective of linear SVM).

The idea is that a line search ensures that we get a better solution every iteration, assuming that

the search direction is a descent direction. If the search direction is not a descent direction then

the line search returns the best solution along the search direction (should be close to the current

solution), which will be used to build a new cutting plane in the next iteration. In our case, without

specific knowledge of f (w) we use a general line search technique.

Since the line search may require considerable more function/subgradient evaluations, one can

initialize the step size based on the step size reached in previous iteration. In our implementation (a

line search with Wolfe conditions), initial step size is computed so that the step length is the same as
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the final stepsize in previous iteration. This simple implementation works well and most of the time

we need only one function/subgradient evaluation (when initial step size satisfies Wolfe conditions).

We investigated two strategies. In the full line search strategy , every iteration we add two cut-

ting planes to the approximation problem, one at the minimum point of the current approximated

problem and one at the solution of the line search. In this case, the role of the line search is to im-

prove the quality of the approximated problem every iteration. In the greedy line search strategy we

consider adding only one cutting plane at the solution of the line search in order to limit the number

of function/subgradient evaluation at each iteration. This strategy also works well in practice as we

will see in experiment section.

4. Convergence Analysis

In this section, we provide theoretical results for our algorithm. For a convex objective function,

when disabling locality measure (putting these to 0), our algorithm can be viewed as a limited

memory variant of CRBM, and we provide a proof on the convergence rate of the algorithm under

a standard assumption. For non-convex objective function, the convergence analysis is much more

complicated and requires a disputable assumption. For these reasons, we only present main results

for the non-convex case in this paper, while the corresponding proofs can be found in an internal

report (Do and Artieres, 2012).

4.1 Convergence Analysis for NRBM: Convex Case

We provide in this section theoretical results on the convergence behavior of our algorithm applied

to convex risks. First we present a theorem in Section 4.1.2 which characterizes its convergence rate

and shows that our algorithm inherits the fast convergence rate of CRBM from which it is inspired

(note that we consider here the particular case of quadratic regularization with non-smooth objective

function).

In the case of a convex risk one can either use the convex version of our algorithm which remains

to using Algorithm 3 or the non-convex version (Algorithm 4) while disabling all locality measure

(i.e. putting these to 0, Algorithm 4 will become Algorithm 3 since conflicts will not occur for

convex risk). We prove in the following the main results for the convex version.

4.1.1 ASSUMPTIONS

The necessary assumption for proving our main results are the following:

• H1 : The empirical risk is Lipschitz continuous with a constant G.

H1 is a rather standard assumption, which was used for proving convergence results in previous

works (Smola et al., 2008; Shalev-Shwartz et al., 2007; Joachims, 2006). It is in particular a reason-

able assumption in case of smooth almost everywhere risks such as those one gets using hinge loss

and maximum margin criterion (SVM, structured output prediction, etc).

4.1.2 MAIN RESULTS

We provide here an upper bound on the convergence rate of our variant of limited memory CRBM,

by studying the decrease of the gap, defined as the difference between the minimum observed value
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of the objective and the minimum of the current approximated problem, with iteration number.

Indeed, this gap can be used for bounding from above the accuracy of the current solution (in terms

of the objective value).

We begin with some preliminary results. Lemmas 1 and 2 are general results that are needed for

Lemma 3 which establishes a lower bound on the improvement of the approximation gap at each

iteration.

Lemma 1 Teo et al., 2007 The minimum of 1
2
qx2− lx with l,q > 0 and x ∈ [0,1] is bounded from

above by − l
2

min(1, l/q)

Lemma 2 Function h(x) = x− x
2

min(1,x/q) is monotonically increasing for all q > 0.

Proof We have :

h(x) =

{

x− x2/2q i f x < q

x/2 i f x≥ q

where x/2 is always monotonically increasing, then h is for monotonically increasing for x≥ q. For

x ∈ (−∞,q), h′(x) = 1− x/q > 0 because x < q and q > 0. Moreover, h is continuous (at x = q),

thus h is monotonically increasing whatever x.

Lemma 3 The approximation gap decreases according to:

gapt−1−gapt ≥min(
gapt−1

2
,
(gapt−1)

2λ

8G2
) (18)

where the approximation gap is defined as gapt = f (w∗t )−gt(w̃t).

Proof We focus on deriving an underestimator on the minimum value of gt(w) based solely on

this aggregated cutting plane and on the new added cutting plane at iteration t. This is simpler

than exploiting the complete approximation function. Note that this is possible since the aggregated

cutting plane accumulates information about the approximation problem at previous iterations. We

have:

gt(w)≥
λ

2
‖w‖2 +max

[

〈ãt−1,w〉+ b̃t−1,〈at ,w〉+bt

]

. (19)

Let find the minimum of the right side. The dual program of this minimization problem is:

maxα̃t−1,αt
−λ

2
‖ α̃t−1ãt−1+αt at

λ ‖2 + α̃t−1b̃t−1 +αtbt

s.t 0≤ α̃t−1,αt ≤ 1

α̃t−1 +αt = 1

where α̃t−1,αt ∈ R are Lagrange multipliers. This quadratic program has 2 variables and can be

further simplified as:

max
αt∈[0,1]

− 1
2λ‖ãt−1 +αt(at − ãt−1)‖

2 +αt(bt − b̃t−1)+ b̃t−1

= max
αt∈[0,1]

− 1
2λ‖at − ãt−1‖

2(αt)
2 +( ‖ãt−1‖

2

λ − 〈at ,ãt−1〉
λ +bt − b̃t−1)αt −

‖ãt−1‖
2

2λ + b̃t−1

= − min
αt∈[0,1]

1
2
q(αt)

2− lαt −gt−1(wt)

(20)

3563



DO AND ARTIÈRES

where q = ‖at−ãt−1‖
2

λ and l = ‖ãt−1‖
2

λ − 〈at ,ãt−1〉
λ +bt − b̃t−1.

Note that wt = w̃t−1 =−
ãt−1

λ . Hence the linear factor may be rewritten as:

l = ‖ãt−1‖
2

λ − 〈at ,ãt−1〉
λ +bt − b̃t−1

= 〈at ,wt〉+bt−〈ãt−1,wt〉− b̃t−1

= λ
2
‖wt‖

2 + 〈at ,wt〉+bt −
λ
2
‖wt‖

2−〈ãt−1,wt〉− b̃t−1

= f (wt)−gt−1(wt).

Using Lemma 1 the maximum value in Equation 20 is greater or equal than l
2

min(1, l/q)+

gt−1(wt) =
f (wt)−gt−1(wt)

2
min

(

1, f (wt)−gt−1(wt)
q

)

+ gt−1(wt). This latter quantity is then a lower

bound of the minimum of the right side in Equation 19, thus:

gt(wt+1) ≥min
(

f (wt)−gt−1(wt)
2

, ( f (wt)−gt−1(wt))
2

2q

)

+gt−1(wt)

⇒ gt(wt+1) ≥min
(

f (w∗t )−gt−1(wt)
2

, ( f (w∗t )−gt−1(wt))
2

2q

)

+gt−1(wt)

⇒ f (w∗t )−gt(wt+1) ≤ f (w∗t )−gt−1(wt)−min
(

f (w∗t )−gt−1(wt)
2

, ( f (w∗t )−gt−1(wt))
2

2q

)

.

Note that f (w∗t )≤ f (w∗t−1). Replacing f (w∗t ) by f (w∗t−1) in the right side of previous equation and

using Lemma 2 one gets:

gapt ≤ f (w∗t−1)−gt−1(wt)−min
(

f (w∗t−1)−gt−1(wt)

2
,
( f (w∗t−1)−gt−1(wt))

2

2q

)

⇔ gapt ≤ gapt−1−min
(

gapt−1

2
,

gap2
t−1

2q

)

.

Finally since q = 1
λ‖at − ãt−1‖

2 ≤ 4G2/λ, and substituting this back in previous formula gives the

result.

Theorem 1 Algorithm 3 produces an approximation gap below ε in O(1/λε) iterations. More

precisely it reaches a approximation gap below ε after T steps with:

T ≤ T0 +8G2/λε−2

with T0 = 2log2
λ‖w1+a1/λ‖

G
−2.

Proof Let consider the two quantities occurring in Equation 18, gapt−1/2 and λgap2
t−1/8G2.

We first show that the situation where gapt−1/2 > λgap2
t−1/8G2 (i.e. gapt−1 > 4G2/λ) may

only happen a finite number of iterations, T0. Actually if gapt−1 > 4G2/λ Lemma 3 shows that

gapt ≤ gapt−1/2 and the gap is at least divided by two every iteration. Then gapt−1 > 4G2/λ may

arise for at most T0 = log2(λgap1/4G2)+1. Since gap1 =
λ
2
‖w1+a1/λ‖2 (it may be obtained ana-

lytically since the approximation function in the first iteration is quadratic), T0 = 2log2
λ‖w1+a1/λ‖

G
−

2.

Hence after at most T0 iterations the decrease of the gap obeys gapt−gapt−1≤−gap2
t−1/8G2≤

0. To estimate the number of iterations required to reach gapt ≤ ε we introduce a function u(t) which

is an upper bound of gapt (Teo et al., 2007). Solving differential equation u′(t) = − λ
8G2 u2(t) with
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boundary condition u(T0) = 4G2/λ gives u(t) = 8G2

λ(t+2−T0)
≥ gapt/∀t ≥ T0. Solving u(t) ≤ ε ⇐⇒

t ≥ 8G2/λε+T0−2, the solution is reached with accuracy ε within
[

T0 +8G2/λε−2
]

iterations.

Next we show that if the algorithm reaches a null gap then it has found the global minimum.

Theorem 2 If gapt = 0 at iteration t of Algorithm 3, then w∗t = w̃t and w∗t is the global minimum

of f .

Proof

We have gt(w
∗
t ) = f (w∗t ) since the approximation errors are zero at points where cutting plane

were built. Hence, the null gap between f (w∗t ) and the minimum of gt , gt(w̃t), indicates that

gt(w
∗
t )= gt(w̃t), i.e., w∗t ≡ w̃t . Since gt(w) is an underestimator of f (w), it’s minimum value,gt(w̃t),is

less than or equal to the minimum of f (w). Therefore, w∗t is the minimum of f (w).

Note that in the case the algorithm can not reach null gap after a finite iterations, both f (w∗t ) and

gt(w̃t) converge to the minimum of f , f (w∗), since f (w∗t ) ≥ f (w∗), gt(w̃t) ≤ f (w∗) and f (w∗t )−
gt(w̃t)→ 0.

4.1.3 EXTENSION OF RESULTS TO VARIANTS WITH LINE SEARCH

As our proof is based on the cutting plane built at the minimum of approximated problem 〈at ,w〉+
bt , and the aggregated cutting plane, 〈ãt ,w〉+ b̃t , all theoretical results hold for the full line search

variant for which the two CPs are present in the approximation problem.

However, the things are more complicated for the greedy line search strategy and the proofs do

not hold anymore in their actual shape. Yet, such a strategy is less expensive than the full one and

it is efficient in practice. All results of the line search variant in the experiment section have been

gained using this implementation.

4.2 Convergence Analysis for NRBM : Non-Convex Case

We provide in this section theoretical results on the convergence behavior of our algorithm. First

we present a theorem in Section 4.2.2 which characterizes its convergence rate and shows that our

algorithm inherits fast convergence rate of CRBM from which it is inspired (note that we consider

here the particular case of quadratic regularization with non-smooth objective function). Next we

provide theorem that characterizes the solution the algorithm converges to. First of all we detail and

discuss the necessary assumptions used for proving these results, then we present our main results.

See Do and Artieres (2012) for detailed proofs.

4.2.1 ASSUMPTIONS

The necessary assumptions for proving our main results are the following:

• H1 : The empirical risk is Lipschitz continuous with a constant G.

• H2 : The number of iterations where a conflict is solved by modifying the normal vector at

(NullStep2 case in Algorithm 4) is finite.
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Under the H1 assumption, we could get the same theoretical results on convergence rate as

previous section for non-convex objective function. In other words, we can prove (with a more

complicated proofs) that the approximation gapt decrease towards zeros with a rate O(1/λε) and

that the algorithm has found a stationary solution if a null gap is reached. However, these results do

not imply the convergence to a global minimum for the non-convex case, and we need to provide

additional results for proving that the algorithm generates stationary solutions.

Our proof on the convergence towards stationary solution require an additional assumption H2,

which states that the number of NullStep2 in Algorithm 4 is finite. Recall that there is a NullStep2

at iteration t if and only if the raw cutting plane built at current solution wt is not compatible with

the best observed solution w∗t . Hence, since the current solution and the best observed solution

get closer as the iteration number increases we may hope that NullStep2 do not arise after a finite

number of iterations. Furthermore, it is very likely that if the algorithm gets close enough to a

stationary solution w∗ lying within a smooth area then it should converge towards this stationary

solution without conflicts anymore, as it would do in case of a convex and smooth objective. This

is particularly expected for our algorithm (compared to standard non-convex bundle methods) since

it focuses on maintaining a good approximation function around the best current solution. Another

important point is that we did not observe any case of infinite number of conflicts in our experiments

(on both academic optimization problems and machine learning problems) where NullStep2 mainly

occurred in a few early iterations.

At the end these claims are still not proved so that the convergence of NRBM to a stationary

solution is not fully proved here, but we believe that our convergence analysis establishes some

important elements towards a fast and fully proved bundle method for minimizing non-convex reg-

ularized function.

4.2.2 MAIN RESULTS

Similar to the case of convex risk, we can prove that the approximation decreases as the algorithm

iterates, under the hypothesis H1 only.

Lemma 4 The approximation gap of Algorithm 4 decreases according to:

gapt−1−gapt ≥min(
gapt−1

2
,
(gapt−1)

2λ

8G2
)

where the approximation gap is defined as gapt = f (w∗t )−gt(w̃t).

Proof The proof is provided in supplementary material.

This lemma implies a first theorem that provides a theoretical lower bound on convergence

speed.

Theorem 3 Algorithm 4 reaches a gap below ε with a number of iterations O(1/λε).

Next we show that if the algorithm reaches a null gap then it has found a stationary solution.

Theorem 4 If gapt = 0 at iteration t of Algorithm 4, then w∗t = w̃t and w∗t is a stationary point of

objective function f , i.e. 0 ∈ ∂ f (w∗t ).
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Optimizer Non-Convex Non-Smooth line-search

Non-convex Bunlde Method (NBM) yes yes yes

LBFGS no no yes

Stochastic Gradient Descend (SGD) yes yes no

Subgradient Descend (SG) yes yes no

Concave-Convex Procedure (CCCP) dedicated solver for difference of convex functions

SVMstruct dedicated solver for a particular convex problem

UniverSVM dedicated solver for a particular non-convex problem

Table 1: List of solvers that are considered in the experimental comparison.

The two following theorems say that, under Hypothesis H1 and H2, if the sequence (wt) and

(w∗t ) generated by NRBM Algorithm are infinite they have cluster points, and these cluster points

are stationary solutions.7

Theorem 5 If Algorithm 4 does not reach a stationary solution in a limited number of iterations,

the two infinite sequences (wt) and (w∗t ) generated by Algorithm 4 have cluster points.

Theorem 6 Let w∗ be a cluster point of the sequence (w∗t ). Then under assumptions H1 and H2,

w∗ is a stationary solution of f (w).

4.2.3 EXTENSION OF RESULTS TO VARIANTS

Similarly to the convex case, our results on convergence rate and vonvergence to a stationary solu-

tion hold for the full line search strategy but not for the greedy line search strategy, the latter being

less expensive and equally accurate in practice.

5. Experiments

In this section, we compare our optimization method NRBM to standard and non-standard (i.e.,

methods designed for solving a particular machine learning problem) optimizers listed in Table 1.

We also implemented the sped-up version of NRBM with soft line search procedure, this latter is

called NRBMLS. The implementation of our two algorithms NRBM and NRBMLS are in Matlab

(available at https://forge.lip6.fr/projects/nrbm), and the implementation of NBM is in

Fortran (available at http://napsu.karmitsa.fi/lmbm/).

First a series of experiments has been performed on artificial problems where we tested opti-

mization algorithms for optimizing a manually defined non-convex and/or non smooth objective

function. This allows deep understanding of the behavior of our approach. Then we consider ma-

chine learning problems of increasing optimization difficulty. We first consider a convex and smooth

optimization problem (learning a CRF). Next we consider a convex and non smooth optimization

problem (learning a M3N). Next we consider a non-convex and non smooth optimization problem,

learning a transductive SVM. Finally we study two larger scale non-convex optimization problems

for learning graphical models for speech and handwriting recognition: learning Hidden Markov

Models with a large margin criterion (non smooth) (Do and Artières, 2009); and learning a model

7. Let {xn} be a sequence of real vectors, then x is a cluster point of {xn} if for every ε > 0, there are infinitely many

points xn such that ‖x− xn‖< ε.
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mixing a deep neural network feature extractor and conditional random fields (smooth) (Do and

Artières, 2010). For each of these optimization problems we compare our methods with state of the

art dedicated optimization methods. Note that although many optimizer are implemented in Matlab,

dynamic programming for structured problems (CRF, M3N, CDHMM, NeuroCRF) are written in C

mex-files.

5.1 Artificial Test Problems

Experiments were carried out on two academic non-convex test problem problem (Haarala et al.,

December 2004). We followed here experimental settings with a few modifications. Actually, we

add a regularization term to the initial solution of each problem. We did not use the origin as

regularization point, which may lead to trivial optimum solution 0 and optimum value 0, since this

may cause numeric problems when using relative tolerance on objective value. In the following, we

note wi the ith coordinate of vector w ∈ R
D in the search space. We note w(0) the initial solution.

The two objective functions that we seek to optimize are named and defined as follows. Note

that both problems may be instantiated with a varying number of dimensions (i.e. parameters), D,

this allows investigating small to larger scale problems.

Chained Mifflin 2

f (w) =
λ

2
‖w−w(0)‖2 +

D−1

∑
i=1

(

−wi +2(w2
i +w2

i+1−1)+1.75|w2
i +w2

i+1−1|
)

with w
(0)
i =−1 for all i = 1, ...,D.

Chained Cessent 2

f (w) = λ
2
‖w−w(0)‖2 +∑D−1

i=1 max
[

w2
i +(wi+1−1)2 +wi+1−1 ,
−w2

i − (wi+1−1)2 +wi+1 +1
]

with

w
(0)
i =

{

−1.5 when mod(i,2) = 1

2.0 when mod(i,2) = 0
.

We compare our algorithms, NRBM and NRBMLS (NRBM with linesearch), and standard Non-

Convex Bundle Method (NBM). In order to do so we conducted extensive experiments to investigate

the respective convergence behaviour of the methods (convergence rate and quality of the solution

found). Tables 2 and 3 report results gained for both data sets Chained Mifflin 2 and Chained 2

Cessent for NBM, NRBM and NRBMLS for various experimental settings: Data dimensionality D

ranges from 102 up to 105, and regularization parameter λ ranges from 0.1 to 1.0. We compare the

three algorithms with respect to:

• The value of the objective at the solution found.

• The number of objective evaluations needed.

• The cpu time of the optimization (indicative).

For NRBM and NRBMLS, optimization is performed until the approximation gap becomes less

than 0.1% of the absolute value of objective function (relative tolerance 10−3), and we also set the

relative tolerance of NBM to 10−3. Note however that the two stopping criteria do not coincide,

which may lead to different final accuracy (we will come back on this point later in sections 5.5 and
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(a) Chained Mifflin 2 D=10000

(b) Chained Cessent 2 D=10000

Figure 8: Comparison of convergence behavior for NRBM, NRBMLS, and NBM. Figures show

the value of the objective function as a function of the number of objective function

evaluations. There is one row of plots per data set, with a plot for every value of λ.

5.6). Note also that the CPU time of the optimization is not indicative and should be taken carefully

since implementations are not equally optimized.

We may draw some comments from these tables (note that we observed similar results, not

included here, on few other artificial data sets than the two studied here). First we focus on the

linesearch efficiency by comparing NRBM and NRBMLS in terms of convergence rate (measured

by the number of evaluations of the objective) and of accuracy of the solution reached. One can

easily observe that in some cases NRBMLS performs similarly as NRBM but in most cases it

significantly improves convergence rate and leads to a better solution, whatever the dimensionality

D, and whatever the amount of regularization λ.

From the point of view of convergence accuracy NBM often outperforms both of our methods,

NRBM and NRBMLS, and converges to a better solution with a very slightly lower objective value.

This is reasonable since NBM uses an additional stopping condition which is similar to the one used

in proximal bundle method. However, the results in Figure 8 suggest that NRBM and NRBMLS are

faster than NBM to reach a reasonable solution.

From the convergence rate point of view, NBM is faster than NRBM for low dimensionality and

low λ only, but NRBM is faster than NBM when λ increases for low dimensionality and whatever

λ for high dimensional problems. NRBMLS is always faster than NRBM and NBM, whatever λ

and whatever the problem dimensionality. Depending on the settings, NRBM and NRBMLS may

be up to 50 times faster than NBM, and this is particularly true for high dimensional optimization

problems. Finally, as λ gets bigger, both NRBM and NRBMLS converge faster, as expected by the

theoretical proven convergence rate O( 1
λε). On the contrary, NBM cannot always benefit from the

large value of λ (see Table 3).
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At the end, our algorithms are shown to converge towards solutions that compare well to the

ones found by standard non-convex bundle methods but they do converge much faster and the benefit

seems to increase with the dimensionality of the problem. This suggests that our methods are better

candidates for large scale machine learning problems involving non-convex optimization.

D = 102 λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

obj. eval time obj. eval time obj. eval time obj. eval time

NBM -55.68 254 0.03s -41.32 29 0.00s -8.167 12 0.00s 24.92 10 0.00s

NRBM -54.19 501 1.52s -41.31 280 0.44s -8.163 20 0.02s 24.93 8 0.01s

NRBMLS -55.66 45 0.03s -41.32 18 0.01s -8.165 7 0.01s 24.93 5 0.01s

D = 103 λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

NBM -560.9 157 0.16s -416.3 48 0.04s -83.17 30 0.03s 249.9 23 0.02s

NRBM -556.2 501 1.96s -416.3 163 0.39s -83.16 19 0.04s 250.0 7 0.02s

NRBMLS -560.7 43 0.08s -416.3 19 0.04s -83.16 7 0.02s 250.0 4 0.01s

D = 104 λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

NBM -5613 431 4.77s -4166 123 2.20s -833.2 91 1.44s 2500 73 0.99s

NRBM -5609 501 13.77s -4166 67 2.13s -832.8 34 1.06s 2500 6 0.19s

NRBMLS -5611 24 0.54s -4166 13 0.36s -833.2 7 0.18s 2500 3 0.09s

D = 105 λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

NBM -56138 407 96.64s -41666 363 94.75s -8333 284 71.54s 25000 214 50.87s

NRBM -56119 172 57.57s -41661 33 12.84s -8332 32 9.2s 25000 6 1.73s

NRBMLS -56097 30 7.19s -41664 17 6.14s -8333 7 1.74s 25000 3 0.85s

Table 2: Chained Mifflin 2 data set. Comparative results of convergence quality (objective value,

column obj) and convergence rate (number of evaluations of the objective function, col-

umn eval and cputime, column time) for the three optimization methods NBM, NRBM

and NRBMLS, for various values of regularization level (λ) and for various data dimen-

sionality (D).

5.2 CRF Training: Smooth and Convex Objective Function

To begin with, we perform experiments with a smooth and convex objective function for learning

a conditional random field (CRF), and compare NRBMLS (convex setting) with NBM, Stochas-

tic Gradient Descent (SGD), and LBFGS, a popular choice of optimizer for CRF.8 Note that both

NRBM and LBFGS use an approximation of the objective function (non-smooth piece-wise quadratic

function in NRBM and a second order approximation in LBFGS). While the smooth approximation

in LBFGS is suitable for smooth objective function, we would like to know how the non-smooth

approximation works for smooth objective function. For LBFGS, the algorithm stop once the ratio

between the norm of the gradient and the norm of the solution is smaller than a small tolerance.

In our experiment, we find a tolerance parameter which yields comparative accuracies between

LBFGS and NRBMLS for several values of λ, but we could not guarantee fair stopping criterion in

all cases. The SGD setting is based on Leon Bottou implementation (Bottou, 2008).

We use a fixed tolerance on the norm of gradient for LBFGS which yields comparable accuracies

to NRBMLS for several values of λ.

8. We used a Matlab implementation of LBFGS provided by Fei Sha.
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D = 102 λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

obj. eval time obj. eval time obj. eval time obj. eval time

NBM 15.75 58 0.00s 31.23 105 0.01s 77.84 124 0.02s 152.2 145 0.02s

NRBM 15.64 334 81.71s 31.23 132 1.91s 77.93 66 1.14s 152.3 21 0.02s

NRBMLS 15.63 111 8.12s 31.21 103 4.66s 79.15 49 0.38s 152.2 29 0.02s

D = 103 λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

NBM 156.3 180 0.21s 312.5 194 0.35s 780.9 146 0.17s 1531 163 0.18s

NRBM 157.1 501 11.44s 312.8 104 4.34s 781.6 41 0.32s 1532 15 0.03s

NRBMLS 156.3 105 11.75s 313.0 82 1.27s 781.5 36 0.18s 1531 17 0.03s

D = 104 λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

NBM 1563 276 5.76s 3125 311 6.49s 7812 194 3.06s 15316 289 4.02s

NRBM 1564 218 25.31s 3128 72 2.74s 7818 29 0.78s 15319 14 0.32s

NRBMLS 1564 75 6.9s 3127 42 2.64s 7829 22 0.40s 15327 16 0.21s

D = 105 λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

NBM 15625 628 154.32s 31251 660 178.43s 78126 636 143.97s 1.562e+5 628 151s

NRBM 15635 106 49.97s 31272 48 20.38s 78146 21 8.38s 1.532e+5 14 3.86s

NRBMLS 15638 62 30.12s 31269 48 16.29s 78247 21 6.24s 1.532e+5 16 2.51s

Table 3: Chained Cessent 2. Comparative results of convergence quality (objective value, column

eval) and convergence rate (number of evaluations of the objective function, eval and

cputime, column time) for the three optimization methods NBM, NRBM and NRBMLS,

for various values of regularization level (λ) and for various data dimensionality (D).

When working with convex function, we can simply disable the use of the locality measure

and the conflict handling procedure so that the method, NRBMLS-convex, becomes much simi-

lar to CRBM. Note that in NRBMLS-convex, we use the soft linesearch in order to speed up the

convergence rate.

We conducted experiments on an OCR data set used by Taskar et al. (2004) for evaluating

Maximum Margin Markov Networks. This OCR data set consists of 6877 words which correspond

to roughly 52,000 characters (Kassel, 1995). OCR data are sequences of isolated characters (each

represented as a binary vector of dimension 128) belonging to 26 classes. The data set was divided

in 10 folds for cross validation. We use here the 8 first folds for training and the two last fold for

testing.

Table 4 shows results of the four optimization algorithms for training CRFs with various reg-

ularization values (λ). As can be seen, the three batch optimization methods (NRBMLS, NBM,

and LBFGS) significantly outperform SGD for this task, which is in contradiction to Bottou’s result

where SGD clearly outperformed LBFGS for the CONLL2000 data (Bottou, 2008). We believe

that the difference between these two contradictory results may come from the fact that the OCR

problem is maybe more complex, meaning that the OCR problem would require more training data

(the predictive error rates on the two data sets are 14% for OCR and 6% for CONLL2000). This

suggests that the OCR data is less redundant than the CONLL2000 data, which would explain why

SGD, whose efficiency depends on data redundancy, is less effective for OCR data.

Now looking at batch optimization methods, NRBMLS requires less iterations than NBM to

reach similar objective value, it also slightly outperforms LBFGS. While these results might be

biased by unequal stopping criteria, they suggest that the non-smooth approximation technique also
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NRBMLS NBM LBFGS

λ time eval obj. err. time eval obj. err. time eval obj. err.

1e-04 306s 192 2.71 0.145 370s 244 2.71 0.145 340s 225 2.71 0.146

5e-05 405s 258 2.53 0.145 520s 353 2.53 0.144 458s 309 2.53 0.144

2e-05 408s 266 2.37 0.143 671s 471 2.37 0.142 583s 406 2.37 0.144

1e-05 419s 279 2.29 0.143 881s 636 2.29 0.142 583s 414 2.29 0.142

5e-06 556s 376 2.24 0.143 1199s 881 2.24 0.144 815s 593 2.24 0.143

2e-06 700s 483 2.21 0.145 1136s 834 2.21 0.145 956s 710 2.21 0.145

1e-06 753s 515 2.20 0.145 1026s 757 2.20 0.145 741s 554 2.20 0.146

SGD

100 epochs 500 epochs 1000 epochs 2000 epochs

λ time obj. err. time obj. err. time obj. err. time obj. err.

1e-04 161s 2.83 0.156 805s 2.75 0.146 1610s 2.72 0.145 3221s 2.71 0.146

5e-05 157s 2.71 0.156 784s 2.59 0.148 1567s 2.56 0.147 3134s 2.54 0.144

2e-05 151s 2.63 0.161 755s 2.48 0.153 1509s 2.44 0.151 3019s 2.41 0.147

1e-05 147s 2.60 0.165 733s 2.47 0.158 1466s 2.41 0.154 2933s 2.36 0.150

5e-06 143s 2.59 0.166 714s 2.48 0.161 1429s 2.42 0.158 2857s 2.36 0.154

2e-06 139s 2.58 0.168 696s 2.51 0.163 1392s 2.47 0.163 2784s 2.41 0.159

1e-06 137s 2.58 0.167 687s 2.52 0.167 1374s 2.50 0.164 2747s 2.45 0.163

Table 4: Comparative results of learning a CRF on OCR data set (Kassel, 1995). The maximum

number of gradient stored is set to 200 for NRBMLS, NBM and LBFGS. Each row corre-

sponds to a particular value of λ and provides for both methods the total cputime (time),

the number of objective evaluation (eval), the value of the objective at convergence (obj),

the classification error rate on the test set (err).

works well for smooth functions. Moreover, NRBM can exploit efficiently the regularization term

in order to outperform NBM.

5.3 M3N Training: Non-Smooth and Convex Optimization Problem

In a second series of experiments we compare the efficiency of different optimization methods on

learning a M3N, which yields a convex and non-smooth optimization problem. In addition to NBM

and SGD, we also report the results of SVMstruct, the state of the art solver for M3N. We used the

latest version SVMstruct 3.0 with 1-slack formulation, which is several orders of magnitude faster

than previous methods.9

Here again we use NRBM-convex and a soft linesearch for speeding up convergence rate (noted

NRBMLS). Note that SVMstruct 1-slack can also be viewed as a special case of CRBM, and the

implementation of SVMstruct includes also some speed up techniques in the dual space.

Table 5 reports experimental results on the OCR data set (with the same setting as before).

Similar to CRF experiments, we observe that SGD is not very effective. Looking at the results

9. The implementation of SVMstruct was downloaded from: http://svmlight.joachims.org/svm_struct.html.
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NRBMLS NBM SVMstruct

λ time eval obj. err. time eval obj. err. time eval obj. err.

1e-03 53s 158 2.92 0.143 61s 196 2.92 0.143 104s 1359 2.93 0.152

5e-04 69s 208 2.73 0.142 83s 269 2.73 0.141 137s 1849 2.74 0.148

2e-04 105s 314 2.52 0.135 151s 490 2.52 0.140 204s 2633 2.54 0.140

1e-04 161s 476 2.41 0.139 285s 926 2.41 0.138 311s 3644 2.43 0.140

5e-05 225s 644 2.33 0.137 383s 1241 2.33 0.138 468s 4975 2.35 0.138

2e-05 484s 1224 2.26 0.137 605s 1963 2.26 0.137 1432s 9292 2.28 0.139

1e-05 763s 1636 2.23 0.136 749s 2435 2.23 0.139 4834s 18369 2.25 0.143

SGD

100 epochs 500 epochs 1000 epochs 2000 epochs

λ time obj. err. time obj. err. time obj. err. time obj. err.

1e-03 41s 3.05 0.150 206s 2.96 0.146 411s 2.93 0.145 823s 2.92 0.144

5e-04 41s 2.91 0.150 207s 2.79 0.145 414s 2.76 0.144 827s 2.74 0.142

2e-04 41s 2.78 0.151 207s 2.66 0.145 415s 2.60 0.142 829s 2.56 0.140

1e-04 41s 2.71 0.149 206s 2.58 0.146 413s 2.53 0.144 825s 2.49 0.140

5e-05 41s 2.65 0.148 206s 2.52 0.145 412s 2.48 0.144 824s 2.43 0.142

2e-05 41s 2.63 0.147 205s 2.51 0.146 410s 2.47 0.145 821s 2.42 0.144

1e-05 41s 2.65 0.152 205s 2.49 0.147 409s 2.46 0.144 819s 2.42 0.144

Table 5: Comparative results of NRBM, NBM, SVMstruct and SGD for learning a M3N on OCR

data set (Kassel, 1995). Each row corresponds to a particular value of λ and provides for

both methods the total cputime (time), the number of objective evaluation (eval), the value

of the objective at convergence (obj), the classification error rate on the test set (err).

of NRBMLS and SGD-2000 epochs, we see that NRBMLS outputs better objective values and

test error rates, while requiring significantly less number of iteration. Furthermore, NRBMLS is

constantly faster than NBM of the same family, and significantly outperforms SVMstruct too.

5.4 Transductive SVM Training: Non-Smooth and Non-Convex Optimization Problem

Finally, we consider the problem of binary classification in a semi supervised setting with a training

set of n labeled examples {(x1,y1), ..,(xn,yn)} and m unlabeled examples {xn+1, ..,xn+m}. The

unconstrained primal formulation of TSVM is then:

min
w

λ

2
‖w‖2 +

1

n

n

∑
i=1

max(0,1− yi〈xi,w〉)+ γ
1

m

n+m

∑
i=n+1

max(0,1−|〈xi,w〉|)

where γ is a trade-off parameter between the labeled loss term and the unlabeled loss term. This

objective function belongs to the regularized function family that can be solved by NRBM. Further-

more it is also an instance of difference of convex functions and can be solved by CCCP.

We trained TSVM on a subset of the MNIST data set consisting of samples of digit 3 and 8,

the data was preprocessed with Principal Components Analysis (PCA) as is usually done. We split
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NRBMLS NBM CCCP Primal

γ time eval obj. err. time eval obj. err. time eval obj. err.

1 0.2s 24 0.26 0.057 0.8s 113 0.26 0.058 1.4s 181 0.26 0.057

2 0.1s 21 0.35 0.055 0.4s 59 0.35 0.054 1.6s 206 0.36 0.054

5 0.2s 25 0.55 0.051 1.1s 197 0.55 0.051 2.7s 375 0.57 0.057

10 0.3s 39 0.81 0.049 0.3s 57 0.81 0.051 4.8s 680 0.86 0.056

20 0.7s 90 1.20 0.048 0.5s 104 1.20 0.051 7.5s 1083 1.72 0.122

50 0.3s 41 2.19 0.084 1.0s 193 2.00 0.054 1.1s 151 9.38 0.548

UniverSVM SG 100 epochs SG 500 epochs SG 5000 epochs

γ time obj. err. time obj. err. time obj. err. time obj. err.

1 64s n.a. 0.057 1s 0.28 0.058 3s 0.26 0.057 33s 0.26 0.058

2 65s n.a. 0.057 1s 0.37 0.055 3s 0.35 0.054 32s 0.35 0.053

5 53s n.a. 0.049 1s 1.18 0.329 3s 0.61 0.051 32s 0.55 0.048

10 59s n.a. 0.075 1s 1.81 0.455 3s 1.62 0.401 30s 1.60 0.390

20 63s n.a. 0.055 1s 2.49 0.489 3s 2.37 0.476 27s 2.35 0.475

50 69s n.a. 0.143 1s 4.09 0.501 3s 3.60 0.505 26s 3.48 0.503

Table 6: Comparative results of transductive SVM training. Each row corresponds to a particular

value of γ. For each optimization method, we report the total cputime (time), the number

of objective evaluation (eval), the value of the objective (obj), the classification error rate

on the test set (err). The error rate of the initial solution (a SVM trained on labeled samples

only, with λ = 0.01) is 0.0776.

the training data into 200 labeled samples and 11782 unlabeled samples, the test set contains 1984

samples. We set λ = 0.01 since it gives best results on the test data.

We initialized the TSVM with the SVM solution on the labeled set. Then we optimized the

non-convex objective with NRBMLS, CCCP in primal (Yuille and Rangarajan, 2003), CCCP in

dual with UniverSVM, and Gradient Descent.10 For CCCP-Primal, we used our NRBM-convex

solver (disabling the use of locality measures) for every iteration, then we stopped CCCP once

the improvement of the objective function was not better than 1% of its current value. Note that

UniverSVM solve the TSVM problem in dual space and there is no equivalent concept of the number

of primal objective evaluations. We also perform experiments with Gradient Descend method since

the implementation of SGD for TSVM is not trivial.

The comparative results of the 5 optimization methods are shown in Table 6. We observe that

all methods achieve similar best error rates (0.048 − 0.049) but primal optimization methods out-

perform the only one dual optimization method (UniverSVM) in term of speed. Looking at each

row (for the same γ value), we see that NRBMLS always reach a good solution which make it the

most robust optimizer in this experiment.

The behavior of Subgradient Method (SG) is quite complex. On one hand, one observe that

it seems to converge to the same solution of NRBMLS for small values of γ. On other hand, for

10. The implementation of UniverSVM was downloaded from: http://www.kyb.tuebingen.mpg.de/bs/people/

fabee/universvm.html.
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large γ (i.e. the non-convex term is more important), the solution found by SG is not good in term

of objective value and test error rate. Although SG and NRBMLS reach the same best error rate

(0.048), SG requires a larger number of iterations to converge. This suggests the potential of using

SG for the TSVM problem, but we need a very careful design (learning rate, update rule, etc.) to

overcome the slow convergence rate.

Comparing NRBMLS and CCCP-Primal, we see that NRBMLS clearly outperforms CCCP, it

is faster and converges to a better solution. This can be explained by the fact that CCCP spends too

much effort to minimize the convex approximation function (whose evaluation requires the same

computing cost as the original non-convex function) every CCCP iteration. While convex approx-

imation of non-convex function is often accurate only on a neighborhood of the coordinate where

its was constructed, CCCP may perform useless computations to reach the minimum of the convex

approximation. Instead, NRBMLS optimizes more directly the non-convex objective by updating

iteratively the approximation. At the end, it converges faster to a good solution. Furthermore,

CCCP may fail to get a good solution when the value of γ is too big (i.e. when the non-convex term

becomes more important) while NRBM seems to be more robust in this hard setting.

At last it must be noticed that using CCCP may require a lot of effort to mathematically re-

formulate the objective function into a concave and a convex term. The extension of TSVM for

multiclass classification and for structured prediction is for instance not straightforward with CCCP

while it is with NRBM.

5.5 Large Margin Training for Continuous Density Hidden Markov Models

Hidden Markov Models (HMMs) have been widely used for automatic speech recognition (Rabiner,

1990) and handwriting recognition (Hu et al., 2000). Continuous Density HMMs (CDHMMs)

are particularly suited for dealing with sequences of real-valued feature vectors that one gets af-

ter typical front-end processing in signal processing tasks. CDHMMs usually exploit Gaussian

mixture models to describe the variability of observations in a state. HMM parameters are learnt

on a partially labeled data set (since state sequences of training sequences are unknown) with

the Expectation-Maximization algorithm (EM) to maximize the joint likelihood of observation se-

quences and of hidden state sequences.

Recently, few approaches have been proposed for large margin learning of HMMs, especially

in the speech recognition community (Sha and Saul, 2007; Jiang and Li, 2007) (see Yu and Deng,

2007 for a review). However none of these works actually handle the whole problem of max-

margin learning for HMM parameters in the standard partially labeled setting. For instance Sha and

Saul (2007) and Jiang and Li (2007) tackle a simplified convex optimization problem. Indeed, the

main difficulty one encounters when formulating the maximum margin learning of CDHMM lies

in the non-convexity of the optimization problem which comes from the presence of hidden state

variables (the sequence of states and of Gaussian components) and from the discriminative function

which is quadratic with respect to some parameter (e.g., covariance matrix). Instead of relying on a

convex relaxation technique, we proposed to directly optimize the non-smooth non-convex objective

function (Do and Artières, 2009):

minw
λ
2
‖w−w0‖

2 +∑i maxy

(

F(xi,y,w)+∆(yi,y)−F(xi,yi,w)
)

(21)

where (xi,yi) are input and output sequences, w are model parameters, and discriminative functions

F(xi,y,w) = maxs∈S(y),m log p(xi,y,s,m|w) are Viterbi-approximation of log likelihood (s and m

3575



DO AND ARTIÈRES

NRBMLS SGD+ SGD

λ eval obj. err. eval obj. err. eval obj. err.

0.010 72 0.583 0.281 72 0.598 0.286 439 0.594 0.285

0.005 104 0.542 0.276 104 0.612 0.281 502 0.552 0.280

0.003 132 0.507 0.274 132 0.653 0.278 594 0.517 0.274

0.002 396 0.474 0.277 396 0.765 0.277 667 0.487 0.275

NBM+ NBM∗ NBM

0.010 72 0.584 0.282 83 0.583 0.282 416 0.580 0.283

0.005 104 0.545 0.278 139 0.542 0.279 629 0.539 0.277

0.003 132 0.512 0.276 242 0.507 0.275 916 0.504 0.275

0.002 396 0.475 0.278 541 0.474 0.277 1181 0.472 0.278

Table 7: Large margin training for Continuous Density Hidden Markov Model. SGD and NBM

results were reported with different various criteria. The + superscript corresponds to

setting the maximum number of function evaluation to the one of NRBM. The ∗ superscript

corresponds to running optimization until the same objective function as NRBM solution

was found.

are hidden state segmentation and mixture component assignments respectively). Note that the

objective function is regularized with an initial solution w0 (MLE solution in practice) which yields

better results than considering the standard regularization term λ
2
‖w‖2 .

Experiments were conducted on the TIMIT data set, which is a well-known benchmark data set

for speech recognition. The training set consists of 3696 utterances, corresponding to 1,100,000

frames. We consider here the best CDHMM topology with 3 states per phoneme and 4 Gaussians

per state, it corresponds to about 925,000 model parameters (Do and Artières, 2009).

We compare the optimization results of NRBMLS with SGD and NBM. Note that CCCP is not

applicable since there is no concave-convex reformulation of the objective function in Equation 21

in the literature. Table 7 reports the number of function evaluation, the objective function value, and

the phone recognition error rate for the three optimization methods (execution time is not reported

since the experiments were launch on different machines). Here again, NRBM is stopped once

the gap is below 1% of the objective value. For comparison, we reported SGD and NBM results

with various stoping criteria: same number as NRBMLS (SGD+ and NBM+), reach NRBMLS’s

objective value (NBM∗) and the native stop criteria of the optimizers (SGD stops once the (online

estimated) objective value is not improved after 5 iterations or the maximum number of function

evaluations (2000) is reached, NBM stops once the norm of the search direction is smaller than

10−4).

Looking at final results of the 3 optimizers with their native stoping criteria, we found that

NRBMLS and NBM seems to converge to the same local minima in all cases while SGD converges

to different solutions. For example, in the case of λ = 0.003 (the optimum value), NRBMLS and

NBM reach objective values 0.507 and 0.504 respectively, i.e, the relative difference is 0.6% (which

is less than the stoping condition of NRBMLS). Also, while NBM reaches a more accurate solution

it does not outperform NRBM form the recognition rate point of view (0.275 vs. 0.274). Based

on the final objective values of SGD results, one could say that SGD is not a good optimizer, yet it

also allows achieving good recognition rate. This observation confirms again that stochastic learning
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Figure 9: A chain-structured NeuroCRF.

may not always be good as an optimization tool but it may lead to solutions with good generalization

properties.

At the end, NRBMLS converges significantly faster than the two other optimizers as it reaches

a better solution (in term of objective value and error rate) when using a fixed number of iterations

(columns SGD+ and NBM+), and it requires less iterations to reach a given value of the objective

function (column NBM∗, there is no column SGD∗ since SGD does not reach a similar objective

value as NRBMLS).

5.6 Learning a Non Linear CRF

Finally, we consider the discriminative training of a NeuroCRF, this may be viewed as an extension

of deep neural networks for structured output prediction (Do and Artières, 2010). Alternatively it

may be thought as a hybrid model for labeling sequences that consists in a conditional random field

exploiting features extracted with a deep neural network. Figure 9 illustrates such a linear chain

NeuroCRF which combines a standard CRF with a deep neural network for feature extraction. Such

a model implements a posterior distribution following

p(y|x) ∝ ∏
c∈C

e〈wc,Φ(x,yc,wNN)〉 (22)

where C denote the set of cliques of the CRF, wc the weights associated to clique c, wNN the weights

of the deep NN, and Φ a function that extract features from x.

Learning involves optimizing jointly the NN weights wNN and the CRF parameters wc. As it

has been suggested in previous works (Hinton et al., 2006), the deep neural network needs to be

pretrained through unsupervised learning (we used Restricted Boltzmann Machine (RBM) in our

experiments). This initial solution is then fine-tuned by optimizing a regularized version of the

conditional likelihood in Equation 22. Our experiments compare optimization algorithms for the

fine tuning step. Indeed, the pretraining of RBMs cannot be done by greedy optimizer such as

NRBM or LBFGS since the computation of the gradient is intractable. Hence in our experiments,

we pretrained the deep NNs by cascading RBMs trained with the original Contrastive Divergence

algorithm (Hinton et al., 2006). The pretrained deep neural network is used to build the initial

NeuroCRF model, called w0 where the initial CRF weights are drawn at random. Then, the Neuro-

CRF is fine tuned on a labeled data set of n input-output sequence {xi,yi}i=1..n using the following

criteria:

minw
λ
2
‖w−w0‖

2 + 1
m ∑i=1..n log(p(yi|xi;w)) (23)

3577



DO AND ARTIÈRES

NRBMLS SGD+ SGD

λ eval obj. err. eval obj. err. eval obj. err.

0.0010 64 1.847 0.050 64 1.604 0.059 2000 1.528 0.058

0.0005 81 1.203 0.047 81 1.190 0.056 2000 1.076 0.054

0.0003 116 0.842 0.046 116 0.941 0.053 2000 0.840 0.055

0.0002 116 0.616 0.045 116 0.775 0.054 2000 0.691 0.056

0.0001 130 0.365 0.050 130 0.557 0.055 2000 0.514 0.056

NBM+ NBM∗ NBM

0.0010 64 1.853 0.052 66 1.844 0.052 318 1.645 0.050

0.0005 81 1.233 0.046 94 1.202 0.048 305 1.075 0.048

0.0003 116 0.854 0.048 128 0.842 0.046 323 0.764 0.046

0.0002 116 0.660 0.047 175 0.616 0.046 238 0.594 0.045

0.0001 130 0.405 0.046 - - - 203 0.371 0.047

LBFGS+ LBFGS∗ LBFGS

0.0010 64 1.802 0.051 54 1.845 0.052 2095 1.591 0.048

0.0005 81 1.196 0.047 79 1.201 0.047 2104 1.010 0.047

0.0003 116 0.805 0.045 88 0.841 0.046 2119 0.696 0.049

0.0002 116 0.617 0.045 118 0.616 0.045 2131 0.511 0.052

0.0001 130 0.375 0.047 152 0.365 0.049 2135 0.300 0.053

Table 8: Optimization results for the discriminative training of NeuroCRFs. SGD, NBM and

LBFGS results were reported with different various criteria. The + superscript corresponds

to setting the maximum number of function evaluation to the one of NRBM. The ∗ super-

script corresponds to running optimization until the same objective function as NRBM

solution was found.

where m is total the number of tokens in the data set and p(yi|xi;w) is the conditional likelihood of

the correct labeling, whose gradient can be computed by back propagation. Since we use sigmoid

activation in hidden units of the deep neural network, the final objective function is non-convex with

many local minima and plateaus. This is the reason why neural network optimization is difficult and

the final solution is sensitive to initialization.

We evaluated the discriminative training of NeuroCRF on OCR data. Table 8 reports opti-

mization results of NRBMLS and the other applicable state-of-the-art optimizers: SGD, NBM, and

LBFGS. We use similar stopping condition setting as in previous sections. Looking at final error

rates, we found that the final solutions of NRBMLS and NBM are better than the solutions obtained

by other optimizers. The final objective values of these two algorithms are also quite close, sug-

gesting that the two methods converge to similar local optimum. Note that NRBMLS is faster than

NBM in all cases as NBM requires more iterations to reach the final objective value of NRBMLS

(see column NBM∗). Note also that the result of NBM∗ for λ = 0.0001 is not available, since NBM

converged to a local minima with higher objective value than that of NRBMLS. Importantly, while

NRBMLS can exploit the regularization term to converge quickly, a strong regularization term does

not help NBM reducing the number of iterations. NRBMLS was also faster and reached better

solution than SGD for small values of λ (including the best one λ = 0.0002). Unlike reported in

3578



REGULARIZED BUNDLE METHODS FOR CONVEX AND NON-CONVEX RISKS

previous section on training CDHMMs, SGD solutions have relative high error rates, indicating that

the problem of local minima is maybe more severe in the case of deep neural networks.

Finally, the results of LBFGS+ and LBFGS∗ show that NRBM and LBFGS have comparable

convergence speed until the stoping criteria of NRBM were reached (at least for the studied range

of λ). Actually, LBFGS is slightly faster than NRBMLS for large values of λ but it is slower

than NRBMLS for small values of λ. While NRBM stopped with acceptable solutions (in term of

recognition rate) after about one hundred iterations, LBFGS continued looking for better solution

and did not converge after 2000 iterations (corresponding to more than 2000 function evaluation).

The long run of LBFGS also leads to a significantly better objective function than that of NRBMLS.

This reflects the fact that the final solutions of NRBMLS are local minima or belong to plateaus in

which gradients is very close to zero. Interestingly as already reported in previous sections, a better

objective value does not always mean a better recognition rate: the long run of LBFGS does not

improve the recognition performance but leads to over fitting problems. At the end, LBFGS can

be viewed as a good/greedy optimizer for NeuroCRF (in term of objective value) but it lacks of

early stopping condition. While having comparable convergence speed as LBFGS, NRBMLS has

an intuitive built-in stoping criteria (based on the gap) that appears to be relatively robust for many

applications.

5.7 Summary of Results and Discussion

We conducted extensive objective evaluation of NRBM and NRBMLS on few artificial problems

and on five standard machine learning problems. Our preliminary results on artificial optimization

problems show the potential of our approach and highlight the benefit of the line-search procedure

to the proposed method, which improves both the convergence speed and the quality of the solution.

We then evaluated our method on machine learning problems with real data sets, showing that

it can be applied to a large variety of machine learning frameworks including convex and non-

convex problems, smooth and non-smooth objectives, to learn linear and non-linear model (e.g.

artificial neural network). While being generic to regularized machine learning problem, NRBMLS

also showed great performance compared to dedicated solvers such as SVMStruct (for M3N) or

UniverSVM (for transductive SVM).

Comparison with competitive solvers. Since NRBMLS may be viewed as a variant of NBM (both

use a linesearch), their differences in performance is much interesting. We found that NRBMLS and

NBM often converge to the same solution (i.e., having similar objective value) but NBM generally

requires more objective function evaluations than NRBMLS to reach a solution with similar objec-

tive value (e.g. NRBMLS 132 vs. NBM∗ 242 in Table 7). We also compared NRBMLS to LBFGS,

a popular solver for smooth functions, and we showed that NRBMLS is slightly faster than LBFGS.

While NRBMLS and LBFGS have competitive performances the main advantage of NRBMLS is

its generic feature, it can be applied to non-smooth function as well. Finally, the experimental com-

parison with SGD shows that the implemented version (which has been used for training CRFs) is

not efficient for the five considered problems. While SGD may be very fast for large data sets, its

main weakness remains the need of carefully tuning of parameters (e.g., step size) for every prob-

lem. Note that all these generic optimizers have gradient-based stopping criterion which work well

if one needs an accurate solution (when subgradient is close to null vector). However, in the case

where one does not need a too accurate solution (for example, to avoid over fitting), the subgradi-

ent information is not a strong measure of the quality of the solution. Alternatively NRBM uses
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a gap-based stopping criterion which measures directly the quality of the solution in terms of the

objective value. This criterion of NRBMs seems to be efficient for machine learning problems since

NRBMLS systematically reaches the best error rates in all five machine learning experiments (using

only one threshold of 0.1% of the objective value).

6. Conclusion

We proposed a new bundle optimization method called Non-convex Regularized Bundle Method

(NRBM) able to deal with the minimization of regularized non-convex functions. We built on

ideas from Convex Regularized Bundle Methods and on ideas from Non-Convex Bundle Methods,

exploiting the regularization term of the objective and using a particular design of the aggregated

cutting plane to build limited memory variants. We also discussed variants of the method and

showed that integrating a line search may increase convergence rate in practice.

Experimental results on artificial problems show that our method is significantly faster than

standard Non-convex Bundle Method, which is a state of the art method for non-smooth and non-

convex optimization. We also presented experimental results on various convex and non-convex

difficult machine learning problems, which demonstrate the potential and the wide application range

of our algorithms. On one hand, our variant of bundle method got positive results on five different

machine learning problems compared to state-of-the-art optimizers. On the other hand, our method

is rather easy to use as the stopping condition is intuitive and efficient for various machine learning

applications.

At the end, though the limited memory variant can be proved to inherit the fast convergence

rate of CRBM in case of convex risks, we did not provide an analog satisfactory proof for the non-

convex extension which is then more an algorithmic proposition that we validate experimentally on

various machine learning optimization problems. Theoretical convergence analysis could be one

direction for future work. We are also interested in considering more sophisticated approximation

techniques such as second order approximation (similar to LBFGS) or non-convex approximation.

While the approximation function could be more complex, one could expect that a more accurate

approximation technique could improve the convergence speed.
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