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Abstract

We present a new online learning algorithm in the selective sampling framework, where labels must

be actively queried before they are revealed. We prove bounds on the regret of our algorithm and on

the number of labels it queries when faced with an adaptive adversarial strategy of generating the

instances. Our bounds both generalize and strictly improve over previous bounds in similar settings.

Additionally, our selective sampling algorithm can be converted into an efficient statistical active

learning algorithm. We extend our algorithm and analysis to the multiple-teacher setting, where the

algorithm can choose which subset of teachers to query for each label. Finally, we demonstrate the

effectiveness of our techniques on a real-world Internet search problem.

Keywords: online learning, regret, label-efficient, crowdsourcing

1. Introduction

Human-generated labels are expensive. The active learning paradigm is built around the idea that

we should only acquire labels that actually improve our ability to make accurate predictions. Online

selective sampling (Cohn et al., 1990; Freund et al., 1997) is an active learning setting that is mod-

eled as a repeated game between a learner and an adversary. On round t of the game, the adversary

presents the learner with an instance xt ∈ R
d and the learner responds by predicting a binary label

ŷt ∈ {−1,+1}. The learner has access to a teacher,1 who knows the correct label for each instance.

The learner must now decide whether or not to pay a unit cost and query the teacher for the correct

binary label yt ∈ {−1,+1} from the teacher. If the learner decides to issue a query, he observes the

correct label and uses it to improve his future predictions. However, when we analyze the accuracy

1. Most previous publications do not distinguish between the adversary and the teacher. We make this distinction

explicitly and intentionally, in anticipation of the multiple-teacher variant of the problem.

c©2012 Ofer Dekel, Claudio Gentile and Karthik Sridharan.



DEKEL, GENTILE AND SRIDHARAN

of the learner’s predictions, we account for all labels, regardless of whether they were observed by

the learner or not. The learner has two conflicting goals: to make accurate predictions and to issue

a small number of queries.

To motivate the selective sampling setting, consider an Internet search company that uses online

learning techniques to construct a (simplified) search engine. In this case, the instance xt represents

the pairing of a search-engine query with a candidate web page and the task is to predict whether

this pair is a good match or a bad match. Clearly, there is no way to manually label the millions

of daily search engine queries along with all of their candidate web pages. Instead, an intelligent

mechanism of choosing which instances to label is required. Search engine queries arrive in an

online manner and a search engine uses its index of the web to match each query with potential

candidate URLs, making this problem well suited for the selective sampling problem setting.

The first part of this paper is devoted to the selective sampling framework described above. In

Section 2 we present a selective sampling learning algorithm inspired by known ridge regression

algorithms (Hoerl and Kennard, 1970; Lai and Wei, 1982; Vovk, 2001; Azoury and Warmuth, 2001;

Cesa-Bianchi et al., 2003, 2005a; Li et al., 2008; Strehl and Littman, 2008; Cavallanti et al., 2009;

Cesa-Bianchi et al., 2009). To analyze this algorithm, we adopt the model introduced in Cavallanti

et al. (2009), Cesa-Bianchi et al. (2009) and Strehl and Littman (2008), where the adversary may

choose arbitrary instances, but the teacher is stochastic and samples each label from an instance-

dependent distribution. We evaluate the accuracy of the learner using the game-theoretic notion

of regret, which measures the extent to which the learner’s predictions disagree with the teacher’s

labels. We prove both an upper bound on the regret and an upper bound on the number of queries

issued by the learner.

Our algorithm is an online learning algorithm, designed to incrementally make binary predic-

tions on a sequence of adversarially-generated instances. However, we can also convert our algo-

rithm into an efficient statistical active learning algorithm, which receives a sample of instances

from some unknown distribution, queries the teacher for a subset of the labels, and outputs a hy-

pothesis with a small risk. The risk of a hypothesis is its error rate on new instances sampled form

the same underlying distribution. We present the details of this conversion in Section 2.5.

In the setting described above, we assumed the learner has access to a single all-knowing teacher.

To make things more interesting, we introduce multiple teachers, each with a different area of

expertise and a different level of overall competence. On round t, some of the teachers may be

experts on xt while others may not be. A teacher who is an expert on xt is likely to provide the

correct label, while a teacher who isn’t may give the wrong label. To make this setting as realistic

as possible, we assume that the areas of expertise and the overall competence levels of the different

teachers are unknown to the learner, and any characterization of a teacher must be inferred from the

observed labels.

On round t, the learner receives the instance xt from the adversary and makes the binary predic-

tion ŷt . Then, the learner has the option to query any subset of teachers: each teacher charges a unit

cost per query and provides a binary label, without any indication of his confidence and without the

option of abstaining. The labels received from the queried teachers may disagree, and the learner

has no a-priori way of knowing which teacher to trust. If the learner queries the wrong teachers,

their labels may agree but still be wrong. The algorithm’s goal remains to make accurate predictions

using a small number of queries. However, in the absence of a ground truth labeling, it is unclear

how to define what it means to make an accurate prediction. To resolve this problem, we formalize
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the assumption that different teachers have different areas of expertise, which allows us to compare

each predicted label with the labels provided by experts on the relevant topic.

Recalling the motivating example given above, assume that the Internet search company em-

ploys multiple human teachers. Some teachers may be better than others across the board and some

teachers may be experts on specific topics, such as sports or politics. Some teachers may know the

right answer, while others may think they know the right answers but in fact do not—for this reason

we do not rely on the teachers themselves to reveal their expertise regions. For example, say that the

search engine receives the web query “nhl new york team” and a candidate url is “kings.nhl.com”; a

teacher who is a hockey expert would know that this is a bad match (since New York’s NHL hockey

team is called the Rangers and not the Kings) while a non-expert may not know the answer. The

learner has no a-priori knowledge of which teacher to query for the label; yet, in our analysis we

would like to compare the learner’s prediction to the label given by the expert teacher.

The multiple-teacher selective sampling setting is the focus of the second half of this paper.

Specifically, in Section 3 we present a multiple-teacher extension of the (single-teacher) adversarial-

stochastic model mentioned earlier, along with two new learning algorithms in this setting. Our

model of the teachers’ expertise regions enables our algorithms to gradually identify the expertise

region of each teacher. Roughly speaking, the algorithm attempts to measure the consistency of the

binary labels provided by each teacher in different regions of the instance space. Our first multiple-

teacher algorithm has the property that it either queries all of the teachers or does not query any

teacher, on each round. Our second algorithm is more sophisticated and queries only those teachers

it believes to be experts on xt . Again, we provide a theoretical analysis that bounds both regret and

number of queries issued to the teachers.

Since our results rely on the specific stochastic model of the teachers, it is natural to question

how well this model approximates the real-world. To gain some confidence in our assumptions and

in our algorithms, in Section 4 we present a simple empirical study on real data that both validate

our theoretical results and demonstrates the effectiveness of our approach.

1.1 Related Work in the Single Teacher Setting

Single-teacher selective sampling lies between passive learning (where the algorithm has no control

over the learning sequence) and fully active learning (where the learning algorithm is allowed to

select the instances xt). The literature on active learning is vast, and we can hardly do it justice here.

Recent papers on active learning include the works by Balcan et al. (2006), Bach (2006), Balcan

et al. (2007), Balcan et al. (2008), Castro and Nowak (2008), Dasgupta et al. (2005), Dasgupta et al.

(2008), Hanneke (2007), Hanneke (2009) and Koltchinskii (2010). All of these papers consider

the case where instances are drawn i.i.d. from a fixed distribution (either known or unknown). In

particular, Dasgupta et al. (2005) gives an efficient Perceptron-like algorithm for learning within

accuracy ε the class of homogeneous d-dimensional half-spaces under the uniform distribution over

the unit ball, with label complexity of the form d log 1
ε
. Still in the i.i.d. setting, more general results

are given by Balcan et al. (2007). A neat analysis of previously proposed general active learning

schemes (Balcan et al., 2006; Dasgupta et al., 2008) is provided by the aforementioned paper by

Hanneke (2009). Even more recently, a general Rademacher complexity-based analysis of active

learning is given by Koltchinskii (2010). Due to their generality, many of the above results rely on

schemes that are computationally prohibitive, exceptions being the results by Dasgupta et al. (2005)

and the realizable cases analyzed by Balcan et al. (2007). For instance, the general algorithms

2657



DEKEL, GENTILE AND SRIDHARAN

proposed by Hanneke (2009); Koltchinskii (2010) do actually imply estimating ε-minimal sets (or

disagreement sets) from empirical data and (local) Rademacher complexities, which makes them

computationally hard even for simple function classes, like linear-threshold functions. Finally, pool-

based active learning scenarios are considered by Bach (2006) (and the references therein), though

the analysis therein is only asymptotic in nature and no quantification is given of the trade-off

between risk and number of labels.

To contrast our work with the papers mentioned above, it is worth stressing that our results hold

with no stochastic assumption on the source of the instances—in fact, we assume that the instances

may be generated by an adaptive adversary. However, as mentioned above, we also show how

our online learning algorithm can be converted into a statistical active learning algorithm, with a

formal risk bound. Our results in the online selective sampling setting are more in line with the

worst-case analyses by Cesa-Bianchi et al. (2006), Strehl and Littman (2008), Cesa-Bianchi et al.

(2009) and Orabona and Cesa-Bianchi (2011). These papers present variants of Recursive Least

Squares algorithms that operate on arbitrary instance sequences. The analysis by Cesa-Bianchi et al.

(2006) is completely worst case: the authors make no assumptions whatsoever on the mechanism

generating instances or labels; however, they are unable to prove bounds on the label query rate.

The setups by Strehl and Littman (2008), Cesa-Bianchi et al. (2009) and Orabona and Cesa-Bianchi

(2011) are closest to ours in that they assume the same stochastic model of the teacher. Our bounds

can be shown to be optimal with respect to certain parameters and, unlike competing works on

this subject, we are able to face the case when the instance sequence x1,x2, ... is generated by an

adaptive adversary, rather than the weaker oblivious adversary, as by, for example, Cesa-Bianchi

et al. (2009) and Orabona and Cesa-Bianchi (2011). It is actually this difference that makes it

possible the selective sampling-to-active learning conversion. A detailed comparison of our results

in the single-teacher setting with the results of the predominant papers on this topic is given in

Section 2.6, after our results are presented.

1.2 Related Work in the Multiple Teacher Setting

There is also much related work in the multiple-teacher setting, which is often motivated within

recent crowdsourcing applications. We can map the current state-of-the-art on this topic along

various interesting axes.

First, we distinguish between techniques that attempt to find the ground-truth labeling (and

evaluate each teacher’s quality) independent of the learning algorithm, and techniques that combine

the ground-truth-finding and the actual learning into a single algorithm. In the first category are the

classical work of Dawid and Skeene (1979), which presents techniques of reconciling conflicting

responses on medical questionnaires, the one of Spiegelhalter and Stovin (1983) which handles

conflicting information from repeated biopsies, the one by Smyth et al. (1995), where the authors

infer a ground truth from multiple annotations of astronomical images, and the one by Hui and Zhou

(1998) which examines the more general problem of evaluation in the absence of a ground truth.

Still in the first category, Dekel and Shamir (2009a) and Chen et al. (2010) both present general

techniques for identifying and rejecting low quality teachers. Papers in the second category discuss

supervised learning algorithms that can handle multiple-teacher input. In this category, Dekel and

Shamir (2009b) present an SVM variant that is less sensitive to bad labels generated by a small

set of malicious teachers, Raykar et al. (2010) use EM to jointly establish a ground truth labeling

and learn a maximum-likelihood estimator, Argall et al. (2009) dynamically choose which human
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demonstrator to use when teaching a policy to a robot, and Groot et al. (2011) integrate multiple-

teacher support into Gaussian process regression learning. Our work in the current paper falls in the

second category.

We can also distinguish between algorithms that rely on repeated labeling (where multiple teach-

ers label each example), versus techniques that assume that each example is labeled only once.

Sheng et al. (2008), Snow et al. (2008) and Donmez et al. (2009) collect repeated labels and aggre-

gate them (e.g., using a majority vote) to simulate the ground-truth labeling. Some of these papers

balance an explore-exploit tradeoff, which determines how many repeated labels are needed for

each example. At the opposite end of the spectrum, Dekel and Shamir (2009a) identify low-quality

teachers and labels without any repeated labeling. The technique presented in this paper falls in the

latter category, since we actively determine which subset of teachers to query on each online round.

However, while we do query multiple teachers, we do not assume that the majority vote, or any

other aggregate label, is accurate. Still, we do compare to some majority vote of teachers in both

our analysis and our experiments.

Next, we distinguish between papers that consider the overall quality score of each teacher (over

the entire input space) from papers that assume that each teacher has a specific area of expertise.

Most of the papers mentioned above fall in the first category. In the second category, Yan et al.

(2010) extend the work in Raykar et al. (2010) (again, maximizing likelihood and using EM) to

handle the case where different teachers have knowledge about different parts of the input space. In

the present paper, we also model each teacher as an expert on a different subtopic. A closely related

research topic is multi-domain adaptation (Mansour et al., 2009a,b), where multiple hypotheses

must be optimally combined, under the assumption that each hypothesis makes accurate predictions

with respect to a different distribution. Another closely related topic is learning from multiple

sources (Crammer et al., 2008), where multiple data sets are sampled from different distributions,

and the goal is to optimally combine them with a given target distribution in mind. However, in both

of these related problems we are given some prior information on the various distributions, whereas

in the multiple-teacher setting we must infer the expertise of each teacher from data.

Another interesting distinction can be made between passive multiple-teacher techniques, which

process a static data set that was collected beforehand, and active techniques that route each example

to the appropriate teacher. Most of the aforementioned work follows the static approach. The

proactive learning setting (Domnez, 2010; Yang and Carbonell, 2009a,b) assumes that the learner

has access to teachers of different global quality, with associated costs per label. Yang and Carbonell

(2009a) present a theoretical analysis of proactive learning, under the assumption that each teacher

gives the correct label most of the time. However, note that the active category fits quite nicely

with the assumption that each teacher has an area of expertise (as opposed to measuring the global

quality of each teacher): once the algorithm identifies the area of expertise of a teacher, it seems

only natural to actively route the relevant examples to that teacher. The approach presented in this

paper does precisely that. At the time of writing the extended version of our paper, other works

have been published that considered the problem of active learning from multiple annotators. The

one whose goal is closest to ours is perhaps the paper by Yan et al. (2011), where a probabilistic

multi-labeler model is formulated that allows one to learn the expertise of the labelers and to single

out the most uncertain sample (within a given pool of unlabeled instances) whose label is useful to

query. Though that paper is similar in spirit to ours, it does mainly focus on modeling and empirical

investigations. Finally, we note that Melville et al. (2005) study the closely related problem of

actively acquiring individual feature values.
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An interesting variation on the multiple-teacher theme involves allowing each teacher’s quality

to vary with time (Donmez et al., 2010).

2. The Single Teacher Case

In this section, we focus on the standard online selective sampling setting, where the learner has

to learn an accurate predictor while determining whether or not to query the label of each instance

it observes. We formally define the problem setting in Section 2.1 and introduce our algorithm in

Section 2.2. We prove upper bounds on the regret and on the number of queries in Section 2.3.

We briefly mention how to convert our online learning algorithm into a statistical active learning

algorithm in Section 2.4 and Section 2.5, and we compare our results to related work in Section 2.6.

2.1 Preliminaries and Notation

As mentioned above, on round t of the online selective sampling game, the learner receives an

instance xt ∈ R
d , predicts a binary label ŷt ∈ {−1,+1}, and chooses whether or not to query the

correct label yt ∈ {−1,+1}. We set Zt = 1 if a query is issued on round t and Zt = 0 otherwise.

The only assumption we make on the process that generates xt is that ‖xt‖ ≤ 1; for all we know,

instances may be generated by an adaptive adversary (an adversary that reacts to our previous ac-

tions). Note that most of the previous work on this topic makes stronger assumptions on the process

that generates xt , resulting in a less powerful setting. As for the labels provided by the teacher,

we adopt the standard stochastic linear noise model for this problem (Cesa-Bianchi et al., 2003;

Cavallanti et al., 2009; Cesa-Bianchi et al., 2009; Strehl and Littman, 2008) and assume that each

yt ∈ {−1,+1} is sampled according to the law

P(yt = 1 |xt ) =
1+u⊤xt

2
, (1)

where u ∈ R
d is a fixed but unknown vector with ‖u‖ ≤ 1. Note that E [yt |xt ] = u⊤xt , and we

denote this value by ∆t . Unlike much of the recent literature on active learning (see Section 1.1),

this simple noise model has the advantage of delivering time-efficient algorithms of practical use.

The learner constructs a sequence of linear predictors w0,w1, . . ., where each wt ∈ R
d , and

predicts ŷt = sign(∆̂t) where ∆̂t = wt−1
⊤xt . The desirable outcome is for the sequence w0,w1, . . .

to quickly converge to u. Let Pt denote the conditional probability P( ·|x1, . . . ,xt−1,xt ,y1, . . . ,yt−1).
We evaluate the accuracy of the learner’s predictions using its regret, defined as

RT =
T

∑
t=1

(
Pt(yt ∆̂t < 0)−Pt(yt∆t < 0)

)
.

Additionally, we are interested in the number of queries issued by the learner NT = ∑
T
t=1 Zt . Our

goal is to simultaneously bound the regret RT and the number of queries NT with high probability

over the random draw of labels.

Remark 1 At first glance, the linear noise model (1) might seem too restrictive. However, this

model can be made implicitly nonlinear by running our algorithm in a Reproducing Kernel Hilbert

Space H . This entails that the linear operation u⊤xt in (1) is replaced by h(xt), for some (typically

nonlinear) function h ∈ H . See also the comments at the end of Section 2.2, and those surrounding

Theorem 2.
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2.2 Algorithm

The single teacher algorithm is a margin-based selective sampling procedure. The algorithm “Se-

lective Sampler” (Algorithm 1) depends on a confidence parameter δ ∈ (0,1]. As in known on-

line ridge-regression-like algorithms (Hoerl and Kennard, 1970; Vovk, 2001; Azoury and War-

muth, 2001; Cesa-Bianchi et al., 2003, 2005a; Li et al., 2008; Strehl and Littman, 2008; Cavallanti

et al., 2009; Cesa-Bianchi et al., 2009), our algorithm maintains a weight vector wt (initialized as

w0 = 0) and a data correlation matrix At (initialized as A0 = I). After receiving xt and predicting

ŷt = sign(∆̂t), the algorithm computes an adaptive data-dependent threshold θt , defined as

θ2
t = x⊤t A−1

t−1xt

(

1+4
t−1

∑
i=1

Ziri +36log
t

δ

)

,

where ri = x⊤i A−1
i xi. The definition of θt follows from our analysis, and can be interpreted as the

algorithm’s uncertainty in its own predictions. More precisely, the learner believes that |∆̂t −∆t | ≤
θt . A query is issued only if |∆̂t | ≤ θt , or in other words, when the algorithm is unsure about the

sign of ∆t . In Algorithm 1, this is denoted by Zt = 11
{

∆̂2
t ≤ θ2

t }, where 11
{
·
}

denotes the indicator

function.

If the label is not queried, (Zt = 0) then the algorithm does not update its internal state (and xt

is discarded). If the label is queried (Zt = 1), then the algorithm computes the intermediate vector

w′
t−1 in such a way that ∆̂′

t = w′
t−1

⊤
xt is at most one in magnitude. Observe that ∆̂t and ∆̂′

t have the

same sign and only their magnitudes can differ. In particular, it holds that

∆̂′
t =

{

sgn(∆̂t) if |∆̂t |> 1

∆̂t otherwise .

Next, the algorithm defines the new vector wt so that Atwt undergoes an additive update, where At

is a rank-one adjustment of At−1.

The algorithm can be run both in primal form (as in the pseudocode in Algorithm 1) and in dual

form (i.e., in a Reproducing Kernel Hilbert Space). It is not hard to show that the algorithm has

a quadratic running time per round, where quadratic means O(d2) if it is run in primal form, and

O(N2
t ) if it is run in dual form, where Nt = ∑i≤t Zi is the number of labels requested by the algorithm

up to time t. In the dual case, since the algorithm updates only when Zt = 1, the number of labels

Nt also corresponds to the number of support vectors used to define the current hypothesis.

2.3 Analysis

Before diving into a formal analysis of Algorithm 1, we attempt to give some intuition regarding our

choice of θt . Recall that θt is the radius of the algorithm’s confidence interval, and therefore a small

value of θt implies that the algorithm is highly confident that ∆t and ∆̂t are close. If, additionally, ∆t

is large, then sign(∆̂t) is likely to equal sign(∆t), and the algorithm’s prediction is correct. Therefore,

we want to show that θt can be kept small without issuing an excessive number of queries. To see

this, we notice that θt depends on the three terms: ∑
t−1
i=1 Ziri, log(t/δ), and x⊤t A−1

t−1xt . Later in this

section, we prove that ∑
t
i=1 Ziri grows logarithmically with the number of queries Nt , and obviously

log(t/δ) grows logarithmically with t. To show that θt remains small, we must show that the third

term, x⊤t A−1
t−1xt , decreases quickly when labels are queried. x⊤t A−1

t−1xt depends on the relationship

between the current instance xt and the previous instances on rounds where a query was issued.
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If xt lies along the directions spanned by the previous instances, we show that x⊤t A−1
t−1xt tends to

shrink as 1/Nt . As a result, θt is on the order of log(t/δ)/Nt , and Nt only needs to grow at a slow

logarithmic rate. On the other hand, if the adversary chooses xt outside of the subspace spanned

by the previous examples, then the term x⊤t A−1
t−1xt causes θt to be large, and the algorithm becomes

more likely to issue a query. Overall, to ensure a small value of θt across the instance space spanned

by the xt produced by the adversary, the algorithm must query O
(

log(t)
)

labels in each direction of

this instance space.

As noted above, the adversary can arbitrarily inflate our regret by choosing instances that induce

small values of ∆t . Recall that a small value of ∆t implies that the teacher guesses the label yt almost

at random. Following Cesa-Bianchi et al. (2009), the bounds we prove depend on how many of the

instances xt are chosen such that ∆t is very small. Formally, for any ε > 0, define

Tε =
T

∑
t=1

11{|∆t | ≤ ε} . (2)

The following theorem is the main result of this section, and is stated so as to emphasize both the

data-dependent and the time-dependent aspects of our bounds.

Theorem 2 Assume that Selective Sampler is run with confidence parameter δ ∈ (0,1]. Then with

probability at least 1−δ it holds that for all T ≥ 3

RT ≤ inf
ε>0

{

εTε +
2+8log|AT |+144log(T/δ)

ε

}

= inf
ε>0

{

εTε +O
(d logT + log(T/δ)

ε

)}

NT ≤ inf
ε>0

{

Tε +O
( log |AT | log(T/δ)+ log2 |AT |

ε2

)}

= inf
ε>0

{

Tε +O
(d2 log2(T/δ)

ε2

)}

,

where |AT | is the determinant of the matrix AT .

Note that the bounds above depend on d the dimension of the instance space. In the case of a

(possibly infinite-dimensional) Reproducing Kernel Hilbert Space, d is replaced by a quantity that

depends on the spectrum of the data’s Gram matrix.

The proof of Theorem 2 splits into a series of lemmas. For every T > 0 and ε > 0, we define

UT,ε =
T

∑
t=1

Z̄t 11
{

∆t ∆̂t < 0,∆2
t > ε2

}
,

QT,ε =
T

∑
t=1

Zt 11
{

∆t ∆̂t < 0,∆2
t > ε2

}
|∆t | ,

where Z̄t = 1− Zt . In the above, UT,ε deals with rounds where the algorithm does not make a

query, while QT,ε deals with rounds where the algorithm does make a query. The proof exploits

the potential-based method for online ridge-regression-like algorithms we learned from Azoury and

Warmuth (2001). See also the works of Hazan et al. (2007), Dani et al. (2008) and Crammer and

Gentile (2011) for a similar use in different contexts. The potential function we use is the (quadratic)

Bregman divergence dt(u,w) = 1
2
(u−w)⊤At(u−w), where At is the matrix computed by Selective

Sampler at time t.

The proof structure is as follows. First, Lemma 3 below decomposes the regret RT into three

parts:

RT ≤ εTε +UT,ε +QT,ε .
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Algorithm 1: Selective Sampler

input confidence level δ ∈ (0,1]
initialize w0 = 0, A0 = I

for t = 1,2, . . .

receive xt ∈ R
d : ||xt || ≤ 1, and set ∆̂t = wt−1

⊤xt

predict ŷt = sgn(∆̂t) ∈ {−1,+1}
θ2

t = x⊤t A−1
t−1xt

(

1+4∑
t−1
i=1 Ziri +36log(t/δ)

)

Zt = 11
{

∆̂2
t ≤ θ2

t

}
∈ {0,1}

if Zt = 1
query yt ∈ {−1,+1}

w′
t−1 =







wt−1 − sgn(∆̂t)
(

|∆̂t |−1

x⊤t A−1
t−1xt

)

A−1
t−1xt if |∆̂t |> 1

wt−1 otherwise

At = At−1 +xtx
⊤
t , rt = x⊤t A−1

t xt , wt = A−1
t (At−1w′

t−1 + ytxt)

else
At = At−1, wt = wt−1, rt = 0

The bound on UT,ε is given by Lemma 4. For the bound on QT,ε and the bound on the number

of queries NT , we use Lemmas 5 and 6, respectively. However, both of these lemmas require that

(∆t − ∆̂t)
2 ≤ θ2

t for all t. This assumption is taken care of by the subsequent Lemma 7. Since ε is

a positive free parameter, we can take the infimum over ε > 0 to get the required results. In turn,

many of these lemmas rely on technical lemmas given in Appendix A and Appendix B.

Lemma 3 For any ε > 0 it holds that RT ≤ εTε + UT,ε + QT,ε .

Proof We have

Pt(∆̂tyt < 0)−Pt(∆tyt < 0)

≤ 11
{

∆̂t∆t ≤ 0
}
∣
∣
∣2Pt(yt = 1)−1

∣
∣
∣

= 11
{

∆̂t∆t ≤ 0
}
|∆t |

= 11
{

∆t ∆̂t < 0,∆2
t ≤ ε2

}
|∆t |+ 11

{
∆t ∆̂t < 0,∆2

t > ε2
}
|∆t |

≤ ε 11
{

∆t ∆̂t < 0,∆2
t ≤ ε2

}
+ 11
{

∆t ∆̂t < 0,∆2
t > ε2

}
|∆t | (3)

= ε 11
{

∆t ∆̂t < 0,∆2
t ≤ ε2

}
+ 11
{

∆t ∆̂t < 0,∆2
t > ε2,Zt = 0

}
|∆t |

+ 11
{

∆t ∆̂t < 0,∆2
t > ε2,Zt = 1

}
|∆t |

≤ ε 11
{

∆t ∆̂t < 0,∆2
t ≤ ε2

}
+ Z̄t 11

{
∆t ∆̂t < 0,∆2

t > ε2
}

(4)

+Zt 11
{

∆t ∆̂t < 0,∆2
t > ε2

}
|∆t | .

The inequality in Equation (4) follows directly from |∆t | ≤ 1. Summing over t = 1 . . .T completes

the proof.
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Lemma 4 For any ε > 0 and T ≥ 3, with probability at least 1−δ, it holds that

QT,ε ≤ 2+8log|AT |+144log(T/δ)

ε
= O

(
d logT + log(T/δ)

ε

)

.

Proof We begin with

QT,ε =
T

∑
t=1

Zt 11
{

∆t ∆̂t < 0
}

11
{

∆2
t > ε2

}
|∆t |

≤ 1

ε

T

∑
t=1

Zt 11
{

∆̂t∆t < 0
}

∆2
t

=
1

ε

T

∑
t=1

Zt 11
{

∆̂′
t∆t < 0

}
∆2

t .

∆̂′
t∆t < 0 implies that ∆2

t ≤ (∆t − ∆̂′
t)

2, and therefore the above can be upper bounded by

1

ε

T

∑
t=1

Zt(∆t − ∆̂′
t)

2.

Next we rely on some standard technical results that are given in the appendix. Lemma 23 (i) upper

bounds the above by

2

ε

T

∑
t=1

Zt

(
(yt − ∆̂′

t)
2 − (yt −∆t)

2
)
+

144

ε
log(T/δ).

Lemma 25 (iv) further bounds this term by

4

ε

T

∑
t=1

Zt

(

dt−1(u,w
′
t−1)−dt(u,w

′
t)+2 log

|At |
|At−1|

)

+
144

ε
log(T/δ).

After telescoping and using the facts that d0(u,w
′
0) = d0(u,w0) = ||u||2/2 ≤ 1/2 and |A0|= 1, the

above is bounded by
2+8log|AT |+144log(T/δ)

ε
,

which is in fact O
(

d logT+log(T/δ)
ε

)

in the finite-dimensional case. This concludes the proof.

Lemma 5 Assume that (∆t − ∆̂t)
2 ≤ θ2

t holds for all t. Then, for any ε > 0, we have UT,ε = 0

Proof We rewrite our assumption (∆t − ∆̂t)
2 ≤ θ2

t as

∆t ∆̂t ≥
∆̂2

t +∆2 −θ2
t

2
≥ ∆̂2

t −θ2
t

2
.

However, if Z̄t = 1, then ∆̂2
t > θ2

t and so ∆t ∆̂t ≥ 0. Hence, under the above assumption, we can guar-

antee that for any t, Z̄t 11
{

∆t ∆̂t < 0
}
= 0, thereby implying UT,ε =∑

T
t=1 Z̄t 11

{
∆t ∆̂t < 0,∆2

t > ε2
}
= 0.

In the proof of the next two lemmas, we use the shorthand g(t) = ∑
t
i=1 Ziri.
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Lemma 6 Assume that (∆t − ∆̂t)
2 ≤ θ2

t holds for all t. Then, for any ε > 0, and T > 0 we have

NT ≤ Tε +O

(
log |AT | log(T/δ)+ log2 |AT |

ε2

)

= Tε +O

(
d2 log2(T/δ)

ε2

)

.

Proof Let us rewrite our assumption (∆t − ∆̂t)
2 ≤ θ2

t as |∆t − ∆̂t | ≤ θt . Then |∆̂t | ≤ θt implies

|∆t | ≤ 2θt . We can write

Zt = 11
{

∆̂2
t ≤ θ2

t

}
≤ 11

{
∆̂2

t ≤ θ2
t ,∆

2
t ≤ 4θ2

t

}

= 11

{

∆̂2
t ≤ θ2

t ,∆
2
t ≤ 4θ2

t ,θ
2
t ≥

ε2 x⊤t A−1
t−1xt

8rt

}

+ 11

{

∆̂2
t ≤ θ2

t ,∆
2
t ≤ 4θ2

t ,θ
2
t <

ε2 x⊤t A−1
t−1xt

8rt

}

≤ 11

{

∆̂2
t ≤ θ2

t ,θ
2
t ≥

ε2 x⊤t A−1
t−1xt

8rt

}

+ 11

{

∆2
t ≤ 4θ2

t ,θ
2
t <

ε2 x⊤t A−1
t−1xt

8rt

}

. (5)

By Lemma 24 (i) we have xT
t A−1

t−1xt ≤ 2rt , hence

11

{

∆2
t ≤ 4θ2

t ,θ
2
t <

ε2 x⊤t A−1
t−1xt

8rt

}

≤ 11
{

∆2
t ≤ ε2

}
.

Plugging back into (5) and summing over t shows that, for any ε > 0,

NT ≤ Tε +
T

∑
t=1

11

{

∆̂2
t ≤ θ2

t ,θ
2
t ≥

ε2 x⊤t A−1
t−1xt

8rt

}

.

Now observe that, by definition of Zt and θt

T

∑
t=1

{

∆̂2
t ≤ θ2

t ,θ
2
t ≥

ε2 x⊤t A−1
t−1xt

8rt

}

=
T

∑
t=1

Zt 11
{

8rt

(

1+4g(t −1)+36log(t/δ)
)

≥ ε2
}

≤ 8

ε2

T

∑
t=1

Zt rt

(

1+4g(t −1)+36log(t/δ)
)

.

Using Lemma 24 (ii), the above is upper bounded by

8

ε2
(1+36log(T/δ)) log |AT |+

32

ε2

T

∑
t=1

Ztrtg(t −1),

which is in turn upper bounded by

8

ε2
(1+36log(T/δ)) log |AT |+

16

ε2

T

∑
t=1

(
g2(t)−g2(t −1)

)
.
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Again using Lemma 24 (ii), we upper bound the above by

8

ε2
(1+36log(T/δ)) log |AT |+

16

ε2
log2 |AT |.

This term is O
(

log |AT | log(T/δ)+log2 |AT |
ε2

)

, and specifically O
(

d2 log2(T/δ)
ε2

)

in the finite-dimensional

case. Since this above holds for any ε > 0, it also holds for the best choice of ε.

Lemma 7 If Selective Sampler is run with confidence parameter δ ∈ (0,1], then with probability at

least 1−δ, the inequality (∆t − ∆̂t)
2 ≤ θ2

t holds simultaneously for all t ≥ 3.

Proof First note that by Hölder’s inequality,

(∆t − ∆̂t)
2 = ((wt−1 −u)⊤xt)

2 ≤ 2 xT
t A−1

t−1xt dt−1(wt−1,u) . (6)

Now let t ′ := argmax j≤t−1:Z j=1 j, that is, t ′ is the last round (up to time t−1) on which the algorithm

issued a query. Then Lemma 25 (i), (ii), (iii), allows us to write

1

2

t ′

∑
i=1

Zi

(
(yi − ∆̂′

i)
2 − (yi −∆i)

2
)
≤

t ′−1

∑
i=1

Zi

(
di−1(u,w

′
i−1)−di(u,w

′
i)+2Ziri

)

+dt ′−1(u,w
′
t ′−1)−dt ′(u,wt ′)+2rt ′

≤ 1

2
−dt ′(u,wt ′)+2g(t ′) ,

where the last step comes from the telescoping sum and the fact that

d0(u,w
′
0) = d0(u,w0) =

1

2
‖u‖2 ≤ 1/2.

Moreover, by definition of t ′ we see that g(t ′) = g(t−1) and Z j = 0 for any j ∈ [t ′+1, t−1]. Hence

for any such j we have w j = wt ′ . This yields

1

2

t−1

∑
i=1

Zi

(
(yi − ∆̂′

i)
2 − (yi −∆i)

2
)
≤ 1

2
−dt−1(u,wt−1)+2g(t −1) .

Plugging back into (6) results in

(∆t − ∆̂t)
2 ≤ 2 xT

t A−1
t−1xt

(

1/2+2g(t −1)− 1

2

t−1

∑
i=1

Zi

(
(yi − ∆̂′

i)
2 − (yi −∆i)

2
)

)

.

A direct application of Lemma 23 (ii) shows that for any given t ≥ 3, with probability at least

1−δ/t2,

(∆t − ∆̂t)
2 ≤ x⊤t A−1

t−1xt (1+4g(t −1)+36log(t/δ)) = θ2
t .

Finally, a union bound allows us to conclude that (∆t − ∆̂t)
2 ≤ θ2

t holds simultaneously for all t ≥ 3

with probability at least 1−δ.
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Remark 8 Computing the intermediate vector w′
t−1 from wt−1, as defined in Algorithm 1, corre-

sponds to projecting wt−1 onto the convex set Ct = {w ∈ R
d : |w⊤xt | ≤ 1} w.r.t. the Bregman

divergence dt−1, that is, w′
t−1 = argminu∈Ct

dt−1(u,wt−1). Notice that Ct includes the unit ball since

xt is normalized. This projection step is needed for technical purposes during the construction of a

suitable bounded-variance martingale difference sequence (see Lemma 23 in Appendix A). Unlike

similar constructions (Hazan et al., 2007; Dani et al., 2008), we do not project onto the unit ball.

In fact, computing the latter would involve a line search over matrices, which would significantly

slow down the algorithm. On the other hand, it is also interesting to observe that Selective Sampler

performs the projection onto Ct only a logarithmic number of times. This is because

T

∑
t=1

11
{

∆̂2
t ≤ θ2

t , |∆̂t |> 1
}

≤
T

∑
t=1

Zt ∆̂
2
t

≤
T

∑
t=1

Ztθ
2
t

≤ 2
T

∑
t=1

Zt rt

(

1+4g(t −1)+36log(t/δ)
)

,

which is O
(
d2 log2(T/δ)

)
by Lemma 24 (iii).

2.4 An Online-to-Batch Conversion

It is instructive to see what the bound in Theorem 2 looks like when we assume that the instances xt

are drawn i.i.d. according to an unknown distribution over the Euclidean unit sphere, and to com-

pare this bound to standard statistical learning bounds. We model the distribution of the instances

near the hyperplane {x : u⊤x = 0} using the well-known Mammen-Tsybakov low noise condition

(Tsybakov, 2004):2

There exist c > 0 and α ≥ 0 such that P
(
|u⊤x|< ε

)
≤ cεα for all ε > 0.

We now describe a simple randomized algorithm which, with high probability over the sampling

of the data, returns a linear predictor with a small expected risk (expectation is taken over the

randomization of the algorithm). The algorithm is as follows:

1. Run Algorithm 1 with confidence level δ on the data (x1,y1), ...,(xT ,yT ), and obtain the

sequence of predictors w0,w1, . . . ,wT−1

2. Pick r ∈ {0,1, . . . ,T −1} uniformly at random and return wr.

Due to the unavailability of all labels, standard conversion techniques that return a single deter-

ministic hypothesis (Cesa-Bianchi and Gentile, 2008) do not readily apply here. The following

theorem, whose proof is given in Appendix C, states a high probability bound on the risk and the

label complexity of our algorithm.

2. The constant c might actually depend on the input dimension d. For notational simplicity, Theorem 9 regards c as a

constant, hence it is hidden in the big-oh notation.
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Theorem 9 Let wr be the linear hypothesis returned by the above algorithm. Then with probability

at least 1−δ we have

Er

[

P′
r(y w⊤

r x < 0)
]

≤ P(y u⊤x < 0)+O




(d log(T/δ))

α+1
α+2

T
α+1
α+2

+
log
(

logT

δ

)

T



 ,

NT = O

(

(d2 log2(T/δ))
α

α+2 T
2

α+2 + log(1/δ)
)

,

where Er is the expectation over the randomization in the algorithm, and P′
r(·) denotes the condi-

tional probability P(· |x1, . . . ,xr−1,y1, . . . ,yr−1).
3

As α goes from 0 (no assumptions on the noise) to ∞ (hard separation assumption), the above bound

on the average regret roughly interpolates between 1/
√

T and 1/T . Correspondingly, the bound on

the number of labels NT goes from T to log2 T . In particular, observe that, viewed as a function

of NT (and disregarding log factors), the instantaneous regret is of the form N
− α+1

2

T . These bounds

are sharper than those by Cavallanti et al. (2009) and, in fact, no further improvement is generally

possible (Castro and Nowak, 2008). The same rates are obtained by Hanneke (2009) under much

more general conditions, for less efficient algorithms that are based on empirical risk minimization.

2.5 Statistical Active Learning

We now briefly show how to turn our algorithm into a standard statistical active learning algorithm.

Following Koltchinskii (2010), we consider a sequential learning protocol for active learning

where on round t the algorithm has to choose a subset St of the instance space {x ∈ Rd : ||x|| ≤
1} (the Euclidean sphere) from which the next instance xt is sampled from. Specifically, xt is

sampled from the conditional distribution P( · |x ∈ St), being P(·) an unknown distribution over the

Euclidean sphere. The algorithm then observes the associated label yt , generated according to the

linear noise model of Section 2.1. Notice that the set St is typically depending on past examples

(x1,y1), . . .(xt−1,yt−1). Again, the goal is to study the high probability behavior of the regret as

a function of the number of observed labels (which now coincides with the number of sampled

instances xt).

The analysis developed in Section 2.4 immediately accommodates this model of learning, once

we let St be the querying region of Algorithm 1, that is,

St = {x : (w⊤
t−1x)2 ≤ θ2

t },

and think of the randomized i.i.d. algorithm described in that section as operating as follows. We

sample an independent new instance x from the Euclidean sphere, and check whether x ∈ St or

not. In the former case, the associated label y is sampled, and the subset St is updated into St+1

according to the rules of Algorithm 1 for updating wt−1 into wt and θt into θt+1. In the latter case,

x is discarded, St remains unchanged, and a new independent instance is drawn. Notice that this

is precisely what Algorithm 1 does when running with an i.i.d. sequence of examples. The same

conclusions we have drawn from Theorem 9 can be repeated here.

3. Notice the difference with the conditional probability Pr(·) defined in Section 2.1.
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2.6 Related Work

As we mentioned in Section 1.1, the results of Theorem 2 are more in line with the worst-case

analyses by Strehl and Littman (2008), Cesa-Bianchi et al. (2009) and Orabona and Cesa-Bianchi

(2011). These papers present variants of Recursive Least Squares algorithms that operate on arbi-

trary instance sequences, but assuming the same linear stochastic noise-model used in our analysis.

The algorithm presented by Strehl and Littman (2008) approximates the Bayes margin to within a

given accuracy ε, and queries Õ(d3/ε4) labels; this bound is significantly inferior to our bound, and

it seems to hold only in the finite-dimensional case. A more precise comparison can be made to

the (expectation) bounds presented by Cesa-Bianchi et al. (2009) and Orabona and Cesa-Bianchi

(2011), which are of the form RT ≤ min0<ε<1

(

εTε +
T 1−κ

ε
+ d

ε2 lnT
)

, and NT = O (d T κ lnT ) ,

where κ ∈ [0,1] is a tunable parameter of their algorithm. After a proper setting of κ, this gives

rise to an instantaneous regret which is still (up to log factors) in the form N
− α+1

2

T under the same

low-noise assumptions as in Section 2.4. On the other hand, our bound here does not require tuning

of parameters. More importantly, whereas the analysis of Cesa-Bianchi et al. (2009) and Orabona

and Cesa-Bianchi (2011) only holds for oblivious adversaries, we cover the case where the instances

can be generated adaptively.4 We emphasize that it is just the adaptivity of the adversary that enabled

us to convert our selective sampling algorithm to the statistical active learning algorithm presented

in Section 2.5.

Another relevant line of research that came to our attention at the time of writing the extended

version of our paper is the importance sampling-based active learning schemes followed by Beygelz-

imer et al. (2010, 2011). These papers are interesting in that they give up with the version space

approach followed by their predecessors (Dasgupta et al., 2008; Hanneke, 2007, 2009; Koltchin-

skii, 2010) which might deliver time-efficient active learning schemes. A direct comparison to

Beygelzimer et al. (2010, 2011) is not straightforward. While we can see that their label selection

mechanism (e.g., Algorithm 1 in Beygelzimer et al., 2010) gets similar to the one in our Selective

Sampler (once it is adapted to square loss and the class conditional distribution is (1)), their analysis

(e.g., Theorem 4 therein) seems to provide suboptimal results. For instance, under hard separation

assumptions, their bound on NT never gets as small as a logarithmic function in T . In short, we

suspect that their algorithm (or variants thereof) is a strict generalization of ours but, being more

general, the associated analysis is also significantly looser.

3. The Multiple Teacher Case

The problem is still online binary classification, where on each round t = 1,2, . . . the learner re-

ceives an input xt ∈ R
d , with ‖xt‖ ≤ 1, and outputs a binary prediction ŷt . However, there are now

K available teachers, each with his own area of expertise. The expertise area of each teacher is un-

known to the algorithm, and can only be inferred indirectly from the binary labels provided by that

teacher and by other teachers. If xt falls within the expertise region of teacher j, then that teacher

can provide an accurate label. After making each binary prediction, the learner chooses if to issue a

query to one or more of the K teachers. The learner is free to query any subset of teachers, but each

4. It is fair to say that Orabona and Cesa-Bianchi (2011) have further improvements over both Cesa-Bianchi et al. (2009)

and this paper. In particular, the DGS-Mod algorithm therein is able to handle the case when the vector u generating

the labels has unknown length ||u||. However, it does so at the cost of an exponential dependence of RT on ||u||.
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teacher charges a unit cost per label. We emphasize that a queried teacher provides only a binary

label, and does not indicate his level of confidence in that label.

From the point of view of our learning algorithm, these confidence levels have to be interpreted

as reliability rates of the teachers. Since these rates play a major role in weighting the relative

importance of the teachers, it looks wiser to let the algorithm compute these rates as a function of

past interactions among teachers, rather than relying on human “self-judgement”.

Formally, we assume that teacher j is associated with a weight vector u j ∈R
d , where ‖u j‖ ≤ 1.

If teacher j is queried on round t, he stochastically generates the binary label y j,t according to

Pt(y j,t = 1|xt) = (1+∆ j,t)/2, where ∆ j,t = u j
⊤xt and, as in Section 2, xt can be chosen adversarially

depending on previous x’s and y j’s. We consider |∆ j,t | to be the (hidden) confidence of teacher j in

his label for xt . When the learner issues a query, he receives nothing other than the binary label itself,

and the confidence is only part of our theoretical model of the teacher. If xt is almost orthogonal to

u j then teacher j has a very low confidence in his label, and we say that xt lies outside the expertise

region of teacher j.

It is no longer clear how we should evaluate the performance of the learner, since the K teachers

will often give inconsistent labels on the given xt , and we do not have a well-defined ground-truth to

compare against. Intuitively, we would like the learner to predict the label of xt as accurately as the

teachers who are experts on xt . To formalize this intuition,5 define the average margin of a generic

subset of teachers C ⊆ [K] as ∆C,t =
1
|C| ∑i∈C ∆i,t . We define the set of experts for each instance using

a user-specified parameter τ > 0. Define

j⋆t = argmax j|∆ j,t | and Ct = {i : |∆i,t | ≥ |∆ j⋆t ,t |− τ} . (7)

In words, j⋆t is the most confident teacher at time t, and Ct is the set of confident teachers at time

t. Again, recall that Ct is unknown to the learning algorithm. In this setting, τ is a tolerance

parameter that defines how confident a teacher must be, compared to the most confident teacher,

to be considered a confident teacher. Although τ does not appear explicitly in the notation Ct , the

reader should keep in mind that Ct and other sets defined later on in this section all depend on τ.

Using the definitions above, ∆Ct ,t is the average margin of the confident teachers, and we abbreviate

∆t = ∆Ct ,t .

Now, let yt be the random variable that takes values in {−1,1}, with Pt(yt = 1|xt) = (1+∆t)/2.

In words, yt is the binary label generated according to the average margin of the confident teachers.

We consider the sequence y1, . . . ,yT to be our ad-hoc ground-truth, and the goal of our algorithm is to

accurately predict this sequence. Note that an equivalent way of generating yt is to pick a confident

teacher j uniformly at random from Ct and to set yt = y j,t . Indeed there are other reasonable ways

to define the ground-truth for this problem, however, we feel that our definition coincides with our

intuitions on learning from teachers with different areas of expertise. If τ is set to 1, the learner

is compared against the average margin of all K teachers, while if τ = 0, the learner is compared

against the single most confident teacher.

Remark 10 The reader might wonder whether the framework just described could be accommo-

dated by a standard experts setting (e.g., Cesa-Bianchi and Lugosi, 2006) or, perhaps, by a label-

efficient version thereof (e.g., Helmbold and Panizza, 1997; Cesa-Bianchi et al., 2005b). Due to

the absence of a ground truth, the answer is negative. Of course, we might be tempted to apply

5. Here and throughout, [K] = {1,2, . . . ,K}.
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a label-efficient expert algorithm by pretending that the missing ground-truth is provided by some

function of the teachers we query. Unfortunately, the above references contain results which are too

general to yield tight bounds for our specific noise model. Indeed, our ambition here is to leverage

the side information provided by the instance vectors so as to outperform the best single expert in

hindsight while, at the same time, querying just a small fraction of the available teachers’ labels.

We now describe and analyze two algorithms within the multiple teacher setting. We call these

algorithms “first version” and “second version”. In the first version, the algorithm queries either all

of the teachers or none of them. The second version is more refined in that the algorithm may query

a different subset of teachers on each round. In Section 4 we present experiments on real-world data

with the second version of the algorithm.

3.1 Algorithm, First Version

The learner attempts to model each weight vector u j with a corresponding weight vector w j,t . As

in the single teacher case, the learner maintains a variable threshold θt , which can be interpreted

as the learner’s confidence in its current set of weight vectors. The learner attempts to mimic the

process of generating yt by choosing its own set of confident teachers on each round. Denoting

∆̂ j,t = w j,t
⊤xt , the learner defines

ĵt = argmax j|∆̂ j,t | and Ĉt = {i : |∆̂i,t | ≥ |∆̂ ĵt ,t
|− τ−2θt} ,

where ĵt is the learner’s estimate of the most confident teacher, and Ĉt is the learner’s estimate of

the set of confident teachers. Note that the definition of Ĉt is more inclusive than the definition of

Ct in Equation (7), in that it also includes teachers whose confidence falls below |∆̂ ĵt ,t
| − τ. This

accounts for the uncertainty regarding the learner’s set of weight vectors.

As above, we define the notation ∆̂C,t =
1
|C| ∑i∈C ∆̂i,t , and abbreviate ∆̂t = ∆̂Ĉt ,t

. The learner pre-

dicts the binary label ŷt = sgn(∆̂t). Let Pt denote the conditional probability Pt(·) =
P( ·|x1,y1,1 . . . ,yK,1,x2,y1,2 . . . ,yK,2, . . .xt−1,y1,t−1, . . .yK,t−1,xt), and define the regret of the learner

as

RT =
T

∑
t=1

(
Pt(yt ∆̂t < 0)−Pt(yt∆t < 0)

)
. (8)

Next, we proceed to describe our criterion for querying teachers. We present a simple criterion that

either sets Zt = 1 and queries all of the teachers or sets Zt = 0 and queries none of them. Therefore,

the learner either incurs a cost of K or a cost of 0 on each round. We partition the set of confident

teachers Ĉt into two sets,

Ĥt = {i : |∆̂i,t | ≥ |∆̂ ĵt ,t
|− τ+2θt},

B̂t = {i : |∆̂ ĵt ,t
|− τ−2θt ≤ |∆̂i,t | < |∆̂ ĵt ,t

|− τ+2θt} .

In words, Ĥt is the set of teachers with especially high confidence, while B̂t is the set of teachers

with borderline confidence. Intuitively, the learner is unsure whether the teachers in B̂t should or

should not be included in Ĉt . The learner issues a query (to all K teachers) in one of two cases. The

first case is when there exists a subset of borderline teachers S ⊆ B̂t that causes the predicted label

to flip, namely, ∆̂t ∆̂Ĥt∪S, t < 0. The second case is when there exists a subset of borderline teachers
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Algorithm 2: Multiple Teacher Selective Sampler—first version

input confidence level δ ∈ (0,1], tolerance parameter τ ≥ 0

initialize A0 = I, ∀ j ∈ [K] w j,0 = 0

for t = 1,2, . . .

receive xt ∈ R
d : ||xt || ≤ 1

θ2
t = x⊤t A−1

t−1xt

(
1+4∑

t−1
i=1 Ziri +36log(Kt/δ)

)

∀ j ∈ [K] ∆̂ j,t = w j,t−1
⊤xt and ĵt = argmax j|∆̂ j,t |

predict ŷt = sgn(∆̂t) ∈ {−1,+1}

Zt =

{

1 if ∃S ⊆ B̂t : ∆̂t ∆̂S∪Ĥt , t
< 0 or |∆̂S∪Ĥt , t

| ≤ θt

0 otherwise

if Zt = 1

query y1,t , . . . ,yK,t

At = At−1 +xtx
⊤
t , rt = x⊤t A−1

t xt

for j = 1, . . . ,K

w′
j,t−1 =







w j,t−1 − sgn(∆̂ j,t)
(

|∆̂ j,t |−1

x⊤t A−1
t−1xt

)

A−1
t−1xt if |∆̂ j,t |> 1,

w j,t−1 otherwise

w j,t = A−1
t (At−1w′

j,t−1 + y j,txt)

else

At = At−1, rt = 0 and w j,t = w j,t−1 ∀ j ∈ [K]

S ⊆ B̂t that causes the margin to be too small, namely |∆̂Ĥt∪S, t | ≤ θt . In either of these cases, we say

that the set of (estimated) confident teachers is unstable. If a query is issued, each weight vector

w j,t is updated as in the single teacher case. The pseudocode of this algorithm is given in Algorithm

2.

Remark 11 At first sight, it may seem that computing Zt causes an exponential explosion due to

the need to check all possible subsets S ⊆ B̂t . The same implementation issue arises in Algorithm 3

(Section 3.3). As a matter of fact, this check can be computed efficiently by first sorting the teachers

according to their estimated confidence |∆̂ j,t |, and then greedily growing the subset S by following

this order.

3.2 Analysis, First Version

Our learning algorithm relies on labels it receives from a set of teachers, and therefore our bounds

should naturally depend on the ability of those teachers to provide accurate labels for the sequence

x1, . . . ,xT . For example, if an input xt lies outside the expertise regions of all teachers, we cannot

hope to learn anything from the labels provided by the teachers for this input. Similarly, there
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is nothing we can do on rounds where the set of confident teachers is split between two equally

confident but conflicting opinions. We count these difficult rounds by defining, for any ε > 0,

Tε =
T

∑
t=1

11{|∆t | ≤ ε} . (9)

The above is just a multiple teacher counterpart to (2). However it is interesting to note that even in

a case where most teachers have low confidence in their prediction on any given round, Tε can still

be small provided that the experts in the field have a confident opinion.

A more subtle difficulty presents itself when the collective opinion expressed by the set of

confident teachers changes qualitatively with a small perturbation of the input xt or one of the

weight vectors u j. To state this formally, define for any ε > 0

Hε,t = {i : |∆i,t | ≥ |∆ j⋆t ,t |− τ+ ε},
Bε,t = {i : |∆ j⋆t ,t |− τ− ε ≤ |∆i,t | < |∆ j⋆t ,t |− τ+ ε} .

The set Hε,t is the subset of teachers in Ct with especially high confidence, ε higher than the minimal

confidence required for inclusion in Ct . In contrast, the set Bε,t is the set of teachers with borderline

confidence: either teachers in Ct that would be excluded if their margin were smaller by ε, or

teachers that are not in Ct that would be included if their margin were larger by ε. We say that the

average margin of the confident teachers is unstable with respect to τ and ε if |∆t | > ε but we can

find a subset S ⊆ Bε,t such that either ∆t∆S∪Hε,t , t < 0 or |∆S∪Hε,t , t |< ε. In other words, we are dealing

with the situation where ∆t is sufficiently confident, but a small ε-perturbation to the margins of the

individual teachers can cause its sign to flip, or its confidence to fall below ε. We count the unstable

rounds by defining, for any ε > 0,6

T ′
ε =

T

∑
t=1

11
{
|∆t |> ε

}
11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t , t < 0 ∨ |∆S∪Hε,t , t | ≤ ε

}
. (10)

Intuitively T ′
ε counts the number of rounds on which an ε-perturbation of ∆t, j either changes the sign

of the average margin or results in an average margin close to zero. Like Tε, this quantity measures

an inherent hardness of the multiple teacher problem.

The following theorem is the main theoretical result of this section. It provides an upper bound

on the regret of the learner, as defined in Equation (8), and on the total cost of queries, NT =
K ∑

T
t=1 Zt . Again, we emphasize both the data and the time-dependent aspects of the bound.

6. Notice that, up to degenerate cases, both Tε and T ′
ε tend to vanish as ε → 0. Hence, as in the single teacher case, the

free parameter ε trades-off hardness terms against large deviation terms.
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Theorem 12 Assume Algorithm 2 is run with a confidence parameter δ > 0. Then with probability

at least 1−δ it holds for all T ≥ 3 that

RT ≤ inf
ε>0

{

εTε +T ′
ε +O

(
log |AT | log(KT/δ)+ log2 |AT |

ε2

)}

= inf
ε>0

{

εTε +T ′
ε +O

(
d2 log2(KT/δ)

ε2

)}

,

NT ≤ K inf
ε>0

{

Tε +T ′
ε +O

(
log |AT | log(KT/δ)+ log2 |AT |

ε2

)}

= K inf
ε>0

{

Tε +T ′
ε +O

(
d2 log2(KT/δ)

ε2

)}

.

As in the proof of Theorem 2, we begin by decomposing the regret and the number of queries.

Recall the definitions of Tε and T ′
ε in Equation (9) and Equation (10), respectively. Additionally,

define for any ε > 0

UT = ∑
T
t=1 Z̄t 11

{
∆t ∆̂t < 0

}
,

QT,ε = ∑
T
t=1 Zt 11

{
∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t |> ε

}
. (11)

Tε and T ′
ε deal with rounds on which the ground truth itself is unreliable, UT sums over rounds where

the learner does not issue a query, and QT,ε sums over rounds where the learner does issue a query.

Using these definitions, we state the following decomposition lemmas.

Lemma 13 For any ε > 0 it holds that RT ≤ εTε +T ′
ε +UT +QT,ε.

Lemma 14 For any ε > 0, it holds that NT ≤ K (Tε +T ′
ε +QT,ε).

The proofs of these lemmas are given in Appendix C. To conclude the proof of Theorem 12, it

remains to upper bound UT and QT,ε.

Lemma 15 If (∆ j,t − ∆̂ j,t)
2 ≤ θ2

t holds for all j ∈ [K] and t ∈ [T ], then

QT,ε = O

(
log |AT | log(KT/δ)+ log2 |AT |

ε2

)

= O

(
d2 log2(KT/δ)

ε2

)

.

Lemma 16 If (∆ j,t − ∆̂ j,t)
2 ≤ θ2

t for all j ∈ [K] and t ∈ [T ], then UT = 0.

The proofs of these lemmas are also given in Appendix C. Both lemmas rely on the assumption that

(∆ j,t − ∆̂ j,t)
2 ≤ θ2

t for all t ∈ [T ] and j ∈ [K]. A straightforward stratification of Lemma 7 in Section

2 over the K teachers verifies that this condition holds with high probability. This concludes the

proof of Theorem 2.
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Algorithm 3: Multiple Teacher Selective Sampler—second version

input confidence level δ ∈ (0,1], tolerance parameter τ ≥ 0

initialize A j,0 = I, w j,0 = 0, ∀ j ∈ [K]

for t = 1,2, . . .

receive xt ∈ R
d : ||xt || ≤ 1

∀ j ∈ [K], θ2
j,t = x⊤t A−1

j,t−1xt

(
1+4∑

t−1
i=1 Zir j,i +36log(Kt/δ)

)

∀ j ∈ [K], ∆̂ j,t = w j,t−1
⊤xt and ĵt = argmax j|∆̂ j,t |

predict ŷt = sgn(∆̂t) ∈ {−1,+1}

Zt =

{

1 if ∃S ⊆ B̂t : ∆̂t ∆̂S∪Ĥt , t
< 0 or |∆̂S∪Ĥt , t

| ≤ θS∪Ĥt , t

0 otherwise

if Zt = 1 and j ∈ Ĉt

query y j,t

A j,t = A j,t−1 +xtx
⊤
t , r j,t = x⊤t A−1

j,t xt

w′
j,t−1 =







w j,t−1 − sgn(∆̂ j,t)
(

|∆̂ j,t |−1

x⊤t A−1
j,t−1xt

)

A−1
j,t−1xt if |∆̂ j,t |> 1,

w j,t−1 otherwise

w j,t = A−1
j,t (A j,t−1w′

j,t−1 + y j,txt)

else
A j,t = A j,t−1, r j,t = 0 and w j,t = w j,t−1

3.3 Algorithm, Second Version

The second version differs from the first one in that now each teacher j has its own threshold θ j,t ,

and also its own matrix A j,t . As a consequence, the set of confident teachers Ĉt and the partition of

Ĉt into highly confident (Ĥt) and borderline (B̂t) teachers have to be redefined as follows:

Ĉt = { j : |∆̂ j,t | ≥ |∆̂ ĵt ,t
|− τ−θ j,t −θ ĵt ,t

}, where ĵt = argmax j|∆̂ j,t |,
Ĥt = {i : |∆̂i,t | ≥ |∆̂ ĵt ,t

|− τ+θ j,t +max j∈Ĉt
θ j,t},

B̂t =
{

i : |∆̂ ĵt ,t
|− τ−θ j,t −θ ĵt ,t

≤ |∆̂i,t | < |∆̂ ĵt ,t
|− τ+θ j,t +max j∈Ĉt

θ j,t

}
.

The pseudocode is given in Algorithm 3. Notice that the query condition defining Zt now depends

on an average threshold θS∪Ĥt , t
= 1

|S∪Ĥt | ∑ j∈S∪Ĥt
θ j,t .

3.4 Analysis, Second Version

The following theorem bounds the regret and the total number of queries issued by the second

version of our algorithm, with high probability. The proof is similar to the proof of Theorem 12.

We keep the definitions of the sets Hε,t and Bε,t as given in Section 3.2, but in the bound on NT in
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Theorem 17, we replace T ′
ε with the more refined quantity T ′′

ε , defined as

T ′′
ε =

T

∑
t=1

|Hε,t ∪Bε,t |
K

11
{
|∆t |> ε

}
11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t , t < 0 ∨ |∆S∪Hε,t , t | ≤ ε

}
.

Note that T ′′
ε is similar to T ′

ε except that while T ′
ε only counts the number of times that perturbations

to the ∆ j,t’s lead to conflict or low confidence predictions, T ′′
ε also accounts for the fraction of

confident teachers involved in the conflict. We state the following bound on regret and on the

overall number of queries.

Theorem 17 Assume Algorithm 3 is run with a confidence parameter δ > 0. Then with probability

at least 1−δ it holds for all T ≥ 3 that

RT ≤ inf
ε>0

{

εTε +T ′
ε +O

(
K log |AT | log(KT/δ)+K log2 |AT |

ε2

)}

= inf
ε>0

{

εTε +T ′
ε +O

(
K d2 log2(KT/δ)

ε2

)}

,

NT ≤ K inf
ε>0

{

Tε +T ′′
ε +O

(
K log |AT | log(KT/δ)+K log2 |AT |

ε2

)}

= K inf
ε>0

{

Tε +T ′′
ε +O

(
K d2 log2(KT/δ)

ε2

)}

.

The bounds above resemble the bounds stated in Theorem 12 for the first version of the algorithm;

all of these bounds contain two kinds of terms: hardness terms (Tε, T ′
ε , and T ′′

ε ) and large deviation

terms (d logT -like factors). The regret bound for the second version of the algorithm is strictly

inferior to the regret bound for the first version, as an additional factor of K multiplies the large

deviation term. However, the bounds on the number of queries of the two algorithms are not directly

comparable. On one hand, if a typical example only has a few confident teachers, we expect T ′′
ε to

be much smaller than T ′
ε , which could make the bound on NT in Theorem 17 much smaller than its

counterpart in Theorem 12. On the other hand, the bound in Theorem 17 has an additional factor of

K multiplying its large deviation term.

As in the proofs of Theorem 2 and Theorem 12, to analyze the regret and number of queries

made by the algorithm, we start by decomposing these terms. To decompose the regret, we note that

Lemma 13 applies as before, and we have that for any ε > 0,

RT ≤ εTε +T ′
ε +UT +QT,ε,

where Tε is as defined in Equation (9), T ′
ε is as defined in Equation (10), and UT and QT,ε are defined

in Equation (11). To decompose the total number of queries, we require a new lemma.

Lemma 18 If (∆ j,t − ∆̂ j,t)
2 ≤ θ2

j,t holds for all j ∈ [K] and t ∈ [T ], then for any ε > 0, it holds that

NT ≤ K

(

Tε +T ′′
ε +O

(

∑
K
j=1

(
log |A j,T | log(KT/δ)+ log2 |A j,T |

)

ε2

))

≤ K

(

Tε +T ′′
ε +O

(
Kd2 log2(KT/δ)

ε2

))

.
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Once again, proofs are given in Appendix C. We are left with the task of bounding UT and QT,ε.

Lemma 19 If (∆ j,t − ∆̂ j,t)
2 ≤ θ2

j,t holds for all j ∈ [K] and t ∈ [T ], then

QT,ε = O

(

∑
K
j=1

(
log |A j,T | log(KT/δ)+ log2 |A j,T |

)

ε2

)

= O

(
K d2 log2(KT/δ)

ε2

)

.

Lemma 20 If (∆ j,t − ∆̂ j,t)
2 ≤ θ2

j,t for all j ∈ [K] and t ∈ [T ], then UT = 0.

Proofs of these lemmas are also given in Appendix C. As before, these lemmas hold under the con-

dition that (∆ j,t − ∆̂ j,t)
2 ≤ θ2

j,t for all t ∈ [T ] and j ∈ [K]. Again as done previously, a straightforward

union bound over Lemma 7 in Section 2 applied to each of the K teachers verifies that this condition

holds with high probability which in turn concludes the proof of Theorem 17.

Remark 21 It should be clear that a low noise analysis, akin to the one presented in Sections 2.4

and 2.5 can be attempted, once low noise conditions in the vein of Tsybakov (2004) are formulated

which take into account both the conflicting region defining Tε, and the unstable regions defining T ′
ε ,

and T ′′
ε . Rather than presenting explicit theoretical results of this sort here, we do prefer quantifying

the label saving capability implied by teacher aggregation by the nontrivial experimental results

contained in the next section.

4. Experiments in the Multiple Teacher Setting

We report on the results of an empirical study carried out on a medium-size real-world data set. The

goal of our experiments is to validate the theory and to quantify the effectiveness of our multiple

teacher query selection mechanism in different multiple-teacher scenarios. Due to our difficulty in

finding genuine multiple-teacher data sets of a significant size, we resorted to simulating the teachers

through learning. This also allowed us to obtain a much more controlled experimental setup.

4.1 Data Set and Tasks

Our data are taken from a subset of the learning-to-rank data set MSLR-WEB10K.7 This data set is

a collection of (anonymized) query-url pairs collected from a commercial search engine (Microsoft

Bing). Each query-url pair is represented by a feature vector and a human-generated relevance

label between 0 (irrelevant) to 4 (perfectly relevant). Each feature vector is made up of 136 real or

integer valued features.8 MSLR-WEB10K is partitioned into five subsets, named S1 through S5:

we only used S1 in our experiments. The S1 subset contains 241988 query-url pairs, with 2000

distinct queries, and about 121 urls per query (with a maximum of 809 urls and a minimum of 1

url per query). As a preprocessing step, we randomly shuffled the examples within each query and

normalized the feature vectors to unit length.

We generated a binary classification data set by assigning the binary label “-1” to all query-url

pairs with a relevance label of 0 and the binary label “+1” to all remaining pairs. This gave rise

to a data set with balanced classes (roughly, 48% positive and 52% negative). We then simulated

7. Available at http://research.microsoft.com/en-us/projects/mslr.

8. After a quick scrutiny of the semantics of the features, we decided to drop features 126 through 131. Hence, we

ended up with 130 usable features.
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four different multiple-teacher scenarios, distinguished by the number of teachers involved (“few”

or “many”) and the amount of overlap between expertise regions (“nonoverlapping teachers” vs.

“overlapping teachers”).

This binary classification data set simply provides a binary label per example, and does not spec-

ify the identity of the teacher that provided that label. We simulated multiple teachers as follows:

we grouped queries together in various ways (see below) and trained a linear classifier using half of

the urls associated with each query in the group. The training was done using a single random-order

pass of a full-information second-order Perceptron algorithm (Cesa-Bianchi et al., 2005a). The re-

sult is a linear classifier per query-group: we view each of these linear classifiers as a teacher. The

specific subset of training queries in each group determines the expertise region of the respective

teacher. The 119507 query-url pairs that were not used to simulate the teachers were later used to

test our algorithm.

We defined the query groups in four different ways, to simulate four different multiple-teacher

scenarios.

• Few nonoverlapping teachers. We generated 5 teachers by partitioning the 2000 queries

into 5 sets (the first teacher is defined by (half of) the first 400 queries, the second teacher by

(half of) the second 400 queries, and so on). Hence each teacher has acquired expertise in the

subset of 400 queries seen during training.

• Few overlapping teachers. We generated 5 teachers by defining 5 overlapping sets of

queries. Specifically, the first 500 queries are common to all teachers, and the remaining

1500 queries are partitioned equally among the teachers. Hence, each teacher is trained on

examples from 800 queries.

• Many nonoverlapping teachers. We generated 100 teachers by partitioning the queries into

100 disjoint sets, each containing 20 queries. The resulting teachers turned out to be quite

unreliable; some of them gave labels that were not far from random guessing at test time.

• Many overlapping teachers. We generated 100 teachers with partially overlapping exper-

tise. All teachers share the first 100 queries, and the remaining 1900 queries are partitioned

equally. Hence, each teacher is trained on examples from 100+19 = 119 queries.

Due to the variance introduced by the randomized training/test splits and the random order in which

training examples were presented to the second-order Perceptron, we repeated the above process 10

times per scenario and averaged the results.

The reader should observe that the way we generated teachers makes our results comparable

even across scenarios. In fact, despite the actual training/test split differs over scenarios, in all four

scenarios and for all 2000 queries, half the urls (and associated labels) are used for training and half

are used for test. So, in a sense, the set of teachers we generated in all scenarios collectively encode

the same amount of information. That is, the data used for training the teachers are of the same size

and query mixture across scenarios.

4.2 Algorithm and Baselines

On any given scenario, a teacher is then just a linear-threshold function. We generated teachers’

opinions on the test set just by evaluating such functions on the test set instances. Table 1 gives
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SCENARIO BEST WORST AVG STDDEV

FEW NONOVERLAPPING TEACHERS 19.9% 31.7% 24.9% 4.6%

FEW OVERLAPPING TEACHERS 20.5% 29.6% 24.5% 3.6%

MANY NONOVERLAPPING TEACHERS 16.3% 54.8% 25.5% 7.4%

MANY OVERLAPPING TEACHERS 17.0% 42.3% 24.5% 5.1%

Table 1: Performance (test set mistake rate) of the generated teachers in the four simulated scenar-

ios. Results are averaged over 10 repetitions. “best”, “worst”, and “avg” are the (average)

mistake rate of the best, worst and average performing teacher, respectively. “stddev” is the

standard deviation of the mistake rates, and gives an idea of the difference in performance

across teachers (not across repetitions).

relevant statistics about the teachers’ performance on the test set (notice that such figures can only be

computed after knowing the true labels on the test set—this information was never made available

to the multiple teacher algorithm). As expected, best and worst teachers are farther apart in the

nonoverlapping scenarios (correspondingly, ”stddev” figures are larger), with a larger variability in

the many teacher settings. Moreover, throughout the 10 repetitions, it often happened that among the

many poorly trained classifiers (as are those produced within the “many nonoverlapping” setting), a

few of them turned out to be significantly accurate on the test set. Likewise, some of them happened

to be even worse than random guessing.

After simulating the teachers, we implemented a simplified version of our second-version mul-

tiple teacher algorithm (Algorithm 3), where the thresholds θ2
j,t are simplified to

θ2
j,t = αx⊤t A−1

j,t−1xt log(1+ t), (12)

and α > 0 is a tunable parameter (independent of j and t). Hence our algorithm now has two param-

eters: τ ∈ [0,1] and α > 0. The reason for this simplified θ j,t is that the actual expression for θ j,t ,

as it appears in Algorithm 3, is the one suggested by the theory after significant mathematical over-

approximations (large deviations, Hölder’s inequality, etc.). This suggests that the exact expression

for θ j,t given in the pseudocode may be too conservative to work well in practice. In any event, ob-

serve that the factor α log(1+ t) in (12) is a good proxy for the factor 1+4∑
t−1
i=1 Ziri +36log(Kt/δ)

in the algorithm’s pseudocode, once we let α range over the positive reals.

The following three baselines were used in our comparative study.

• BEST TEACHER in hindsight on the test set. This is the predictor that would be learned on-the-

fly by a standard expert algorithm (e.g., Weighted Majority—see Littlestone and Warmuth,

1994; Cesa-Bianchi and Lugosi, 2006), where teachers are experts, and the algorithm has at

its disposal both the true labels of the test set and the prediction of all teachers. Recall that the

true labels of the test set are not available to our algorithm. Because this algorithm is expected

to make at least as many mistakes as the best expert, the “best” column in Table 1 delivers

optimistic approximations to the actual performance of this algorithm in the four scenarios.

The associated number of queries made to the teachers is the largest possible, that is, the

size of the test set (119507) times the number of teachers (119507×5 in the “few teacher”

scenarios, and 119507×100 in the “many teacher” scenarios).
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SCENARIO BEST TEACH. FLAT MAJORITY FULL-INFO ALG. 3

FEW NONOVERLAPPING TEACHERS 19.9% 16.7% 15.8%

FEW OVERLAPPING TEACHERS 20.5% 17.9% 15.8%

MANY NONOVERLAPPING TEACHERS 16.3% 15.6% 15.6%

MANY OVERLAPPING TEACHERS 17.0% 15.7% 15.7%

Table 2: Performance (test set mistake rate) of the three tested baselines in the four simulated sce-

narios. Results are averaged over 10 repetitions. The “Best Teacher” figures are taken

from Table 1.

• FLAT MAJORITY of teachers. This algorithm asks all teachers and predicts with their flat

majority.9 Like the BEST TEACHER baseline, this algorithm queries all of the teachers all the

time. Unlike BEST TEACHER, this algorithm does not receive any feedback on the true labels

of the test set.

• FULL-INFORMATION version of our second-version Algorithm (Algorithm (3)). This is our

algorithm with θ2
j,t fixed to the value ∞ for all j and t. Since θ2

j,t = ∞ implies Zt = 1 and

Ĉt = [K] for all t (thereby making τ immaterial), this algorithm predicts by aggregating all

teachers via a margin-based majority and, as before, querying all labels from all teachers.

Again, no ground-truth feedback is given. Hence, this baseline is just a weighted version of

FLAT MAJORITY, where the weights are given by the estimated margins ∆̂ j,t computed by

Algorithm 3 operating in a “full information” mode.

4.3 Results and Comments

We measured the error rate on the test set and the average number of requested labels per example.

Figure 1 shows test error rate as a function of the per-teacher query rate (i.e., the average fraction

of times we query the teachers). The figure displays the test error rate of our algorithm compared

to the three baselines mentioned above, in each of the four scenarios, with τ = 0.3 and different

values of α in [0.01,10]. Very similar plots are obtained for other values of τ.10 Increasing α causes

a steady increase in the (average) per-teacher query rate, but surprisingly enough, has a negligible

effect on test error rate across most of its range (hence the flattish plots in Figure 1). In particular, a

query rate of about 1% is already sufficient to get very close to the smallest test error rate achieved

by the algorithm. As for comparison to the baselines, the following comments can be made.

• Our algorithm significantly outperforms all baselines in the “few teacher” scenarios, but is

about the same as the two majority baselines in the “many teacher” scenarios. Notice, how-

ever, that this comparison is unfairly penalizing our algorithm in that the baselines do achieve

their results by asking all of the teachers all of the time. Moreover, it is worth stressing that

9. Alternatively, this algorithm picks a teacher uniformly at random and goes with its label. In our experiments, we did

not test this randomized version due to the high variance of the results, especially in the “many teacher” scenarios—

see the last two rows in Table 1.

10. For instance, in the “few nonoverlapping” setting, when τ = 0.0 and α ranges over [0.01,10] the test error rate of our

algorithm ranges between 15.5% and 15.7%; when τ = 0.7 the test error ranges between 15.6% and 15.7%. In the

“many overlapping” setting, when τ = 0.0 and α ∈ [0.01,10] we obtain a test error between 15.6% and 15.9%; When

τ = 0.7, the range is between 15.4% and 15.5%.

2680



SELECTIVE SAMPLING AND ACTIVE LEARNING FROM SINGLE AND MULTIPLE TEACHERS

0 5 10 15 20 25 30

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

20.5

average per−teacher query rate (%)

av
er

ag
e 

te
st

 e
rr

or
 r

at
e 

(%
)

Few nonoverlapping teacher scenario

 

 

Our alg. τ = 0.3

Best Teach.

Flat Maj.

Full info

0 5 10 15 20 25 30
15

16

17

18

19

20

21

average per−teacher query rate (%)

av
er

ag
e 

te
st

 e
rr

or
 r

at
e 

(%
)

Few overlapping teacher scenario

 

 

Our alg. τ = 0.3

Best Teach.

Flat Maj.

Full info

0 5 10 15 20 25 30
15

16

17

18

19

20

21

average per−teacher query rate (%)

av
er

ag
e 

te
st

 e
rr

or
 r

at
e 

(%
)

Many nonoverlapping teacher scenario

 

 

Our alg. τ = 0.3

Best Teach.

Flat Maj.

Full info

0 5 10 15 20 25 30
15

16

17

18

19

20

21

average per−teacher query rate (%)

av
er

ag
e 

te
st

 e
rr

or
 r

at
e 

(%
)

Many overlapping teacher scenario

 

 

Our alg. τ = 0.3

Best Teach.

Flat Maj.

Full info

Figure 1: Average per-teacher query rate vs. test error rates in the four scenarios. Results are

averaged over 10 repetitions. The query rate of the multiple selective sampler - second

version (“Our alg.”) is obtained by setting τ = 0.3, and letting α in (12) vary across the

range [0.01,10]. In any given scenario, the per-teacher query rate of our algorithm is

the average fraction of labels requested to the teachers out of the total number of labels

available in that scenario. For instance, an average per-teacher query rate of 10% achieved

in a few teacher scenario means that, averaged over the 10 repetitions, the total no. of

queries made to the five teachers was 119507×5×10% = 59753.5. Hence, each of the 5

teachers received on average 11950.7 queries. The test error rates of the three baselines

are taken from Table 2, and are plotted (as horizontal lines) just for reference.

though our plots display average rates over repetitions (i.e., over train/test splits), the above

comparative behavior did consistently occur in every single repetition.

• We found somewhat surprising that FULL-INFO does not improve on FLAT MAJORITY.

Moreover, since FULL-INFO can be obtained by our algorithm, just by setting α = ∞ in (12),

we see that more teacher labels can even be detrimental. This phenomenon is statistically

significant only in the “few teacher” scenarios.

• The more teachers we have at our disposal, the more beneficial is the process of averaging

over them. Notably, in our data set, many unreliable (but nonoverlapped) teachers queried all

the times and aggregated by a flat average (aka FLAT MAJORITY) is about as good in terms

2681



DEKEL, GENTILE AND SRIDHARAN

of accuracy as running more sophisticated weighted averages. Still, our experiments show

that there is no need to query all of the teachers in order to achieve this accuracy.

• Aggregating opinions of teachers with a good amount of overlapping expertise (as in the two

“overlapping teacher” settings), might be detrimental, as evinced by comparing the first row

in Table 2 to the second one, and the third to the fourth one. Similar conclusions are suggested

by the behavior of our algorithm as presented in Figure 1.

Finally, we make a few comments on the role of the parameter τ in our algorithm. As mentioned

above, we observed that the value of τ does not have a significant influence on the algorithm’s test

error rate or label query rate. In a sense, this is a lucky circumstance, since we initially expected

the tuning of τ to be a nontrivial task.11 The value of τ does however play an important role in

the “degree of aggregation” of teachers: When Zt = 1, setting τ close to 0 makes the algorithm

query only the (estimated) most confident teacher at time t, whereas setting τ close to 1 causes the

algorithm to query all teachers. For instance, in the “many nonoverlapping teachers” scenario, if

τ = 0.3 (as in the plot in Figure 1 (d)), and α = 0.1, the most queried teacher receives 5440 queries

(out of 119507), and the least queried teacher receives 3319. In the same scenario with τ = 0.0 and

the same value of α, the most queried teacher receives 10849 queries while the least queried teacher

gets only 1050. Hence, our algorithm exhibits a desirable fine-grained selection capability of the

subsets of teachers to query, thereby making it significantly different from the all-or-none strategy

followed by the first version of our algorithm (Algorithm 2), which we do not expect to work as

well in practice.

5. Conclusions and Open Questions

We introduced a new algorithm in the online selective sampling framework, where instances are

chosen by an adaptive adversary and labels are sampled from a linear stochastic model. We gave

sharp bounds on the regret and on the number of queries made by this algorithm, improving over

previous algorithms and closing some important open questions on this topic. The same machinery

can also be used to build efficient active learning algorithms working under standard statistical as-

sumptions. We then lifted the above to the more involved setting where multiple unreliable teachers

are available. We presented two algorithms and corresponding analyses. We concluded with a pre-

liminary empirical study that demonstrates how the second version of our algorithm outperforms

various intuitive baselines, both in terms of accuracy and total number of queries.

We leave some open problems for future research: The bound on NT in Theorem 2 is tight

w.r.t. ε (see the lower bound by Cesa-Bianchi et al., 2009), but need not be tight w.r.t. d. This

might be due to the way we constructed our martingale argument to prove Lemma 7. Resolving this

issue remains an open problem. Second, it would be interesting to generalize our results to other

stochastic label models, such as logistic models, and to understand how closely each model matches

the true behavior of human teachers. Third, the bounds in the multiple teacher setting (Theorems

12 and 17) are likely to be suboptimal, and might perhaps be improved by exploiting the interaction

structure among teachers. Fourth, it would be interesting to extend our work to a setting where

different teachers charge different rates. For example, one could imagine a setting where the cost

of each label depends on each teacher’s confidence in his own answer. This setting is closer to the

11. Consider that the absence of ground-truth feedback makes standard cross-validation techniques somewhat problem-

atic.
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proactive learning setting (Donmez and Carbonell, 2008; Yang and Carbonell, 2009a,b). These and

other open problems provide many opportunities for interesting future research on this topic.

Acknowledgments

We thank the Action Editor for his timely handling of this paper. We also thank the anonymous

reviewers for their helpful comments. This research was done while the second and the third authors

were visiting Microsoft Research at Redmond. The second author acknowledges the PASCAL2

Network of Excellence under EC grant 216886 for supporting travel expenses to the conference.

Appendix A.

This appendix contains the large deviation inequalities we use throughout the paper.

Lemma 22 (Kakade and Tewari, 2008)

Suppose X1,X2, ...,XT is a martingale difference sequence with |Xt | ≤ b. Let Vart(Xt) =
Var(Xt |X1, ...,Xt−1), and V = ∑

T
t=1 Vart(Xt). Then for any δ < 1/e and T ≥ 3, we have

P

(
T

∑
t=1

Xt > max
{
√

4V log
4logT

δ
,3b log

4logT

δ

}
)

≤ δ.

Lemma 23 With the notation introduced in Section 2, define

µt =
t

∑
i=1

Zi(∆i − ∆̂′
i)

2, Σt =
t

∑
i=1

Zi

(
(yi − ∆̂′

i)
2 − (yi −∆i)

2
)
.

Assume that Selective Sampler in Section 2 is run with confidence parameter δ∈ (0,1], and let t ≥ 3.

Then

(i) with probability at least 1−δ/t2 we have µt ≤ 2Σt +144log(t/δ);

(ii) with probability at least 1−δ/t2 we have − 1
2

Σt ≤ 36log(t/δ).

Proof Set Mi = Zi (∆i − yi)(∆i − ∆̂′
i), and observe that Mi can be rewritten as

Mi =
1

2
Zi

(
(∆i − ∆̂′

i)
2 −
(
(yi − ∆̂′

i)
2 − (yi −∆i)

2
))

,

which implies 1
2
(µt −Σt) = ∑

t
t=1 Mi. Now, M1, ...,Mt is a martingale difference sequence w.r.t. his-

tory and current xi. This is because Ei [Mi] = Zi (∆i −Ei [yi])(∆i − ∆̂′
i) = 0 . Since |∆t |, |∆̂t | ≤ 1, we

also have that |Mi| ≤ 4. Let Vari(·) denote the conditional variance Var(· |x1, . . . ,xi−1,xi,y1, . . . ,yi−1).
Observing that

Vari(Mi) = Zi (∆i − ∆̂′
i)

2Vari

(
(∆i − yi)

2
)
≤ 4

3
Zi(∆i − ∆̂′

i)
2

holds, an application of Lemma 22 yields

1

2
(µt −Σt)≤ max

{√

6 µt log

(
4t2 log t

δ

)

,12log

(
4t2 log t

δ

)}

. (13)
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We now use the inequality
√

ab ≤ a+b
2

to (13) with a = µt/2 and b = 12log
(

4t2 log t

δ

)

. This implies

1

2
(µt −Σt)≤ µt/4+12log

(
4t2 log t

δ

)

which in turn implies (i). To prove (ii), we again apply
√

ab ≤ a+b
2

to (13), this time with a = µt and

b = 6log
(

4t2 log t

δ

)

.

Appendix B.

Most of the steps in the proofs of these lemmas appear in the papers by Azoury and Warmuth (2001)

and Cesa-Bianchi et al. (2005a). The proofs are provided here for completeness.

Lemma 24 With the notation introduced in Section 2, we have that for each t = 1,2, . . . the follow-

ing inequalities hold :

(i) x⊤At−1xt ≤ 2rt;

(ii) Ztrt ≤ log
|At |
|At−1| ;

(iii) ∑
t
i=1 Ziri ≤ log |At | ≤ d log(1+Nt) = O(d log t).

Proof To prove (i), note that on the rounds we do not query, At = At−1 and so rt = x⊤t A−1
t−1xt . On

the rounds we do query, At = At−1 +xtx
⊤
t , and so by the matrix inversion formula

A−1
t = A−1

t−1 −
A−1

t−1xtx
⊤
t A−1

t−1

1+x⊤t A−1
t−1xt

we see that

rt = x⊤t A−1
t−1xt −

(x⊤t At−1xt)
2

1+x⊤t A−1
t−1xt

.

This automatically gives us that rt ≤ x⊤t A−1
t−1xt . Further since x⊤t A−1

t−1xt ≤ 1, we can conclude that

rt ≥ 1
2
x⊤t A−1

t−1xt . Hence we conclude that for any t, rt ≤ x⊤At−1xt ≤ 2rt .

Now to prove (ii), note that since whenever we query, At = At−1 + xtx
⊤
t , using the identity,

x⊤t (At−1 +xtx
⊤
t )

−1xt = 1− |At |
|At−1| and the fact that 1− x ≤ log(x), we see that

rt ≤ log
|At |
|At−1|

.

To get (iii), we sum up and resolve the telescoping sum as

t

∑
i=1

Ziri ≤
t

∑
i=1

Zi log
|Ai|
|Ai−1|

= log |At | ≤ d log(1+Nt) = O(d log t) .
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Lemma 25 With the notation introduced in Section 2, the following holds for any u : ||u|| ≤ 1:

(i) If t is such that Zt = 1 we have

1

2

(

(yt −w′
t−1

⊤
xt)

2 − (yt −u⊤xt)
2
)

= dt−1(u,w
′
t−1)−dt(u,wt)+dt(w

′
t−1,wt) ;

(ii) If t is such that Zt = 1 we have dt(w
′
t−1,wt)≤ 2rt ;

(iii) If t is such that Zt = 1 we have dt(u,w
′
t)≤ dt(u,wt) ;

(iv) For any t = 1,2, ..., we have

Zt

2

(

(yt −w′
t−1

⊤
xt)

2 − (yt −u⊤xt)
2
)

≤ Zt

(
dt−1(u,w

′
t−1)−dt(u,w

′
t)
)
+2log

|At |
|At−1|

.

Proof To prove (i), define αt := dt−1(u,w
′
t−1)−dt(u,wt)+dt(w

′
t−1,wt). Using the definition of dt ,

we have that

αt =
1

2
u⊤(At−1 −At)u+u⊤(Atwt −At−1w′

t−1)+
1

2
w′

t−1(At−1 +At)w
′
t−1 −w′

t−1Atwt .

Using the recursive definition At = At−1 +xtx
⊤
t and rearranging terms in the right-hand side above,

we get

αt =
1

2

(
(w′

t−1)
⊤xtx

⊤
t w′

t−1 −u⊤xtx
⊤
t u
)
+(u⊤−w′

t−1)(Atwt −At−1w′
t−1)

=
1

2

(
(w′

t−1
⊤

xt)
2 − (u⊤xt)

2
)
+(u⊤−w′

t−1)(Atwt −At−1w′
t−1) .

By definition, Atwt = At−1w′
t−1 + ytxt . Plugging this equality into the equation above gives

αt =
1

2

(
(w′

t−1
⊤

xt)
2 − (u⊤xt)

2
)
+ yt(u

⊤−w′
t−1)xt

=
1

2

(

(yt −w′
t−1

⊤
xt)

2 − (yt −u⊤xt)
2
)

,

thereby proving (i).

To prove (ii), we rewrite dt(w
′
t−1,wt) as

dt(w
′
t−1,wt) =

1

2
(w′

t−1 −wt)
⊤At(w

′
t−1 −wt)

=
1

2
(Atw

′
t−1 −Atwt)

⊤A−1
t (Atw

′
t−1 −Atwt) .

Using Atwt = At−1w′
t−1 + ytxt , the above becomes

dt(w
′
t−1,wt) =

1

2

(
(At −At−1)w

′
t−1 − ytxt

)⊤
A−1

t

(
(At −At−1)w

′
t−1 − ytxt

)
.
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Using At = At−1 +xtx
⊤
t , we have

dt(w
′
t−1,wt) =

1

2

(

xtx
⊤
t w′

t−1 − ytxt

)

A−1
t

(

xtx
⊤
t w′

t−1 − ytxt

)

=
(w′

t−1
⊤

xt − yt)
2

2
x⊤t A−1

t xt

=
(w′

t−1
⊤

xt − yt)
2

2
rt

=
(∆̂′

t − yt)
2

2
rt

≤ 2rt ,

where the last step uses |∆̂′
t | ≤ 1

To prove (iii) we observe that, w′
t , as defined in Algorithm 1, is the projection of wt onto the

convex set Ct = {w : |w⊤xt | ≤ 1} w.r.t. Bregman divergence dt . By the theorem of generalized

projections we have that

0 ≤ dt(w
′
t ,wt)≤ dt(u,wt)−dt(u,w

′
t) .

holds for any u ∈Ct . Since Ct includes the unit ball {u : ||u|| ≤ 1} the claim follows.

Finally, to prove (iv), observe that when t is such that Zt = 0 then both sides of the inequality

are 0 (since At = At−1). On the other hand, when Zt = 1 we just combine (i), (ii), (iii), and Lemma

24 (ii) to give the required inequality.

Appendix C.

Proof sketch of Theorem 9. We rely on Theorem 2, where the role of Tε is neatly handled by the

low-noise assumption combined with a standard Chernoff bound. In particular, since E [Tε]≤ cT εα,

we can easily conclude that for any δ > 0, with probability at least 1− δ over sample x1, . . . ,xT

we have Tε ≤ 3c
2

T εα +O(log(1/δ)) . We optimize over ε the bounds on RT and NT contained in

Theorem 2. We obtain that, with the same probability,

RT = O

(

(d log(T/δ))
α+1
α+2 T

1
α+2 + log(1/δ)

)

, (14)

NT = O

(

(d2 log2(T/δ))
α

α+2 T
2

α+2 + log(1/δ)
)

.

Now define

Kt =
(
P′

t (yt ∆̂t < 0)−P′
t (yt ∆t < 0)

)
−
(
Pt(yt ∆̂t < 0)−Pt(yt ∆t < 0)

)
,

and note that K1, ...,KT forms a martingale difference sequence. Let E’t [·] denote the conditional ex-

pectation E[· |x1, . . . ,xt−1,y1, . . . ,yt−1] and Var′t(·) be the conditional variance
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Var(· |x1, . . . ,xt−1,y1, . . . ,yt−1).
12 We have

Var′t [Kt ] = E’t

[
K2

t

]

≤ 2
((

P′
t (yt ∆̂t < 0)−P′

t (yt ∆t < 0)
))2

+2 E’t

[(
Pt(yt ∆̂t < 0)−Pt(yt ∆t < 0)

)2
]

(using (a−b)2 ≤ 2a2 +2b2)

≤ 2
(
P′

t (yt ∆̂t < 0)−P′
t (yt ∆t < 0)

)
+2 E’t

[
Pt(yt ∆̂t < 0)−Pt(yt ∆t < 0)

]

(using P′
t (yt ∆̂t < 0)≥ P′

t (yt ∆t < 0) and Pt(yt ∆̂t < 0)≥ Pt(yt ∆t < 0) )

= 4
(
P′

t (yt ∆̂t < 0)−P′
t (yt ∆t < 0)

)
.

Following Lemma 22 and overapproximating we have that, with probability at least 1−δ,

T

∑
t=1

(
P′

t (yt ∆̂t < 0)−P′
t (yt ∆t < 0)

)
≤ 2 RT +O

(

log

(
logT

δ

))

= O

(

(d log(T/δ))
α+1
α+2 T

1
α+2 + log

(
logT

δ

))

,

the last equality deriving from (14). Dividing by T concludes the proof.

Proof of Lemma 13. We upper bound each of the summands in Equation (8) individually. We begin

as in Equation (3) in the proof of Lemma 3. This gives us

Pt(y∆̂t < 0)−Pt(y∆t < 0) ≤ ε 11
{

∆t ∆̂t < 0, |∆t | ≤ ε
}
+ 11
{

∆t ∆̂t < 0, |∆t |> ε
}
|∆t | . (15)

The first term on the right-hand side above is simply upper bounded by ε 11
{
|∆t | ≤ ε

}
. To upper

bound the second term, we recall that |∆t | ≤ 1 and bound 11
{

∆t ∆̂t < 0, |∆t |> ε
}

by

11
{

∆t ∆̂t < 0, |∆t |> ε
}

11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t | ≤ ε

}

+ 11
{

∆t ∆̂t < 0, |∆t |> ε
}

11
{
∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t |> ε

}

≤ 11
{
|∆t |> ε

}
11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t | ≤ ε

}

+ 11
{

∆t ∆̂t < 0
}

11
{
∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t |> ε

}

≤ 11
{
|∆t |> ε

}
11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t | ≤ ε

}

+ Z̄t 11
{

∆t ∆̂t < 0
}
+Zt 11

{
∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t |> ε

}
. (16)

We plug Equation (16) into the right-hand side of Equation (15) to obtain the desired upper-bound

on Pt(y∆̂t < 0)−Pt(y∆t < 0). Summing over t completes the proof.

Proof of Lemma 14. It is straightforward to verify that

Zt = Zt 11
{
|∆t | ≤ ε

}
+Zt 11

{
|∆t |> ε

}

≤ Zt 11
{
|∆t | ≤ ε

}
+ Zt 11

{
|∆t |> ε

}
11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t | ≤ ε

}

+Zt 11
{
|∆t |> ε

}
11
{
∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t |> ε

}

≤ 11
{
|∆t | ≤ ε

}
+ 11

{
|∆t |> ε

}
11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t | ≤ ε

}

+Zt 11
{
∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t |> ε

}
.

12. Notice the difference between the conditional expectation and conditional variance used here and those used in the

proof of Lemma 23.
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Summing over t proves the bound.

Proof of Lemma 15. First, note that, by the way Algorithm 2 is defined,

Zt = 11
{
∃S ⊆ B̂t : ∆̂t ∆̂S∪Ĥt , t

< 0 ∨ |∆̂S∪Ĥt , t
| ≤ θt

}

= 11
{
∃S ⊆ B̂t : |∆̂S∪Ĥt , t

| ≤ θt

}

+ 11
{
∀S ⊆ B̂t : |∆̂S∪Ĥt , t

|> θt

}
11
{
∃S ⊆ B̂t : ∆̂t ∆̂S∪Ĥt , t

< 0
}

≤ 11
{
∃S ⊆ B̂t : |∆̂S∪Ĥt , t

| ≤ θt

}

+ 11
{
|∆̂t |> θt

}
11
{
∃S ⊆ B̂t : ∆̂t ∆̂S∪Ĥt , t

< 0, |∆̂S∪Ĥt , t
|> θt

}
.

We focus on the second term on the right-hand side above. Using the assumption that |∆ j,t − ∆̂ j,t | ≤
θt for all j ∈ [K] together with Jensen’s inequality, we have that |∆̂t −∆Ĉt , t

| ≤ θt and |∆̂S∪Ĥt , t
−

∆S∪Ĥt , t
| ≤ θt for any S. Now, if S is such that ∆̂t ∆̂S∪Ĥt , t

< 0, |∆̂S∪Ĥt , t
|> θt , and |∆̂t |> θt , then it also

holds that ∆Ĉt , t
∆S∪Ĥt , t

< 0. Moreover, if there exists S ⊆ B̂t such that ∆Ĉt , t
∆S∪Ĥt , t

< 0 then either

∆t∆S∪Ĥt , t
< 0 or ∆t∆Ĉt , t

< 0. Since Ĉt = Ĥt ∪ B̂t we have that

11
{
∃S ⊆ B̂t : ∆Ĉt , t

∆S∪Ĥt , t
< 0
}

≤ 11
{
∃S ⊆ B̂t : ∆t∆S∪Ĥt , t

< 0
}
.

Putting together, we can write

Zt ≤ 11
{
∃S ⊆ B̂t : |∆̂S∪Ĥt , t

| ≤ θt

}
+ 11
{
∃S ⊆ B̂t : ∆t∆S∪Ĥt , t

< 0
}

.

Using the above, we can decompose Zt as follows

Zt = Zt 11
{

4θt > ε
}
+Zt 11

{
4θt ≤ ε

}

≤ Zt 11
{

4θt > ε
}
+ 11
{
∃S ⊆ B̂t : |∆̂S∪Ĥt , t

| ≤ θt

}
11
{

4θt ≤ ε
}

+ 11
{
∃S ⊆ B̂t : ∆t∆S∪Ĥt , t

< 0
}

11
{

4θt ≤ ε
}

. (17)

Next, we show that B̂t can be replaced with Bt in the equation above. To do so, we use the fact that

B̂t appears only in terms that are multiplied by 11
{

4θt ≤ ε
}

. Using the definition of B̂t , the fact that

|∆̂ j⋆t ,t | ≤ |∆̂ ĵt ,t
| and |∆ ĵt ,t

| ≤ |∆ j⋆t ,t |, together with the assumption |∆ j,t − ∆̂ j,t | ≤ θ for all j ∈ [K] we

get

B̂t ⊆ {i : |∆ j⋆t ,t |− τ−4θt ≤ |∆i,t | ≤ |∆ j⋆t ,t |− τ+4θt} .

If 4θt ≤ ε then the right-hand side above is a subset of Bε,t , and therefore, under this condition,

B̂t ⊆ Bε,t . We conclude that B̂t can be replaced by Bt in Equation (17), and

Zt ≤ Zt 11
{

4θt > ε
}
+ 11
{
∃S ⊆ Bt : |∆̂S∪Ĥt , t

| ≤ θt

}
11
{

4θt ≤ ε
}

+ 11
{
∃S ⊆ Bt : ∆t∆S∪Ĥt , t

< 0
}

11
{

4θt ≤ ε
}

≤ Zt 11
{

4θt > ε
}
+ 11
{
∃S ⊆ Bt : |∆̂S∪Ĥt , t

| ≤ ε/4
}
+ 11

{
∃S ⊆ Bt : ∆t∆S∪Ĥt , t

< 0
}

.
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With the inequality above handy, we are now ready to upper-bound QT,ε. We have

QT,ε =
T

∑
t=1

Zt 11
{
∀S ⊆ Bε,t : ∆t∆S∪Hε,t ,t ≥ 0, |∆S∪Hε,t ,t |> ε

}

≤
T

∑
t=1

Zt 11
{

4θt > ε
}

+ 11
{
∃S ⊆ Bt : |∆̂S∪Ĥt , t

| ≤ ε/4
}

11
{
∀S ⊂ Bε,t : |∆S∪Hε,t ,t |> ε

}

︸ ︷︷ ︸

=0

+ 11
{
∃S ⊆ Bt : ∆t∆S∪Ĥt , t

< 0
}

11
{
∀S ⊂ Bε,t : ∆t∆S∪Hε,t ,t ≥ 0

}

︸ ︷︷ ︸

=0

≤ 16

ε2

T

∑
t=1

Ztθ
2
t .

Recall that θ2
t = x⊤t A−1

t−1xt

(
1 + 4∑

t−1
i=1 Ziri + 36log(Kt/δ)

)
. Using Lemma 24 (i), we obtain

QT,ε ≤ 32
ε2 ∑

T
t=1 Ztrt

(

1+ 4∑
t−1
i=1 Ziri + 36log(Kt/δ)

)

. The conclusion of the proof follows along

the lines of the proof of Lemma 6.

Proof of Lemma 16. We first prove that Ĥt ⊆Ct ⊆ Ĉt . If j ∈Ct , then |∆ j,t | ≥ |∆ j⋆t ,t |−τ ≥ |∆ ĵt ,t
|−τ.

Using the assumption that |∆ j,t − ∆̂ j,t | ≤ θt and |∆ ĵt ,t
− ∆̂ ĵt ,t

| ≤ θt , we have that |∆̂ j,t | ≥ |∆̂ ĵt ,t
|− τ−

2θt , and therefore j ∈ Ĉt . Similarly, if j ∈ Ĥt , then |∆̂ j,t | ≥ |∆̂ ĵt ,t
|−τ+2θt ≥ |∆̂ j⋆t ,t |−τ+2θt . Using

the assumption that |∆ j,t − ∆̂ j,t | ≤ θt and |∆ j⋆t ,t − ∆̂ j⋆t ,t | ≤ θt , we get |∆ j,t | ≥ |∆ j⋆t ,t |− τ, and therefore

j ∈Ct .

Now assume that Zt = 0. By definition, ∆̂t ∆̂S∪Ĥt ,t
≥ 0 and |∆̂S∪Ĥt ,t

| > θ for all S ⊆ B̂t , and

particularly for S =Ct \ Ĥt . Namely, ∆̂t ∆̂Ct ,t ≥ 0 and |∆̂Ct ,t | > θt . Once again using the assumption

of the lemma, this time in conjunction with Jensen’s inequality, we get that (∆t − ∆̂Ct ,t)
2 ≤ θ2

t , which

implies ∆t ∆̂Ct ,t ≥ 1
2

(

∆̂2
Ct ,t

−θ2
t

)

. Plugging in |∆̂Ct ,t |> θt gives ∆t ∆̂Ct ,t > 0 which, combined with

∆̂t ∆̂Ct ,t ≥ 0 gives ∆t ∆̂t ≥ 0. Overall we have shown that Zt = 0 implies that ∆t ∆̂t ≥ 0. Therefore,

UT = ∑
T
t=1 Z̄t 11

{
∆t ∆̂t < 0

}
= 0 .

Proof of Lemma 19. First, note that, by the way Algorithm 2 is defined,

Zt = 11
{
∃S ⊆ B̂t : ∆̂t ∆̂S∪Ĥt , t

< 0 ∨ |∆̂S∪Ĥt , t
| ≤ θS∪Ĥt , t

}

= 11
{
∃S ⊆ B̂t : |∆̂S∪Ĥt , t

| ≤ θS∪Ĥt , t

}

+ 11
{
∀S ⊆ B̂t : |∆̂S∪Ĥt , t

|> θS∪Ĥt , t

}
11
{
∃S ⊆ B̂t : ∆̂t ∆̂S∪Ĥt , t

< 0
}

≤ 11
{
∃S ⊆ B̂t : |∆̂S∪Ĥt , t

| ≤ θS∪Ĥt , t

}

+ 11
{
|∆̂t |> θĈt ,t

}
11
{
∃S ⊆ B̂t : ∆̂t ∆̂S∪Ĥt , t

< 0, |∆̂S∪Ĥt , t
|> θS∪Ĥt , t

}
.

We focus on the second term on the right-hand side above. Using the assumption that |∆ j,t −
∆̂ j,t | ≤ θ j,t for all j ∈ [K] together with Jensen’s inequality, we have that |∆̂t −∆Ĉt , t

| ≤ θĈt ,t
and

|∆̂S∪Ĥt , t
−∆S∪Ĥt , t

| ≤ θS∪Ĥt , t
for any S. Now, if S is such that ∆̂t ∆̂S∪Ĥt , t

< 0, |∆̂S∪Ĥt , t
| > θS∪Ĥt , t

,

and |∆̂t | > θĈt ,t
, then it also holds that ∆Ĉt , t

∆S∪Ĥt , t
< 0. Moreover, if there exists S ⊆ B̂t such that

∆Ĉt , t
∆S∪Ĥt , t

< 0 then either ∆t∆S∪Ĥt , t
< 0 or ∆t∆Ĉt , t

< 0. Since Ĉt = Ĥt ∪ B̂t we have that

11
{
∃S ⊆ B̂t : ∆Ĉt , t

∆S∪Ĥt , t
< 0
}

≤ 11
{
∃S ⊆ B̂t : ∆t∆S∪Ĥt , t

< 0
}
.
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Putting together, we can write

Zt ≤ 11
{
∃S ⊆ B̂t : |∆̂S∪Ĥt , t

| ≤ θS∪Ĥt , t

}
+ 11
{
∃S ⊆ B̂t : ∆t∆S∪Ĥt , t

< 0
}

.

Using the above, we can decompose Zt as follows

Zt = Zt 11
{

4max
j∈Ĉt

θ j,t > ε
}
+Zt 11

{
4max

j∈Ĉt

θ j,t ≤ ε
}

≤ Zt 11
{

4max
j∈Ĉt

θ j,t > ε
}
+ 11
{
∃S ⊆ B̂t : |∆̂S∪Ĥt , t

| ≤ θS∪Ĥt , t

}
11
{

4max
j∈Ĉt

θ j,t ≤ ε
}

+ 11
{
∃S ⊆ B̂t : ∆t∆S∪Ĥt , t

< 0
}

11
{

4max
j∈Ĉt

θ j,t ≤ ε
}

≤ Zt 11
{

4max
j∈Ĉt

θ j,t > ε
}
+ 11
{
∃S ⊆ B̂t : |∆̂S∪Ĥt , t

| ≤ ε/4
}

11
{

4max
j∈Ĉt

θ j,t ≤ ε
}

+ 11
{
∃S ⊆ B̂t : ∆t∆S∪Ĥt , t

< 0
}

11
{

4max
j∈Ĉt

θ j,t ≤ ε
}

. (18)

where the last step is because max j∈Ĉt
θ j,t ≥ θS∪Ĥt , t

. Next, we show that B̂t can be replaced with Bt

in the equation above. To do so, we use the fact that B̂t appears only in terms that are multiplied

by 11
{

4max j∈Ĉt
θ j,t ≤ ε

}
. Using the definition of B̂t , the fact that |∆̂ j⋆t ,t | ≤ |∆̂ ĵt ,t

| and |∆ ĵt ,t
| ≤ |∆ j⋆t ,t |,

together with the assumption |∆ j,t − ∆̂ j,t | ≤ θ j,t for all j ∈ [K] we get

B̂t ⊆
{

i : |∆ j⋆t ,t |− τ−4max
j∈Ĉt

θ j,t ≤ |∆i,t | ≤ |∆ j⋆t ,t |− τ+4θĈt ,t

}

.

Hence, when 4max j∈Ĉt
θ j,t ≤ ε we are guaranteed that the right-hand side above is a subset of

Bε,t , and therefore, under this condition, B̂t ⊆ Bε,t . We conclude that B̂t can be replaced by Bε,t in

Equation (18), and so Zt is upper bounded by

Zt 11
{

4max
j∈Ĉt

θ j,t > ε
}
+ 11
{
∃S ⊆ Bε,t : |∆̂S∪Ĥt , t

| ≤ ε/4
}
+ 11

{
∃S ⊆ Bε,t : ∆t∆S∪Ĥt , t

< 0
}

.
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With the inequality above handy, we are now ready to upper-bound QT,ε. We have

QT,ε =
T

∑
t=1

Zt 11
{
∀S ⊆ Bε,t : ∆t∆S∪Hε,t ,t ≥ 0, |∆S∪Hε,t ,t |> ε

}

≤
T

∑
t=1

Zt 11
{

4max
j∈Ĉt

θ j,t > ε
}

+ 11
{
∃S ⊆ Bε,t : |∆̂S∪Ĥt , t

| ≤ ε/4
}

11
{
∀S ⊂ Bε,t : |∆S∪Hε,t ,t |> ε

}

︸ ︷︷ ︸

=0

+ 11
{
∃S ⊆ Bε,t : ∆t∆S∪Ĥt , t

< 0
}

11
{
∀S ⊂ Bε,t : ∆t∆S∪Hε,t ,t ≥ 0

}

︸ ︷︷ ︸

=0

≤ 16

ε2

T

∑
t=1

Zt max
j∈Ĉt

θ2
j,t

≤
16∑

T
t=1 Zt ∑ j∈Ĉt

θ2
j,t

ε2

=
16∑ j∈[K] ∑

T
t=1 Zt 11

{
j ∈ Ĉt

}
θ2

j,t

ε2

=
16∑ j∈[K] ∑

T
t=1 Zt 11

{
j ∈ Ĉt

}
x⊤t A−1

j,t−1xt

(
1+4∑

t−1
i=1 Zir j,i +36log(Kt/δ)

)

ε2

=
16∑ j∈[K] ∑

T
t=1 Ztr j,t

(
1+4∑

t−1
i=1 Zir j,i +36log(Kt/δ)

)

ε2
.

Now, proceeding along the same lines as in the proof of Lemma 6 (which in turn mainly relies on

Lemma 24) we conclude that,

QT,ε ≤
16∑ j∈[K]

(
(1+36log(KT/δ)) log |A j,T |+4log2 |A j,T |

)

ε2
= O

(
Kd2 log2(KT/δ)

ε2

)

.

This concludes the proof.

Proof of Lemma 20. The proof proceeds in the same way as the proof of Lemma 16. We first

prove that Ĥt ⊆ Ct ⊆ Ĉt . If j ∈ Ct , then |∆ j,t | ≥ |∆ j⋆t ,t |− τ ≥ |∆ ĵt ,t
|− τ. Using the assumption that

|∆ j,t − ∆̂ j,t | ≤ θ j,t and |∆ ĵt ,t
− ∆̂ ĵt ,t

| ≤ θ ĵt ,t
, we have that |∆̂ j,t | ≥ |∆̂ ĵt ,t

|−τ−θ j,t −θ ĵt ,t
, and therefore

j ∈ Ĉt . Similarly, if j ∈ Ĥt , then

|∆̂ j,t | ≥ |∆̂ ĵt ,t
|− τ+θ j,t +max

j∈Ĉt

≥ |∆̂ j⋆t ,t |− τ+θ j,t +max
j∈Ĉt

.

Using the assumption that |∆ j,t − ∆̂ j,t | ≤ θ j,t and |∆ j⋆t ,t − ∆̂ j⋆t ,t | ≤ θ j⋆t ,t ≤ max j∈Ĉt
θ j,t , we get |∆ j,t | ≥

|∆ j⋆t ,t |− τ, and therefore j ∈Ct .

Now assume that Zt = 0. By definition, ∆̂t ∆̂S∪Ĥt ,t
≥ 0 and |∆̂S∪Ĥt ,t

|> θS∪Ĥt ,t
for all S ⊆ B̂t , and

particularly for S =Ct \ Ĥt . Namely, ∆̂t ∆̂Ct ,t ≥ 0 and |∆̂Ct ,t |> θĈt ,t
. Once again using the assumption

of the lemma, this time in conjunction with Jensen’s inequality, we get that (∆t − ∆̂Ct ,t)
2 ≤ θ2

t , which

implies ∆t ∆̂Ct ,t ≥ 1
2

(

∆̂2
Ct ,t

−θ2
Ĉt ,t

)

. Plugging in |∆̂Ct ,t |> θĈt ,t
gives ∆t ∆̂Ct ,t > 0 which, combined
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with ∆̂t ∆̂Ct ,t ≥ 0, gives ∆t ∆̂t ≥ 0. Overall we have shown that Zt = 0 implies that ∆t ∆̂t ≥ 0. Therefore,

UT = ∑
T
t=1 Z̄t 11

{
∆t ∆̂t < 0

}
= 0 .

Proof of Lemma 18. We start just as in the proof of Lemma 14 and get,

Zt ≤ 11
{
|∆t | ≤ ε

}
+ Zt 11

{
|∆t |> ε

}
11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t | ≤ ε

}

+Zt 11
{
∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t |> ε

}
.

Hence,

NT =
T

∑
t=1

|Ĉt |Zt

≤
T

∑
t=1

|Ĉt | 11
{
|∆t | ≤ ε

}

+
T

∑
t=1

|Ĉt |Zt 11
{
|∆t |> ε

}
11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t | ≤ ε

}

+
T

∑
t=1

|Ĉt |Zt 11
{
∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t |> ε

}

≤ K
T

∑
t=1

11
{
|∆t | ≤ ε

}

+K
T

∑
t=1

|Ĉt |
K

Zt 11
{
|∆t |> ε

}
11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t | ≤ ε

}

+K
T

∑
t=1

Zt 11
{
∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t |> ε

}

= KTε

+K
T

∑
t=1

|Ĉt |Zt

K
11
{
|∆t |> ε

}
11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0∨|∆S∪Hε,t | ≤ ε

}

+KQT,ε . (19)

Now we note that by definition of Ĉt , if j ∈ Ĉt then

|∆̂ j,t | ≥ |∆̂ ĵt ,t
|− τ−θ j,t −θ ĵt ,t

≥ |∆̂ j⋆t ,t |− τ−θ j,t −θ ĵt ,t
.

Combined with our assumption that (∆ j,t − ∆̂ j,t)
2 ≤ θ2

j,t holds for all j ∈ [K] this implies

|∆ j,t | ≥ |∆ j⋆t ,t |− τ−2θ j,t −θ ĵt ,t
−θ j⋆t ,t . (20)

On the other hand, by definition of j⋆t , we also have |∆ j⋆t ,t | ≥ |∆ ĵt ,t
| and, owing to our assumption,

|∆̂ j⋆t ,t | ≥ |∆̂ ĵt ,t
|−θ j⋆t ,t −θ ĵt ,t

. Hence we see that j⋆t ∈ Ĉt . Using this in Equation (20) gives, for any

j ∈ Ĉt ,

|∆ j,t | ≥ |∆ j⋆t ,t |− τ−4max
j∈Ĉt

θ j,t .

Thus we see that as long as 4max j∈Ĉt
θ j,t ≤ ε, we have Ĉt ⊂ Hε,t ∪Bε,t .
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We now use this in Equation (19). We obtain

NT ≤KTε +KQT,ε

+K

(
T

∑
t=1

|Ĉt |Zt

K
11
{

4max
j∈Ĉt

θ j,t ≤ ε
}

11
{
|∆t |> ε

}
×

× 11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0∨|∆S∪Hε,t | ≤ ε

}

)

+K

(
T

∑
t=1

|Ĉt |Zt

K
11
{

4max
j∈Ĉt

θ j,t > ε
}

11
{
|∆t |> ε

}
×

× 11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0∨|∆S∪Hε,t | ≤ ε

}

)

≤ KTε +KQT,ε

+K

(
T

∑
t=1

|Bε,t ∪Hε,t |
K

11
{
|∆t |> ε

}
11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0∨|∆S∪Hε,t | ≤ ε

}

)

+K
T

∑
t=1

Zt 11
{

4max
j∈Ĉt

θ j,t > ε
}

= K

(

Tε +T ′′
ε +QT,ε +

T

∑
t=1

Zt 11
{

4max
j∈Ĉt

θ j,t > ε
}

)

. (21)

In order to bound last term, we notice that

T

∑
t=1

Zt 11
{

4max
j∈Ĉt

θ j,t > ε
}

≤
16∑

T
t=1 Zt max j∈Ĉt

θ2
j,t

ε2

≤
16∑

T
t=1 Zt ∑ j∈Ĉt

θ2
j,t

ε2

=
16∑ j∈[K] ∑

T
t=1 Zt 11

{
j ∈ Ĉt

}
θ2

j,t

ε2

=
16∑ j∈[K] ∑

T
t=1 Zt 11

{
j ∈ Ĉt

}
x⊤t A−1

j,t−1xt

(
1+4∑

t−1
i=1 Zir j,i +36log(Kt/δ)

)

ε2

=
16∑ j∈[K] ∑

T
t=1 Ztr j,t

(
1+4∑

t−1
i=1 Zir j,i +36log(Kt/δ)

)

ε2
.

Now, proceeding along the lines of the proof of Lemma 6 (which in turn mainly relies on Lemma

24), we obtain

T

∑
t=1

Zt 11
{

4max
j∈Ĉt

θ j,t > ε
}
≤

16∑ j∈[K]

(
(1+36log(KT/δ)) log |A j,T |+4log2 |A j,T |

)

ε2

= O

(
Kd2 log2(KT/δ)

ε2

)

.
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Plugging these back into Equation (21) and applying the bound on QT,ε from Lemma 19 concludes

the proof.
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