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Abstract

Online prediction methods are typically presented as Isaigarithms running on a single proces-
sor. However, in the age of web-scale prediction probletis,ncreasingly common to encounter
situations where a single processor cannot keep up withitterhte at which inputs arrive. In
this work, we present thdistributed mini-batchalgorithm, a method of converting many serial
gradient-based online prediction algorithms into distiélol algorithms. We prove a regret bound
for this method that is asymptotically optimal for smootmeex loss functions and stochastic in-
puts. Moreover, our analysis explicitly takes into accazerhmunication latencies between nodes
in the distributed environment. We show how our method candaegl to solve the closely-related
distributed stochastic optimization problem, achievingaaymptotically linear speed-up over mul-
tiple processors. Finally, we demonstrate the merits ofapyroach on a web-scale online predic-
tion problem.

Keywords: distributed computing, online learning, stochastic ojation, regret bounds, convex
optimization

1. Introduction

Many natural prediction problems can be cast as stochastic online pradictiblems. These are
often discussed in the serial setting, where the computation takes placéngiegosocessor. How-
ever, when the inputs arrive at a high rate and have to be processeal imre, there may be no
choice but to distribute the computation across multiple cores or multiple clustesnbdr exam-
ple, modern search engines process thousands of queries a sambimtleed they are implemented
as distributed algorithms that run in massive data-centers. In this papéocuson sucHarge-
scaleandhigh-rateonline prediction problems, where parallel and distributed computing is critical
to providing a real-time service.
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First, we begin by defining the stochastic online prediction problem. Sugpabee observe a
stream of inputgy, o, . . ., where eaclz is sampled independently from a fixed unknown distribution
over a sample spacg. Before observing each, we predict a pointy; from a setW. After making
the predictionw;, we observe; and suffer the los$(wi,z), wheref is a predefined loss function.
Then we use; to improve our prediction mechanism for the future (e.g., using a stochaat=gt
method). The goal is to accumulate the smallest possible loss as we procesgiibace of inputs.
More specifically, we measure the quality of our predictions using the noticeycet, defined as

m
R(m) = Zl(f(Wi,Zi) —f(w",2)),

=
wherew* = argmin,.y E;[f(w,z)]. Regret measures the difference between the cumulative loss of
our predictions and the cumulative loss of the fixed prediatgrwhich is optimal with respect to
the underlying distribution. Since regret relies on the stochastic izpuiiss a random variable. For
simplicity, we focus on bounding the expected re@g®(m)], and later use these results to obtain
high-probability bounds on the actual regret. In this paper, we restuictiscussion to convex
prediction problems, where the loss functibfw, z) is convex inw for everyz € Z, andW is a
closed convex subset &".

Before continuing, we note that the stochastic onpredictionproblem is closely related, but
not identical, to the stochastaptimizationproblem (see, e.g., Wets, 1989; Birge and Louveaux,
1997; Nemirovski et al., 2009). The main difference between the two is ingbals: in stochastic
optimization, the goal is to generate a sequemgcev,, ... that quickly converges to the minimizer
of the functionF (-) = E;[f (-, 2)]. The motivating application is usually a static (batch) problem, and
not an online process that occurs over time. Large-scale static optimizabblems can always be
solved using a serial approach, at the cost of a longer running timenlilreqorediction, the goal
is to generate a sequence of predictions that accumulates a small loss a&ovayttas measured
by regret. The relevant motivating application here is providing a real-timiécseto users, so our
algorithm must keep up with the inputs as they arrive, and we cannotehoatow down. In this
sense, distributed computing is critical for large-scale online predictioblgms. Despite these
important differences, our techniques and results can be readily ddaptlke stochastic online
optimization setting.

We model our distributed computing system as a sdt mwbdes each of which is an indepen-
dent processor, andreetworkthat enables the nodes to communicate with each other. Each node
receives an incoming stream of examples from an outside source, sictoad balancer/splitter.
As in the real world, we assume that the network has a limited bandwidth, sodes nannot sim-
ply share all of their information, and that messages sent over the neimgnka non-negligible
latency. However, we assume that network operationsianeblocking meaning that each node
can continue processing incoming traffic while network operations compléte imackground.

How well can we perform in such a distributed environment? At one extramégeal (but
unrealistic) solution to our problem is to run a serial algorithm on a singlegiSygocessor that ik
times faster than a standard node. This solution is optimal, simply because taitwyitéd algorithm
can be simulated on a fast-enough single processor. It is well-knowth#haptimal regret bound
that can be achieved by a gradient-based serial algorithm on an arlmitnavex loss i0(,/m)
(e.g., Nemirovski and Yudin, 1983; Cesa-Bianchi and Lugosi, 200&rAethy et al., 2009). At the
other extreme, a trivial solution to our problem is to have each node opeliatdation of the other
k—1 nodes, running an independent copy of a serial algorithm, withoutamynunication over
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the network. We call this theo-communicatiosolution. The main disadvantage of this solution
is that the performance guarantee, as measured by regret, scalpsvptothe network sizek.
More specifically, assuming that each node processésinputs, the expected regret per node is
O(,/m/k). Therefore, the total regret acrosskatiodes i90(v/km) - namely, a factor of/k worse
than the ideal solution. The first sanity-check that any distributed onliegigiron algorithm must
pass is that it outperforms theima no-communication solution.

In this paper, we present thistributed mini-batciDMB) algorithm, a method of converting
any serial gradient-based online prediction algorithm into a parallel oitdiged algorithm. This
method has two important properties:

e It can use any gradient-based update rule for serial online predicti@enkdack box, and
convert it into a parallel or distributed online prediction algorithm.

e If the loss functionf (w, z) is smooth inw (see the precise definition in Equation (5)), then our
method attains an asymptotically optimal regret boun®@f/m). Moreover, the coefficient
of the dominant term/mis the same as in the serial bound, amdependenof k and of the
network topology.

The idea of using mini-batches in stochastic and online learning is not ndwgarbeen previously
explored in both the serial and parallel settings (see, e.g., Shalevi3lwat., 2007; Gimpel et al.,
2010). However, to the best of our knowledge, our work is the firsstothis idea to obtain such
strong results in a parallel and distributed learning setting (see Sectiom témnparison to related
work).

Our results build on the fact that the optimal regret bound for serial astichgradient-based
prediction algorithms can be refined if the loss function is smooth. In partjdtlzan be shown
that the hidden coefficient in th®(,/m) notation is proportional to the standard deviation of the
stochastic gradients evaluated at each predigtdduditsky et al., 2011; Lan, 2009; Xiao, 2010).
We make the key observation that this coefficient can be effectivelycestlby averaging a mini-
batch of stochastic gradients computed at the same predictor, and this danebm parallel with
simple network communication. However, the non-negligible communication latepoéeent a
straightforward parallel implementation from obtaining the optimal serial tégrend’ In order
to close the gap, we show that by letting the mini-batch size grow slowlymitlie can attain the
optimal O(,/m) regret bound, where the dominant term of orgén is independenbf the number
of nodesk and of the latencies introduced by the network.

The paper is organized as follows. In Section 2, we present a templattofbrastic gradient-
based serial prediction algorithms, and state refined variance-baget meunds for smooth loss
functions. In Section 3, we analyze the effect of using mini-batches ingifi@ setting, and show
that it does not significantly affect the regret bounds. In Section fregent the DMB algorithm,
and show that it achieves an asymptotically optimal serial regret boursirfooth loss functions.
In Section 5, we show that the DMB algorithm attains the optimal rate of coemeegfor stochastic
optimization, with an asymptotically linear speed-up. In Section 6, we complemeth&oretical
results with an experimental study on a realistic web-scale online predictidatepn. While sub-
stantiating the effectiveness of our approach, our empirical resultd@msonstrate some interesting

1. For example, if the network communication operates over a minimythrdpanning tree and the diameter of the
network scales as Igl), then we can show that a straightforward implementation of the idea oflglarariance
reduction leads to a®(/mlog(k)) regret bound. See Section 4 for details.
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Algorithm 1: Template for a serial first-order stochastic online prediction algorithm.
for j=1,2,...do
predictw;
receive inpuiz; sampled i.i.d. from unknown distribution
suffer lossf (wj, zj)
defineg; = Owf(wj,z))
compute(wj;1,aj+1) = ¢(aj,gj, q;)
end

properties of mini-batching that are not reflected in our theory. We cdachith a comparison of
our methods to previous work in Section 7, and a discussion of potentiaiséomes and future re-
search in Section 8. The main topics presented in this paper are summarizekkirebal. (2011).

Dekel et al. (2011) also present robust variants of our appraeltich are resilient to failures and
node heterogeneity in an asynchronous distributed environment.

2. Variance Boundsfor Serial Algorithms

Before discussing distributed algorithms, we must fully understand thd akyaithms on which
they are based. We focus on gradient-based optimization algorithms that tbikatemplate out-
lined in Algorithm 1. In this template, each prediction is made by an unspedcifiddte rule

(Wj11,811) = @(a;,gj,0). (1)

The update rulep takes three arguments: an auxiliary state veajothat summarizes all of the
necessary information about the past, a gradigwf the loss functiorf (-, z;) evaluated atv;, and
an iteration-dependent parametgrsuch as a stepsize. The update rule outputs the next predic-
tor wj.1 € W and a new auxiliary state vectay,;1. Plugging in different update rules results in
different online prediction algorithms. For simplicity, we assume for now tretgdate rules are
deterministic functions of their inputs.

As concrete examples, we present two well-known update rules that &bthes template. The
first is theprojected gradient descenpdate rule,

1
Wi 1= Thy (Wj —a_gj>, (2)
J

wheretyy denotes the Euclidean projection onto theWetHere 1/a; is a decaying learning rate,
with a; typically set to bed(,/]). This fits the template in Algorithm 1 by definiray to simply
bew;j, and definingp to correspond to the update rule specified in Equation (2). We note that the
projected gradient method is a special case of the more general claisafdescentalgorithms
(e.g., Nemirovski et al., 2009; Lan, 2009), which all fit in the template ofdfiqn (1).

Another family of update rules that fit in our setting is ttheal averagingmethod (Nesterov,
2009; Xiao, 2010). A dual averaging update rule takes the form

wj+1:a|\rNg€VrUin{<igi,w>+ajh(w)} , 3)
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where(-,-) denotes the vector inner produlet, W — R is a strongly convex auxiliary function, and
a; is a monotonically increasing sequence of positive numbers, usually se@6,5j). The dual
averaging update rule fits the template in Algorithm 1 by defimin bey!_, gi. In the special case
whereh(w) = (1/2)||w||3, the minimization problem in Equation (3) has the closed-form solution

j
Wil = Thy (‘alj_zlgj)- (4)

For stochastic online prediction problems with convex loss functions, bdttesé update rules
have expected regret bound ©f/m). In general, the coefficient of the dominapin term is
proportional to an upper bound on the expected norm of the stochaatiegt (e.g., Zinkevich,
2003). Next we present refined bounds for smooth convex losidmscwhich enable us to develop
optimal distributed algorithms.

2.1 Optimal Regret Boundsfor Smooth L oss Functions

As stated in the introduction, we assume that the loss fundtjanz) is convex inw for eachze Z
and thatV is a closed convex set. We u$€| to denote the Euclidean normRf'. For convenience,
we use the notatioR (w) = E,[f (w, z)] and assume* = argmin,., F (W) always exists. Our main
results require a couple of additional assumptions:

e Smoothnesswe assume that is L-smooth in its first argument, which means that for any
ze z, the functionf (-, z) hasL-Lipschitz continuous gradients. Formally,

Vze Z, Yww eW, |10wf(w,2) — Owf(W,2)|| <L[w—w]| . (5)

e Bounded Gradient Variancewe assume thail,, f (w,z) has ag?-bounded variance for any
fixed w, whenzis sampled from the underlying distribution. In other words, we assume that
there exists a constaat> 0 such that

ywew,  E [Hmwf(w,z) - DF(w)]HZ} <o?.

Using these assumptions, regret bounds that explicitly depend on thergredriance can be
established (Juditsky et al., 2011; Lan, 2009; Xiao, 2010). In partidolathe projected stochastic
gradient method defined in Equation (2), we have the following result:

Theorem 1 Let f(w,z) be an L-smooth convex loss function in w for eaehZ and assume that
the stochastic gradierifl, f(w,z) has g2-bounded variance for all ve W. In addition, assume
that W is convex and bounded, and letD,/max,vew |[u—V[|2/2. Then usingr; = L+ (g/D)/j
in Equation (2) gives

E[R(m)] < (F(wy)—F(W")) +D?L+2Doy/m.

In the above theorem, the assumption iWait a bounded set does not play a critical role. Even
if the learning problem has no constraintswnwe could always confine the search to a bounded
set (say, a Euclidean ball of some radius) and Theorem 1 guarant€s/a) regret compared to
the optimum within that set.

Similarly, for the dual averaging method defined in Equation (3), we have:
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Theorem 2 Let f(w,z) be an L-smooth convex loss function in w for eaeh Z, assume that the
stochastic gradientO,,f(w,z) has o?-bounded variance for all we W, and let D=
v/h(w*) —mingew h(w). Then, by setting w= argmin,., h(w) andaj = L + (g/D)+/] in the
dual averaging method we have

ER(M)] < (F(wi)—F(W")) + DL +2Day/m.

For both of the above theorems[if (w*) = 0 (which is certainly the case\¥ = R"), then the
expected regret bounds can be simplified to

E[R(m)] < 2D?L+2Dgy/m. (6)

Proofs for these two theorems, as well as the above simplification, ane igidppendix A. Al-
though we focus on expected regret bounds here, our results galtydue stated as high-probability
bounds on the actual regret (see Appendix B for details).

In both Theorem 1 and Theorem 2, the parametgrare functions ob. It may be difficult to
obtain precise estimates of the gradient variance in many concrete appkcadimnever, note that
any upper bound on the variance suffices for the theoretical resultddpdnd identifying such a
bound is often easier than precisely estimating the actual variance. A loasd bn the variance
will increase the constants in our regret bounds, but will not change@itativeO(,/m) rate.

Euclidean gradient descent and dual averaging are not the onljeupdizs that can be plugged
into Algorithm 1. The analysis in Appendix A (and Appendix B) actually appitea much larger
class of update rules, which includes the family of mirror descent upddeaifovski et al., 2009;
Lan, 2009) and the family of (non-Euclidean) dual averaging updatestérov, 2009; Xiao, 2010).
For each of these update rules, we get an expected regret bountbd®y resembles the bound in
Equation (6).

Similar results can also be established for loss functions of the fiqmnz) + W(w), where
W(w) is a simple convex regularization term that is not necessarily smooth. For Exasefiing
W(w) = Al|w||1 with A > O promotes sparsity in the predictar To extend the dual averaging
method, we can use the following update rule in Xiao (2010):

j .
Wj1 = argmin %Zlgi,w +W(w)+$h(w) :
wewW J i= J

Similar extensions to the mirror descent method can be found in, for exampddi Bnd Singer
(2009). Using these composite forms of the algorithms, the same regrei$asnn Theorem 1
and Theorem 2 can be achieved evei(fw) is nonsmooth. The analysis is almost identical to
Appendix A by using the general framework of Tseng (2008).

Asymptotically, the bounds we presented in this section are only controllecebyatiances?
and the number of iteratioma. Therefore, we can think of any of the bounds mentioned above as
an abstract functioy(o?, m), which we assume to be monotonically increasing in its arguments.

2.2 Analyzing the No-Communication Parallel Solution

Using the abstract notatiap(a?, m) for the expected regret bound simplifies our presentation sig-
nificantly. As an example, we can easily give an analysis of the no-commumigetrallel solution
described in the introduction.
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Algorithm 2: Template for a serial mini-batch algorithm.
for j=1,2,...do

initialize g; :=0

fors=1,...,bdo
definei := (j—1)b+s
predictw;
receive inputz; sampled i.i.d. from unknown distribution
suffer lossf (wj,z)

gi := Owf(wj,2)
gj '=0j +(1/b)g
end
set(wjy1,8j11) = ¢(aj,d;,aj)

end

In the ndve no-communication solution, each of tk@odes in the parallel system applies the
same serial update rule to its own substream of the high-rate inputs, armmmounication takes
place between them. If the total number of examples processed kyntues isn, then each node
processes at mos$tn/k] inputs. The examples received by each node are i.i.d. from the original
distribution, with the same variance bouad for the stochastic gradients. Therefore, each node
suffers an expected regret of at mdgo?, [m/k]) on its portion of the input stream, and the total
regret bound is obtain by simply summing over keodes, that is,

E[Rm) < ky (2, {%D .

If P(a?,m) = 2D?L + 2Da+/m, as in Equation (6), then the expected total regret is

E[R(m)] < 2KD2L + 2Dok [?]

Comparing this bound to2’L +2Da/min the ideal serial solution, we see that it is approximately
vk times worse in its leading term. This is the price one pays for the lack of commumidgatioe
distributed system. In Section 4, we show how tiflsfactor can be avoided by our DMB approach.

3. Serial Online Prediction using Mini-Batches

The expected regret bounds presented in the previous section dapdradvariance of the stochas-
tic gradients. The explicit dependency on the variance naturally sugbesttea of using averaged
gradients over mini-batches to reduce the variance. Before we pibsedistributed mini-batch
algorithm in the next section, we first analyzeaial mini-batch algorithm.

In the setting described in Algorithm 1, the update rule is applied after eaahigpeceived.
We deviate from this setting and apply the update only periodically. Leltibg a user-defined
batch sizga positive integer), and considering evdrgonsecutive inputs astzatch We define
the serial mini-batch algorithmas follows: Our prediction remains constant for the duration of
each batch, and is updated only when a batch ends. While processingnihas in batchj, the
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algorithm calculates and accumulates gradients and defines the aveadigagr

1 b
gj = B;Dwf(wjvz(j—l)b-i-s) :

Hence, each batch df inputs generates a single average gradient. Once a batch ends, the seria
mini-batch algorithm feedsg; to the update rul@as thej™ gradient and obtains the new prediction

for the next batch and the new state. See Algorithm 2 for a formal definifithreserial mini-batch
algorithm. The appeal of the serial mini-batch setting is that the update ruleddess frequently,
which may have computational benefits.

Theorem 3 Let f(w,z) be an L-smooth convex loss function in w for eaehZ and assume that
the stochastic gradierifl, f (W, z) hasa?-bounded variance for all w. If the update rufghas the
serial regret boundp(a?, m), then the expected regret of Algorithm 2 over m inputs is at most

0?2 rm
by <b’ M) ~
If Y(o?,m) = 2D%L +2Da,/m, then the expected regret is bounded by
2bD?L + 2Dovm+b.

Proof Assume without loss of generality thatlividesm, and that the serial mini-batch algorithm
processes exactty/b complete batchesLet ZP denote the set of all sequencebaiements from
Z, and assume that a sequence is sampled fE8rby sampling each element i.i.d. from. Let

f :W x zZP — R be defined as

b
f(w(zi,...,2)) = i;f(w,zs)-

In other Words,f_averages the loss functidnacrossb inputs from.z, while keeping the prediction

constant. It is straightforward to show thgf. ,» f (W, 2) = Exc 5 f (W, 2) = F(w).
Using the linearity of the gradient operator, we have

b
Owf (W, (z1,...,2)) = % ZLDWf (W, Zs) .

Let zj denote the sequenc@;_1)p.1,---,Zjp), Namely, the sequence bfinputs in batchj. The
vectorg; in Algorithm 2 is precisely the gradient df(-,z;) evaluated atv;. Therefore the serial
mini-batch algorithm is equivalent to using the update qpagth the loss functiorf.

Next we check the properties 6fw, z) against the two assumptions in Section 2.1. First,ig
L-smooth therf is L-smooth as well due to the triangle inequality. Then we analyze the variance of
the stochastic gradient. Using the properties of the Euclidean norm, weritan w
2

_ b
O f (w,2) — OF (w)||® Hi ;(Dwf(w,zs)—DF(w))

1 b b
- bz;gl<mwf(w,zs)—DF(w),Dwf(VmZg)—DF(W)>-

2. We can make this assumption sinck does not dividen then we can pad the input sequence with additional inputs
until m/b = [m/b], and the expected regret can only increase.
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Notice thatzs andzy are independent whenewey s, and in such cases,

]E<Dwf(vv,zs)—DF(W),DWf(vv,zg)—DF(W)>
- <E[Dwf(w,zs)—DF(w)],E[Dwf(w,Zg)—DF(W)D )

Therefore, we have for every e W,

<

(7)

E||Owf(w2) — OFw)|* = JZS;EH(DWf(W,Zs)—DF(W))HZ 5

So we conclude thatl, f (W, zj) has a(a?/b)-bounded variance for eaghand eactw € W. If the
update rulep has a regret boungl(a2, m) for the loss functiorf overminputs, then its regret fof
overm/b batches is bounded as

wh o = 0? m
E{le(f(wj,zj)— f(w ,zj))} <y (b’b)'
By replacingf_above with its definition, and multiplying both sides of the above inequalitip,by
we have

m/b jb ( ) o2 m

E[ f(wj,z)— f(W",z) ] < bLlJ(,).
gli:(j;)b+l b b
If (0?,m) = 2D?L +2Da,/m, then simply plugging in the general boubd(°/b, [M/b]) and

using [mb] < mb+ 1 gives the desired result. However, we note that the optimal algorithmic pa-

rameters, as specified in Theorem 1 and Theorem 2, must be changge-tb + (9/vbD)+/] to
reflect the reduced variancg/b in the mini-batch setting. |

The bound in Theorem 3 is asymptotically equivalent to tBél2+ 2Da/m regret bound for
the basic serial algorithms presented in Section 2. In other words, penfipthe mini-batch update
in the serial setting does not significantly hurt the performance of theteipdbe. On the other
hand, it is also not surprising that using mini-batches in the serial setting rimteimprove the
regret bound. After all, it is still a serial algorithm, and the bounds wegmtesl in Section 2.1 are
optimal. Nevertheless, our experiments demonstrate that in real-worldgsgmaini-batching can
in fact have a very substantial positive effect on the transient pegioce of the online prediction
algorithm, even in the serial setting (see Section 6 for details). Such paditaats are not captured
by our asymptotic, worst-case analysis.

4. Distributed Mini-Batch for Stochastic Online Prediction

In this section, we show that in a distributed setting, the mini-batch idea carphmted to obtain
nearly optimal regret bounds. To make our setting as realistic as possiblassume that any
communication over the network incurs a latency. More specifically, we viewnétwork as an
undirected graplg; over the set of nodes, where each edge represents a bi-directatwakk link.

If nodesu andv are not connected by a link, then any communication between them mustyerela
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through other nodes. The latency incurred betweamdyv is therefore proportional to the graph
distance between them, and the longest possible latency is thus propaditmatiameter of;.

In addition to latency, we assume that the network has limited bandwidth. Howexevould
like to avoid the tedious discussion of data representation, compressiemeasherror correcting,
packet sizes, etc. Therefore, we do not explicitly quantify the bandwaitithe network. Instead,
we require that the communication load at each node remains constant,edad@row with the
number of nodek or with the rate at which the incoming functions arrive.

Although we are free to use any communication model that respects theadotsstif our net-
work, we assume only the availability of a distributed vector-sum operatids i§ a standard
synchronized network operation. Each vector-sum operation begfingach node holding a vec-
tor vj, and ends with each node holding the sglj‘glvj. This operation transmits messages along a
rooted minimum-depth spanning-tree ®f which we denote by first the leaves off send their
vectors to their parents; each parent sums the vectors received igarhildren and adds his own
vector; the parent then sends the result to his own parent, and so dtimmately the sum of all
vectors reaches the tree root; finally, the root broadcasts the ouwamaliewn the tree to all of the
nodes.

An elegant property of the vector-sum operation is that it uses eathkuphd each down-link
in 7 exactly once. This allows us to start vector-sum operations back-to-Gdmese vector-sum
operations will run concurrently without creating network congestionrgnesige of7. Further-
more, we assume that the network operationmareblockingmeaning that each node can continue
processing incoming inputs while the vector-sum operation takes place imt¢kground. This is
a key property that allows us to efficiently deal with network latency. Tan&dize how latency
affects the performance of our algorithm, ledenote the number of inputs that are processed by the
entire system during the period of time it takes to complete a vector-sum opegiatioss the entire
network. Usuallyu scales linearly with the diameter of the network, or (for appropriate network
architectures) logarithmically in the number of no#tes

4.1 TheDMB Algorithm

We are now ready to present a general technique for applying a deigtimupdate rulep in a
distributed environment. This technique resembles the serial mini-batch teeliegcribed earlier,
and is therefore called trdistributed mini-batctalgorithm, or DMB for short.

Algorithm 3 describes a template of the DMB algorithm that runs in parallel on eade in the
network, and Figure 1 illustrates the overall algorithm work-flow. Agaith lee a batch size, which
we will specify later on, and for simplicity assume thatlividesb and. The DMB algorithm
processes the input stream in batches 1,2,..., where each batch contailst 4 consecutive
inputs. During each batch all of the nodes use a common prediatgr While observing the firdd
inputs in a batch, the nodes calculate and accumulate the stochastic graffiratss functionf
atw;j. Once the nodes have accumulakegradients altogether, they start a distributed vector-sum
operation to calculate the sum of thdsgradients. While the vector-sum operation completes in
the backgroundy additional inputs arrive (roughly/k per node) and the system keeps processing
them using the same predicty. The gradients of these additionainputs are discarded (to this
end, they do not need to be computed). Although this may seem wastefutowetsat this waste
can be made negligible by choosib@ppropriately.

3. For example, all-reduce with the sum operation is a standard operatiti®lin
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Algorithm 3: Distributed mini-batch (DMB) algorithm (running on each node).
for j=1,2,...do
initialize §j := 0
fors=1,...,b/kdo
predictw;
receive inpuz sampled i.i.d. from unknown distribution
suffer lossf (wj, z)
computeg := Oy f(wj,2)
gj:=8;+9
end
call the distributed vector-sum to compute the surgjcdcross all nodes
receivep/k additional inputs and continue predicting using
finish vector-sum and compute average gradigiity dividing the sum by
set(wjr1,a+1) = 9(a;,9;, )
end

Figure 1: Work flow of the DMB algorithm. Within each bat¢k= 1,2, ..., each node accumulates
the stochastic gradients of the fitstk inputs. Then a vector-sum operation across the
network is used to compute the average across all nodes. While the saotayperation
completes in the background, a totalahputs are processed by the processors using the
same predictow;, but their gradients are not collected. Once all of the nodes have the
overall averag®;, each node updates the predictor using the same deterministic serial
algorithm.
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Once the vector-sum operation completes, each node holds the sunbafrémients collected
during batchj. Each node divides this sum Iyand obtains the average gradient, which we denote
by gj. Each node feeds this average gradient to the updateruleich returns a new synchronized
predictionw;, 1. In summary, during batcheach node processds+ p)/k inputs using the same
predictorw;, but only the firsto/k gradients are used to compute the next predictor. Nevertheless,
all b+ pinputs are counted in our regret calculation.

If the network operations are conducted over a spanning tree, thebvésus variants of the
DMB algorithm is to let the root apply the update rule to get the next predatatthen broadcast
it to all other nodes. This saves repeated executions of the update mdetanode (but requires
interruption or modification of the standard vector-sum operations in theonewommunication
model). Moreover, this guarantees all the nodes having the same preslietowith update rules
that depends on some random bits.

Theorem 4 Let f(w,z) be an L-smooth convex loss function in w for eaehZ and assume that
the stochastic gradierifl, f (W, z) hasa?-bounded variance for all vie W. If the update rulep has
the serial regret bounds(a2, m), then the expected regret of Algorithm 3 over m samples is at most

ne( i)

Specifically, ifpy(a2,m) = 2D?L + 2Da/m, then setting the batch size-bm"* gives the expected
regret bound

2Do\/m+ 2Dm"? (LD + 0, /H) + 2Dom”® 4 2Dopm ¢ 4 2uD2L. (8)
In fact, if b= mP for anyp € (0,1/2), the expected regret bound2Bao,/m+ o(,/m).

To appreciate the power of this result, we compare the specific bound iati&qy8) with
the ideal serial solution and theima no-communication solution discussed in the introduction. It
is clear that our bound is asymptotically equivalent to the ideal serial bgwiaé, m)—even the
constants in the dominant terms are identical. Our bound scales nicely withttharkéatency and
the cluster sizé, becauseu (which usually scales logarithmically witk) does not appear in the
dominant,/m term. On the other hand, theima no-communication solution has regret bounded
by kg (02, m/k) = 2kD?L + 2Dovkm (see Section 2.2). If & k < m, this bound is worse than the
bound in Theorem 4 by a factor efk.

Finally, we note that choosingasmP for an appropriat@ requires knowledge ahin advance.
However, this requirement can be relaxed by applying a standard dguhitik (Cesa-Bianchi and
Lugosi, 2006). This gives a single algorithm that does not talkas input, with asymptotically
similar regret. If we use a fixeblregardless ofm, the dominant term of the regret bound becomes
2Dao/log(k)m/b; see the following proof for details.

Proof Similar to the proof of Theorem 3, we assume without loss of generalityitiiatdesb -+,
we define the functiori : W x Z° — R as

f(W,(z,...,2)) = 1

T

if(w,zs) :

176



OPTIMAL DISTRIBUTED ONLINE PREDICTION

and we usg; to denote thdirst b inputsin batchj. By construction, the functiofi is L-smooth and
its gradients have?/b-bounded variance. The average gradgrtomputed by the DMB algorithm
is the gradient of (-,z;) evaluated at the point;. Therefore,

m/b+yw - _ 62 m
E JZl (f(wj,z) — (Wuzj)):| < w(b,w) 9)
This inequality only involve the additionalexamples in counting the number of batchesyas.
In order to count them in the total regret, we notice that

_ _ _ 1 j(b+1)
Vi, E[fw,Z)w] =E[

PG f(Wj,Za)‘Wj}
b+ M ofBrw

and a similar equality holds fof (w*,z). Substituting these equalities in the left-hand-side of
Equation (9) and multiplying both sides byt p yields

m/(b+1) J(b+) ( ) a2 m
E| f.2) - tw,2)| < (o).
le i:(i—l%ﬂx)ﬂ b b+u
Again, if (b+ ) dividesm, then the left-hand side above is exactly the expected regret of the DMB
algorithm overm examples. Otherwise, the expected regret can only be smaller.
For the concrete case 902, m) = 2D?L + 2Da+/m, plugging in the new values fa® andm
results in a bound of the form

(G [i55) = oonn(ty

2
< 2(b+ p)D2L+2Do\/m+ Em+ (bTJ“) .
Using the inequality/Xx+y+2z < v/X+ ,/y+ /z which holds for any nonnegative numbegsy

andz, we bound the expression above by

pm b+p
2(b+wD?L +2Day/m+2Dg, [ +2Do——.
(b+p) vm b 7
It is clear that withb = CnP for anyp € (0,1/2) and any constar@ > 0, this bound can be written
as Da/m+o(/m). Lettingb = m'/3 gives the smallest exponents in ihg/m) terms. [ |

In the proofs of Theorem 3 and Theorem 4, decreasing the varignaddztor ofb, as given
in Equation (7), relies on properties of the Euclidean norm. For seridlgratype algorithms that
are specified with different norms (see the general framework in Apipéy), the variance does not
typically decrease as much. For example, in the dual averaging methafiespecEquation (3), if
we useh(w) =1/(2(p—1)) HWH% for somep € (1,2], then the “variance” bounds for the stochastic
gradients must be expressed in the dual norm, thé i§),, f(w,z) — DF(W)Hf1 < 02, whereq =
p/(p—1) € [2,0). In this case, the variance bound for the averaged function becomes

o2
b’

2

q < C(na)

E | Dwf(w 2 — OF (w) |
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whereC(n,q) = min{g— 1,0(log(n))} is a space-dependent constaritevertheless, we can still
obtain a linear reduction ih even for such non-Euclidean norms. The net effect is that the regret
bound for the DMB algorithm become®2/C(n, q)o/m+ o(y/m).

4.2 Improving Performance on Short Input Streams

Theorem 4 presents an optimal way of choosing the batctbsizhich results in an asymptotically
optimal regret bound. However, our asymptotic approach hides a potgEmiidcoming that occurs
whenmis small. Say that we know, ahead of time, that the sequence lengtk-i$5,000. More-
over, say that the latency js= 100, and that = 1 andL = 1. In this case, Theorem 4 determines
that the optimal batch size s~ 25. In other words, for every 25 inputs that participate in the
update, 100 inputs are discarded. This waste becomes negligiblgrag/s withm and does not
affect our asymptotic analysis. Howevernifis known to be small, we can take steps to improve
the situation.

Assume for simplicity thab divides . Now, instead of running a single distributed mini-
batch algorithm, we run = 1+ p/b independent interlaced instances of the distributed mini-batch
algorithm on each node. At any given momeat- 1 instances are asleep and one instance is
active. Once the active instance collelst& gradients on each node, it starts a vector-sum network
operation, awakens the next instance, and puts itself to sleep. Note¢hanhstnce awakens after
(c—1)b = pinputs, which is just in time for its vector-sum operation to complete.

In the setting described abowifferent vector-sum operations propagate concurrently through
the network. The distributed vector sum operation is typically designed thiatteach network
link is used at most once in each direction, so concurrent sum operdtianbegin at different
times should not compete for network resources. The batch size shoaktlibhé set such that the
generated traffic does not exceed the network bandwidth limit, but the yadérach sum operation
should not be affected by the fact that multiple sum operations take placeat

Simply interlacingc independent copies of our algorithm does not resolve the aforemeditione
problem, since each prediction is still defined bi¢ df the observed inputs. Therefore, instead of
using the predictions prescribed by the individual online predictors,seaheir average. Namely,
we take the most recent prediction generated by each instance, atleeageredictions, and use
this average in place of the original prediction.

The advantages of this modification are not apparent from our thedretialysis. Each in-
stance of the algorithm handle®/c inputs and suffers a regret of at most

02 m

and, using Jensen’s inequality, the overall regret using the averadieton is upper bounded by

02 m
The bound above is precisely the same as the bound in Theorem 4. Deisglitethwe conjecture

that this method will indeed improve empirical results when the batchisigesmall compared to
the latency ternu.

4. For further details of algorithms usinggnorm, see Xiao (2010, Section 7.2) and Shalev-Shwartz and Té@drl).
For the derivation o€(n,q) see for instance Lemma B.2 in Cotter et al. (2011).
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5. Stochastic Optimization

As we discussed in the introduction, thchastic optimizatioproblem is closely related, but not
identical, to the stochastic online prediction problem. In both cases, theress tultctionf (w, 2)

to be minimized. The difference is in the way success is measured. In ondidiefion, success is
measured by regret, which is the difference between the cumulative libssesiby the prediction
algorithm and the cumulative loss of the best fixed predictor. The go&abofiastic optimization is
to find an approximate solution to the problem

minimize F(w) £ E,[f(w,2)],
wew

and success is measured by the difference between the expected tbssfiofal output of the
optimization algorithm and the expected loss of the true minimazerAs before, we assume that
the loss functiorf (w, z) is convex inw for anyz € Z, and thawV is a closed convex set.

We consider the san&ochastic approximatiotype of algorithms presented in Algorithm 1,
and define the final output of the algorithm, after procesging d. samples, to be

In this case, the appropriate measure of success is the optimality gap
G(m) = F(wm) —F(wW").

Notice that the optimality ga@(m) is also a random variable, becawgg depends on the random
samples, ..., zZy. It can be shown (see, e.g., Xiao, 2010, Theorem 3) that for cdogexXunctions
and i.i.d. inputs, we always have

Therefore, a bound on the expected optimality gap can be readily obtammadaf bound on the
expected regret of the same algorithm. In particulaf, i§ anL-smooth convex loss function and
Owf (W, 2) hasa?-bounded variance, and our algorithm has a regret boudd@t, m), then it also
has an expected optimality gap of at most

_ 1
lIJ(O'z,m) = E]q"(o-zam) :

For the specific regret bounti(o?, m) = 2D?L + 2Da/m, which holds for the serial algorithms
presented in Section 2, we have

2D | 200

S mym’

5.1 Stochastic Optimization using Distributed Mini-Batches

Our template of a DMB algorithm for stochastic optimization (see Algorithm 4) ig s@nilar to
the one presented for the online prediction setting. The main differencet iséhdo not have to
process inputs while waiting for the vector-sum network operation to compigi®in letb be the
batch size, and the number of batches |[m/b|. For simplicity of discussion, we assume thwat
dividesm.
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Algorithm 4: Template of DMB algorithm for stochastic optimization.
r (3]
for j=1,2,...,rdo
resetgj =0
fors=1,...,b/kdo
receive input sampled i.i.d. from unknown distribution
calculategs = Oy f (Wj, Z)
calculategj < §j + gi
end
start distributed vector sum to compute the surgjadcross all nodes
finish distributed vector sum and compute average gradient
Set(WH—la aj+1) = (p(ajvg_jv J)
end
Output: 155_;w;

Theorem 5 Let f(w,z) be an L-smooth convex loss function in w for eaehZ and assume that
the stochastic gradierif,, f (w, z) haso?-bounded variance for all ve W . If the update rulep used
in a serial setting has an expected optimality gap boundefi(lo#, m), then the expected optimality
gap of Algorithm 4 after processing m samples is at most

] o’ m
b’b/
If P(0?,m) = % + ZDTH@‘], then the expected optimality gap is bounded by
2bD?L N 2Do
m vym'’

The proof of the theorem follows along the lines of Theorem 3, and is omitted.

We comment that the accelerated stochastic gradient methods of Lan,(BR08) al. (2009)
and Xiao (2010) can also fit in our template for the DMB algorithm, but with marehisti-
cated updating rules. These accelerated methods have an expected optiowadidyof(a2, m) =
4D%L/m2 + 4Do/,/m, which translates into the following bound for the DMB algorithm:

_(0? m _4b2D2L+@
Y{ b U

Most recently, Ghadimi and Lan (2010) developed accelerated staclgaadient methods for
strongly convex functions that have the convergence gt#, m) = O(1) (L/n2+9%/vm), where
v is the strong convexity parameter of the loss function. The correspoiig) algorithm has a

convergence rate

_ /0> m b’L o2

v (b’b) =0(1) <mz +vm> '
Apparently, this also fits in the DMB algorithm nicely.
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The significance of our result is that the dominating factor in the conveegexte is not affected
by the batch size. Therefore, depending on the valum,ofrfe can use large batch sizes without
affecting the convergence rate in a significant way. Since we can rumdtidoad associated with
a single batch in parallel, this theorem shows that the mini-batch techniqueableay turning
many serial optimization algorithms into parallel ones. To this end, it is importantdlyze the
speed-up of the parallel algorithms in terms of the running time (wall-clock time).

5.2 Parallel Speed-Up

Recall thatk is the number of parallel computing nodes andk the total number of i.i.d. samples
to be processed. Léim) be the batch size that dependsran We define aime-unitto be the
time it takes a single node to process one sample (including computing the gradicenpdating
the predictor). For convenience, I@tbe the latency of the vector-sum operation in the network
(measured in number of time-units)Then the parallel speed-up of the DMB algorithm is

m kK
sy (2 +3) Lt bk

wherem/b(m) is the number of batches, atdm)/k+ & is the wall-clock time byk processors

to finish one batch in the DMB algorithm. H(m) increases at a fast enough rate, then we have
S(m) — k asm — . Therefore, we obtain an asymptotically linear speed-up, which is the ideal
result that one would hope for in parallelizing the optimization process (sstafson, 1988).

In the context of stochastic optimization, it is more appropriate to measure ¢lee-sjp with
respect to the same optimality gap, not the same amount of samples prodessedhe a given
target for the expected optimality gap. Lmeg;(g) be the number of samples that the serial algorithm
needs to reach this target andieys (€) be the number of samples needed by the DMB algorithm.
Slightly overloading our notation, we define the parallel speed-up witheotdp the expected
optimality gape as

o Men(®)
S( ) mDMbB(s) (E+6)
In the above definition, we intentionally leave the dependendeonfm unspecified. Indeed, once
we fix the functiorb(m), we can substitute it into the equatiiio®/b, m/b) = € to solve for the exact
form of mpyg (€). As a resulth is also a function o€.

Since bothmg(e) and mppmg (€) are upper bounds for the actual running times to remch
optimality, their ratioS(€) may not be a precise measure of the speed-up. However, it is difficult in
practice to measure the actual running times of the algorithms in terms of reaebjnignality. So
we only hopeS(g) gives a conceptual guide in comparing the actual performance of théthigsr
The following result shows that if the batch sizés chosen to be of order® for anyp € (0,1/2),
then we still have asymptotic linear speed-up.

(10)

Theorem 6 Let f(w, z) be an L-smooth convex loss function in w for eachzand assume that the
stochastic gradientl,, f (w,z) hasa?-bounded variance for all ve W. Suppose the update rupe

used in the serial setting has an expected optimality gap boundgddsym) = % + ZDTnf. If the

5. The relationship betweenandp defined in the online setting (see Section 4) is rougitykd.
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batch size in the DMB algorithm is chosen dsih= ©(mP), wherep € (0,1/2), then we have
lim S(e) = k.

e—0

Proof By solving the equation
2D’L  2Do

€
m Tym

we see that the following number of samples is sufficient for the serial idigotto reache-

optimality:
D?g? 2Le ?
rﬂSrl(s) - 82 1+ 1+ ?

For the DMB algorithm, we use the batch stagn) = (69/pL)mP, with somed > 0, to obtain the
equation

2
2b(mD“L 2Dc  2Do <1+ 0 )—s (11)

m O ym  m2 " mize
We usempyis (€) to denote the solution of the above equation. Apparenglyis (€) is a monotone
function ofe and lim_,ompup (€) = c. For convenience (with some abuse of notation)ble} to
denoteb(mpwms (€)), which is also monotone i and satisfies lig,ob(e) = . Moreover, for any

batch sizeb > 1, we havamnpyg (€) > mgy(€). Therefore, from Equation (10) we get

limsupS(e) < lim =k.
€0 PS| )_Eﬁol'F %k

Next we show liminf_,o S(€) > k. For anyn > 0, let

4D%0%(1+4n)?
my(e) = AN

which is monotone decreasingdnand can be seen as the solution to the equation

2Do
Comparing this equation with Equation (11), we see that, fomrpmy0, there exists ag such that
forall 0 < & <€, we havempug (€) < my (). Therefore,

jim Mer(8) K im (l+ V 1+20L2£)2 K 1

=0 M (€) 1+ 2k T &0 4(14n)? 1+ 53k T (1+n)2"

Since the above inequality holds for amy > 0, we can taken — O and conclude that
liminfe_,0S(€) > k. This finishes the proof. |

. S
Ilrsn_:(r)lf S(e) >

For accelerated stochastic gradient methods whose convergendearagessimilar dependence
on the gradient variance (Lan, 2009; Hu et al., 2009; Xiao, 2010d{&fiand Lan, 2010), the batch
sizeb has a even smaller effect on the convergence rate (see discuss@nBhaforem 5), which
implies a better parallel speed-up.
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6. Experiments

We conducted experiments with a large-scale online binary classificatioteprol-irst, we ob-
tained a log of one billion queries issued to the Internet search engine Baah entry in the log
specifies a time stamp, a query text, and the id of the user who issued thqagiagya temporary
browser cookie). A query is said to eghly monetizabléf, in the past, users who issued this
query tended to then click on online advertisements. Given a predefined cise million highly
monetizable queries, we observe the queries in the log one-by-one amgtattbepredict whether
the next query will be highly monetizable or not. A clever search enginkelese this prediction to
optimize the way it presents search results to the user. A prediction algodthhid task must keep
up with the stream of queries received by the search engine, which@adigistributed solution.

The predictions are made based on the recent query-history of thentuser. For example,
the predictor may learn that users who recently issued the queries “iskattiey’ and “sunscreen
reviews” (both not highly monetizable in our data) are likely to issue a sulesgquery which is
highly monetizable (say, a query like “Hawaii vacation”). In the next sectwe formally define
how each inputz, is constructed.

First, letn denote the number of distinct queries that appear in the log and assumethavev
enumerated these querigs, . ..,q,. Now definex;, € {0,1}" as follows

- J1 ifqueryq; was issued by the current user during the last two hours,
1710 otherwise.

Lety; be a binary variable, defined as

_J+1 ifthe current query is highly monetizable,
‘" 1-1 otherwise.

In other wordsy; is the binary label that we are trying to predict. Before obserinor y;, our
algorithm chooses a vectar € R". Thenx; is observed and the resulting binary prediction is the
sign of their inner produciw:, % ). Next, the correct labsi is revealed and our binary prediction is
incorrect ify; (W, %) < 0. We can re-state this prediction problem in an equivalent way by defining
z = yiX%, and saying that an incorrect prediction occurs whanz) < 0.

We adopt the logistic loss function as a smooth convex proxy to the erromboditunction.
Formally, definef as

f(wz) = log, (1+exp(—(w2)) .

Additionally, we introduced the convex regularization constriimt| < C, whereC is a predefined
regularization parameter.

We ran the synchronous version of our distributed algorithm using thikdéao dual averaging
update rule (4) in a cluster simulation. The simulation allowed us to easily investigeagdfects of
modifying the number of nodes in the cluster and the latencies in the network.

We wanted to specify a realistic latency in our simulation, which faithfully mimics thetier
of areal network in a search engine datacenter. To this end, we asthahtt nodes are connected
via a standard 1Gbs Ethernet network. Moreover, we assumed thabdes are arranged in a
precomputed logical binary-tree communication structure, and that all coioatiom is done along
the edges in this tree. We conservatively estimated the round-trip latencgdrefwoximal nodes
in the tree to be 0.5ms. Therefore, the total time to complete each vector-suorkeperation
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Figure 2: The effects of of the batch size when serial mini-batching oragedoss. The mini-
batches algorithm was applied with different batch sizes. The x-axismiethe number
of instances observed, and the y-axis presents the average losghatdtee casé =1
is the standard serial dual-averaging algorithm.

is log,(K) ms, wherek is the number of nodes in the cluster. We assumed that our search engine
receives 4 queries per ms (which adds up to ten billion queries a monthyalQ#ee number of
queries discarded between mini-batchgsis4log, (k).

In all of our experiments, we use the algorithmic parametet= L + y,/j (see Theorem 2).
We set the smoothness paramétéo a constant, and the parameydo a constant divided by/b.
This is becausé depends only on the loss functidn which does not change in DMB, while
is proportional too, the standard deviation of the gradient-averages. We chose the dersfan
manually exploring the parameter space on a separate held-out setmilBOO queries.

We report all of our results in terms of the average loss suffered byrtmeecalgorithm. This
is simply defined a$1/t) Si_, f(w,z). We cannot plot regret, as we do not know the offline risk
minimizerw*.

6.1 Serial Mini-Batching

As a warm-up, we investigated the effects of modifying the mini-batchlsinea standard serial
Euclidean dual averaging algorithm. This is equivalent to running the digtidsimulation with a
cluster size ok = 1, with varying mini-batch size. We ran the experiment viita 1,2,4,...,1024.
Figure 2 shows the results for three representative mini-batch sizesexXpeeiments tell an in-
teresting story, which is more refined than our theoretical upper boundsle We asymptotic
worst-case theory implies that batch-size should have no significant,effe actually observe that
mini-batching accelerates the learning process on the fifsinpdts. On the other hand, after®0
inputs, a large mini-batch size begins to hurt us and the smaller mini-batch aindbglead. This
behavior is not an artifact of our choice of the paramejensdL, as we observed a similar behavior
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Figure 3: Comparing DBM with the serial algorithm and the no-communication dis&dbalgo-
rithm. Results for a large cluster kf= 1024 machines are presented on the left. Results
for a small cluster ok = 32 machines are presented on the right.

for many different parameter setting, during the initial stage when we tureegatameters on a
held-out set.

Similar transient behaviors also exist for multi-step stochastic gradient neetbeel, e.g., Polyak,
1987, Section 4.3.2), where the multi-step interpolation of the gradients aiss tifie smoothing
effects as using averaged gradients. Typically such methods corfestgein the early iterations
when the iterates are far from the optimal solution and the relative value stdbbastic noise is
small, but become less effective asymptotically.

6.2 Evaluating DBM

Next, we compared the average loss of the DBM algorithm with the averageofahe serial
algorithm and the no-communication algorithm (where each cluster nodswaigpendently). We
tried two versions of the no-communication solution. The first version simplg kundependent
copies of the serial prediction algorithm. The second version kuimslependent copies of the
serial mini-batch algorithm, with a mini-batch size of 128. We included the sewersibn of the
no-communication algorithm after observing that mini-batching has signifadhr@tntages even in
the serial setting. We experimented with various cluster sizes and varioubatafi-sizes. As
mentioned above, we set the latency of the DBM algorithm te 4log, (k). Taking a cue from
our theoretical analysis, we set the batch size tom!/3 ~ 1024. We repeated the experiment for
various cluster sizes and the results were very consistent. Figureehfgeise average loss of the
three algorithms for clusters of sizks= 1024 andk = 32. Clearly, the simple no-communication
algorithm performs very poorly compared to the others. The no-commumcatiorithm that uses
mini-batch updates on each node does surprisingly well, but is still outpggtbquite significantly
by the DMB solution.
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Figure 4: The effects of increased network latency. The loss of the BIg&ithm is reported with
different latencies as measuredjibyin all cases, the batch size is fixedoat 1024.

6.3 The Effectsof Latency

Network latency results in the DMB discarding gradients, and slows dowalgiogithm'’s progress.
The theoretical analysis shows that this waste is negligible in the asymptoticcasessense. How-
ever, latency will obviously have some negative effect on any finitexpodfihe input stream. We
examined what would happen if the single-link latency were much larger thia@.bms estimate
(e.g., if the network is very congested or if the cluster nodes are sca#teress multiple datacen-
ters). Concretely, we set the cluster sizekte 1024 nodes, the batch size lbe= 1024, and the
single-link latency to 5,1,2,...,512 ms. That is, ®ms mimics a realistic 1Gbs Ethernet link,
while 512ms mimics a network whose latency between any two machines is 1024 tieag¢srg
namely, each vector-sum operation takes a full second to complete. Nbteghstill computed as
before, namely, for latency.B- 2P, p= 2P4log, (k) = 2P - 40. Figure 4 shows how the average loss
curve reacts to four representative latencies. As expected, cemaergate degrades monotonically
with latency. When latency is set to be 8 times greater than our realistic estimat@berEthernet,
the effect is minor. When the latency is increased by a factor of 1024 fiiset becomes more
noticeable, but still quite small.

6.4 Optimal Mini-Batch Size

For our final experiment, we set out to find the optimal batch size for abi@m on a given cluster
size. Our theoretical analysis is too crude to provide a sufficient anewenis question. The
theory basically says that settitig= ©(mP) is asymptotically optimal for anp € (0,1/2), and
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Figure 5: The effect of different mini-batch sizéy on the DBM algorithm. The DMB algorithm
was applied with different batch sizés= 8,...,4096. The loss is reported after 10
instances (left), ®instances (middle) and $@hstances (right).

thatb = ©(m/3) is a pretty good concrete choice. We have already seen that largersizgsh
accelerate the initial learning phase, even in a serial setting. We set ther dize tok = 32 and

set batch size t0,86,...,4096. Note thab = 32 is the case where each node processes a single
example before engaging in a vector-sum network operation. Figurpi&isiéhe average loss after
107,18, and 1@ inputs. As noted in the serial case, larger batch sikes $12) are beneficial at
first (m= 107), while smaller batch sizeb = 128) are better in the endh(= 10°).

6.5 Discussion

We presented an empirical evaluation of the serial mini-batch algorithm anidtitdbdted version,

the DMB algorithm, on a realistic web-scale online prediction problem. As ¢zdethe DMB
algorithm outperforms the&ive no-communication algorithm. An interesting and somewhat unex-
pected observation is the fact that the use of large batches improvesnpentce even in the serial
setting. Moreover, the optimal batch size seems to generally decrease with time.

We also demonstrated the effect of network latency on the performarice BIMB algorithm.
Even for relatively large values @f the degradation in performance was modest. This is an encour-
aging indicator of the efficiency and robustness of the DMB algorithm, exden implemented in
a high-latency environment, such as a grid.

7. Related Work

In recent years there has been a growing interest in distributed onliménigand distributed opti-
mization.

Langford et al. (2009) address the distributed online learning problémavgimilar motivation
to ours: trying to address the scalability problem of online learning algorithinishware inherently
sequential. The main observation Langford et al. (2009) make is that in oa&eg, computing the
gradient takes much longer than computing the update according to the amdietjon algorithm.
Therefore, they present a pipeline computational model. Each workeratks between computing
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the gradient and computing the update rule. The different workersyashonized such that no
two workers perform an update simultaneously.

Similar to results presented in this paper, Langford et al. (2009) attemptdthtothat it is
possible to achieve a cumulative regre@af,/m) with k parallel workers, compared to tm{\/ﬁn)
of the ndve solution. However their work suffers from a few limitations. First, theagfs only hold
for unconstrained convex optimization where no projection is neededn8gsince they work in a
model where one node at a time updates a shared predictor, while theadlesraompute gradients,
the scalability of their proposed method is limited by the ratio between the time it takesjmute
a gradient to the time it takes to run the update rule of the serial online leadgowmgtiam.

In another related work, Duchi et al. (2010) present a distributed altexaging method for
optimization over networks. They assume the loss functions are Lipschiingous, but their gra-
dients may not be. Their method does not need synchronization to awgeatjents computed at
the same point. Instead, they employ a distributed consensus algorithm oa ghatlients gen-
erated by different processors at different points. When appliecetsttithastic online prediction
setting, even for the most favorable class of communication graphs, wiitacdrspectral gaps
(e.g., expander graphs), their best regret boum(is’%log(m)). This bound is no better than one
would get by running parallel machines without communication (see Section 2.2).

In another recent work, Zinkevich et al. (2010) study a method wherk Bode in the network
runs the classic stochastic gradient method, using random subsets géth# data set, and only
aggregate their solutions in the end (by averaging their final weight wctém terms of online
regret, it is obviously the same as runnigiachines independently without communication. So a
more suitable measure is the optimality gap (defined in Section 5) of the finalggepredictor.
Even with respect to this measure, their expected optimality gap does notash@mtage over
runningk machines independently. A similar approach was also considered by dleatet Vial
(2008) and an experimental study of such a method was reported in gtarriat al. (2003).

A key difference between our DMB framework and many related work is@idB does not
consider distributed comuting as a constraint to overcome. Instead, weiruse of the variance-
based regret bounds can exploit parallel/distributed computing to obtairsytneptotic optimal
regret bound. Beyond the asymptotic optimality of our bounds, our waslotteer features that set
it apart from previous work. As far as we know, we are the first tqopse a general principled
framework for distributing many gradient-based update rule, with a ctspegret analysis for the
large family of mirror descent and dual averaging update rules. Addilypoar work is the first to
explicitly include network latency in our regret analysis, and to theoreticaliyantee that a large
latency can be overcome by setting parameters appropriately.

8. Conclusions and Further Research

The increase in serial computing power of modern computers is out-pgctuk lgrowth rate of
web-scale prediction problems and data sets. Therefore, it is necéssaopt techniques that can
harness the power of parallel and distributed computers.

In this work we studied the problems of distributed stochastic online prediatidmistributed
stochastic optimization. We presented a family of distributed online algorithms withgstically
optimal regret and optimality gap guarantees. Our algorithms use the distrdmrtgaliting infras-
tructure to reduce the variance of stochastic gradients, which essengidliges the noise in the
algorithm’s updates. Our analysis shows that asymptotically, a distributedutimigsystem can
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perform as well as a hypothetical fast serial computer. This result fedia trivial, and much of
the prior art in the field did not show any provable gain by using distribubedptiters.

While the focus of this work is the theoretical analysis of a distributed onliadigtion algo-
rithm, we also presented experiments on a large-scale real-world problerex@eriments showed
that indeed the DMB algorithm outperforms other simple solutions. They atggested that im-
provements can be made by optimizing the batch size and adjusting the leaneirigasad on
empirical measures.

Our formal analysis hinges on the fact that the regret bounds of maglyasttic online update
rules scale with the variance of the stochastic gradients when the loss furcsmooth. It is
unclear if smoothness is a necessary condition, or if it can be replaced wigaker assumption.
In principle, our results apply in a broader setting. For any serial upde with a regret bound
of ¢(a?,m) = Ca,/m+0(,/m), the DMB algorithm and its variants have the optimal regret bound
of Ca/m+ o(y/m), provided that the boungi(a2, m) applies equally to the functioh and to the

function A
— 1
fw(@,....z)) = £ 5 fwz).
s=1

Note that this result holds independently of the network kiaed the network latenqy. Extending
our results to non-smooth functions is an interesting open problem. A more arshitialilenge is
to extend our results to the non-stochastic case, where inputs may bae tlyase adversary.

An important future direction is to develop distributed learning algorithms thébe robustly
and efficiently on heterogeneous clusters and in asynchronous distrgxvironments. This direc-
tion has been further explored in Dekel et al. (2011). For examplesamese the following simple
reformulation of the DMB algorithm in a master-workers setting: each wqukeress inputs at its
own pace and periodically sends the accumulated gradients to the master;stiee applies the
update rule whenever the number of accumulated gradients reachéaia teeshold and broad-
casts the new predictor back to the workers. In a dynamic environmente wienetwork can be
partitioned and reconnected and where nodes can be added anddemoee master (or masters)
can be chosen as needed by a standard leader election algorithm. Wheetader to Dekel et al.
(2011) for more details.

A central property of our method is that all of the gradients in a batch mutikesn at the
same prediction point. In an asynchronous distributed computing envirdr{sem e.g., Tsitsiklis
et al., 1986; Bertsekas and Tsitsiklis, 1989), this can be quite wastefubrdir to reduce the
waste generated by the need for global synchronization, we may neddwadéferent nodes to
accumulate gradients at different yet close points. Such a modification lig tikevork since the
smoothness assumption precisely states that gradients of nearby positsike There have been
extensive studies on distributed optimization with inaccurate or delayedasiibgt information,
but mostly without the smoothness assumption (e.g., &Neitkl., 2001; Nediand Ozdaglar, 2009).
We believe that our main results under the smoothness assumption can laedxteasynchronous
and distributed environments as well.
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Appendix A. Smooth Stochastic Online Prediction in the Serial Setting

In this appendix, we prove expected regret bounds for stochastliederaging and stochastic mir-
ror descent applied to smooth loss functions. In the main body of the papeliscussed only the
Euclidean special case of these algorithms, while here we present thighetgoand regret bounds
in their full generality. In particular, Theorem 1 is a special case of Tdrad®, and Theorem 2 is a
special case of Theorem 7.

Recall that we observe a stochastic sequence of irputs, ..., where eaclty, € Z. Before
observing eacls we predictw; € W, and suffer a los$ (w;,z). We assumdV is a closed convex
subset of a finite dimensional vector spakewith endowed nornj| - ||. We assume thaft(w,z) is
convex and differentiable iw, and we usél,, f (w, z) to denote the gradient df with respect to its
first argumenty, f (w, 2) is a vector in the dual spacE*, with endowed nornf - ...

We assume that(-,z) is L-smooth for any realization af Namely, we assume thdt-,z) is
differentiable and that

Vzez, Yww eW,  [|Owfwz)— Owf(W,2)|. < L|jw—w] .

We defineF (w) = E,[f(w,z)] and note thatl,F (w) = E,[Owf(w,z)] (see Rockafellar and Wets,
1982). This implies that

YWW EW,  [|DWF (W) — DuF W), < LIw—w]|.
In addition, we assume that there exists a consiant) such that
YweW,  Egf||Owf(w2) — OwE[f(w2)]|?] < o?.

We assume that* = argmin,., F (W) exists, and we abbreviake' = F (w*).
Under the above assumptions, we are concerned with bounding theeckpegretE[R(m)],

where regret is defined as
m

R(m) = Z(f(vw,Za)—f(W*,Za)) :

In order to present the algorithms in their full generality, we first recallcivecepts of strongly
convex function and Bregman divergence.
A functionh: W — RU {+0} is said to bgu-strongly convexvith respect td| - || if

Va € [0,1], Vu,veWw, h(au+(1—a)v)gO(h(u)+(1—0()h(v)—ga(l—a)Hu—vHZ.

If his p-strongly convex then for any € domh, andv € domh that is sub-differentiable, then

Vse oh(v), h(u) > h(v)+ (s u—v) +gHu—v||2 .
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(See, e.g., Goebel and Rockafellar, 2008.) If a fundi@nstrictly convex and differentiable (on an
open set contained in ddmy, then we can defined the Bregman divergence generathdby

dnh(u,v) = h(u) —h(v) — (Oh(v),u—v) .

We often drop the subscriptin d, when it is obvious from the context. Some key properties of the
Bregman divergence are:

e d(u,v) > 0, and the equality holds if and onlyuf= v.
e In generad(u,v) # d(v,u), andd may not satisfy the triangle inequality.
e The followingthree-point identityfollows directly from the definition:

d(u,w) =d(u,v) +d(v,w) + (Oh(v) — Oh(w),u—v) .
The following inequality is a direct consequence of phgtrong convexity ofi:

d(uv) > Sllu—v|?. (12)

A.1 Stochastic Dual Averaging

The proof techniques for the stochastic dual averaging method areeddegm those for the accel-
erated algorithms presented in Tseng (2008) and Xiao (2010).

Leth: W — R be a 1-strongly convex function. Without loss of generality, we canmagshat
minwew h(w) = 0. In the stochastic dual averaging method, we predict eably

—
=1

wew

whereg; denotes the stochastic gradieny, f (wj,z;), and(f3i)i>1 is a sequence of positive and
nondecreasing parameters (if&.,1 > [3;). As a special case of the above, we initiazgeto

wy = argminh(w) . (14)

wew

We are now ready to state a bound on the expected regret of the duadimgemethod, in the
smooth stochastic case.

Theorem 7 The expected regret of the stochastic dual averaging method is boasde

2m-1
vm,  EIR(M)] < (F (W) — F(W)) + (L + Bu)h(w') + 5 é

The optimal choice of; is exactly of order/i. More specifically, le; = yv/i, wherey is a
positive parameter. Then Theorem 7 implies that

2

E[R(m)] < (F (wa) — F (w)) + Lh(w") + (vh<w*> + 0y> Vi
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Choosingy = o/+/h(w*) gives
E[R(M)] < (F(w) — F(W")) + Lh(w*) + (20/(w?) ) v
If OF(w*) = 0 (this is certainly the case\¥ is the whole space), then we have
F(wy) — F (W) < 5w~ < Lh(w),
Then the expected regret bound can be simplified as

E[R(m)] < 2Lh(w") + (20/h(w") ) v

To prove Theorem 7 we require the following fundamental lemma, which eafound, for
example, in Nesterov (2005), Tseng (2008) and Xiao (2010).

Lemma8 Let W be a closed convex sétbe a convex function on W, and h be p-strongly convex
on W with respect tq - ||. If

wh = a\rNgevrr\)in{q)(w) +h(w)},

then
YWEW,  §(w)+h(w) > o(w")+hw)+ Slw—w2

With Lemma 8, we are now ready to prove Theorem 7.
Proof First, we define the linear functions

Gi(w) =F(w)+ (OF (W), w—w), Vi>1,
and (using the notatiog = Of (w;,7))
Gi(w) = F () + (g, W—wh) = (W) + (o, w—w),
where
Gi = gi — OF (w).
Therefore, the stochastic dual averaging method specified in Equa8pis @quivalent to
i-1
w; = arg min{ Z Z;(w)+ (L+ Bi)h(w)} .
wew =1

Using the smoothness assumption, we have (e.g., Nesterov 2004, Lemma 1.2.3)

L
FWit1) < 6G(Wig)+ §||Wi+1 — w2

= i)+ o W G ) — e
A L+B -
< B)+ o Wl 2 = 5 s — w2
LB L B *, lal?
W)+ 5P g w ( a0l G sl )+ 50
R L+Bi 15
< fi(Wi+l)‘|'ZBI||Wi+1—WiH2+”g|’_ : (15)
Bi
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~

Next we use Lemma 8 witth(w) = Zij;lléj (w) andp= (L+ ),

- L+Bi
Zf W)+ (L + BN > z (L BOw) 5Py P
Combining the above inequality with Equation (15), we have

Fnag) < < S ol
it1) < W|+1 Z (Wiy1) + (L+Bi)h(wiy1) — Z —(L+Bi)h(wi) + 2Bi
: : |

L, < o 12

< Z€ Wit1) + (L+Biva)h(Wir1) — Z — (L+Bi)h(wi) + 2B

: = |

where in the last inequality, we used the assumptfins > B; > 0 andh(w;,1) > 0. Summing the
above inequality fromm= 1 toi = m— 1, we have

> Flw) < Zl“v L+ Bt + 3, 120
Z 1 -~ m m m V4 ZB|
< Zle + (L+Bm)h(w *)+m_lM
< 3000 SRUPRAIL I
-~ | m £ 2B| th |
< (m=DFW)+(L+Bonewr)+ S 1BE LS we—w,
= i 2 2Bi Zi i 5 i
Therefore,
S (F (W) — F(W)) < (L+ Br)h(w* >+ml”q'”2+m_l 16
i; i < m 2. 2p; ZCIHW W|> (16)

Notice that eachv; is a deterministic function afy,...,z_1, SO
]EZi (<ql7W* _W|> |Zl7 DR 7Z|-71) - O

by recalling the definitiorg; = Of (wi,z) — OF (w;). Taking expectation of both sides of Equa-
tion (16) with respect ta, .. .,zy, and adding the tera (wy) — F(w*), we have

m-1 ~2
EZ (W) )) < F(wy) — F(W") + (L + B)( +Z§B.

Theorem 7 is proved by further noticing
Ef(w,z)=EF(w), Ef(w.z)=FWw), Vix>1,

which are due to the fact thaf is a deterministic function oy, ...,z _1. [ |
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A.2 Stochastic Mirror Descent

Variance-based convergence rates for the stochastic Mirror Dieswghods are due to Juditsky
etal. (2011), and were extended to an accelerated stochastic Mirsoedemethod by Lan (2009).
For completeness, we adapt their proofs to the context of regret fioegrediction problems.

Again leth: W — R be a differentiable 1-strongly convex function with mig, h(w) = 0. Also
let d be the Bregman divergence generatechbyn the stochastic mirror descent method, we use
the same initialization as in the dual averaging method (see Equation (14))ema¢hset

WiH:argmin{(gi,w>+(L+Bi)d(vv,wi)}, i>1
wew

As in the dual averaging method, we assume that the sequignce to be positive and nonde-
creasing.

Theorem 9 Assume that the convex set W is closed and bounded. In addition ad$umgis
bounded on W and let

D? = maxd(u,v).
u,vew

Then the expected regret of the stochastic mirror descent methodnséodas

E[RM)] < (F(wy) — F(w)) + <L+Bm>oz+<;2’i“zjé.

Similar to the dual averaging case, using the sequence of pararfieter®/D)+/i gives the
expected regret bound

E[R(m)] < (F(wy) — F(W*)) + LD?+ (20D) /m.

F
Again, if OF (w*) = 0, we haveF (wy) — F(w*) < (L/2)|jwy — w*||? < Lh(w*) < LD?, thus the
simplified bound
E[R(m)] < 2LD?+ (20D) /m.

We note that here we have stronger assumptions than in the dual avecaging These as-
sumptions are certainly satisfied by using the standard Euclidean distaneg = (1/2)||u— V|3
on a compact convex séf. However, it excludes the case of using the KL-divergemgev) =
S, uilog(ui/vi) on the simplex, because the KL-divergence is unbounded on the simpéax. N
ertheless, it is possible to remove such restrictions by considering othantgaof the stochastic
mirror descent method. For example, if we use a congatiitat depends on the prior knowledge
of the number of total steps to be performed, then we can weaken the dssuanm replac® in
the above bounds by/’h(w*). More precisely, we have

Theorem 10 Suppose we know the total number of steps m to be performed by thestitoofieor
descent method ahead of time. Then by using the initialization in Equatiorai$he constant

parameter
(0}
P — m7
=V

we have the expected regret bound

E[R(m)] < (F(w1) — F(W")) 4+ Lh(w") + a+/2h(w*)/m.
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Theorem 10 is essentially the same as a result in Lan (2009), who alslopleden accelerated
versions of the stochastic mirror descent method. To prove TheorechBreaorem 10 we need the
following standard Lemma, which can be found in Chen and Teboulle (1888)et al. (2011) and

Tseng (2008).

Lemmall Let W be a closed convex s¢tpbe a convex function on W, and h be a differentiable,
strongly convex function on W. Let d be the Bregman divergence deddmah. Given & W, if

wh =argmin{$(w) +d(w,u)},

wew
then
O (W) +d(w,u) > d(w") +d(w',u) +dww).

We are ready to prove Theorem 9 and Theorem 10.
Proof We start with the inequality in Equation (15). Using Equation (12) with 1 gives

|2

F(Wi+1)Sgi(Wi+1)+(|—+|3i)d(Wi+1,Wi>+ 2B

(17)

~

Now using Lemma 11 witlp (w) = ¢;(w) yields
fi(wi1) + (L+Bi)d (W1, W) < (W) + (L +B)d (W, wi) — (L+ Bi)d (W, i ).

Combining with Equation (17) gives

Fa) £ W)+ (L4 B w) — (L4 B ) + 190

= G(W) + (L+B)d(w',wi) — (L +Bis2)d(W, Wisa) + (Bivr — éild(w*,wm)
LY Jrvae

< F(W)+ (L+B)d(wW', wi) — (L+Bia)d(W*, Wit1) + (Biy1 — Bi)D?
+ ’(qus‘,‘z + (0, W — W),

where in the last inequality, we used the definitiorDsfand the assumption th@t.1 > Bi. Sum-
ming the above inequality frofn= 1 toi = m— 1, we have

m

'ZQF(Wi) < (M=1)F (W) 4 (L+B1)d(W*,wy) — (L + Brm)d(W*, W) + (Bm — B1)D?

il T

+ 2 26, + i;<qi,w*—wi>.

Notice thatd(w*,w;) > 0 andd(w*,w;) < D?, so we have

u SIS

3 F ) < (M- DF) + (L D+ 5 105+ 3 (G —w),
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The rest of the proof for Theorem 9 is similar to that for the dual avegagiiathod (see arguments
following Equation (16)).

Finally we prove Theorem 10. From the proof of Theorem 9 above egdtsat if; = By is a
constant forall = 1,...,m, then we have

2m11

E; (W) W) < (L4 Bm)d(W*,wy +—ZBI

Notice that for the above result, we do not need to assume boundediWwssor boundedness of
the Bregman divergena¥u,v). Since we usev; = argmin,., h(w) and assumb(wl) 0 (with-
out loss of generality), it follows (w*, w;) < h(w*). Plugging inBm = (6/+/2h(w*)),/mgives the
desired result. |

Appendix B. High-Probability Bounds

For simplicity, the theorems stated throughout the paper involved bounds @xpketed regret,
E[R(m)]. A stronger type of result is a high-probability bound, whBfen) itself is bounded with
arbitrarily high probability - d, and the bound having only logarithmic dependencé.ohrlere,
we demonstrate how our theorems can be extended to such high-probatilitg<h

First, we need to justify that the expected regret bounds for the onligkicpion rules discussed
in Appendix A have high-probability versions. For simplicity, we will focusahigh-probability
version of the regret bound for dual averaging (Theorem 7), kaittyy the same technique will
work for stochastic mirror descent (Theorem 9 and Theorem 10). Wétsethesults in hand, we
will show how our main theorem for distributed learning using the DMB algoriffitmeeorem 4)
can be extended to a high-probability version. Identical techniques wik feo the other theorems
presented in the paper.

Before we begin, we will need to make a few additional mild assumptions. Fiesgssume
that there are positive constai®sG such that f (w,z)| < B and||Oy f (w,2)|| < G for all w e W and
ze z. Second, we assume that there is a positive conétanth that Vay( f (w,z) — f(w*,2)) < 62
for all w € W (note thatd? < 4B? always holds). Third, tha/ has a bounded diametBr, namely
lw—w| <D forallww € W.

Under these assumptions, we can show the following high-probability veo$idheorem 7.

Theorem 12 For any m and any € (0, 1], the regret of the stochastic dual averaging method is
bounded with probability at leadt— d over the sampling ofiz...,z, by

2 m-1 1
R(m) < (F(wa) — F(W")) + (L + Bm)h( Zl Bi
2 G?a?5 1, +D%0%m
+2log(2/3) <DG+ 2;) J 1+36 Io;(g/5)
G2
+4log(2/3)B |0198(r;75) ‘
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Proof The proof of the theorem is identical to the one of Theorem 7, up to Equit&n

m m— 1||q|”2 m-1

i;(F(Wi)—':(w*))S(LJer> (W )+ > o " Zl G, W — Wi). (18)

In the proof of Theorem 7, we proceeded by taking expectations ofdidéds with respect to the
sequencey, ..., zy. Here, we will do things a bit differently.

The main technical tool we use is a well-known Bernstein-type inequality fotimgales (e.g.,
Cesa-Bianchi and Lugosi, 2006, Lemma A.8), an immediate corollary of vdaictbe stated as fol-
lows: supposéy, ..., Xy is a martingale difference sequence with respect to the seqagncezy,
such thatx;| < b, and let

m
V= .ZlVar(xi|21, ey Zic1).
Then for anyd € (0, 1), it holds with probability at least 4 6 that

3 X < blog(1/d),/1+ _ 1

2%< 10g(1/3)°

Recall the definitiorg, = Of (wi,z) — OF (w), and leto? = E[||q;||?]. Note thato? < 0. We
will first use this result for the sequence

(19)

) 2_0-_
X = Hq||| i +<qi,W*_VVi>-

2B;
It is easily seen thaE, [xi|z1,...,z-1] = 0, so it is indeed a martingale difference sequence w.r.t.
21,...,Zm. Moreover,|(g,w* —w;)| < D||qi|| < 2DG, ||gi||> < 4G2. In terms of the variances, let
Var, andE; be shorthand for the variance (resp. expectation) gveonditioned overs, ...,z _1.
Then

lei]l* o
ZB|
< 37 (10°) s 2: (G -2
BZ Z q|7 |
15
BZ
<2622 BI +2D%? < 2G?— 7 ~ +2D%2

Var (x) < 2Vary, ( ) + 2Varg ((gi, W —w;))

< 267, ( )+2||w*—vviu2wqiu21

Combining these observations with Equation (19), we get that with probatiliéast 1— 8,

m-1 g2 — o2 2 G202 z, +D2a2m

o -~ Sl
i;T+<Qi,W —wj) < (ZDG+ 5, )Iog(l/é)J 1436 (1/5) - (20)

A similar type of bound can be derived for the sequemce= (f(wi,z)— f(w*,z))—
(F(w) —F(w")). Itis easily verified to be a martingale difference sequence wr.t.., zy, since

E[(f(w,z)— f(w",z))— (F(wi) —F(W"))|z,...,z_1] =0.
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Also,
|[(f(wi,2) — f(W",7)) — (F(w) — F(w"))| < 4B,
and

Vary ((f(w,z) — f(W",z)) — (F(w) — F(W"))) = Var, (f(w,z) — f(w",z))
< 62.

So again using Equation (19), we have that with probability at leash that

i(f(w., )~ f(W,2)) — (F(w) — F(w")) < 4Blog(1/3) 1+I0198(n1??23) '

Finally, addingF (w;) — F (w*) to both sides of Equation (18), and combining Equation (20) and
Equation (21) with a union bound, the result follows. [ |

(21)

Comparing the theorem to Theorem 7, and assuming3{ha©(1/i), we see that the bound has
additionalO(,/m) terms. However, the bound retains the important property of having the damin
terms multiplied by the variance®, 2. Both variances become smaller in the mini-batch setting,
where the update rules are applied over averagbsuoth functions and their gradients. As we did
earlier in the paper, let us think of this bound as an abstract fungtioR, 52,8, m). Notice that
now, the regret bound also depends on the function vari@fcand the confidence parameder

Theorem 13 Let f is an L-smooth convex loss function. Assume that the stochastiemgrad
Owf(w,z) is bounded by a constant and ha$-bounded variance for all i and all w, and that
f(w,z) is bounded by a constant and hé&bounded variance for all i and for all w. If the update
rule @has a serial high-probability regret boung(a?, 62,5, m). then with probability at least — 3,
the total regret of Algorithm 3 over m examples is at most

(b+ ) (f cA;)Z,zs,lju bTu) +0 (a\/(1+ b |og(1/5)m> .

Comparing the obtained bound to the one in Theorem 4, we note that we pegdaional
O(y/m) factor.
Proof The proof closely resembles the one of Theorem 4. We;leenote the firsb inputs on
batchj, and definef as the average loss on these inputs. Note that fonattye variance of (w, z;)
is at mosts?2/b, and the variance dfi, f (W, z) is at mosto?/b. Therefore, with probability at least
1-9, it holds that

m 02 62 _ _
Z (f(w WZJ))<l|J<b b,6m> ) (22)
wheremis the number of inputs given to the update rgleLet Z; denote the set of all examples

received between the commencement of batahd the commencement of batgh- 1, including
the vector-sum phase in betwedni{u examples overall). In the proof of Theorem 4, we had that

B ((wy.3) ~ o) ] = B[ 5 (F.2) -~ fo.2) ]
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and thus thexpected valuef the left-hand side of Equation (22) equals the total regret, divided by
b+ . Here, we need to work a bit harder. To do so, note that the sequéraredom variables

1 P 1 x
<bzezzj(f(wj,z)— f(w ,z))> — <b+u2;j(f(wj,z)— f(w ,z))),
indexed byj, is a martingale difference sequence with respe@ {dy, .... Moreover, conditioned
onZi,...,Zj_1, the variance of each such random variable is at mé%y’bl To see why, note
that the first sum has conditional variar@#/b, since the summands are independent and each has
varianced?. Similarly, the second sum has conditional variadég(b+ ) < %/b. Applying the
Bernstein-type inequality for martingales discussed in the proof of Thed we get that with
probability at least 1 9,

E 1
J:1b+p‘ze i

)

M 3

(f(wj,2)— f(w",2)) <
1

J

where theO-notation hides only a (linear) dependence on the absolute boundfdwer)| for all
w, z, that we assume to hold.
Combining this and Equation (22) with a union bound, we get that with probailigast 1- 9,

i 2 52 _
glze;- (Flw;,2) = Fw,2) < (b1 <cty3’ %’6’ b+mu> +0 <(b+ u)ﬁ\/@> .

If b+ pdividesm, thenm= m/(b+ ), and we get a bound of the form

(b-+ WY @2 f,a, b+mu) 40 (6\/(1+ E) Iog(l/6)m> .

Otherwise, we repeat the ideas of Theorem 3 to get the regret bound. |
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