Journal of Machine Learning Research 13 (2012) 1159-1187 bm8ted 7/11; Revised 2/12; Published 4/12

Hope and Fear for Discriminative Training
of Statistical Transation Models

David Chiang CHIANG @ISI.EDU
USC Information Sciences Institute

4676 Admiralty Way, Suite 1001

Marina del Rey, CA 90292, USA

Editor: Michael Collins

Abstract

In machine translation, discriminative models have alneosirely supplanted the classical noisy-
channel model, but are standardly trained using a methddstinaliable only in low-dimensional
spaces. Two strands of research have tried to adapt moebkediscriminative training methods
to machine translation: the first uses log-linear probighitiodels and either maximum likelihood
or minimum risk, and the other uses linear models and largegim methods. Here, we provide an
overview of the latter. We compare several learning algorg and describe in detail some novel
extensions suited to properties of the translation tasksingle correct output, a large space of
structured outputs, and slow inference. We present expetithresults on a large-scale Arabic-
English translation task, demonstrating large gains indlietion accuracy.

Keywords: machine translation, structured prediction, large-nrargethods, online learning,
distributed computing

1. Introduction

Statistical machine translation (MT) aims to learn models that can predict, givea stterance
in a source language, the best translation into some target languagearlibst ®f these models
were generative (Brown et al., 1993; Och et al., 1999): drawing ointight of Warren Weaver
in 1947 that “translation could conceivably be treated as a problem inagsgphy” (Locke and
Booth, 1955), they treated translation as the inverse of a process in tahiet-language utterances
are generated by language modeind then changed into source-language utterances via a noisy
channel, theranslation model

Och and Ney (2002) first proposed evolving this noisy-channel modeldrdiscriminative
log-linear model, which incorporated the language model and translationl medeatures. This
allowed the language model and translation model be to scaled by diffacotd, and allowed
the addition of features beyond these two. Although discriminative modebsinigally trained by
maximume-likelihood estimation, the method that quickly became dominant was minimum-erro
rate training or MERT, which directly minimizes some loss function (Och, 20D3.loss function
of choice is most often Beu (rather, - BLEU), which is the standard metric of translation quality
used in current MT research (Papineni et al., 2002). Howeveauseahis loss function is in general
non-convex and non-smooth, MERT tends to be reliable for only a fewrdfeatures.

Two strands of research have tried to adapt more scalable discriminaiivieadrenethods to
machine translation. The first uses log-linear probability models, as in thearigork of Och
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and Ney (2002), either continuing with maximum likelihood (Tillmann and Zhaf862Blunsom
et al., 2008) or replacing it with minimum risk, that is, expected loss (Smith am®Ei2006; Zens
et al., 2008; Li and Eisner, 2009; Arun et al., 2010). The other usearimodels and large-margin
methods (Liang et al., 2006; Watanabe et al., 2007; Arun and KoehiT);20@ have followed
this approach (Chiang et al., 2008b) and used it successfully with m&eyedtit kinds of features
(Chiang et al., 2009; Chiang, 2010; Chiang et al., 2011).

Here, we provide an overview of large-margin methods applied to machinslaten, and
describe in detail our approach. We compare MERT and minimum-risk agawvestal online large-
margin methods: stochastic gradient descent, the Margin Infused Refgedthm or MIRA
(Crammer and Singer, 2003), and Adaptive Regularization of Weight®R@W (Crammer et al.,
2009). Using some simple lexical features, the best of these methods, ARRENMS a sizable
improvement of 2.4 BEu over MERT in a large-scale Arabic-English translation task.

We discuss three novel extensions of these algorithms that adapt themi¢alpaproperties
of the translation taskFirst, in translation, there is no single correct output, but ontgfarence
translation, which is one of many correct outputs. We find that training theehtodgenerate
the reference exactly can be too brittle; instead, we propose to update thed towardshope
translations which compromise between the reference translation and ticarsskhat are easier
for the model to generate (Section 4%econd translation involves a large space of structured
outputs. We try to efficiently make use of this whole space, like most recemt Wwastructured
prediction, but unlike much work in statistical MT, which reliesrebest lists of translations instead
(Section 5).Third, inference in translation tends to be very slow. Therefore, we investiggetieods
for parallelizing training, and demonstrate a novel method that is expenmivdighly effective
(Section 6).

2. Preliminaries

In this section, we outline some basic concepts and notation needed fontamder of the paper.
Most of this material is well-known in the MT literature; only Section 2.4, whicfirgss the loss
function, contains new material.

2.1 Setting

In this paper, models are defined owrivations d which are objects that encapsulate an input
sentence (d), an output sentenad), and possibly other informatiohFor any input sentenck,
let D(f) be the set of all valid derivatiorgssuch thatf (d) = f.

A model comprises a mapping from derivatiaht feature vectorh(d), together with a vector
of feature weightsv, which are to be learned. The model score of a derivadiegw - h(d). The
1-best or Viterbi derivation of; is d = arg max.,y w-h(d), and the 1-best or Viterbi translation

isé=e(d).

We are given a training corpus of input sentenégs. ., fy, and reference output translations
e1,...,en produced by a human translator. Eatlis not the only correct translation df, but only
one of many. For this reason, often multiple reference translations aitatd@dor eachf;, but

1. The variabled ande stand for French and English, respectively, in reference to the ofrigimik of Brown et al.
(1993).
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for notational simplicity, we generally assume a single reference, andiloe$ow to extend to
multiple references when necessary.

Note that although the model is defined over derivations, only senterice(jhae ) are ob-
served. There may be more than one derivatiog,ajr there may be no derivations. Nevertheless,
assume for the moment that we can choosefarence derivation jdthat derivess; we discuss
various ways of choosing in Section 4.

2.2 Derivation Forests

The methods described in this paper should work with a wide variety of tteorskamodels, but,
for concreteness, we assume a model defined using a weighted symehiepntext-free grammar
or related formalism (Chiang, 2007). We do not provide a full definitiorehbut only enough
to explain the algorithms in this paper. In models of this type, derivations cdahdoght of as
trees, and the set of derivatiod¥ f) is called aforest Although its cardinality can be worse than
exponential in f|, it can be represented as a polynomial-sized hypergéaphV, E,r), whereV is
a set of nodeg, €V is the root node, anl CV x V* is a set of hyperedges. We write a hyperedge
as(v— V). A derivationd is represented by an edge-induced subgragh ich that € d and, for
every noder € d, there is exactly one hyperedge— v).

We require thah (and thereforev - h) decomposes additively onto hyperedges, thdt an be
extended to hyperedges such that

h(d) = Z h(v—v).

(v—v)ed

This allows us to find the Viterbi derivation efficiently using dynamic prograngmin

2.3 BLEU

The standard metric for MT evaluation is currentlyes (Papineni et al., 2002). Since we use this
metric not only for evaluation but during learning, it is necessary to desdrin detail.

For any stringe, let gk(e) be the multiset of alk-grams ofe. Let K be the maximum siz&-
grams we will considerK = 4 is standard. For any multisét let #4(x) be the multiplicity ofx in
A, let|Al = 3, #a(x), and define the multisetsN B, AU B, andA* such that

#ang(X) = min(#a(x), #3(x)),
#AUB<X) = maX(#A(X>7#B(X)>7

" (X)— 00 if#A(X)>0,
AT 0  otherwise.

Let c be the candidate translation to be evaluated and lbet the reference translation. Then
define a vector o€omponent scores

b(c,r) =[m,...mk,Ny,...Nk,P)
where
Mk = |gk(c) Nak(r)],

N = |gk(C)],
p=1r|.
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If there is a set of multiple referenc&sthen

= |ak(c) N {J ak(r)], 1)
reR
p= argegin!!rl —|c]| 2

where ties are resolved by lettipgoe the length of the shorter reference.
The component scores are additive, that is, the component score f@ctoset of sentences
C1,...,Cn With referencesy,...,ry is 3b(ci,ri). Then the BREU score is defined in terms of the

component scores:
K

BLEU(D) :exp(i > nﬁkerin <O,1— ri)) :

k=1

2.4 LossFunction

Our learning algorithms assume a loss functi@ge, € ) that indicates how bad it is to guesistead
of the reference. Our loss function is based onLBu, but because our learning algorithms are
online, we need to be able to evaluate the loss for a single sentence, svBereawas designed to
be used on whole data sets. If we try to compute it on a single sentencel ggeblems arise. Ific
is zero, the BEU score is undefined; if any of thre, are zero, the whole Beu score is zero. Even
barring such problems, allBu score for a single sentence may not accurately reflect the impact of
that sentence on the whole test set (Chiang et al., 2008a).

The standard solution to these problems is to add pseudocounts (Lin angdGDdiy:

K p—
BLEU(b+b) = exp 1 T‘T"‘er‘jtmin 0,1— p+p
K& Nk+ Nk Ny +ng

whereb = [my, ..., Mk, Ny,...,Nk,p] are pseudocounts that must be set appropriately.

Watanabe et al. (2007) score a sentence in the context of all prevErestyl-best translations,
which they call theoracle document We follow this approach here, but in order to reduce de-
pendence on the distant past, we use an exponential decay. Thagrigratessing each training
example( fi, e), we update the oracle document using the 1-best transkation *

b+ 09-(b+b(ge)).

Then we define a per-sentence meBithat measures the impact that adding a new input and output
sentence will have on thelBu score of the oracle document:

B(b) =M (BLEU(b+b)—BLEU(D)). (3)

The reason for the scaling factor, which is the size of the oracle document, is to try to correct for
the fact that if the oracle document is small, then adding a new sentence walbHarge effect on
its BLEU score, and vice versa.

Finally, we can define the loss of a translatierelative to€ as the difference between their
B scores, following Watanabe et al. (2007):

li(e,€) =B(b(e,&)) —B(b(¢,a))
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and, as shorthand,

3. Learning Algorithms

In large-margin methods, we want to ensure that the differeneceaagin between the correct label
and an incorrect label exceeds some minimunmargin scalingCrammer and Singer, 2003), this
minimum is equal to the loss. That is, our learning problem is to minimize:

L(w) = % Y Li(w) 4)

where

Li(w) = dgn@a(\%)vi (w,d,d;),

Vi (W,d,di) = Ei(d,di) —W- (h(di) — h(d)).

Note that sincel; € D(f;) andvi(w,d;,d;) = 0, Lij(w) is always nonnegative. We now review the
derivations of several existing algorithms for optimizing (4) for structunediels.

3.1 Stochastic Gradient Descent

An easy way to optimize the objective functidugw) is stochastic (sub)gradient descent (SGD)
(Ratliff et al., 2006; Shalev-Shwartz et al., 2007). In SGD, we considercomponerit; (w) of the
objective function at a time and updateby the subgradient:

W w — 0L (w), (5)
OLi(w) = —(h(d§) —h(d*))

where

d™ = arg max;(w,d, d;).
deD(fi)

If, as an approximation, we restri¢t( f;) to just the 1-best derivation df, then we get the structured
perceptron algorithm (Rosenblatt, 1958; Freund and Schapire, Cafiths, 2002). Otherwise, we
get Algorithm 1. Note that, as is common practice with the perceptron, the feightwector is
the average of the weight vector at each iteration. (Line 6 as implemenieddiebe inefficient; in
practice, we use the trick of Dawnill (2006, p. 19) to average efficiently.)

The derivationd™ is the worst violator of our constraint that the margin be greater than or
equal to the loss, and appears frequently in large-margin learning algesritWe calld™ the fear
derivation? An easy way to approximate the fear derivation would be to generatebast list and
select the derivation from it that maximizes In Section 5 we discuss better ways to search for the
fear derivation.

2. The terminology ofear derivations andhopederivations to be defined below are due to Kevin Knight.
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Algorithm 1 Stochastic gradient descent
Require: training examples$fs,e;),...,(fn,en)
W<+ 0
s« 0,t+0
. while not convergedio
fori € {1,...,N} in random ordedo
UPDATEWEIGHTS(W, i)
S s+w
t—t+1
W s/t

© N OAEWDNR

©

. procedure UPDATEWEIGHTS(W, i)
100 dF < arg mayeqp ) vi(w,d,d)
11: w < w+n(h(di) —h(d"))

3.2 MIRA
Kivinen and Warmuth (1996) derive SGD from the following update:

(1
W« arg min( — [|w —w||?+Li(w) (6)

w/ 2f]
where the first term, theonservativityterm, prevents us from moving too far in a single iteration.
Taking partial derivatives and setting to zero, we get

w —w+n0L(w') =0.
If we make the approximationL;(w’) ~ OL;(w), we get the gradient-descent update again:

W W — n0OL;(w).

But the advantage of using (6) without approximation is that it will not dveos the optimum if
the step size) happens to be too large. This is the Margin Infused Relaxed Algorithm AYIt5R
Crammer and Singer (2003).

The MIRA update (6) replaces the procedureDATEWEIGHTS in Algorithm 1. It is more
commonly presented as a quadratic program (QP):

. 1
minimize %HW/—WHZ-FEJ
subjectto vi(w',d,di)—& <0 vd € D(f;)

whereé&; is a slack variablé. (Note thaté; > 0 sinced; € D(fi) andvj(w',d;,di) = 0.) The La-
grangian is:

L= W WG Y aaw(w.d.d) &) ©
n deD(f)

3. Watanabe et al. (2007) use a different slack variggléor each hypothesid, which leads to a different update than
the one derived below.
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Setting partial derivatives to zero gives:
W=w+n ¥ ag(h(d)-h(d))
deD(f;)
ag=1.
deD(fi)
Substituting back into (7), we get the following dual problem:
2

+ z aqvi(w,d, d)
deD(f;)

ag(h(di) —h(d))
deD(f;)

maximize — %

subject to Z ag=1
deD(f)

ag>0 vd € D(fi).

In machine translation, and in structured prediction in general, the numbgmpotheses in
D(fi), and therefore the number of constraints in the QP, can be exponenwvarse. Watanabe
et al. (2007) use the 1 best or 10 best hypotheses. In an earli@rvefdhis work (Chiang et al.,
2008Db), we used the top 10 fear derivatidridere, we use the cutting-plane algorithm of Tsochan-
taridis et al. (2004), which repeatedly recomputes the fear derivatibadabs it to a working sef;
of derivations on which the QP is optimized (Algorithm 2). A new fear deiovais added to the
working set only if it is a worse violator by a certain margi); ©therwise, the algorithm terminates.

The procedure @TIMIZESET solves the QP restricted $ by sequential minimal optimization
(Platt, 1998), in which we repeatedly select a pair of derivatidind” and optimize their dual
variablesag, ags. The function &LECTPAIR uses the heuristics suggested by Taskar (2004, p. 80)
to select a pair of constraints: one must violate one of the KKT conditimga;(w’,d, d;) — &) =
0), and the other must allow the objective to be improved. The procedereMixEPAIR optimizes
a single pair of dual variables. This optimization is exact and can be desivéollows. Suppose
we have current suboptimal weightga) =w+n 3 aq(h(di) —h(d)), and we want to increasey
by & and decreasey by 8. Then we get the following optimization in a single variatde,

2

-+ O(Vi(w, d/, di) — vi(w, d”7 d))

. N
maximize — —
Imiz >

‘Zad(h(di) —h(d)) 4+ 8(—h(d') + h(d"))

subjectto —ag <d<agr. (8)
Setting the partial derivative with respectd@qual to zero, we get
5— N2a%a(h(d) —h(d))-(h(d) —h(d")) +vi(w,d',di) —vi(w,d", di)
nlh(d’) —h(d")[?
(w(a) —w) - (h(d) —h(d")) +vi(w,d",di) — vi(w,d”, d)
nlih(d’) —h(d")||?
vi(w(a),d’,di) —vi(w(ar),d”, d)
nlh(d’) —h(d")|? '

4. More accurately, we took the union of the 10 best derivations, the Qofedr derivations, and the top 10 hope
derivations (to be defined below).
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Algorithm 2 MIRA weight update (Tsochantaridis et al., 2004; Platt, 1998; Task&4 P

1. procedure UPDATEWEIGHTS(W, i)

2: €=001

3: Si {di}

4 again« true

5: while againdo

6: again« false

7: d* < arg max;(w,d,d;)
deD(fi)

8: if vi(w,d", di) > rglngi(w,d,di) +¢€then

o: S+ Su{dt}

10: OPTIMIZESET(W, i)

11: again« true

12: procedure OPTIMIZESET(W, i)
13: Og <+ Ofor dc S
14: g < 1

15: iterations«< 0

16: whileiterations< 1000do

17: iterations« iterations+ 1
18: d’,d” «+ SELECTPAIR(W,i)
19: if d’,d” not definedhen
20: return

21: OPTIMIZEPAIR (w,i,d’,d”)

22: function SELECTPAIR(W, i)

23: e=001

24: for d € § do

25; Vmax ¢~ Max\ (w,d” di)

26: if ag =0 andvi(w,d’, d;) > Vinax+ € then

27: if 3d” # d’ such thatig» > 0 then

28: returnd’,d”

29: if ag > 0 andvi(w,d’, di) < Vmax— € then

30: if 3d” # d’ such thaw;(w,d”,d;) > vi(w,d’,d;) then
31 returnd’,d”

32: return undefined

33: procedure OPTIMIZEPAIR(w,i,d’,d")

Vi (W, d/,di) -V (W7 d”,di)
njh(d’) —h(d")|

35: &< max—0aq,min(agr,d))

36: Og < Og + 0O, Ogr < Ogr — O

372 w<+w-—nd(h(d")—h(d"))

34: O+
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But in order to maintain constraint (8), we clito the interval—ay,aq] (line 35).
At the end of training, following McDonald et al. (2005), we average al wWeight vectors
obtained at each iteration, just as in the averaged perceptron.

3.3 AROW

The conservativity term in (6) assumes that it is equally risky to nvewe any direction, but this
is not the case in general. For example, even a small change in the langadgkeweights could
result in a large change in translation length and fluency, whereas laagges in features like
those attached to number-translation rules have a relatively small effect.

Imagine that we choose a feature of our modig),and replace it with the featuig - ¢ while
replacing its weight withw; /c. This change has no effect on the scores assigned to derivatiors or th
translations generated, so intuitively one would hope that it also hasewud eff learning. However,
it is easy to see that our online algorithms in fact apply updates thattanes bigger, and relative
to the new weightg? times bigger.

A number of approaches are suggested in the literature to address tilenpréor example, the
second-order perceptron (Cesa-Bianchi et al., 2005), contdergghted learning (Dredze et al.,
2008), and Adaptive Regularization of Weights or AROW (Crammer et &D9RAROW replaces
the weight vectow with a Gaussian distribution over weight vectan§(w, ¥). The conservativity
term in (6) accordingly changes from a Euclidean distance to a Kullbadidr distance. In ad-
dition, a new term is introduced that causes the confidence in the weightseasewver time (in
AROW's predecessor (Dredze et al., 2008), it was motivated as tianearofl;).

W, « arg min(KL (AW, Z) | A(w,Z)) +Li(w) + ngZ’x> .
w3’
In the original formulation of AROW for binary classificatior,is the instance vector. Here, we
setittoy 4 g (h(di) —h(d)), even though they aren’t known in advance; in practice, they are
known by the time they are needed.
With the KL distance between the two Gaussians written out explicitly, the quardityamt to
minimize is:

1 detz e / Te—1/n/ ) AT
> <Iogdet2/+Tr(Z )+ W —-w)'ZHw —w)—-D —|—L|(W)—|—§X 3'x
whereD is the number of features. We minimize with respecivtaandz’ separately. If we drop
terms not depending on’, we get:

1
W ¢ arg ming (W —w)TZ 1w —w) + Li(w)
W/

which is the same as MIRA (6) except ttiahas taken the place of. This leads to Algorithm 3,
which modifies Algorithm 2 in two ways. First, line 34 is replaced with:

Vi (W7 dla dl) - Vi (W7 dl/? dl)

O Th(d") — h(d")Z(h(d) _ h(d")

and line 37 is replaced with:
W« w—23(h(d") —h(d")).
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Next, we turn toX. Setting partial derivatives with respectIbto zero, and using the fact that
Y is symmetric, we get (Petersen and Pedersen, 2008):

(-4 )+ %XTX =0.

This leads to the AROW update, which follows the updatesfgline 5 in Algorithm 1):

NI

sl s X

We initializeZ to ngl and then update it at each iteration using this update; following Crammer et al.
(2009), we keep only the diagonal element& of

Algorithm 3 AROW (Crammer et al., 2009)
Require: training examples$fi,e;),..., (fn,en)

1 w<+0

2: 2 < Nol

3: s+ 0,t«0

4: while not convergedio

5: for i € {1,...,N} in random ordedo
6: UPDATEWEIGHTS(W, i) > Algorithm 2
7: S S+W

8: t—t+1

9: X< Oy (h(di)—h(d))

€Si

10: >l sy diag,. .., x2)
11: W« s/t

12: procedure OPTIMIZEPAIR(w,i,d’,d")

Vi (W, d/, di) -V (W, d”,di)
(h(d') —h(d"))Z(h(d') —h(d"))
14: 0 < max(—aq, min(agr,d))

15: Og < Og +0
16: Ogr < Ogr — O
17: w+«w—33(h(d") —h(d"))

13: O+

4. The Reference Derivation
We have been assuming ttdatis the derivation of the reference translatmnHowever, this is not
always possible or even desirable. In this section, we discuss somatiterchoices fod;.

4.1 Bold/Max-BLEU Updating

It can happen that there does not exist any derivatiag, dbr example, ifg contains a word never
seen before in training. In this case, Liang et al. (2006), in the schemec#tiebold updating
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simply skip the sentence. Another approach, caiteakBLEU updating (Tillmann and Zhang,
2006; Arun and Koehn, 2007), is to try to find the derivation with the higBesu score. However,
Liang et al. find that even when it is possible to find| ¢hat exactly generates, it is not necessarily
desirable to update the model towards it, because it maydag aerivationof agood translation

For example, consider the following Arabic sentence (written left-to-rigBuickwalter roman-
ization) with English glosses:

sd gqTEpmnAIKEK AlmmIH “ brytzl ” High
blockedpieceof biscuitsalted *“ pretzel” his-throat

A very literal translation might be,

A piece of a salted biscuit, a “pretzel,” blocked his throat.
But the reference translation is in fact:

A pretzel, a salted biscuit, became lodged in his throat.

While accurate, this translation swaps grammatical roles in a way that is stiludtifiic statistical

MT systems to model. If the system happens to have some bad rules thattéradstfEp mn
asa pretzeland“ brytzl ” asbecame lodged irthen it can use these bad rules to obtain a perfect
translation, but using this derivation as the reference derivation walydeinforce the use of these
bad rules. A derivation of the more literal translation would probably sketter as the reference
translation. What we need isgmod derivatiorof agood translation

4.2 Local Updating

The most common way to do this has been to generate-Hest derivations according to the model
and to choose the one with the lowest loss (Och and Ney, 2002). Liahg(20@6) call thislocal
updating Watanabe et al. (2007) generate a 1000-best list and select eithéerifigtion with
lowest loss or the 10 derivations with lowest loss. The idea is that restritidgrivations with a
higher model score will filter out derivations that use bad, low-probabilitys. Normally one uses
ann-best list as a proxy for the whole space of derivations, so that therlaig, the better; in this
case, however, asincreases, local updating approaches masBupdating, which is what we
are trying to avoid. It is not clear what the optinmais, and whether it depends on factors such as
sentence length or pruning.

4.3 Hope Derivations

Here, we propose an approach that ties the choicembre closely to the model. We suppose that
for eachfj, the reference derivatiod) is unknown, and it doesn’t necessarily derive the reference
translationg, but we add a term to the objective function that says that we djanthave low loss
relative tog.

(1 ,
—|w - (W, d, ) + (1-wei(di,a) ).
WFargW/mmdignZ;pﬁ)(Zn\w W+ ymax vi(w', d,di) + (1 — Wi .,a)>

The parameten < 0 controls how strongly we waigk to have low loss.
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We first optimize with respect td, holdingw’ constant. Then the optimization reduces to

di = arg maxi(d,e) +w-h(d)). 9
deD(f)

Then, we optimize with respect t/, holdingd; constant. Since this is identical to (6), we can use
any of the algorithms presented in Section 3.

We calld; chosen according to (9) thepederivation. Unlike the fear derivation, it is parame-
terized byu. If we letp= —1, the definition of the hope derivation becomes conveniently symmetric
with the fear derivation:

d =arg max—¢(d,e)+w-h(d)).
deD(fi)
Both the hope and fear derivations try to maximize the model score, butahédeivation maxi-
mizes the loss whereas the hope derivation minimizes the loss.

5. Searching for Hope and Fear

As mentioned above, one simple way of approximating either the hope or éeigatibn is to
generate an-best list and choose from it the derivation that maximizes (9) ,aespectively. But
Figure 1 shows that this approximation can be quite poor in practice, eti@rsbest list covers
such a small portion of the entire search space. Increasinguld help (and, unlike with local
updating, the largem is, the better), but could become inefficient.

Instead, we use a dynamic program, analogous to the Viterbi algorithm, tdlgisearch for
the hope/fear derivations in the forest. (For efficiency, we reuseotiestfthat is previously used to
search for the Viterbi derivation—an approximation, because thistfr@suned using the model
score.) If our loss function were decomposable onto hyperedges, thikl Wwe a simple matter
of setting the hyperedge weightswo- h(v — v) £+ ¢;(v — v) and running the Viterbi algorithm.
However, our loss function is not hyperedge-decomposable, so weresost to approximations.

5.1 TowardsHyperedge-level BLEU

We begin by attempting to decompose the component stooeso hyperedges. First, we need to
be able to calculatgk(v — v), the set ok-grams introduced by the hyperedge— v). This turns
out to be fairly easy, because nearly all decoder implementations havehamisu for scoring a
k-gram language model, which is a feature of the form

hiv, (d) = logP (W | Wy - - - Wi_1).
Wy W Egk (e(d))

Sincehyy, is decomposable onto hyperedges by assumption, it is safe to assungg ithaiso
decomposable onto hyperedges, and $g,isvhich is the cardinality ofy.

But m¢ is not as easy to decompose, because of “clippingk-gfam matches. Suppose our
reference sentence is

Australia is one of the few countries that have diplomatic relations with Nortledor
and we have two patrtial translations

the few
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Figure 1: Using loss-augmented inference to search for fear translatitime whole forest is better
than searching in the-best list. Each point represents a derivation. The red square in the
upper-right is the fear derivation obtained by loss-augmented infeyevitereas the red
square inside the box labeled “100-best” is the fear derivation selattectfie 100-best
list. (The gray circles outside the box are 100 random samples from tist for
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the countries
then for bothymy = 2. But if we combine them into
the few the countries

thenmy is not 24+ 2 = 4, but 3, becaustine only occurs once in the reference sentence. In order to
decomposen, exactly, we would have to structure the forest hypergraph so thaesuations with
differentgg are rooted at different nodes, resulting in an exponential blowupteTdre, following
Dreyer et al. (2007), we usanclippedcounts ofn-gram matches, which are not limited to the
number of occurrences in the reference(s), in place of (1):

M = [gk(c) Ngk(r)*|.

These counts are easily decomposable onto hyperedges.

Finally, in order to decomposg, if there are multiple references, we can't use the standard
definition ofp in (2); instead we use the average reference length. Then we cariiappoamong
hyperedges according to how much of the input sentence they consume:

Vev

p(v%v>=|f‘j‘<|f<v>\—z\fw>\> (10)
wheref (v) is the part of the input sentence covered by the subderivation rooted at

5.2 Forest Reranking

Appendix A.3, following Tromble et al. (2008), describes a way to fullyalepose BEU onto hy-
peredges. Here, however, we follow Dreyer et al. (2007), whawsgeecial case of forest reranking
(Huang, 2008). To search for the hope or fear derivation, we @sttowing dynamic program:

vderiv) = argmax @(d)
de{vderiv—v)}

vderi(v — v) = {v— v} U (] vderi\(V)

Vev
where@is one of the following:
@(d) =w-h(d)+B(b(d,e)) (hope),
@(d) =w-h(d) —B(b(d,e)) (fear).

Note that maximizingv - h(d) + B(b(d,)) is equivalent to maximizingv- h(d) — ¢i(d, &), since
they differ by only a constant; likewise, maximizimg h(d) — B(b(d, &)) is equivalent to maximiz-
ingw-h(d)+4i(d,&).

This algorithm is not guaranteed to find the optimum, however. We illustrate wibhiaterex-
ample, using BEU-2 (i.e.,K = 2) instead of BEU-4 for simplicity. Suppose our reference sentence
is as above, and we have two partial candidate sentences

1. one of the few nations which maintain ties with the DPRK has been
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2. North Korea with relations diplomatic have that countries few the of one is

Translation #1 has 4 unigram matches and 3 bigram matches, faea-B score of /12/156;
translation #2 has 13 unigram matches and 1 bigram match, faea8 score of /13/156. If

we extend both translations, however, with the wAtttralia, giving them each an extra unigram
match, then translation #1 gets afJ-2 score of,/15/156, and translation #2,/14/156. Though

it does not always find the optimum, it works well enough in practice. Afeerfimd a hope or fear
derivation, we recalculate its exact Bu score, without any of the approximations described in this
section.

6. Parallelization

Because inference is so slow for the translation task, and especiallyef@@KlY-based decoder
we are using, parallelization is critical. Batch learning algorithms like MERT areagrassingly
parallel, but parallelization of online learning is an active research aveageneral strategies have
been proposed for SGD. The simpler strategy is toplegarners in parallel and then average their
final weight vectors afterward (Mann et al., 2009; McDonald et al.02@lnkevich et al., 2010).
The more communication-intensive option, knownaagnchronous$SGD, is to maintain a single
weight vector and fop parallel learners to update it simultaneously (Langford et al., 2009; Gimpel
etal., 2010). Itis not actually necessary for a learner to wait for therstio finish computing their
updates; it can simply update the weight vector and move to the next example.

6.1 Iterative Parameter Mixing

A compromise between the two iterative parameter mixingMcDonald et al., 2010), in which
a master node periodically averages the weight vectors of the learnethe Aeginning of each
epoch, a master node broadcasts the same initial weight vegidesoners, which run in parallel
over the training data and send their weight vectors back to the master Hloelenaster averages
the p weight vectors together to obtain the initial weight vector for the next epétlihe end of
training, the weight vectors from each iteration of each learner areadhged together to yield the
final weight vector.

6.2 Asynchronous MIRA/AROW

In asynchronous SGD, when multiple learners make simultaneous updatesriagter weight vec-
tor, the updates are simply summed. Our experience is that this worksgoireecarefully throt-
tling back the learning ratg. Here, we focus on asynchronous parallelization of MIRA/AROW.
The basic idea is to build forests for several examples in parallel, and optingz@P over all of
them together. However, this would require keeping the forests of alkdmages in a shared mem-
ory, which would probably be too expensive. Instead, the solution we &dopted (Algorithm 4) is
for the learners to broadcast just the working Sete one another, rather than whole forests. Thus,
when each learner works on a training exanigles ), it optimizes the QP on it along with all of the
working sets it received from other nodes. It can grow the workingsiséut not the working sets

it received from other nodes. For AROW, each node maintains itsXoimraddition to its owrnw.
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Algorithm 4 Asynchronous MIRA

1: wy < Ofor each nodd
2: § < 0.t + Ofor each nodé
3: while not convergedlo

© o N O A

10:
11:
12:

13

14

21:

22:
23:
24:
25:

26

T « training data
for each nodé in paralleldo
while T # 0 do
pick a random(fi,e) from T and remove it
receive working set$Si | i’ € 1} from other nodes
UPDATEWEIGHTS(Wk, I, 1)
broadcasf to other nodes
Sk < Sk + Wk
< tk+1
d kS

LW ==

Yklk

. procedure UPDATEWEIGHTS(W, i,1)
15:
16:
17:
18:
19:
20:

£=001

Si <+ {di}

again« true

while againdo
again<« false

d* «+ arg max;(w,d,d;)
deD(fi)
if vi(w,d™,d) > r(‘jnajxvi(w,d,di)+sthen
€5

S+ Su{d*}

again< true
if againthen

OPTIMIZESETS(W, {i} Ul)

: procedure OPTIMIZESETS(w, )
27:
28:
29:

30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

foriel do
Og < Oforde S
Og + 1

again« true
iterations< 0
while againanditerations< 1000do
again<« false
iterations« iterations+ 1
foriel do
d’,d” <+ SELECTPAIR(W,i)
if d’,d” definedthen
OPTIMIZEPAIR (w,i,d’,d”)
again< true

> Algorithm 2
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7. Experiments

We experimented with the methods described above on the hierarchicakgbaaed translation
system Hiero (Chiang, 2005, 2007), using two feature setssiifadl model comprises 13 features:
7 inherited from Pharaoh (Koehn et al., 2003), a second languagd,raodepenalties for the glue
rule, identity rules, unknown-word rules, and two kinds of number/nares.rurhelarge model
additionally includes the following lexical features:

e lex(e) fires when an output wordis generated
e lex(f,e) fires when an output worelis generated aligned to a input wofd
e lex(NULL,e) fires when an output wordis generated unaligned

In all these featured, ande are limited to words occurring 10,000 times or more in the parallel data;
less-frequent words are replaced with the special syrabel. Typically, this results in 10,000—
20,000 features.

Our training data were all drawn from the constrained track of the NISI® Z0pen Machine
Translation Evaluation. We extracted an Arabic-English grammar from adlitbwed parallel data
(152+175M words), and we trained two 5-gram language models, ortkeocombined English
sides of the Arabic-English and Chinese-English tracks (385M woeds),another on 2 billion
words of English.

We ran discriminative training on 3011 lines (67k Arabic words) of newswaind web data
drawn from the NIST 2004 and 2006 evaluations and newsgroup datatfre GALE program
(LDC2006E92). After each epoch (pass through the discriminatiweitiga data), we used the
averaged weights to decode our development data, which was from31e20D8 evaluation (1357
lines, 36k Arabic words). After 10 epochs, we chose the weights thiategdehe highest Beu on
the development data and decoded the test data, which was from the B@STealuation (1313
lines, 34k Arabic words).

Except where noted, the following default settings were used:

e Learning rate) = 0.01

e Hope derivations witlu= —1

e Forest reranking for hope/fear derivations

e lterative parameter mixing on 20 processors

A few probability features have to be initialized carefully: the two languageetsoand the
two phrase translation probability models. If these features are giveatimegveights, extremely
long and disfluent translations result, and we find that the learner hazuttiffrecovering. So we
initialize their weights to 1 instead of 0, and in AROW, we initialize their learning reae301
instead ofo.

The learning curves in the figures referenced below show thieJBcore obtained on the devel-
opment data (disjoint from the discriminative-training data) over time. Figabe 2hows learning
curves for SGD, MIRA, and minimum risk (see Appendix A) for severdlies of the learning rate
n, using the small model. Generally, all the methods converged to the samenpante level, and
SGD and minimum risk were surprisingly not very sensitive to the learningyatIRA, on the

1175



42

41

Development BEU

40

42

41

Development BEU

40

CHIANG

(@) SGD (b) MIRA
T T T T
42 -
41
40|
2 4 6 8 10
(c) minimum risk (d) comparison with MERT
T T T T T T
| a2f —_—
7
41| |
—— MERT
d SGDn =0.02
—— MIRA n =0.05
40 —o—min-riskn = 0.05 |
| | | |
2 4 6 8 10
Epoch Epoch

Figure 2: Learning curves of various algorithms on the development aisitegy the small model.

Graphs (a), (b), and (c) show the effect of the learning made SGD, MIRA, and min-
imum risk. SGD and min-risk seem relatively insensitiventovhile MIRA converges
faster with highemn. Graph (d) compares the three online methods against MERT. The
online algorithms converge more quickly and smoothly than MERT does, withAMIR
slightly better than the others. The first two epochs of MERT, not shows had scores

of 10.6 and 31.6.
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Figure 3: Variations on selecting hope/fear derivations, using the smaklméa) Linear BEU
performs as well as or slightly better than forest reranking. S¢B0.01. (b) More neg-
ative values of the loss weightfor hope derivations lead to higher initial performance,
whereas less negative loss weights lead to higher final performan&a,mMi= 0.01.

other hand, converged faster with higher learning rates up=00.05. Since our past experience
suggests that on tasks with lowerBJ scores (namely, Chinese-English web and speech), lower
learning rates are better, our defayk= 0.01 seems like a generally safe value.

Figure 2d compares all three algorithms with MERT (20 random restartsg. ofline algo-
rithms converge more quickly and smoothly than MERT does, with MIRA caingrfaster than
the others. However, on the test set (Table 1), MERT outperformedthiee algorithms. Using
bootstrap resampling with 1000 samples (Koehn, 2004; Zhang et al.,,20Q4)the difference
with minimum risk was significantg < 0.05).

One possible confounding factor in our comparison with minimum risk is that it osgslinear
BLEU to compute the gradient. To control for this, we ran SGD (on the hinge lesg) both forest
reranking and linear Beu to search for hope/fear derivations (Figure 3a). We found that their
performance is quite close, strengthening our finding that the hinge loksmes slightly better
than minimum risk.

Figure 3b compares several values of the parametkat controls how heavily to weight the
loss function when computing hope derivations. Higher loss weights leaigherhinitial perfor-
mance, whereas lower loss weights lead to higher final performancex@bpton beingu= —0.2,
which perhaps would have improved with more time). A weighpief —1 appears to be a good
tradeoff, and is symmetrical with the weight of 1 used when computing feaatiens. It would be
interesting, however, to investigate decaying the loss weight over timeppegad by McAllester
et al. (2010).
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Figure 4: On the small model, asynchronous MIRA does not perform aeefipared to iterative
parameter mixing. But on the large model, asynchronous MIRA stronglyedotpns
iterative parameter mixing. Increasing the number of processors to ddesolittle
benefit to iterative parameter mixing in either case, whereas asynclsrdi®A gets a

near-linear speedup.

asynchronous
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Figure 5: Taking a closer look at asynchronous sharing of workitsy ge see that, at each epoch,
greater parallelization generally gives better performance.
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Figure 6: (a) WithhA = 0.01, AROW seems relatively insensitive to the choicg@fn the range of
0.1to 1, but performs much worse outside that range. (b) Wjte 1, AROW converges
faster for larger values @f up to 0.01; at 0.1, however, the algorithm appears to be unable
to make progress.

We then compared the two methods of parallelization (Figure 4). Thesemens were run on
a cluster of nodes communicating by MPI (Message Passing InterfaeeMyrinet, a high-speed
local area networking system. In these graphs xtagis continues to be the number of epochs;
wallclock time is roughly proportional to the number of epochs dividegplgut mixed hardware
unfortunately prevented us from performing direct comparisons of lwakdime.

One might expect that, at each epoch, the curves with greataderperform the curves with
lower p only slightly. With iterative parameter mixing, for both the small and large modeds, w
see that increasing from 20 to 50 degrades performance considerably. It would appatittiére
is very little speedup due to parallelization, probably because the trainingsdstasmall (3011
sentences).

Asynchronous MIRA using the small model starts off well but afterwalolss not do as well
as iterative parameter mixing. On the large model, however, asynchrti®fs performs dramat-
ically better. Taking a closer look at its performance for varyin@igure 5), we see that, at each
epoch, the curves with greatpiactually tend to outperform the curves with lower

Next, we tested the AROW algorithm. We heldixed to 0.01 and compared different values of
the initial learning rateo (Figure 6a), finding that the algorithm performed well fgy= 0.1 and
1 and was fairly insensitive to the choice pf in that range; larger and smaller values, however,
performed worse. We then haid = 1 and compared different valuesX{Figure 6b), finding that
higher values converged faster, but 0.1 did much worse.

The scores on the test set (Table 1) using the large model generallyntovtiat was already
observed on the development set. In total, the improvement over MERT ¢estieet is 2.4 BEu.
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BLEU
model obj alg approx par | epoch | dev test
small | 1—BLEU MERT - - 6 421 45.2
small hinge SGDn =0.02 rerank  IPM 6 422 449
small risk SGDn =0.05 linear IPM 8 419 44.8
small hinge MIRAnN =0.05 rerank  IPM 4 422 449
large hinge SGDn =0.01 rerank  IPM 5 424 452
large hinge MIRANn =0.01 rerank IPM 7 43.1 45.9
large hinge MIRANn =0.01 rerank asyn¢ 9 445 473
large hinge AROWNo=1A=0.01 rerank asyn¢c 4 447 47.6

Table 1: Final results. Key to columnsiodel = features usedybj = objective functionalg opti-
mization algorithmapprox = approximation for calculating the loss function on forests,
par = parallelization methodgpoch = which epoch was selected on the development data,
dev andtest = (case-insensitive IBM) BEu score on development and test data (NIST
2008 and 2009, respectively).

8. Conclusion

We have surveyed several methods for online discriminative training antsshes that arise in
adapting these methods to the task of statistical machine translation. Using $G@ymnd that the
large-margin objective performs slightly better than minimum risk. Then, usiadatige-margin
objective, we found that MIRA does better than SGD, and AROW, better ¥l extended all of
these methods in novel ways to cope with the large structured searchdphedranslation task,
that is, to use as much of the translation forest as possible.

An apparent disadvantage of the large-margin objective is its requiresfi@nsingle correct
derivation, which does not exist. We showed thathbpederivation serves this purpose well. We
demonstrated that the highest#BJ derivation is not in general the right choice, by showing that
performance drops for very negative valuesioiVe also raised the possibility, as yet unexplored,
of decayingu over time, as has been suggested by McAllester et al. (2010).

The non-decomposability of BU as a loss function is a nuisance that must be dealt with
carefully. However, the choice of approximation (forest rerankingu® linear ReEu) for loss-
augmented inference or expectations turned out not to be very importasttexpeerience shows
that linear B.EU sometimes outperforms and sometimes underperforms forest rerankirsindzei
it is faster and easier to implement, it may be the better choice.

The choice of parallelization method turned out to be critical. We found thatcasonous
sharing of working sets in MIRA/AROW not only gave speedups that wesly linear in the
number of processors, but also gave dramatically higher finaUBscores than iterative parameter
mixing. Itis not clear yet whether this is because iterative parameter mixiagetable to converge
in only 10 epochs or because aggregating working sets confers dinadidadvantage.

Although switching from MERT to online learning initially hurt performance, logiag some
very simple features to the model, we ended up with a gain of 22uBver MERT. When these
online methods are implemented with due attention to translation forests, the rfatuedransia-
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tion problem, the idiosyncrasies oL Bu, and parallelization, they are a highly effective vehicle for
exploring new extensions to discriminative models for translation.
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Appendix A. Minimum Risk Training

In this appendix, we describe minimum risk (expected loss) training (Smith snet-2006; Zens
et al., 2008; Li and Eisner, 2009; Arun et al., 2010) and some notes iongtementation.

A.1 Objective Function

Define a probabilistic version of the model,
Pr(d| f) DexpTw-h(d)
whereT is a temperature parameter, and for any random vardloeer derivations, define

Er[X| fi]= Z Pr(d| fi)X(d).
deD(fi)
In minimume-risk training, we want to minimizg; Er [¢i(d,d;) | fi] for T = 1. In annealed minimum-
risk training (Smith and Eisner, 2006), we [Et— 0, in which case the expected loss approaches
the loss.
This objective function is differentiable everywhere (unlike in MERT),utpo not convex (as
maximum likelihood is). The gradient for a single example is:

DEr[6i(d,di) | fi] = %(ETWW fil —Erl6 | filEr[h | fi])

or, in terms ofB:

OEr[4i(d,d) | fi] = —OEr[B(b(d,&)) | fi]
1
:_T(ET[BIH fil —Er[B| fi]Er[h | fi]). (11)
A major advantage that minimume-risk has over the large-margin methods expldhés firaper
is that it does not require a reference derivation, or a hope derivatia proxy for the reference
derivation. The main challenge with minimume-risk training is that we must calculgectations
of B andBh. We discuss how this is done below.
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A.2 Relationship to Hope/fear Derivations

There is an interesting connection between the risk and the generalizedibssg4). McAllester
etal. (2010) show that for applications where the input space is contén@s in speech processing),
a perceptron-like update using the hope and 1-best derivations, a@rlibst and fear derivations,
approaches the gradient of the loss. We provide here an analogpusert for the discrete input
case.

Consider a single training examplé, &), so that we can simply writé for ¢ andEy [X] for
Er[X | fi]. Define a loss-augmented model:

WMﬂmmmbwh@+MMﬂ»
and define

E[X]= Y Rud]fi)X(d).
deD(f;)
As before, the gradient with respectwas:
1
OwEp[(] = T (Eul¢h] — Ey[{Ey[h])

and, by the same reasoning, the partial derivativie[bf with respect tqu comes out to be the same:

é%wzimmﬂ—amam»
Therefore we have
_ &
OwE[/] au o
—lim - (B~ Eylh)

which suggests the following update rule:

W W o (Bl —E yfh])

with p decaying over time. But if we lgi = 1 (that is, to approximate the tangent with a secant),
andn’ = 2n, we get:
W W —n (Ey1[h] —E-1[h]).

Having made this approximation, there is no harm in letfing: 0, so that the expectations bf
become the value df at the mode of the underlying distribution:

w+w—n(h(dy1) —h(d_y)),
d+1 =arg ma)(W- h(d) +€(d>dl))7
d

d_; =arg maxw-h(d)—¢(d,d;)).
d

But this is exactly the SGD update on the generalized hinge loss (5)dwithd, 1 being the fear
derivation and); = d_; being the hope derivation.
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A.3 Linear BLEU

In order to calculate the expected loss from a forest of derivationapust make the loss fully
decomposable onto hyperedges. Tromble et al. (2008) define a lingaxapation to B.Eu which
they use for minimum Bayes risk decoding. We present here a versiomihades the brevity
penalty.

Suppose we have some fixed document with component Scaresadd a sentence to it that has
component scords. How does adding the new sentence affect theBscore? Form a first-order
Taylor approximation arounkl:

BLEU(b+b) ~ BLEU(b) +b-OBLEU(D)

:Bmwm<rﬂ£<£R—£R>+Hm—mWﬁg—£>>

1 1

where

1 ifx>0
H(x) = =
0 ifx<O.

Note that although the brevity penalty is not differentiabl@at p, we have filled in an arbitrary
value (which is easier than smoothing the brevity penalty and works well atipej.

Since this approximation is linear in tma, andn, it is decomposable onto hyperedges. The
term involving p is the same for all derivations, so we don’t need to decompose it andis@an a
skip (10).

The approximation is highly dependent bnTromble et al. use a fixell but we use the oracle
document defined in Section 2.4. ThBndefined as in (3) but using the linear approximation to
BLEU, is decomposable down to hyperedges, making it possible to corgfBltas well asE [bh]
over the entire forest.

A.4 Calculating the Risk and its Gradient

To calculate the expected loss, we can use the expectation semiring of &668); we give a
slightly modified definition that renormalizes intermediate values in such a wayhisatcan be
stored directly instead of as signed logarithms:

insidey.n(v— V)

expecg(v) = V2 insideyn (V) expecg(v— V), (12)
expecg(v— V) =B(v— V) +; expecg(V), (13)

insidey.n(v) = Z insidey.n(v— v),

(v—v)eE

insidey.n(v— V) =expw-h(v—v) x |_| insidey.n (V).

Vev
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To calculate the expected produgt[Bh | fi] in the gradient (11), we use the second-order
expectation semiring (Li and Eisner, 2009), similarly modified:

insidey.n(v— V)
insidey.n(v)

expechs (V) = expechs (Vv — v),

(v—=v)eE
expecs, (v — v) = expeck(v — v)expect (v — V)

+; (expect, (V') — expec (v )expeck (V)
€v
whereexpect is calculated analogously txpecg (12—-13).
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