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Abstract

Random forests are a scheme proposed by Leo Breiman in th@s2f@® building a predictor
ensemble with a set of decision trees that grow in randomiBcted subspaces of data. Despite
growing interest and practical use, there has been litfidoeation of the statistical properties of
random forests, and little is known about the mathematiaalefs driving the algorithm. In this
paper, we offer an in-depth analysis of a random forests imautpgested by Breiman (2004),
which is very close to the original algorithm. We show in parar that the procedure is consistent
and adapts to sparsity, in the sense that its rate of conveegiepends only on the number of strong
features and not on how many noise variables are present.

Keywords: random forests, randomization, sparsity, dimension reéaglucconsistency, rate of
convergence

1. Introduction

In a series of papers and technical reports, Breiman (1996, 200Q, 2004) demonstrated that
substantial gains in classification and regression accuracy can beetthie using ensembles of
trees, where each tree in the ensemble is grown in accordance with argadameter. Final

predictions are obtained by aggregating over the ensemble. As the basituamts of the ensemble
are tree-structured predictors, and since each of these trees isuctettusing an injection of

randomness, these procedures are called “random forests.”

1.1 Random Forests

Breiman’s ideas were decisively influenced by the early work of Amit amchén (1997) on geomet-
ric feature selection, the random subspace method of Ho (1998) anatthenn split selection ap-
proach of Dietterich (2000). As highlighted by various empirical studies {er instance Breiman,
2001; Svetnik et al., 2003; Diaz-Uriarte and de A@&ir2006; Genuer et al., 2008, 2010), random
forests have emerged as serious competitors to state-of-the-art metichdsssboosting (Freund
and Shapire, 1996) and support vector machines (Shawe-TayldCi@stéhnini, 2004). They are
fast and easy to implement, produce highly accurate predictions and cdie laavery large number
of input variables without overfitting. In fact, they are considered to fee af the most accurate
general-purpose learning techniques available. The survey by Getaile (2008) may provide the
reader with practical guidelines and a good starting point for undeiisgttte method.
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In Breiman'’s approach, each tree in the collection is formed by first sejeatimndom, at each
node, a small group of input coordinates (also called features or legihbreatfter) to split on and,
secondly, by calculating the best split based on these features in thegra@tinThe tree is grown
using CART methodology (Breiman et al., 1984) to maximum size, without prufinig subspace
randomization scheme is blended with bagging (Breiman, 1986trBann and Yu, 2002; Buja and
Stuetzle, 2006; Biau et al., 2010) to resample, with replacement, the trainimgetaeach time a
new individual tree is grown.

Although the mechanism appears simple, it involves many different driarge$ which make
it difficult to analyse. In fact, its mathematical properties remain to date largédgawn and, up
to now, most theoretical studies have concentrated on isolated parts cedtydizsions of the algo-
rithm. Interesting attempts in this direction are by Lin and Jeon (2006), whblistta connection
between random forests and adaptive nearest neighbor methodds@®&au and Devroye, 2010,
for further results); Meinshausen (2006), who studies the consist#gmandom forests in the con-
text of conditional quantile prediction; and Biau et al. (2008), who affarsistency theorems for
various simplified versions of random forests and other randomizedndts@redictors. Neverthe-
less, the statistical mechanism of “true” random forests is not yet fullgrstdod and is still under
active investigation.

In the present paper, we go one step further into random forests tyngaut and solidifying
the properties of a model suggested by Breiman (2004). Though this is@illsimple compared
to the “true” algorithm, it is nevertheless closer to reality than any other schearare aware of.
The short draft of Breiman (2004) is essentially based on intuition and matieal heuristics,
some of them are questionable and make the document difficult to read dedstamd. However,
the ideas presented by Breiman are worth clarifying and developing, epaith serve as a starting
point for our study.

Before we formalize the model, some definitions are in order. Througheudhument, we
suppose that we are given a training sanple= {(X1,Y1),...,(Xn,Yn)} of i.i.d. [0,1]9 x R-valued
random variablesi> 2) with the same distribution as an independent generiq Ka¥) satisfying
EY? < ». The spacé0,1]9 is equipped with the standard Euclidean metric. For fixed[0,1]9,
our goal is to estimate the regression functi¢x) = E[Y|X = x] using the data&D,. In this respect,
we say that a regression function estimatés consistent ifE[rn(X) —r(X)]2 — 0 asn — . The
main message of this paper is that Breiman’s procedure is consistent spis &ml sparsity, in the
sense that its rate of convergence depends only on the number of &edages and not on how
many noise variables are present.

1.2 The Model

Formally, a random forest is a predictor consisting of a collection of naniwled base regression
trees{rn(X,®m, Dn),m> 1}, where®©;, O, ... are i.i.d. outputs of a randomizing varialde These
random trees are combined to form the aggregated regression estimate

(X, Dn) =Eo[rn(X,0,Dy)],

whereEg denotes expectation with respect to the random parameter, conditionXlgmtthe data
setD,. In the following, to lighten notation a little, we will omit the dependency of the estimate
in the sample, and write for examplg(X) instead ofr,(X, D,). Note that, in practice, the above
expectation is evaluated by Monte Carlo, that is, by generafin@isually large) random trees,
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and taking the average of the individual outcomes (this procedure is jddt§iehe law of large
numbers, see the appendix in Breiman, 2001). The randomizing vafalsleised to determine
how the successive cuts are performed when building the individual, tseeh as selection of the
coordinate to split and position of the split.

In the model we have in mind, the varialédas assumed to be independenoénd the training
sampleD,. This excludes in particular any bootstrapping or resampling step in the gaeainThis
also rules out any data-dependent strategy to build the trees, sudresisg for optimal splits by
optimizing some criterion on the actual observations. However, we @itovbe based on a second
sample, independent of, but distributed &%, This important issue will be thoroughly discussed
in Section 3.

With these warnings in mind, we will assume that each individual random temmgructed in
the following way. All nodes of the tree are associated with rectangularsedisthat at each step of
the construction of the tree, the collection of cells associated with the leatlestoée (i.e., external
nodes) forms a partition g, 1]9. The root of the tree i§0, 1]9 itself. The following procedure is
then repeateflog, k, | times, where logis the base-2 logarithnj, ] the ceiling function ané, > 2
a deterministic parameter, fixed beforehand by the user, and possilagdiag om.

1. At each node, a coordinate Xf= (X1 ... X)) is selected, with thg-th feature having a
probability pnj € (0, 1) of being selected.

2. At each node, once the coordinate is selected, the splitis at the midpthietahosen side.

Each randomized treg,(X,®) outputs the average over afl for which the corresponding
vectorsX; fall in the same cell of the random partition dsIn other words, lettingh\,(X, ®) be the
rectangular cell of the random partition containiXg

Y11 Vil ean(x.0
m(X,0) = '.n1 |1[ PO 1r.(x.0):
2i=11XieA(x.0)]

where the event, (X, ©) is defined by

Tn(X,0) =

n
Lxcax.0) 70| -
i; X £An(X.0)]

(Thus, by convention, the estimate is set to 0 on empty cells.) Taking finallg&tfman with respect
to the paramete®, the random forests regression estimate takes the form

Y11 Yilixiean(x.0)]
Y11 Lxienx.0)

2(X) = o (X, 0)] =Eo | Lo

Let us now make some general remarks about this random forests modelofRill, we note
that, by construction, each individual tree has exactR#29! (x k,) terminal nodes, and each leaf
has Lebesgue measure/2%%1 (~ 1/k,). Thus, ifX has uniform distribution of0, 1]%, there will
be on average abouk, observations per terminal node. In particular, the ch&jce n induces
a very small number of cases in the final leaves, in accordance with théhialetihe single trees
should not be pruned.

Next, we see that, during the construction of the tree, at each nodecaadiate coordinate
X () may be chosen with probabilityhj € (0,1). This implies in particulagj‘:1 pnj = 1. Although
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we do not precise for the moment the way these probabilities are genevatstiess that they may
be induced by a second sample. This includes the situation where, at @@ehrandomness is
introduced by selecting at random (with or without replacement) a smalpgrbimput features to
split on, and choosing to cut the cell along the coordinate—inside this graupch most decreases
some empirical criterion evaluated on the extra sample. This scheme is closattthevloriginal
random forests algorithm does, the essential difference being thattdrealgorithm uses the actual
data set to calculate the best splits. This point will be properly discusseztiios 3.

Finally, the requirement that the splits are always achieved at the middle okthsides is
mainly technical, and it could eventually be replaced by a more involved nandechanism—
based on the second sample—at the price of a much more complicated analysis.

The document is organized as follows. In Section 2, we prove that tdemaforests regression
estimatery, is consistent and discuss its rate of convergence. As a striking resudhavweunder a
sparsity framework that the rate of convergence depends only on theanwf active (or strong)
variables and not on the dimension of the ambient space. This featurdicujaaly desirable in
high-dimensional regression, when the number of variables can be nmgehn than the sample
size, and may explain why random forests are able to handle a very lamg@en of input variables
without overfitting. Section 3 is devoted to a discussion, and a small simulatidy istpresented
in Section 4. For the sake of clarity, proofs are postponed to Section 5.

2. Asymptotic Analysis

Throughout the document, we denoteNy( X, ©) the number of data points falling in the same cell
asX, that is,

n
Nn(X,0) =) 1ixcax.0)-
i; [XiEA(X.0)]

We start the analysis with the following simple theorem, which shows that themafatests esti-
matery, is consistent.

Theorem 1 Assume that the distribution &€ has support or{0,1]9. Then the random forests
estimater, is consistent whenevergogk, — o« forall j =1,...,d and k/n— 0 as n— co.

Theorem 1 mainly serves as an illustration of how the consistency probleamdém forests
predictors may be attacked. It encompasses, in particular, the situation,vatheeach node, the
coordinate to split is chosen uniformly at random over dheandidates. In this “purely random”
model, pnj = 1/d, independently oh and j, and consistency is ensured as longkas~+ o and
k./n — 0. This is however a radically simplified version of the random forests irspdactice,
which does not explain the good performance of the algorithm. To achieygdhl, a more in-
depth analysis is needed.

There is empirical evidence that many signals in high-dimensional spacésadparse rep-
resentation. As an example, wavelet coefficients of images often exhjjmnertial decay, and a
relatively small subset of all wavelet coefficients allows for a good @gpration of the original
image. Such signals have few non-zero coefficients and can thetedadescribed as sparse in
the signal domain (see for instance Bruckstein et al., 2009). Similarlynrecances in high-
throughput technologies—such as array comparative genomic hyligtizaindicate that, despite
the huge dimensionality of problems, only a small number of genes may play ia d#&rmining
the outcome and be required to create good predictors (van't Veer 20@2, for instance). Sparse
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estimation is playing an increasingly important role in the statistics and machinenaommu-

nities, and several methods have recently been developed in both fibidh, nely upon the notion
of sparsity (e.g., penalty methods like the Lasso and Dantzig selector, sterdib, 1996; Cargs

and Tao, 2005; Bunea et al., 2007; Bickel et al., 2009, and the nefeseherein).

Following this idea, we will assume in our setting that the target regressiatidarr (X) =
E[Y|X], which is initially a function ofX = (X1 ..., X(®), depends in fact only on a nonempty
subsets (for Strong) of thed features. In other words, lettings = (X : j € §) andS= Card.s,
we have

r(X) = E[Y|X;]

or equivalently, for any € [0, 1],

() =r*(xs) as. (1)

where is the distribution ofX andr* : [0,1]° — R is the section of corresponding t&. To

avoid trivialities, we will assume throughout th&tis nonempty, withS> 2. The variables in the
setW ={1,...,d} — S (for Weak) have thus no influence on the response and could be safely
removed. In the dimension reduction scenario we have in mind, the ambientsiimencan be

very large, much larger than the sample sizébut we believe that the representation is sparse,
that is, that very few coordinates pfare non-zero, with indices corresponding to theseNote
however that representation (1) does not forbid the somehow unblesgase wher& = d. As

such, the valu& characterizes the sparsity of the model: The sm&8léhe sparser.

Within this sparsity framework, it is intuitively clear that the coordinate-saminudpabilities
should ideally satisfy the constrainpsj = 1/Sfor j € S (and, consequentlyy,j = O otherwise).
However, this is a too strong requirement, which has no chance to be shitisfieactice, except
maybe in some special situations where we know beforehand which variatdeémportant and
which are not. Thus, to stick to reality, we will rather require in the following fha = (1/S)(1+
&nj) for j € S (and phj = &nj otherwise), wheregpnj € (0,1) and eaclg,; tends to 0 as tends
to infinity. We will see in Section 3 how to design a randomization mechanism to ofaim
probabilities, on the basis of a second sample independent of the trainidg,.sét this point,
it is important to note that the dimensiodsandS are held constant throughout the document. In
particular, these dimensions aret functions of the sample siag as it may be the case in other
asymptotic studies.

We have now enough material for a deeper understanding of the rafiodests algorithm. To
lighten notation a little, we will write

Lxienx.0

)l
Whi(X,0) = Na(X,0) 1z, x.0);

so that the estimate takes the form
n
Fn(X) = ZlEe Whi(X,©)] Y.
i=

Let us start with the variance/bias decomposition

E[fn(X) = 1(X)]* = E[fa(X) = Fa(X)]* + E[Fa(X) = 1 (X))%, (@)
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where we set ,
fn(X) = ;E@ Whi(X,0)]r(X;).

The two terms of (2) will be examined separately, in Proposition 2 and Pitagyo4, respectively.
Throughout, the symbd¥ denotes variance.

Proposition 2 Assume thaX is uniformly distributed o0, 1] and, for allx € RY,
0?(x) = V[Y|X =x] < ¢?

for some positive constaot. Then, if pj = (1/S)(1+&y;) for j € 5,

2 S/2d
E [Fn(X) —Fa(X)]? < Co? <S—1> (1+En)n(logknkn)5/2d’

where

c_ 288 (mlog2 N
Com o\ 16 '

The sequenci,) depends on the sequendg&;) : j € S} only and tends t0 as n tends to infinity.

Remark 3 A close inspection of the end of the proof of Proposition 2 reveals that

(Aot (1o 20 N
n S-1 '

In particular, if a < pnj < b for some constants b e (0,1), then

1+&n=

S_1 S/2d
v0< (g1 )

The main message of Proposition 2 is that the variance of the forests estimate is
O(kn/(n(logkn)¥2)). This result is interesting by itself since it shows the effect of aggregation
on the variance of the forest. To understand this remark, recall thatdodi (random or not) trees
are proved to be consistent by letting the number of cases in each termileabacome large (see
Devroye et al., 1996, Chapter 20), with a typical variance of the degler. Thus, for such trees, the
choicek, = n (i.e., about one observation on average in each terminal node) is cleadyitable
and leads to serious overfitting and variance explosion. On the otherthandiriance of the forest
is of the ordek,/(n(logk,)¥?%). Therefore, lettind, = n, the variance is of the ordey flogn)¥/24,

a quantity which still goes to 0 asgrows! Proof of Proposition 2 reveals that this log term is a
by-product of the@-averaging process, which appears by taking into consideration thelatan
between trees. We believe that it provides an interesting perspectiveyoramdom forests are still
able to do a good job, despite the fact that individual trees are notgrune

Note finally that the requirement that is uniformly distributed on the hypercube could be
safely replaced by the assumption tbéahas a density with respect to the Lebesgue measure on
[0,1]9 and the density is bounded from above and from below. The case Wieedensity oiX is
not bounded from below necessitates a specific analysis, which wedeaibeyond the scope of
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the present paper. We refer the reader to Biau and Devroye (20i@dults in this direction (see
also Remark 10 in Section 5).

Let us now turn to the analysis of the bias term in equality (2). Recalftidgnotes the section
of r corresponding tG.

Proposition 4 Assume thaX is uniformly distributed orf0,1]¢ and r* is L-Lipschitz on[0,1]S.
Then, if pj = (1/9)(1+&nj) for j € 5,

2S12
E[fa(X) —r(X)2 < ——
[n( ) ( )] — SOT7952(1+yn)

kn

wherey, = minjc; &nj tends to0 as n tends to infinity.

_l’_

sup r?(x)| e v,
x€[0,1]d

This result essentially shows that the rate at which the bias decreasesertild on the number
of strong variables, not od. In particular, the quantiti, (7% (S1092)(1+¥) should be compared
with the ordinary partitioning estimate bias, which is of the order”’9 under the smoothness
conditions of Proposition 4 (see for instanced@yet al., 2002). In this respect, it is easy to see that
ky~(0-7%/(Sl0g92))(1+wn) — o(k,~?/9) as soon a§< |0.54d] (|.] is the integer part function). In other
words, when the number of active variables is less than (roughly) hddéambient dimension, the
bias of the random forests regression estimate decreases to 0 muclhfasttre usual rate. The
restrictionS < |0.54d | is not severe, since in all practical situations we have in nnd,usually
very large with respect t& (this is, for instance, typically the case in modern genome biology
problems, wherd may be of the order of billion, and in any case much larger than the actualemrumb
of active features). Note at last that, contrary to Proposition 2, thege?ff« prevents the extreme
choicek, = n(about one observation on average in each terminal node). Indeedpection of the
proof of Proposition 4 reveals that this term accounts for the probabilityNk(&, ©) is precisely
0, that is,An (X, ©) is empty.

Recalling the elementary inequalitg "> < e~ /nfor z € [0, 1], we may finally join Proposition
2 and Proposition 4 and state our main theorem.

Theorem 5 Assume thaX is uniformly distributed orf0,1]9, r* is L-Lipschitz on[0, 1] and, for
all x € RY,
0%(x) = V[Y|X =x] < 0?

for some positive constaof. Then, if pj = (1/S)(1+&nj) for j € 5, letting y, = minjes &nj, we
have

B _ 2512
kﬁlogZ n
where
Q S/2d
s-co?(2;) gz [ sup r2<x>]
- x€[0,1)d
and

T 16
The sequenci,) depends on the sequendé&;) : j € S} only and tends t0 as n tends to infinity.

2 | 2 S/2d
20 mog2) "
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As we will see in Section 3, it may be safely assumed that the randomizatioesgrattows for
&njlogn — 0 asn — o, for all j € S. Thus, under this condition, Theorem 5 shows that with the

optimal choice
0.75 )

kn 0 nl/(1+W92

we get
= 2 _ 075
E [rn(X) — I’(X)] =0 (nSIogz+0.75) .
This result can be made more precise. Denotédthe class ofL, 6?)-smooth distribution$X, Y)

such thatX has uniform distribution of0, 1)%, the regression functiort is Lipschitz with constant
L on[0,1]% and, for allx € RY, 02(x) = V[Y|X = x] < 02.

Corollary 6 Let

) SZ S/2d ) X
=Co <> +2e | sup re(x)
S-1 x€[0,1]d

and

LS 16
Then, if pj = (1/S)(1+&nj) for j € S, with &njlogn — 0 as n— oo, for the choice

2\ 1/(1+ gogs)
o 0 (L) )

c- 288(11'092)5”"_

we have

limsup sup E[fn(X) —r (X))

0.75
n—o  (X,Y)eTs (:L%> Slog2+0.75

<A,

—0.75
N Slog2+0.75
whereA is a positive constant independent of r, L asrd

This result reveals the fact that thg-rate of convergence of,(X) tor(X) depends only on the
numberSof strong variables, and not on the ambient dimendiofihe main message of Corollary 6
is that if we are able to properly tune the probability sequepgsn>1 and make them sufficiently
fast to track the informative features, then the rate of convergencesahttdom forests estimate

will be of the ordemses267s. This rate is strictly faster than the usual rate/(¢+2 as soon as

S< |0.54d]. To understand this point, just recall that the nait& (4+2) is minimax optimal for the
class%y (see, for example Ibragimov and Khasminskii, 1980, 1981, 1982), searcallection of
regression functions ové®, 1)9, not [0, 1]5. However, in our setting, the intrinsic dimension of the
regression problem S, notd, and the random forests estimate cleverly adapts to the sparsity of the
problem. As an illustration, Figure 1 shows the plot of the func8en 0.75/(Slog2+ 0.75) for S
ranging from 2 tad = 100.

It is noteworthy that the rate of convergence of éqeto 0 (and, consequently, the rate at which
the probabilitiespnj approach ISfor j € §) will eventually depend on the ambient dimensibn
through the ratics/d. The same is true for the Lipschitz constarand the factor sypq 1« r2(x)
which both appear in Corollary 6. To figure out this remark, remembeittiastthe support of is
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Figure 1: Solid line: Plot of the functiorS— 0.75/(Slog 2+ 0.75) for Sranging from 2 tad = 100.
Dotted line: Plot of the minimax rate powe$— 2/(S+ 2). The horizontal line shows
the value of thal-dimensional rate power/2d + 2) ~~ 0.0196.

contained irRS, so that the later supremum (respectively, the Lipschitz constant) is ia faqtre-
mum (respectively, a Lipschitz constant) o, notoverRY. Next, denote byy(s) the collection
of functionsn : [0,1]P — [0, 1] for which each derivative of ordersatisfies a Lipschitz condition.
It is well known that thee-entropy log(Az) of Cp(s) is @(e~P/(5t1) ase | 0 (Kolmogorov and
Tihomirov, 1961), where, = ®(b,) means that, = O(b,) andb, = O(a,). Here we have an
interesting interpretation of the dimension reduction phenomenon: WorkingLig#ithitz func-
tions onRS (that is, s = 0) is roughly equivalent to working with functions d@f for which all
[(d/S) — 1]-th order derivatives are Lipschitz! For exampleSi= 1 andd = 25, (d/S) — 1= 24
and, as there are 25such partial derivatives iiR%°, we note immediately the potential benefit of
recovering the “true” dimensio&

Remark 7 The reduced-dimensional raté'crigL?V5 is strictly larger than the S-dimensional optimal
rate n%/(5t2) which is also shown in Figure 1 for S ranging fréhto 100. We do not know whether
the latter rate can be achieved by the algorithm.

Remark 8 The optimal parameter,}of Corollary 6 depends on the unknown distributior{fY),
especially on the smoothness of the regression function and the effectares@imsS. To correct this
situation, adaptive (i.e., data-dependent) choices,pkkich as data-splitting or cross-validation,
should preserve the rate of convergence of the estimate. Anothemweutgy follow is to analyse
the effect of bootstrapping the sample before growing the individual treesl{agging). It is our

1071



Biau

belief that this procedure should also preserve the rate of conveegeawen for overfitted trees
(kn = n), in the spirit of Biau et al. (2010). However, such a study is beyoaddtbpe of the present
paper.

Remark 9 For further references, it is interesting to note that Proposition 2 (variaigce) is a

consequence of aggregation, whereas Proposition 4 (bias term) isseqgaence of randomization.
It is also stimulating to keep in mind the following analysis, which has been staght® us by

a referee. Suppose, to simplify, thatf (X) (no-noise regression) and thgf._; Whi(X,0) =1a.s.

In this case, the variance term is 0 and we have

M(X) = (X)) = iE@ Whi (0, X)]Y,.

SetZp = (Y,Y1,...,Yn). Then
E [Fn(X) —r(X)]? = E[fa(X) - Y]?
—E|E |(in(X) ~Y)?|Za]|
—E [E [ (7a(X) ~ E[fa(X) |Z0))* | Zn| | + E[E[(X) | Zo] - Y],
The conditional expectation in the first of the two terms above may be rewitiger the form
E [Cov(Eo[tn(X,0)] Eo [1n(X,0)] |Z0)].

where® is distributed as, and independent X, Attention shows that this last term is indeed equal
to
E [Ee.eCov(rn(X,0),rn(X,0")|Z,)] .

The key observation is that if trees have strong predictive power, thgrcémebe unconditionally
strongly correlated while being conditionally weakly correlated. This oeniteresting line of
research for the statistical analysis of the bias term, in connection with A@2Rand Blanchard
(2004) conditional covariance-analysis ideas.

3. Discussion

The results which have been obtained in Section 2 rely on appropriateibebithe probability
sequences$pnj)n>1, ] = 1,...,d. We recall that these sequences should b@ja) and obey the
constraintspnj = (1/S)(1+&nj) for j € S (andpnj = &n;j otherwise), where thépj)n>1 tend to O
asn tends to infinity. In other words, at each step of the construction of theithdil trees, the
random procedure should track and preferentially cut the stronglic@des. In this more informal
section, we briefly discuss a random mechanism for inducing suchlgltypaequences.
Suppose, to start with an imaginary scenario, that we already know winicHioates are strong,
and which are not. In this ideal case, the random selection procedsealal in the introduction
may be easily made more precise as follows. A positive intberpossibly depending on—is
fixed beforehand and the following splitting scheme is iteratively repeategicatnode of the tree:

1. Select at random, with replacemeit, candidate coordinates to split on.
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2. If the selection is all weak, then choose one at random to split on. r feenore than one
strong variable elected, choose one at random and cut.

Within this framework, it is easy to see that each coordinatewill be cut with the “ideal” proba-

bility
o1 s\ M
pn_sll— <1—d> ] .
Though this is an idealized model, it already gives some information abouhtieecof the param-
eterMp, which, in accordance with the results of Section 2 (Corollary 6), shailsfg

s\Mn
(ld> logn—0 asn— oo,

This is true as soon as

Mp — o and &—wo asn — oo,
logn
This result is consistent with the general empirical finding WMat(callednt ry in the R package
Randontor est s) does not need to be very large (see, for example, Breiman, 20@hobwith the
widespread belief tha#l,, should not depend om Note also that if théV,, features are chosen at
randomwithoutreplacement, then things are even more simple since, in this gasel/Sfor all
n large enough.

In practice, we have only a vague idea about the size and content oéttlse slowever, to
circumvent this problem, we may use the observations of an independmmidsset?;, (say, of
the same size a®),) in order to mimic the ideal split probabilitg;,. To illustrate this mechanism,
suppose—to keep things simple—that the model is linear, that is,

Y=7F aXx t¢,
2

whereX = (X, ..., X(@) is uniformly distributed ovef0, 1]9, thea; are non-zero real numbers,
ande is a zero-mean random noise, which is assumed to be independérgraf with finite vari-
ance. Note that, in accordance with our sparsity assumptioh, = 3 jc an(j) depends orX ¢
only.

Assume now that we have done some splitting and arrived at a curreoit tegtminal nodes.
Consider any of these nodes, say= I_l?:lAj, fix a coordinatej € {1,...,d}, and look at the
weighted conditional variancé[Y X)) € AjJP(XU) € Aj). Itis a simple exercise to prove thatXf
is uniform andj € §, then the split on thg-th side which most decreases the weighted conditional
variance is at the midpoint of the node, with a variance decrease eqafa/lliﬁ> 0. On the other
hand, ifj € W, the decrease of the variance is always 0, whatever the location oflthe sp

On the practical side, the conditional variances are of course unkrtmvtrthey may be esti-
mated by replacing the theoretical quantities by their respective sample est{amiegthe CART
procedure, see Breiman, 2001, Chapter 8, for a thorough discussanated on the second sample
Dj.. This suggests the following procedure, at each node of the tree:

1. Select at random, with replacemet, candidate coordinates to split on.
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2. For each of thé, elected coordinates, calculate the best split, that is, the split which most

decreases the within-node sum of squares on the second s@mple

3. Select one variable at random among the coordinates which outpiggheithin-node sum
of squares decreases, and cut.

This procedure is indeed close to what the random forests algorithm dbesessential dif-
ference is that we suppose to have at hand a second safjplehereas the original algorithm
performs the search of the optimal cuts on the original observafignsThis point is important,
since the use of an extra sample preserves the independe®dghaf random mechanism) arfd,
(the training sample). We do not know whether our results are still tri@depends orD, (as
in the CART algorithm), but the analysis does not appear to be simple. Not¢halsat step 3,
a threshold (or a test procedure, as suggested in Amaratunga et 8|.,c200d be used to choose
among the most significant variables, whereas the actual algorithm justssttle best one. In fact,
depending on the context and the actual cut selection procedure, oneative probabilitieg;

(j € $) may obey the constrainfsj — pj asn — o (thus, p; is not necessarily equal tg'$), where
the p; are positive and satisfy ;s pj = 1. This should not affect the results of the article.

This empirical randomization scheme leads to complicate probabilities of cuts,whiEkime,
vary at each node of each tree and are not easily amenable to analysistieless, observing that
the average number of cases per terminal node is ab/éyitit may be inferred by the law of large
numbers that each variable $hwill be cut with probability

1 S\ Mn

wherel,; is of the orderO(k,/n), a quantity which anyway goes fast to Oraends to infinity. Put
differently, forj € S,

(1+an>’

1
Pnj ~ §(1+Enj)a

where &n; goes to 0 and satisfies the constraggflogn — 0 asn tends to infinity, provided
knlogn/n — 0, M, — c and M, /logn — . This is coherent with the requirements of Corol-
lary 6. We realize however that this is a rough approach, and that marestival work is needed
here to fully understand the mechanisms involved in CART and Breiman’s drigindomization
process.

It is also noteworthy that random forests use the so-called out-of-draglses (i.e., the boot-
strapped data which are not used to fit the trees) to construct a varialdegamge criterion, which
measures the prediction strength of each feature (see, e.g., Genuee1@). As far as we are
aware, there is to date no systematic mathematical study of this criterion. It lebefrthat such
a study would greatly benefit from the sparsity point of view developederpthsent paper, but is
unfortunately much beyond its scope. Lastly, it would also be interesting th @ud and extend
our results to the context of unsupervised learning of trees. A godd todiollow with this respect
is given by the strategies outlined in Section 5.5 of Amit and Geman (1997).

4. A Small Simulation Study

Even though the first vocation of the present paper is theoretical, weinffhis short section some
experimental results on synthetic data. Our aim is not to provide a thoroaghigal study of the
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random forests method, but rather to illustrate the main ideas of the articleorAs, we let
2(]0,1]9) (respectively?’(0,1)) be the uniform distribution oved, 1]¢ (respectively, the standard
Gaussian distribution). Specifically, three models were tested:

1. [Sinug Forx € [0,1]9, the regression function takes the form
r(x) = 10si10mxY)).
We letY = r(X) +&andX ~ ¢([0,1]%) (d > 1), with€ ~ A((0, 1).
2. [Friedman #1] This is a model proposed in Friedman (1991). Here,
r(x) = 10sifmxMx?) 4 20(x'® — .05)? + 10x¥ 4 5x®
andY = r(X) 4 ¢, whereX ~ ([0,1]%) (d > 5) ande ~ A(0, 1).

3. [Tree] In this example, we leY = r(X) +¢, whereX ~ ¢([0,1]%) (d > 5), & ~ A((0,1) and
the functionr has itself a tree structure. This tree-type function, which is shown in F@jure
involves only five variables.

X4< 0.383
T

X2<(.2342 X1<[0.47

X1<0.2463
8.177

8.837 13.15

X5< 0.2452 X2<0.2701

X3>=0.2234
10.99 X5< (.5985

13.87 18.03 15.02
1861 21.74

Figure 2: The tree used as regression function in the mbéel

We note that, although the ambient dimensiamay be large, the effective dimension of model
1isS=1, whereas model 2 and model 3 h&e 5. In other words,s = {1} for model 1, whereas
S =1{1,...,5} for model 2 and model 3. Observe also that, in our context, the mizdelshould
be considered as a “no-bias” model, on which the random forests algastbxpected to perform
well.

In a first series of experiments, we kt= 100 and, for each of the three models and different
values of the sample sizg we generated a learning set of sizand fitted a forest (10000 trees)
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,d, the ratio (hnumber of times thieth coordinate is split)/(total number
of splits over the forest) was evaluated, and the whole experiment weategpl00 times. Figure 3,
Figure 4 and Figure 5 report the resulting boxplots for each of the fissttywariables and different
values ofn. These figures clearly enlighten the fact thathagows, the probability of cuts does
concentrate on the informative variables only and support the assumidg th+ 0 asn — oo for

n= 50
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Figure 3: Boxplots of the empirical probabilities of cuts for mo8&lus (S = {1}).

Next, in a second series of experiments, for each model, for diffeedu¢s ofd and for sample
sizesn ranging from 10 to 1000, we generated a learning set ofrsiagest set of size 50000 and
evaluated the mean squared error (MSE) of the random forests (RFpan@ththe Monte Carlo
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All results were averaged over 100 data sets. The random forest#taigovas performed with
the parametent r y automatically tuned by the R packaendontor est s, 1000 random trees and
the minimum node size set to 5 (which is the default value for regressiorgid@s in order to
compare the “true” algorithm with the approximate model discussed in therpréseument, an
alternative method was also tested. This auxiliary algorithm has charactewsiich are identical
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Figure 5: Boxplots of the empirical probabilities of cuts for motiede (5 = {1,...,5}).

to the original ones (sam r y, same number of random treesjth the notable difference that now
the maximum number of nodes is fixed beforehdud the sake of coherence, since the minimum
node size is set to 5 in tHeandontor est s package, the number of terminal nodes in the custom
algorithm was calibrated tpn/5]. It must be stressed that the essential difference between the
standard random forests algorithm and the alternative one is that the nofrdaeses in the final
leaves is fixed in the former, whereas the latter assumes a fixed numbemafakenodes. In
particular, in both algorithms, cuts are performed using the actual samplasj@ART does. To
keep things simple, no data-splitting procedure has been incorporatedmothied version.
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Figure 6, Figure 7 and Figure 8 illustrate the evolution of the MSE value witrectgon and

d, for each model and the two tested procedures. First, we note that tredl pegformance of the
alternative method is very similar to the one of the original algorithm. This confiumsdea that
the model discussed in the present paper is a good approximation of teetwBreiman’s forests.
Next, we see that for a sufficiently largethe capabilities of the forests are nearly independent of
d, in accordance with the idea that the (asymptotic) rate of convergence ofdthod should only
depend on the “true” dimensionali§(Theorem 5). Finally, as expected, it is noteworthy that both
algorithms perform well on the third model, which has been precisely dasfgna tree-structured
predictor.

Original RF
€ d=5
4— d= 10
o +— d= 25
- g % d= 50
o \\:‘ - d= 100

\+\ -7 d= 200
A\
\ )

\ Alternative RF

\ \ d=5
\,Q\ \ & d=10
\ kY

d= 25
¢- d= 50
- d= 100
- d= 200

40

|

//
40 x4+

MSE

TT T T T T T
10 50 100 200 500 1000

Sample size

Figure 6: Evolution of the MSE for mod&inus(S= 1).

5. Proofs

Throughout this section, we will make repeated use of the following two.facts

Fact 1 Let Kyj(X,©) be the number of times the terminal nodgX ©) is split on the j-th coordi-
nate (j=1,...,d). Then, conditionally oiX, Ky;(X,®) has binomial distribution with parameters
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Original RF
d= 56
d= 10
d= 25

4% -

x-!—.’>'

-©— d= 100
\ - d= 200
\

Al \ Alternative RF
) d=5
S i}x - d=10
% - d=25
- d= 50
- d= 100
- d= 200

46 %+ b

MSE

10 50 100 200 500

Sample size

Figure 7: Evolution of the MSE for modé&riedman #1 (S=5).

[log, kn| and m@; (by independence of and©). Moreover, by construction,

d
ZlKnj (Xv O) - “092 kn—l
=

Recall that we denote by,(X,®) the number of data points falling in the same celKashat is,

n

Nn(X,0) = Z 1[xi€An(xve)]'

|
Let A be the Lebesgue measure [on1]9.

Fact 2 By construction,
A(Aa(X,0)) = 20wkl

In particular, if X is uniformly distributed or0, 1]%, then the distribution of NX,®) conditionally

on X and® is binomial with parameters n ar@ %% (by independence of the random variables
X, X1, ..., X, ©).
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Original RF
€ d= 56

4— d= 10
+— d= 25
»— d= 50
-©— d= 100
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d=5

- d= 10
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- d= 50

d= 100

d= 200

46 %+ b

MSE

[4.]
3 4
S
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Figure 8: Evolution of the MSE for moddlree (S=5).

Remark 10 If X is not uniformly distributed but has a probability density f [@n1]¢, then, con-
ditionally onX and ©, Ny(X,©) is binomial with parameters n anél(X; € Ay(X,0)|X,0). If f

is bounded from above and from below, this probability is of the ode,(X,0)) = 2~ 0%kl
and the whole approach can be carried out without difficulty. On the dihed, for more general
densities, the binomial probability dependsXpnand this makes the analysis significantly harder.

5.1 Proof of Theorem 1

Observe first that, by Jensen’s inequality,

E[fa(X) —1(X)]* = E[Eo[ra(X,0) —1(X)]]”

2_pg
<E[rn(X,0) = r(X)?.

A slight adaptation of Theorem 4.2 in Gifi et al. (2002) shows that, is consistent if both

diam(An(X,0©)) — 0 in probability and\y(X,©) — oo in probability.

Let us first prove thal,(X,®) — o in probability. To see this, consider the random tree parti-
tion defined by®, which has by construction exactly}®:k! rectangular cells, sa, . .. s Asfiogkn] -
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LetNy, ..., Nyjogk denote the number of observations amdn¥1, . .., Xy, falling in these 2%k
cells, and leC = {X, X1, ..., Xn} denote the set of positions of these 1 points. Since these points
are independent and identically distributed, fixing the@and®, the conditional probability that
X falls in the/-th cell equald\;/(n+ 1). Thus, for every fixed > 0,

P (Na(X,0) < M) =E [P (Nn(X,0) < M| C,0)]

N
) z 7‘21
0=1,... 21092kl :N, <M n+

M 2[109; kn]

which converges to 0 by our assumptionign

It remains to show that diafAs(X,©)) — 0 in probability. To this aim, le¥,;(X, ©) be the size
of the j-th dimension of the rectangle containiXg Clearly, it suffices to show tha,j(X,©) — 0
in probability for allj = 1,...,d. To this end, note that

Voj(X,0) 2 27 Kni(x.0),

where, conditionally oiX, K,;(X,©) has a binomiatB([log, ka|, pn;) distribution, representing the
number of times the box containingis split along thej-th coordinate (Fact 1). Thus

EMj(X,0)]=E |:27Knj(x,@):|
- [IEI [Z—Knj(x,e) |XH

= (1—pnj/2) ﬂogzknl,
which tends to 0 apnjlogk, — .

5.2 Proof of Proposition 2

Recall that .

I’_n(X) = ZEO [Wni(xa @)]YH

i=

where 1

_ _ XieAn(X,0)]

Whi(X,0) = N (X,0) 1z.(x.0)
and
Zn = [Nn(X,0) # 0.

Similarly,
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We have

2

E[Fa(X) ~ Fa(X) 2 = E iEe Whi (X, ©)] (% — £(X0))

=E _iE% [Wai(X, ©)] (¥ - r(xi>>2]

(the cross terms are 0 sinE&Y; | Xi] = r (X))

~E| 3 B Mh(X.0)](X)

< o’E [iEé Whi(X,0)]

= no’E [Eg Whi(X,0)]],

where we used a symmetry argument in the last equality. Observe now that

E3 Whi(X,0)] = Ee Whi(X,0)] Eer [Whi (X,0)]
(where@' is distributed as, and independent ©f,
= EO,@’ [Wnl(Xa@)Wnl(Xa@/)]

& Lix,emx.0)1dix1emnx,0)] 1 1
TP MK O)N(X, @) X

-E , l[X1€Ano(,@)ﬂAn(X’@/)]l 1 ,
00 | Ny (X, 0)Nn(X, 0) X0 1mx @) |-

Consequently,

- " Lix1€An(X,0)A0(X.©)]
—Fy(X)]2 < no%E | ZX1EM X, Ay 1r ol .
E[rn(X) =fn(X)]" < no Nn(X, ©)Nn(X, ) En(X,0)LE,(X,0)
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Therefore

< n6%E L%, eAn(X,0)NAN(X,0")]
- (I+ 32 hxennxo)) (1+ 32 Lxenx.0))
_ n6%E L%, €An(X,0)NAN(X,0))]
(1+ 3o Lxeaxo))
X n ! |X>Xlaev o
(1+ 32 Lxenx.o)
> 1
~ MR | Baeaconaxent®| e 2 Lixienn(x.0)))
1= i b
X n ! |X,X1,@, @/
(1+ 32 Lxennx.))
2 1
=NO°E | 1jx,ean(x.0)nAnx,0) E

(1+ 3o Ix canx.0))
1
X n
(1+ 3o L eanx.0)))

by the independence of the random variab¥eX,...,X,,©,@. Using the Cauchy-Schwarz in-
equality, the above conditional expectation can be upper bounded by

1X,0,0

EL/2 : ! _X,0| x EY?2 - L 5 |X,0
(1+ 32 Yxenx.0)) (1+ 32 hxeanx.o)
3 x 22[10gzkn]
< -
(by Fact 2 and technical Lemmal
2
<2

It follows that

Elra(X) - () < 2280

120°k?

E [1ix;eAn(X,0)n0A(X,0)]]

E [Ex, [Lix,can(x.0)nanx.0)]]]

1200 1 [y, (X1 € Aa(X, ©) 1 An(X, @)]. )

Next, using the fact that; is uniformly distributed ove[0, 1], we may write
Px, (X1 € An(X,0) NAN(X,0")) = A (An(X,0) NA(X, D))

d
= [ (Ani (X, @)1 A(X.9))..
|=
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where
d

rlAnj(X,G)’).

1=

d
An(X,0) = I_IIA”j(X’e) and An(X,0) =
=
On the other hand, we know (Fact 1) that, forja 1,...,d,

A (Anj(X,0)) £ 27Knil*©),
where, conditionally oiX, Ky;(X,©) has a binomiaiB([log, kn|, pnj) distribution and, similarly,
A (Anj(X,9)) 2 27 KX,
where, conditionally oiX, K};(X,®’) is binomial B([log, kn |, pnj) and independent d{,;(X, ©).

In the rest of the proof, to lighten notation, we wiitg; andKy,; instead oK, (X, ©) andKp; (X, "),
respectively. Clearly,

A (Anj(X,0) N Anj(X,©)) <27 mXKn k)
= 27K;1127(K”17Kr/1j)+

and, consequently,
I_II)\ (X, 0)NA(X,0)) <2™ logz kn] rlz (Knj—Kaj)+

(since, by Fact 1;?:1 Knj = [log, kn]). Plugging this inequality into (3) and applyinglder’s
inequality, we obtain

1202k,

[ d
E 2~ (Knj—Kpj)+
il
2 i d
= 120 k”[[«; E rLZ*(Kaném \X”
1202kn

n
< I—LEl/d[ d(Knj—Kpj) + \X]].

Each term in the product may be bounded by technical Proposition 13higridads to

i e s8a2k & o 1/2d
E[rn(X)—rn( = ™ ( [16“092kn-| pnj(l—pnj)]

28&)-2kn d . |: 1T|092 :|1/2d
< 1 :
= m Bmm ( ’ 16(logkn) Pnj(1—pPnj)

Using the assumption on the form of thg;, we finally conclude that

E [Fa(X) = Fa(X)]* <

kn

o \ S/2d
E [fn(X) — Fn(X)]? < Ca? <S> (1+En)W7

S-1
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where

and

1+&n=

jes

N RIS
M|+t (1- %) ] .

Clearly, the sequencg,,), which depends on th¢(&,j) : j € S} only, tends to O a® tends to
infinity.

5.3 Proof of Proposition 4

We start with the decomposition

E[fn(X) — 1 (X)]?
2

_E iE@ Mi(X, ©)] (F(Xi) — (X)) + (_iE@ Whi(X,©)] — 1) r(X)

ZWn,XG (an.X@ ) 2 r
ZWn, (X,0)( <21Wn. (X,0) — ) ] )

=E |Eo

where, in the last step, we used Jensen’s inequality. Consequently,

2

ZWnl (X, @ —r(X))| +E [F(X) 1’Eﬁ(X,@)]2
2
<E ZWni(X,@)(r(Xi)—r(X)) +| sup rz(x)] P(ES(X,0)). (4)
i= x€[0,1]d
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Let us examine the first term on the right-hand side of (4). Observe thttelCauchy-Schwarz

inequality,

N 2
E ;wnmx,e)(r(xi)—r(xn]

2

<B| 3 VRO R (K6 (X)) ~r(X)

<E (_iwni(xv @)> (_iwni(x, O) (r(X;)— I‘(X))2>]

<E _iwm(x,e)(ur(xi)—r(X))2

(since the weights are subprobability weights)

Thus, denoting by X|| s the norm ofX evaluated over the componentsinwe obtain

2
E [ﬂ;wnmx,e) (r(Xi) r<><>>]

<E [_;Wni(X,@) (r(Xis) — 1*(Xs))?

<L23 E [Wa(x.0)1% ~X]3]

= nLE W (X, ©) X1 — X][5]
(by symmetry)
But
E [Wha (X, ©)[|X1 — X|3]

I 1
_ vy (12 TIX1€An(X,0)]
—E_lel XllsiNn(x,@) 1%0@@)]

[ L%, cAn(X,0)] ]
—F ||IX1 — X2 [X1An(X,
X1 H51+2i”:21[xieAn(x,e)]

[ 1ix;ean(x.0)]
—E |E ||IXq — X |2 —Xa€A(X, X,X1,0|] .
i [H ' H51+Zi“:21[xieAn(x7e)1’ o

Thus,
E Whi(X,0)|[X1 - X]3]

1
=E [”Xl — X514, ennx.0)E [

1+ 3 Lxienx.0))

|X7X17@:|:|

1
=b [”Xl X5 txscmx ol [1+ Yo Lixican(x,0)) 1% @] ]

(by the independence of the random variat{eXy, ..., X, ©).
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By Fact 2 and technical Lemma 11,

[log, kn]
S
1+ 3o Lxieanx.0)] n n

Consequently,
N 2
E _Ziwni(X,@)(r(Xi)—r(X)) < 2L2KaE [[[X1 = XI5 x,emqx 0)] -
1=
Letting
d
An(X,0) = [1Anj(X,0),
,D j
we obtain

N 2
E [_anime) (r(%:) —r<><>>]

< 2% Y E[X X0y ca k0]
JES

= 2% Y E[pj (X, X1,0)E, | XV - x D21,

& i”eAn,(x,e)]H

where, in the last equality, we set

Pi(X,X1,0) = 1.0 .
t:1:~|~._,(|i,t;ej (X1’ €An(X,0)]

Therefore, using the fact thay is uniformly distributed ovefo, 1]9,

2
E [_anxx,e) (r (%) - r<X>>] < 2%k, T E[p)(X. X1, 0)A% (Agj(X.©))]

JES
Observing that
)\ (Anj (Xa @)) X E[X(lt) :tzl,...,di#j] [pj (Xa X17 @)]
=A(An(X,09))
— p—[log knl
(Fact 2,
we are led to

N 2
E [_;wnmx,e) (r(x) - r<><>>]
<225 E [N (Anj(X,0))]
jes
=212y E |27 %nX0)
3 B[]

asg sl
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where, conditionally oiX, Knj(X,©) has a binomiaB([log, k|, pnj) distribution (Fact 1). Conse-
quently,

2
|5 Wh(X.0) (r(xi>—r<><>>]

<25 (1—-0.75py) %!
B

<a*y eXp(—mpnjlogkn>

& log2
1
=22y
JGZS kns%mzm)
2S1?
- kﬂé.’%(ﬂw)’

To finish the proof, it remains to bound the second term on the right-haadsid), which is
easier. Just note that

P(E(X,0)) =P <.il[Xi€An(X7@)] = 0)

n
[ (; Xi€A(X.0)]
_ (1_2—ﬂogzknw)”

(by Fact 2
< e W

Putting all the pieces together, we finally conclude that

2512

SOTZ;Z (1+yn)

kn

+

E[fa(X) = (X)) <

sup r2(x)| e,
x€[0,1]d

as desired.

5.4 Some Technical Results

The following result is an extension of Lemma 4.1 ind®fy et al. (2002). Its proof is given here for
the sake of completeness.

Lemma 11 Let Z be a binomiaiB(N, p) random variable, with g (0,1]. Then
(i)

E[liz] = (N—:l)p'
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1 2
B [Zlm} = (N+1)p

(iii )

1 3
E [1+ZZ} = (N+1)(N+2)p?

Proof To prove statemerti), we write

The second statement follows from the inequality

1 2
E [zl[b”} =& [HZ}

and the third one by observing that

i) - Z)l+12< Jera-pr

Therefore

1 1 N 14j /N+1\ n
E = . J+11 — p)N-i
[1+ZZ] (N+1)p 2 1+JZ<J—|—1>p (1=p)
3 N+ 1\ y
< j+1 1— N—j
(N+1 p2)2+1<]+1>p (1=p)
N+1 N+1 .
. 1— N+1—]j
N+1 Z,lﬂ( > '@-p)

= (N+1)(N+2)p
(by (i)).
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Lemma 12 Let Z; and % be two independent binomi&@(N, p) random variables. Set, for all
ze C*, ¢(2) = E[Z2~%]. Then
(i) Forallze C*,
, N
¢(2)=[p(l-p)(z+Zz ) +1-2p(1-p)]
(i) Forall j €N,

P(Z1-22=1) 2m/zl+1

whererl is the positively oriented unit circle.
(iii) Foralld >1,
E [2 d(Z1-22)+ } < 24/1exp(—4N p(1- p)t?) ct.
T Jo

Proof Statementi) is clear and(ii) is an immediate consequence of Cauchy’s integral formula
(Rudin, 1987). To prove statemefiii ), write

E[Z d21-2 } Z)z—dlp (Zi—22)s = )
— %z-dip(zl—zzz i)

< ;2 Ap(zy-2,=)

M5 ()

(by statemen(u )

1™ 9(ef)
T on) n1-2-de®

(by settingz: d® 0c[-mm)

od-1 o
=0/ [l+2p(1 p)(cosd — 1) mde

(by statemen( ).

de

Noting that
eie 2d 7ei9
20g0 _1 ~ 220 _pd+lcosh+ 1

we obtain

24 _ cosd
22d _ 2d+1lcosh 41

2d-1 rm
P e / [1+2p(1— p)(cosH— )N
T J-mn
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The bound
29 _ cosB 2441

<
220 _20+1cos9+1 ~ (29— 1)2

leads to
E [Z—d(21—22)+]
2120+ 1)
< T[(2d—l)2/
2@ty
T om(2d—1)2
d (od T
R Ty m——

(cosB— 1= —2sirf(6/2))

20+1 2d+1 /2 )
_ 1'[(25' — 1)2) /o [1—4p(1— p)sirPe] " do.

" [142p(1— p)(cosH— 1) de

—T

/on[1+2p(1— p)(cosd—1)]N da

Using the elementary inequalif — z)N < e N?for z € [0,1] and the change of variable
t =tan(6/2),
we finally obtain

20+2(2d 1) (1 16Np(l—p)t?\ 1
~dZ1-22), | < / _
E[2 < 212 Jo < (1+12)2 >l—|—t2

1
<Cy [ exp(—4NpP(L—p)) k.

with d+2(od
2 2°+1
c-EiE
m(2d — 1)
The conclusion follows by observing th@§ < 24/mtfor alld > 1. [ |

Evaluating the integral in statemeiit ) of Lemma 12 leads to the following proposition:

Proposition 13 Let Z; and % be two independent binomig(N, p) random variables, with &
(0,1). Then, for all d> 1,

24 Tt
—d(Z1-2Z2)+ | <« Z0mi -
E[Z } - |n<l, \/ 16Np(1—p)>'

Acknowledgments

I would like to acknowledge support for this project from the French MatidResearch Agency
under grant ANR-09-BLAN-0051-02 “CLARA’ and from the INRIArgject “CLASSIC” hosted

1092



ANALYSIS OF ARANDOM FORESTSMODEL

by Ecole Normale Sugrieure and CNRS. | greatly thank the Action Editor and two referees for
valuable comments and insightful suggestions, which lead to a substantialenpeot of the paper.

I would also like to thank my colleague Jean-Patrick Baudry for his predielgson the simulation
section.

References

D. Amaratunga, J. Cabrera, and Y.S. Lee. Enriched random foRisiaformatics 24:2010-2014,
2008.

Y. Amit. 2D Object Detection and Recognition: Models, Algorithms, and Netwoikse MIT
Press, Cambridge, 2002.

Y. Amit and D. Geman. Shape quantization and recognition with randomizesl teeiral Com-
putation 9:1545-1588, 1997.

G. Biau and L. Devroye. On the layered nearest neighbour estimateagiged nearest neighbour
estimate and the random forest method in regression and classificddiomal of Multivariate
Analysis 101:2499-2518, 2010.

G. Biau, L. Devroye, and G. Lugosi. Consistency of random foresdsosher averaging classifiers.
Journal of Machine Learning Researc#2015-2033, 2008.

G. Biau, F. @rou, and A. Guyader. On the rate of convergence of the baggedsheeighbor
estimate.Journal of Machine Learning Researctil:687-712, 2010.

P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lassolanizig selector.The
Annals of Statistics37:1705-1732, 2009.

G. Blanchard. Different paradigms for choosing sequential reweiglatigorithms. Neural Com-
putation 16:811-836, 2004.

L. Breiman. Bagging predictordachine Learning24:123-140, 1996.

L. Breiman. Some Infinity Theory for Predictor Ensemblégechnical Report 577, UC Berkeley,
2000. URLht t p: // www. st at . ber kel ey. edu/ “br ei nan.

L. Breiman. Random forest84achine Learning45:5-32, 2001.

L. Breiman. Consistency For a Simple Model of Random Forest®chnical Report 670, UC
Berkeley, 2004. URIht t p: / / ww. st at . ber kel ey. edu/ ~br ei man.

L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stofassification and Regression Trees
Chapman & Hall, New York, 1984.

A.M. Bruckstein, D.L. Donoho, and M. Elad. From sparse solutions efesys of equations to
sparse modeling of signals and imagB$AM Review51:34-81, 2009.

P. Buhlmann and B. Yu. Analyzing baggin@he Annals of Statistic80:927-961, 2002.
A. Buja and W. Stuetzle. Observations on baggiStatistica Sinical6:323-352, 2006.

1093



Biau

F. Bunea, A. Tsybakov, and M. Wegkamp. Sparsity oracle inequalitiethéoLasso. Electronic
Journal of Statistics1:169-194, 2007.

E.J. Cands and T. Tao. The Dantzig selector: Statistical estimation vghiermuch larger than.
The Annals of Statistic85:2313-2351, 2005.

L. Devroye, L. Gyrfi, and G. Lugosi.A Probabilistic Theory of Pattern RecognitiorSpringer-
Verlag, New York, 1996.

R. Diaz-Uriarte and S.A. de Ands. Gene selection and classification of microarray data using
random forestBMC Bioinformatics 7:1471-2105, 2006.

T.G. Dietterich. An experimental comparison of three methods for constguetisembles of deci-
sion trees: Bagging, boosting, and randomizatidachine Learning40:139-157, 2000.

Y. Freund and R. Shapire. Experiments with a new boosting algorithm. laittaSeditorMachine
Learning: Proceedings of the 13th International Conferengages 148-156, San Francisco,
1996. Morgan Kaufmann.

J.H. Friedman. Multivariate adaptive regression splifi¢se Annals of Statistic49:1-67, 1991.

R. Genuer, J.-M. Poggi, and C. TuleauRandom Forests: Some Methodological Insights
arXiv:0811.3619, 2008.

R. Genuer, J.-M. Poggi, and C. Tuleau-Malot. Variable selection usimgora forests. Pattern
Recognition Letters31:2225-2236, 2010.

L. Gyorfi, M. Kohler, A. Krzyzak, and H. Walk. A Distribution-Free Theory of Nonparametric
RegressionSpringer-Verlag, New York, 2002.

T.K. Ho. The random subspace method for constructing decision forEsEE Transactions on
Pattern Analysis and Machine Intelligen@9:832—-844, 1998.

I.LA. lbragimov and R.Z. Khasminskii. On nonparametric estimation of regnessiboklady
Akademii Nauk SSSR52:780-784, 1980.

I.A. Ibragimov and R.Z. KhasminskiiStatistical Estimation: Asymptotic Theor$pringer-Verlag,
New York, 1981.

I.A. Ibragimov and R.Z. Khasminskii. On the bounds for quality of nonpatemeegression func-
tion estimation.Theory of Probability and its Application27:81-94, 1982.

A.N. Kolmogorov and V.M. Tihomirove-entropy and-capacity of sets in functional spacésner-
ican Mathematical Society Translatigris/:277-364, 1961.

Y. Lin and Y. Jeon. Random forests and adaptive nearest neightdotgrnal of the American
Statistical Associatiaornil01:578-590, 2006.

N. Meinshausen. Quantile regression foresurnal of Machine Learning Researclt983—-999,
2006.

1094



ANALYSIS OF ARANDOM FORESTSMODEL

W. Rudin. Real and Complex Analysis, 3rd EditiocGraw-Hill, New York, 1987.

J. Shawe-Taylor and N. CristianinKernel Methods for Pattern Analysi<ambridge University
Press, Cambridge, 2004.

V. Svetnik, A. Liaw, C. Tong, J. Culberson, R. Sheridan, and B. teeufkandom forest: A classifi-
cation and regression tool for compound classification and QSAR modétngnal of Chemical
Information and Computer Science:1947-1958, 2003.

R. Tibshirani. Regression shrinkage and selection via the Laksarnal of the Royal Statistical
Society, Series,B58:267-288, 1996.

L.J. van't Veer, H. Dai, M.J. van de Vijver, Y.D. He, A.A.M. Hart, M. Mad,L. Peterse, K. van der
Kooy, M.J. Marton, A.T. Witteveen, G.J. Schreiber, R.M. KerkhovenR@berts, P.S. Linsley,
R. Bernards, and S.H. Friend. Gene expression profiling predicts alinidccome of breast
cancer.Nature 415:530-536, 2002.

1095



