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Abstract

Gaussian process prior with an appropriate likelihood function is a flexible non-parametric model

for a variety of learning tasks. One important and standard task is multi-class classification, which

is the categorization of an item into one of several fixed classes. A usual likelihood function for

this is the multinomial logistic likelihood function. However, exact inference with this model has

proved to be difficult because high-dimensional integrations are required. In this paper, we pro-

pose a variational approximation to this model, and we describe the optimization of the variational

parameters. Experiments have shown our approximation to be tight. In addition, we provide data-

independent bounds on the marginal likelihood of the model, one of which is shown to be much

tighter than the existing variational mean-field bound in the experiments. We also derive a proper

lower bound on the predictive likelihood that involves the Kullback-Leibler divergence between the

approximating and the true posterior. We combine our approach with a recently proposed sparse ap-

proximation to give a variational sparse approximation to the Gaussian process multi-class model.

We also derive criteria which can be used to select the inducing set, and we show the effectiveness

of these criteria over random selection in an experiment.

Keywords: Gaussian process, probabilistic classification, multinomial logistic, variational ap-

proximation, sparse approximation

1. Introduction

Gaussian process (GP, Rasmussen and Williams, 2006) is attractive for non-parametric probabilistic

inference because knowledge can be specified directly in the prior distribution through the mean and

covariance function of the process. Inference can be achieved in closed form for regression under

Gaussian noise, but approximation is necessary under other likelihoods. For binary classification

with logistic and probit likelihoods, a number of approximations have been proposed and compared

(Nickisch and Rasmussen, 2008). These are either Gaussian or factorial approximations to the

posterior of the latent function values at the observed inputs. Compared to the binary case, progress

is slight for multi-class classification. The main hurdle is the need for—and yet the lack of—

accurate approximation to the multi-dimensional integration of the likelihood or the log-likelihood

against Gaussians (Seeger and Jordan, 2004).

For multi-class classification with latent Gaussian process, different likelihood functions may

be used: the multinomial logistic function (Williams and Barber, 1998; Gibbs, 1997; Seeger and

Jordan, 2004), also called the soft-max (Bridle, 1989); the multinomial probit function (Girolami

and Rogers, 2006); and the uniform noise model (Kim and Ghahramani, 2006). For inference,

the exact posterior is usually approximated with a Gaussian or a factorial distribution, similar to
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the binary case. Different principles may be used to fit the approximation: Laplace approximation

(Williams and Barber, 1998); assumed density filtering (Seeger and Jordan, 2004) and expectation

propagation (Kim and Ghahramani, 2006); and variational approximation (Gibbs, 1997; Girolami

and Rogers, 2006).

This paper addresses the variational approximation of the multinomial logit Gaussian process

model, where the likelihood function is the multinomial logistic. In contrast with the variational

mean-field approach of Girolami and Rogers (2006), where a factorial approximation is assumed

from the onset, we use a full Gaussian approximation on the posterior of the latent function values.

The approximation is fitted by minimizing the Kullback-Leibler divergence to the true posterior,

which is known to be the same as maximizing a variational lower bound on the marginal likelihood.

This procedure requires the expectation of the log-likelihood under the approximating distribution.

This is intractable in general, so we introduce a bound on the expected log-likelihood and optimize

this bound instead. This contrasts with the proposal by Gibbs (1997) to bound the multinomial

logistic likelihood directly. Our bound on the expected log-likelihood is derived using a novel vari-

ational method that results in the multinomial logistic being associated with a mixture of Gaussians.

Monte-Carlo simulations indicate that this bound is very tight in practice.

Our approach gives a lower bound on the marginal likelihood of the model. By fixing some

variational parameters, we arrive at data-independent bounds on the marginal likelihood. These

bounds depend only on the number of classes and kernel Gram matrix of the data, but not on the

classifications in the data. On four UCI data sets, the one bound we evaluated is tighter than the

variational mean-field bound (Girolami and Rogers, 2006).

Although the variational approximation provides a lower bound on the marginal likelihood,

approximate prediction in the usual straightforward manner does not necessarily give a lower bound

on the predictive likelihood. We show that a proper lower bound on the predictive likelihood can

be obtained when we take into account the Kullback-Leibler divergence between the approximating

and the true posterior. This perspective supports the minimization of the divergence as a criterion

for approximate inference.

To address large data sets, we give a sparse approximation to the multinomial logit Gaussian

process model. In a natural manner, this sparse approximation combines our proposed variational

approximation with the variational sparse approximation that has been introduced for regression

(Titsias, 2009a). The result maintains a variational lower bound on the marginal likelihood, which

can be used to guide model learning. We also introduce scoring criteria for the selection of the

inducing variables in the sparse approximation. Experiments indicate that the criteria are effective.

1.1 Overview

In Section 2, we describe the latent Gaussian process model with the multinomial logistic likelihood,

and we give the variational lower bound on the marginal likelihood for approximate inference. The

data-independent bounds on the marginal likelihood are developed in this section and so are the

bounds for the predictive likelihood. In Section 3, we provide the necessary updates to optimize

the variational bound. Sparse approximation is presented in Section 4. Section 5 looks at the

sum-to-zero property that exists in our variational inference for certain covariance functions. This

is the property that has been used in motivating several single-machine multi-class support vector

machines (SVMs). Section 6 addresses model learning for the multinomial logit Gaussian process

model. It also looks at the active selection of the inducing set for sparse approximation. Section 7
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outlines the computational complexity of our approach. Related work is discussed in Section 8.

Section 9 describes several experiments and gives the results. Among others, we compare the

tightness of our variational approximation to the variational mean-field approximation (Girolami

and Rogers, 2006), and the errors of our classification results with those given by four single-

machine multi-class SVMs. Section 10 concludes and provides further discussions.

1.2 Notation

Vectors are represented by lower-case bold-faced letters, and matrices are represented by upper-case

normal-faced letters. The transpose of matrix X is denoted by XT. An asterisk ∗ in the superscript is

used for the optimized value of a quantity or function. Sometimes it is used twice when optimized

with respect to two variables. For example, if h(x,y) is a function, h∗(y) is h(x,y) optimized over x,

and h∗∗ is h(x,y) optimized over x and y. The dependency of a function on its variables is frequently

suppressed when the context is clear: we write h instead of h(x,y) and h∗ instead of h∗(y). In

optimizing a function h(x) over x, xfx and xNR refers to fixed-point update and Newton-Raphson up-

date respectively, while xcc refers to an update using the convex combination xcc = (1−η)x1 +ηx2,

where η ∈ [0,1] is to be determined, and x1 and x2 are in the domain of optimization.

We use xi for an input that has to be classified into one of C classes. The class of xi is denoted by

yi using the one-of-C encoding. Hence, yi is in the canonical basis of RC, which is the set {ec}C
c=1,

where ec has one at the cth entry and zero everywhere else. Class index c is used as superscript,

while datum index i is used as subscript. The cth entry in yi is denoted by yc
i , which is in {0,1}, and

xi belongs to the cth class if yc
i = 1.

Both xi and yi are observed variables. Associated with each yc
i is a latent random function

response f c
i . For sparse approximation, we introduce another layer of latent variables, which we

denote by z collectively. These are called the inducing variables. Other variables and functions

associated with the sparse approximation are given a tilde ∼ accent. The asterisk subscript is used

on x, y, f and z for two different purposes depending on the context: it is used to indicate a test

input for predictive inference, and it is also used for a site under consideration for inclusion to the

inducing set for sparse approximation.

We use p to represent the probability density determined by the model and the data, including

the case where the model involves sparsity. Any variational approximation to p is denoted by q.

2. Model and Variational Inference

We recall the multinomial logit Gaussian process model (Williams and Barber, 1998) in Section 2.1.

We add a simple generalization of the model to include the prior covariance between the latent

functions. Bayesian inference with this model is outlined in Section 2.2; this is intractable. We

provide variational bounds and approximate inference for the model in Section 2.3.

2.1 Model

For classifying or categorizing the ith input xi into one of C classes, we use a vector of C indicator

variables yi ∈ {ec}, wherein the cth entry, yc
i , is one if xi is in class c and zero otherwise. We

introduce C latent functions, f 1, . . . , f C, on which we place a zero mean Gaussian process prior

〈 f c(x) f c′(x′)〉= Kc
cc′k

x(x,x′), (1)
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where Kc
cc′ is the (c,c′)th entry of a C-by-C positive semi-definite matrix Kc for modeling inter-

function covariances, and kx is a covariance function on the inputs. Let f c
i

def= f c(xi). Given the

vector of function values fi
def= ( f 1

i , . . . , f C
i )

T at xi, the likelihood for the class label is the multinomial

logistic

p(yc
i = 1|fi) def=

exp f c
i

∑
C
c′=1 exp f c′

i

. (2)

This can also be written as

p(yi|fi) =
exp fT

i yi

∑
C
c=1 exp fT

i ec
.

These two expressions for the likelihood function will be used interchangeably. We use the first

expression when the interest on the class c and the second when the interest is on fi.

The above model for the latent functions f cs has been used previously for multi-task learning

(Bonilla et al., 2008), where f c is the latent function for the cth task. Most prior works on multi-

class Gaussian process (Williams and Barber, 1998; Seeger and Jordan, 2004; Kim and Ghahramani,

2006; Girolami and Rogers, 2006) have chosen Kc to be the C-by-C identity matrix, so their latent

functions are identical and independent. Williams and Barber (1998) have made this choice because

the inter-function correlations are usually difficult to specify, although they have acknowledged that

such correlations can be included in general. We agree with them on the difficulty, but we choose

to address it by estimating Kc from observed data, as has been done for multi-task learning (Bonilla

et al., 2008). If Kc is the identity matrix, then the block structure of the covariance matrix between

the latent function values can be exploited to reduce computation (Seeger and Jordan, 2004).

The model in Equation 1 is known as the separable model for covariance. It is perhaps the

simplest manner to involve inter-function correlations. One can also consider more involved models,

such as those using convolution (Ver Hoef and Barry, 1998) and transformation (Lázaro-Gredilla

and Figueiras-Vidal, 2009). Our presentation will mostly be general and applicable to these as well.

2.2 Exact Inference

Given a set of n observations {(xi,yi)}n
i=1, we have an nC-vector y (resp. f) of indicator variables

(resp. latent function values) by stacking the yis (resp. fis). Let X collects x1, . . . ,xn. Dependencies

on the inputs X are suppressed henceforth unless necessary.

By Bayes’ rule, the posterior over the latent function values is p(f|y) = p(y|f)p(f)/p(y), where

p(y|f) = ∏i p(yi|fi) and p(y) =
∫

p(y|f)p(f)df. Inference for a test input x∗ is performed in two

steps. First we compute the distribution of latent function values at x∗: p(f∗|y) =
∫

p(f∗|f) p(f|y)df.

Then we compute the posterior predictive probability of x∗ being in class c, which is given by

p(yc
∗ = 1|y) = ∫

p(yc
∗ = 1|f∗) p(f∗|y)df∗.

2.3 Variational Inference

The integrals needed in the exact inference steps are intractable due to the non-Gaussian likeli-

hood p(y|f). To progress, we employ variational inference in the following manner. The posterior

p(f|y) is approximated by the variational posterior q(f|y) by minimizing the Kullback-Leibler (KL)

divergence

KL(q(f|y)‖ p(f|y)) =
∫

q(f|y) log
q(f|y)
p(f|y)df.
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This is the difference between the log marginal likelihood log p(y) and a variational lower bound

logZB =−KL(q(f|y)‖ p(f))+
n

∑
i=1

ℓi(yi;q), (3)

where

ℓi(yi;q) def=

∫
q(fi|y) log p(yi|fi)dfi (4)

is the expected log-likelihood of the ith datum under distribution q, and

q(fi|y) =
∫

q(f|y)∏
j 6=i

dfj (5)

is the variational marginal distribution of fi; see Appendix B.1 for details. The Kullback-Leibler

divergence component of logZB can be interpreted as the regularizing factor for the approximate

posterior q(f|y), while the expected log-likelihood can be interpreted as the data fit component. The

inequality log p(y) ≥ logZB with ZB expressed as in Equation 3 has been given previously in the

same context of variational inference for Gaussian latent models (Challis and Barber, 2011). It has

also been used in the online learning setting (see Banerjee, 2006, and references therein).

For approximate inference on a test input x∗, first we obtain the approximate posterior, which is

q(f∗|y) def=
∫

p(f∗|f)q(f|y)df. Then we obtain a lower bound to the approximate predictive probability

for class c:

logq(yc
∗ = 1|y) def= log

∫
p(yc

∗ = 1|f∗)q(f∗|y)df∗

≥
∫

q(f∗|y) log p(yc
∗ = 1|f∗)df∗

= ℓ∗(y
c
∗ = 1;q),

(6)

where the inequality is due to Jensen’s inequality. The corresponding upper bound is obtained using

the property of mutual exclusivity:

q(yc
∗ = 1|y) = 1− ∑

c′ 6=c

q(yc′
∗ = 1|y)≤ 1− ∑

c′ 6=c

expℓ∗(y
c′
∗ = 1;q). (7)

The Bayes classification decision based on the upper bound is consistent with that based on the

lower bound, since

argmax
c

(

1− ∑
c′ 6=c

expℓc′
∗

)

= argmax
c

(

1−
C

∑
c′=1

expℓc′
∗ + expℓc

∗

)

= argmax
c

(expℓc
∗) ,

where we have written ℓc
∗ for ℓ∗(yc

∗ = 1;q).
The variational inference procedure outlined here depends on the ability to compute expressions

(a) KL(q(f|y)‖ p(f)), (b) q(f∗|y) and (c) ℓi(yi;q). Expressions (a) and (b) can be made tractable

by constraining q(f|y) to be a Gaussian density with mean m and covariance V , which are the

variational parameters. For (c), we compute its lower bound instead, as detailed in the next section.

Remark 1 Approximate prediction using the approximate posterior as outlined above is the more

common approach (see, for example, Rasmussen and Williams, 2006, §3.5). An alternative is to

use p(y∗|y) = p(y∗,y)/p(y) directly. Lower bounds to the marginal likelihoods p(y∗,y) and p(y)
may replace the exact values if they are tight. However, this procedure is more expensive in general

since an (approximate) marginal likelihood has to be computed for the training data together with

the test data point for every test point.
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2.3.1 VARIATIONAL BOUNDS FOR EXPECTED LOG-LIKELIHOOD

Equations 3 to 7 require the computation of the expected log-likelihood under q(f|y):

ℓ(y;q) def=

∫
q(f|y) log p(y|f)df, (8)

where we have suppressed the datum indices i and ∗ here and henceforth for this section. In our

setting, q(f|y) is a Gaussian density with mean m and covariance V , and we regard these parameters

to be constant throughout this section. The subject of this section is lower bounds on ℓ(y;q). Two

trivial lower bounds can be obtained by expanding p(y|f) and using the Jensen’s inequality:

ℓ(y;q)≥ mTy− log
C

∑
c=1

exp

[

mTec +
1

2
(y− ec)TV (y− ec)

]

, (9)

ℓ(y;q)≥ mTy− log
C

∑
c=1

exp

[

mTec +
1

2
(ec)TV ec

]

. (10)

These bounds can be very loose. In this section, we give a variational lower bound, and we have

found this bound to be quite tight when the variational parameters are optimized. This bound ex-

ploits that if a prior r(f) is a mixture of C Gaussians with a particular set of parameters, then the

corresponding posterior under the multinomial logistic likelihood is a C-variate Gaussian. We in-

troduce this bound in terms of probability distributions and then express it in terms of variational

parameters.

Lemma 2 Let r(f|y) be a C-variate Gaussian density with mean a and precision W, and let ac be

such that Wac =Wa+ ec −y. If r(f) = ∑
C
c=1 γ

crc(f) is the mixture of C Gaussians model on f with

mixture proportions and components

γc def=
exp
[

1
2
(ac)TWac

]

∑c′ exp
[

1
2
(ac′)TWac′

] , rc(f) def=
|W |1/2

(2π)C/2
exp

[

−1

2
(f−ac)TW (f−ac)

]

,

and if

r(y) =
exp
[

1
2
aTWa

]

∑
C
c=1 exp

[

1
2
(ac)TWac

] , (11)

then

ℓ(y;q)≥ h(y;q,r) def=

∫
q(f|y) logr(f|y)df+ logr(y)− log

C

∑
c=1

γc

∫
q(f|y)rc(f)df. (12)

Proof The choice of notation used in the lemma will be clear from its proof. We begin with a

variational posterior distribution r(f|y). Denote by r(f) the corresponding prior distribution that

gives this posterior when combined with the exact data likelihood p(y|f); that is

r(f|y) = p(y|f)r(f)/r(y), where r(y) def=

∫
p(y|f)r(f)df.

Rearranging for p(y|f) and putting back into ℓ(y;q) defined by (8) gives

ℓ(y;q) =
∫

q(f|y) logr(f|y)df+ logr(y)−
∫

q(f|y) logr(f)df. (13)
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This is valid for any choice of distribution r(f|y), but let us choose it to be a C-variate Gaussian

density with mean a and precision W . After some algebraic manipulation detailed in Appendix B.2,

we obtain the expressions for r(f) and r(y) given in the lemma. We proceed with Jensen’s inequality

to move the logarithm outside the integral for the last term on the right of (13). This leads to the

lower bound (12).

Remark 3 The first two terms in the expression for the expected log-likelihood ℓ(y;q) given by (13)

are computable, since r(f|y) is Gaussian by definition, and r(y) is given in (11); however, the third

term remains intractable since r(f) is a mixture of Gaussians. Hence the additional step of using

the Jensen’s inequality is required to obtain the lower bound h(y;q,r) in (12) that is computable.

Remark 4 Lemma 2 depends only on the multinomial logistic likelihood function. It does not de-

pend on the distribution q(f|y). In particular, q(f|y) can be non-Gaussian.

Lemma 5 Let W be a C-by-C positive semi-definite matrix, and let a ∈ R
C. Define S def=V−1 +W,

b def=W (m−a)+y, and

gc(y;q,a,W ) def= exp

[

mTec +
1

2
(b− ec)TS−1(b− ec)

]

. (14)

Then

ℓ(y;q)≥ h(y;q,a,W ) =
C

2
+

1

2
log |SV |− 1

2
trSV +mTy− log

C

∑
c=1

gc(y;q,a,W ). (15)

Proof This follows from Lemma 2 by expressing h(y;q,r) in terms of parameters W and a; the

derivation is in Appendix B.3. Matrix W is allowed to be singular because our derivation does not

involve the inversion of W ; and the determinants of W taken in r(f|y) and rc(f) directly cancel out

by subtraction, so continuity arguments can be applied.

We can view h given in (15) as parameterized either by W and a or by S and b. For the latter

view, the definitions of S and b constrain their values. Therefore, the following seem necessary from

the onset in order for the bound to be valid.

• S �V−1 so that W is well-defined.

• If W is rank-deficient, then b lies on the hyperplane passing through y and in the column

space of W .

However, further analysis will show these constraints to be unnecessary for h to be a lower bound.

Consequently, we can view h as a function of the pair (b,S), regardless of there being a pair (a,W )
mapping to (b,S). Before proceeding to the formal theorem, a few notations are necessary. Let

gc(q,b,S) def= exp

[

mTec +
1

2
(b− ec)TS−1(b− ec)

]

(16)
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be a function of the mean m of distribution q and of b and S ≻ 0. When the context is clear, we will

suppress the parameters of gc for conciseness. Let

ḡc def= gc/∑
C
c′=1 gc′ , ḡ def= (ḡ1, . . . , ḡC)T, (17)

and let Ḡ be the diagonal matrix with ḡ along its diagonal. We further define

A def= ∑
C
c=1 ḡc(b− ec)(b− ec)T = bbT −bḡT − ḡbT + Ḡ � 0. (18)

Matrix A given above is a convex combination of C positive semi-definite matrices of ranks one, so

A is positive semi-definite. Furthermore, A 6= 0. We will also suppress the dependency of A on m, b

and S for conciseness.

The lemmas necessary for the proof of the following theorem are in Appendix B.4.

Theorem 6 Let S be a C-by-C positive definite matrix, and let b ∈ R
C. Let

h(y;q,b,S) def=
C

2
+

1

2
log |SV |− 1

2
trSV +mTy− log

C

∑
c=1

gc(q,b,S) (19)

be a function of b and S, where gc(q,b,S) is given by (16). Then ℓ(y;q)≥ h(y;q,b,S).

Proof Let (b∗,S∗) def= argmax(b,S) h(y;q,b,S). The joint concavity of h in b and S (Lemma 25)

implies h(y;q,b∗,S∗)> h(y;q,b,S) for any b 6= b∗ and S 6= S∗. Thus we only need to prove

ℓ(y;q) ≥ h(y;q,b∗,S∗). Now, if there exists a pair (a∗,W ∗) with W ∗ � 0 such that S∗ =V−1 +W ∗

and b∗ =W ∗(m−a∗)+y, then the application of Lemma 5 completes the proof. To find such a

pair, we first set S∗ and W ∗ to the Sfx and the W fx given by Lemma 28, then we show below that

there exists an a∗ under this setting.

Let ḡ∗ def= ḡ(q,b∗,S∗) and Ḡ∗ be the diagonal matrix with ḡ∗ along its diagonal. By Lemma 26,

b∗ = ḡ∗, so matrix A simplifies to A∗ given by A∗ def= Ḡ∗− ḡ∗(ḡ∗)T. Since ḡ∗ is a probability vector,

matrix A∗ is the covariance matrix of a multinomial distribution. The entries in ḡ∗ are non-zero,

so matrix A∗ is of rank (C − 1), and an eigenpair of A∗ is (0,1) (see Watson, 1996). In other

words, null(A∗∗) = {η1 | η ∈ R}. Using Lemma 28, we also have null(W ∗) = {η1 | η ∈ R}. Since

(b∗−y)T1 = 1−1 = 0, we have (b∗− y) 6∈ null(W ∗), unless (b∗− y) = 0. Equivalently, (b∗− y)
is in the row space of W ∗. Hence, there exists a vector v such that W ∗v = b∗−y. We let a∗ def= m−v

to complete the proof.

There are two properties that W ∗ obeys: null(W ∗) = {η1 | η ∈R} and W ∗ � 0. One parametriza-

tion of W that always satisfies these properties is

W def= M−M11TM/1TM1, where M ≻ 0. (20)

The proof for the null space is straightforward, while the proof for positive definiteness is an appli-

cation of Theorem 7.7.7(a) by Horn and Johnson (1985). If M is a diagonal positive definite matrix,

then the parametrization proposed by Seeger and Jordan (2004) is obtained. Further constrain-

ing the diagonal to sum to one gives the parametrization resultant from the Laplace approximation

(Williams and Barber, 1998; Rasmussen and Williams, 2006). A diagonal M is appealing because

it entails that W is the covariance of the multinomial or the Dirichlet distribution, which matches
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the likelihood. However, our experience has shown that a diagonal M is far from optimum for our

bounds. Therefore, we shall let W vary freely but be subjected directly to the two properties stated

at the beginning of this paragraph. There are two reasons for the non-optimality. First, the varia-

tional prior r(f) in Lemma 2 is a mixture of Gaussian distributions and not a Dirichlet distribution.

Second, the use of Jensen’s inequality in Lemma 5 weaken the interpretation of W as the covariance

of the variational posterior r(f|y). Nonetheless, since the null space of W ∗ is the line {η1 | η ∈ R},

the optimized variational posterior satisfies the invariance r(f|y) = r(f+ η1|y), η ∈ R. This is a

pleasant property because the likelihood satisfies the same invariance: p(y|f) = p(y|f+η1).
The significance of Theorem 6 over Lemma 5 is in the practical aspects of variational inference:

1. Maximizing h with respect to V does not involve the function gc.

2. A block coordinate approach to optimization can be used, since we can optimize with respect

to V and to S alternately, without ensuring S �V−1 when optimizing for V .

3. The vector y of observed classifications does not appear in the definition of gc given by Equa-

tion 16, in contrast to Equation 14.

Let us emphasis the second point listed above. In place of definitions (16) and (19) for functions

gc and h, suppose we had used

gc(b′,S) def= exp
1

2
(b′− ec)TS−1(b′− ec),

h(y;q,b,S) def=
C

2
+

1

2
log |SV |− 1

2
trS(V +mmT)+mT(y−b′)− log

C

∑
c=1

gc(q,b′,S)

as functions of b′ and S ≻ 0. This is obtained from Lemma 2 by substituting in S def=V−1 +W

and b′ def=−V−1m−Wa+y. This formulation of h is jointly concave in b′ and S, so there should

be no computation difficulties in optimization. Unfortunately, this formulation does not guarantee

S �V−1 when the optimization is done without constraints. This is in contrast with the formulation

in Theorem 6, for which validity is guaranteed by Lemma 28.

The bound h as defined in Theorem 6 is maximized by finding the stationary points with respect

to variational parameters b and S. Computation can be reduced when the bound is relaxed through

fixing or constraining these parameters. Two choices for S are convenient: I and V−1. Fixing

S to V−1 is expected to be a better choice since its optimal value is between V−1 and V−1 + A

(Lemma 27). This gives the relaxed bound

h(y;q,b,V−1) = mTy− log
C

∑
c=1

exp

[

mTec +
1

2
(b− ec)TV (b− ec)

]

.

For the case where q is non-correlated Gaussians, that is, where V is a diagonal matrix, we ob-

tain the bound that has been proposed for variational message passing (Knowles and Minka, 2011,

Equation 12). We can also choose to fix b to y, giving

h(y;q,y,V−1) = mTy− log
C

∑
c=1

exp

[

mTec +
1

2
(y− ec)TV (y− ec)

]

.

This is the bound (9) obtained using Jensen’s inequality directly. Setting b to 0 instead of y gives

h(y;q,0,V−1) = mTy− log
C

∑
c=1

exp

[

mTec +
1

2
(ec)TV ec

]

,
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which is the bound (10) also obtained using Jensen’s inequality directly. Therefore, the bound

max(b,S) h(y;q,b,S) is provably at least as tight as the Jensen’s inequality bounds. Other choices for

S and b give different lower bounds on max(b,S) h(y;q,b,S).
Thus far we have delved into lower bounds for ℓ(y;q) defined by Equation 8. Of independent

interest is the following upper bound that is proved in Appendix B.5:

Lemma 7 ℓ(y;q)≤ log p(y|m) def= mTy− log∑
C
c=1 expmTec.

2.3.2 VARIATIONAL BOUNDS FOR MARGINAL LIKELIHOOD

To consolidate, the log marginal likelihood is lower bounded via the sequence

log p(y)≥ logZB ≥ logZh
def=−KL(q(f|y)‖ p(f))+

n

∑
i=1

h(yi;qi,bi,Si),

where the datum subscript i is reintroduced. The aim is to optimize the last lower bound. Recall that

m and V are the mean and covariance of the variational posterior q(f|y). Also recall that the prior

distribution on f is given by the Gaussian process prior stated in Section 2.1, so f has zero mean

and covariance K def= Kx ⊗Kc, where Kx is the n-by-n matrix of covariances between the inputs

x1, . . . ,xn. Using arguments similar to those used in proving Lemma 25, one can show that logZh

is jointly concave in m, V , {bi} and {Si}. We highlight this with the following proposition, where

logZh is expressed explicitly in the variational parameters.

Proposition 8 Let V be an nC-by-nC positive definite matrix and let m ∈ R
nC. For i = 1, . . .n, let

Si be a C-by-C positive definite matrix and let bi ∈ R
C. Let

logZh = nC+
1

2
log |K−1V |− 1

2
trK−1V − 1

2
mTK−1m+mTy

+
1

2

n

∑
i=1

(

log |SiVi|− trSiVi

)

−
n

∑
i=1

log
C

∑
c=1

exp

[

mT
i ec +

1

2
(bi − ec)TS−1

i (bi − ec)

]

, (21)

where Vi is the ith C-by-C diagonal block of V , and mi is the ith C-vector of m. Then logZh is jointly

concave in m, V , {bi} and {Si}, and log p(y)≥ logZh.

Suitable choices of the variational parameters leads to the following two theorems that are

proved in Appendix B.6.

Theorem 9 For a multinomial logit Gaussian process model where the latent process has zero

mean and the covariance function induces the Gram matrix K, the average log-marginal-likelihood

satisfies

1

n
log p(y)≥ C

2
+

C

2
logσ2

v −
1

2n
log |K|− σ2

v

2n
trK−1

− C−1

2

[

2

√

σ2
v

C
+

1

4
− log

(
√

σ2
v

C
+

1

4
+

1

2

)

−1

]

− logC

>
C

2
+

C

2
logσ2

v −
1

2n
log |K|− σ2

v

2n
trK−1 − σ2

v

2
− logC

for every σ2
v > 0.
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Theorem 10 For a multinomial logit Gaussian process model where the latent process has zero

mean, the covariance function is k((x,c),(x′,c′)) = σ2δ(c,c′)kx(x,x′) and kx is a correlation func-

tion, that is, kx(x,x) = 1, the average log-marginal-likelihood satisfies

1

n
log p(y)≥−C−1

2

[

2

√

σ2

C
+

1

4
− log

(
√

σ2

C
+

1

4
+

1

2

)

−1

]

− logC

>−σ2/2− logC.

The bounds in the theorems do not dependent on the observed classes y because they have been

“zeroed-out” by setting m = 0. For the setting in Theorem 10, the lower bound in Theorem 10 is

always tighter than that in Theorem 9 because the first four terms within the latter is the negative of

a Kullback-Leibler divergence, which is always less than zero. One may imagine that this bound is

rather loose. However, we will show in experiments in Section 9.1 that even this is better than the

optimized variational mean-field lower bound (Girolami and Rogers, 2006).

Remark 11 Theorem 10 is consistent with and generalizes the calculations previously obtained for

binary classification and in certain limits of the length-scales of the model (Nickisch and Rasmussen,

2008, Appendix B). Our result is also more general because it includes the latent scale σ2 of the

model.

2.3.3 PREDICTIVE DENSITY: APPROXIMATION AND BOUNDS

According to the Gaussian process prior model specified in Section 2.1, the C latent function values

f∗ of a test input x∗ and the latent function values of the n observed data have prior
(

f

f∗

)

∼ N

(

0,

(

K K∗
KT
∗ K∗∗

))

,

where K∗ def= kx
∗⊗Kc, K∗∗ def= kx(x∗,x∗)Kc, and kx

∗ is the vector of covariances between the observed

inputs X and the test input x∗. After the variational posterior q(f|y) = N (f|m,V ) has been obtained

by maximizing the lower bound logZh in Proposition 8, we can obtain the approximate posterior at

the test input x∗:

q(f∗|y) def=

∫
p(f∗|f)q(f|y)df = N (f∗|m∗,V∗),

where m∗ def= KT
∗ K−1m and V∗ def= K∗∗−KT

∗ K−1K∗+KT
∗ K−1V K−1K∗.

The approximation to the posterior predictive density of y∗ at x∗ is

log p(yc
∗ = 1|y)≈ logq(yc

∗ = 1|y) def= log

∫
p(yc

∗ = 1|f∗)q(f∗|y)df∗ (22)

≥ ℓ∗(y
c
∗ = 1;q)

≥ max
b∗,S∗

h(ec;q∗,b∗,S∗), (23)

where ℓ∗(yc
∗ = 1;q) =

∫
q(f∗|y) log p(yc

∗ = 1|f∗)df∗, and q∗ in the last expression refers to q(f∗|y).
Expanding h using definitions (16) and (19) gives

log p(yc
∗ = 1|y) &

C

2
+ mT

∗ec + max
b∗,S∗

(

1

2
log |S∗V∗|−

1

2
trS∗V∗− log

C

∑
c′=1

gc′(q∗,b∗,S∗)

)

, (24)
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where the probed class ec is used only outside the max operator. Hence maximization needs to be

only done once instead of C times. Moreover, if one is interested only in the classification decision,

then one may simply compare the re-normalized probabilities

p̃(yc
∗ = 1|y) = p(yc

∗ = 1|m∗) def=
exp(mc

∗)

∑
C
c′=1 exp(mc′∗ )

. (25)

In this case, no maximization is required, and class prediction is faster. The faster prediction is

possible because we have used the lower bound (23) for making classification decisions. These

classification decisions do not match those given by q(yc
∗|y) in general (Rasmussen and Williams,

2006, Section 3.5 and Exercise 3.10.3). In addition to the normalization across the C classes, the

predictive probability p̃(yc
∗ = 1|y) is also an upper bound on expℓ∗(yc

∗ = 1;q) because of Lemma 7.

The relation in Equation 24 is an approximate inequality (&) instead of a proper inequality (≥)

due to the approximation to logq(yc
∗ = 1|y) in Equation 22. As far as we are aware, this approx-

imation is currently used throughout the literature for Gaussian process classification (Rasmussen

and Williams 2006, Equations 3.25, 3.40 & 3.41 and 3.62; Nickisch and Rasmussen 2008, Equation

16). In order to obtain a proper inequality, we will show that the Kullback-Leibler divergence from

the approximate posterior to the true posterior has to be accounted for.

First, we generalize and consider a set of n∗ test inputs X∗ def= {x∗1, . . . ,x∗n∗}. The following

theorem, which give proper lower bounds, is proved in Appendix B.7.

Theorem 12 The log joint predictive probability for x∗j to be in class c j ( j = 1 . . .n∗) has lower

bounds

log p({y
c j

∗j = 1}n∗
j=1|y)≥

n∗

∑
j=1

∫
q(f∗j|y) log p(y

c j

∗j = 1|f∗j)df∗j −KL(q(f|y)‖p(f|y))

≥
n∗

∑
j=1

max
b∗j,S∗j

h(ec j ;q∗j,b∗j,S∗j)+ logZB − log p(y)

≥
n∗

∑
j=1

max
b∗j,S∗j

h(ec j ;q∗j,b∗j,S∗j)+ logZh − log p(y).

In the first bound, the computation of the Kullback-Leibler divergence is intractable, but it is pre-

cisely this quantity that we have sought to minimize in the beginning, in Section 2.3. This implies

that this divergence is a correct quantity to minimize in order to tighten the lower bound on the

predictive probabilities. For one test input x∗,

log p(yc
∗ = 1|y)≥ max

b∗,S∗
h(ec;q∗,b∗,S∗)+ logZh − log p(y).

Because logZB, logZh and log p(y) are independent of the probed class ec at x∗, the classification de-

cision and the re-normalized probabilities (25) are also based on a true lower bound to the predictive

probability.

Dividing the last bound in Theorem 12 by n∗ gives

1

n∗
log p({y

c j

∗j = 1}n∗
j=1|y)≥

1

n∗

n∗

∑
j=1

max
b∗j,S∗j

h(ec j ;q∗j,b∗j,S∗j)+
1

n∗

[

logZh − log p(y)
]

.
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The term logZh − log p(y) is a constant independent of n∗, so the last term diminishes when n∗ is

large. In contrast the other two terms on either side of the inequality remain significant because each

of them is the sum of n∗ summands. Hence, for large n∗, the last term can practically be ignored to

give a computable lower bound on the average log predictive probability.

3. Variational Bound Optimization

To optimize the lower bound logZh during learning, we choose a block coordinate approach, where

we optimize with respect to the variational parameters {bi}, {Si}, m and V in turn. For prediction,

we only need to optimize h with respect to the variational parameters b∗ and S∗ for the test input x∗.

3.1 Parameter bi

Parameters bi and Si are contained within h(yi;qi,bi,Si), so we only need to consider this function.

For clarity, we suppress the datum subscript i and the parameters for h and gc. The partial gradient

with respect to b is −S−1 (b− ḡ), where ḡ is defined by Equation 17. Setting the gradient to zero

gives the fixed-point update bfx = ḡ, where ḡ is evaluated at the previous value of b. This says that

the optimal value b∗ lies on the C-simplex, so a sensible initialization for b is a point therein. When

the fixed-point update does not improve the lower bound h, we use to the Newton-Raphson update,

which incorporates the Hessian

∂2h

∂b∂bT
=−S−1 −S−1

(

Ḡ− ḡḡT
)

S−1,

where Ḡ is the diagonal matrix with ḡ along its diagonal. The Hessian is negative semi-definite,

which is another proof that h is a concave function of b; see Lemma 25. The update is

bNR = b−η

(

∂2h

∂b∂bT

)−1
∂h

∂b
= b−η

[

I +
(

Ḡ− ḡḡT
)

S−1
]−1

(b− ḡ) ,

where η = 1. This update may fail due to numerical errors in areas of high curvatures. In such a

case, we search for an optimal η ∈ [0,1] using the false position method.

3.2 Parameter Si

Similar to bi, only h(yi;qi,bi,Si) needs to be considered for Si, and the datum subscript i is sup-

pressed here. The partial gradient with respect to S is given by Equation 59, from which we obtain

the implicit Equation 60. Let V factorizes to LLT, where L is non-singular since V ≻ 0. Using A

given by (18) at the current value of S, a fixed-point update for S is

Sfx = L−TPΛ̃PTL−1, Λ̃ def= (Λ+ I/4)1/2 + I/2,

where PΛPT is the eigen-decomposition of LTAL; see the proof of Lemma 28 in Appendix B.4.

The fixed-point update Sfx may fail to improve the bound. We may fall-back on the Newton-

Raphson update for S that uses gradient (59) and a C2-by-C2 Hessian matrix. However, this can

be rather involved since it needs to ensure that S stays positive definite. An alternative, which we

prefer, is to perform line-search in a direction that guarantees positive definiteness. To this end, let

S = Scc def= (1−η)S+ηSfx, and we search for a η ∈ [0,1] that optimizes the bound using the false

position method. Appendix C.1 gives the details.
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3.3 Parameter m, and Joint Optimization with b

We now optimize the bound logZh with respect to m. Here, the datum subscript i is reintroduced.

Let y (resp. ḡ) be the nC-vector obtained by stacking the yis (resp. ḡis). Let Ḡ be the nC-by-nC

diagonal matrix with ḡ along its diagonal, and let G̃ be the nC-by-nC block diagonal matrix with

ḡiḡ
T
i as the ith block. The gradient and Hessian with respect to m are

∂ logZh

∂m
=−K−1m+y− ḡ,

∂2 logZh

∂m∂mT
=−K−1 −

(

Ḡ− G̃
)

. (26)

The Hessian is negative semi-definite; this is another proof that logZh is concave in m. The fixed-

point update mfx = K(y− ḡ) can be obtained by setting the gradient to zero. This update may fail to

give a better bound. One remedy is to use the Newton-Raphson update. Alternatively the concavity

in m can be exploited to optimize with respect to η ∈ [0,1] in mcc def= (1−η)m+ηmfx, such as is

done for the parameters Sis in the previous section. Here we will give a combined update for m and

the bis that can be used during variational learning. This update avoids inverting K, which can be

ill-conditioned.

The gradient in (26) implies the self-consistent equation m∗ = K (y− ḡ∗) at the maximum,

where ḡ∗ is ḡ evaluated the the optimum parameters. From Lemma 26, another self-consistent

equation is b∗ = ḡ∗, where the nC-vector b∗ is obtained by stacking all the bis. Combining these

two equations gives m∗ = K (y−b∗), which is a bijection between b∗ and m∗ if K has full rank.

For the sparse approximation that will be introduced later, K will be replaced by the “fat” matrix

Kf, which is column-rank deficient. There, the mapping from b∗ to m∗ becomes many-to-one. With

this in mind, instead of letting m be a variational parameter, we fix it to be a function of b, that is,

m = K (y−b) , (27)

and we optimize over b instead. The details are in Appendix C.2.

This joint update for m and the bis can be used for variational learning. This, however, does

not make the update in Section 3.1 redundant: that is still required during approximate prediction,

where the b∗ for the test input x∗ still needs to be optimized over even though m is fixed after

learning.

3.4 Parameter V

For the gradient with respect to V we have

∂hi

∂Vi

=
1

2
V−T

i − 1

2
ST

i =−1

2
W T

i ,
∂ logZh

∂V
=

1

2
V−1 − 1

2
K−1 − 1

2
W−1,

where Wi
def= Si −V−1

i , and W is the block diagonal matrix of the Wis. Here, function hi is regarded

as parameterized by Si (as in Theorem 6) rather than by Wi (as in Lemma 25). Using gradient

∂ logZh/∂V directly as a search direction to update V is undesirable for two reasons. First, it may

not preserve the positive-definiteness of V . Second, it requires K to be inverted, and this can cause

numerical issues for some covariance functions such as the squared exponential covariance function,

which has exponentially vanishing eigenvalues.

We propose to let V follow the trajectory along a modified gradient, where W is regarded

fixed instead of depending on V . To explain, we recall that logZh
def=−KL(q(f|y)‖p(f))+h, where
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h def= ∑
n
i=1 hi is the sum of functions each concave in V . The modified gradient holds the gradient

contribution from h constant at the value at the initial V while the gradient contribution from the

Kullback-Leibler divergence varies along the trajectory. We follow the trajectory until the modified

gradient is zero. Let this point be V fx. Then

1

2
(V fx)−1 − 1

2
K−1 − 1

2
W−1 = 0, or V fx =

(

K−1 +W
)−1

. (28)

The equation on the right can be used as a naı̈ve fix-point update.

The trajectory following this modified gradient will diverge from the trajectory following the

exact gradient, so there is no guarantee that V fx gives an improvement over V . To remedy, we

follow the strategy used for updating S: we use V cc def= (1−η)V +ηV fx and optimize with respect to

η ∈ [0,1]. Matrix V cc is guaranteed to be positive definite, since it is a convex combination of two

positive definite matrices. Details are in Appendix C.3.

4. Sparse Approximation

The variational approach for learning multinomial logit Gaussian processes discussed in the previ-

ous sections has transformed an intractable integral problem into a tractable optimization problem.

However, the variational approach is still expensive for large data sets because the computational

complexity of the matrix operations is O(C3n3), where n is the size of the observed set and C is

the number of classes. One popular approach to reduce the complexity is to use sparse approxima-

tions: only s ≪ n data inputs or sites are chosen to be used within a complete but smaller Gaussian

process model, and information for the rest of the observations are induced via these s sites. Each

of the s data sites is called an inducing site, and the associated random variables z are called the

inducing variables. We use the term inducing set to mean either the inducing sites or the inducing

variables or both. The selection of the inducing set is seen as a model selection problem (Snelson

and Ghahramani, 2006; Titsias, 2009a) and will be addressed in Section 6.1.

We seek a sparse approximation will lead to a lower bound on the true marginal likelihood. This

approach has been proposed for Gaussian process regression (Titsias, 2009a), and it will facilitate

the search for the inducing set later. Recall that the inducing variables at the s inducing sites are

denoted by z ∈R
s. We retain f for the nC latent function values associated with the n observed data

(X ,y). In general, the inducing variables z need not be chosen from the latent function values f, so

our presentation will treat them as distinct.

The Gaussian prior over the latent values f is extended to the inducing variables z to give a

Gaussian joint prior p(f,z). Let p(f,z|y) be the true joint posterior of the latent and inducing vari-

ables is given the observed data. This posterior is non-Gaussian because of the multinomial logistic

likelihood function, and it is intractable to calculate this posterior as is in the non-sparse case. The

approximation q(f,z|y) to the exact posterior is performed in two steps. In the first step, we let

q(f,z|y) be a Gaussian distribution. This is a natural choice which follows from the non-sparse

case. In the second step, we use the factorization

q(f,z|y) def= p(f|z)q(z|y), (29)

where p(f|z) is the marginal of f from the prior p(f,z). The same approximation has been used

in the sparse approximation for regression (Titsias, 2009a, paragraph before Equation 7). This
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approximation makes clear the role of inducing variables z as the conduit of information from y to

f. Under this approximate posterior, we have the bound

log p(y)≥ log Z̃B =−KL(q(z|y)‖p(z))+
n

∑
i=1

ℓi(yi;q),

where ℓi(yi;q) def=
∫

q(fi|y) log p(yi|fi)dfi, and q(fi|y) is the marginal distribution of fi from the joint

distribution q(f,z|y); see Appendix B.1. The reader may wish to compare with Equations 3, 4 and 5

for the non-sparse variational approximation.

Similar to the dissection of logZB after Equation 3, the Kullback-Leibler divergence component

of log Z̃B can be interpreted as the regularizing factor for the approximate posterior q(z|y), while the

expected log-likelihood can be interpreted as the data fit component. This dissection provides three

insights into the sparse formulation. First, the specification of p(z) is part of the model and not part

of the approximation—the approximation step is in the factorization (29). Second, the Kullback-

Leibler divergence term involves only the inducing variables z and not the latent variables f. Hence,

the regularizing is on the approximate posterior of z and not on that of f. Third, the involvement of f

is confined to the data fit component in a two step process: generating f from z and then generating

y from f.

Applying Theorem 6 on the ℓis gives

log Z̃B ≥ log Z̃h
def=−KL(q(z|y)‖p(z))+

n

∑
i=1

h(yi;qi,bi,Si), (30)

where h is defined by Equation 19, and the qi within h is the marginal distribution q(fi|y).
We now examine log Z̃h using the parameters of the distributions. Let the joint prior be

p

((

z

f

))

= N

(

0,

(

K Kf

KT
f Kff

))

.

One can generalize the prior for z to have a non-zero mean, but the above suffice for our purpose

and simplifies the presentation. In the case where an inducing variable zi coincide with a latent

variable f c
j , we can “tie” them by setting their prior correlation to one. The marginal distribution

p(f) is the Gaussian process prior of the model, but we are now using Kff to denote the covariance

induced by Kc and kx(·, ·) while reserving K for the covariance of z. This facilitates comparison to

the expressions for the non-sparse approximation.

For the approximate posterior, let q(z|y) = N (m,V ), so m and V are the variational parameters

of the approximation. Then q(f|y) is Gaussian with mean and covariance

mf = KT
f K−1m, Vf = Kff −KT

f K−1Kf +KT
f K−1V K−1Kf. (31)

Therefore, the lower bound on the log marginal likelihood is

log Z̃h =
s

2
+

1

2
log |K−1V |− 1

2
trK−1V − 1

2
mTK−1m

+
nC

2
+mT

f y+
1

2

n

∑
i=1

(

log |SiVfi|− trSiVfi

)

−
n

∑
i=1

log
C

∑
c=1

gc
i , (32)
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where Vfi is the ith diagonal C-by-C block matrix of Vf and

gc
i

def= exp

[

mT
fie

c +
1

2
(bi − ec)TS−1

i (bi − ec)

]

.

Remark 13 It is not necessary for z to be drawn from the latent Gaussian process prior directly.

Therefore, the covariance K of z need not be given by the covariance functions Kc and kx(·, ·) of

the latent Gaussian process model. In fact, z can be any linear functional of draws from the latent

Gaussian process prior (see, for example, Titsias, 2009b, Section 6). For example, it is almost

always necessary to set z = z′+ ǫ, where ǫ is the isotropic noise, so that the matrix inversion of K

is not ill-conditioned. This matrix inversion cannot be avoided (without involving O(s3) computa-

tions) in the sparse approximation because of the need to compute KT
f K−1Kf, which is the Nyström

approximation to Kff if z′ ≡ f (Williams and Seeger, 2001). One attractiveness of having a lower

bound associated to the sparse approximation is that the noise variance of ǫ can be treated as a

lower bounded variational parameter to be optimized (Titsias, 2009b, Section 6).

Remark 14 The inducing variables z are associated with the latent values f and not with the ob-

served data (X ,y). Therefore, it is not necessary to choose all the latent values f 1
i , . . . , f C

i for any

datum xi. One may choose the inducing sites to include, say, f c
i for datum xi and f c′

j for datum xj,

and to exclude f c′
i for datum xi and f c

j for datum xj. This flexibility requires additional bookkeeping

in the implementation.

4.1 Comparing Sparse and Non-sparse Approximations

We can relate the bounds for the non-sparse and sparse approximations:

Theorem 15 Let

logZ∗
B

def= max
q(f|y)

logZB, logZ∗
h

def= max
q(f|y)

logZh, log Z̃∗
B

def= max
q(z|y)

log Z̃B, log Z̃∗
h

def= max
q(z|y)

log Z̃h,

where the sparse bounds are for any inducing set. Then logZ∗
B ≥ log Z̃∗

B and logZ∗
h ≥ log Z̃∗

h .

The proof for the first inequality is given in Appendix B.1.1, while the second inequality is a con-

sequence of Proposition 17 derived in Section 6.1. Though intuitive, the second inequality is not

obvious because of the additional maximization over the variational parameters {bi} and {Si}. The

presented sparse approximation is optimal: if z ≡ f, then log Z̃B = logZB and log Z̃h = logZh, and

the sparse approximation becomes the non-sparse approximation.

4.2 Optimization

The sparse approximation requires optimizing log Z̃h with respect to the variational parameters:

mean m and covariance V of the inducing variables; and {bi} and {Si} for the lower bound on the

expected log-likelihood. The optimization with respect to {Si} is the same as that for the non-sparse

approximation, but using mf and Vf for the mean and covariance of the latent variables. For {bi} and

m, a joint optimization akin to that for the non-sparse approximation described in Section 3.3 can be

used. Let b be the nC-vector that is the stacking of the bis. At the saddle point with respect to {bi}
and m, we have the self-consistent equations b∗

i = ḡ∗i and m∗ = Kf(y− ḡ∗), from which is obtained
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the linear mapping m∗ = Kf(y−b∗). For sparse approximation, matrix Kf has more columns than

rows (that is, a “fat” matrix), so the linear mapping from b∗ to m∗ is many to one. Hence we

substitute the constraint m = Kf(y−b) into the bound and optimize over b. The optimization is

similar to non-sparse case, and is detailed in Appendix C.2.1.

For V , the approach in Section 3.4 for the non-sparse approximation is followed. The gradients

with respect to V are

∂hi

∂V
=

1

2
K−1Kfi

(

V−1
fi −Si

)

KT
fi K

−1

=−1

2
K−1KfiWfiK

T
fi K

−1;

∂ log Z̃h

∂V
=

1

2
V−1 − 1

2
K−1 − 1

2
K−1KfWfK

T
f K−1

=
1

2
V−1 − 1

2
K−1 − 1

2
W,

where Wfi
def= Si −V−1

fi ; matrix Wf is block diagonal with Wfi as its ith block; and we have introduced

W def= K−1KfWfK
T
f K−1. The fixed point update for V is

V fx =
(

K−1 +W
)−1

, (33)

which is obtained by setting ∂Zh/∂V at V fx to zero. This update is of the same character as Equa-

tion 28 for the non-sparse case. In the case where V fx does not yield an improvement to the objective

log Z̃h, we search for a V cc def= (1−η)V +ηV fx, η ∈ [0,1], using the false position method along η.

Further details can be found in Appendix C.3.1.

5. On the Sum-to-zero Property

For many single-machine multi-class support vector machines (SVMs, Vapnik 1998; Bredensteiner

and Bennett 1999; Guermeur 2002; Lee, Lin, and Wahba 2004), the sum of the predictive functions

over the classes is constrained to be zero everywhere. For these SVMs, the constraint ensures the

uniqueness of the solution (Guermeur, 2002). The lack of uniqueness without constraint is simi-

lar the non-identifiability of parameters in the multinomial probit model in statistics (see Geweke,

Keane, and Runkle, 1994, and references therein). For multi-class classification with Gaussian

process prior and multinomial logistic likelihood, the redundancy in representation has been ac-

knowledged, but typically uniqueness has not been enforced to avoid arbitrary asymmetry in the

prior (Williams and Barber, 1998; Neal, 1998). An exception is the work by Kim and Ghahramani

(2006), where a linear transformation of the latent functions has been used to remove the redun-

dancy. In this section, we show that such sum-to-zero property is present in the optimal variational

posterior under certain common settings.

Recall from Equation 27 in Section 3.3 that m = K(y−b) when the lower bound Zh is opti-

mized. Let α def= K−1m. Then the set of self-consistent equations at stationary gives αi = yi −bi,

whereαi is the ith C-dimensional sub-vector ofα. Since bi = ḡi at stationary, and ḡi is a probability

vector, it follows that

∀i
C

∑
c=1

αc
i = 0, and αc

i =

{

−bc
i ∈ ]−1,0[ if yc

i = 0

1−bc
i ∈ ]0,1[ if yc

i = 1.

Consider an input x∗, which may be in the observed set. Let kx
∗ be the vector of covariances to

all the other inputs under the covariance function kx. The posterior latent mean of f∗ at x∗ under
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separable covariance (1) is

m∗ =
(

(kx
∗)

T ⊗Kc
)

α=
n

∑
i=1

(kx(x∗,xi)K
c)αi = Kc

n

∑
i=1

kx(x∗,xi)αi. (34)

Consider the common case where Kc = I. Then the posterior latent mean for the cth class is

mc
∗ = ∑

n
i=1 kx(x∗,xi)α

c
i , and the covariance from the ith datum has a positive contribution if it is

from the cth class and a negative contribution otherwise. Moreover, the sum of the latent means is

1Tm∗ = 1T
n

∑
i=1

kx(x∗,xi)αi =
n

∑
i=1

kx(x∗,xi)1
Tαi = 0. (35)

Hence that the sum of the latent means for any datum, whether observed or novel, is constant at

zero. We call this the sum-to-zero property.

The sum-to-zero property is also present, but in a different way, when

Kc = M−M11TM/1TM1, (36)

where M is C-by-C and positive semi-definite. This is reminiscent of Equation 20, which gives a

similar parametrization for W∗. Using the rightmost expression in (34) for m∗, we find that 1Tm∗ = 0

because Kc1 = 0. This is in contrast with (35) for Kc = I, where the sum-to-zero property holds

because 1Tαi = 0.

Setting Kc via (36) leads to a degenerate Gaussian process, since the matrix will have a zero

eigenvalue even if M is strictly positive definite. Since degeneracy is usually not desirable, we add

to (36) the term ηI, where η > 0:

Kc = M−M11TM/1TM1+ηI. (37)

This not only ensures that Kc is positive definite but also preserves the sum-to-zero property. The

parametrization effectively constrains the least dominant eigenvector of Kc to 1/
√

C.

5.1 The Sum-to-zero Property in Sparse Approximation

The sum-to-zero property is also present in sparse approximation when the inducing variables are

such that if f c
i is an inducing variable, then so are f 1

i , . . . , f C
i . That is, the C latent variables asso-

ciated with any input xi are either omitted or included together in the inducing set. The sparsity of

single-machine multi-class SVMs is of this nature. Let t be the number of inputs for which their

latent variables are included.

Under the separable covariance model (1), covariance between the inducing variables and the

latent variables is the Kronecker product Kf = Kx
f ⊗Kc, where Kx

f is the covariance on the inputs

only. The stationary point of the lower bound Z̃h in the sparse approximation has the self-consistent

equation m = Kf(y− ḡ); see Section 4.2. As before, let α def= K−1m. The Gram matrix K is the Kro-

necker product Kx ⊗Kc under the separable covariance model. Hence α=
(

(Kx)−1Kx
f ⊗ I

)

(y− ḡ)
using the mixed-product property. Vector α is the stacking of vectors α1, . . . ,αt , where each αj is

for one of the t inputs with their latent variables in the inducing set and can be expressed as

αj =
n

∑
i=1

(

(Kx)−1Kx
f

)

ji
(yi − ḡi).

One finds that 1Tαj = 0, and the discussion for the non-sparse case applies similarly from Equa-

tion 34 onwards.
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6. Model Learning

Model learning in a Gaussian process model is achieved by maximizing the marginal likelihood

with respect to the parameters θ of the covariance function. In the case of variational inference,

the lower bound on the marginal likelihood is maximized instead. For the non-sparse variational

approximation to the multinomial logit Gaussian process, this is

logZ∗
h(θ)

def= max
m,V,{bi},{Si}

logZh(m,V,{bi},{Si};X ,y,θ),

which is the maximal lower bound on log marginal likelihood on the observed data (X ,y). The

maximization is achieved by ascending the gradient

dlogZ∗
h

dθj

=−1

2
tr

(

K−1 ∂K

∂θj

)

+
1

2
tr

(

K−1V K−1 ∂K

∂θj

)

+
1

2
mTK−1 ∂K

∂θj

K−1m

=
1

2
tr

(

(

ααT −K−1 +K−1V K−1
) ∂K

∂θj

)

,

where α def= K−1m. This gradient is also the partial and explicit gradient of logZh with respect to θj.

The implicit gradients via the variational parameters are not required since the derivative of logZh

with respect to each of them is zero at the fixed point logZ∗
h .

For the sparse approximation, we differentiate log Z̃∗
h—the optimized bound on the log marginal

likelihood for the sparse case given by Equation 32—with respect to the covariance function param-

eter θj. The derivation in Appendix C.4 gives

dlog Z̃∗
h

dθj

=−1

2
tr

(

(

ααT −K−1 +K−1V K−1 +W
) ∂K

∂θj

)

+ tr

(

(

(y− ḡ)αT +WfK
T
f

(

K−1 −K−1V K−1
)) ∂Kf

∂θj

)

− 1

2
tr

(

Wf

∂Kff

∂θj

)

,

where α def= K−1m, and matrices Wf and W are defined in Section 4.2.

The selection of the inducing set in sparse approximation can also be seen as a model learning

problem (Snelson and Ghahramani, 2006; Titsias, 2009a).1 This is addressed in the reminder of this

section.

6.1 Active Inducing Set Selection

The quality of the sparse approximation depends on the set of inducing sites. Prior works have

suggested using scores to greedily and iteratively add to the set. The Informative Vector Machine

(IVM, Lawrence et al. 2003) and its generalization to multiple classes (Seeger and Jordan, 2004) use

the differential entropy, which is the amount of additional information to the posterior. Alternatives

based on the data likelihood have also been proposed (Girolami and Rogers, 2006; Henao and

Winther, 2010). However, since our aim has always been to maximize the marginal likelihood

p(y) of the observed data, it is natural to choose the inducing sites that effect the most increase

in the marginal likelihood. The same thought is behind the scoring for greedy selection in the

1. However, in the strict sense, the exact model is fixed during the selection of the inducing set: the object that is learned

is the approximating model.
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sparse variational approximation to Gaussian process regression (Titsias, 2009a). For multi-class

classification, it is too expensive to compute the exact increase in the marginal likelihood. Instead,

we use the lower bound on the increment to (the lower bound on) the marginal likelihood.

Throughout, the asterisk ∗ will be used to subscript variables pertaining to the newly introduced

inducing site x̃∗. Given the current set of inducing sites X̃ , the inclusion of x̃∗ gives the new set

X̃∗. The function values at x̃∗, X̃ and X̃∗ are denoted by z∗, z and z∗ def= (zT,z∗)T. There is only one

random scalar variable z∗ at the inducing site x̃∗. In contrast, there is a random C-vector fi at an

observed input xi; see Remark 14. Hence there are C potential inducing sites from a single observed

site xi: x̃∗ ∈ {(xi,1), . . . ,(xi,C)}.

We aim to select x̃∗ that maximizes the increase in the optimized lower bounds on the marginal

likelihood: d(x̃∗; X̃) def= log Z̃∗
h(X̃∗)− log Z̃∗

h(X̃), where X̃∗ def= {x̃∗}∪ X̃ , and

log Z̃∗
h(X̃∗) def= max

m∗,V∗,{b∗i},{S∗i}
log Z̃h(m∗,V∗,{b∗i},{S∗i}; X̃∗),

log Z̃∗
h(X̃) def= max

m,V,{bi},{Si}
log Z̃h(m,V,{bi},{Si}; X̃).

In words, Z̃∗
h(X̃) is the optimized lower bound on marginal likelihood with the current inducing set

X̃ , while Z̃∗
h(X̃∗) is the optimized lower bound with the proposed new inducing set X̃∗. Because

Z̃h combines the Kullback-Leibler divergence of the prior from the approximate posterior and the

sum of the lower bounds on the expected log-likelihoods, d(x̃∗; X̃) includes both the change in the

approximate posterior and the effect of this change in explaining the observed data.

Computing d(x̃∗; X̃) involves Z̃∗
h(X̃∗), and this can be computationally expensive. A more viable

alternative is to lower bound d(x̃∗; X̃) by fixing selected variational parameters in Z̃h(· · · ; X̃∗) to the

optimal ones from Z̃∗
h(X̃), which has already been computed. Let

{m,V,{bi},{Si}} def= arg log Z̃∗
h(X̃).

For the inducing set X̃∗, we set the prior on the inducing and latent variables, and the approximate

posterior on the inducing variables to

p

((

z∗
f

))

def= N

(

0,

(

K∗ Kf∗
KT

f∗ Kff

))

, q(z∗ | y) def= N (m∗,V∗) ,

where

K∗ def=

(

K k∗
kT
∗ k∗∗

)

, Kf∗ def=

(

Kf

kT
f∗

)

, m∗ def=

(

m

m∗

)

, V∗ def=

(

V v∗
vT
∗ v∗∗

)

. (38)

The above choice of posterior fixes the mean and the covariance of z for X̃ to the mean m and

covariance V in log Z̃∗
h(X̃). Further setting {b∗i} ≡ {bi} and {S∗i} ≡ {Si}, the additional variational

parameters are those in the posterior of the inducing points for the additional site x̃∗. Since we are

optimizing over only a subset of the possible parameters, we obtain a lower bound on d(x̃∗|X̃):

d(x̃∗|X̃)≥ d1(x̃∗|X̃) def= max
m∗,v∗∗,v∗

log Z̃h(m∗,V∗,{bi},{Si}; X̃∗)− log Z̃∗
h(X̃), (39)

where m∗ and V∗ are as defined in Equation 38. By separating log Z̃h into its summands expressed

in Equation 30, we write

d1(x̃∗|X̃) = max
m∗,v∗∗,v∗

(

dKL(m∗,v∗∗,v∗, x̃∗|X̃)+
n

∑
i=1

di
h(m∗,v∗∗,v∗, x̃∗|X̃)

)

,
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where

dKL(m∗,v∗∗,v∗, x̃∗|X̃) def=−KL(q(z∗ | y)‖ p(z∗))+KL(q(z | y)‖ p(z)), (40)

di
h(m∗,v∗∗,v∗, x̃∗|X̃) def= h(yi;q∗i,bi,Si)−h(yi;qi,bi,Si). (41)

The expressions for dKL and di
h in terms of the variational parameters m∗, v∗∗ and v∗ are given

in Appendix D.1. On inspecting these expressions, we find that the contributions from m∗ and

(v∗,v∗∗) are decoupled in objective function dKL +∑dh within d1, so the search for the optimal m∗
and (v∗,v∗∗) are can be perform separately. Moreover, dKL +∑dh is concave in m∗ and v∗∗ but not

necessarily concave in v∗. These findings are elaborated in Appendix D.2, which also gives the

gradient updates for m∗ and v∗∗ (given a fixed v∗).

The non-concavity in v∗ makes the maximization in d1 less feasible. To make progress, we

fix v∗ to be that which maximizes only dKL. This gives v∗ =V K−1k∗ and leads to a second lower

bound. This lower bound is non-trivial in the sense that it is non-negative. This is established in

following lemma, which leads to another proposition.

Lemma 16 Let functions d1, dKL and di
h be as defined in Equations 39, 40 and 41, and let

d2(x̃∗|X̃) def= max
m∗,v∗∗

(

dKL(m∗,v∗∗,V K−1k∗, x̃∗|X̃)+
n

∑
i=1

di
h(m∗,v∗∗,V K−1k∗, x̃∗|X̃)

)

. (42)

Then 0 ≤ d2(x̃∗|X̃)≤ d1(x̃∗|X̃).

Proof Function d2 is upper bounded by d1 because it maximizes over a subset of the variational

parameters in d1. For non-negativity, we observe that the objective function within d2 is zero when

we set m∗ = kT
∗K−1m and v∗∗ = k∗∗−kT

∗K−1k∗+kT
∗K−1V K−1k∗.

Proposition 17 For the sparse variational approximation to the multinomial logit Gaussian pro-

cess, any site added to the inducing set can never decrease the lower bound Z̃∗
h to the marginal

likelihood.

This proposition is analogous one for Gaussian process regression (Titsias, 2009a, Proposition 1).

Hence, we can interleave the greedy selection of inducing sites with hyper-parameters optimization

(Titsias, 2009a, Section 3.1). One might have thought that this proposition is trivial because an ad-

ditional inducing variable increases the flexibility of the variational model. Such an argument would

have worked if we had compared the exact marginal likelihood p(y) or the optimized variational

lower bound Z̃∗
B. It would not have worked here because the optimized lower bound Z̃∗

h is used here.

6.1.1 SUBSAMPLING AND FILTERING

Computation of d2 for every possible site requires the full Gram matrix. This is because the required

vector kf∗ for the site x̃∗ = (x∗,c) under consideration is the covariance from x∗ to all the other

observed data. This may be undesirable when covariance function is expensive to evaluate. In this

case, we propose to approximate ∑
n
i=1 di

h, which is over the whole data set, with one that is computed

over a subset S :

d3(x̃∗,S |X̃) def= max
m∗,v∗∗

(

dKL(m∗,v∗∗,V K−1k∗, x̃∗|X̃) +
n

|S | ∑
i∈S

di
h(m∗,v∗∗,V K−1k∗, x̃∗|X̃)

)

, (43)
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where S is the set of indices of the data to evaluate against. By partitioning the observed data

appropriately, the number of covariance function evaluations can be reduced. This d3 score can be

used to directly choose the site to be added to the inducing set. Alternatively, it can be used as a

filtering step so that only sites with high d3 scores are further evaluated using the more expensive d2

score function.

7. Computational Complexity

We now discuss the computation complexity of the approximate inference. For the non-sparse

approximate inference, O(n3C3) computations are required per iteration of the variational bound

optimization, where n is the size of the observed data set and C is the number of classes. For the

sparse approximate inference, O(nC3 + nCs2 + nC2s+ s3) computations are required per iteration,

where s is the number of inducing variables. This complexity is when we exploit the block diagonal

structure of the variables. The complexity of computing the set of n d2-scores for active inducing

set selection is the same. For probabilistic prediction with the posterior using sparsity, computing

the lower bounds (24) to the predictive probabilities requires O(C3 +Cs2 +C2s) computations per

datum, while computing the re-normalized probabilities (25) needs O(Cs), which is less. For pre-

diction with the posterior in the non-sparse case, these are O(nC3 +n2C) and O(nC2) respectively.

One might have thought that complexity can be improved if Kc = I so that K is block diagonal

(after re-ordering) in the non-sparse approximation. However, we have not been able to exploit this

structure. This is because computing K−1 +W in Equation 28 involves W that is block diagonal

with a different ordering, which essentially destroys the structure (Seeger and Jordan, 2004).

For the sparse approximate inference, the direct complexity with respect to n is linear. If we let

s ∼ logCn, then the overall complexity is O(n log2 n) in n. Let us now consider three regimes de-

pending on C. For n ≪C, we opine that some clustering process may be more appropriate than the

classification model consider here. For C ≪ s, the dominant complexity is O(nCs2). For s ≪C ≪ n,

the dominant complexity is O(nC3), which is for optimizing the variational parameters bi and Si for

each of the n observed data.2 Reducing the cubic complexity in C requires constraining the vari-

ational parameters. In particular, one may constrain Si = (Vfi)
−1 +Wi where Wi = γi(Πi −πiπ

T
i ),

γi > 0 and πi is a probability vector. As remarked upon after Theorem 6, we have found that this

constraint gives bounds that are quite loose. In addition, our present opinion is that effective infer-

ence with such a small inducing set may require rather strong correlations in both Kc and kx(·, ·) of

the prior. We defer further investigation in the regime s ≪C ≪ n to future work.

In the C ≪ s regime, Seeger and Jordan (2004) and Girolami and Rogers (2006) have reported

O(nCs2) computational complexity. In their cases, however, this complexity includes both the in-

ference with a subset of the observed data and the active selection of the subset. Direct comparison

with our approach can be misleading: the O(nCs2) in the preceding paragraph does not include

active selection, but it does include projecting from the inducing variables to the entire set of ob-

served data in the sparse approximate inference. Including the cost of greedy active selection up to

s inducing variables gives O(nCs3).

2. In this regime, one should optimize the bis separately. This is cheaper than optimizing m and b jointly.
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Model Approximating Posterior Likelihood Approximation

Citation prior likelihood Family Principle Learning Prediction

Williams and Barber (1998) i.i.d. logistic Gaussian Laplace Exact Monte Carlo

Neal (1998) i.i.d. logistic Samples MCMC MCMC MCMC

Gibbs (1997) independent logistic Factored

Gaussian

Variational Variational Analytic

approximation

Seeger and Jordan (2004) i.i.d. logistic Gaussian ADF Quadrature Quadrature

Kim and Ghahramani (2006) i.i.d. uniform Gaussian EP EP

Girolami and Rogers (2006) i.i.d. probit Factored

Gaussian

Variational Monte Carlo Monte Carlo

This paper separable logistic Gaussian Variational Variational Variational

Table 1: Existing works in multi-class Gaussian processes and their different aspects. In this paper,

the likelihood approximation is for the expectation of the log-likelihood.

8. Related Work

We now discuss related works on multi-class Gaussian process classification. Table 1 tabulates dif-

ferent aspects of the existing related works that we know in the machine learning literature. Most

consider the case where the latent functions are independent and identically distribution (i.i.d.),

although Williams and Barber (1998) have seen no difficulty in extending to correlated latent func-

tions. Gibbs (1997) has considered the case where the covariance functions of the prior latent

Gaussian processes are independent and assumed to be from the same parametric family with pos-

sibility different parameters. In this paper, most results are applicable as long as the latent functions

are jointly Gaussian, although at specific places we consider the separable covariance in Equation 1.

As with most existing works, our likelihood function is the multinomial logistic (2). Other like-

lihood functions are possible. In particular, one class of likelihood functions uses auxiliary indepen-

dent random variables ucs, c = 1, . . . ,C, and determine the class by argmaxc uc, The multinomial

logistic is in this class, and it is obtained when each auxiliary variable uc is Gumbel distributed

with p(uc| f c) = te−t , where t def= e−(uc− f c) (McFadden, 1974). If uc ∼ N ( f c,1), then the likelihood

is the multinomial probit used by Girolami and Rogers (2006). If each auxiliary variable uc is sup-

ported only at f c, we have the threshold likelihood function used by Kim and Ghahramani (2006).

From this perspective, a model with the threshold likelihood function and prior covariance function

kx(x,x′)+δ(x,x′), where δ is the Kronecker delta function, is essentially the same as the model

with the multinomial probit likelihood and prior covariance function kx(x,x′). Kim and Ghahra-

mani (2006) have also used uniform noise (Angluin and Laird, 1988) with the threshold likelihood.

With any of these likelihoods, exact inference is non-tractable and approximations must be

used. Except for the work of Neal (1998) where the approximation is a set of samples obtained

from Markov Chain Monte Carlo (MCMC), all existing works have used a Gaussian approximation

to the true posterior. The approximating Gaussian can be determined through fitting using different

principles: Laplace (Williams and Barber, 1998), assumed density filtering (ADF, Seeger and Jor-

dan, 2004) and expectation propagation (EP, Kim and Ghahramani, 2006), and variational bounding

(Gibbs, 1997; Girolami and Rogers, 2006).

This paper uses the variational approach, for which a lower bound on the marginal likelihood

can be obtained. However, the variational approach used in this paper differs from those in existing
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works (Gibbs, 1997; Girolami and Rogers, 2006). Gibbs has placed Gaussian-type bounds that

factorizes over the classes on the multinomial logistic likelihood functions. Since the prior also

factorizes over the classes, the approximate posterior factorizes similarly. Girolami and Rogers have

constrained the approximating Gaussian to factorize over classes from the onset, and have proceeded

to use variational mean field to obtain the factors. In contrast, the approximating Gaussian in this

paper does not factorize over classes. We begin from an unconstrained Gaussian. This is followed by

the Kullback-Leibler divergence and a bound on the expected log-likelihood (Theorem 6). Neither

of these steps needs factorization over classes.

In general, the approximating Gaussian has covariance (K−1 +W )−1, where W is a block diag-

onal matrix of n C-by-C blocks. Let Wi be the ith C×C block in W . The matrix W is diagonal when

the assumed likelihood factorizes over classes and data (Gibbs, 1997; Girolami and Rogers, 2006).

Let πi be a probability vector, and let Πi be the diagonal matrix with πi along its diagonal. Then the

ith block Wi of W in the Laplace approximation (Williams and Barber, 1998) is Πi −πiπ
T
i , where

the cth element in πi is the multinomial logistic p(yc
i |fi). This parametrization of Wi follows directly

from fitting principle of Laplace approximation. If computational time complexity is important, one

can also use the parameterization Wi
def= γi

(

Πi −πiπ
T
i

)

, where γi > 0 and πi are to be estimated, to

obtain the same computational complexity as factorized mean-field (Seeger and Jordan, 2004). If

computational time complexity is not a major consideration, any positive definite Wi can be used for

a tighter approximation (see Kim and Ghahramani, 2006, for example). In the present paper, each

block Wi is determined by optimizing the expected log-likelihood of the ith datum. The optimized

Wi has null space {η1 | η ∈ R}. Further discussions in relation to the works of Williams and Barber

(1998) and Seeger and Jordan (2004) have been given after Theorem 6.

The approximate predictive probability in the multi-class Gaussian process model is the ex-

pected likelihood under the approximate posterior. This is intractable and approximations are

needed. Two common approaches are Monte Carlo (Williams and Barber, 1998; Neal, 1998; Giro-

lami and Rogers, 2006) and traditional numerical integration (Seeger and Jordan, 2004). Analytic

approximation has also been used (Gibbs, 1997). In this paper, we have given a variational approx-

imation of the expected log-likelihood through Theorem 6. In Section 9.1.1, we will see that this is

quite tight on average.

In previous works, sparsity in multi-class Gaussian processes is achieved by performing in-

ference using only a subset of the observed data (SoD), which can be selected actively (Seeger

and Jordan, 2004; Girolami and Rogers, 2006). In contrast, the sparsity in this paper is achieved

through using the subset to induce the entire set. Quiñonero-Candela et al. (2007) have discussed

in detail the SoD approach and the more general inducing approaches in the context of regression.

We use the variational approach for both sparse approximation and active selection of the subset.

For regression, this approach has been shown to have several desirable characteristics over the other

approaches (Titsias, 2009a).

9. Experiments and Results

We evaluate our approach to multi-class logit Gaussian process classification in various aspects. In

Section 9.1, we compare the bounds in the marginal likelihood and the predictive likelihood pro-

vided by our variational approach with those provided by the variational mean-field approximation

1769



CHAI

Name train set test set classes attributes task description

iris 90 60 3 4 determine class of iris plant

thyroid 129 86 3 5 diagnosis of a patient’s thyroid

wine 106 72 3 13 determine the cultivar of wine

glass 128 86 7 9 determine the type of glass

Table 2: Summary of the four UCI data sets used in our experiments. For the glass data, there is no

instance of class “vehicle windows that are non-float processed” in the set.

to multinomial probit regression (Girolami and Rogers, 2006).3 We also look at how the quality of

our bounds vary with the prior variance of the latent process. In Section 9.2, we relate the logit to

the probit, and we also look at the the prior correlation between the latent process. Section 9.3 inves-

tigates the effectiveness of active inducing set selection using the criteria proposed in Section 6.1.

In Section 9.4, we compare with single-machine multi-class support vector machines.

For comparison, we use a tight approximation to the exact posterior of the multi-class logit and

probit Gaussian process model. This is obtained by importance sampling where the proposal is the

multivariate-t distribution (Kotz and Nadarajah, 2004) with four degrees of freedom, centered at

the mean m∗ of our variational approximation to p(f|y) and with covariance 2K. We have found

this to be more effective than the Gibbs sampling used by Girolami and Rogers (2006) and the

anneal importance sampling (Neal, 2001) used by Nickisch and Rasmussen (2008). Due to the

central limit theorem, the Monte Carlo estimate p̂(y) on the marginal likelihood has distribution

N (p(y),σ2/ns), where σ2 is the true variance of the importance weights and ns is the number

of samples. When reporting the marginal likelihood estimate, we use p̂(y)+3.09σ/
√

ns to upper

bound p(y) with probability 0.999, where σ is estimated from the samples. In our experiments,

ns = 100,000 for each Monte Carlo run. Details are in Appendix F.4

Our experiments are conducted on four data sets from the UCI Machine Learning Repository

(Frank and Asuncion, 2010): iris, thyroid, wine and glass. Following Girolami and Rogers (2006),

for each data set, 60% is used for training and 40% for testing. Each input attribute is normalized

to zero mean and unit variance on the training set. Our experiments are conducted with fifty such

random splits for each data set. The summary statistics for the data sets are given in Table 2.

9.1 Comparing Variational Approaches

We evaluate our approach against variational mean-field (Girolami and Rogers, 2006) and impor-

tance sampling. We fix the latent random functions to be independent and identically distributed

(i.i.d.); that is, Kc = I. The covariance function on inputs x and x′ in R
d is the unit variance squared-

3. We use version 1.6.0 of the R package available at http://www.bioconductor.org/packages/devel/bioc/

html/vbmp.html.

4. We have also experimented with using the approximate posterior q(f|y) directly as the proposal distribution (Ghahra-

mani and Beal, 2000a,b). The set of estimates obtained in this way is generally indistinguishable from that obtained

using the multivariate-t distribution. However, the latter comes with a convergence rate guarantee because the tail of

the t distribution is heavier than that of a Gaussian.
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exponential covariance function

kx(x,x′) = usqexpard(x,x′;θ) def= exp

(

−1

2

d

∑
j=1

(

x j − x′j
θ j

)2
)

, (44)

where x j (resp. x′j) is the jth dimensional of x (resp. x′), θ j is the length-scale of the jth dimension,

and θ def= (θ1, . . . , θd)
T collects parameters. Each length-scale affects the influence of the dimension;

this allows automatic relevance determination (ARD, Neal 1996).

Table 3 reports the results comparing the log marginal likelihood logZ or its bounds on the

training sets, and the predictive error and the log joint predictive probability log p(y∗) on the test

sets. The means and standard deviations over the fifty partitions for each data set are given. We

use MNL to denote multinomial logistic likelihood and MNP to denote multinomial probit like-

lihood. KL-MNL is our variational approach with multinomial logistic likelihood, and MF-MNP

is the variational mean-field with multinomial probit likelihood (Girolami and Rogers, 2006). MC-

MNP and MC-MNL are the Monte Carlo approximations using importance sampling. The marginal

likelihood estimates for importance sampling are the high confidence upper bounds. Column Theo-

rem 10 gives theoretic lower bounds on the marginal likelihood for the logistic likelihood. Results

with two sets of hyper-parameters are given: one from the variational mean parameter estimation

for MF-MNP (Girolami and Rogers, 2006), and the other from the model learning for KL-MNL

(Section 6). With either set of hyper-parameters, the prior latent process has unit variance due to the

choice of covariance function. Our results for MC-MNP are consistent with, but tighter than, those

reported by Girolami and Rogers (2006, Table 1, column Gibbs Sampler).

We first compare the marginal likelihoods on the training data along the rows headed by logZ.

For either set of hyper-parameters, our variational approach (KL-MNL) gives lower bounds that are

very close to the high confidence upper bounds on the marginal likelihoods obtained by sampling

(MC-MNL). In fact, it is this tightness that leads us to finally use importance sampling: with Gibbs

sampling and annealed importance sampling, we are unable to obtain estimates that are larger than

our lower bounds. For MF-MNP, we find that it consistently gives lower bounds that are looser than

the theoretical ones under column Theorem 10. This suggests that the theoretic bounds may be use-

ful as sanity checks for variational approaches, although we must qualify that the theoretic bounds

are for the multinomial logistic likelihood rather than for the probit one. Using the reasoning to be

outlined in Section 9.2.1, we obtain approximate theoretic bounds for the probit using σ2 = π2/6 in

Theorem 10, and these bounds are −139.84, −200.44, −164.70 and −331.06 for the iris, thyroid,

wine and glass data sets respectively. These are lower than the theoretical ones in Table 3, but are

still higher the bounds given by MF-MNP. The looseness of the bounds given by MF-MNP is also

evident when compared with the estimates from sampling (MC-MNP).

Next, we compare the log joint predictive probability log p(y∗) on the test set. One set of

results obtained using Monte Carlo is reported for MF-MNP, MC-MNP and MC-MNL. Two sets

of results are reported for KL-MNL: the upper set uses the re-normalized probabilities given by

Equation 25 and the lower set uses Equation 24. As discussed in Section 2.3.3, the probabilities

based on Equation 24 are approximate lower bounds on the exact predictive probabilities, while the

re-normalized probabilities are always larger than these lower bounds. In the table, we see that these

two sets of predictive probabilities from KL-MNL bound the probabilities from MC-MNL rather

tightly. For MF-MNP, its predictive probabilities are close to those given by sampling (MC-MNP).

This suggests that variational mean-field, which couples of posterior means of the latent function
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MF-MNP-θ KL-MNL-θ

Theorem 10 MF-MNP MC-MNP KL-MNL MC-MNL KL-MNL MC-MNL

Iris

logZ −125.28 −187.32± 1.71 −27.71± 1.74 −32.63± 1.60 −32.48± 1.60 −31.46± 1.36 −31.32± 1.37

Error 2.66± 1.27 2.64± 1.26 2.66± 1.26 2.64± 1.22 2.28± 1.25 2.28± 1.25

log p(y∗) −10.35± 1.87 −10.53± 1.89 −11.27± 1.79 −12.61± 1.70 −9.45± 1.38 −10.90± 1.35

−13.15± 1.82 −11.38± 1.48

Thyroid

logZ −179.57 −270.63± 3.60 −41.54± 3.70 −47.15± 3.49 −46.97± 3.49 −45.13± 2.85 −44.95± 2.85

Error 7.84± 2.54 7.86± 2.54 7.92± 2.75 8.00± 2.85 6.44± 2.92 6.52± 3.03

log p(y∗) −22.02± 4.57 −22.10± 4.61 −23.08± 4.58 −24.29± 4.27 −20.55± 4.58 −22.13± 4.19

−25.67± 4.66 −23.85± 4.64

Wine

logZ −147.56 −222.63± 1.91 −36.41± 2.07 −42.56± 1.96 −42.38± 1.96 −41.18± 1.74 −41.01± 1.74

Error 4.88± 2.74 4.88± 2.88 4.96± 2.73 4.94± 2.75 3.22± 1.83 3.22± 1.73

log p(y∗) −16.19± 3.84 −16.27± 3.94 −17.19± 3.83 −19.01± 3.59 −14.47± 2.03 −16.74± 1.98

−20.37± 3.96 −18.02± 2.28

Glass

logZ −300.61 −827.58± 6.46 −150.23± 6.88 −158.16± 5.77 −157.53± 5.79 −154.74± 5.08 −154.08± 5.04

Error 33.72± 4.03 36.00± 4.16 34.20± 4.03 34.40± 4.09 32.62± 4.09 33.02± 4.05

log p(y∗) −89.63± 6.15 −95.62± 8.78 −92.78± 6.09 −94.79± 5.50 −88.82± 5.49 −91.31± 5.00

−101.00± 5.93 −97.97± 5.58

Table 3: Results with the usqexpard covariance function (44) on inputs and with i.i.d. latent functions. The log marginal likelihood logZ (or

its bounds), the empirical error and the log joint predictive probability log p(y∗) (or its bounds and approximations) are reported

with means and standard deviations over 50 partitions. Theoretic lower bounds are given under Theorem 10. Methods with MNP

after the dash uses of the multinomial probit likelihood, while those with MNL uses the multinomial logistic likelihood. MF-MNP

is the variational mean-field method (Girolami and Rogers, 2006), KL-MNL is the variational approach of this paper, while MC-

MNP and MC-MNL are importance sampling. Columns under MF-MNP-θ use the estimated mean hyper-parameters for MF-MNP;

those under KL-MNL-θ use the hyper-parameters optimized for KL-MNL. Method KL-MNL reports two sets of approximations

to log p(y∗): the upper set uses the re-normalized probabilities given by Equation 25 and the lower set uses the lower bound in

Equation 24.
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values, is perhaps sufficient for accurate predictive probabilities. In addition, the figures suggest

that the predictive probabilities by MF-MNP upper bound those by MC-MNP. Further analysis is

needed to confirm this for the general case.

Finally, we compare errors on test data. For the MF-MNP-θ hyper-parameters, we find the errors

to be similar across all methods, although KL-MNL and MC-MNL, which use the multinomial

logistic likelihood, give marginally more errors. However, with hyper-parameters optimized for

KL-MNL, both KL-MNL and MC-MNL give less errors consistently. This suggests that model

learning is better performed with a tight approximation to the marginal likelihood, as is provided by

KL-MNL.

9.1.1 EFFECT OF PRIOR VARIANCE

The results in Table 3 are where the latent processes have unit prior variance. Using the iris data

set, we investigate the quality of our marginal likelihood bound when the prior variance increases.

For each random partition, we fix the ARD hyper-parameters to that estimated for MF-MNP. The

prior variance is then increased in steps. For each step, we obtain the marginal likelihoods using

our variational inference and using importance sampling. The former is denoted by Zh, and the

latter by Z. Using Equation 3, we also obtain ZB, which approximates the posterior with a Gaussian

but computes the expected log-likelihood exactly. The Kullback-Leibler divergence is computed

exactly, while L def= ∑
n
i=1 ℓi(yi;q) is computed with Monte Carlo using ns = 100,000 samples. For

a sample f(s) from the variational posterior, let w(s) def= ∑
n
i=1 log p(yi|f(s)i ). Then the Monte Carlo

estimate of L is the sample mean w̄ of the w(s)s. We use the 99.9% confidence upper bound on ZB

by estimating L with w̄+3.09σ/
√

ns, where σ2 is the sample variance of the w(s)s.5

Figure 1 gives plots against the prior variance of the latent process. The left figure (a) plots

the log marginal likelihoods while the right figure (b) gives the violin plots of the log ratios of the

marginal likelihoods. The plots show that the quality of the bounds ZB and Zh decreases with prior

variance. This is largely due to the Gaussian approximation to the posterior, which is given by

ZB, rather than the approximation h to the expected likelihood: the violin plot for logZB/Zh shows

only slight increase as the prior variance increase, while the violin plot for logZ/ZB increases more

significantly. This illustrates the robustness of the approximation h to the expected log-likelihood.

The deterioration of Gaussian approximation to the posterior is also present in binary Gaussian

process classification (Nickisch and Rasmussen, 2008, Figure 3). The intuition is that a higher prior

variance allows the posterior latent process more flexibility to become less Gaussian.

9.2 Comparing Models

The availability of fairly tight approximations to the exact posterior opens the opportunity for model

comparison on each model’s own merit without being confounded by the gap that results from

approximation. In this section, we investigate the Gaussian process models in two areas: the choice

of likelihood and the choice of prior correlation between the functions.

5. Since log-probability is unbounded, the true distribution of w(s) may not have finite variance. We eliminate this

possibility empirically by verifying that the running sample variance has converged and that the estimated tail is not

heavy (Koopman et al., 2009).
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(b) Violin plot of log ratios of marginal likelihood

Figure 1: The quality of the lower bound on marginal likelihood for the iris data set by fixing

the ARD hyper-parameters to those estimated for MF-MNP-θ and then increasing the

prior variance. Figure (a) plots the log marginal likelihood against the prior variance

(on log-scale). The topmost curve logZ is for the marginal likelihood obtained using

importance sampling; the middle curve logZB approximates the posterior of the latent

process with a Gaussian; while the bottom curve logZh further approximates the expected

log-likelihood. The error bars give 95% confidence interval computed over 50 random

partitions of the data. The curves are translated slightly horizontally to reduce overlap

in the error bars. Figure (b) plots the log marginal likelihood ratios against the prior

variance (on log-scale) using the violin plot. The upper violin plot is for logZ/ZB and

the lower one is for logZB/Zh. These figures illustrate that the bound logZh becomes

looser with increase in prior variance, and that this is mainly contributed by the Gaussian

approximation to the posterior.
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9.2.1 LIKELIHOOD

In Table 3, when we compare MC-MNP and MC-MNL on the set of hyper-parameters given by MF-

MNP-θ, we see that the multinomial probit likelihood (MNP) fits the four training data sets better

than the multinomial logistic likelihood (MNL). This difference can be explained by an equivalent

model for each likelihood.

As outlined in Section 8, the Gaussian process latent model with covariance function kx(x,x′)
on the inputs and with the multinomial probit likelihood is equivalent to the model with covariance

function kx(x,x′)+ δ(x,x′) and the threshold likelihood function. This threshold likelihood parti-

tions the space RnC into orthants, one of which corresponds to the vector of observed data classes y.

Let us call this the y-orthant. The marginal likelihood is hence the fraction of the prior probability

mass in the y-orthant. For a centered Gaussian prior, this fraction is determined by the correlation.

For multinomial logit likelihood, each auxiliary variable uc is Gumbel distributed around f c in-

stead of Gaussian distributed; see Section 8. A moment matching approximation to the distribution

of uc is a Gaussian cent-red at f c with variance π2/6. Hence an approximation to the logit model

is a Gaussian process latent model with covariance kx(x,x′)+ δ(x,x′)π2/6 and with the threshold

likelihood. As before, the marginal likelihood is the prior probability mass in the y-orthant, and this

is determined by the correlation.

The correlation functions of the equivalent models for the multinomial probit and multinomial

logistic likelihoods are different. The former is obtained by removing the variance in kx(x,x′)+
δ(x,x′), while the latter, kx(x,x′)+ δ(x,x′)π2/6. One way to match the two correlation functions

is to scale the original latent Gaussian process for the logit model by π2/6, so that the equivalent

covariance function becomes π2/6[kx(x,x′)+ δ(x,x′)]. Consulting Figure 1a, the mean exact log

marginal likelihood for the logit model on the iris data set is logZ ≈−0.28 at log(π2/6)≈ 1/2 on

the x-axis. This is consistent with the −27.82 under MC-MNP for the iris data set in Table 3.

9.2.2 PRIOR CORRELATION AMONG LATENT PROCESSES

It is common to assume prior independence among the latent functions for two reasons: to reduce

computational complexity and to adhere to the principle of parsimony. In this section, we investigate

if parsimony is a reason enough to exclude considering prior dependence among the latent functions.

We evaluate on the four UCI data sets using the separable covariance structure in Equation 1.

For this evaluation, the covariance function on the inputs in R
d is the squared-exponential co-

variance function with equal length-scales along all the dimensions:

kx(x,x′) = sqexpiso(x,x′;σx, θ) def= σ2
x exp

(

−1

2

d

∑
j=1

(

x j − x′j
θ

)2
)

. (45)

We consider five models M1, . . . ,M5 of covariances Kc between the latent functions for the classes.

In each model, we keep the total variance trKc to be constant at C.6 The first model M1 is where

the latent functions are i.i.d., so Kc is the C-by-C identity matrix. The second is a diagonal matrix

where the diagonal entries are positive and sum to C. Here, the latent functions remain a-priori

independent, but they can have different variances while keeping the total variance the same as the

first model. For the third and fourth models, we scale the Kc given by Equation 37 to have the same

6. The total variance in Kc is then scaled by the σ2
x in kx, so the total variance of the latent process at each datum is Cσ

2
x .
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total variance as the first two models:

K̃c = M−M11TM/1TM1+ I, Kc =
C

tr K̃c
K̃c. (46)

The equation for K̃c omits the weight for the identity matrix because the normalization in Kc makes

this unnecessary. Model M3 sets M to be diagonal with positive diagonal entries; this is an attempt

to approximate the correlation of multinomial or Dirichlet random variables. Model M4 allows M

to be any positive semi-definite matrix. Finally, in the fifth model, Kc is any positive definite matrix

with trKc =C; this allows the latent functions to be correlated arbitrarily.

The first, third and fourth models satisfy the sum-to-zero property discussed in Section 5. Using

Mi ⊃M j to indicate that Mi is more expressive than M j, we have the ordering M5 ⊃M4 ⊃M3 ⊃M1

and M5 ⊃ M2 ⊃ M1. The second model is not comparable with the third and fourth models in this

ordering. The Kc for M1 is fixed and therefore parameter-free. The number of free parameters of

Kc in models M2 and M3 are C−1. For M4 and M5, these are C(C+1)/2−2 and C(C+1)/2−1.

We estimate the parameters of the models in the following way. First, the hyper-parameters σx

and θ for model M1 are optimized for the variational bound on marginal likelihood on the observed

data. These two hyper-parameters are then considered fixed when optimizing matrix Kc for the

other models using the variational bound.

After the hyper-parameters for each model have been estimated, we use sampling to obtain

better estimates of the marginal likelihoods, errors and predictive likelihoods given the model and

its hyper-parameters. This is done for each of the fifty partitions of the four UCI data sets. The

sampling procedure is that outlined in the introduction to this section except for the glass data set,

for which the Monte Carlo estimates to the marginal likelihood are lower than the variational lower

bounds. There are two reasons for the lower estimates: (a) the sampling space is larger than in the

other data sets because this data set has seven classes; and (b) for each data set partition, the prior

variance is around 16, so the true posterior is conceivably less Gaussian and more different from the

prior. To obtain Monte Carlo estimates that are better than the variational ones for this data set, we

instead sample from the multivariate-t distribution that has covariance 2V instead of 2K, where V is

the covariance of the variational approximation.

Figure 2 gives a paired comparison between the models M1, . . . ,M5 based on their marginal

likelihoods on the observed data. There are four sub-figures, one for each data set. Each graph is a

scatter-plot, in which each point is for one partition of the data set named in the sub-caption, and the

location of each point is the log marginal likelihoods of the two models indicated on the top and the

left edge of the sub-figure. For a scatter-plot, if the points are mostly above the diagonal line, then

model named on the left edge is better than the model named on the top edge. From Figure 2, we see

no noticeable difference among the models for the wine data set, while we make the following four

observations for the other data sets. (a) More free parameters generally results in better marginal

likelihoods, as expected.7 (b) Although M2 and M3 have the same number of free parameters, M3

generally gives better marginal likelihoods. (c) The marginal likelihoods of M4 and M5 are similar,

showing that the additional free parameter in M5 over M4 is not useful. Observations (b) and (c)

suggest that it is worthwhile to consider the sum-to-zero constraint, which is satisfied by M3 and

M4 but not by M2 and M5.

7. There are two reasons why more free parameters is not always better. First, the hyper-parameters are optimized using

the variational approximations and not the true marginal likelihoods. Although our approximations are rather tight,

the hyper-parameters may be sensitive to the remaining gaps in the approximations. Second, the marginal likelihood

surface can be multi-modal with respect to the hyper-parameters, hence gradient ascent can be stuck at local maxima.
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Figure 2: Paired comparisons of the marginal likelihood between five models of prior correlations

Kc between the latent functions: M1 gives i.i.d. latent functions; M2 gives independent

latent functions with different variances; M3 allows the functions to be correlated using

Equation 46 where M is diagonal; M4 also uses Equation 46 but allows M to be any

positive semi-definite matrix; and M5 allows the functions to be correlated arbitrarily.

For each model, Kc is scaled such that the total variance trKc is constant C. Each figure

is for the data set indicated in its caption. Each graph in a figure plots the log marginal

likelihood (logZ) of the model named at the left edge of the figure versus that named at

the top edge. Each point in the scatter-plot is for one of the fifty random partitions of the

data set. To ease comparison, the x = y line is plotted in each graph. For example, each

point in top left graph of Figure (a) is at the location (x,y), where x (resp. y) is the logZ

for M1 (resp. M5) on one partition of the iris data set. All the points in this graph are

above the x = y line, so M5 gives better marginal likelihood than M1 for all the partitions.
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Figure 3: The histograms of the prior variances of the latent functions in Kc estimated from the

thyroid data under model M4. From left to right, we have histograms for euthyroidism,

hyperthyroidism and hypothyroidism.
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Figure 4: The histograms of the prior correlation of the latent functions estimated from the thy-

roid data under model M4. From left to right, we have histograms for the correlation

between euthyroidism and hyperthyroidism, between euthyroidism and hypothyroidism,

and between hyperthyroidism and hypothyroidism.

For the errors and predictive likelihoods, we observe no significant difference among the models,

based on plots similar to those in Figure 2. For the purpose of prediction then, it seems sufficient

to rely on the likelihood to provide the necessary posterior coupling between the latent functions.

Nonetheless, we believe there may still be applications where prior coupling between the latent

functions is helpful in prediction.

More insights into the various models can be obtained by looking at the estimated variances and

correlations between the latent functions. As an example we shall use the thyroid data with model

M4; examination with model M3 or model M5 gives similar conclusions. The task for the thyroid

data is to predict the state of a subject’s thyroid given the results of five different laboratory tests.

This state can be one of three classes: euthyroidism (having normal functioning thyroid), hyper-

thyroidism (having overactive thyroid) and hypothyroidism (having underactive thyroid). Figure 3

gives the histogram of the prior variances of the latent functions in Kc estimated by M4 over the

fifty different partitions. From left to right, the histograms are for euthyroidism, hyperthyroidism

and hypothyroidism. Each histogram is concentrated around a single mode. Bearing in mind that

we have constrained the total variance in Kc to be 3, the evidence in the data suggests that class hy-
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Figure 5: The performance of active selection over random selection as the number of inducing

point is incremented in steps of 25. Each histogram is for the log ratios of Z∗
h for active

selection to random selection. The plot shows that active selection is better than random

selection, though the advantage decreases with the number of inducing points.

perthyroidism varies more than class hypothyroidism, which varies more than class euthyroidism.

Figure 4 gives the histogram of the correlations between the latent functions. From left to right,

we have the correlations between euthyroidism and hyperthyroidism, between euthyroidism and

hypothyroidism, and between hyperthyroidism and hypothyroidism. As for the variances, each his-

togram is concentrated around a single mode. The most significant result is the right histogram,

which shows hyperthyroidism and hypothyroidism to be negatively correlated. This is intuitive: the

two classes correspond to overproduction and underproduction of thyroid hormones respectively.

9.3 Active Inducing Set Selection

Sparse approximation is commonly used for efficient inference in large data sets. The quality of

this approximation is dependent on the inducing set. In this section, we evaluate the effectiveness

of criteria d2 and d3 (Equations 42 and 43 in Section 6.1) in selecting the inducing set actively. We

do this by comparing with random selection on the glass data set.

We use the usqexpard covariance function (44) on the inputs and assume that the latent functions

are i.i.d. For each training set partition, we fix the hyper-parameters to those optimized for our

variational lower bound using the entire training set; these are the KL-MNL-θ hyper-parameters

estimated in Section 9.1. Given the training set partition and the hyper-parameters, the random

approach selects δ sites to be added to the inducing set at each iteration. The active approach begins

with the same δ random sites as the random approach, but subsequent choices of the δ sites are

selected based on the d2 and d3 criteria. For each random variable induced by the training set, we

use d3 with subsample set of size |S |. Next, we compute the d2 scores of the t random variables

with the highest d3 scores. The δ random variables having the highest d2 scores computed in this

manner will be added to the inducing set. We use δ = 25, |S |= 5 and t = 40 in the experiment.
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The optimized variational lower bound Z∗
h on the marginal likelihood for random selection is

computed at each iteration for each training set partition. The same is computed for active selection.

Figure 5 gives the violin plot of the log ratios of the Z∗
h for the active selection to the Z∗

h for the

random selection. The horizontal axis gives the size of the inducing set—there are 896 potential

inducing sites from the 7 types of glass and the 128 training xs. The histogram at each iteration is

over the fifty random training set partitions.

At the first iteration with 25 inducing sites, the ratio is zero because both the random selec-

tion and the active selection begin with the same 25 random sites. At the second iteration with

an additional 25 inducing sites, active selection usually provides higher Z∗
h , but it is possible for

active selection to be worse than random selection. This is because the d2 and d3 criteria are de-

signed for single inducing sites, so they are not optimal for selecting more than one site—25 in

this experiment—at once. Nevertheless, in subsequent iterations, active selection always provides

higher Z∗
h than random selection. As the size of the inducing set increases, the benefit from active

selection decreases because the value of any inducing site decreases.

9.4 Comparing with Single-machine Multi-class Support Vector Machines

Support vector machines (SVMs, Vapnik, 1998) are popular for classification and they have been

known to give good classification accuracies in general. Although originally formulated for binary

classification, several extensions have been proposed for multi-class classification. These extensions

can be grouped roughly into two: one is to transform the multi-class problem into several binary

class problems together with a decoding step; the other, called the single-machine approach, is to

solve a single optimization problem for multiple classes, keeping to the broad principles of structural

risk minimization (Vapnik, 1998). Comparisons between the two groups have been done by Rifkin

and Klautau (2004). In this section, we compare our proposed variational approximation on multi-

class Gaussian processes to four different single-machine multi-class SVMs using the MSVMpack

package (Lauer and Guermeur, 2011). We denote the four single machines by WW (Vapnik, 1998;

Weston and Watkins, 1999), CS (Crammer and Singer, 2001), LLW (Lee et al., 2004) and MSVM2

(Guermeur and Monfrini, 2011). The comparison is on the four UCI data sets.

For both Gaussian processes and SVMs, we use the sqexpiso covariance function or kernel

(45). The signal variance σ2
x in the Gaussian process covariance function corresponds to the soft-

margin trade-off parameter in the SVM objective functions, usually denoted by C. For the multi-

class Gaussian processes, the parameters of the covariance function are estimated by optimizing our

variational lower bound on the marginal likelihood. For the single-machine SVMs, the parameters C

and θ are estimated from a grid (log10C, θ) ∈ {−2,−1,0,1,2,3}×{0.1,1,5,10,15} using five-fold

cross validation on the training set.8 This is repeated for each of the fifty train/test set partitions.

Table 4 gives the means and standard deviations of the errors over the fifty random train/test

set partitions. The results for WW, CS and LLW are consistent with those reported by Weston and

Watkins (1999), Hsu and Lin (2002) and Lee et al. (2004), when we take into perspective that their

results are for 90%/10% train/test splits instead of the 60%/40% here. Comparing the errors for

the Gaussian processes under column KL-MNL with the errors for the single-machine SVMs, we

see that the Gaussian processes give better performances on the average. One reason is that model

learning is achieved using continuous optimization with Gaussian processes, while only discrete

8. When MSVMpack does not seem to converge on its stopping criterion for a parameter pair (C,θ), the learning is

forced to terminate for that pair, and the validation score is computed based on the model at the point of termination.
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Single-machine multi-class support vector machines

Data set KL-MNL WW CS LLW MSVM2

Iris 2.18± 1.42 3.02± 2.51 3.22± 4.34 2.74± 1.45 2.88± 1.47

Thyroid 3.54± 1.68 4.42± 3.45 4.82± 1.89 5.28± 2.08 5.58± 2.56

Wine 1.40± 0.90 1.40± 0.69 2.20± 1.34 1.62± 1.03 1.50± 0.95

Glass 27.44± 3.78 29.30± 10.70 28.70± 3.17 29.54± 9.72 29.42± 3.59

Table 4: Errors of variational multinomial logit Gaussian process (column KL-MNL) and four vari-

ants of single-machine multi-class SVMs. The means and standard deviations of the errors

over fifty partitions are reported. The sqexpiso covariance function/kernel (45) is used on

the inputs, and there is no inter-class correlations between the functions.

Errors Number of support vectors

Data set Sparse KL-MNL SVM-WW min Q1 Q2 Q3 max

Iris 2.14± 1.39 3.02± 2.51 12 17 20 24 36

Thyroid 7.38± 5.22 4.42± 3.45 2 3 4 7 39

Wine 1.32± 0.91 1.40± 0.69 4 10 25 34 37

Glass 28.42± 4.05 29.30± 10.70 8 18 56 65 75

Table 5: Errors of sparse variational multinomial logit Gaussian process and the WW variant of

multi-class SVM. The means and standard deviations of the errors over fifty partitions are

reported. The sqexpiso covariance function/kernel (45) is used on the inputs, and there is

no inter-class correlations. The number of inducing variables for the sparse approximation

is the number of support vectors given by WW times the number of classes. The last

five columns give the statistics of number of support vectors over the partitions. Column

SVM-WW duplicates column WW in Table 4.

optimization on the grid is used with the SVMs. Hence, the Gaussian processes can give finer

parameter estimates.

The above uses the full (or non-sparse) approximation to the Gaussian process model. We also

experiment with the sparse approximation. For each data set and each partition of the set, the target

number inducing variables is fixed to the number of support vectors selected by WW multiplied by

the number of classes. The initial inducing set is C randomly chosen variables. Inducing variables

are added using the strategy described in Section 9.3, but now with δ =C, |S |= 5 and t = 20.

This expansion of the inducing set is alternated with one gradient-line-search to optimize the hyper-

parameters of the model. After all the inducing variables are added, the hyper-parameters are further

optimized. Table 5 reports the results repeated over the fifty partitions for each data set. The table

also gives the minimum, maximum and quartiles (Q1,Q2,Q3) of the number of support vectors.
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Figure 6: The quality of sparse approximations, at the same level of sparsity as the WW variant of

SVM. Each histogram is for the log ratios of Z∗
h for the full model to Z̃∗

h for the sparse

model. The approximation is mostly tight for the iris, wine and glass data sets, but is

loose for the thyroid data. The histogram for the iris data concentrated at 0, so it is barely

visible. The hyper-parameters for Z∗
h and for Z̃∗

h are different.

From Table 5, we see that the sparse Gaussian process model with active selection of inducing

set compares favourably with the WW variant of SVM in terms of errors for three of the four data

sets. The sparse Gaussian process model gives significantly more errors for the thyroid data. We

believe there are two reasons for this. First, most of the fifty repetitions for the thyroid data have very

small number inducing variables: the median is 4× 3 = 12. Second, the sparsity in the Gaussian

process is an imposed approximation to the full Gaussian process, while the sparsity in the SVM is

a direct consequence of its objective function. Therefore, limited to a median of only 12 inducing

variables, the sparse approximation is unsatisfactory. This is reflected in Figure 6, which gives the

violin plot of the log ratios of the marginal likelihood for the full model to the sparse model. From

the figure, we see that approximation of the Gaussian process model with the same level of sparsity

as WW is unsatisfactory for the thyroid data. Finally, we remark that the full Gaussian process

model gives 3.54±1.68 errors; see Table 4.

10. Conclusion and Discussion

We have introduced a tractable variational approximation to the multinomial logit Gaussian pro-

cesses for multi-class classification in Section 2.3, and we have provided the necessary updates

to optimize this approximation in Section 3. Empirical results in Section 9.1 have indicated that

our approximation is very faithful to the exact distribution, in contrast to the variational mean-field

approximation (Girolami and Rogers, 2006). One key to the success of this approximation is Theo-

rem 6, which gives a variational lower bound on the expected log-likelihood at each observation. In

addition, bounds on the train data marginal likelihood and test data predictive likelihoods have been

given in Sections 2.3.2 and 2.3.3, and these bounds have been shown to be supported by empirical

results in Section 9.1.

In Section 4, the proposed variational approximation has been combined with the sparse vari-

ational approximation approach previously advocated for regression (Titsias, 2009a). This sparse

approximation to the multinomial logit Gaussian processes has the property that incremental in-

creases in the inducing set will lead to tighter bounds on the marginal likelihood. This property

has been exploited in Section 6.1 to derive scores for potential inducing sites. An active selection
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strategy making greedy use of these scores has been compared favorably with random selection in

Section 9.3.

The present paper is mostly independent of the covariance structure of the Gaussian process.

Nevertheless, at various points, we have focused on the case where the covariance is separable into

the covariance on the inputs and the covariance on the classes. Such separable covariance has been

investigated previously in the context of multi-task Gaussian process regression (see, for example,

Bonilla et al., 2008). In Section 5, we have looked into the cases where the optimized variational

posterior satisfies the sum-to-zero property; this property is also present in many single-machine

multi-class SVMs. In Section 9.2.2, we have compared several models of prior correlation between

the latent functions. Although the experimental results are neither general nor conclusive against

or for Kc = I, further investigation into the thyroid data has suggested that useful knowledge can

indeed be extracted if inter-latent-function correlations are permitted.

There are several possibilities building upon and extending this work. From the model perspec-

tive, it is worthwhile to have more interesting models in which latent functions can be related than,

for example, the separable covariance of Equation 1. For this, covariance models developed for

multi-task learning in the regression setting can be assessed for multinomial logit Gaussian process.

Here, two questions specific to multi-class classification are of interest. First, should one consider

models where a pair of latent functions are allowed to be positively correlated? On the one hand,

the classes are mutually exclusive, so an increase in the probability of one class necessarily entails a

decrease in the probability of another class when the probability of other classes are held constant;

hence we can expect negative correlations between the latent functions. On the other hand, if there

is a natural hierarchical structure to the classes, then the probability of two classes can rise in tan-

dem against the probability of the other classes; hence we may also find positive correlations. The

second question is: should the set of length-scales of the latent functions be the same? To argue

for the same set of length-scales, one may say that a single property of the given object x is being

predicted. The counter argument is that there are different values for this property, and the latent

function for each value may demand its own set of length-scales.

From the variational approximation perspective, further constraints can be placed on the any of

the variational parameters: m, V , the bis and the Sis. Some constraints will lead to more efficient

algorithms though with less faithful approximations, and trade-offs between the two conflicting

goals will have to be examined. From a purely algorithmic perspective, more efficient updates than

the ones presented in Section 3 can be explored.

Theorem 6 gives a variational lower bound on the expected log-likelihood at each observation.

We have seen that it is rather tight on the average in Section 9.1. This bound can be applied to

on-line multi-class classification under the assumed density filtering framework, following a prior

work on sparse on-line binary classification (Csató and Opper, 2002).
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Appendix A. Mathematical Preliminaries

We provide general results required in the proofs for the main results of this paper.

A.1 Gaussians

Lemma 18 Let x1 ∈ R
n1 and x2 ∈ R

n2 be random vectors with two jointly normal distributions

p(x1,x2)
def= N (n,U) and q(x1,x2)

def= N (m,V ), where the parameters are partitioned as

n def=

(

n1

n2

)

, U def=

(

U11 U12

U21 U22

)

, m def=

(

m1

m2

)

, V def=

(

V11 V12

V21 V22

)

.

The difference between the Kullback-Leibler divergences on x def= (xT
1 ,x

T
2 )

T and x1 is

KL(p(x)‖q(x))−KL(p(x1)‖q(x1))

=−n2

2
− 1

2
log

∣

∣

∣
V−1

2|1 U2|1

∣

∣

∣
+

1

2
trV−1

2|1

(

U2|1 +WU−1
11 W T

)

+
1

2
tTV−1

2|1 t,

where

U2|1 def=U22 −U21U−1
11 U12, V2|1 def=V22 −V21V−1

11 V12,

W def=U21 −V21V−1
11 U11, t def= (m2 −n2)−V21V−1

11 (m1 −n1) .

Proof The conditional distributions p(x2|x1) and q(x2|x1) have means

n2|1 def= n2 +U21U−1
11 (x1 −n1) , m2|1 def= m2 +V21V−1

11 (x1 −m1)

and covariances U2|1 and V2|1. The difference between the Kullback-Leibler divergences can be

derived through the Kullback-Leibler divergence of these conditionals:

KL(p(x)‖q(x))−KL(p(x1)‖q(x1)) =
∫

p(x) log
p(x)/p(x1)

q(x)/q(x1)
dx =

∫
p(x) log

p(x2|x1)

q(x2|x1)
dx

=
1

2

∫
p(x1)

[

−n2 − log

∣

∣

∣
V−1

2|1 U2|1

∣

∣

∣
+ trV−1

2|1 U2|1 +
(

m2|1 −n2|1
)T

V−1
2|1
(

m2|1 −n2|1
)

]

dx1

In the last expression above, only the final quadratic term in the integrand depends on x1, so we

can move the other terms out of the integral. For this final term, its integral under p(x1)dx1 is

trV−1
2|1
(

WU−1
11 W T

)

+ tTV−1
2|1 t.

A.2 Matrix

Proposition 19 For positive semi-definite matrices A and B of the same order, we have B � A im-

plies null(A)⊆ null(B).

Proof Let x ∈ null(A), then Ax = 0 by definition. Hence xTAx = 0. Since 0 � B � A, we have

0 ≤ xTBx ≤ xTAx = 0. Therefore xTBx = 0. This means Bx = 0, or x ∈ null(B) (Horn and Johnson,

1985, Section 7.5, Problem 14). Thus x ∈ null(A) =⇒ x ∈ null(B).
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Lemma 20 (Matrix determinant lemma) For an n-by-n non-singular matrix A and vectors u and v

in R
n, |A+uvT|= (1+vTA−1u)|A|.

Lemma 21 Under the setting in Lemma 20

|A+uvT +vuT|=
[

(1+vTA−1u)(1+uTA−1v)−uTA−1uvTA−1v)
]

|A|.

Proof Apply Lemma 20 twice; then use the Sherman-Morrison formula on (A+uvT)−1.

Corollary 22 If A is also symmetric, then

|A+uvT +vuT|=
[

(1+uTA−1v)2 −uTA−1uvTA−1v)
]

|A|.

Lemma 23 Further, with a ∈ R, we have

|A+auuT +uvT +vuT|=
(

(

1+uTA−1v
)2 −uTA−1uvTA−1v+auTA−1u

)

|A|.

Proof Let X def= A+auuT and b def= 1+auTA−1u. We apply Corollary 22, then we use Lemma 20 on

|X | and the Sherman-Morrison formula on X−1:

[

(1+uTX−1v)2 −uTX−1uvTX−1v)
]

|X |

= |A|b
[

(

1+
1

b
uTA−1v

)2

− 1

b
uTA−1u

(

vTA−1v− a

b

(

uTA−1v
)2
)

]

= |A|b
[

1+
2

b
uTA−1v+

1

b

(

uTA−1v
)2 − 1

b
uTA−1uvTA−1v

]

= |A|
[

(1+uTA−1v)2 +auTA−1u−uTA−1uvTA−1v
]

.

The second step in the derivation applies the identity 1− (a/b)uTA−1u = 1/b.

Theorem 24 (Matrix quadratic equation, a special case of Potter 1966). Let A and B be two real

symmetric n-by-n matrices such that A+B2 is positive semi-definite and B is positive definite. Then

the positive definite solution to the equation −X2 +BX +XB+A = 0 is X = PΛ
1
2 PT + B, where

PΛPT is the eigen-decomposition of A+B2.

Proof The solution X can be proved by direct substitution into the equation, or by completing the

square, or by following a construction due to Potter (1966). For positive definiteness, since B ≻ 0,

we only require that (A+B2) is positive semi-definite.

Appendix B. Bounds

This appendix provides the proofs for the bounds stated in the main text.
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B.1 Variational Lower Bound on the Marginal Likelihood

We derive the variational lower bounds Z̃B on the true marginal likelihood in the sparse case. Using

Jensen’s inequality, we have

log p(y) = log

∫
p(y, f,z)dzdf = log

∫
p(y, f,z)

q(f,z|y)
q(f,z|y) dzdf ≥ log Z̃B,

where log Z̃B
def=

∫
q(f,z|y) log

p(y, f,z)

q(f,z|y) dzdf. (47)

Given the model, the joint distribution p(y, f,z) factorizes into p(y|f)p(f|z)p(z) exactly; there is

no approximation involved. For the approximate posterior q(f,z|y), however, the factorization

q(f,z|y) = p(f|z)q(z|y) is assumed. Using these two factorizations, we have

log Z̃B =
∫

p(f|z)q(z|y) log
p(y|f)p(z)

q(z|y) dzdf

=
∫

q(z|y)
[

log
p(z)

q(z|y) +
∫

p(f|z) log p(y|f)df

]

dz

=−KL(q(z|y)‖p(z))+
∫

q(f|y) log p(y|f)df,

where q(f|y) def=
∫

q(f,z|y)dz. Since the joint likelihood factorizes across the n data points, this is

also log Z̃B =−KL(q(z|y)‖ p(z))+∑
n
i=1 ℓi(yi;q), where ℓi(yi;q) def=

∫
q(fi|y) log p(yi|fi)dfi.

The bound ZB in the non-sparse case can be obtained in a similar manner with

logZB
def=

∫
q(f|y) log

p(y, f)

q(f|y) df. (48)

B.1.1 RELATION BETWEEN BOUNDS FOR NON-SPARSE AND SPARSE APPROXIMATIONS

We show that the optimized non-sparse bound logZ∗
B is not smaller than the optimized sparse bound

log Z̃∗
B. We begin by constraining the approximate posterior in logZB:

logZ∗
B

def= max
q(f|y)

logZB ≥ max
q(z|y)

logZB (where q(f|y) = ∫
p(f|z)q(z|y)dz) . (49)

We introduce an arbitrary distribution r on z and use Jensen’s inequality to get

log p(y, f) = log

∫
p(y, f,z)dz = log

∫
r(z)

p(y, f,z)

r(z)
dz ≥

∫
r(z) log

p(y, f,z)

r(z)
dz.

The above inequality is substituted into logZB through its definition (48), and the result is applied

to the leftmost expression in (49):

logZ∗
B ≥ max

q(z|y)

∫
q(f|y)r(z) log

p(y, f,z)

q(f|y)r(z) dzdf (where q(f|y) = ∫
p(f|z)q(z|y)dz) .

This is for any r(z). We choose r(z) def= q(z|f,y) = q(f,z|y)/q(f|y) and cancel out q(f|y) to obtain

logZ∗
B ≥ max

q(z|y)

∫
q(f,z|y) log

p(y, f,z)

q(f,z|y) dzdf.

The objective on the right is log Z̃B by definition (47).
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B.2 Derivation of r(f) and r(y) for Lemma 2

Let r(f) be a prior distribution such that the posterior

r(f|y) = p(y|f)r(f)/r(y), where r(y) def=

∫
p(y|f)r(f)df,

is a C-variate Gaussian density on f with mean a and precision W . Rearranging gives

r(f)

r(y)
=

r(f|y)
p(y|f) =

C

∑
c=1

|W |1/2

(2π)C/2
exp−1

2

[

(f−a)TW (f−a)−2(ec −y)Tf)
]

. (50)

Let ac be such that

Wac =Wa+ ec −y, (51)

and define

rc(f) def=
|W |1/2

(2π)C/2
exp

[

−1

2
(f−ac)TW (f−ac)

]

.

By completing the square the terms within the brackets of (50), we obtain

r(f) = r(y)exp

[

−1

2
aTWa

]

C

∑
c=1

exp

[

1

2
(ac)TWac

]

rc(f).

This is a mixture of Gaussians model, so let r(f) = ∑c γ
crc(f). Normalization gives

r(y) =
exp
[

1
2
aTWa

]

∑
C
c=1 exp

[

1
2
(ac)TWac

] , γc def=
exp
[

1
2
(ac)TWac

]

∑c′ exp
[

1
2
(ac′)TWac′

] . (52)

B.3 Derivation of Lower Bound h on the Expected Log-likelihood for Lemma 5

Recall from (12) that

h(y;q,r) def=

∫
q(f|y) logr(f|y)df+ logr(y)− log

C

∑
c=1

γc

∫
q(f|y)rc(f)df. (53)

We simplify the first two terms on the right:

∫
q(f|y) logr(f|y)df =

1

2

(

−C log2π+ log |W |− (m−a)TW (m−a)T − trWV
)

, (54)

logr(y) =
1

2
aTWa− log

C

∑
c=1

exp

[

1

2
(ac)TWac

]

. (55)

For the third term on the right of (53), we introduce S def=V−1 +W and use

∫
q(f|y)rc(f)df

=

√

|W |
(2π)C|V | |S| exp−1

2

[

mTV−1m+(ac)TWac −
(

V−1m+Wac
)T

S−1
(

V−1m+Wac
)

] (56)
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to obtain

log
C

∑
c=1

γc

∫
q(f|y)rc(f)df =− log

C

∑
c=1

exp

[

1

2
(ac)TWac

]

+
1

2
log |W |− C

2
log2π− 1

2
log |SV |

+ log
C

∑
c=1

exp−1

2

{

mTV−1m−
(

V−1m+Wac
)T

S−1
(

V−1m+Wac
)

}

, (57)

where the first term is from the denominator of γc (Equation 52) and the second to fourth terms are

from the first factor in Equation 56. At present, let us focus on the term within the braces in the

above equation. Let b def=W (m−a)+y and use the identity Wac =Wa+ ec −y (Equation 51) and

definition S def=V−1 +W . Then

mTV−1m−
(

V−1m+Wac
)T

S−1
(

V−1m+Wac
)

= mTV−1m−
(

V−1m+Wa+ ec −y
)T

S−1
(

V−1m+Wa+ ec −y
)

= mTV−1m−
(

V−1m+Wm+ ec −b
)T

S−1
(

V−1m+Wm+ ec −b
)

= mTV−1m− (Sm+ ec −b)T
S−1 (Sm+ ec −b)

= mTV−1m−mTSm−2mT(ec −b)− (ec −b)T
S−1 (ec −b)

=−mTWm+2mTW (m−a)+2mTy−2mTec − (b− ec)T
S−1 (b− ec)

= mTWm−2mTWa+2mTy−2mTec − (b− ec)T
S−1 (b− ec)

= (m−a)TW (m−a)−aTWa+2mTy−2mTec − (b− ec)T
S−1 (b− ec)

= (m−a)TW (m−a)−aTWa+2mTy−2loggc(y;q,r),

where gc(y;q,r) def= exp
[

mTec + 1
2
(b− ec)TS−1(b− ec)

]

. By pulling out the terms independent of

the dummy variable c in the last term of (57), we can rewrite

log
C

∑
c=1

γc

∫
q(f|y)rc(f)df =− log

C

∑
c=1

exp

[

1

2
(ac)TWac

]

+
1

2
log |W |− C

2
log2π

− 1

2
log |SV |− 1

2
(m−a)TW (m−a)+

1

2
aTWa−mTy+ log

C

∑
c=1

gc(y;q,r). (58)

Finally, putting (54), (55) and (58) into (53) and cancelling terms yields

h(y;q,r) =
C

2
+

1

2
log |SV |− 1

2
trSV +mTy− log

C

∑
i=1

gc(y;q,r).

Since distribution r(f|y) is completely determined by its mean a and precision W , we may use these

parameters instead of r in our notation; that is, h(y;q,a,W ) instead of h(y;q,r).

B.4 Lemmas to Prove Theorem 6

This section collects the necessary lemmas to prove Theorem 6. Function gc(q,b,S) and function

h(y;q,b,S) are given by Equations 16 and 19 in the main text, while variables ḡ and A are defined

by Equations 17 and 18.
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Lemma 25 Function h is jointly concave in b and S.

Proof The following facts are used: (a) the log-determinant term is concave in S (Horn and Johnson,

1985, Theorem 7.6.7); (b) the matrix trace term is both concave and convex in S; (c) the quadratic

term in the exponent of gc is jointly convex in S and b (Ando, 1979); and (d) the sum of log-convex

functions is log-convex.

Lemma 26 The maximum of h given S with respect to b is at b = b∗ that satisfies b∗ = ḡ∗, where

ḡ∗ is obtained by evaluating ḡ at b∗.

Proof Proved by setting the gradient ∂h/∂b to zero.

Lemma 27 The maximum of h given b with respect to S is at S = S∗ that satisfies the implicit

equation −S∗V S∗+S∗+A∗ = 0, where A∗ 6= 0 is A evaluated at S∗.

Proof Proved by equating the gradient

∂h

∂S
=−1

2
V +

1

2
S−1 +

1

2
S−1AS−1 (59)

to zero and pre- and post-multiplying both sides by S (valid since S ≻ 0 by definition).

Lemma 28 Let A 6= 0, A � 0 and V ≻ 0. Let Sfx be the fixed point given implicitly by

−SfxV Sfx +Sfx +A = 0. (60)

Then V−1 � Sfx �V−1 +A, and S 6=V−1 and Sfx 6=V−1 +A; that is, there exists a matrix W satis-

fying 0 �W fx � A and W 6∈ {0,A} such that Sfx =V−1 +W fx. Furthermore, null(W fx) = null(A).

Proof Let V factorizes to LLT, where L is non-singular; for example, matrix L can be the lower

Cholesky factor of V . We pre- and post-multiply Equation 60 by LT and L to obtain the equation

−(LTSfxL)(LTSfxL)+(LTSfxL)+LTAL = 0. This is a matrix quadratic equation in LTSfxL, so we

use Theorem 24 to reach the solution

LTSfxL = PΛ̃PT, Λ̃ def= (Λ+ I/4)1/2 + I/2, (61)

where PΛPT is the eigen-decomposition of LTAL. Matrix A is positive semi-definite, so similarly is

LTAL (Horn and Johnson, 1985, Observation 7.7.2) and LTAL+ I/4. Therefore, LTSfxL is positive

definite; see Theorem 24. Since L is non-singular, we can write Sfx = L−T
(

LTSfxL
)

L−1, so Sfx is

positive definite (Horn and Johnson, 1985, Observation 7.7.2). Define W fx def= Sfx −V−1, then

W fx = L−T
(

LTSfxL
)

L−1 − (LLT)−1 = L−T
(

LTSfxL− I
)

L−1 = L−TP
(

Λ̃− I
)

PTL−1,
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where (61) is used. Since the least diagonal value in Λ̃ is one, W fx is positive semi-definite, so

Sfx � V−1. Moreover, since V 6= 0 and A 6= 0, so LTAL 6= 0, Λ 6= 0, Λ̃ 6= I and W fx 6= 0. Hence

Sfx 6=V−1. Substitute Sfx =V−1 +W fx into (60) and rearranging gives

W fx = A−W fxVW fx � A. (62)

Thus Sfx �V−1 +A. Moreover, W fx 6= 0 and V 6= 0 shows that Sfx 6=V−1 +A.

We now prove null(W fx) = null(A). Already, W fx � A gives null(A)⊆ null(W ) with Proposi-

tion 19, so it remains to proof null(W fx)⊆ null(A). Let x ∈ null(W fx). Post-multiply both sides of

the equality in (62) by x and use W fxx = 0 to give Ax = 0. Thus x ∈ null(A).

B.5 Proof of Lemma 7

We introduce u(η), where u(0) = ℓ(y;q) and u(1) = log p(y|m), and obtain its first two derivatives:

u(η) def=

∫
q(f|y)

(

[(1−η)f+ηm]T y− log
C

∑
c=1

exp [(1−η)f+ηm]T ec

)

df,

du

dη
=

∫
q(f|y)

(

[m− f]T y− [m− f]Tπη

)

df =−
∫

q(f|y) [m− f]Tπη df,

d2u

dη2
=−

∫
q(f|y) [m− f]T

(

Πη−πηπ
T
η

)

[m− f]df,

where

πc
η

def=
exp [(1−η)f+ηm]T ec

∑
C
c′=1 exp [(1−η)f+ηm]T ec′

, πη
def=
(

π1
η
, . . . ,πC

η

)T
,

and Πη is a diagonal matrix with πη along its diagonal. The first derivative du/dη at η = 1 is zero

because π1 is independent of f and the mean of f under q(f|y) is m. Moreover, the second derivative

d2u/dη2 is non-positive because the matrix within the parentheses is positive semi-definite. Hence

u is concave in η, and a maximal is u(1) = log p(y|m) where the gradient is zero.

B.6 A Data-independent Lower Bound on the Marginal Likelihood

We first introduce a bound on h(y;q,b,S) when the variational posterior is chosen to be an isotropic

Gaussian.

Lemma 29 Let q ≡ N (m,σ2
vI), and let h(y;q,b,S) be as defined by Equation 19. Then

max
b,S

h(y;q,b,S)≥−C−1

2

[

2

√

σ2
v

C
+

1

4
− log

(
√

σ2
v

C
+

1

4
+

1

2

)

−1

]

− 1

2
logC

+
1

2
log

exp2mTy

∑
C
c=1 exp2mTec

.
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with equality when m = 0. This is a decreasing function of C and σ2
v . Moreover

max
b,S

h(y;q,b,S)>−1

2
σ2

v −
1

2
logC+

1

2
log

exp2mTy

∑
C
c=1 exp2mTec

.

Proof Let g̃c(b,S) def= exp(b− ec)TS−1(b− ec). Using Cauchy-Schwarz inequality on ∑
C
c=1 gc gives

log
C

∑
c=1

gc ≤ 1

2
log

C

∑
c=1

exp2mTec +
1

2
log

C

∑
c=1

g̃c.

We use this inequality together with the choice of distribution q, which has variance σ2
v in all direc-

tions, to obtain h(y;q,b,S)≥ h̃(y;q,b,S), where

h̃(y;q,b,S) def=
C

2
+

C

2
logσ2

v +
1

2
log |S| − σ2

v

2
trS − 1

2
log

C

∑
c=1

g̃c(b,S) +
1

2
log

exp2mTy

∑
C
c=1 exp2mTec

.

Let ¯̃gc def= g̃c/∑
C
c′=1 g̃c′ and ¯̃g def= ( ¯̃g1, . . . , ¯̃gC)T, where the arguments (b,S) are suppressed in the nota-

tion. Let ¯̃G be the diagonal matrix with ¯̃g along its diagonal. Also, define Ã def= bbT − ¯̃gbT −b¯̃g
T
+ ¯̃G.

These two definitions are analogous to the definitions of ḡ and A in Equations 17 and 18.

Let the maximum of h̃ be at (b∗,S∗). It is straightforward to modify Lemmas 25, 26 and 27 for

h̃. The modified Lemma 25 says that (b∗,S∗) is unique. The other two modified lemmas will give

the self-consistent equations

b∗ = ¯̃g(b∗,S∗), −σ2
v(S

∗)2 +S∗+A∗ = 0.

By symmetry, b∗ = 1/C and A∗ = I/C−11T/C2. An eigenpair of A∗ is (0,1/
√

C); the other (C−1)
eigenpairs are (1/C,ud), d = 1 . . .(C − 1), where 1Tud = 0 in addition to the orthonormal condi-

tions. Let

λ def=

√

σ2
v/C+1/4+1/2. (63)

Since σ2
vS∗ = (σ2

vA∗+ I/4)1/2 + I/2 (see the proof for Lemma 28 in Appendix B.4), the eigenvalues

of S∗ are σ−2
v (with algebraic multiplicity one) and σ−2

v λ (with algebraic multiplicity C− 1), and

the eigenvectors of S∗ are those of A∗. Thus the determinant and trace of S∗ can be readily obtained.

With b∗ = 1/C, observe that

(b∗− ec)T1/
√

C = 0, (b∗− ec)Tud =−udc,

where udc is the cth entry in the eigenvector ud . For the exponent of g̃c, using (S∗)−1 in its eigen-

decomposition and the two observations above gives (b∗− ec)T(S∗)−1(b∗− ec) = (σ2
v/λ)∑

C−1
d=1 u2

dc.

But the eigenvectors of S∗ are orthonormal, so
(

(1/
√

C)2 +∑
C−1
d=1 u2

dc

)

is unity. Hence, we have

(b∗− ec)T(S∗)−1(b∗− ec) = (σ2
v/λ)(1−1/C). This is independent of c. Therefore

max
b,S

h̃(y;q,b,S)

=
C

2
+

C

2
logσ2

v +
1

2
logσ−2

v (σ−2
v λ)C−1 − σ2

v

2

(

σ−2
v +(C−1)σ−2

v λ
)

− 1

2
logC exp

[

σ2
v

λ

(

1− 1

C

)]

+
1

2
log

exp2mTy

∑
C
c=1 exp2mTec

=
C

2
+

C−1

2
logλ− 1

2
(1+(C−1)λ)− 1

2

σ2
v

λ

(

1− 1

C

)

− 1

2
logC+

1

2
log

exp2mTy

∑
C
c=1 exp2mTec

.
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The underlined term can be simplified to (C−1)(1−λ)/2 by expressing σ2
v in λ using (63). Further

simplification and substitution with the definition of λ gives

max
b,S

h̃(y;q,b,S) =−C−1

2

[

2

√

σ2
v

C
+

1

4
− log

(
√

σ2
v

C
+

1

4
+

1

2

)

−1

]

− 1

2
logC+

1

2
log

exp2mTy

∑
C
c=1 exp2mTec

.

Combining this with h(y;q,b,S)≥ h̃(y;q,b,S) gives the the first inequality in the lemma statement.

When m = 0, we can obtain a modification of the proof using ∑
C
c=1 gc directly without bounding

through the Cauchy-Schwarz inequality. This modified proof shows that

max
b,S

h(y;q,b,S) =−C−1

2

[

2

√

σ2
v

C
+

1

4
− log

(
√

σ2
v

C
+

1

4
+

1

2

)

−1

]

− logC. (m = 0)

The first term is a decreasing function of C, and we now show that this first term is bounded

by −σ2
v/2 from below. Let f (x) def= x2 −3x+2+ logx. Then f = 0 and d f/dx = 0 at x = 1, and

d2 f/dx2 > 0 in the domain x ≥ 1. Therefore, f (x)≥ 0 for all x ≥ 1. Then, for function f (x) we set

x def=
√

σ2
v/C+1/4+1/2 and use C−1 <C to complete the proof after rearrangement.

Proof (of Theorem 9)

log p(y)≥ max
q,{bi},{Si}

logZh ≥ max
{bi},{Si}

logZh|q(f|y)=N (0,σ2
vI)

=
nC

2
+

nC

2
logσ2

v −
1

2
log |K|− σ2

v

2
trK−1 +

n

∑
i=1

max
bi,Si

h(yi,N (0,σ2
vI),bi,Si)

=
nC

2
+

nC

2
logσ2

v −
1

2
log |K|− σ2

v

2
trK−1 +nmax

b,S
h(y,N (0,σ2

vI),b,S).

Lemma 29 is then applied on maxh.

Proof (of Theorem 10)

log p(y)≥ max
q,{bi},{Si}

logZh

≥ max
{bi},{Si}

logZh|q(f)=p(f)

= max
{bi},{Si}

[

nC

2
+

1

2

n

∑
i=1

(

log |SiKi|− trSiKi

)

−
n

∑
i=1

log
C

∑
c=1

exp

[

1

2
(bi − ec)TS−1

i (bi − ec)

]

]

.

The same expression can be obtained by setting V = K and m = η1 and maximizing the resultant

expression with respect to η. For K1 = K2, . . .Kn = Kc, we have

1

n
log p(y)≥ max

b,S

[

C

2
+

1

2
log |SKc|− 1

2
trSKc − log

C

∑
c=1

exp

[

1

2
(b− ec)TS−1(b− ec)

]

]

.

For the choice of Kc def= σ2I, we apply Lemma 29.
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B.7 Lower Bound on Predictive Probability: Proof of Theorem 12

For a set of n∗ test inputs X∗ def= {x∗1, . . . ,x∗n∗}, the log joint predictive probability for x∗j to be in

class c j ( j = 1 . . .n∗) is

log p({y
c j

∗j = 1}n∗
j=1|y) = log

∫
p({y

c j

∗j = 1}n∗
j=1|f∗) p(f∗|y)df∗

= log

∫
p({y

c j

∗j = 1}n∗
j=1|f∗) p(f∗, f|y)df∗ df

= log

∫
p({y

c j

∗j = 1}n∗
j=1|f∗)q(f∗, f|y)

p(f∗, f|y)
q(f∗, f|y)

df∗df.

Applying Jensen’s inequality gives the inequality

log p({y
c j

∗j = 1}n∗
j=1|y)≥

∫
q(f∗, f|y) log p({y

c j

∗j = 1}n∗
j=1|f∗)

p(f∗, f|y)
q(f∗, f|y)

df∗df

=
∫

q(f∗|y) log p({y
c j

∗j = 1}n∗
j=1|f∗)df∗−KL(q(f∗, f|y)‖p(f∗, f|y)).

Within the first term, the conditional joint predictive probability factorizes across the x∗js. The

second term is the Kullback-Leibler divergence from q(f∗, f|y) to p(f∗, f|y), which can be written as

KL(q(f∗, f|y)‖p(f∗, f|y)) def=

∫
q(f, f∗|y) log

q(f, f∗|y)
p(f, f∗|y)

df∗df

=
∫

q(f|y) p(f∗|f) log
q(f|y) p(f∗|f)
p(f|y) p(f∗|f)

df∗df =
∫

q(f|y) log
q(f|y)
p(f|y) df, (64)

which is KL(q(f|y)‖p(f|y)). Hence

log p({y
c j

∗j = 1}n∗
j=1|y)≥

n∗

∑
j=1

∫
q(f∗j|y) log p(y

c j

∗j = 1|f∗j)df∗j −KL(q(f|y)‖p(f|y)).

Theorem 6 can now be applied to each summand within the first term. For the second term, the

KL-divergence is also log p(y)− logZB, and logZB is lower bounded by logZh.

Remark 30 Derivation 64 has been shown in (Seeger, 2002, Section 2.2) and (Rasmussen and

Williams, 2006, Section 7.4.3), but there the exact prior has been used instead of the exact posterior.

Our presentation closely follows (Rasmussen and Williams, 2006)’s.

Appendix C. Optimization

We provide details on the optimization with respect to the variational parameters m, V , {bi} and

{Si} in Sections C.1 to C.3. In Section C.4, we give the derivation for the updates to the hyper-

parameters required for model learning in the sparse approximation.

Parameters m and bis are updated together using Newton-Raphson in Section C.2. In regions of

high-curvature, this update can be modified to include include a step-size η, the value of which can

be determined using the method of false position.
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Figure 7: Four possible shapes of a segment of the concave function h within the convex combi-

nation coefficient η ∈ [0,1]. The horizontal axis is along η, with Scc = S at η = 0 and

Scc = Sfx at η = 1. The vertical axis is the variational lower bound h(y;q,b,S). Cases

(b) and (c) can be removed from consideration, since update Scc is only used when h is

higher at S than at Sfx. Case (a) is eliminated by showing that the gradient with respect to

η at η = 0 is non-negative.

For V and the Sis, their fixed point updates given in Section 3 are computed and tested for im-

provement in the variational lower bound.9 When the bound is worse at the fixed point updates, we

search for the optimal convex combination between the previous value and the fixed-point update.

For example, Scc
i = (1−η)Si+ηSfx

i , where Si is the previous value and Sfx
i is the fixed point update.

We optimize η using the method of false position with end-point down-weighting. Sections C.1 and

C.3 give the gradients with respect to η and guarantee the existence of an optimal η.

C.1 Optimization for S along η

When the fixed-point Sfx improves the bound over S, it is accepted as an update. Otherwise, we

use Scc def= (1−η)S+ηSfx, and we search for a η ∈ [0,1] that optimizes the bound using the false

position method. Matrix Scc is guaranteed to be positive definite, since it is a convex combination

of two positive definite matrices. Let W = S−V−1 and W fx = Sfx −V−1. Matrices W and and W fx

are positive semi-definite; see Lemma 28.10 Define the gradient ∆ def= dScc/dη = Sfx −S =W fx −W .

The search gradient along η is

∂h(y;q,b,Scc)

∂η
=

1

2
tr
[{

−V +(Scc)−1 +(Scc)−1
Acc (Scc)−1

}

∆

]

,

where Acc is given by (18) evaluated at Scc (recall that A depends on gc, a function of S).

The optimal value of η is found using the false position method, which requires the maximal

to be bracketed within Scc = S and Scc = Sfx. Figure 7 enumerates the four possible segments of

a one-dimensional concave function. Let η = 0 at the start of the segment and η = 1 at the end.

If update Scc is only used when h(y;q,b,S)> h(y;q,b,Sfx), then segments (b) and (c) need not be

considered further. To show that the segment is always of the type given by Figure 7d, we require

9. These fixed point updates guarantees positive definiteness, a property which is absent in straightforward gradient

ascent. To guarantee positive definiteness, one may suppose a viable alternative is to update the Cholesky factors

or eigenvectors and eigenvalues. Unfortunately, the variational lower bound is not concave with respect to these

factorizations, so they cannot be used straightforwardly.

10. In the beginning, if W is not positive semi-definite, we can re-initialize it to be so, either by using a fixed positive

semi-definite matrix, or by letting W be W fx in the first iteration.
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∂h/∂η to be non-negative at η = 0. We proceed to show this. At η = 0, we have Scc = S and Acc = A

evaluated at S. Furthermore, we have A = SfxV Sfx −Sfx since Sfx satisfies (60). Thus

∂h(y;q,b,Scc)

∂η

∣

∣

∣

∣

η=0

=
1

2
tr
[(

−V +S−1 +S−1
(

SfxV Sfx −Sfx
)

S−1
)

∆
]

=
1

2
tr
[

S−1
(

SfxV Sfx −SV S−Sfx +S
)

S−1∆
]

=
1

2
tr
[

S−1
(

W fxVW fx −WVW
)

S−1∆
]

+
1

2
tr
[

S−1∆S−1∆
]

.

The second term on the right of the equality is non-negative, so its removal gives

∂h(y;q,b,Scc)

∂η

∣

∣

∣

∣

η=0

≥ 1

2
tr
[

S−1
(

W fxVW fx −WVW
)

S−1∆
]

=
1

2
tr
[

S−1
(

W fxVW fx −WVW +W fxVW −W fxVW
)

S−1∆
]

=
1

2
tr
[

S−1
(

W fxVW −WVW +W fxVW fx −W fxVW
)

S−1∆
]

=
1

2
tr
[

S−1
(

∆VW +W fxV ∆
)

S−1∆
]

=
1

2
tr
[

S−1∆VWS−1∆
]

+
1

2
tr
[

S−1W fxV ∆S−1∆
]

≥ 0.

C.2 Joint Optimization for m and b

Let K def= (K1|K2| . . . |Kn) be a partition of K, where each Ki is a Cn-by-C matrix. We wish to optimize

the variational lower bound logZh (21) with respect to b by setting m = K(y−b). Call this partic-

ular setting of parameters logZ∗
h . The gradient of logZ∗

h with respect to b including the indirect

contribution from m is

∂ logZ∗
h

∂b
=

∂ logZ∗
h

∣

∣

m constant

∂b
+

dm

db

∂ logZ∗
h

∣

∣

b constant

∂m

=−S−1(b− ḡ)−K
(

−K−1m+y− ḡ
)

=−(K +S−1)(b− ḡ).

Unlike case of per-datum update for bi, we find the fixed-point update setting b to ḡ ineffective.

Therefore, we use the Newton-Raphson update. The required Hessian is

∂2 logZ∗
h

∂b∂bT
=−(K +S−1)

(

I − ∂ḡ

∂bT

)

=−(K +S−1)
(

I +(Ḡ− G̃)(K +S−1)
)

.

The Hessian is negative definite, so logZh is concave in b. The second order update is

bNR = b−
(

I +(Ḡ− G̃)(K +S−1)
)−1

(b− ḡ). (65)

C.2.1 JOINT OPTIMIZATION FOR m AND b IN SPARSE APPROXIMATION

For sparse approximation, the update is similar to Equation 65, the only difference being the re-

placement of K with KT
f K−1Kf:

bNR = b−
(

I +(Ḡ− G̃)
(

KT
f K−1Kf +S−1

))−1
(b− ḡ).
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C.3 Optimization for V along η

Let W be the block diagonal matrix with the ith block given by Wi
def= Si −V−1

i ≻ 0. When the fixed-

point V fx = (K−1 +W )−1 improves the bound over V , it is accepted as an update. Otherwise, we

use V cc def= (1−η)V +ηV fx, and we search for a η ∈ [0,1] that optimizes the bound using the false

position method. Matrix V cc is guaranteed to be positive definite, since it is a convex combination

of two positive definite matrices. Let ∆ def= dV cc/dη =V fx −V . Below, we shall make explicit that

the lower bound logZh is parameterized by the covariance V of the variational posterior. The search

gradient is

∂ logZh(V
cc)

∂η
=

1

2
tr
(

(V cc)−1∆
)

− 1

2
tr
(

K−1∆
)

+
1

2

n

∑
i=1

tr
(

(V cc
i )−1∆i

)

− 1

2

n

∑
i=1

tr(Si∆i) ,

where V cc
i and ∆i are the ith blocks along the diagonal of V cc and ∆ respectively. The update V cc is

only used when logZh(V )> logZh(V
cc). By arguments similar to those for the update Scc discussed

in Appendix C.1, we can guarantee that there is a maximum between V and V fx by showing that

∂Zh/∂η is non-negative at η = 0:

∂ logZh(V
cc)

∂η

∣

∣

∣

∣

η=0

=
1

2
tr
(

V−1∆
)

− 1

2
tr
(

K−1∆
)

− 1

2

n

∑
i=1

tr(Wi∆i)

=
1

2
tr
(

V−1∆
)

− 1

2
tr
(

K−1∆
)

− 1

2
tr(W∆) (since W is block diagonal)

=
1

2
tr
(

V−1∆
)

− 1

2
tr
(

K−1∆
)

− 1

2
tr
((

(V fx)−1 −K−1
)

∆
)

(since V fx = (K−1 +W )−1)

=
1

2
tr
((

V−1 − (V fx)−1
)

∆
)

=
1

2
tr
(

(V fx)−1(V fx −V )V−1∆
)

=
1

2
tr
(

(V fx)−1∆V−1∆
)

≥ 0.

C.3.1 OPTIMIZATION FOR V ALONG η IN SPARSE APPROXIMATION

We use the same strategy in the sparse approximation. Let the covariance of the inducing variables

be V cc def= (1−η)V +ηV fx. The covariance of the latent variables is V cc
f = (1−η)Vf +ηV fx

f . Let

∆ def= dV cc/dη =V fx −V , and let ∆f
def= dV cc

f /dη =V fx
f −Vf = KT

f K−1∆K−1Kf. The gradient along

η ∈ [0,1] for the false position update is

∂ log Z̃h(V
cc)

∂η
=

1

2
tr((V cc)−1∆)− 1

2
tr(K−1∆)+

1

2

n

∑
i=1

tr((V cc
fi )

−1∆fi)−
1

2

n

∑
i=1

tr(Si∆fi).

The proof that ∂ log Z̃h(V
cc)/∂η is non-negative at η = 0 follows the same reasoning as that for the

non-sparse approximation.

1796



VARIATIONAL MULTINOMIAL LOGIT GAUSSIAN PROCESS

C.4 Hyper-parameter Estimation in Sparse Approximation

In this section, we give the gradients of the optimized variational lower bound Z̃∗
h for the sparse

case. First, we introduce

T def= K−1 −K−1V K−1, Γj
def= K

(

∂K−1Kf

∂θj

)

=
∂Kf

∂θj

− ∂K

∂θj

K−1Kf. (66)

Then

∂mf

∂θj

= ΓT
j K−1m = ΓT

j α, (67)

∂Vf

∂θj

=
∂Kff

∂θj

−KT
f K−1 ∂K

∂θj

K−1Kf −ΓT
j T Kf −KT

f T Γj. (68)

The gradient is

dlog Z̃∗
h

dθj

= − 1

2
tr

(

K−1 ∂K

∂θj

)

+
1

2
tr

(

K−1V K−1 ∂K

∂θj

)

+
1

2
mTK−1 ∂K

∂θj

K−1m

+
∂mT

f

∂θj

y+
1

2

n

∑
i=1

tr

(

(Vfi)
−1 ∂Vfi

∂θj

)

− 1

2

n

∑
i=1

tr

(

Si

∂Vfi

∂θj

)

−
n

∑
i=1

C

∑
c=1

ḡc
i

∂mc
fi

∂θj

=
1

2
tr

(

(

ααT −T
) ∂K

∂θj

)

+
∂mT

f

∂θj

(y− ḡ)− 1

2
tr

(

Wf

∂Vf

∂θj

)

,

where α def= K−1m, Wfi
def= Si −V−1

fi and Wf is a block diagonal matrix of the Wfis. Let us investigate

the second term in the last expression above. Using (67), the definition of Γj in (66) and the identity

m = Kf (y− ḡ) at optimality (see Section 4.2), we have

∂mT
f

∂θj

(y− ḡ) =αTΓj(y− ḡ) =αT ∂Kf

∂θj

(y− ḡ)−αT ∂K

∂θj

K−1Kf(y− ḡ)

=αT ∂Kf

∂θj

(y− ḡ)−αT ∂K

∂θj

α.

We now turn to the trace expression in the gradient of log Z̃∗
h . Using (68), the definition of Γj

in (66) and the invariance of trace under cyclic permutations, we obtain

tr

(

Wf

∂Vf

∂θj

)

= tr

(

Wf

∂Kff

∂θj

)

− tr

(

W
∂K

∂θj

)

−2tr

(

WfK
T
f T

∂Kf

∂θj

)

+2tr

(

WKT
∂K

∂θj

)

,

where we have used W def= K−1KfWfK
T
f K−1. Further substituting the definition for T from (66) into

the last term and simplifying using W =V−1 −K−1 at optimality (see Equation 33) gives

tr

(

Wf

∂Vf

∂θj

)

= tr

(

Wf

∂Kff

∂θj

)

+ tr

(

(W −2T )
∂K

∂θj

)

−2tr

(

WfK
T
f T

∂Kf

∂θj

)

.

Putting the simplifications back into the gradient of log Z̃∗
h gives

dlog Z̃∗
h

dθj

= − 1

2
tr

(

(

ααT −T +W
) ∂K

∂θj

)

+ tr

(

(

(y− ḡ)αT +WfK
T
f T
) ∂Kf

∂θj

)

− 1

2
tr

(

Wf
∂Kff

∂θj

)

.
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Appendix D. Selection of Inducing Sites

This appendix details the derivation of criterion d1 used for selecting inducing sites actively.

D.1 A Lower Bound on the Increase to the Marginal Likelihood Bound

Our objective is to add an inducing site x̃∗ to the current inducing set X̃ so as to maximize the lower

bound (30) on the increase in log Z̃h. The random variables at x̃∗ and X̃ are denoted by z∗ and z. Let

z∗ def= (zT,z∗)T and X̃∗ def= X̃ ∪{x̃∗}. The prior on z∗ and f is

p

((

z∗
f

))

def= N

(

0,

(

K∗ Kf∗
KT

f∗ Kff

))

, where K∗ def=

(

K k∗
kT
∗ k∗∗

)

Kf∗ def=

(

Kf

kT
f∗

)

.

Let

{m,V,{bi},{Si}}= arg max
m,V,{bi},{Si}

log Z̃h(m,V,{bi},{Si}; X̃),

where m and V are the mean and covariance of z in the approximate posterior using inducing set

X̃ . Let log Z̃∗
h(X̃) be the optimal value of the objective function in the equation above. Then a lower

bound on the increase is

d1(x̃∗|X̃) def= max
m∗,v∗∗,v∗

logZh(m∗,V∗,{bi},{Si}; X̃∗)− logZ∗
h(X̃), (69)

where the mean m∗ and covariance V∗ of the approximate posterior on z∗ are constrained:

m∗ def=

(

m

m∗

)

, V∗ def=

(

V v∗
vT
∗ v∗∗

)

. (70)

Denote the posterior distribution of the latent function values f under the sparse approxima-

tion by q∗(f|y) def= q(f|y, X̃∗). This is the approximate posterior using the inducing sites X̃∗, while

q(f|y) def= q(f|y, X̃) is the posterior using X̃ . The choice of the factored form of the approximate

posterior in Equation 29 means that

q(f|y) =
∫

p(f|z)q(z|y)dz, q∗(f|y) =
∫

p(f|z∗)q(z∗|y)dz∗.

Expressions for the mean mf and covariance Vf of f under q(f|y) are given in Equation 31. The mean

mf∗ and covariance Vf∗ of f under q∗(f|y) are

mf∗ = KT
f∗K−1

∗ m∗ Vf∗ = Kff −KT
f∗K−1

∗ Kf∗+KT
f∗K−1

∗ V∗K−1
∗ Kf∗

= mf +µκ; =Vf − (κ−χ)κκT +ψκT +κψT, (71)

where

κ def= k∗∗−kT
∗K−1k∗, ν def= v∗∗−vT

∗V−1v∗, χ def= ν+νTV−1ν, µ def= m∗−kT
∗K−1m,

κ def= (kf∗−KT
f K−1k∗)/κ, ν def= v∗−V K−1k∗, ψ def= KT

f K−1ν.

The two expressions in (71) relate the parameters for q∗(f|y) to those for q(f|y). The deriva-

tion uses the Banachiewicz inversion formula (Puntanen and Styan, 2005) on (K∗)−1. The term
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(κ−χ) in the expression for Vf∗ is non-negative because K∗ �V∗ at the stationary, which gives

(κ−χ) =
(

−K−1k∗ 1
)

(K∗−V∗)
(

−K−1k∗ 1
)T ≥ 0. The posterior covariance for ith data point

under q∗ is the ith C-by-C diagonal block matrix of Vf∗:

Vf∗i =Vfi − (κ−χ)κiκ
T
i +ψiκ

T
i +κiψ

T
i , (72)

where Vfi is the ith C-by-C diagonal block matrix of of Vf, and κi (resp. ψi) is the ith C-vector of κ

(resp. ψ). Using Lemma 23, we obtain

|Vf∗i|= ωi|Vfi|, where ωi
def=
(

1+κT
i V−1

fi ψi

)2 −κT
i V−1

fi κi

(

κ−χ+ψT
i V−1

fi ψi

)

. (73)

Since |Vf∗i|> 0 and |Vfi|> 0, so ωi > 0. We are now ready to express d1 defined by (69) in terms of

the parameters, separating log Z̃h into its summands expressed in Equation 30:

d1(x̃∗|X̃) = max
m∗,v∗∗,v∗

(

dKL(m∗,v∗∗,v∗, x̃∗|X̃)+
n

∑
i=1

di
h(m∗,v∗∗,v∗, x̃∗|X̃)

)

,

where

dKL(m∗,v∗∗,v∗, x̃∗|X̃) def=−KL(q(z∗ | y)‖ p(z∗))+KL(q(z | y)‖ p(z))

=
1

2
+

1

2
log

ν

κ
− χ

2κ
− µ2

2κ
;

di
h(m∗,v∗∗,v∗, x̃∗|X̃) def= h(yi;q∗i,bi,Si)−h(yi;qi,bi,Si)

=
1

2
logωi +

κ−χ

2
κT

i Siκi −κT
i Siψi +µκT

i yi − log
C

∑
c=1

ḡc
i eµκ

T
i ec

.

Lemma 18 is used to obtain the second expression for dKL, and (71) to (73) are used to obtain the

second expression for di
h. The q∗i in the definition of di

h refers to the the marginal for fi under

q∗(f|y), while the ḡc
i s in the term for di

h is evaluated under q(f|y).

D.2 Optimizing the Lower Bound on the Increase

Let

d1(m∗,v∗∗,v∗, x̃∗|X̃) def= dKL(m∗,v∗∗,v∗, x̃∗|X̃)+
n

∑
i=1

di
h(m∗,v∗∗,v∗, x̃∗|X̃)

be the objective function within d1(x̃∗|X̃). Within this section, d1 shall refer to this objective func-

tion instead of its maximum. The contributions from m∗ and (v∗,v∗∗) are decoupled in this objective,

so the search for the optimal m∗ and (v∗,v∗∗) can be perform separately.

Instead of using m∗, v∗∗ and v∗ as the variational parameters, we can treat µ, ν and ν as the

variational parameters, and then define m∗∗, v∗∗ and v∗ as functions of them:

m∗ def= µ+kT
∗K−1m, v∗∗ def= ν+vT

∗V−1v∗, v∗ def= ν+V K−1k∗.

This is valid and does not change the search space of the original variational parameters. During the

optimization, the positive definiteness of V∗ (70) can be ensured by constraining the Schur comple-

ment ν to be positive (see Horn and Johnson 1985, Theorem 7.7.6). Under this re-parametrization,

d1 is concave in µ and ν but not necessarily concave in ν because of the positive quadratic term

within ωi (73).

Below, we give the gradient updates for µ and ν.
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D.2.1 NEWTON-RAPHSON UPDATES FOR µ

Let gc
∗i

def= ḡc
i expµκT

i ec, ḡc
∗i

def= gc
∗i/∑

C
c′=1 gc′

∗i, ḡ∗i
def=
(

ḡ1
∗i, . . . , ḡ

C
∗i

)T
, ḡ∗ be the stacking of ḡ∗1, . . . , ḡ∗n,

Ḡ∗ be the diagonal matrix with ḡ∗ down its diagonal, and G̃∗ be a nC-by-nC block diagonal matrix

where the ith block is ḡ∗iḡ
T
∗i. The Newton-Raphson update for µ is obtained from the first and the

second derivatives ∂d1/∂µ=−µ/κ+κTy−κTḡ∗ and ∂2d1/∂µ2 =−1/κ−κT(Ḡ∗− G̃∗)κ.

D.2.2 “BEYOND” NEWTON RAPHSON UPDATES FOR v∗∗

We give an update for ν that converges faster than the Newton-Raphson update for logν when the

optimal value is small, using a non-quadratic local approximation (Minka, 2002):

d̃1(ν) = constant+
1

2
logν+

n

2
log(ν+a)− b

2
ν,

where a and b are parameters in the approximation. Within the approximation, ν is constrained to

be positive due to the second term. By equating the first two derivatives of d1(ν) to those of d̃1(ν)
at a given ν, we obtain

a =

√

n

∑
n
i=1 τ

2
i

−ν, b =
√

n∑
n
i=1 τ

2
i +

1

κ
+κTSκ−

n

∑
i=1

τi,

where the positive branch of the square-root for a is used so that a+ν remains positive. Fixing a

and b, the update for ν is obtained by equating the gradient of d̃1(ν) at the updated point, say νbNR,

to zero. This involve a quadratic equation, and we use its positive solution

νbNR =
−(ab−n−1)+

√

(ab−n−1)2 +4ab

2b
. (74)

We prove that this update is guaranteed to be positive in Theorem 32 below.

Lemma 31 τi
def= κT

i V−1
fi κi/ωi < 1/ν.

Proof Define

Ṽ∗ def=

(

V v∗
vT
∗ vTV−1v

)

,

which is positive semi-definite (Horn and Johnson, 1985, Theorem 7.7.6). Then Ṽf∗ below is positive

definite since the covariance of the joint prior p(z∗, f) is positive definite.

Ṽf∗ def= Kff −KT
f∗K−1

∗ Kf∗+KT
f∗K−1

∗ Ṽ∗K−1
∗ Kf∗ =Vf − (κ− (χ−ν))κκT +ψκT +κψT.

Similarly, the ith diagonal C-by-C sub-matrix of Ṽf∗ given by

Ṽf∗i =Vfi − (κ− (χ−ν))κiκ
T
i +ψiκ

T
i +κiψ

T
i

is positive definite. Using Lemma 23, we obtain |Ṽf∗i|= ω̃i|Vfi|, where

ω̃i
def=
(

1+κT
i V−1

fi ψi

)2 −κT
i V−1

fi κi

(

κ− (χ−ν)+ψT
i V−1

fi ψi

)

is positive because both |Ṽf∗i| and |Vfi| are positive. But ω̃i = ωi −νκT
i V−1

fi κi. Thus

ωi = ω̃i +νκT
i V−1

fi κi > νκT
i V−1

fi κi.

So τi < 1/ν.
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Theorem 32 Update νbNR given in Equation 74 is positive.

Proof This update is guaranteed to be positive when a and b are both positive. Parameter b is pos-

itive because 1/κ+κTSκ is positive and ∑
n
i=1 τi ≤ (n∑

n
i=1 τ

2
i )

1/2 by applying the Cauchy-Schwarz

inequality. Parameter a is positive because τi < 1/ν from Lemma 31.

Appendix E. Implementation Considerations

This appendix considers the details for an implementation of the variational bound optimization

presented in this paper.

E.1 Matrix Inversion in Update for b in Sparse Approximation

For the sparse approximation, the Newton-Raphson update for b given in Appendix C.2.1 requires

inverting X def= I +(Ḡ− G̃)
(

KT
f K−1Kf +S−1

)

of order Cn-by-Cn. To avoid O(C3n3) computation,

we apply the Woodbury’s inversion lemma thrice. Let M def= (S+ Ḡ− G̃)−1, and L̃K
def= KT

f L−T
K , where

LK is the lower Cholesky factor of K. Then

X−1 = I − (Ḡ− G̃)
(

(

L̃K L̃T
K +S−1

)−1
+(Ḡ− G̃)

)−1

= I − (Ḡ− G̃)
(

M−1 −SL̃K

(

I + L̃T
KSL̃K

)−1
L̃T

KS
)−1

= I − (Ḡ− G̃)
(

M+MSL̃K

(

I + L̃T
K(S−SMS)L̃K

)−1
L̃T

KSM
)

= SM− (S−SMS)L̃K

(

I + L̃T
K(S−SMS)L̃K

)−1
L̃T

KSM,

where we have substituted (Ḡ− G̃) = M−1 −S to obtain the last expression.

E.2 Better Conditioned Updates for V

In this section, we give better conditioned updates for the optimization of V .

E.2.1 NON-SPARSE CASE

Equation 28 in Section 3.4 gives the fixed-point update V fx = (K−1 +W )−1 for the variational pa-

rameter V , where W is rank deficient (see Lemma 28). We factorize W = LW LT
W , and introduce

B def= LT
W KLW + I and T def= LW B−1LT

W . Then the Woodbury’s inversion lemma gives V fx = K −KT K.

The optimal update is given by the best convex combination of V and V fx. Let T old be such that

V = K −KT oldK. (75)

The best convex combination is the one optimized over η ∈ [0,1] in V cc = K −KT ccK, where

T cc def= (1−η)T old +ηT . The update for V cc implies that T cc is the T old for the next iteration,

so (75) is always possible. Moreover, with ∆ def= dV cc/dη, we also have ∆ = K(T old −T )K and

K−1∆ = (T old −T )K.
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E.2.2 SPARSE CASE

Equation 33 in Section 4.2 gives the fixed-point update in the sparse case:

V fx =
(

K−1 +K−1KfWfK
T
f K−1

)−1
.

If we were to proceed as for the non-sparse case using the Woodbury’s inversion lemma, then the in-

version of a Cn-by-Cn matrix would be required. However, this is to be avoided in the sparse approx-

imation, which aims to reduce time complexity. Instead, we compute V fx = LK(I + L̃T
KWfL̃K)

−1LT
K ,

where LK is the lower Cholesky factor of K, and L̃K
def= KT

f L−T
K . This is more efficient and yet does

not involve any inversion of K.

The computation of Vf at this fixed point requires T def= K−1 −K−1V fxK−1. This can be done

with the above formula for V fx:

T = K−1 −L−T
K

(

I + L̃T
KWfL̃K

)−1
L−1

K = L−T
K

(

I −
(

I + L̃T
KWfL̃K

)−1
)

L−1
K .

Hence

V fx
f = Kff −KT

f T Kf = Kff − L̃K

(

I −
(

I + L̃T
KWfL̃K

)−1
)

L̃T
K .

E.3 Initialization

Our variational lower bound (21) on the marginal likelihood is concave with respect to all the varia-

tional parameters, so the initialization of parameters does not affect the converged answer in theory.

However, in practice, initialization is still important for two reasons. First, it can ensure that the

matrices are better conditioned. Second, it can ensure that we start near to the converged answer, so

that convergence is sooner.

For initialization, there are two cases to be considered. The easier case is during model learning

when we can use the optimized variational parameters from the previous model to initialize the

variational parameters of the current model. We shall omit details for this case. The more difficult

case is when there is no previous model, usually when no model learning is involved or at the onset

of model learning. In this section, we suggest a procedure for initialization in this case. The key idea

behind our procedure is to locate the variational mean at the data and to use the same covariance at

every input xi.

E.3.1 COVARIANCES

From Equation 20 for the analysis of the proof of Theorem 6, a parametrization of Wi that satisfies

the two mentioned properties is Wi
def= M−M11TM/1TM1, where M is a C-by-C positive definite

matrix. Although we have noted there that using a diagonal M is suboptimal, there is much appeal

in such a setting for initialization because of the match with the likelihood terms. Hence we shall

initialize with Wi
def= γ

(

I/C−1T1/C2
)

, for some γ > 0. The initial covariance V of the variational

posterior can be computed using Woodbury’s inversion lemma on the fixed point equation (K−1 +
W )−1, where W is the block diagonal matrix consisting or the Wis.

E.3.2 MEANS

Our initialization for the mean locate it at the data. To this end, let us recall a few invariances at the

stationary point of the variational lower bound (21) on the marginal likelihood. For the ith datum,
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ai and Wi are the parameters for the variational posterior r(fi|yi) defined in Lemma 2. For the case

of non-sparse approximation, we have the invariances

y−b =W (a−m), (From definition in Lemma 5)

m = K(y−b), (Section 3.3)

V = (K−1 +W )−1, (Section 3.4)

where y (resp. b, a, m) is the stacking of the yis (resp. bis, ais, mis) for each datum. Rearranging

for m gives

m = (I +KW )−1KWa = (K−1 +W )−1Wa =VWa. (76)

We initialize m through an appropriate value for a. Since ai is the mean of r(fi|yi), we choose to

set ai = γ(yi +(yi −1)/(C−1)), for some fixed parameter γ. For example, if xi is in the first class,

then ai = (γ,−γ/(C−1), . . . ,−γ/(C−1))T. This locates the mean of r(fi|yi) to be positive for the

class given by the data and uniformly negative otherwise. Let α def= K−1m. The initialization (76)

satisfies the sum-to-zero property:

1Tα= 1TK−1VWa = 1T(I +WK)−1Wa = 1TW (I +KW )−1a = 0,

where the third equality applies Searle’s Identity, and the last equality is because 1 is in the null-

space of W . With γ = 1, the setting for ai is the minimizer of the loss function in a multi-class SVM

under the sum-to-zero constraint (Lee et al., 2004, Lemma 1).

Similarly, for sparse approximation, we have

y−b =Wf(a−mf), (From definition in Lemma 5)

mf = KT
f K−1m, (Section 4, Equation 31)

m = Kf(y−b), (Section 4.2)

V = (K−1 +K−1KfWfK
T
f K−1)−1. (Section 4.2)

Rearranging for m gives

m+KfWfK
T
f K−1m = KfWfa ⇐⇒ KV−1m = KfWfa ⇐⇒ m =V K−1KfWfa.

Initialization of a is done as in the non-sparse case.

Appendix F. Importance Sampling

In this section, we describe how various quantities of interest can be computed using importance

sampling. Let p(f|y) be the exact posterior of the latent function values at the observed data. This is

obtained from Bayes’ rule p(f|y) = p(y|f)p(f)/p(y), where p(y) is the marginal likelihood, which

is intractable to compute exactly. Let ps(f) be a proposal distribution. Our choice of ps(f) is the

multivariate-t distribution (Kotz and Nadarajah, 2004) with four degrees of freedom, centered at

the that mean of the optimized variational approximation to p(f|y) and with covariance twice the

covariance of the prior p(f); that is

ps(f) =
Γ((ν+ p)/2)

((πν)p/2Γ(ν/2)|K|1/2

[

1+
1

ν
(f−m∗)TK−1(f−m∗)

](ν+p)/2

,
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where ν = 4, p = nC is the dimension of f, K is the prior covariance of f, and m∗ is the mean of the

optimized variational posterior. This choice of proposal ensures that p(f)≤ c ps(f) for all f for some

finite constant c > 0, which is a desideratum for importance samplers. It also locates the proposal

at the estimated mean of the posterior.

Let f(s) be a sample from the proposal, indexed by s over ns samples. Its unnormalized weight

w(s) is

w(s) def=
p(y)p(f(s)|y)

ps(f(s))
=

p(y|f(s))p(f(s))

ps(f(s))
,

which can be computed exactly for the multinomial logistic likelihood. A Monte Carlo estimate of

p(y) is p̂(y) def= ∑s w(s)/ns, which is the sample mean of the w(s)s, because

p(y) def=

∫
p(y|f)p(f)df =

∫
p(y|f)p(f)

ps(f)
ps(f)df ≈ 1

ns
∑

s

w(s).

The strong law of large numbers says that p̂(y) converges to p(y) almost surely as ns approaches

infinity (Geweke, 2005, Theorem 4.2.2). The rate of convergence is given by the Lindeberg-Lévy

central limit theorem (Geweke, 2005, Theorem 4.2.2)

√
ns (p(y)− p̂(y))

d−→ N (0,σ2),

where σ2 is the true variance of unnormalized weights. This variance exists for our choice of

the proposal distribution because p(f)≤ c ps(f) and the likelihood is bounded. This variance can

be estimated from the samples w(s)s. We use this convergence in distribution to compute a high

probability upper bound to p(y) based on the samples. Since, the weights and p(y) are positive, one

might be concerned that skewness has not been factored into the approximation. Then, one might

consider using the χ2 approximation (Hall, 1983). However, our calculations have shown this to

have negligible effect on the upper bound estimate because we have used ns = 100,000 samples.

F.1 Prediction

The normalized weight w̃(s) of f(s) is estimated with

w̃(s) def=
1

ns

p(f(s)|y)
ps(f(s))

=
1

ns

w(s)

p(y)
≈ w(s)

∑s′ w
(s′)

.

For prediction at x∗, the exact joint posterior of (f, f∗) is p(f, f∗|y) = p(f|y)p(f∗|f). For the

proposal distribution, we use ps(f, f∗) = ps(f)p(f∗|f), and a draw from the proposal follows this

generative model. The normalized weight of sample (f, f∗)(s) def= (f(s), f
(s)
∗ ) is

w̃
(s)
∗ def=

1

ns

p(f(s)|y)p(f
(s)
∗ |f(s))

ps(f(s))p(f
(s)
∗ |f(s))

= w̃(s).

The predictive probability is

p(y∗|y) =
∫

p(y∗|f∗) p(f, f∗|y)dfdf∗ =
∫

p(y∗|f∗)
p(f, f∗|y)
ps(f, f∗)

ps(f, f∗)dfdf∗ ≈ ∑
s

w̃
(s)
∗ p(y∗|f(s)∗ ).

For the multinomial logistic likelihood, p(yi|fi) and p(y∗|f∗) can be computed readily. For the

multinomial probit likelihood, we use the sampling approach (Girolami and Rogers, 2006) with

twenty samples, which is sufficient when ns is large.
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