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Abstract

Pairwise classification is the task to predict whether the examples a,b of a pair (a,b) belong to the

same class or to different classes. In particular, interclass generalization problems can be treated

in this way. In pairwise classification, the order of the two input examples should not affect the

classification result. To achieve this, particular kernels as well as the use of symmetric training sets

in the framework of support vector machines were suggested. The paper discusses both approaches

in a general way and establishes a strong connection between them. In addition, an efficient im-

plementation is discussed which allows the training of several millions of pairs. The value of these

contributions is confirmed by excellent results on the labeled faces in the wild benchmark.

Keywords: pairwise support vector machines, interclass generalization, pairwise kernels, large

scale problems

1. Introduction

To extend binary classifiers to multiclass classification several modifications have been suggested,

for example the one against all technique, the one against one technique, or directed acyclic graphs,

see Duan and Keerthi (2005), Hill and Doucet (2007), Hsu and Lin (2002), and Rifkin and Klautau

(2004) for further information, discussions, and comparisons. A more recent approach used in the

field of multiclass and binary classification is pairwise classification (Abernethy et al., 2009; Bar-

Hillel et al., 2004a,b; Bar-Hillel and Weinshall, 2007; Ben-Hur and Noble, 2005; Phillips, 1999;

Vert et al., 2007). Pairwise classification relies on two input examples instead of one and predicts

whether the two input examples belong to the same class or to different classes. This is of particular

advantage if only a subset of classes is known for training. For later use, a support vector machine

(SVM) that is able to handle pairwise classification tasks is called pairwise SVM.

A natural requirement for a pairwise classifier is that the order of the two input examples should

not influence the classification result (symmetry). A common approach to enforce this symmetry

is the use of selected kernels. For pairwise SVMs, another approach was suggested. Bar-Hillel
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et al. (2004a) propose the use of training sets with a symmetric structure. We will discuss both

approaches to obtain symmetry in a general way. Based on this, we will provide conditions when

these approaches lead to the same classifier. Moreover, we show empirically that the approach of

using selected kernels is three to four times faster in training.

A typical pairwise classification task arises in face recognition. There, one is often interested

in the interclass generalization, where none of the persons in the training set is part of the test

set. We will demonstrate that training sets with many classes (persons) are needed to obtain a good

performance in the interclass generalization. The training on such sets is computationally expensive.

Therefore, we discuss an efficient implementation of pairwise SVMs. This enables the training of

pairwise SVMs with several millions of pairs. In this way, for the labeled faces in the wild database,

a performance is achieved which is superior to the current state of the art.

This paper is structured as follows. In Section 2 we give a short introduction to pairwise clas-

sification and discuss the symmetry of decision functions obtained by pairwise SVMs. Afterwards,

in Section 3.1, we analyze the symmetry of decision functions from pairwise SVMs that rely on

symmetric training sets. The new connection between the two approaches for obtaining symme-

try is established in Section 3.2. The efficient implementation of pairwise SVMs is discussed in

Section 4. Finally, we provide performance measurements in Section 5.

The main contribution of the paper is that we show the equivalence of two approaches for obtain-

ing a symmetric classifier from pairwise SVMs and demonstrate the efficiency and good interclass

generalization performance of pairwise SVMs on large scale problems.

2. Pairwise Classification

Let X be an arbitrary set and let m training examples xi ∈ X with i ∈ M ≔ {1, . . . ,m} be given.

The class of a training example might be unknown, but we demand that we know for each pair

(xi,x j) of training examples whether its examples belong to the same class or to different classes.

Accordingly, we define yi j ≔ +1 if the examples of the pair (xi,x j) belong to the same class and

call it a positive pair. Otherwise, we set yi j ≔−1 and call (xi,x j) a negative pair.

In pairwise classification the aim is to decide whether the examples of a pair (a,b) ∈ X ×X

belong to the same class or not. In this paper, we will make use of pairwise decision functions

f : X ×X → R. Such a function predicts whether the examples a,b of a pair (a,b) belong to the

same class ( f (a,b) > 0) or not ( f (a,b) < 0). Note that neither a,b need to belong to the set of

training examples nor the classes of a,b need to belong to the classes of the training examples.

A common tool in machine learning are kernels k : X ×X →R. Let H denote an arbitrary real

Hilbert space with scalar product 〈·, ·〉. For φ : X → H ,

k(s, t)≔ 〈φ(s),φ(t)〉

defines a standard kernel.

In pairwise classification one often uses pairwise kernels K : (X ×X)× (X ×X)→R. In this

paper we assume that any pairwise kernel is symmetric, that is, it holds that

K((a,b),(c,d)) = K((c,d),(a,b))

for all a,b,c,d ∈ X , and that it is positive semidefinite (Schölkopf and Smola, 2001). For instance,

KD((a,b),(c,d))≔ k(a,c)+ k(b,d), (1)

KT ((a,b),(c,d))≔ k(a,c) · k(b,d) (2)
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are symmetric and positive semidefinite. We call KD direct sum pairwise kernel and KT tensor

pairwise kernel (cf. Schölkopf and Smola, 2001).

A natural and desirable property of any pairwise decision function is that it should be symmetric

in the following sense

f (a,b) = f (b,a) for all a,b ∈ X .

Now, let us assume that I ⊆ M ×M is given. Then, the pairwise decision function f obtained by a

pairwise SVM can be written as

f (a,b)≔ ∑
(i, j)∈I

αi jyi jK ((xi,x j),(a,b))+ γ (3)

with bias γ ∈ R and αi j ≥ 0 for all (i, j) ∈ I. Obviously, if KD (1) or KT (2) are used, then the

decision function is not symmetric in general. This motivates us to call a kernel K balanced if

K((a,b),(c,d)) = K((a,b),(d,c)) for all a,b,c,d ∈ X

holds. Thus, if a balanced kernel is used, then (3) is always a symmetric decision function. For

instance, the following kernels are balanced

KDL((a,b),(c,d))≔
1

2
(k(a,c)+ k(a,d)+ k(b,c)+ k(b,d)) , (4)

KT L((a,b),(c,d))≔
1

2
(k(a,c)k(b,d)+ k(a,d)k(b,c)) , (5)

KML((a,b),(c,d))≔
1

4
(k(a,c)− k(a,d)− k(b,c)+ k(b,d))2 , (6)

KT M((a,b),(c,d))≔ KT L((a,b),(c,d))+KML((a,b),(c,d)). (7)

Vert et al. (2007) call KML metric learning pairwise kernel and KT L tensor learning pairwise ker-

nel. Similarly, we call KDL, which was introduced in Bar-Hillel et al. (2004a), direct sum learning

pairwise kernel and KT M tensor metric learning pairwise kernel. For representing some balanced

kernels by projections see Brunner et al. (2011).

3. Symmetric Pairwise Decision Functions and Pairwise SVMs

Pairwise SVMs lead to decision functions of the form (3). As detailed above, if a balanced kernel

is used within a pairwise SVM, one always obtains a symmetric decision function. For pairwise

SVMs which use KD (1) as pairwise kernel, it has been claimed that any symmetric set of training

pairs leads to a symmetric decision function (see Bar-Hillel et al., 2004a). We call a set of training

pairs symmetric, if for any training pair (a,b) the pair (b,a) also belongs to the training set. In

Section 3.1 we prove the claim of Bar-Hillel et al. (2004a) in a more general context which includes

KT (2). Additionally, we show in Section 3.2 that under some conditions a symmetric training

set leads to the same decision function as balanced kernels if we disregard the SVM bias term γ.

Interestingly, the application of balanced kernels leads to significantly shorter training times (see

Section 4.2).
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3.1 Symmetric Training Sets

In this subsection we show that the symmetry of a pairwise decision function is indeed achieved by

means of symmetric training sets. To this end, let I ⊆ M ×M be a symmetric index set, in other

words if (i, j) belongs to I then ( j, i) also belongs to I. Furthermore, we will make use of pairwise

kernels K with

K((a,b),(c,d)) = K((b,a),(d,c)) for all a,b,c,d ∈ X . (8)

As any pairwise kernel is assumed to be symmetric, (8) holds for any balanced pairwise kernel. Note

that there are other pairwise kernels that satisfy (8), for instance for the kernels given in Equations 1

and 2.

For IR, IN ⊆ I defined by IR ≔ {(i, j) ∈ I|i = j} and IN ≔ I \ IR let us consider the dual pairwise

SVM
min

α
G(α)

s. t. 0 ≤ αi j ≤C for all (i, j) ∈ IN

0 ≤ αii ≤ 2C for all (i, i) ∈ IR

∑
(i, j)∈I

yi jαi j = 0.

(9)

with

G(α)≔
1

2
∑

(i, j),(k,l)∈I

αi jαklyi jyklK((xi,x j),(xk,xl))− ∑
(i, j)∈I

αi j.

Lemma 1 If I is a symmetric index set and if (8) holds, then there is a solution α̂ of (9) with

α̂i j = α̂ ji for all (i, j) ∈ I.

Proof By the theorem of Weierstrass there is a solution α∗ of (9). Let us define another feasible

point α̃ of (9) by

α̃i j ≔ α∗
ji for all (i, j) ∈ I.

For easier notation we set Ki j,kl ≔ K((xi,x j),(xk,xl)). Then,

2G(α̃) = ∑
(i, j),(k,l)∈I

α∗
jiα

∗
lkyi jyklKi j,kl −2 ∑

(i, j)∈I

α∗
ji.

Note that yi j = y ji holds for all (i, j) ∈ I. By (8) we further obtain

2G(α̃) = ∑
(i, j),(k,l)∈I

α∗
jiα

∗
lky jiylkK ji,lk −2 ∑

(i, j)∈I

α∗
ji = 2G(α∗).

The last equality holds since I is a symmetric training set. Hence, α̃ is also a solution of (9). Since

(9) is convex (cf. Schölkopf and Smola, 2001),

αλ
≔ λα∗+(1−λ)α̃

solves (9) for any λ ∈ [0,1]. Thus, α̂≔ α1/2 has the desired property.

Note that a result similar to Lemma 1 is presented by Wei et al. (2006) for Support Vector Re-

gression. They, however, claim that any solution of the corresponding quadratic program has the

described property.
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Theorem 2 If I is a symmetric index set and if (8) holds, then any solution α of the optimization

problem (9) leads to a symmetric pairwise decision function f : X ×X →R.

Proof For any solution α of (9) let us define gα : X ×X →R by

gα(a,b)≔ ∑
(i, j)∈I

αi jyi jK((xi,x j),(a,b)).

Then, the obtained decision function can be written as fα(a,b) = gα(a,b)+ γ for some appropriate

γ ∈ R. If α1 and α2 are solutions of (9) then gα1 = gα2 can be derived by means of convex opti-

mization theory. According to Lemma 1 there is always a solution α̂ of (9) with α̂i j = α̂ ji for all

(i, j) ∈ I. Obviously, such a solution leads to a symmetric decision function fα̂. Hence, fα is a

symmetric decision function for all solutions α.

3.2 Balanced Kernels vs. Symmetric Training Sets

Section 2 shows that one can use balanced kernels to obtain a symmetric pairwise decision function

by means of a pairwise SVM. As detailed in Section 3.1 this can also be achieved by symmet-

ric training sets. Now, we show in Theorem 3 that the decision function is the same, regardless

whether a symmetric training set or a certain balanced kernel is used. This result is also of practical

value, since the approach with balanced kernels leads to significantly shorter training times (see the

empirical results in Section 4.2).

Suppose J is a largest subset of a given symmetric index set I satisfying

((i, j) ∈ J∧ j 6= i) ⇒ ( j, i) /∈ J.

Now, we consider the optimization problem

min
β

H(β)

s. t. 0 ≤ βi j ≤ 2C for all (i, j) ∈ J

∑
(i, j)∈J

yi jβi j = 0

(10)

with

H(β)≔
1

2
∑

(i, j),(k,l)∈J

βi jβklyi jyklK̂i j,kl − ∑
(i, j)∈J

βi j

and

K̂i j,kl ≔
1

2

(

Ki j,kl +K ji,kl

)

, (11)

where K is an arbitrary pairwise kernel. Obviously, K̂ is a balanced kernel. For instance, if K = KD

(1) then K̂ = KDL (4) or if K = KT (2) then K̂ = KT L (5). The assumed symmetry of K yields

K̂i j,kl = K̂i j,lk = K̂ ji,kl = K̂ ji,lk = K̂kl,i j = K̂lk,i j = K̂kl, ji = K̂lk, ji. (12)

Note that (12) holds not only for kernels given by (11) but for any balanced kernel.
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Theorem 3 Let the functions gα : X ×X →R and hβ : X ×X →R be defined by

gα(a,b)≔ ∑
(i, j)∈I

αi jyi jK((xi,x j),(a,b)),

hβ(a,b)≔ ∑
(i, j)∈J

βi jyi jK̂((xi,x j),(a,b)),

where I is a symmetric index set and J is defined as above. Additionally, let K fulfill (8) and K̂ be

given by (11). Then, for any solution α∗ of (9) and for any solution β∗ of (10) it holds that gα∗ = hβ∗ .

Proof By means of convex optimization theory it can be derived that gα is the same function for

any solution α. The same holds for hβ and any solution β. Hence, due to Lemma 1 we can assume

that α∗ is a solution of (9) with α∗
i j = α∗

ji. For JR ≔ IR and JN ≔ J \ JR we define β̄ by

β̄i j ≔

{

α∗
i j +α∗

ji if (i, j) ∈ JN ,

α∗
ii if (i, j) ∈ JR.

Obviously, β̄ is a feasible point of (10). Then, by (11) and by α∗
i j = α∗

ji we obtain for

(i, j) ∈ JN : β̄i jK̂i j,kl =
β̄i j

2
(Ki j,kl +K ji,kl) =

α∗
i j +α∗

ji

2

(

Ki j,kl +K ji,kl

)

= α∗
i jKi j,kl +α∗

jiK ji,kl ,

(i, i) ∈ JR : β̄iiK̂ii,kl =
β̄ii

2
(Kii,kl +Kii,kl) = α∗

iiKii,kl .

(13)

Then, yi j = y ji implies

hβ̄ = gα∗ . (14)

In a second step we prove that β̄ is a solution of problem (10). By using ykl = ylk, the symmetry

of K, (13), (12), and the definition of β̄ one obtains

2G(α∗)+2 ∑
(i, j)∈I

α∗
i j

= ∑
(i, j)∈I

α∗
i jyi j

(

∑
(k,l)∈JN

ykl

(

α∗
klKi j,kl +α∗

lkKi j,lk

)

+ ∑
(k,k)∈JR

ykkα∗
kkKi j,kk

)

= ∑
(i, j)∈JN∪JR

α∗
i jyi j ∑

(k,l)∈J

β̄klyklK̂i j,kl + ∑
(i, j)∈JN

α∗
jiy ji ∑

(k,l)∈J

β̄klyklK̂ ji,kl

= ∑
(i, j)∈JN

β̄i jyi j ∑
(k,l)∈J

β̄klyklK̂i j,kl + ∑
(i,i)∈JR

β̄iiyii ∑
(k,l)∈J

β̄klyklK̂ii,kl

= 2H(β̄)+2 ∑
(i, j)∈J

β̄i j.

Then, the definition of β̄ implies

G(α∗) = H(β̄). (15)
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Now, let us define ᾱ by

ᾱi j ≔







β∗
i j/2 if (i, j) ∈ JN ,

β∗
ji/2 if ( j, i) ∈ JN ,

β∗
ii if (i, j) ∈ JR.

Obviously, ᾱ is a feasible point of (9). Then, by (8) and (11) we obtain for

(k, l) ∈ JN : ᾱklKi j,kl + ᾱlkKi j,lk =
β∗

kl

2
(Ki j,kl +Ki j,lk) = β∗

klK̂i j,kl,

(k,k) ∈ JR : ᾱkkKi j,kk =
β∗

kk

2
(Ki j,kk +Ki j,kk) = β∗

kkK̂i j,kk.

This, (12), and ykl = ylk yield

2H(β∗)+2 ∑
(i, j)∈J

β∗
i j

= ∑
(i, j)∈J

β∗
i jyi j

(

∑
(k,l)∈JN

β∗
klykl

1

2

(

K̂i j,kl + K̂ ji,kl

)

+ ∑
(k,k)∈JR

β∗
kkykk

1

2

(

K̂i j,kk + K̂ ji,kk

)

)

=
1

2
∑

(i, j)∈J

β∗
i jyi j

(

∑
(k,l)∈I

ᾱklykl

(

Ki j,kl +K ji,kl

)

)

.

Then, the definition of ᾱ provides β∗
i j = ᾱi j + ᾱ ji for (i, j) ∈ JN and ᾱi j = ᾱ ji. Thus,

2H(β∗)+2 ∑
(i, j)∈J

β∗
i j = ∑

(i, j)∈I

ᾱi jyi j

(

∑
(k,l)∈I

ᾱklyklKi j,kl

)

= 2G(ᾱ)+2 ∑
(i, j)∈I

ᾱi j

follows. This implies G(ᾱ) = H(β∗). Now, let us assume that β̄ is not a solution of (10). Then,

H(β∗)< H(β̄) holds and, by (15), we have

G(α∗) = H(β̄)> H(β∗) = G(ᾱ).

This is a contradiction to the optimality of α∗. Hence, β̄ is a solution of (10) and hβ∗ = hβ̄ follows.

Then, with (14) we have the desired result.

4. Implementation

One of the most widely used techniques for solving SVMs efficiently is the sequential minimal

optimization (SMO) (Platt, 1999). A well known implementation of this technique is LIBSVM

(Chang and Lin, 2011). Empirically, SMO scales quadratically with the number of training points

(Platt, 1999). Note that in pairwise classification the training points are the training pairs. If all

possible training pairs are used, then the number of training pairs grows quadratically with the

number m of training examples. Hence, the runtime of LIBSVM would scale quartically with m.

In Section 4.1 we discuss how the costs for evaluating pairwise kernels, which can be expressed

by standard kernels, can be drastically reduced. In Section 3 we discussed that one can either use

balanced kernels or symmetric training sets to enforce the symmetry of a pairwise decision function.

Additionally, we showed that both approaches lead to the same decision function. Section 4.2

compares the needed training times of the approach with balanced kernels and the approach with

symmetric training sets.
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4.1 Caching the Standard Kernel

In this subsection balanced kernels are used to enforce the symmetry of the pairwise decision func-

tion. Kernel evaluations are crucial for the performance of LIBSVM. If we could cache the whole

kernel matrix in RAM we would get a huge increase of speed. Today, this seems impossible for sig-

nificantly more than 125,250 training pairs as storing the (symmetric) kernel matrix for this number

of pairs in double precision needs approximately 59GB. Note that training sets with 500 training

examples already result in 125,250 training pairs. Now, we describe how the costs of kernel eval-

uations can be drastically reduced. For example, let us select the kernel KT L (5) with an arbitrary

standard kernel. For a single evaluation of KT L the standard kernel has to be evaluated four times

with vectors of X . Afterwards, four arithmetic operations are needed.

It is easy to see that each standard kernel value is used for evaluating many different elements

of the kernel matrix. In general, it is possible to cache the standard kernel values for all training

examples. For example, to cache the standard kernel values for 10,000 examples one needs 400MB.

Thus, each kernel evaluation of KT L costs four arithmetic operations only. This does not depend on

the chosen standard kernel.

Table 1 compares the training times with and without caching the standard kernel values. For

these measurements examples from the double interval task (cf. Section 5.1) are used where each

class is represented by 5 examples, KT L is chosen as pairwise kernel with a linear standard kernel, a

cache size of 100MB is selected for caching pairwise kernel values, and all possible pairs are used

for training. In Table 1a the training set of each run consists of m = 250 examples of 50 classes with

different dimensions n. Table 1b shows results for different numbers m of examples of dimension

n = 500. The speedup factor by the described caching technique is up to 100.

Dimension Standard kernel

n of (time in mm:ss)

examples not cached cached

200 2:08 0:07

400 4:31 0:07

600 6:24 0:07

800 9:41 0:08

1000 11:27 0:09

(a) Different dimensions n of examples

Number Standard kernel

m of (time in hh:mm)

examples not cached cached

200 0:04 0:00

400 1:05 0:01

600 4:17 0:02

800 12:40 0:06

1000 28:43 0:13

(b) Different numbers m of examples

Table 1: Training time with and without caching the standard kernel

4.2 Balanced Kernels vs. Symmetric Training Sets

Theorem 3 shows that pairwise SVMs which use symmetric training sets and pairwise SVMs with

balanced kernels lead to the same decision function. For symmetric training sets the number of

training pairs is nearly doubled compared to the number in the case of balanced kernels. Simulta-

neously, (11) shows that evaluating a balanced kernel is computationally more expensive compared

to the corresponding non balanced kernel.
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Table 2 compares the needed training time of both approaches. There, examples from the double

interval task (cf. Section 5.1) of dimension n = 500 are used where each class is represented by 5

examples, KT and its balanced version KT L with linear standard kernels are chosen as pairwise

kernel, a cache size of 100MB is selected for caching the pairwise kernel values, and all possible

pairs are used for training. It turns out, that the approach with balanced kernels is three to four times

faster than using symmetric training sets. Of course, the technique of caching the standard kernel

values as described in Section 4.1 is used within all measurements.

Number m Symmetric training set Balanced kernel

of examples (t in hh:mm)

500 0:03 0:01

1000 0:46 0:17

1500 3:26 0:56

2000 9:44 2:58

2500 23:15 6:20

Table 2: Training time for symmetric training sets and for balanced kernels

5. Classification Experiments

In this section we will present results of applying pairwise SVMs to one synthetic data set and to

one real world data set. Before we come to those data sets in Sections 5.1 and 5.2 we introduce Klin
T L

and K
poly
T L . Those kernels denote KT L (5) with linear standard kernel and homogenous polynomial

standard kernel of degree two, respectively. The kernels Klin
ML, K

poly
ML , Klin

T M , and K
poly
T M are defined

analogously. In the following, detection error trade-off curves (DET curves cf. Gamassi et al., 2004)

will be used to measure the performance of a pairwise classifier. Such a curve shows for any false

match rate (FMR) the corresponding false non match rate (FNMR). A special point of interest of

such a curve is the (approximated) equal error rate (EER), that is the value for which FMR=FNMR

holds.

5.1 Double Interval Task

Let us describe the double interval task of dimension n. To get such an example x ∈ {−1,1}n one

draws i, j,k, l ∈N so that 2 ≤ i ≤ j, j+2 ≤ k ≤ l ≤ n and defines

xp ≔

{

1 p ∈ {i, . . . , j}∪{k, . . . , l},
−1 otherwise.

The class c of such an example is given by c(x)≔ (i,k). Note that the pair ( j, l) does not influence

the class. Hence, there are (n−3)(n−2)/2 classes.

For our measurements we selected n= 500 and tested all kernels in (4)–(7) with a linear standard

kernel and a homogenous polynomial standard kernel of degree two, respectively. We created a test

set consisting of 750 examples of 50 classes so that each class is represented by 15 examples. Any

training set was generated in such a way that the set of classes in the training set is disjoint from the
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Figure 1: DET curves for double interval task

set of classes in the test set. We created training sets consisting of 50 classes and different numbers

of examples per class. For training all possible training pairs were used.

We observed that an increasing number of examples per class improves the performance inde-

pendently of the other parameters. As a trade-off between the needed training time and performance

of the classifier, we decided to use 15 examples per class for the measurements. Independently of

the selected kernel, a penalty parameter C of 1,000 turned out to be a good choice. The kernel KDS

led to a bad performance regardless of the standard kernel chosen. Therefore, we omit results for

KDS.

Figure 1a shows that an increasing number of classes in the training set improves the perfor-

mance significantly. This holds for all kernels mentioned above. Here, we only present results for

Klin
ML and K

poly
T M . Figure 1b shows the DET curves for different kernels where the training set consists

of 200 classes. In particular, any of the pairwise kernels which uses a homogeneous polynomial of

degree 2 as standard kernel leads to better results than its corresponding counterpart with a linear

standard kernel. For FMRs smaller than 0.07 K
poly
T M leads to the best results, whereas for larger

FMRs the DET curves of K
poly
ML ,K poly

T L , and K
poly
T M intersect.

5.2 Labeled Faces in the Wild

In this subsection we will present results of applying pairwise SVMs to the labeled faces in the

wild (LFW) data set (Huang et al., 2007). This data set consists of 13,233 images of 5,749 persons.

Several remarks on this data set are in order. Huang et al. (2007) suggest two protocols for perfor-

mance measurements. Here, the unrestricted protocol is used. This protocol is a fixed tenfold cross

validation where each test set consists of 300 positive pairs and 300 negative pairs. Moreover, any

person (class) in a training set is not part of the corresponding test set.

There are several feature vectors available for the LFW data set. For the presented measurements

we mainly followed Li et al. (2012) and used the scale-invariant feature transform (SIFT)-based

feature vectors for the funneled version (Guillaumin et al., 2009) of LFW. In addition, the aligned

images (Wolf et al., 2009) are used. For this, the aligned images are cropped to 80×150 pixels and

are then normalized by passing them through a log function (cf. Li et al., 2012). Afterwards, the
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Figure 2: DET curves for LFW data set

local binary patterns (LBP) (Ojala et al., 2002) and three-patch LBP (TPLBP) (Wolf et al., 2008)

are extracted. In contrast to Li et al. (2012), the pose is neither estimated nor swapped and no PCA

is applied to the data. As the norm of the LBP feature vectors is not the same for all images we

scaled them to Euclidean norm 1.

For model selection, the View 1 partition of the LFW database is recommended (Huang et al.,

2007). Using all possible pairs of this partition for training and for testing, we obtained that a penalty

parameter C of 1,000 is suitable. Moreover, for each used feature vector, the kernel K
poly
T M leads to

the best results among all used kernels and also if sums of decision function values belonging to

SIFT, LBP, and TPLBP feature vectors are used. For example, Figure 2a shows the performance

of different kernels, where the decision function values corresponding to SIFT, LBP, and TPLBP

feature vectors are added up.

Due to the speed up techniques presented in Section 4 we were able to train with large numbers

of training pairs. However, if all pairs were used for training, then any training set would consist of

approximately 50,000,000 pairs and the training would still need too much time. Hence, whereas

in any training set all positive training pairs were used, the negative training pairs were randomly

selected in such a way that any training set consists of 2,000,000 pairs. The training of such a model

took less than 24 hours on a standard PC. In Figure 2b we present the average DET curves obtained

for K
poly
T M and feature vectors based on SIFT, LBP, and TPLBP. Inspired by Li et al. (2012), we

determined two further DET curves by adding up the decision function values. This led to very good

results. Furthermore, we concatenated the SIFT, LBP, and TPLBP feature vectors. Surprisingly, the

training of some of those models needed longer than a week. Therefore, we do not present these

results.

In Table 3 the mean equal error rate (EER) and the standard error of the mean (SEM) obtained

from the tenfold cross validation are provided for several types of feature vectors. Note, that many

of our results are comparable to the state of the art or even better. The current state of the art can be

found on the homepage of Huang et al. (2007) and in the publication of Li et al. (2012). If only SIFT-

based feature vectors are used, then the best known result is 0.125± 0.0040 (EER ± SEM). With
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pairwise SVMs we achieved the same EER but a slightly higher SEM 0.1252±0.0062. If we add up

the decision function values corresponding to the LBP and TPLBP feature vectors, then our result

0.1210± 0.0046 is worse compared to the state of the art 0.1050± 0.0051. One possible reason

for this fact might be that we did not swap the pose. Finally, for the added up decision function

values corresponding to SIFT, LBP and TPLBP feature vectors, our performance 0.0947± 0.0057

is better than 0.0993±0.0051. Furthermore, it is worth noting that our standard errors of the mean

are comparable to the other presented learning algorithms although most of them use a PCA to

reduce noise and dimension of the feature vectors. Note that the results of the commercial system

are not directly comparable since it uses outside training data (for reference see Huang et al., 2007).

SIFT LBP TPLBP L+T S+L+T CS

Pairwise Mean EER 0.1252 0.1497 0.1452 0.1210 0.0947 -

SVM SEM 0.0062 0.0052 0.0060 0.0046 0.0057 -

State of Mean EER 0.1250 0.1267 0.1630 0.1050 0.0993 0.0870

the Art SEM 0.0040 0.0055 0.0070 0.0051 0.0051 0.0030

Table 3: Mean EER and SEM for LFW data set. S=SIFT, L=LBP, T=TPLBP, +=adding up decision

function values, CS=Commercial system face.com r2011b

6. Final Remarks

In this paper we suggested the SVM framework for handling large pairwise classification problems.

We analyzed two approaches to enforce the symmetry of the obtained classifiers. To the best of

our knowledge, we gave the first proof that symmetry is indeed achieved. Then, we proved that for

each parameter set of one approach there is a corresponding parameter set of the other one such that

both approaches lead to the same classifier. Additionally, we showed that the approach based on

balanced kernels leads to shorter training times.

We discussed details of the implementation of a pairwise SVM solver and presented numerical

results. Those results demonstrate that pairwise SVMs are capable of successfully treating large

scale pairwise classification problems. Furthermore, we showed that pairwise SVMs compete very

well for a real world data set.

We would like to underline that some of the discussed techniques could be transferred to other

approaches for solving pairwise classification problems. For example, most of the results can be

applied easily to One Class Support Vector Machines (Schölkopf et al., 2001).
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