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Abstract

This paper presents new and effective algorithms for legrkernels. In particular, as shown by
our empirical results, these algorithms consistently exiggm the so-called uniform combination
solution that has proven to be difficult to improve upon in plast, as well as other algorithms for
learning kernels based on convex combinations of base lkémigoth classification and regression.
Our algorithms are based on the notion of centered alignmibitch is used as a similarity measure
between kernels or kernel matrices. We present a numbened atgorithmic, theoretical, and

empirical results for learning kernels based on our notiocenatered alignment. In particular, we
describe efficient algorithms for learning a maximum aligmtrkernel by showing that the problem
can be reduced to a simple QP and discuss a one-stage atyéoitearning both a kernel and a
hypothesis based on that kernel using an alignment-bagethreation. Our theoretical results
include a novel concentration bound for centered alignrbetween kernel matrices, the proof of
the existence of effective predictors for kernels with hédignment, both for classification and for
regression, and the proof of stability-based generatinatibunds for a broad family of algorithms
for learning kernels based on centered alignment. We afsartréhe results of experiments with
our centered alignment-based algorithms in both classitand regression.

Keywords: kernel methods, learning kernels, feature selection

1. Introduction

One of the key steps in the design of learning algorithms is the choice of thedeaThis choice
is typically left to the user and represents his prior knowledge, but it isa@kiticpoor choice makes
learning challenging while a better choice makes it more likely to be succe$sfibeneral objec-
tive of this work is to define effective methods that partially relieve the usen the requirement
of specifying the features.

x. A significant amount of the presented work was completed while AR vggaduate student at the Courant Institute
of Mathematical Sciences and a postdoctoral scholar at the Univef€igliforinia at Berkeley.
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For kernel-based algorithms the features are provided intrinsically viahthieecof a positive-
definite symmetric kernel function (Boser et al., 1992; Cortes and Vafi®i5; Vapnik, 1998).
To limit the risk of a poor choice of kernel, in the last decade or so, a numibpublications
have investigated the idea lgfarning the kernefrom data (Cristianini et al., 2001; Chapelle et al.,
2002; Bousquet and Herrmann, 2002; Lanckriet et al., 2004; deB@04; Argyriou et al., 2005;
Micchelli and Pontil, 2005; Lewis et al., 2006; Argyriou et al., 2006; Kinalet2006; Cortes et al.,
2008; Sonnenburg et al., 2006; Srebro and Ben-David, 2006; ZidrCmg, 2007; Cortes et al.,
2009a, 2010a,b). This reduces the requirement from the user to adif\spg a family of kernels
rather than a specific kernel. The task of selecting (or learning) alkeubef that family is then
reserved to the learning algorithm which, as for standard kernel-lmas#tbds, must also use the
data to choose a hypothesis in the reproducing kernel Hilbert spadd$R&ssociated to the kernel
selected.

Different kernel families have been studied in the past, but the most widely ane has been
that of convex combinations of a finite set of base kernels. Howevdle different learning kernel
algorithms have been introduced in that case, including those of Lanekradt (2004), to our
knowledge, in the past, none has succeeded in consistently and sighjificatperforming the
uniform combinatiorsolution, in binary classification or regression tasks. The uniform solution
consists of simply learning a hypothesis out of the RKHS associated to amréfambination of
the base kernels. This disappointing performance of learning kerraithlygs has been pointed
out in different instances, including by many participants at differem3\lvorkshops organized on
the theme in 2008 and 2009, as well as in a survey talk (Cortes, 2009) tanidlt(Cortes et al.,
2011b). The empirical results we report further confirm this obsemvatther kernel families
have been considered in the literature, including hyperkernels (Orig 2085), Gaussian kernel
families (Micchelli and Pontil, 2005), or non-linear families (Bach, 2008rt€oet al., 2009b;
Varma and Babu, 2009). However, the performance reported fog thither families does not seem
to be consistently superior to that of the uniform combination either.

In contrast, on the theoretical side, favorable guarantees have bgeeddor learning kernels.
For general kernel families, learning bounds based on covering mami@¥e given by Srebro
and Ben-David (2006). Stronger margin-based generalization geasahased on an analysis of
the Rademacher complexity, with only a square-root logarithmic dependentye number of
base kernels were given by Cortes et al. (2010b) for convex comndriisaof kernels with ar;
constraint. The dependency of theses bounds, as well as othersfgivi, constraints, were
shown to be optimal with respect to the number of kernels. Thedeounds generalize those
presented in Koltchinskii and Yuan (2008) in the context of ensemblegmiek machines. The
learning guarantees suggest that learning kernel algorithms even veltitiaaly large number of
base kernels could achieve a good performance.

This paper presents new algorithms for learning kernels whose perioaria more consis-
tent with expectations based on these theoretical guarantees. In parésutan be seen by our
experimental results, several of the algorithms we describe consistemtigrimrm the uniform
combination solution. They also surpass in performance the algorithm oktiahet al. (2004) in
classification and improve upon that of Cortes et al. (2009a) in regresBus, this can be viewed
as the first series of algorithmic solutions for learning kernels in classificatid regression with
consistent performance improvements.

Our learning kernel algorithms are based on the notioceotered alignmenwhich is a sim-
ilarity measure between kernels or kernel matrices. This can be used tarméas similarity of
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each base kernel with the target kerKgl derived from the output labels. Our definition of cen-
tered alignment is close to the uncentered kernel alignment originally intedducCristianini et al.
(2001). This closeness is only superficial however: as we shalletbdriom the analysis of several
cases and from experimental results, in contrast with our notion of aligntheruncentered kernel
alignment of Cristianini et al. (2001) does not correlate well with perforceaand thus, in general,
cannot be used effectively for learning kernels. We note that otlraekeptimization criteria sim-
ilar to centered alignment, but without the key normalization have been ussshisy authors (Kim
et al., 2006; Gretton et al., 2005). Both the centering and the normalizati@nittcal components
of our definition.

We present a number of novel algorithmic, theoretical, and empirical résulesarning kernels
based on our notion of centered alignment. In Section 2, we introduceraza the properties
of centered alignment between kernel functions and kernel matricdsjliacuss its benefits. In
particular, the importance of the centering is justified theoretically and validaigrically. We
then describe several algorithms based on the notion of centered aliginnSeation 3.

We present two algorithms that each work in two subsequent stages (8e8tbband 3.2):
the first stage consists t#arning a kernelK that is a non-negative linear combination pbase
kernels; the second stage combines this kernel with a standard keseel{barning algorithm such
as support vector machines (SVMs) (Cortes and Vapnik, 1995) fesifilzation, or kernel ridge
regression (KRR) for regression (Saunders et al., 1998), to selediction hypothesis. These
two algorithms differ in the way centered alignment is used to léarnThe simplest and most
straightforward to implement algorithm selects the weight of each basd keaitréx independently,
only from the centered alignment of that matrix with the target kernel matrixe dther more
accurate algorithm instead determines these weights jointly by measuring tieeecealignment
of a convex combination of base kernel matrices with the target one. We stad this more
accurate algorithm is very efficient by proving that the base kernelhi®igan be obtained by
solving a simple quadratic program (QP). We also give a closed-formession for the weights
in the case of a linear, but not necessarily convex, combination. Notanhalternative two-stage
technique consists of first learning a prediction hypothesis using eaefkbanel and then learning
the best linear combination of these hypotheses. But, as pointed out inrfS@&jan general, such
ensemble-based techniques make use of a richer hypothesis spacectioae tised by learning
kernel algorithms. In addition, we present and analyze an algorithm $leataentered alignment
to both select a convex combination kernel and a hypothesis based dethel, these two tasks
being performed in a single stage by solving a single optimization problem (S8&ctip

We also present an extensive theoretical analysis of the notion of edraignment and algo-
rithms based on that notion. We prove a concentration bound for the ndteamtered alignment
showing that the centered alignment of two kernel matrices is sharply ctvated around the cen-
tered alignment of the corresponding kernel functions, the differbeaeg bounded by a term in
O(1/+/m) for samples of sizen (Section 4.1). Our result is simpler and directly bounds the dif-
ference between these two relevant quantities, unlike previous workribtia@ini et al. (2001)
(for uncentered alignments). We also show the existence of good pmsdictdernels with high
centered alignment, both for classification and for regression (Sectign Ftls result justifies
the search for good learning kernel algorithms based on the notion tdrednalignment. We
note that the proofs given for similar results in classification for uncemtalignments by Cris-
tianini et al. (2001, 2002) are erroneous. We also present stabikgebgeneralization bounds for
two-stage learning kernel algorithms based on centered alignment wheedtwed stage is kernel
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ridge regression (Section 4.3). We further study the application of thmseds in the case of our
alignment maximization algorithm and initiate a detailed analysis of the stability of thisithlgo
(Appendix B).

Finally, in Section 5, we report the results of experiments with our centdigrtheent-based al-
gorithms both in classification and regression, and compare our resultswindL,-regularized
learning kernel algorithms (Lanckriet et al., 2004; Cortes et al., 20@3ayell as with the uniform
kernel combination method. The results show an improvement both over ifioenurtombina-
tion and over the one-stage kernel learning algorithms. They also dentersgsstong correlation
between the centered alignment achieved and the performance of thiéhaiglor

2. Alignment Definitions

The notion of kernel alignment was first introduced by Cristianini et &1012. Our definition of
kernel alignment is different and is based on the notion of centering iretitare space. Thus, we
start with the definition of centering and the analysis of its relevant propertie

2.1 Centered Kernel Functions

Let D be the distribution according to which training and test points are drawnatre mapping
®: X — H is centered by subtracting from it its expectation, that is forming ®PbyEx|®], where
Ex denotes the expected value®dfwhenx is drawn according to the distributidd. Centering a
positive definite symmetric (PDS) kernel functin X x X — R consists of centering any feature
mapping® associated t&. Thus, the centered kerni€} associated t& is defined for allk,x' € X

by

Ke(x,X) = (®(x) — E[®])" (P (X) — E[®])

Xl
=K X) = E[K(x,X)] — E[K(x,X)] + E [K(x,X)].
X X,X
This also shows that the definition does not depend on the choice of thesf@aapping associated
to K. SinceKc(x,x) is defined as an inner produét; is also a PDS kernél.Note also that for a
centered kernekc, Ex v [Kc(X,X)] = 0, that is, centering the feature mapping implies centering the
kernel function.

2.2 Centered Kernel Matrices

Similar definitions can be given for a finite sam@e- (xs, ..., Xn) drawn according t®: a feature
vector®(x;) with i € [1,m] is centered by subtracting from it its empirical expectation, that is form-
ing it with ®(x;) — @, where® = 1 $™, d(x;). The kernel matriX associated t& and the sample

1. This is an extended version of Cortes et al. (2010a) with much additiesi@rial, including additional empirical
evidence supporting the importance of centered alignment, the descaptiaiscussion of a single-stage algorithm
for learning kernels based on centered alignment, an analysis ofraalimed centered alignment and the proof of
the existence of good predictors for large values of centered aligngemralization bounds for two-stage learning
kernel algorithms based on centered alignment, and an experimemstigation of the single-stage algorithm.

2. For convenience, we use a matrix notation for feature vectors anpl(us" ®(x') to denote the inner product between
two feature vectors and similartp(x)d(x') T for the outer product, including in the case where the dimension of the
feature space is infinite, in which case we are using infinite matrices.
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Sis centered by replacing it witk ; defined for alli, j € [1,m] by
Kclij = Ki Ki Kij+—= $ Ki (1)
clij ij — Zl ij — Z ij 2 |7Z,1 ij-

Let ® = [D(x1),...,P(Xm)]" and® = [®,...,®|". Then, it is not hard to verify tha; = (& —
®)(®—®)', which shows thakK . is a positive semi-definite (PSD) matrix. Also, as with the kernel
function,% >iM—1[Kclij = 0. Let(-,-)r denote the Frobenius product and|r the Frobenius norm
defined by

VA,B € R™™ (A B)e = Tr[A'B] and||Al|r = v/(A,A).

Then, the following basic properties hold for centering kernel matrices.
Lemma 1 Let1 € R™! denote the vector with all entries equal to one, &ride identity matrix.

1. For any kernel matriX € R™™ the centered kernel matrik; can be expressed as follows
11" 117
o - i1,
m m
2. For any two kernel matrice§ andK’,

(Ke, Ke)F = (K, Kg)E = (K¢, K ).

Proof The first statement can be shown straightforwardly from the definitisgf.gEquation (1)).
The second statement follows from

(Ke,Ke)r =Tr“I 1rﬂ+<[| iﬂ [| lﬂﬂK’[l ﬁﬂ]

the fact thafl — %11T}2 =[l- %11T}, and the trace property [KB] = Tr[BA], valid for all matrices
A,B e R™M [ |

We shall use these properties in the proofs of the results presentedimnSec

2.3 Centered Kernel Alignment

In the following sections, in the absence of ambiguity, to abbreviate the ngtattooften omit the
variables over which an expectation is taken. We define the alignment ofdmelkfunctions as
follows.

Definition 2 (Kernel function alignment) Let K and K be two kernel functions defined ovErx
X such that0 < E[KZ] < +w and 0 < E[K/?] < +w. Then, thealignmentbetween K and Kis

defined by EIKK]
Ciie

pK,K') = ———2C .
E[KZE[K?

Since | E[K:KY]| < 1/E[K2 E[K.?] by the Cauchy-Schwarz inequality, we hgve,K’) € [-1,1].
The following lemma shows more precisely tipgK, K’) € [0, 1] whenK andK’ are PDS kernels.
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Lemma 3 For any two PDS kernels K and'KE[KK'] > 0.

Proof Let @ be a feature mapping associatedKt@and®d’ a feature mapping associatedka By
definition of @ and®’, and using the properties of the trace, we can write:
E [K(x,X)K'(x,X)] = E [®(x)'®(X)®'(X)" &' (x)]

X, X XX

= E [Tr[e() o(x)@/(x) @' ()]]

= (E[@(X)®'(X)], Eo(X)@'(x) ])r = [UIIt >0,

whereU = Ex[®(x)d'(x)"]. [ |

The lemma applies in particular to any two centered kerdgBndK{ which, as previously shown,
are PDS kernels ik andK’ are PDS. Thus, for any two PDS kern&lsndK’, the following holds:

E[KcKe] > 0.

We can define similarly the alignment between two kernel matricend K’ based on a finite
sampleS= (xi,...,Xm) drawn according t®.

Definition 4 (Kernel matrix alignment) Let K € R™™ and K’ € R™™ be two kernel matrices
such that|K¢||r # 0and ||[K{||r # 0. Then, thealignmentbetweerkK andK’ is defined by

o~ <Kc,Ké>F
P(K,K') = ——=—C
IKellFIKe]lF

Here too, by the Cauchy-Schwarz inequalfifi ,K’) € [-1,1] and in factp(K,K’) > 0 since the

Frobenius product of any two positive semi-definite matriéeandK’ is non-negative. Indeed,
for such matrices, there exist matridgdsandV such thaik = UU™ andK’ = VV. The statement
follows from

(K, K" =Tr(UU'W ) =Tr((U'V)"(U'V)) = UV >0. (2)
This applies in particular to the kernel matrices of the PDS keidetndK(:
<KCa K::>F > 0.

Our definitions of alignment between kernel functions or between kenaglfices differ from
those originally given by Cristianini et al. (2001, 2002):
/ !/
A_ _ EKK] A (K,K')g 7
E[K? E[K?] IKIF (K" [|F

which are thus in terms ¢f andK’ instead oK. andK{ and similarly for matrices. This may appear
to be a technicality, but it is in fact a critical difference. Without that cenggrthe definition of
alignment does not correlate well with performance. To see this, cortbiglstandard case where
K’ is the target label kernel, that i (x,x') = yy, with y the label ofx andy the label ofx, and
examine the following simple example in dimension two+£ R?), whereK (x,x) = x-x +1 and
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Distribution, D
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Figure 1: (a) Representation of the distributidnlin this simple two-dimensional example, a frac-
tion a of the points are at—1,0) and have the label1. The remaining points are at
(1,0) and have the label1. (b) Alignment values computed for two different definitions
of alignment. The solid line in black plots the definition of alignment computed decor
ing to Cristianini et al. (2001 = (o + (1 — a)?)¥2, while our definition of centered
alignment results in the straight dotted blue Ime- 1.

KINEMATICS | IONOSPHERE| GERMAN | SPAMBASE | SPLICE

(REGR)) (REGR)) (cLAass.) | (cLAsS.) | (cLAss)
p 0.9624 0.9979 0.9439 0.9918 0.9515
A 0.8627 0.9841 0.9390 0.9889 | -0.4484

Table 1: The correlations of the alignment values and error-ratesiofsgaternels. The top row re-
ports the correlation of the accuracy of the base kernels used in Seatitintbe centered
alignmentsp, the bottom row the correlation with the non-centered alignment

where the distributio is defined by a fraction € [0, 1] of all points being af—1,0) and labeled
with —1, and the remaining points ét, 0) with label+1, as shown in Figure 1.

Clearly, for any value ot € [0, 1], the problem is separable, for example with the simple vertical
line going through the origin, and one would expect the alignment to be 1etdawthe alignment
A calculated using the definition of the distributibradmits a different expression. Using

E[K"?] =1,
EK? =0?-4+(1-0)®4+20(1-a)-0=4(a’+(1-0a)?),
EKK =022+ (1-a)?-2+20(1—0a)-0=2(a®+ (1-a)?),

givesA = (0?4 (1—a)?)Y/2. Thus,A is never equal to one except far= 0 ora = 1 and for the
balanced case whete= 1/2, its value isA = 1/4/2 ~ .707 < 1. In contrast, with our definition,
p(K,K")=1foralla € [0,1] (see Figure 1).

This mismatch betweeA (or A) and the performance values can also be seen in real world
data sets. Instances of this problem have been noticed by Meila (2003 athin and Richard
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Figure 2: Detailed view of the splice and kinematics experiments presentedblim TaBoth the
centered (plots in blue on left) and non-centered alignment (plots in o@ngght) are
plotted as a function of the accuracy (for the regression problem in tleenlatics task
“accuracy” is 1 - RMSE). It is apparent from these plots that the rertered alignment
can be misleading when evaluating the quality of a kernel.

(2008) who have suggested various (input) data translation methodsy &ristianini et al. (2002)
who observed an issue for unbalanced data sets. Table 1, as welluse Biggive a series of
empirical results in several classification and regression tasks baskedeosets taken from the UCI
Machine Learning Repositorytfp://archive.ics.uci.edu/ml/ ) and Delve data setst{p:
Iwww.cs.toronto.edu/ ~ delve/data/datasets.html ). The table and the figure illustrate the
fact that the quantitﬁ measured with respect to several different kernels does not abwarsdate
well with the performance achieved by each kernel. In fact, for the splassification task, the
non-centered alignment is negatively correlated with the accuracy, wWlaitg@positive correlation
is expected of a good quality measure. The centered notion of aligrprieswever, shows good
correlation along all data sets and is always better correlatedthan

The notion of alignment seeks to capture the correlation between the rarad@blesk (x,x')
andK’(x,Xx') and one could think it natural, as for the standard correlation coefficient®nsider
the following definition:

o E[(K — E[K])(K' — E[K'])]
K,K') = '
PK.K) VEI(K —E[K])Z E[(K' — E[K'])?]
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However, centering the kernel values, as opposed to centering theefealues, is not directly
relevant to linear predictions in feature space, while our definition of alighpis precisely related
to that. Also, as already shown in Section 2.1, centering in the feature spplies the centering
of the kernel values, sincell;] =0 and% >i—1[Kclij = 0 for any kerneK and kernel matrix.
Conversely, however, centering the kernel does not imply centerirepinrie space. For example,
consider any kernel where all the row marginals are not all equal.

3. Algorithms

This section discusses several learning kernel algorithms based ootittre of centered alignment.
In all cases, the family of kernels considered is that of non-negativibitmtions ofp base kernels
Kk, ke [1,p]. Thus, the final hypothesis learned belongs to the reproducing keiibelrt space
(RKHS) Hg,, associated to a kernel of the foip, = zl'f:l WKy, with ¢ >0, which guarantees that
K, is PDS, and|u||=A>0, for some regularization parameter

We first describe and analyze two algorithms that both work in two stagese ifirsih stage,
these algorithms determine the mixture weightdn the second stage, they train a standard kernel-
based algorithm, for example, SVMs for classification, or KRR for regioes in combination with
the kernel matrixK , associated t&,,, to learn a hypothesis € Hg,,. Thus, theséwo-stage algo-
rithmsdiffer only by their first stage, which determinkég. We describe firstin Section 3.1 a simple
algorithm that determines each mixture weightindependently,dlign ), then, in Section 3.2, an
algorithm that determines the weiglpig jointly (alignf ) by selectingu to maximize the alignment
with the target kernel. We briefly discuss in Section 3.3 the relationship bftsweestage learning
algorithms with algorithms based on ensemble techniques, which also consisi efages. Fi-
nally, we introduce and analyzesingle-stage alignment-based algorithwhich learnsy and the
hypothesis € Hy,, simultaneously in Section 3.4.

3.1 Independent Alignment-based Algorithm @lign )

This is a simple but efficient method which consists of using the training sampldeépéndently
compute the alignment between each kernel matiixand the target kernel matriky = yy',
based on the labelg and to choose each mixture weightproportional to that alignment. Thus,
the resulting kernel matrix is defined by:

P 1 P (KiKy)e
K,OY B(KeKy)Kg= i
w0 2 PKeKIKe= e 2 K

K. 3)

When the base kernel matricks have been normalized with respect to the Frobenius norm, the
independent alignment-based algorithm can also be viewed as the soluéigoimf maximization
of the unnormalized alignment defined as follows, witthbenorm constraint on the norm g¢f.

Definition 5 (Unnormalized alignment) Let K and K be two PDS kernels defined ovérx X and
K andK’ their kernel matrices for a sample of size m. Thenuheormalized alignmerg, (K,K")
between K and Kand theunnormalized alignmer,(K,K’) betweerk andK’ are defined by

pu(K,K') = E/[KC(X,X/)Ké(X,X’)] and py(K,K") = %(KC,K@F.
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Since they are not normalized, the alignment valmesida are no longer guaranteed to be in the
interval [0, 1]. However, assuming the kernel functiBnand labels are bounded, the unnormalized
alignment betweeK andKy are bounded as well.

Lemma 6 Let K be a PDS kernel. Assume that for alt X, K.(x,x) < R? and for all output label
Yy, ly] <M. Then, the following bounds hold:

0< pu(K,Ky) <MR? and 0<py(K,Ky) <MR2.

Proof The lower bounds hold by Lemma 3 and Inequality (2). The upper bouardbe obtained
straightforwardly via the application of the Cauchy-Schwarz inequality:

PRK.K) =  E  [Ke(xX)yyPP < E[K2(xX)] E[yy]2 < R'M?
(xy),(X.y) XX 1A%

N 1 1 mRmM
pu(K,K’) = W<Kc,KY>F < @HKcHFHKyHF < =z = RPM,

where we used the identitf ¢, Ky¢)r = (K¢, Ky)r from Lemma 1. [ |

We will consider more generally the corresponding optimization with @norm constraint on
with g > 1:

P p
max Pu(k;UkKk,KY) = <kZIIJkKk, KY>F (4)
p
subject to: Z W <A
=1

An explicit constraint enforcinge > 0 is not necessary since, as we shall see, the optimal solution
found always satisfies this constraint.

1

Proposition 7 Letu* be the solution of the optimization problé#), then |f O (K, KY>F

Proof The Lagrangian corresponding to the optimization (4) is defined as follows,
p p
L(IJ')B):_ZUkKkaY F+B Z
K=1 k=1

where the dual variabl@ is non-negative. Differentiating with respectitpand setting the result to
Zero gives

oL - a1
ﬂ - 7<Kk7KY>F +unE ! =0 = Mk 0 <KkaKY>|gil’

which concludes the proof. |

Thus, forg= 2, u O (K, Ky ) is exactly the solution given by Equation (3) modulo normalization
by the Frobenius norm of the base matrix. Note thatffer1, the optimization becomes trivial and
can be solved by simply placing all the weightawith the largest coefficient, that is tipg whose
corresponding kernel matriky has the largest alignment with the target kernel.
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3.2 Alignment Maximization Algorithm

The independent alignment-based method ignores the correlation betwdmsthkernel matrices.
The alignment maximization method takes these correlations into account. ihdeteithe mixture
weightsyy jointly by seeking to maximize the alignment between the convex combination kernel
K. =Sk Kk and the target kernély = yy'.

This was also suggested in the case of uncentered alignment by Cristtaliri2€01); Kandola
et al. (2002a) and later studied by Lanckriet et al. (2004) who shdivatdthe problem can be
solved as a QCQP (however, as already discussed in Section 2.1, thd@aerad alignment is not
well correlated with performance). In what follows, we present evererafficient algorithms for
computing the weightpx by showing that the problem can be reduced to a simple QP. We start by
examining the case of a non-convex linear combination where the compohentsn be negative,
and show that the problem admits a closed-form solution in that case. Wedhnigsly use that
solution to obtain the solution of the convex combination.

3.2.1 LUNEAR COMBINATION

We can assume without loss of generality that the centered base kerrieksiégr are independent,
that is, no linear combination is equal to the zero matrix, otherwise we cart ael@dependent
subset. This condition ensures tj#t,, ||r > 0 for arbitraryp and thaf(K ,,yy") is well defined
(Definition 4). By Lemma 1(K ., Ky¢)r = (K, Ky)r. Thus, sincg|Kyc||r does not depend
on p, the alignment maximization problem npgg\{ﬁ(Ku,ny) can be equivalently written as the
following optimization problem:

K T
max< peYY'F
pent  |IK el

; (5)

whereM = {u: ||u]|]2 = 1}. A similar set can be defined via thg-norm instead of,. As we
shall see, however, the direction of the soluthdoes not change with respect to the choice of
norm. Thus, the problem can be solved in the same way in both cases aatjgebtly scaled
appropriately. Note that, by LemmaK,, . = UnK Uy With U = | — 117 /m, thus,

p p p
Ko = um(kzlukKk) Un= 3 iUnKiln = 3 Wi

Let
a= ((Kie,YYE, -, (Kpe, VY E) T,

and letM denote the matrix defined by
M = (Kke, Kic)F,

for k,I € [1, p]. Note that, in view of the non-negativity of the Frobenius product of symime8D
matrices shown in Section 2.3, the entrie;a@ndM are all non-negative. Observe also thais a
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symmetric PSD matrix since for any vectr= (x,...,Xp)" € RP,

p
XTMX = Z XX M
kI=1

p
=Tr { Z XkXIchKIc]
k=1

p p p
=T [ (3 %Ki (3 %K) = | Y %Kil > 0.
k=1 1= K=1
The strict inequality follows from the fact that the base kernels are lingaatgpendent. Since this
inequality holds for any non-zep¥, it also shows thatl is invertible.

Proposition 8 The solutiorpe* of the optimization problem (5) is given py = ﬁ

. . . . T
Proof With the notation introduced, problem (5) can be rewrittepuas- argmaﬁuﬂzzl\/ﬁ.
Thus, clearly, the solution must verify*'a > 0. We will square the objective and yet not enforce
this condition since, as we shall see, it will be verified by the solution we fiflderefore, we
consider the problem

T9)2 Taal

pe= argmax(i%a) = argmax“ Taa g

lulo=1 #MB =1 p Mp

In the final equality, we recognize the general Rayleigh quotientvl=eM /2y, andv* = MY/2 %,
then

*

I/T[M —1/2aaTM —1/2] v
v’ = argmax .

-
IM~%/2p =1 vv

Hence, the solution is
M —1/25]2 T 2
v* = argmax Q — argmax Hy] M‘l/za] .
(YR . (1 4P IM-v2p =1 LIV
Thus,v* € Vec(M ~¥/2a) with ||[M~Y/2u*||, = 1. This yields immediately* = Hl\'\ﬂijg\l which ver-
ifies u*'a=a'M ~1a/||M ~ta|| > 0 sinceM andM ~* are PSD. [ |

3.2.2 NVEX COMBINATION (alignf )

In view of the proof of Proposition 8, the alignment maximization problem with #teh$’ =
{||p]|]2 = 1A p > 0} can be written as
Taal

aa
u*:argmaqu ag
pear B Mp

(6)
The following proposition shows that the problem can be reduced to savéigple QP.
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Proposition 9 Letv* be the solution of the following QP:

minv'Mv —2v'a. (7)
v>0
Then, the solutiop™ of the alignment maximization problem (6) is givergldy= v* /||v*||.

Proof Note that problem (7) is equivalent to the following one defined gvandb

min  b’u"Mp—2bu'a, (8)
MZO-bH>H0H2:1

where the relatiov = by, can be used to retriewe The optimal choice ob as a function ofu
can be found by setting the gradient of the objective function with regpdxto zero, giving the

closed-form solutio* = M‘T‘Lla . Plugging this back into (8) results in the following optimization

after straightforward simplifications:

T4)\2

. a
min —LT ),
p>0|lul=1 p'Mp

which is equivalent to (6). This shows that= b*u* wherep* is the solution of (6) and concludes
the proof. |

It is not hard to see that this problem is equivalent to solving a hard makgih goblem, thus,
any SVM solver can also be used to solve it. A similar problem with the non+esehtfinition of
alignment is treated by Kandola et al. (2002b), but their optimization solutiéerslfrom ours and
requires cross-validation.

Also, note that solving this QP problem does not require a matrix inversidm. dh fact, the
assumption about the invertibility of matrM is not necessary and a maximal alignment solution
can be computed using the same optimization as that of Proposition 9 in the motibiewcase. The
optimization problem is then not strictly convex however and the alignment solutimt unique.

We now further analyze the properties of the solutioof problem (7). Lefoo(u) denote the
partially normalized alignment maximized by (5):

(KugVyr  pla  (pM'am _ (u,M 'a)u

—~ T2 A
Bo(p) = [y 1 B(r) = - ="
O( ) H HF ( ) HK/J,CHF [J,TMLL [LTM[J, ”H”M

The following proposition gives a simple expressionggts).

Proposition 10 For = v/||v||, with v#0 solution of the alignment maximization problém), the
following identity holds:

Po(pe) = [|V[|m-

Proof Since||v||Z, —2vTa= |v||? —2(v,Mla)y = |[v—M~1a||3, — |M~1a||?, the optimization
problem (7) can be equivalently written as

min|lv—M 1al|3.
szH I
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This implies that the solutionis theM -orthogonal projection dfl ~1a over the convex seiv: v >
0}. Thereforey — M “laisM -orthogonal tov:

(v,v—Mlay =0 = ||v|[Z = (v,M ta)y.

Thus, . .
<V7M7 a)M </~‘I’7M7 a)M
\Y4 = = = p ,
Vi = = Ty P

which concludes the proof. |

Thus, the proposition gives a straightforward way of compupigige), thereby als@(u), from the
M-norm of the solution vector thatu is derived from.

3.3 Relationship with Ensemble Techniques

An alternative two-stage technique for learning with multiple kernels condifitstdearning a pre-
diction hypothesi$y using each kernéfy, ke [1, p|, and then of learning the best linear combina-
tion of these hypothesek:= Zleukhk- But, such ensemble-based techniques make use of a richer
hypothesis space than the one used by learning kernel algorithms stieit @ Lanckriet et al.
(2004). For ensemble techniques, each hypottigsise [1, p], is of the formh, = 7 ; aikKk (X, )

for someay = (ag,...,0mk)" € R™ with different constraintg|a|| < Ak, Ak > 0, and the final
hypothesis is of the form

p ] P m m p
= aikKk(Xi, ) = ik Kk (X, -).
k;uk k kzlukgl ikKk (X, -) i;k;“k ikKk (%, )

In contrast, the general form of the hypothesis learned using kearelig algorithms is

m m p pm

iZlonKu(xi,-) - i;ai kZIHkKk(Xi,') = kZliZlUkaiKk(Xia s

for somea € R™ with |laf| <A, A > 0. When the coefficientsi can be decoupled, that is

aik = a;Bx for someps, the two solutions seem to have the same form but they are in fact differen
since in general the coefficients must obey different constraints rgliffé\cs). Furthermore, the
combination weightgy are not required to be positive in the ensemble case. We present a more
detailed theoretical and empirical comparison of the ensemble and learmired taxhniques else-
where (Cortes et al., 2011a).

3.4 Single-stage Alignment-based Algorithm

This section analyzes an optimization based on the notion of centered alignmécts, can be
viewed as the single-stage counterpart of the two-stage algorithm déslcinsSections 3.1 - 3.2.

As in Sections 3.1 and 3.2, we denotedthe vector((K1ic,Yy' )k, ..., (Kpe, Yy )r)" and let
M € RP*P be the matrix defined by = (K, Kic)r. The optimization is then defined by aug-
menting standard single-stage learning kernel optimizations with an alignment matkimizon-
straint. Thus, the domaif/ of the kernel combination vectqr is defined by:

M={p: p>0N|pu| <AAPKLYY) > Q},
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for non-negative parametefsandQ. The alignment constraim(K ,,yy') > Q can be rewritten
asQ+\/pu'Mp — p'a < 0, which defines a convex region. Thid, is a convex subset @&P.

For a fixedu € M and corresponding kernel mati,,, let F (u, ) denote the objective func-
tion of the dual optimization problem minimize 4z F (i, ) solved by an algorithm such as SVM,
KRR, or more generally any other algorithm for whighis a convex set ané (u,-) a concave
function for allp € M, andF (-, &) convex for alla € 4. Then, the general form of a single-stage
alignment-based learning kernel optimization is

min maxF (u, o).
min mas (p, )

Note that, by the convex-concave properties-adnd the convexity of and 4, von Neumann’s
minimax theorem applies:

min maxF (u, o) = maxmin F(u, o).
neEM o€ <H’ ) oA peM (u’ )

We now further examine this optimization problem in the specific case of thelk#ge regression
algorithm. In the case of KRRE (u, ) = —a' (K, + Al )+ 2a'y. Thus, the max-min problem
can be rewritten as

. T T
maxmin — K,+AN)a+2 .
A et a (Ky Ja+2a'y

Letb, denote the vectaia'K e, ...,a'Kpa) ", then the problem can be rewritten as

max—Aa' o+ 2a'y — maxp b,
acq HEM

where A = Aom in the notation of Equation (10). We first focus on analyzing only the term
—maX,cas 1'by. Since the last constraint ifM is convex, standard Lagrange multiplier theory
guarantees that for ary there exists § > 0 such that the following optimization is equivalent to
the original maximization ovet.

muin — by +Y(QV i Mp —p'a)
subject top > OA ||| < AAY> 0.

Note thaty is not a variable, but rather a parameter that will be hand-tuned. Nain agplying
standard Lagrange multiplier theory we have that for gfy) > 0 there exists aQ’ such that the
following optimization is equivalent:

min — ' (ya+bg)
subject tou > OA ||| S AAY>0A R Mpu < Q2

Applying the Lagrange technique a final time (for ahyhere exists & > 0 and for anyQ’? there
exists ay’ > 0) leads to

min —p'(Ya+ba)+Yp' p+y My
subject tou > 0AY, Y,y > 0.
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This is a simple QP problem. Note that the overall problem can now be written as

max —Aa'a+2a'y+p'(yat+be)—Yu'pu—y ' Mpu.
acq,u>0
This last problem is not convex ifax, 1), but the problem is convex in each variable. In the case
of kernel ridge regression, the maximizationanadmits a closed form solution. Plugging in that
solution yields the following convex optimization problemgin

T;gyT(Ku +A) "ty —yu'at p' (YM Y1 p.

Note that multiplying the objective by using the substitutiop’ = %p, results in the following
equivalent problem,

miny" (K, +1)71y = AypTa+ pu" (F%Y'M + 2% D,
w>

which makes clear that the trade-off parametean be subsumed by tlyey andy’ parameters.
This leads to the following simpler problem with a reduced number of tradpao&meters,

miny' (K, +1 ) ly—yu'atp (YM+Y)p. ©)

This is a convex optimization problem. In particulgr— yT(KM + 1)~y is a convex funtion by
convexity of f : M — y'M 1y over the set of positive definite symmetric matrices. The convexity
of f can be seen from that of its epigraph, which, by the property of ther®dmplement, can be
written as follows (Boyd and Vandenberghe, 2004):

epif ={(M,t): M =0,y' Mty <t} ={(M,1): (}'\A 3{) > 0,M > 0}.

This defines a linear matrix inequality (M ,t) and thus a convex set. The convex optimization (9)
can be solved efficiently using a simple iterative algorithm as in Cortes et08194). In practice,
the algorithm converges within 10-50 iterations.

4. Theoretical Results

This section presents a series of theoretical guarantees related to the afdtiernel alignment.
Section 4.1 proves a concentration bound of the frmp| < O(1/,/m), which relates the centered
alignmentp to its empirical estimatp. In Section 4.2, we prove the existence of accurate predictors
in both classification and regression in the presence of a krmath good alignment with respect

to the target kernel. Section 4.3 presents stability-based generalizatiodbtar the two-stage
alignment maximization algorithm whose first stage was described in Section 3.2.2

4.1 Concentration Bounds for Centered Alignment

Our concentration bound differs from that of Cristianini et al. (200dthibecause our definition
of alignment is different and because we give a bound directly on thetipaf interest|p — p|.
Instead, Cristianini et al. (2001) give a bound ]@h—ﬂ], whereA’ = A can be related té\ by
replacing each Frobenius product with its expectation over samples afisize

The following proposition gives a bound on the essential quantities apgearthe definition
of the alignments.
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Proposition 11 Let K and K’ denote kernel matrices associated to the kernel functions K and
K’ for a sample of size m drawn according to D. Assume that for agyxx K(x,x) < R? and
K'(x,x) < R2. Then, for anyd > 0, with probability at leastl — &, the following inequality holds:

SR2R2 2
< 18R +24R2R/2\/%.
m 2m

Note that in the cask’(x;,X;) = Yiyj, we then hav&®? < max y?.
Proof The proof relies on a series of lemmas given in the Appendix. By the triangtgiaity and
in view of Lemma 19, the following holds:

<K07 Ké)F
me

— E[KcK{]

<KC7K£:>F / <KC7Ké:>F <KC7K2:>F 18R*R?
B AN < - )
e SUCIE m2 o T
Now, in view of Lemma 18, the application of McDiarmid's inequality (McDiarmid 829 to

KeKoe gives for anye > O:

PrH <Kcr,:;’c>F e [(Kcr?:;’c#]

Settingd to be equal to the right-hand side yields the statement of the proposition. |

> s} < 2exg—2me?/(24R°R?)?).

Theorem 12 Under the assumptions of Proposition 11, and further assuming that tiditmms of
the Definitions 2-4 are satisfied f@(K,K’) andp(K,K’), for anyd > 0, with probability at least
1- 9, the following inequality holds:

Ip(K.K) —B(K K| < 188| > 4 83/ 02

with B = max(RRR2/ E[K2], R2R2/ E[K/?)).
Proof To shorten the presentation, we first simplify the notation for the alignmentilaws:
b b
K,K') = — p(K,K') = —,
p(K,K’) N p(K,K) N

with b = E[KcKY], a= E[K2], & = E[K/?] and similarly,b = (1/m?) (K¢, KL)g, a= (1/m?)||K¢||%,
and@ = (1/m?)||K%||?. By Proposition 11 and the union bound, for any 0, with probability at

—~ 6
least 1- &, all three differencea—a, & — &, andb— b are bounded by = 18R;R2 + 24R?R?,/ '02%
Using the definitions op andp, we can write:

l.K) ~plK K = | - | =[PV Dve
B (b—B)\/ﬁ—B(\/a—\/ﬁ)’
- adaa
Cqb=b) ., ad — aal
- PR v Ve
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Sincep(K,K’) € [0,1], it follows that
|b—ﬂ+_ lad — a&
Vad = Vad(vad +Vaa)

Assume first thafl < &. Rewriting the right-hand side to make the differenaesa anda’ — &
appear, we obtain:

Ip(K,K") —p(K,K")| <

lb—b| |(a—a@)a +a@ —a)

Vad = Vad(vad +Vad)

’p<K7K/) _ﬁ(KvK/)| <

o [ a+a ] a [ a a
< 1+ < 1+ +
vad vad ++vaa vad vad vaa
<9 24 /% —[2 +1]a
T vad a vaa a

. . . 2 1 ~
We can similarly obtalr{ﬁ + g} o whena < a. Both bounds are less than or equal to 3 (@@g)
[ ]

Equivalently, one can set the right hand side of the high probability statgonesented in Theo-
rem 12 equal te and solve foi5, which shows that Aiip(K, K’) — p(K,K')| > €] < O(e™™").

4.2 Existence of Good Alignment-based Predictors

For classification and regression tasks, the target kernel is baseck dabitls and defined by
Ky (x,X) = yy, where we denote by the label of pointx andy’ that of X. This section shows
the existence of predictors with high accuracy both for classificationegréssion when the align-
mentp(K, Ky) between the kerndd andK(y is high.
In the regression setting, we shall assume that the labels have been nedsatih that 2] =

1. In classificationy = +1 and thus B?] = 1 without any normalization. Denote Iy the hypoth-
esis defined for abkk € X by

h* (X) — EX’ [yIKC(Xﬂ Xl)] )

EKZ]

Observe that by definition df*, Ex[yh"(x)] = p(K,Ky). For anyx € X, definey(x) = %

andl" = maxy(x). The following result shows that the hypothelishas high accuracy when the
kernel alignment is high anid not too large?

Theorem 13 (classification)Let Rh*) = Prlyh* (x) < 0] denote the error of hin binary classifica-
tion. For any kernel K such thdt < E[K2] < +, the following holds:

R(h") <1-p(K,Ky)/T.

3. A version of this result was presented by Cristianini, Shawe-Taylmséeff, and Kandola (2001) and Cristianini,
Kandola, Elisseeff, and Shawe-Taylor (2002) for the so-calledeParindow solution and non-centered kernels.

2 1

However, both proofs are incorrect since they rely implicitly on the faat thax [%] 2 =1, which can
only hold in the trivial case where the kernel functi¢fis a constant: by definition of the maximum and expectation

operators, max Ex [K2(x,X)]] > Ex [ Ex[K?(x,X)]], with equality only in the constant case.
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Proof Note that for allx € X,

lVEx [y Ke (X, X)]| \/Ex/ ] Ex [K2(X,X)] \/EX/ (%, X)]
EKg E[Kg] E[KZ] -

yh*(x)] =

In view of this inequality, and the fact thag[izh* (x)] = p(K,Ky), we can write:

1-R(h") = Priyh’(x) > 0]

= E[Liyn (x>0}
[yh % Lyt x >>0}}
€[] -
wherel,, is the indicator function of the event |

A probabilistic version of the theorem can be straightforwardly deriweddting that by Markov’s
inequality, for anyd > 0, with probability at least & &, |y(x)| < 1/V/3.

Theorem 14 (regression)Let Rh*) = Ey[(y — h*(x))?] denote the error of hin regression. For
any kernel K such thal < E[K?] < +w, the following holds:

R(h*) <2(1-p(K,Ky)).
Proof By the Cauchy-Schwarz inequality, it follows that:

, (X, /\12
e 0 =& | =P

By ly?) B [K2(.X)
SE[ EKZ) }

Ex [y?] Exx [K2(X, X
— [y } EiKE?] (X X)] — ED/Z] -1

Using again the fact thatdfyh*(x)] = p(K, Ky), the error ofh* can be bounded as follows:
E[(y—h"(x)) = E[h* ()2 + E[y?] - 2Elyh" ()] < 141 2p(K, Ky),

which concludes the proof. |
The hypothesi* is closely related to the hypothesi§ derived as follows from a finite sample
S= ((X17y1)7 SRR (Xn’hym)):

2 3T YiKe(%,%)

\/mZZIj 1Ke(Xi, X)) \/mzzu 1YIYJ)

Note in particular thaEy[yhs(X)] = p(K,Ky), where we denote b the expectation based on the
empirical distribution. Using this and other results of this section, it is not twasthow that with
high probability|R(h*) — R(h)| < O(1/+/m) both in the classification and regression settings.

hs(
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For classification, the existence of a good predigtapased on the unnormalized alignmept
(see Definition 5) can also be shown. The corresponding guarameesisrgler and do not depend
on a term such as. However, unlike the normalized case, the loss of the predigtderived from
a finite sample may not always be close to thagyof Note that in classification, for any labgl
ly| = 1, thus, by Lemma 6, the following holds: 0p,(K,Ky)| <R?. Letg* be the hypothesis
defined by:

9" (%) = Ely Ke(x,X)]

Since 0< py(K,Ky)| < R?, the following theorem provides strong guaranteesgfowhen the un-
normalized alignmerd is sufficiently large, that is close ®?.

Theorem 15 (classification)Let R g*) = Priyg*(X) < O] denote the error of §in binary classifica-
tion. For any kernel K such thatup, , Kc(x,X) < R?, we have:

R(g") < 1—pu(K,Ky)/R.
Proof Note that for allx € X,
g (¥)| = |g"(X)| = IXE{YKC(X, xX)]| < R

Using this inequality, and the fact thag[ig*(x)] = pu(K,Ky), we can write:

1-R(g") =Prlyg’(x) = 0] = E[1yyg(x>0}]
= E[ gkg )1{yh><( >>0}]
> E[ g )] — pu(K.Ky) /R,
which concludes the proof. ]

4.3 Generalization Bounds for Two-stage Learning Kernel Algorithms

This section presents stability-based generalization bounds for twolstagag kernel algorithms.
The proof of a stability-based learning bound hinges on showing thataheig algorithm issta-
ble, that is the pointwise loss of a learned hypothesis does not change atgstithe training
sample changes only slightly. We refer the reader to Bousquet and Hlig@@0) for a full intro-
duction.

We present learning bounds for the case where the second stagetifdhithm is kernel ridge
regression (KRR). Similar results can be given in classification usingitdge such as SVMs in
the second stage. Thus, in the first stage, the algorithms we examine sebesbimation weight
parametegs € My ={p: >0, | p||d=/Aq} which defines a kerné{,,, and in the second stage use
KRR to select a hypothesis from the RKHS associateld, o While several of our results hold in
general, we will be more specifically interested in the alignment maximization algopitesented
in Section 3.2.2.
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Recall that for a fixed kernel functiol,, with associated RKHSlk, and training se =
((X1,¥1),---, (Xm,Ym)), the KRR optimization problem is defined by the following constraint opti-
mization problem:

min G0 =Ml + 3 (h6x) ~w)? (10)

We first analyze the stability of two-stage algorithms and then use that teedestability-based
generalization bound (Bousquet and Elisseeff, 2000). More pigcige examine the pointwise
difference in hypothesis values obtained on any poimhen the algorithm has been trained on two
data set$SandS of sizemthat differ in exactly one point.

In what follows, we denote biyK ||s¢ = (S F_; |K«|%)Y the (s,t)-norm of a collection of matri-
ces and byAu the differenceu’ — o of the combination vector’ and e returned by the first stage
of the algorithm by training o, respectivelyS.

Theorem 16 (Stability of two-stage learning kernel algorithm) Let S and Sbe two samples of
size m that differ in exactly one point and let h aricdbk the associated hypotheses generated by
a two-stage KRR learning kernel algorithm with the constrairt 2. Then, for any & > 1 with
1+1l=1andanyx x:

2MRM ([ Ap]sllK |2
/ o < ;
M (x) —h(g] < S5 [ IS
where M is an upper bound on the target labels aﬁckRsup(e[Lp] Kk (X, X).
XeX

Proof The KRR algorithm returns the hypothedigx) = S, oK, (xi,Xx), wherea = (K, +
miol)~ly. Thus, this hypothesis is parametrized by the kernel weight vegtarhich defines the
kernel function, and the sampBwhich is used to populate the kernel matrix, and will be explicitly
denotedh,, s. To estimate the stability of the overall two-stage algoritsm, s = h,, g —h,, s, we
use the decomposition

AhMS = (hu’,S - hu’,S) + (hu’,S_ hu,S)
and bound each parenthesized term separately. The first pareathésitn measures the point-
wise stability of KRR due to a change of a single training point with a fixed keffleis can be
bounded using Theorem 2 of Cortes et al. (2009a). Since, fecalk, K, (x,X) = zlf:lukKk(x, X) <
R2S P, ik < A1R?, using that theorem yields the following bound:

2A\1R2M
)\om .

vX€e X, |hus(X)—hus(X)| <

The second parenthesized term measures the pointwise difference lofpbteses due to the
change of kernel fronk ,, to K, for a fixed training sample when using KRR. By Proposition 1 of
Cortes et al. (2010c), this term can be bounded as follows:

A RZM
VX € X, | s(X) —hus(X)] < =

> W”Kw_KuH'

The term||K ,» — K || can be bounded usingdttier's inequality as follows:

p p
1Ky =Kl = 1S QK < 5 180 1Kl < 184K [z,
k=1 k=1
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which completes the proof. |

The pointwise stability result just presented can be used directly to degeaeralization bound
for two-stage learning kernel algorithms as in Bousquet and Elisse#i0}2

For a hypothesik, we denote byR(h) its generalization error and B¥(h) its empirical error on
aS=((X1,Y1)s---,(Xm,¥Ym)):

. 1 m
R(h) = E[(hs(x) —y)]] R(h)= = (hs(x)—
(h) = El(hs(x) —y)7] R(h) mi;( s(Xi)
Theorem 17 (Stability-based generalization bound)Let hs denote the hypothesis returned by a
two-stage KRR kernel learning algorithm with the constraimt /; when trained on sample S. For
any st > 1 with %Jr % = 1, with probability at leastl — & over samples S of size m, the following
bound holds:

2M1M 16Mo\ M{M, [log3
12+(1+ 2)12 g3

B
R(hs) < R(hs) + My 7 om

with My = 2[1+ /5% | M and Mp = 23 1.4 [ulKelas g,

0
Proof Sincehgis the minimizer of the objective (10) and singbelongs to the hypothesis space,
G(hs) < G(0) = ! m(o )2 < M?
S) < mi; Yi)m < M~

Furthermore, since the mean squared loss is non-negative, we camwthg]:yﬁu < G(hs). There-
fore, HhSHﬁ# < '\A"—; By the reproducing property, for amye X,

Ihs(X)| = [(hs, Ky (X, )k, | < [Ihs]lk,, 1/ Ky (X, X)

,/ Zukkax
AV]
<4 )= 2 < —,
_\/M\/uuan <Ry [

Thus, for allx € X andy € [-M, M], the squared loss can be bounded as follows

A1 M1

—y| < — | =—=

hs() —y| < (M+RMy/37) = 5

This implies that the squared lossNk-Lipschitz and by Theorem 16 that the algorithm is stable
with a uniform stability parameted < Y2z hounded as follows:

M1M>

[(hs () —y)? = (hs(x) —y)?| < Ma|hs () —hs(x)| < =

The application of Theorem 12 of Bousquet and Elisseeff (2000) withdlo@d on the Ios% and
the uniform stability parametg directly yields the statement. |
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The inequality just presented holds for all two-stage learning kernetitiigts. To determine its
convergence rate, the terfilu||s|K¢||2t must be bounded. Let= 1 andt = e, and assume
that the base kernel§y, k € [1, p|, are trace-normalized as in our experiments (Section 3), then a
straightforward bound can be given for this term:

[Ap]| 11K ¢ll2.00 < ([ |1+ [ pel]2) Max |[Kiell2 < max 2A; Tr[Ke] < 2A;.
ke[1,K] ke[1K]

Thus, in the statement of Theorem M; can be replaced witﬁ%R2 [1+ ’A\—ﬂ M and, for/A; andAq

constant, the learning bound converge®ii//m).

The straightforward upper bound dAp||s||K¢||2+ applies to all such two-stage learning kernel
algorithms. For a specific algorithm, finer or more favorable bounds caildebived. We have
initiated this study in the specific case of the alignment maximization algorithm. Thk gagen
in Proposition 21 (Appendix B) can be used to boljigk||, and thus|Ap||2||Kc||2.2-

Note that in the specific case of the alignment maximization algorithm; ifs the solution
obtained for the constraint € 94, then it is also the alignment maximizing solution found in the
setp € My with Ay = ||p*||1 < /Pl |2 < /PA2. This makes the dependence prxplicit in the
case of the constraint € M.

5. Experiments

This section compares the performance of several learning kerneithaigs for classification
and regression. We compare the alignment-based two-stage learnimd dgorithmsalign and
alignf , as well as the single-stage algorithm presented in Section 3 with the follovgagtams:

Uniform combinationynif ): this is the most straightforward method, which consists of choos-
ing equal mixture weights, thus the kernel matrix used is,

NP

Z Kk.

Ku:—
P&

Nevertheless, improving upon the performance of this method has bgamsswly difficult for
standard (one-stage) learning kernel algorithms (Cortes, 2009;Cxréd, 2011b).
Norm-1 regularized combinatiofit-svm ): this algorithm optimizes the SVM objective

minmax 2a'1l—a'Y'K Yo
L

subject tor > 0, Tr[K ] <A,a'y=0,0< a <C,

as described by Lanckriet et al. (2004). HeYeis the diagonal matrix constructed from the labels
y andC is the regularization parameter of the SVM.

Norm-2 regularized combinatiofte-krr ): this algorithm optimizes the kernel ridge regression
objective

minmax—Aa'a —a'K ,a+2a'y
n o«
subject toj > 0, || — poll2 < A
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KINEMATICS | IONOSPHERE| GERMAN SPAMBASE SPLICE

SIZE 1000 351 1000 1000 1000

% -3,3 -3,3 -4, 3 -12, -7 -9, -3
unif .138+£.005 | .479+.033 | .259+.018 | .187£.028 | .152+.022
.1584+.013 | .246+.033 | .0894+.008 | .1384+.031 | .122+.011
1-stage 1374+.005 | .470+.032 | .2604+.026 | .2094.028 | .1534+.025
A55+.012 | .251+.035 | .082+.003 | .099+.024 | .105+.006
align .125+.004 | .456£.036 | .2554.015| .186+.026 | .151+.024
1734+.016 | .261+.040 | .0894+.008 | .1404+.031 | .123+.011
alignt .1154+.004 | .444+.034 | .2424+.015| .1804+.024 | .1394+.013
A76+£.017 | .278+.057 | .093+.009 | .146+.028 | .124+ .011

REGRESSION CLASSIFICATION

Table 2: Error measures (top) and alignment values (bottomipffor, 1-stage (I2-krr  orll-svm ),
align andalignf  with kernels built from linear combinations of Gaussian base kernels.
The choice ofyp, y; is listed in the row labeleg and the total size of the data set used is
listed undersize. The results are shown withl standard deviation measured by 5-fold
cross-validation. Further measures of significance are shown in AppEnTable 4.

The L, regularized method is used for regression since it is shown in Cortes(20@ba) to out-
perform the alternativd.; regularized method in similar settings. Hedejs the regularization
parameter of KRR angg is an additional regularization parameter for the kernel selection.

In all experiments, the error measures reported are for 5-fold cad&kation, where, in each
trial, three folds are used for training, one used for validation, and on&$ting. For the two-
stage methods, the same training and validation data is used for both stagedeariting. The
regularization parametex is chosen via a grid search based on the performance on the validation
set, while the regularization parameté&$or I1-svm andA for [2-krr  are fixed since only the ratios
C/N\ andA/A are important. More explicitly, for the KRR algorithm, scaling the vegioby A
results in a scaled dual solutiom = (K ,A +Al)~y = A=1(K, + A1)~ly. In turn, we see that
the primal solutiorh(x) = S, A~ 1aiAK,, (X, %) = 31 0K, (X, %) is equivalent to the solution of
the KRR algorithm that uses a regularization parameter equalXavithout scalingu and, thus, it
suffices to vary only one regularization parameter. In the case of StHdscale of the hypothesis
does not change its sign (or the binary prediction) and thus the sametgroge be shown to hold.
The po parameter is set to zero in our experiments.

5.1 General Kernel Combinations

In the first set of experiments, we consider combinations of Gaussiarlkeasf the form
2
Ky(Xi,Xj) = exp(—Y|[xi — Xi[|9),

with varying bandwidth parametgre {2% 2%+l 21=vi 2v11 The valuesy andy; are chosen
such that the base kernels are sufficiently different in alignment arforpence. Each base kernel
is centered and normalized to have trace one. We test the algorithms oal sketarsets taken from
the UCI Machine Learning Repositorfitip://archive.ics.uci.edu/ml/ ) and Delve fttp:
[Iwww.cs.toronto.edu/ ~ delve/data/datasets.html ).
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Figure 3: A scatter plot comparison of the different kernel combinatioghteralues obtained by
optimally tuned one-stage and two-stage algorithms on the kinematics data set.

Table 2 summarizes our results. For regression, we compare againskithe method and
report RMSE. For classification, we compare againstitken method and report the misclassifi-
cation percentage. In general, we see that performance and aligmaerglbecorrelated. In all data
sets, we see improvement over the uniform combination as well as the geekstael learning al-
gorithms. Note that although thégn method often increases the alignment of the final kernel, as
compared to the uniform combination, thignf method gives the best alignment since it directly
maximizes this quantity. Nonethelesign provides an inexpensive heuristic that increases the
alignment and performance of the final combination kernel.

In our experiments with the one-stage KRR algorithm presented in Sectioth8ré,was no
significant improvement found over the two-staignf  algorithm with respect to the kinematics
and ionosphere data sets. In fact, for optimally cross-validated paramwyefeandy’ the solu-
tion combination weights were found to closely coincide with dligaf  solution (see Figure 3).
This would suggest the use of the two-stage algorithm over the one-siage,there are fewer
parameters to tune and the problem can be solved as a standard QP.

To the best of our knowledge, these are the first kernel combinaticeriexgnts for alignment
with general base kernels. Previous experiments seem to have déadivexdy with rank-one base
kernels built from the eigenvectors of a single kernel matrix (Cristianiml.e2001). In the next
section, we also examine rank-one kernels, although not generatea fspectral decomposition.

5.2 Rank-one Kernel Combinations

In this set of experiments we use the sentiment analysis data set version Blftzer et al. (2007):
books dvd electronicsandkitchen Each domain has 2,000 examples. In the regression setting, the
goal is to predict a rating between 1 and 5, while for classification the gtmatliscriminate positive
(ratings> 4) from negative reviews (ratings 2). We use rank-one kernels based on the 4,000 most
frequent bigrams. Thieh base kerneKy, corresponds to theh bigram county, Ky = viv,. Each
base kernel is normalized to have trace one and the labels are centered.

Thealignf method returns a sparse weight vector due to the conspainD. As is demon-
strated by the performance of thesvym method, Table 3, and also previously observed by Cortes
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BOOKS

DVD

ELEC

KITCHEN

unif

1.442+ .015
0.029+.005

1.438+.033
0.029+.005

1.342+.030
0.038+.002

1.356+.016
0.039+.006

[2-krr

1.410+.024
0.036=+.008

1.423+.034
0.036=+.009

1.318+.033
0.050+.004

1.333+.015
0.0564+.005

align

1.401+.035
0.046=+.006

1414+ .017
0.047+.005

1.308+.033
0.065+.004

1.312+.012
0.076=+.008

REGRESSION

BOOKS

DVD

ELEC

KITCHEN

unif

0.258+.017
0.030+.004

0.243+.015
0.030+.005

0.188+.014
0.040+.002

0.201+.020
0.039+.007

[1-svm

0.286+.016
0.030+.011

0.292+.025
0.033+.014

0.238+.019
0.051+.004

0.236+.024
0.058+.007

align

0.243+.020
0.043+.003

0.2144+.020
0.045+-.005

0.166+.016
0.063+.004

0.172+.022
0.070+.010

CLASSIFICATION

Table 3: The error measures (top) and alignment values (bottom) ondatiment analysis do-
mains using kernels learned as combinations of rank-one base kermespomding to
individual features. The results are shown witth standard deviation as measured by 5-
fold cross-validation. Further measures of significance are shownperigix C, Table 5.

et al. (2009a), a sparse weight vectodoes not generally offer an improvement over the uniform
combination in the rank-one setting. Thus, we focus on the performanagnof and compare

it to unif and one-stage learning methods. Table 3 showsatigat significantly improves both
the alignment and the error percentage avifr and also improves somewhat over the one-stage
l2-krr  algorithm. Evidence of statistical significance is provided in Appendix C|eTab Note
that, although the sparse weighting providedlsvm improves the alignment in certain cases, it
does not improve performance.

6. Conclusion

We presented a series of novel algorithmic, theoretical, and empiricdlsrésulearning kernels
based on the notion of centered alignment. Our experiments show a conisigissvement of the
performance of alignment-based algorithms over previous learninglkecteiques, as well as
the straightforward uniform kernel combination, which has been diffioudiurpass in the past, in
both classification and regression. The algorithms we described aiergfiad easy to implement.

All the algorithms presented in this paper are available in the open-souredilary available

at www.openkernel.org . They can be used in a variety of applications to improve performance.
We also gave an extensive theoretical analysis which provides a nuifnipgarantees for centered
alignment-based algorithms and methods. Several of the algorithmic andtiteoresults pre-
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sented can be extended to other learning settings. In particular, metheats dra similar ideas
could be used to design learning kernel algorithms for dimensionality reductio

The notion of centered alignment served as a key similarity measure to athéseeresults.
Note that we are not proving that good alignment is necessarily neededgimod classifier, but
both our theory and empirical results do suggest the existence of tequealictors with a good
centered alignment. Different methods based on possibly differerieetliccomputable similarity
measures could be used to design effective learning kernel algoritimnparticular, the notion of
similarity suggested by Balcan and Blum (2006), if it could be computed froite §amples, could
be used in a equivalent way.
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Appendix A. Lemmas Supporting Proof of Proposition 11

For a functionf of the sampleS we denote byA(f) the differencef (S)— f(S), whereS is a
sample differing fronS by just one point, say therth point isxy, in Sandx/, in S. The following
perturbation bound will be needed in order to apply McDiarmid’s inequality.

Lemma 18 Let K andK’ denote kernel matrices associated to the kernel functions K ardrK
a sample of size m according to the distribution D. Assume that for anyxK(x,x) < R? and
K'(x,x) < R2. Then, the following perturbation inequality holds when changing one pébititeo
sample:

24R’R?

m

1B KY)e)| <

Proof By Lemma 1, we can write:

(Ke,KL)g _<KC,K’>|::TrHI —1rﬂ|<[| —1rﬂ|<]

11" 11" 11" 11"
=Tr [KK’ ——KK'- K—K’ KK}
1"(KK'+K'/K)1  (1TK1)(1'K'1)
= (K, K'\g — .
The perturbation of the first term is given by
(K,K')g ZlA KimK /) + A(KmiK;m).

By the Cauchy-Schwarz inequality, for any € [1, m|,

IKij| = IK(XhXj)IS\/K(Xi’Xi)K(Xj,Xj) <R
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and the product can be bound|&s ;K| ;| < [K; j[|K{j| < R?R?. The difference of products is then
bound agA(K; jK{ ;)| < 2RPR?. Thus,

SIAUK K )| < T (2RRE) <

4AR?R?
—
Similarly, for the first part of the second term, we obtain

1 <1TKK’1>’ ‘ ( m KikK’kj>'
— 1A = A
mz‘ m ”;21 ms

_ ‘A<Zir?leikK/km+ i, jzmKimK ] N Zkaém,j;émekK/kj>'

m3 m3
_ _1)2 _
szer(m 1)+ (m-1) (2R2R’2)§3m2 3m+1(2R2R/2)
m3 m3
6R?R?
< .
m
Similarly, we have:
EAN 1K'K1 <6R2R/2
m? m - m
The final term is bounded as follows,
1],/ (1K1)(1'K') 3,k Kii K+ 3, kem K K
el < |p( =k L
mz‘ ( P~ = -~ *
3, 2mbmKimK e+ Fizm jzmkczm K miK'
nt*
_ _1)2 _1)3
Sm3+mz(m 1) +m(m—1)24 (m—1) (2RR?)
n*
8R°R?
< .
m
Combining these last four inequalities leads directly to the statement of the lemma. |

Because of the diagonal terms of the matric§§(,Kc,K’C>F is not an unbiased estimate of
E[KcK{]. However, as shown by the following lemma, the estimation bias decreases wmite¢h
O(1/m).

Lemma 19 Under the same assumptions as Lemma 18, the following bound on thendiéfere
expectations holds:

18R°R?
< .
m

XX m2

Proof To simplify the notation, unless otherwise specified, the expectation is taker,avdrawn
according to the distributioB. The key observation used in this proof is that

E [Ke(x X )K{(x,X)] ~ E [<KC> K’C>F]

KK ) = EIK 06, XK (%)) = EIKK, (11)
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fori, j distinct. For expressions such ag{lEikK’kj] with i, j, k distinct, we obtain the following:

E[KiiKij] = E[K (%, %) K' (% X})] = E[E[K] E[K]]. (12)

S S XX X
Let us start with the expression ofkeK(:

E[KK!] = E [(K —EIK] — EIK] + EIK]) (K — E[K| —EK'| + E[K’])] . (13)

After expanding this expression, applying the expectation to each of thetand simplifying, we
obtain:

E[KcK{] = E[KK] -2 E [E[K]E[K']] + EIK]E[K'].

X X!

(K¢, KL)E can be expanded and written more explicitly as follows:

1'KK’1 1'K’'K1 1'K’11'K1
- +
m m me

ki l m 1 m m
= > KiKj—= Z (KiKij +KiKe) + = (Y Kip) (¥ K.
ivlzzl ! M 1 b m? i.,JZ:1 i,JZ:1 N

(Ke,Ke)F = (K, K')g —

To take the expectation of this expression, we use the observationsd (32) and similar identi-
ties. Counting terms of each kind, leads to the following expression of thectagpn:

[(KC,K’C>F] _ [m(m—l) ~ 2m(m-—1) N 2m(m—1)

E
S

me 2 m? mt
[—2m(m—1)(m—2) N 2m(m— 1)(m—2)]
I m3 me
[m(m—1)(m—2)(m—23)
mt

} E[KK/]

_l’_

] E[K] E[K/]

_l’_

+ _ = - )] E[K]E[K'(x,X)].

Taking the difference with the expression gKgK.| (Equation 13), using the fact that terms of form
Ex[K(x,X)K'(x,x)] and other similar ones are all boundedRAR? and collecting the terms gives

, Ke, KL 3P —4m+2 . AP —5m+4-2 ,
ek g[ Mo | < 3 e oM S 2 (e i)
6m? —11Im+6 ,
—3  EKIEK]+y,

823



CORTES MOHRI AND ROSTAMIZADEH

with |y < ™IR?R2. Using again the fact that the expectations are bounde®FB{ yields

E[KCK(,:] _ E [<KCI;:§::>F]

and concludes the proof. |

§[3+8+6+1}R2R'2§18R2R’2,
m m m m m

Appendix B. Stability Bounds for Alignment Maximization Algor ithm
Lemma 20 Letp=v/|v||andu’=V'/||V'||. Then, the following identity holds fdy = ' — w:

[ Av (AV)T (v +V')v ] .

Ap = —
IVAE VIV 1D

Proof By definition ofAp, we can write

v Vv vV =viv] Av  VA(|lvI))
A,uzA() = [ - = - : (14)
v IV VIV IV vl
Observe that:
A(H"H) — A(HVHZ) _ A(lezlvlz) _ ZipzlA(vi)(Vi +\/I) _ (AV)T(V_‘_V,).
VI VA DIV (vl VI vl VI v/l
Plugging in this expression in (14) yields the statement of the lemma. |

Consider the minimization (7) shown by Proposition 9 to provide the solution oéligament
maximization problem for a convex combination. The malixand vectora are functions of the
training samples. To emphasize this dependency, we rewrite that optimization for a s&@wasle

minF(Sv), (15)

whereF (Sv) = v'Mv —2vTa = ||v||?, — 2v"a. The following lemma provides a stability result for
this optimization problem.

Proposition 21 Let S and Sdenote two samples of size m differing by only one pointy lagid v/
be the solution 0{15), respectively, for sample S and Fhen, the following inequality holds for
Av=V —v:

1av] < [da— (AM)V] Av.

Proof SinceC = {v: v > 0} is convex, for anys € [0, 1], v+ sAv andVv' — sAv are inC. Thus, by
definition ofv’ andyv,

F(SV)<F(Sv+sv) and F(S,V)<F(S,V —<v).
Summing up these inequalities, we obtain
VIR — IV + SV + V1§ — IV — sAv[fy
<2v'a—2(v+sav)'at+2va —2(V 4 sAv)'d
= —2[sa’Av — sa’"Av] = 25(Aa) ' Av.
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KINEMATICS |ONOSPHERE
E < € E <= ©
t38¢2 t38¢2
unif -1 1 1 unif -1 1 1
[2-krr 0O - 1 1 [2-krr 0O - 1 1
align 0O 0 - 1 align 0O 0 - 1
alignf 0O 0 O alignf 0O 0 0 -
GERMAN SPAMBASE SPLICE
- 555 - 555 - 555
S a4 % S S o % 35 S a9 3% B
unif - 0 1 1 unif - 0 0 O unif - 0 0 1
[1-svm 0O - 0 1 [1-svm 1 - 1 1 [1-svm 0O - 0 O
align 0O 0 - 1 align 0O 0 - O align 0 - 0
alignf 0O 0 O alignf 0O 0 O alignf 0O 0 O

Table 4: Significance tests for general kernel combination resultsrgsesm Table 2. An entry of

1 indicates that the algorithm listed in the column has a significantly better agdhieat
the algorithm listed in the row.

The left-hand side of this inequality can be rewritten as follows after expaasd using the identity
IV = SAVI[gy, — V' = SAV|[§ = ||V — sAv[Zy:

— [|sAVI[§ — 2svIMAY + [[V'|[§ — IV'[[}4 — |SAVI§ +2sv'"M (Av) — |V — sAv [y
= 25(1 = )| AVI[§y + IVl Zu — IV — V] Zy-
Then, expandingv’ — sAv|,, results in the final inequality
25(1—9)||AV|3) — S||Av||Zy + 25V (AM ) (Av) < 25(Aa) TAv.
Dividing by sand settings=0 yields
lavfy +v' (AM)(Av) < (Aa) Av,

which concludes the proof of the lemma. |

Appendix C. Significance Tests for Empirical Results

Tables 4 and 5 show the results of paired-sample one-sided T-tests fairalbf algorithms com-
pared across all data sets presented in Section 5 for both regresdictassification. Each entry
of the tables indicates whether the mean error of the algorithm listed in the colwigmiscantly
less than the mean error of the algorithm listed in the row at significancepevd).1. An entry
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Books DvD ELEC KITCHEN
. E [ — s o “— E < “— E c
cEd g Ed 2 Ed 2 Ed 2
unif -1 1 unif - 11 unif - 11 unif - 11
[2-krr 0 -1 [2-krr 0O -0 [2-krr 0 -1 [2-krr 0 -1
align 00 - align 0 0 - align 0 0 - align 0 0 -

REGRESSION

Books DvD ELEC KITCHEN

= IS IS IS
= B 5 = 5 5 = 5 5 = 5 5
S o 3 S a3 S o 3 S & 3
unif - 0 1 unif - 01 unif - 01 unif - 01
[1-svm 1 - 1 [1-svm 1 -1 [1-svm 1 -1 [1-svm 1 -1
align 0O 0 - align 0 0 - align 0 0 - align 0 0 -

CLASSIFICATION

Table 5: Significance tests for rank-one kernel combination resulteqmexsin Table 3. An entry

of 1 indicates that the algorithm listed in the column has a significantly betteramycur
then the algorithm listed in the row.

of 1 indicates a significant difference, while an entry of 0 indicates thatuldypothesis (that the
errors are not significantly different) cannot be rejected.

Table 4 indicates that thatignf method offers significant improvement overif in all data
sets with the exception of spambase and significantly improves over the aahgras-stage method
in all data sets apart from splice. Table 5 indicates thadligre method significantly improves over

both the uniform and one-stage combination in all data sets apart from divel iagression setting,
where improvement ové2-krr  is not deemed significant.
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