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Abstract

In this paper we study the problem of designing SVM classifiers when the kernel matrix,K , is
affected by uncertainty. SpecificallyK is modeled as a positive affine combination of given positive
semi definite kernels, with the coefficients ranging in a norm-bounded uncertainty set. We treat the
problem using the Robust Optimization methodology. This reduces the uncertain SVM problem
into a deterministic conic quadratic problem which can be solved in principle by a polynomial time
Interior Point (IP) algorithm. However, for large-scale classification problems, IP methods become
intractable and one has to resort to first-order gradient type methods. The strategy we use here is
to reformulate the robust counterpart of the uncertain SVM problem as a saddle point problem and
employ a special gradient scheme which works directly on theconvex-concave saddle function.
The algorithm is a simplified version of a general scheme due to Juditski and Nemirovski (2011).
It achieves anO(1/T2) reduction of the initial error afterT iterations. A comprehensive empirical
study on both synthetic data and real-world protein structure data sets show that the proposed
formulations achieve the desired robustness, and the saddle point based algorithm outperforms the
IP method significantly.

Keywords: robust optimization, uncertain classification, kernel functions

1. Introduction

The Support Vector Machine(SVM) formulation (Vapnik, 1998) learns aclassifier of the form

f (x) = sign

(
n

∑
i=1

αiyiK(xi ,x)+b

)
(1)
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from a training data setD = {(xi ,yi)|xi ∈ X ,yi ∈ {1,−1} i = 1, . . . ,n}. The coefficients,α, are
determined by solving

max
α∈Sn,t

α⊤e− 1
2t s.t. α⊤YKYα ≤ t (2)

whereSn = {α|0≤ αi ≤C, ∑n
i=1 αiyi = 0} andY = diag(y1, . . . ,yn). Each entry of the matrixK , is

defined by K i j = K(xi ,x j) whereK : X ×X → R, is a kernel function and it defines a dot product
in an associatedReproducing Kernel Hilbert Space(Mercer, 1909; Shawe-Taylor and Cristianini,
2000). As a consequence ofK(·, ·) being a dot product, the matrixK needs to be positive semi-
definite (see, e.g., Shawe-Taylor and Cristianini, 2000) for any positiveintegern.

Observations emanating from real world data are often plagued by uncertainty. The problem of
designing classifiers for uncertain observations remain an interesting open problem and has gained
considerable interest in the recent past. Previous attempts (Ghaoui et al.,2003; Bhattacharyya
et al., 2004; Shivaswamy et al., 2006; Bhadra et al., 2009; Ben-Tal etal., 2011) at designing robust
classifiers have been limited to the case of linear classification where the uncertainty is specified
over an explicitly stated feature map.

Consider the problem of automated protein structure classification, an important problem of
Computational Biology, where no such feature map is available. Protein Structures are specified by
a set of 3D coordinates and it is possible to design kernel functions for protein structures based on
the coordinates (Qiu et al., 2007; Bhattacharya et al., 2007). Unfortunately the coordinates are not
known precisely and this makes the kernel values uncertain. Motivated bythis problem (Bhadra
et al., 2010) initiated a study of designing robust classifiers when the entries of the kernel matrix are
independently distributed random variables (a somewhat problematic assumption). The approach,
based on Chance-Constraints (probabilistic) formalism, leads to a non-convex problem which may
result in an invalid (i.e., indefinite) kernel matrix.

In this paper we propose a Robust Optimization(RO) approach which overcomes the above
drawbacks. The approach employs a geometric description of uncertaintyinstead of the probabilis-
tic description used earlier (Bhadra et al., 2010). The uncertainty in the kernel matrixK is modeled
by a bounded convex set, which encompasses several possible realizations ofK . This new approach
results first in a robust counterpart of the uncertain SVM which can be cast as a Conic Quadratic
(CQ) problem. Such problems can be solved in polynomial time by Interior Point(IP) algorithm.
However for large-scale problems IP methods become intractable. Our main contribution here is to
reformulate the robust counterpart as a saddle point problem. Due to favorable conditions satisfied
by the saddle function one can in principle refer to a gradient-based general scheme introduced in
(Juditski and Nemirovskii, 2011) for solving such saddle point problems.Using this scheme we
propose an algorithm, which has a much more simplified analysis, and achievesthe same efficiency
estimate, namely it achieves theO(1/T2) reduction in the initial error afterT iterations. Experi-
mental results performed on synthetic data, as well as real-world protein structure data sets, show
that the saddle-point based algorithm outperforms the IP method considerably. We further conduct
detailed experimental evaluation to test the robustness and scalability of the obtained classifiers.

The paper is structured as follows. To motivate the paper we start with a brief discussion on
issues underlying protein structure classification and kernel based classifiers in Section 2. In Sec-
tion 3 we review the formulation in Bhadra et al. (2010) and identify the key shortcomings of the
approach. The RO approach for designing robust SVMs is discussedin Section 4. The RO ap-
proach leads to a minimax problem. In Section 5 we present the saddle point algorithm and discuss
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its application to the minimax problem. In Section 6 we prepare the ground for a comprehensive
computational study by introducing various prediction rules and related error metrics. The results
of the computational study are described in Section 7.

1.1 Notation

The space of symmetric positive semi-definiten× n matrices will be denoted asSn
+. Let A∗B

denote the the Hadamard prodcuct of two matrices(A∗B)i j = Ai j Bi j whereA andB are two square

matrices. Frobenius norm of matrixA will be denoted as‖A‖F =
√

∑i j A2
i j . Let 1A be the indicator

function for the eventA. The uniform random variate will be represented asU(a,b) (a < b). We
denotediag(x1, . . . ,xn) to be an×n diagonal matrix whoseith diagonal entry isxi .

2. Motivation: Uncertain Kernels and Automated Protein Structure Classification

Classification of protein structures into various classes like families, superfamilies etc remains an
important research challenge in computational biology (see Holm and Sander, 1996 for an introduc-
tion). Kernel based classifiers are becoming increasingly popular (Qiu et al., 2007; Bhattacharya
et al., 2007), for addressing this problem.

Usually a protein structure is specified by the positions of alpha carbon (Cα) atoms. A formal
description ofCα atoms and protein structures is beyond the scope of the paper and we refer the
reader to Branden and Tooze (1999) for an introduction. In the sequel we will denote protein
structure by a set

P= {ci ∈ R
3|i = 1, · · · ,s}, (3)

where eachCα atom is determined by spatial coordinatesci = {ci1,ci2,ci3} obtained by X-ray crys-
tallography. Automated classification of such structures is an extremely useful and challenging
problem in computational biology. In the recent past kernel based methods (Qiu et al., 2007; Bhat-
tacharya et al., 2007) have emerged as an interesting alternative to this problem.

Biologists often determine the similarity between a pair of structures by first computing an
alignmentand then measuring the quality of thealignmentby root mean square deviation(RMSD).
We do not formally define the notion of alignment and RMSD in this paper but therefer the in-
terested reader to Shindyalov and Bourne (1998) and Holm and Sander(1996) for an introduction.
Though computing structural alignment is an intractable problem there are several heuristic algo-
rithms like DALI (Holm and Sander, 1996), CE (Shindyalov and Bourne, 1998) etc, which works
well in practice. Existing literature (Qiu et al., 2007; Bhattacharya et al., 2007) on kernel design
rely on structural alignments computed by such programs.

All such procedures implicitly assume that the protein structures are specified exactly, that is,
the location of the atoms constituting the structure is known precisely. Unfortunately in reality,
the coordinates,ci , are difficult to determine with exact precision and is highly dependent on the
resolutionof X-ray diffraction experiment.1 For a protein structureP, the resolution information
r, specifies the error in each coordinate. More formally the position of theith atom in a protein
structureP (see (3)) could be anywhere in the uncertainty box{c|‖c− c̄i‖∞ ≤ r}, around the value
c̄i . For any r > 0 one can now define the uncertainty setU(P) for anyP as follows

U(P) = {R|R= {z1, . . . ,zs} ‖zi − c̄i‖∞ ≤ r, zi ∈ R
3, i = 1, . . . ,s}. (4)

1. Seehttp://www.rcsb.org/pdb/ for examples.
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Figure 1: (a) Pictorial presentation ofCα atoms of proteind1vsra1(top) andd1gefa1(bottom). (b)
Structural alignment between them. (c) Possible perturbation within resolutionlimit. (d)
Alignment among perturbed structures

Furthermore we would refer to

P̄= {c̄i ∈ R
3|i = 1, . . . ,n}

as thenominalstructure andU(P) as the uncertainty set associated with it. The setU(P) character-
izes all alternative structures, includinḡP for a given value ofr.

The structural alignment betweenP andP′ in presence of uncertainty setsU(P) andU(P′) is
not defined anymore. Even whenr is small, the alignment scores between twonominalstructures,
P̄ and P̄′ can differ significantly from the alignment scores between an arbitraryR andR′ where
R∈U(P),R′ ∈U(P′). This difference in alignment scores leads to uncertain kernel values.

For example, consider two proteins2 d1vsra1(denote it by P) andd1gefa1(denote it byP′)
belonging to protein superfamilyRestriction endonuclease-like. The value ofr for P is 1.8Å and
for P′ it is 2.0Å respectively. The program DALI computes a structural alignment with RMSD of 3.7
Å between these two structures. Figure 1(a) shows pictorial presentationof Cα atoms of these two
proteins while Figure 1(b) shows structural alignment between them. If oneignores the uncertainty
one obtains a kernel value of 1.3585, using the kernel function described in Bhattacharya et al.
(2007). On randomly sampled structures, from the corresponding uncertainty box (4) we observe
that the kernel value ranged from 1.1542(= Kmin)≤ K(P,P′)≤ 1.4964(= Kmax), see Figure 1(c,d).
This variability is indeed substantial. In superfamilyRestriction endonuclease-like, more than
60% of the kernel values, computed between any pair of nominal protein structures, lie between
Kmin andKmax.

2. One should refer to them as SCOP domains. But to lighten the discussion on the biology side we refer to them as
proteins.
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This demonstrates that accounting for resolution information leads to considerable uncertainty
in kernel values. There is clearly a need for designing classifiers whichcan withstand this variation
in kernel values. This is an extremely challenging problem which has not been well studied in the
literature. Recently (Bhadra et al., 2010) initiated a study of this problem in a probabilistic setting.
In the following section we review this work, to identify key shortcomings and subsequently propose
a robust optimization procedure to address them.

3. Related Work

In Bhadra et al. (2010), the uncertainty is modeled by independent noisein each of the entries of
the kernel matrixK . The uncertain event

(
α⊤Y(K)Yα ≤ t

)
is then required to occur with high

probability. This results in the followingchance constraintproblem:

p∗ = max
t,α∈Sn

α⊤e− 1
2

t (5)

s.t. Prob
(

α⊤Y(K +Z)Yα ≤ t
)
≥ 1− ε (6)

whereε < 0.5, and whereZ is a random matrix variate.
Problem (5) is hard to solve since typically the feasible set is non-convex.The key result is the

derivation of a lower bound onp∗ under probabilistic assumptions on the entries ofZ

Theorem 1 [Bhadra et al., 2010] Let Z be an n× n random symmetric matrix with independent
entries, Zi j , each having finite support, P(ai j ≤ Zi j ≤ bi j ) = 1 and E(Zi j ) = 0. Then the chance
constraint in(5) is satisfied at any pair(α, t) which is feasible for the constraint

α⊤YKYα+
√

2log(1/ε)‖β′ ∗ (Yαα⊤Y)‖F ≤ t

whereβ′
i j = l i j γi j where li j =

bi j−ai j

2 , ci j =
bi j+ai j

2 , µ̂i j =− ci j

l i j
and

andγi j = min{σ ≥ 0 | σ2

2 z2+ µ̂i j z− log(cosh(z)+

µ̂i j sinh(z))≥ 0, ∀ z ∈ R}.

Proof See Bhadra et al. (2010).

Theorem 1 is used to replace (5) by the following problem, whose optimal value lower-boundsp∗.
Specificallyp∗ > p̂, where

p̂= max
t,α∈Sn

1
2

t −∑
i

αi

s.t. ∑
i j

yiy jαiα jK i j +κ
√

∑
i j

βi j α2
i α2

j ≤ t (7)

where,κ =
√

2log(1/ε) andβi j = β′2
i j . Any solution of the above problem is guaranteed to satisfy

the chance constraint of problem (5).
This approach suffers from several drawbacks. First unless the matrix β is psd, problem (7) is

not necessarily convex. Indeed in Bhadra et al. (2010) a locally optimalQuasi newton procedure
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was suggested for solving this problem. In the sequelRSVM will denote the solution of (7) by the
Quasi newton procedure. The second most important drawback is that the constraint (6) does not
define a valid model of uncertainty.

To constitute a valid characterization of uncertainty set the constraint (6) needs to be modified
as follows

Prob
(

α⊤Y(K +Z)Yα ≤ t
)
≥ 1− ε, K +Z ∈ S+

n

The formulation (5) solves a relaxed version of the above problem by ignoring the psd requirement.
As a consequence the resultant optimization problem becomes non-convex. Thirdly, the assumption
that entries ofZ are independently distributed is extremely unrealistic; often the uncertainty in the
entries are due to uncertainty in the observations henceK(xi ,x j) is seldom independent ofK(xi ,xl )
for distinct i, j, l .

In this work we pursue a RO methodology where the uncertainty is describedby a geometric
set. This allows us to alleviate the drawbacks associated with the probabilistic model. In the next
section we describe a RO procedure for designing robust classifiers.

4. Affine Uncertainty Set Model for Uncertain Kernel Matrices

In this section we introduce an uncertainty set over psd matrices and study the resultant robust SVM
problem using an RO approach.

4.1 Robust Optimization

Consider an uncertain optimization problem (8) wheref ,gi : S⊂ (Rn×R
k)⇒ R

min
x∈Rn

f (x,Ψ) (8)

gi(x,Ψ)≤ 0 i = 1, . . . ,m

where Ψ ∈R
k is a vector of uncertain parameters. The UOP is in fact afamilyof problems -one for

each realization ofΨ. In the RO framework the information related toΨ is modelled as ageometric
uncertainty setE ⊂ R

k and the family of problems, (8) is replaced by itsrobust counterpart:

r∗ = min
x

max
Ψ∈E

f (x,Ψ) (9)

gi(x,Ψ)≤ 0 ∀Ψ ∈ E i = 1, . . . ,m.

A solution of (9) is feasible to (8) for any realization ofΨ ∈ E and the objective function is guaran-
teed to be no worse thanr∗. The uncertainty setE is typically a polytope or ellipsoid or intersection
of such sets. These sets yield useful models of uncertainty, which lead to tractable optimization
problems (Ben-Tal et al., 2009). A general representation ofE is as follows

E = {Ψ = Ψ̄+
L

∑
i=1

ηiΨi |‖η‖ ≤ ρ}

whereΨ̄ is the nominal value of the uncertain vectorΨ, the vectorsΨi are possible scenarios of it,
andη is a perturbation vector. The norm is suitably defined to capture the geometryof the set. As
an example, Consider the ellipsoidal set

Eellipsoid = {Ψ|(Ψ− Ψ̄)⊤Q(Ψ− Ψ̄)≤ ρ}
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whereQ∈ Sn
+ and is positive definite. It is easily seen that the set can be represented by E with Ψi

being the columns ofQ− 1
2 and where‖ · ‖ is theL2 norm.

In general the RC of an UOP may have infinite number of constraints and is often NP hard.
However in several important cases it reduces to a polynomially solvable convex optimization prob-
lem. We refer the reader to Ben-Tal et al. (2009) for a comprehensivetreatment of RO problems.

4.2 Affine Uncertainty Set Model

Recall the setup for the problem, there is a black box which when presentedwith a pair of obser-
vationsz,z′ ∈ X computes the kernel valueK(z,z′). We assume that ifz andz′ are noisy obser-
vations with uncertainty setsU(z) andU(z′) with nominal valuesznom andz′nom respectively then
K(z,z′) = K(znom,z′nom), defines a kernel function and will be called thenominal kernel. The differ-
ence between actual and the nominal kernel is expressed by a linear combination of knownL kernel
functions,Kl , l = 1, . . . ,L evaluated at pointsz,z′, as follows:

K(z,z′)−K(z,z′) =
L

∑
l=1

ηl Kl (z,z
′).

When there is no uncertaintyK(z,z′) = K(z,z′) andη = 0. The value ofK(z,z′) lies in the uncer-
tainty set

{K(z,z′)+
L

∑
l=1

ηl Kl (z,z
′)|‖η‖p ≤ κ, ηl ≥ 0 ∀l = 1, . . . ,L} (10)

where‖η‖p, p≥ 1 denotes thelp norm onη. The constraintηl ≥ 0 is needed to ensure that each
element in the set represents a valid kernel evaluation. The quantityκ measures the quality of
approximation and hence the uncertainty. Ifκ = 0 then we have no uncertainty. Asκ increases the
uncertainty set increases. In the sequel we will refer toK̄,Kl as base kernels.

We impose the uncertainty set (10) to all examples of interest which immediately leads to the
following model of uncertainty on the kernel matrix corresponding to the training set,

E(κ) = {K = K +
L

∑
l=1

ηl K l , ‖η‖p ≤ κ ηl ≥ 0, l = 1, . . . ,L}. (11)

The matricesK ,K l ∈ S+
n are obtained by evaluating the known kernel functionsK,Kl on the training

set. As anyK ∈ E(κ) is always positive semi-definite, the setE(κ) defines a valid model for
describing uncertainty in psd matrices. In a later subsection we will discuss the relevance of this
setup to protein structure classification problem.

The Robust SVM problem (2) with uncertainK , as characterized in (11), can now be cast as
follows

max
α∈Sn

min
K∈E(κ)

−1
2

α⊤YKYα+α⊤e

or more explicitly

max
α∈Sn

min‖η‖p≤κ −1
2

α⊤YKYα− 1
2

α⊤Y
L

∑
l=1

(ηl K l )Yα+α⊤e . (12)

Note that in the latter problem the constraintη ≥ 0 is dropped. Indeed if we defineal = α⊤YK lYα
thenal ≥ 0 asK l ∈ S+

n . The optimalη is the solution of maxη∈Bp a⊤η whereBp(κ) = {η|‖η‖p ≤ κ}.
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which occurs atηl = κ aq−1
l

‖a‖q−1
q

≥ 0 where‖ ·‖q is the dual norm of‖ ·‖p, with q= p
p−1 for any p> 1.

For p = 1 one needs to observe that optimality is achieved atηl ≥ 0. Indeed there exists somel
such thatal = ‖a‖∞. The optimalη is given by the condition that∑l :al=‖a‖∞ ηl = 1 andηl ≥ 0. If
al < ‖a‖∞ thenηl is strictly 0. At optimalityηl ≥ 0, and hence the resulant optimal kernel lies in
E(κ).

Before proceeding further it might be useful to discuss the Computation ofb. Recall that one
also needs to computeb in (1). The choice ofb is governed by the following procedure. For a given
K ,K1, . . . ,KL let the optimal solution of (12) beα∗ andη∗. This η∗ can be viewed as defining an
effective kernelK = K +∑L

l=1 η∗
l K l and henceb can be computed as

b=
1

# SV ∑
j∈SV

[y j −∑
i

yiα∗
i Ki j ] SV= {i|αi > 0}.

For p= 2 the problem (12) can be solved as a Second Order Cone Program(SOCP)3

min
α∈Sn,a,t

1
2t + 1

2α⊤YKYα−α⊤e (13)

s.t ‖a‖2 ≤ t

α⊤YK lYα ≤ al , ∀l = 1, . . . ,L.

SOCP problems such as (13) can be solved by Interior point(IP) algorithms(e.g., CPLEX, MOSEK,
Sedumi) and will be denoted byUncertainty-Set SVM ( USSVMSOCP).

Generic IP solvers are inadequate for large scale classification problems. Instead, we demon-
strate here that the minimax reformulation, (12), admits algorithms which are bettersuited to large
scale problems. For simplicity of exposition we will consider the casep = 2. The results can be
easily extended for the general case,p > 1. Before we discuss the algorithmic aspects it maybe
useful to discuss the computation of the base kernels.

4.3 Evaluation of Base Kernels

Recall that in the protein structure classification problem each observationis specified by a(P̄,U(P),y),
whereP(see (3)) is the nominal structure,U(P)(see (4)) is the uncertainty set specified by the reso-
lution andy is the label. We discuss this problem in a formal setup and motivate the uncertainty set
described in (10).

To closely parallel the protein structure classification setting we consider thefollowing setup.
Given a data setD = {(xi ,Ui)|xi ∈Ui ,Ui ∈ X , i = 1, . . . ,m} where an observation,xi , is not directly
specified, instead a nominal value,xi , and an uncertainty setUi are given. When there is no uncer-
tainty the setUi reduces to onlyxi . We are also given a kernel functionK : X ×X → R. We make
no assumptions about the functional form ofK(·, ·), and we assume that there is a black box which
when presented with any pairz,z′ ∈ X returns a valueK(z,z′).

Let us now consider the computation ofK(xi ,x j). Sincexi ,x j are uncertain the precise value of
K(xi ,x j) is not known but it for sure lies in the set

U(x,x′) = {K(z,z′)|z∈U(x),z′ ∈U(x′)}.
3. This is also true for any(p> 1) because any p-norm can be represented by conic quadratic inequalities. For a more

detailed discussion on this issue see Ben-Tal and Nemirovski (2001).
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If there is no uncertainty then the setU(x,x′) is a singelton,K(x,x′). However as the functional
form of K is not known, it is not clear how to characterize the elements ofU which is amenable
to the RO procedure. We propose to circumvent this problem by building an alternate description
of the setU using a sampling procedure. We makeL independent draws from the uncertainty sets.
In the l th draw we obtainOl = {zl

1, . . . ,z
l
m} wherezl

i is an independent and uniform draw from
Ui . For a givenOl we invoke the kernel functionK to obtain anm×m kernel matrixKl where
Kl (xi ,x j) = K(zl

i ,z
l
j). OnceKl are determined we propose to approximateU by uncertainty set

described in (10).

5. An Algorithm for a Special Class of Convex-Concave SaddlePoint Problems

In this section we describe a novel algorithm, which is essentially a special case of an algorithm
presented in Juditski and Nemirovski (2011), for a class of convex-concave saddle point problems.
The algorithm is iterative in nature, requires only first order information, and hasO(1/T2) conver-
gence whereT is the total number of iterations. The proposed algorithm applies generally, more
specifically we show that it can be used to solve (12) and the convex version of (7).

5.1 Assumptions

Let U be a closed convex set in Euclidean spaceE, ‖ · ‖ be a norm onE, andω(u) : U → R be a
function. We say thatω(·) is a distance-generating function (d.-g.f.) forU compatible with‖ · ‖, if
ω is convex and continuous onU , admits a continuous on the setUo = {u : ∂ω(·) 6= /0} selection of
ω′(u) ∈ ∂ω(u) and is strongly convex, modulus 1 w.r.t.‖ · ‖:

〈ω′(u)−ω′(u′),u−u′〉 ≥ ‖u−u′‖2 ∀u,u′ ∈Uo.

Assume that

• X is a closed and bounded convex subset in a Euclidean spaceX , andY is a closed convex
subset in a Euclidean spaceY

• X , Y are equipped with norms‖ · ‖X , ‖ · ‖Y , the conjugate norms being‖ · ‖X ,∗, ‖ · ‖Y ,∗;

• X is equipped with a d.-g.f.ωX(·) compatible with‖ · ‖X , andY is equipped with a d.-g.f.
ωY (·). We denote byxω the minimizer ofωX(·) onX (note thatxω ∈ Xo) and set

ΩX = max
x∈X

ωX(x)−min
x∈X

ωX(x).

We assume that the minimizer ofωY (·) is the origin inY , and set

ΩY = max
‖y‖Y ≤1

ωY (y)−min
y∈Y

ωY (y).

We are interested in solving a saddle point problem

SadVal= min
x∈X

max
y∈Y

φ(x,y), (14)

whereφ(·, ·) satisfies the following assumptions:
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A.1. φ(x,y) : Z := X×Y → R is continuously differentiable function which is convex inx∈ X and
is strongly concave, modulusθ > 0 w.r.t. ‖ · ‖Y , in y∈Y, that is,

〈φ′
y(x,y

′)−φ′
y(x,y),y−y′〉 ≥ θ‖y−y′‖2

Y ∀(x∈ X,y,y′ ∈Y).

A.2. ∇φ(·, ·) is Lipschitz continuous onZ = X×Y

A.3. φ(x,y) is affine inx: φ(x,y) = 〈x,a(y)〉+g(y).

In the sequel, we set
φ(x) = max

y∈Y
φ(x,y), φ(y) = min

x∈X
φ(x,y),

so thatφ is a continuous convex function onX, φ is a continuous strongly concave, modulusθ w.r.t.
‖ · ‖Y , function onY, and

min
x∈X

φ(x) = SadVal= max
y∈Y

φ(y)

and the set of saddle points ofφ onX×Y is X∗×{y∗}, whereX∗ =ArgminX φ, andy∗ =ArgmaxY φ.
Finally, we denote byεsad(z), z∈ Z, the natural saddle point proximity measure:

εsad(x,y) = φ(x)−φ(y) =
[
φ(x)−min

X
φ
]
+

[
max

Y
φ−φ(y)

]
.

5.2 Fixed Step-size per Stage(FSS) Algorithm for Convex-ConcaveSaddle Point Problem

The MPb algorithm presented in Juditski and Nemirovski (2011) is an extremely fast algorithm
for convex-concave saddle point problems. Computation proceeds in several stages, each stage
consisting of multiple updates involving varying stepsizes. Here we introducea variation of the
MPb algorithm called FSS, which employs fixed stepsize at every stage of thealgorithm. We prove
that this apparent limitation does not harm the theoretical convergence. The proof (see Appendix
A) needs milder assumptions and is much simpler than the original MPb algorithm.

We present a variation of the algorithm where the stepsizes are fixed at every stage without any
loss of convergence efficency. In the following we present the Fixed stepsize per stage(FSS) version
of the MPb algorithm along with convergence analysis.

5.2.1 FSS ALGORITHM

We begin by introducing some notation

G(x,y) =

[
Gx(x,y) :=

∂φ(x,y)
∂x

= a(y);Gy(x,y) :=−∂φ(x,y)
∂y

]
: Z := X×Y → Z := X ×Y

be the monotone operator associated with the saddle point problem (14). ByA.1, this operator is
Lipschitz continuous, and, as we see, itsx-component depends solely ony. As a result, we can
specify the partial Lipschitz constantsLxy,Lyy such that

∀(x,x′ ∈ X,y,y′ ∈Y) :
‖Gx(x,y)−Gx(x,y′)‖X ,∗ ≤ Lxy‖y−y′‖Y ; ‖Gy(x,y)−Gy(x′,y)‖Y ,∗ ≤ Lxy‖x−x′‖X ;
‖Gy(x,y)−Gy(x,y′)‖Y ,∗ ≤ Lyy‖y−y′‖Y .

(15)
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We are now ready to present FSS algorithm. Execution of the algorithm is splitinto stages. At the
beginning of stages= 0,1, ... we have at our disposal positiveRs and a point ¯ys ∈Y such that

‖ȳs−y∗‖Y ≤ Rs/2. (Is)

These data define the quantities

(a) Zs = {(x;y) ∈ Z : ‖y− ȳs‖Y ≤ Rs},
(b) Ls = 2Lxy

√
ΩXΩY Rs+LyyΩY R2

s, τs = 1/Ls

(c) αs = [Lxy
√

ΩXΩY Rs]/Ls,βs = [Lxy
√

ΩXΩY Rs+LyyΩY R2
s]/Ls = 1−αs,

(d) ωs(x,y) =
[

αs
ΩX

ωX(x)+
βs

ΩY
ωY ([y− ȳs]/Rs)

]
,

(e) Ns = Ceil

(
64Lxy

√
ΩXΩY R−1

s +32LyyΩY

θ

)
.

(16)

At stages we carry outNs steps of the following recurrence:

1. Initialization: We setz1,s = (xω, ȳs) = argminZ ωs(·).

2. Stept = 1,2, ...,Ns: Givenzt,s ∈ Zo, we compute

wt,s = argminu∈Z

{
〈τsG(zt,s)−ω′

s(zt,s),u〉+ωs(u)
}

zt+1,s = argminu∈Z

{
〈τsG(wt,s)−ω′

s(zt,s),u〉+ωs(u)
} (17)

and pass to stept +1, providedt < Ns. Whent = Ns, we define the approximate solution to
(14) built in course ofsstages as

(xs,ys) = N−1
s

Ns

∑
t=1

wt,s, (18)

set
ȳs+1 = ys, Rs+1 = Rs/2

and pass to stages+1.

5.2.2 PROOF OFCONVERGENCE

In this section we discuss the convergence properties of the FSS algorithm.To this end we present
the following proposition.

Proposition 2 Let assumptions A.1-3 hold and letȳ0 ∈Y satisfying(I0) be given along with R> 0.
Then, for every s,(Is) takes place, and

εsad(x
s,ys)≤ θR2

02−2s−5, (19)

while the total number Ms = ∑s
i=0Ni of steps of the algorithm needed to build(xs,ys) admits the

bound

Ms ≤ O(1)

[
Lxy
√

ΩXΩY

θR0
2s+

LyyΩY +θ
θ

(s+1)

]
.
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In particular, setting

s∗ = max

[
s :

Lxy
√

ΩXΩY

LyyΩY +θ
2s ≤ (s+1)R0

]
,

we have
s≤ s∗ ⇒ εsad(xs,ys)≤ θR2

02−2(s+2) & Ms ≤ O(1)LyyΩY +θ
θ (s+1)

s> s∗ ⇒ εsad(xs,ys)≤ O(1)
L2

xyΩXΩY

θM2
s

& Ms ≤ O(1)
Lxy
√

ΩXΩY

θR0
2s.

(20)

Proof See Appendix A.

The above proposition points us to the convergence rate ofO(1/M2
s) when number of stages is

high. In the following, we explain how to apply the algorithm to the problem at hand.

5.3 Application of FSS Algorithm to (12)

In this section we discuss the application of FSS algorithm for solving formulation (12). It isstrictly
concavein α, providedK is positive definite, andaffinein η. The domain ofα andη are non-empty
convex sets. Clearly the formulation obeys all the assumptions, A.1-3, of theFSS procedure. In
order to be consistent with the notation of FSS procedure we define the following map where LHS
denotes quantities involving formulation (12) and the right hand side corresponds to the saddle point
procedure detailed in the previous section. In particular we useη → x, α → y, y→ s, YKlY → Ql ,
El = R

L, leading to the following definitions.

Y ={y∈ R
n : C≥ yi ≥ 0, ∑

i

siyi = 0} ⊂ R
n

X ={x∈ R
L : x≥ 0,‖x‖2 ≤ 1} ⊂ R

L

φ(x,y) =−
L

∑
l=1

xl (
1
2

y⊤Ql y)+y⊤e

Gx(x,y) =−d , d = [d1, . . . ,dL]
T dl =

1
2

y⊤Ql y

Gy(x,y) =(
L

∑
l=1

xl Ql )y−e1 , e1 = [1, . . . ,1]⊤

‖x‖X =‖x‖2, ωX(x) =
1
2
‖x‖2

2 xω = 0 , ΩX =
1
2

‖y‖Y =‖y‖2, ωY (y) =
1
2
‖y‖2

2, ΩY =
1
2

Lxy =2CLyy, Lyy =
√

Lmax
l

(λmax(Ql )) , R0 = 2C
√

n

Proposition 3 Computing the right-hand sides in every step in (17) is equivalent to solving prob-
lems of the form

(a) x+ = argminx∈X

[
1
2(x− x̄)T(x− x̄)− pTx

]
,

(b) y+ = argminy∈Y

[
1
2(y− ȳ)T(y− ȳ)−qTy

]
, (21)
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wherex̄∈X, ȳ∈Y are solution in previous iteration and p=−ΩXτs
αs

Gx(x̃, ỹ) and q=−ΩY τs

βs
R2

sGy(x̃, ỹ).
The point(x̃, ỹ) are intermediate points in(17).

Proof See that we haveωs(x,y) =
µs
2 xTx+ νs

2 yTy with certain positiveµs,νs (see (16)), hence a
computation of the type of (17), that is

{z̄= (x̄, ȳ) ∈ Zo,τ > 0,G(x̃, ỹ)}
⇒ z+ = (x+,y+) := argminu∈Z {〈τG(x̃, ỹ)−ω′

s(z̄),u〉+ωs(u)}

reduces to
x+ = argminx∈X

{
xT [τGx(x̃, ỹ)−µsx̄]+

µs
2 xTx

}

= argminx∈X

{
−pTx+ 1

2(x− x̄)⊤(x− x̄)
}
,

and
y+ = argminy∈Y

{
yT [τGy(x̃, ỹ)−νsȳ]+

νs
2 yTy

}

= argminy∈Y

{
−yTq+ 1

2(y− ȳ)⊤(y− ȳ)
}
.

Assuming that we start with a feasible point, that is,x0 ≥ 0 and x0⊤x0 = 1, thenxk+1 =
p+xk√

pT p+2pTxk+1
The computation steps involvingy is solved by projecting a vector onto the con-

straint set of the Dual SVM problem. The problem can be solved by a Quadratic program. However
we propose a line search procedure described in Appendix B which results in considerable saving
of computation time. The solution of formulation (12) by FSS procedure will be referred to as
USSVMMN .

5.4 Application of FSS Algorithm to the Chance Constraint Setting

The FSS procedure is fairly general and also applies to formulation (7). If β is psd then the formu-
lation (7) can be posed as a SOCP. In particular the following is true,

Theorem 4 [Bhadra et al., 2010] If both K ,β are symmetric psd matrices then formulation (7) is
equivalent to

mint,ν,t ′,α∈Sn
1
2t −∑i αi

s.t. κ‖β 1
2 ν‖ ≤ t − t ′,

‖Y(K)
1
2 α‖2

2 ≤ t ′,
α2

i ≤ νi .

(22)

One could recast this problem as a mini-max problem and solve it using the FSSprocedure.

Theorem 5 Formulation(22) is equivalent to

min
ζ≥0,

√
ζβ−1ζ≤ κ

2

max
α ∈ Sn

−1
2

α⊤YKYα+
n

∑
i=1

αi −∑
i

ζiα2
i . (23)

Proof At the optimum of (22) the constraint involvingt andt ′ is active. Using this we eliminate
botht andt ′ and on further dualizing one obtains,

max
ζ≥0

min
α ∈ Sn

L(ζ,α)

(
=

1
2

(
α⊤YKYα+κ

√
ν⊤βν

)
−

n

∑
i=1

αi +
n

∑
i=1

ζi(α2
i −νi)

)
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whereζi is the lagrange multiplier of the constraintα2
i ≤ νi . Using first order conditions for opti-

mality, ∂L
∂νi

= 0 one obtains

κ
2
(ν⊤βν)−

1
2 βν+ζ = 0,

√
ζ⊤β−1ζ =

κ
2
.

Eliminatingν and noting that at optimality the constraint of (23) involvingζ is active, the proof is
complete.

Note that the objective, in the previous theorem, is Lipschitz continuous, linear in ζ andstrongly
concavein α as long asK is positive definite. Bothζ andα lie in a convex and compact set. In
principle the FSS procedure applies and could be an interesting alternativeto the SOCP procedure
discussed in Bhadra et al. (2010).

5.5 Remarks

In this section we make some remarks on FSS algorithm and its suitability to the problem at hand.
A minimax problem minx∈X maxy∈Y φ(x,y) can be approached as follows

min
x∈X

(
g(x) = max

y∈Y
φ(x,y)

)
. (24)

If ∇xg were Lipschitz continuous, (24) could be solved at the rateO(1/T2) by the fast gradient
algorithm for smooth convex minimization due to Nesterov (1983). However for our problem,g
not necessarily possesses the desired smoothness. However, the situation still allows to achieve
O(1/T2) convergence rate by applying the FSS algorithm to the saddle point reformulation of (24).
The FSS algorithm is essentially a modification of the Mirror Prox (MP) algorithmpresented in
Nemirovski (2004). The prototype algorithm MP solves saddle point problem (24) with convex-
concave and smooth (with Lipschitz continuous gradient)φ at the rateO(1/T), with the hidden
factor in O(·) depending on the distance from the starting point to the solution set of (5.1) (this
distance is taken w.r.t. a norm‖·‖ assembling‖·‖X , ‖·‖Y ) and the Lipschitz constant of the gradient
of φ (this constant is taken w.r.t. the conjugate norm‖·‖∗). Now, whenφ is strongly concave iny, the
above convergence implies qualified convergence of they-componentsyt of approximate solutions
to they-componenty∗ of the saddle point ofφ, so that eventually we know that‖yt − y∗‖Y is, say,
twice smaller than (a priori upper boundR on) ‖y1− y∗‖Y . When it happens, affinity ofφ w.r.t.
x (AssumptionA.3) allows to rescale the problem and to restart MPas if we were working with
a twice smaller domain than the original one, which results inO(1/T) convergencewith reduced
hidden factor. In FSS, we iterate the outlined rescalings and restarts (this is where the stages come
from), thus arriving atO(1/T2) convergence.

6. Prediction Rules and Error Metrics

Recall that in the classical SVM formulation the label of each observation is predicted by (1) where
(α,b) is obtained by solving (2). AsK(x,xi) is known the classifier predicts a unique label to each
test example,x. The quality of the classifier is measured by comparing the prediction with the
actual label. In the problem setup considered here the kernel values are only approximately known
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and hence the prediction process is not as straightforward as in the caseof SVM. In this section we
introduce several prediction rules and evaluation measures.

6.1 Prediction Rules

For each observation,xt , the values,K(xt ,xi), are only approximately known and lies in an uncer-
tainty set (10). Given any(α,b), application of decision rule (1) in this setting is not clear. To this
end we propose two heuristics for modelling the prediction process.

The essence of robust classification is that for any choice ofK(xt ,xi), governed by (10), the
classifer will give the same label. In other words the classifier is robust to uncertainty in the value
of K.

The simplest case would be to useK(xt ,xi) = K(xt ,xi), which when used in conjunction with
(1) gives the following labelling rule:

ȳpr
t = sign

(

∑
i

yiαiK(xt ,xi)+b

)
, (25)

which, in the sequel, will be referred to as thenominal rule. A more comprehensive process of
labelling would involve evaluating all possible choices ofK and see how robust the resultant pre-
diction is. Let{ηt1, . . . ,ηtR}, beRuniformly drawn instances of{ηt ∈R

L|‖η‖p ≤ κ,ηl ≥ 0}. Each
choice ofηt generates a realization of kernel of the form

Kt(xt ,xi) = K(xt ,xi)+
L

∑
l=1

ηt
l Kl (xt ,xi).

One option for arriving at a label would be to take themajority votewith the above kernel function,

ypr
t = sign

(
R

∑
s=1

ys
t

)
, ys

t = sign

(

∑
i

αiyiKts(xt ,xi)+b

)
. (26)

Once we have defined these two prediction rule , namelymajority voteand thenominal rule, it is
important to devise measures for evaluating the resultant classifiers.

6.2 Error Metrics

Consider a test data setD = {(xt ,yt) t = 1, . . . ,ntst}, where,yt is the true label for observationxt .
We wish to measure the performance of the classifier (26) or (25) on this test data set for a given
choice of(α,b).

For the nominal classifier (25) the usual 0/1 loss works well and we define

NominalErr (NE) =
∑ntst

t=11(ȳpr
t 6=yt )

ntst
.

Similarly for the majority vote based classifier (26), we define

MajorityErr (ME) =
∑ntst

t=11(ypr
t 6=yt )

ntst
(27)

where,yt is the true label forxt . However as noted before a robust classifier is expected to ensure that
ys

t = y ,s= 1, . . . ,R is equal for alls. To capture this notion of robustness, we propose another error

2937



BEN-TAL , BHADRA , BHATTACHARYYA AND NEMIROVSKI

Formulation Required information
Nominal−SVM (2) K
RSVM (5) K and Support
USSVMSOCP(13) K andK = {K1, . . . ,KL} (set of valid kernels)
USSVMMN (21)

Table 1: Summary of Various formulations and associated Information required.

measure (RobustErr ) which counts the fraction of data points inD for which there is atleast one
error amongRobservations. More precisely

RobustErr(RE) =
∑ntst

t=11(∃s|ys
t 6=yt )

ntst
(28)

is a more appropriate measure than (ME) to evaluaterobustness.
In the following section, we report experimental results for the algorithms developed in this

paper and benchmark them against the state of the art with respect to the above mentioned metrics.

7. Experimental Evaluation

This section presents experimental evaluation of the formulations, namelyNominal−SVM,
USSVMSOCP, USSVMMN andRSVM. TheNominal−SVM formulation is the usual SVM for-
mulation (2) with thenominalkernel. The minimax problem (12) when solved by the FSS procedure
will be referred asUSSVMMN . The solution of the SOCP (13) will be referred asUSSVMSOCP.
Though as discussed before the setup of Bhadra et al. (2010) does not apply here but for sake of
completeness we have also included a comparison withRSVM. A brief summary of the formula-
tions is presented in Table 7.4

In particular it would be interesting to explore the following questions.

1. Comparison ofUSSVMSOCP andUSSVMMN against the non-robustNominal−SVM.

2. Convergence and scalability ofUSSVMMN algorithm

The section is organized as follows. We begin by a brief description of datasets in Section 7.1.
A comparative study of robustness is presented in Section 7.2. The first issue is discussed in Section
7.3. The experimental verification of the convergence rate of FSS procedure is discussed in Section
7.4. Next the scalability ofUSSVMMN overUSSVMSOCP is discussed in Section 7.5.

7.1 Data Sets

We created synthetic data sets to test the generalization and robustness properties of the proposed
formulations. Additionally we also have empirically tested them on protein structure data. We
describe them below.

4. Relevant data and scripts are available athttp://mllab.csa.iisc.ernet.in/ ˜ sahely/uncertainkernel.html .
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7.1.1 SYNTHETIC DATA SETS AND KERNEL FUNCTIONS

It is important to evaluate the effect of robustness on wide variety of situations. To this end we use
the following data generation mechanism suited for binary classification problems.

Choosed ∼Uni f (2,100), whereUni f (n1,n2) is the uniform distribution over all integers from
n1 to n2. For such a choice ofd create a mixture distribution consisting of 4 Gaussian distributions,
N(µ,Σ), with diagonal covariance matrix. The mean of each Gaussian distribution,µ ∈ R

d, is
determined by independently choosingµj ∼Uni f orm(−5,5) j = 1, . . . ,d. Each diagonal entry of
the diagonal matrixΣ is independently drawn fromUni f orm(0,5). We assigned labels to the centers
of each Gaussian distribution according to thesign(w⊤x) wherew ∈ R

d is a random vector with
‖w‖= 1. A data set of 2N points was generated as follows. First a set ofN points corresponding to
the positive class was generated by samplingN observations from the Gaussian mixture distribution
consisting of positively labeled mixture components. The set ofN points were generated from
negatively labeled mixture components.

We study the problem of robust classification when the kernel values arenot available but are
governed by (10). Next we describe the construction ofbasekernels needed in (10). A linear
kernel will be very effective for any data setD, created by the data generation process described.
Given D = {(xi ,yi)|i = 1, . . . ,N} we defineK = x⊤i x j . Furthermore,L kernels were simulated as
follows; K l = K +Zl Zl⊤, whereZl

i j were generated using: a)Gaussian (0,1)b) Uniform [-1,1] c)
centeredBeta (0.5,0.5)distributions. After that, the generated values were multiplied by a random
l i j ∼ Uniform (0,0.05|K ij |). This leads toL valid positive semidefinite kernels for each of the
distribution, namely Gaussian, Uniform, or Beta.

We will denote byDG(S,N,L), the set ofSdata sets,{D1, . . . ,DS}. Each data set was created
by the data-generation mechanism discussed earlier and hasN examples per class withL kernels
generated by the Gaussian distribution. SimilarlyDU(S,N,L) andDB(S,N,L) will correspond to
the Uniform and Beta distribution.

7.1.2 RESOLUTION-AWARE PROTEIN STRUCTURECLASSIFICATION

We have used a data set based on the SCOP (Murzin et al., 1995) 40% sequence non-redundant
data set taken from Bhadra et al. (2010). The data set has 15 classes(SCOP superfamilies), having
10 structures each. The names of these superfamilies are reported in Appendix D. To study the
effect of robustness we studied the classification problem on all possiblepairs, which gave rise to
105 data sets in total. Each data setD can be thought ofD = {Pi ,yi , r i |i = 1, . . . ,n} wherePi is the
nominal structure described in (3) with labelyi . Incorporation of resolution informationr i leads to
uncertainty setsU(Pi) (see (4)). Using the kernel function described in Bhattacharya et al. (2007)
and assuming that the resultant uncertainty in kernel values obey (10) thekernel functionsK ,K l are
computed by the procedure outlined in Section 4.3.

As described in the Section 3, the uncertainty set imposed byRSVM maynot always be appro-
priate. However we still provide a comparison to the robust formulations described in this paper for
the sake of completion. In the setting of the paper a set of kernel matricesK = {K1,K2, . . . ,KL}
are specified. The formulationRSVM needs support information, (see Table 7), which could be
extracted as follows

K =
1
L

L

∑
l=1

K l ai j = min
l
(K l i j ) bi j = max

l
(K l i j ).
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The algorithmsUSSVMSOCP andUSSVMMN andRSVM have been implemented in Matlab
with the help of Sedumi5 (Sturm, 1999). We have used libSVM6 as an SVM solver. All the ex-
periments have been performed on a 64 bits Linux PC with 8 Intel Xeon 2.66 GHz processors and
16GB of RAM. TheRSVM implementation uses a Quasi Newton procedure outlined in Bhadra
et al. (2010). As it often gets stuck in a local minima we have used multiple starting points. All
results onRSVM reported here corresponds to the results of the best starting point among100
randomly selected starting points according toRSVM objective function.

7.2 Comparison of Robustness

We begin by studying the effect of robustness on synthetic data. In the proposed model of uncer-
tainty the parameterκ plays a very important role. Whenκ = 0, then there is no uncertainty and
as it increases the uncertainty becomes more pronounced. The utility of robust formulations would
become clear asκ is increased. One would like to experimentally verify the fact that indeed this is
the case. To this end we conducted the following experiment.

We created data setsDG(S,N,L),DU(S,N,L),DB(S,N,L) with S= 10,N = 250,L = 200, as
described in Section 7.1. We have performed 5-fold cross-validation on all the 10 data set. Here
we varyκ ∈ {0.1,0.2,0.3,0.5,1,1.5,2,2.5,3,3.5,4,5} with R= 100. In Figure 2, we have plotted
the RobustErr (28) averaged over all 10 data sets for various distributions and choices ofκ. Though
we get similar result for few different values ofC here we have reported the results for the value of
C = 100. AgainDG will refer to the Gaussian distribution,DU refers to the uniform case, andDB

refers to the Beta distribution.
The results of the experiment were as follows. It can be seen from Figure 2 that atκ = 0, the RE

for bothUSSVMSOCP andUSSVMMN are exactly same as that ofNominal−SVM. It confirms the
fact that atκ= 0,USSVMSOCP(USSVMMN ) is equivalent toNominal−SVM, as there is no uncer-
tainty. Figure 2 shows that, with the increase of uncertainty in the test examples, the RobustErr(28)
for Nominal−SVM increases substantially when compared toUSSVMSOCP andUSSVMMN on
all the 3 data sets. This shows that, non-robust classifiers, for example,SVM, are unable to handle
uncertainty compared to the proposed robust classifiers. Also as expected bothUSSVMSOCP and
USSVMMN are equivalent and so on the test one they exhibit similar performance.

7.3 Comparison of Generalization Error

In this section we compare the error measures, RE (28) and ME (27).
We again use the same data sets described in the previous subsection. For all the metrics, we

have performed 5-fold cross-validation on all the 10 data sets corresponding to each distribution.
The hyper-parameters (C andε) for each classifier, were chosen using a grid search mechanism
from the setC = {0.1, 1, 5, 10, 50, 100, 200, 500} andε = {0.05+0.05step|step= 0, . . . ,9}.
For each metric, the cross-validation accuracy, 100(1−ErrorMeasure)%, averaged over 10 data
sets for various distributions, are reported in Figure 3. Note thatDG refers to the Gaussian case,DU

refers to Uniform case andDB refers to the Beta case. The parameterκ was set to 1.
The results were as follows. All the formulations achieved an accuracy of90% when NE was

used as a error measure. From Figure 3 we see that bothUSSVMSOCP and USSVMMN beats
RSVM in terms of RE indicating thatRSVM is not well suited for the uncertainty sets considered

5. Sedumi can be found athttp://sedumi.ie.lehigh.edu/ .
6. LibSVM can be found athttp://www.csie.ntu.edu.tw/ ˜ cjlin/libsvm/ .
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Figure 2: Plot of RE for distributions (clockwise starting from top left )DG,DU,DB with varyingκ.
Formulations compared areUSSVMMN ,USSVMSOCP andNominal−SVM. The legend
SVM refers toNominal−SVM

here. When we use ME, which is not as conservative as RE the gap narrows. This experiment
demonstrates that in the presence of uncertainty the performance of extremely accurate classifiers
suffer drastically but the proposed robust formulations fare much betterin handling uncertainty. In
addition, Figure 4 shows that the average training time ofUSSVMSOCP is same as that ofRSVM
butUSSVMMN is 10 times faster than both of them, even for these small scale data sets (200 training
datapoints per class).

7.4 Verification of Convergence of FSS Algorithm

In this section, we have experimentally verified that the proposed saddle point based algorithm has
O( 1

M2
s
) convergence rate (see (20)). Recall thatMs is the actual number of steps, which one can

consider as iterations.

2941



BEN-TAL , BHADRA , BHATTACHARYYA AND NEMIROVSKI

Figure 3: Cross-validation accuracy (%) obtained withUSSVMSOCP, USSVMMN , RSVM and
Nominal−SVM using RE (28)and ME (27). All values reported here are 100(1−
Errormeasure)%

We report results on Data SetDU(1,N,5) whereN ∈ {50,500}, andC was chosen to be 1 for
N = 50 and similarly forN = 500 it was fixed to be 10.

Figure 5 shows the convergence rate of the Saddle Point based algorithmfor USSVM formula-
tion. Thex-axis and they-axis denotelog10(Ms) andlog10(εsad) respectively. All the points on the
graph indicate the “end” of thesth step and circled points indicate the “end” of thes∗ step. When
s> s∗, ideally the graph should be a straight-line with slope less than−2 and one can observe the
same in Figure 5. On the other hand, fors< s∗ rate of decrease inεsad is much slower than the case
in s> s∗.

7.5 Scalability of USSVMMN

In this section we study the relative performace ofUSSVMMN versusUSSVMSOCP on large data
sets. We also verify the convergence criteria of proposedUSSVMMN .

In theUSSVMMN algorithm the number of stages and the number of iterations inside one stage
do not depend on the number of data points, see Section 5.2. In each iteration we need to solve two
gradient projection type problems. It appears that they are extremely cheap to compute; in one case
there is a closed form solution, while in the other case we could solve it by a linesearch algorithm.
BothUSSVMSOCP andUSSVMMN solves the same problem but the computation required may dif-
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Figure 4: Average Training Time in Seconds obtained withUSSVMSOCP, USSVMMN , andRSVM.
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Figure 5: Rate of convergence for Saddle point based algorithm

fer significantly. To this end we have compared the training times forUSSVMSOCP andUSSVMMN

with increasing the number of training data points (N). For this experiment, we have used following
data set.
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Figure 6: Training time forUSSVMSOCP USSVMMN with N= [500,1000,2000,3000,4000,5000]
andL = [10,50]

We have used synthetic data set generated similar toDU (please see Section 7.1) with number
of data points in each class are{250,500,1000,1500,2000,2500}, whereL = {10,50}. The values
of R= 100,C= 10 andκ = 1 were used.

Figure 6 shows training time (in sec) for varyingN. One can observe that, with the increase
of N, the training time forUSSVMSOCP increases very steeply compared to the training time for
USSVMMN . As expected, training time forUSSVM in general increases with the increase of num-
ber of uncertain kernels (L). As an example, to build a robust classifier with only 3000 data points,
USSVMSOCP needs more than5 hourswhile USSVMMN completes within20 minutes. This con-
cludes that, to build a robust classifier with a medium scale of data (even more than 1000) the saddle
point based algorithm is much more effective then a Quadratic Conic Program based formulation.

7.6 Discussion of Experimental Results

The results on the synthetic experiments show thatUSSVMSOCP,USSVMMN performs better than
RSVM in terms of generalization as measured by various error measures. All the three formulations
are more robust thanNominal−SVM. It is also demonstrated thatUSSVMMN is much more
scalable thanUSSVMSOCP. Even to build a robust classifier with 3000 data points,USSVMSOCP

needs more than5 hourswhile USSVMMN completes within20 minutes.

7.7 Resolution-aware Protein Structure Classification

This section presents experimental results for comparing the robustness performance of the pro-
posedUSSVM, with the existingRSVM formulation.
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Error Measure USSVMSOCP USSVMMN RSVM Nominal−SVM
Robust Error(RE) 25.14 24.95 20.95 10.38
Majority Error(ME) 85.70 83.36 81.12 71.01
Nominal Error(NE) 80.76 79.67 80.38 71.57

Table 2: Comparison ofUSSVMSOCP, USSVMMN RSVM andNominal−SVM using accuracy
measures, 100(1−ErrorMeasure)%, where Error measures are defined in Section 6.2.
Table shows average accuracy for all 105one-vs-oneclassification problems

The data set is described in Section 7.1. The experimental methodology follows “one-vs-one”
classification setting with all 15 classes of protein structures. Leave-One-Out (LOO) cross valida-
tion using SVM, RSVM and USSVM was performed on all 105 of such classification problem. In
all cases we report accuracy, computed as 100(1−ErrorMeasure)%.

LetD = {(Pi , r i ,yi)} be a protein structure data sets wherePi is the set of coordinates ofith pro-
tein structure obtained from Astral7 database, wherer i is the corresponding resolution information
obtained from the PDB, andyi is the class label. Using resolution information, we generated a set
of perturbed structuresQi = {P1

i , . . . ,P
L
i } for eachPi as follows. For each atompia of Pi generated

structurePs
i with coordinates of atoms aspl

ia = pia +u andu ∼ U(−r i
2 , r i

2 ). One can create a set
of uncertain kernels, whereK(p, p′) is a kernel function computed between two protein structures
p∈ Qi andp′ ∈ Q j . For our experiments, we have generated a set of kernels consisting ofL = 50
base kernels. Denoting the kernel matrices by{K1, . . . ,KL} the uncertainty set is defined asE(1)
(see (11)) withK = 1

L ∑L
l=1K l andκ = 1. Given the base kernels the prediction is implemented,

as reported in Section 6, withR= 100 andκ = 1. For the purpose of our comparison, we have
used weighted pair-wise distance substructure kernel (Bhattacharya et al., 2007). These kernels are
purely based on protein structure (specially position ofcα). Please refer to Appendix C for details.
ForRSVM, we compute the following,

K i j = K i j , ai j = min
p∈Qi ,p′∈Q j

K(p, p′),bi j = max
p∈Qi ,p′∈Q j

K(p, p′).

7.7.1 RESULTS ONPROTEIN STRUCTURECLASSIFICATION

Table 2 and Table 3 report results forRSVM, USSVMMN andNominal−SVM (SVM with kernels
based onnominal protein structure reported in PDB files) using both standard and robust error
measures defined in section 6.2 in the Leave-One-Out (LOO) procedure. Hyper-parameters (C
and/orε) for RSVM andC for USSVMMN andNominal−SVM were tuned separately using the
grid search mechanism. As this is a 15 class classification problem and we followed a “one-vs-one”
setting, we have reported average accuracy of all 105 classifiers (Table 2). We have also provided a
list of a few individual classes (Table 3) whereUSSVMperformed significantly better than RSVM.
The results are presented in the form of a histogram of performance differences (%) ofUSSVM
againstRSVMandSVMobtained by using RE (28) in Figure 7.

It is clear thatRSVM, andUSSVM perform significantly better than their non-robust coun-
terparts, both in terms of Accuracy (measured by MajorityErr) and Robustness (measured by Ro-
bustErr). This result indicates that, the use of resolution information improves the overall classifica-

7. Astral can be found athttp://astral.berkeley.edu .

2945



BEN-TAL , BHADRA , BHATTACHARYYA AND NEMIROVSKI

−2 0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

100*(1−RE) of USSVM
SOCP

 − 100(1−RE) of RSVM

N
um

be
r 

of
 c

la
ss

ifi
er

s

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

100*(1−RE) of USSVM
SOCP

 − 100*(1−RE) of SVM

N
um

be
r 

of
 c

la
ss

ifi
er

s

Figure 7: Histogram of performance differences (%) betweenUSSVMSOCP andRSVM is shown
in the top figure. The bottom figure correspondsUSSVMSOCP andSVM

tion accuracy. In fact,USSVM even beatsRSVM in terms of robustness. Note that, for more than
50% classification problem accuracy ofUSSVMSOCP is more than 5% of that ofRSVM in terms
of Robustness. For few classes difference in accuracy was more than10% (see Table 3). More-
over, this performance difference increases while comparingUSSVM againstNominal−SVM.
For more than 60% classification problem accuracy ofUSSVMSOCP is more than 15% of that of
Nominal−SVM in terms of robustness and notably for almost all the cases the margin was more
than 10% in term of RobustErr.

8. Conclusion

We studied the problem of designing robust classifiers when the kernel matrices are uncertain. The
chance constraint model proposed in Bhadra et al. (2010) made important progress on this problem
but it had an important theoretical flaw. It did not constitute a valid model of uncertainty but instead
a relaxed version of the original problem. This led to non-convexity and local minima problems.
Instead of a chance constraint approach we follow the robust optimizationcommunity and advocate
a geometric approach. The approach proposed here not only definesa valid model of uncertainty,
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Error Measure USSVMSOCP USSVMMN RSVM Nominal−SVM

c.66.1 vs c.68.1
Robust Error 31.00 31.00 18.00 11.00
Majority Error 56.00 65.00 50.00 50.00
Nominal Error 50.00 55.00 40.00 50.00

c.37.1 vs c.55.3
Robust Error 23.00 23.00 12.00 6.00
Majority Error 60.00 60.00 55.00 51.00
Nominal Error 55.00 55.00 35.00 55.00

d.58.4 vs c.108.1
Robust Error 21.00 21.00 12.00 6.00
Majority Error 64.00 70.00 65.00 60.00
Nominal Error 60.00 65.00 60.00 55.00

c.66.1 vs c.108.1
Robust Error 27.00 27.00 18.00 12.00
Majority Error 58.00 55.00 60.00 50.00
Nominal Error 55.00 55.00 45.00 55.00

c.55.1 vs c.2.1
Robust Error 27.00 27.00 19.00 10.00
Majority Error 70.00 65.00 70.00 60.00
Nominal Error 70.00 55.00 60.00 55.00

c.66.1 vs d.58.4
Robust Error 33.00 33.00 25.00 18.00
Majority Error 72.00 65.00 70.00 55.00
Nominal Error 50.00 50.00 65.00 70.00

b.18.1 vs b.80.1
Robust Error 23.00 23.00 15.00 6.00
Majority Error 65.00 70.00 63.00 58.00
Nominal Error 60.00 60.00 60.00 50.00

c.55.3 vs c.55.1
Robust Error 28.00 25.00 20.00 10.00
Majority Error 88.00 70.00 80.00 65.00
Nominal Error 60.00 60.00 85.00 60.00

c.66.1 vs d.92.1
Robust Error 29.00 29.00 22.00 11.00
Majority Error 75.00 75.00 72.00 55.00
Nominal Error 65.00 60.00 70.00 65.00

Table 3: Comparison ofUSSVMSOCP, USSVMMN RSVM, andNominal−SVM using accuracy
measures, 100(1−ErrorMeasure)%, where Error measures are defined in Section 6.2.
Table shows accuracy forone-vs-oneclassification problem among few classes. Descrip-
tion of superfamilies of SOCP are in Table 4
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but leads to a tractable optimization problem namely a SOCP formulation. HoweverSOCP formula-
tions maynot be well suited for large scale problems. We show that the problem can be equivalently
posed as a minmax problem and can be solved by saddle-point algorithm. We adapt the general
purpose algorithm of Nemirovski (2004) for solving saddle point procedure to this problem. The
algorithm proceeds instages. We propose a novel special case of this algorithm, FSS, where the
stepsize remains fixed per stage. The FSS algorithm has same order ofO(1/T2) convergence,T
being the number of iterates. This procedure is widely applicable which is a matter of indepen-
dent study. We demonstrate its applicability toRSVM and to the problem at hand. The proposed
algorithm,USSVMMN combines FSS with suitable projection steps and is more scalable than the
SOCP formulation,USSVMSOCP. Using a robust optimization based framework we pose the prob-
lem of classifier design as a minimax problem. The minimax procedure is solved bya novel FSS
procedure which hasO(1/T2) convergence. Empirical results show thatUSSVMSOCP is indeed a
robust alternative to uncertainty in the kernel matrices both on synthetic andreal world data sets.
Furthermore experimental results demonstrate thatUSSVMMN indeed achieves the theoretical rate
of convergence and is a scalable alternative toUSSVMSOCP.
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Appendix A. Proofs for the Saddle Point Algorithm

In this section we prove the convergence of FSS algorithm.

A.1 An Important Lemma

We start with the following Lemma.

Lemma 6 Consider stage s of Algorithm FSS, and let

‖(x,y)‖=
√

αs
ΩX

‖x‖2
X + βs

ΩY R2
s
‖y‖2

Y
⇒‖(ξ,η)‖∗ =

√
ΩX
αs
‖ξ‖2

X ,∗+
ΩY R2

s
βs

‖η‖2
Y ,∗.

Functionωs(·) is a d.-g.f. for Z compatible with the norm‖ · ‖, and

(a) argminZ ωs(·) = (xω, ȳs) ∈ Zs & maxZsωs(·)−minZsωs(·)≤ 1,
(b) ∀(z,z′ ∈ Z) : ‖G(z)−G(z′)‖∗ ≤ Ls‖z−z′‖. (29)

Proof SinceωY (·) is a d.-g.f. forY , this function is convex and continuously differentiable on the
entireY , It follows thatωs(x,y) is continuous convex function onZ, the setZo := {(x,y) : ∂ωs(z) 6=
/0} is equal to{x : ∂ωX(x) 6= /0}×Y, andωs(x,y) admits a continuous onZ0 selection of subgradient.
All we need in order to complete the verification of the fact thatωs is a d.-g.f. compatible with‖ · ‖
is to verify thatωs is strongly convex with modulus 1 w.r.t. the latter norm, which is immediate:
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with (x,y),(x′,y′) ∈ Zo we have

〈ω′
s(x,y)−ω′

s(x
′,y′),(x−x′,y−y′)〉

= αs
ΩX

〈ω′
X(x)−ω′

X(x
′),x−x′〉+ βs

ΩY
R−1

s 〈ω′
Y
([y− ȳs]/Rs)−ω′

Y
([y′− ȳs]/Rs),y−y′〉

= αs
ΩX

〈ω′
X(x)−ω′

X(x
′),x−x′〉

+ βs
ΩY

〈ω′
Y
([y− ȳs])/Rs)−ω′

Y
([y′− ȳs]/Rs), [y− ȳs]/Rs− [y′− ȳs]/Rs〉

≥ αs
ΩX

‖x−x′‖2
X + βs

ΩY
(‖y−y′‖2

Y
/R2

s) = ‖(x−x′,y−y′)‖2.

It remains to prove (29). Relation (29.a) is evident. To verify (29.b), let z= (x,y),z′ = (x′,y′) ∈ Zo,
let ∆x = x′ − x, ∆y = y′ − y, ξ = ‖∆x‖X

√
αs/ΩX, η = ‖∆y‖Y

√
βs/ΩY R−1

s , so that‖z− z′‖ =
‖[ξ;η]‖2 by (16). We have

‖Gx(z)−Gx(z′)‖X ≤ Lxy‖y−y′‖Y , ‖Gy(z)−Gy(z′)‖Y ≤ Lxy‖x−x′‖X +Lyy‖y−y′‖Y
[see (15)]

⇒‖G(z)−G(z′)‖2
∗ ≤ ΩX

αs
L2

xy‖∆y‖2
Y
+

ΩY R2
s

βs

[
Lxy‖∆x‖X +Lyy‖∆y‖Y

]2

=
ΩXΩY R2

sL2
xy

αsβs
η2+

ΩY R2
s

βs

[
Lxy
√

ΩX/αsξ+LyyRs
√

ΩY /βsη
]2

= ‖M[ξ;η]‖2
2,

M =




√
ΩXΩY

αsβs
RsLxy√

ΩXΩY

αsβs
RsLxy

ΩY R2
s

βs
Lyy


= LsN, N =

[ √
(1−βs)/βs√

(1−βs)/βs (2βs−1)/βs

]
,

where the relations in the last line are readily given by (16). In view of this computation and the
fact that‖z− z′‖ = ‖[ξ;η]‖2, in order to verify (29.b) it suffices to show that the spectral norm of
the symmetric matrixN is ≤ 1; sinceN is nonnegative due toβs ≥ 1/2, see (16), the latter task is
exactly the same as verifying positive semidefiniteness of the matrixI2−N, which is immediate.

A.2 Proof of Proposition 2

Consider stages, assuming that(Is) take place. Forz∈ Zo andξ ∈ Z := X ×Y , let

Vs
z (u) = ωs(u)−ωs(z)−〈ω′

s(z),u−z〉 : Z → R,
Proxz(ξ) = argmin

u∈Z
{〈ξ−ω′

s(z),u〉+ωs(u)} : Z → Z;

note that Proxz(ξ) is well defined due to strong convexity ofωs(·). Our basic observation is as
follows:

Lemma 7 Nemirovski, 2004, cf. Lemma 3.1Given z∈ Zo, ξ,η ∈ E, let w= Proxz(ξ) and z+ =
Proxz(η). Then for all u∈ Z it holds

〈η,w−u〉 ≤Vs
z (u)−Vs

z+(u)+ 〈η,w−z+〉−Vs
z (z+) (a)

≤Vs
z (u)−Vs

z+(u)+ 〈η−ξ,w−z+〉−Vs
z (w)−Vs

w(z+) (b)
≤Vs

z (u)−Vs
z+(u)+

[
1
2‖η−ξ‖∗‖w−z+‖− 1

2‖z−w‖2− 1
2‖z+−w‖2

]
(c)

≤Vs
z (u)−Vs

z+(u)+
1
2[‖η−ξ‖2

∗−‖w−z‖2] (d).

(30)
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Proof. By definition ofz+ = Proxz(η) we have〈η−ω′
s(z)+ω′

s(z+),u−z+〉 ≥ 0; rearranging terms
and taking into account the definition ofVs

v (u), we get (a). By definition ofw= Proxz(ξ) we have
〈ξ−ω′

s(z)+ω′
s(w),z+−w〉 ≥ 0, whence〈η,w−z+〉 ≤ 〈η− ξ,w−z+〉+ 〈ω′

s(w)−ω′
s(z),z+−w〉;

replacing the third term in the right-hand side of (a) with this upper bound and rearranging terms,
we get (b). (c) follows from (b) due to the strong convexity ofωs implying thatVs

v (u)≥ 1
2‖u−v‖2,

and (d) is an immediate consequence of(c). �

Applying Lemma 7 toz= zt,s, ξ = τsG(zt,s) (which results inw= wt,s) andη = τsG(wt,s) (which

results inz+ = zt+1,s), we obtain due to (30) for allu∈ Z:

τs〈G(wt,s),wt,s−u〉 ≤Vs
zt,s
(u)−Vs

zt+1,s
(u)+ 1

2

[
τ2

s‖G(wt,s)−G(zt,s)‖2
∗−‖wt,s−zt,s‖2]

︸ ︷︷ ︸
δt,s

.

Observe thatδt,s ≤ 0 by (29.b) and by definition ofτs (see (16)), we arrive at

τs〈G(wt,s),wt,s−u〉 ≤Vs
zt,s
(u)−Vs

zt+1,s
(u) ∀u∈ Z. (31)

Let u∈ Zs, and let
φs(x) = max

y∈Y:‖y−ȳs‖Y ≤Rs

φ(x,y).

Summing up (31) overt = 1, ...,Ns, taking into account thatVs
z1,s

(u)≤ 1 due tou∈ Zs by (29.a), that
Vs

z (u)≥ 0, we get

∀u∈ Zs :
1
Ns

Ns

∑
t=1

〈G(wt,s),wt,s−u〉 ≤ A :=
1

τsNs
.

On the other hand, settingwt,s = (xt,s,yt,s), u= (x,y) and noting thatzs = (xs,ys) = 1
Ns

∑Ns
t=1wt,s

(see (18)), we have

1
Ns

∑Ns
t=1〈G(wt,s),wt,s−u〉

= 1
Ns

∑Ns
t=1

[
〈φ′

x(xt,s,yt,s),xt,s−x〉+ 〈φ′
y(xt,s,yt,s),y−yt,s〉

]

≥ 1
Ns

∑Ns
t=1 [[φ(xt,s,yt,s)−φ(x,yt,s)]+ [φ(xt,s,y)−φ(xt,s,yt,s)]] (a)

= 1
Ns

∑Ns
t=1[φ(xt,s,y)−φ(x,yt,s)]

≥ φ( 1
Ns

∑Ns
t=1xt ,y)−φ(x, 1

Ns
∑Ns

t=1yt) = φ(xs,y)−φ(x,ys) (b)

(32)

(inequalities in(a),(b) are due to the convexity-concavity ofφ), so that (32) results inφ(xs,y)−
φ(x,ys)≤ A for all (x,y) ∈ Zs. Taking supremum in(x,y) ∈ Zs, we arrive at

φs(x
s)−φ(ys)≤ A≤ Ls

Ns
, (33)

where the concluding inequality follows from the definition ofA due toτs= 1/Ls. Observe that the
left-hand side in (33) is≥ φs(x

s)−SadVal (due toφ(ys)≤ SadVal), while the right-hand side in (33)

is≤ θR2
s

32 due to (16.e). Thus, (33) implies that

φs(x
s)−SadVal≤ θR2

s

32
. (34)
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We claim that in factφs(x
s) = φ(xs). Indeed, assuming the opposite, letYs = {y∈Y : ‖y− ȳs‖Y ≤

Rs}, and let ¯y= argmaxy∈Ys
φ(xs,y), so thatφs(x

s) = φ(xs, ȳ). Sinceφ(xs) :=max
y∈Y

φ(xs,y)> φs(x
s) :=

max
y∈Ys

φ(xs,y) andYs is cut offY by the inequality‖y− ȳs‖Y ≤ Rs, we have‖ȳ− ȳs‖Y = Rs, while by

(Is) we have‖y∗− ȳs‖Y ≤ Rs/2, whence, in particular,y∗ ∈ Ys and‖y∗− ȳs‖Y ≥ Rs/2. Since the
functionφ(xs,y) is strongly concave, modulusθ w.r.t. ‖ ·‖Y , and attains its maximum iny∈Ys at ȳ,
while y∗ ∈Ys, we haveφ(xs,y∗)≤ φ(xs, ȳ)− θ

2‖y∗− ȳ‖2
Y
≤ φ(xs, ȳ)− θ

8R2
s. It follows that SadVal=

min
x∈X

φ(x,y∗) ≤ φ(xs,y∗) ≤ φ(xs, ȳ)− θ
8R2

s = φs(x
s)− θ

8R2
s. The resulting inequality contradicts (34),

and this contradiction shows that in factφs(x
s) = φ(xs). Thus, (33) reads

φ(xs)−φ(ys)≤ Ls

Ns
≤ θR2

s

32
, (35)

as required in (19) (recall that by constructionRs = 2−sR0). Finally, (35) implies that

φ(y∗)−φ(ys) = SadVal−φ(ys)≤ φ(xs)−φ(ys)≤ θR2
s

32
; (36)

since the functionφ(·) is strongly concave, modulusθ w.r.t. ‖ · ‖Y , and attains its maximum over

y ∈ Y at y∗, we haveφ(y∗)− φ(ys) ≥ θ
2‖y∗− ys‖2

Y
, which combines with (36) to imply that‖y∗−

ys‖Y ≤ Rs/4= Rs+1/2; this is nothing but(Is+1). Thus, we have proved that if(Is) takes place, then
Algorithm FSS ensures (19) and(Is+1). Since(I0) holds true by assumption, we conclude that (19)
and(Is) take place for alls. All remaining claims in Proposition are now straightforward. �

Appendix B. Projection on the SVM Constraint Set

This appendix discusses the projection step encountered in Section 5.3. Weconsider the following
problem

y+ = argmin
y∈Y

{
−yTq+

1
2
(y− ȳ)T(y− ȳ)

}
,

whereY = {y ∈ R
n|0 ≤ yi ≤ C,∑n

i=1yisi = 0} is the SVM constraint set andsi ∈ {1,−1}. When
ȳ∈Y the optimality conditions yield

y+i =





0, ȳi +qi +νsi ≤ 0
C, ȳi +qi +νsi ≥C
ȳi +qi +νsi otherwise



 .

Furthermorey+ should satisfy∑i y+isi = 0. It is easy to verify thatmin(−maxi+(ȳi +qi),mini−(ȳi +
qi)−C)≤ ν ≤ max(C−mini+(ȳi +qi),maxi−(ȳi +qi)). Since the problem is feasible there exists at
least oneν for which∑i y+isi = 0 holds. We compute this by grid search. If there are more than one
solution satisfying the constraint∑i y+isi = 0 we choose the solution which yields a lower objective.

Appendix C. Kernel Functions for Protein Structures

Experiments on protein structures have been conducted withWeighted Pairwise Distance Sub-
structure Kernel described in Bhattacharya et al. (2007). To make the paper self-contained we
describe the kernel function in brief, for more details please see Bhattacharya et al. (2007).
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Fix a positive integerl . A substructureNia consists ofl spatially nearest residues to theath
residue of proteinPi . The substructure kernel between two substructuresNia andNjb is defined as

Kpds(Nia,Njb) = ∑
π∈∏(l)

e
−‖dia−π(djb

)‖2

σ2

wheredia denotes set of pairwise distance betwen all possible pair of residues inNia. Hencedi =
{d1

i , . . . ,d
m
i } wherem= l(l −1)/2. The distance between any two residuesa andb are computed

by ‖ca−cb‖, see (3), where∏(l) denote all possible permutations ofl residues in the substructure.
Finally the kernel function between two protein structures is defined as

K(Pi ,Pj) =
ni

∑
a,b=1

n j

∑
c,d=1

Kpds(Nia,Njc)Kpds(Nib,Njd)Knorm(ia, ib, jc, jd)

whereKnorm(ia, ib, jc, jd) = e−
(‖cia−cib

‖−‖c jc−c jd
‖)2

σ2 .

Appendix D. List of Superfamilies

We list below the Superfamilies studied in Section 7.7.

Superfamily Description
b.18.1 Galactose-binding domain-like
b.29.1 Concanavalin A-like lectins/glucanases
b.30.5 Galactose mutarotase-like
b.40.4 Nucleic acid-binding proteins
b.80.1 Pectin lyase-like
c.2.1 NAD(P)-binding Rossmann-fold domains
c.37.1 P-loop containing nucleoside triphosphate hydrolases
c.55.1 Actin-like ATPase domain
c.55.3 Ribonuclease H-like
c.66.1 S-adenosyl-L-methionine-dependent methyltransferases
c.68.1 Nucleotide-diphospho-sugar transferases
c.69.1 alpha/beta-Hydrolases
c.108.1 HAD-like
d.58.4 Dimeric alpha+beta barrel
d.92.1 Metalloproteases (”zincins”), catalytic domain

Table 4: List of Superfamilies
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