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Abstract

In this paper we study the problem of designing SVM classifighen the kernel matrix, is
affected by uncertainty. Specificalyis modeled as a positive affine combination of given positive
semi definite kernels, with the coefficients ranging in a ndwoanded uncertainty set. We treat the
problem using the Robust Optimization methodology. Thiduoes the uncertain SVM problem
into a deterministic conic quadratic problem which can Heexbin principle by a polynomial time
Interior Point (IP) algorithm. However, for large-scalassification problems, IP methods become
intractable and one has to resort to first-order gradierd typthods. The strategy we use here is
to reformulate the robust counterpart of the uncertain SYébjem as a saddle point problem and
employ a special gradient scheme which works directly oncthrevex-concave saddle function.
The algorithm is a simplified version of a general scheme dukitlitski and Nemirovski (2011).

It achieves ai©(1/T?) reduction of the initial error afteF iterations. A comprehensive empirical
study on both synthetic data and real-world protein stmectiata sets show that the proposed
formulations achieve the desired robustness, and theesadiit based algorithm outperforms the
IP method significantly.

Keywords: robust optimization, uncertain classification, kerneldtions
1. Introduction

The Support Vector Machine(SVM) formulation (Vapnik, 1998) leartaasifier of the form

f(x) :sign(iaiyiK(xi,x)er) 1)
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from a training data sdD = {(xi,Vi)|xi € X,y; € {1,—1} i =1,...,n}. The coefficientsp, are
determined by solving

max a'e—3t st o YKYa <t (2)
aeSt

whereS, = {a|0 < a; <C, S ;ajy; =0} andY = diag(y1, . .., Yn). Each entry of the matriK, is
defined by Kj; = K(x;,Xj) whereK : X x X — R, is a kernel function and it defines a dot product
in an associate®eproducing Kernel Hilbert SpadMercer, 1909; Shawe-Taylor and Cristianini,
2000). As a consequence Kf-,-) being a dot product, the matrik needs to be positive semi-
definite (see, e.g., Shawe-Taylor and Cristianini, 2000) for any positiggern.

Observations emanating from real world data are often plagued bytaimtgr The problem of
designing classifiers for uncertain observations remain an interestimgooplelem and has gained
considerable interest in the recent past. Previous attempts (Ghaoui 20G@8;, Bhattacharyya
et al., 2004; Shivaswamy et al., 2006; Bhadra et al., 2009; Ben-&l, &011) at designing robust
classifiers have been limited to the case of linear classification where thegainteis specified
over an explicitly stated feature map.

Consider the problem of automated protein structure classification, an impprablem of
Computational Biology, where no such feature map is available. Protein@®s@re specified by
a set of 3D coordinates and it is possible to design kernel functiongdteip structures based on
the coordinates (Qiu et al., 2007; Bhattacharya et al., 2007). Unfaetlyrthe coordinates are not
known precisely and this makes the kernel values uncertain. Motivateédidproblem (Bhadra
etal., 2010) initiated a study of designing robust classifiers when the®afrilke kernel matrix are
independently distributed random variables (a somewhat problematic assumghe approach,
based on Chance-Constraints (probabilistic) formalism, leads to a n@excproblem which may
result in an invalid (i.e., indefinite) kernel matrix.

In this paper we propose a Robust Optimization(RO) approach whicltavess the above
drawbacks. The approach employs a geometric description of unceiitastegd of the probabilis-
tic description used earlier (Bhadra et al., 2010). The uncertainty in tinelkaatrixK is modeled
by a bounded convex set, which encompasses several possibletiaadizdK . This new approach
results first in a robust counterpart of the uncertain SVM which caraleas a Conic Quadratic
(CQ) problem. Such problems can be solved in polynomial time by Interior Pi&halgorithm.
However for large-scale problems IP methods become intractable. Our ordiibation here is to
reformulate the robust counterpart as a saddle point problem. Duediabde conditions satisfied
by the saddle function one can in principle refer to a gradient-basedajescheme introduced in
(Juditski and Nemirovskii, 2011) for solving such saddle point problethsing this scheme we
propose an algorithm, which has a much more simplified analysis, and actiievs&me efficiency
estimate, namely it achieves tk1/T?) reduction in the initial error aftef iterations. Experi-
mental results performed on synthetic data, as well as real-world protecise data sets, show
that the saddle-point based algorithm outperforms the IP method corsidaige further conduct
detailed experimental evaluation to test the robustness and scalability ofttieesbclassifiers.

The paper is structured as follows. To motivate the paper we start with fadiz@ission on
issues underlying protein structure classification and kernel basesifiglessin Section 2. In Sec-
tion 3 we review the formulation in Bhadra et al. (2010) and identify the keytsbmings of the
approach. The RO approach for designing robust SVMs is discussgection 4. The RO ap-
proach leads to a minimax problem. In Section 5 we present the saddle paintratgand discuss
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its application to the minimax problem. In Section 6 we prepare the ground fomarebensive
computational study by introducing various prediction rules and related ewtrics. The results
of the computational study are described in Section 7.

1.1 Notation

The space of symmetric positive semi-definitec n matrices will be denoted as!. Let AxB
denote the the Hadamard prodcuct of two matrigesB);; = AjjBjj whereA andB are two square

matrices. Frobenius norm of matuxwill be denoted agA|r = |/¥j AIZJ Let 14 be the indicator

function for the evenA. The uniform random variate will be representedds, b) (a < b). We
denotediag(xy, ..., Xn) to be an x n diagonal matrix whosgh diagonal entry is;.

2. Motivation: Uncertain Kernels and Automated Protein Structure Classification

Classification of protein structures into various classes like families, sup#ids etc remains an
important research challenge in computational biology (see Holm and 54886 for an introduc-
tion). Kernel based classifiers are becoming increasingly popular ¢Qil, €007; Bhattacharya
et al., 2007), for addressing this problem.

Usually a protein structure is specified by the positions of alpha ca®¥natoms. A formal
description ofC® atoms and protein structures is beyond the scope of the paper and wthesfe
reader to Branden and Tooze (1999) for an introduction. In the $egquevill denote protein
structure by a set

P={ceR3i=1,---,s}, (3)

where eaclC® atom is determined by spatial coordinates- {ci1, Ci2, Ciz} obtained by X-ray crys-
tallography. Automated classification of such structures is an extremelylws®d challenging
problem in computational biology. In the recent past kernel based me{dd et al., 2007; Bhat-
tacharya et al., 2007) have emerged as an interesting alternative to thlisrpro

Biologists often determine the similarity between a pair of structures by first wtingpan
alignmentand then measuring the quality of takgnmentby root mean square deviation(RMSD).
We do not formally define the notion of alignment and RMSD in this paper butdfez the in-
terested reader to Shindyalov and Bourne (1998) and Holm and S@@&) for an introduction.
Though computing structural alignment is an intractable problem there egeat@euristic algo-
rithms like DALI (Holm and Sander, 1996), CE (Shindyalov and Bour@98) etc, which works
well in practice. Existing literature (Qiu et al., 2007; Bhattacharya et al.7268 kernel design
rely on structural alignments computed by such programs.

All such procedures implicitly assume that the protein structures are speexetly, that is,
the location of the atoms constituting the structure is known precisely. Un&iglynin reality,
the coordinatess;, are difficult to determine with exact precision and is highly dependent®n th
resolutionof X-ray diffraction experiment. For a protein structur®, the resolution information
r, specifies the error in each coordinate. More formally the position oftthatom in a protein
structureP (see (3)) could be anywhere in the uncertainty Ho)c — ¢i||» < r}, around the value
¢. Foranyr > 0 one can now define the uncertainty 9¢P) for any P as follows

UP) ={RR={z1,...,2s} ||lzi—Gille <1,z €R%, i=1,...,8}. (4)

1. Seehttp:/iwww.rcsh.org/pdb/ for examples.
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K:1.4964 r/

" RMSD : 3.9°A
K:1.3585

(b) (c) (d)

Figure 1: (a) Pictorial presentation 6f atoms of proteird1lvsral(top) anddlgefailbottom). (b)
Structural alignment between them. (c) Possible perturbation within resolutitn(d)
Alignment among perturbed structures

Furthermore we would refer to
P={ceRi=1,...,n

as thenominalstructure andl (P) as the uncertainty set associated with it. The @) character-
izes all alternative structures, includiRgor a given value of.

The structural alignment betwe&hand P’ in presence of uncertainty setgP) andU (P') is
not defined anymore. Even wheris small, the alignment scores between twaminalstructures,
P andP’ can differ significantly from the alignment scores between an arbifReand R where
ReU(P),R € U(P). This difference in alignment scores leads to uncertain kernel values.

For example, consider two protefndlvsral(denote it by P) andlilgefaXdenote it byP’)
belonging to protein superfamiigestriction endonuclease-like The value of for P is 1.8A and
for P itis 2.0A respectively. The program DALI computes a structural alignment with RNIfS3.7
A between these two structures. Figure 1(a) shows pictorial presentdt@hatoms of these two
proteins while Figure 1(b) shows structural alignment between them. ligoees the uncertainty
one obtains a kernel value of3685, using the kernel function described in Bhattacharya et al.
(2007). On randomly sampled structures, from the correspondingtairdg box (4) we observe
that the kernel value ranged fromil542 = Kpin) < K(P,P") < 1.4964= Kihax), See Figure 1(c,d).
This variability is indeed substantial. In superfamiestriction endonuclease-like more than
60% of the kernel values, computed between any pair of nominal proteictustes, lie between
Kmin andKmax

2. One should refer to them as SCOP domains. But to lighten the discussibie diology side we refer to them as
proteins.
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This demonstrates that accounting for resolution information leads to coaisideincertainty
in kernel values. There is clearly a need for designing classifiers whichvithstand this variation
in kernel values. This is an extremely challenging problem which has rot Wwell studied in the
literature. Recently (Bhadra et al., 2010) initiated a study of this problem inlzapilistic setting.
In the following section we review this work, to identify key shortcomings arisequently propose
a robust optimization procedure to address them.

3. Related Work

In Bhadra et al. (2010), the uncertainty is modeled by independent imoesch of the entries of
the kernel matrix<. The uncertain evenfa"Y(K)Ya <t) is then required to occur with high
probability. This results in the followinghance constrainproblem:

1
P =maxa et ®)
s.t. Prob (aTY(K+ Z)Yo < t) >1-¢ 6)

wheree < 0.5, and where& is a random matrix variate.
Problem (5) is hard to solve since typically the feasible set is non-cofexkey result is the
derivation of a lower bound op* under probabilistic assumptions on the entrieZ of

Theorem 1 [Bhadra et al., 2010] Let Z be an nx n random symmetric matrix with independent
entries, %, each having finite support,(B; < Zj; < bjj) =1 and E(Zj;) = 0. Then the chance
constraint in(5) is satisfied at any paifa,t) which is feasible for the constraint

o 'YKYa+/2log(1/€)||B « (Yaa Y)|e <t

i b--fa;- b--+ai- ~ C
wheref;; = lijyij where |; = == ¢y = =5, ) =T and

andyij= min{fc>0| %222+ﬂ-jz—log(cosr(z)+
fij sinh(z)) >0, Vz € R}.
Proof See Bhadra et al. (2010). |

Theorem 1 is used to replace (5) by the following problem, whose optimad Vaer-boundgp*.
Specificallyp* > p, where

max t— [oF
p= t,aes, 2 EE I

S.t.%yiyjaiGjKij‘i‘K /%Bija?ajzgt (7)

where k = /2log(1/¢) andBj; = BUZ Any solution of the above problem is guaranteed to satisfy
the chance constraint of problem (5).

This approach suffers from several drawbacks. First unless tivxrias psd, problem (7) is
not necessarily convex. Indeed in Bhadra et al. (2010) a locally opfuabki newton procedure
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was suggested for solving this problem. In the se@®R&VM will denote the solution of (7) by the
Quasi newton procedure. The second most important drawback is ¢hebistraint (6) does not
define a valid model of uncertainty.
To constitute a valid characterization of uncertainty set the constraineéjsto be modified
as follows
Prob(aTY(K+ Z)Ya < t) >1-¢ K+Zes

The formulation (5) solves a relaxed version of the above problem byiigntire psd requirement.
As a consequence the resultant optimization problem becomes non-comity, the assumption
that entries o are independently distributed is extremely unrealistic; often the uncertaintg in th
entries are due to uncertainty in the observations h&iiggx;) is seldom independent &f(x;,x;)
for distincti, j,I.

In this work we pursue a RO methodology where the uncertainty is desdripadyeometric
set. This allows us to alleviate the drawbacks associated with the probabilist&l.niodhe next
section we describe a RO procedure for designing robust classifiers.

4. Affine Uncertainty Set Model for Uncertain Kernel Matrices

In this section we introduce an uncertainty set over psd matrices and studysthitant robust SVM
problem using an RO approach.

4.1 Robust Optimization

Consider an uncertain optimization problem (8) wherg : SC (R" x R¥) = R

min f (x, W) (8)

XeRN
g(x,¥)<0i=1,....m
where W € RK is a vector of uncertain parameters. The UOP is in fdatwily of problems -one for
each realization d#. In the RO framework the information related4bis modelled as geometric
uncertainty se£  R¥ and the family of problems, (8) is replaced byritdust counterpart

f=mi f(x,W 9
r* =minmax f(x, ¥) 9)

gx,¥)<o0vVWeEi=1,....m

A solution of (9) is feasible to (8) for any realization $fe £ and the objective function is guaran-
teed to be no worse thai. The uncertainty sef is typically a polytope or ellipsoid or intersection
of such sets. These sets yield useful models of uncertainty, which leaactalile optimization
problems (Ben-Tal et al., 2009). A general representatiaf isfas follows

_ L )
z=(¥=9+ 3 il <p)
i=

whereW is the nominal value of the uncertain vecty the vectors¥' are possible scenarios of it,
andn is a perturbation vector. The norm is suitably defined to capture the geoaidirg set. As
an example, Consider the ellipsoidal set

Fellipsoid = {¥|(W — W) T Q(W — W) < p}
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whereQ € S and is positive definite. Itis easily seen that the set can be represgnfeavith Wi
being the columns o2 and whersd| - || is theLz norm.

In general the RC of an UOP may have infinite number of constraints andeis NP hard.
However in several important cases it reduces to a polynomially solvailexoptimization prob-
lem. We refer the reader to Ben-Tal et al. (2009) for a comprehetrsiggment of RO problems.

4.2 Affine Uncertainty Set Model

Recall the setup for the problem, there is a black box which when preseitted pair of obser-
vationsz,Z € X computes the kernel valu€(z Z). We assume that if andZ are noisy obser-
vations with uncertainty setd(z) andU (Z) with nominal values,om andz,,,,, respectively then
K(z,Z) = K(zhom Z,om)» defines a kernel function and will be called th@minal kernel The differ-
ence between actual and the nominal kernel is expressed by a lineanatiotbof knownL kernel
functions K;,l = 1,...,L evaluated at pointg Z, as follows:

L
K(Z7Z,>_K(sz,) - ZWIKI(sz’)-
[=1

When there is no uncertain§(z,Z) = K(z,Z) andn = 0. The value oK(z Z) lies in the uncer-
tainty set

L
{K(Z,Z’)-F ZWIKI(Z,ZI)HMHpS K, N = oVl = 175L} (10)
=1

where||n||p, p > 1 denotes thé, norm onn. The constraint); > 0 is needed to ensure that each
element in the set represents a valid kernel evaluation. The quaniitgasures the quality of
approximation and hence the uncertaintyk ¥ 0 then we have no uncertainty. Asncreases the
uncertainty set increases. In the sequel we will refd{ K, as base kernels.

We impose the uncertainty set (10) to all examples of interest which immediately tedhe
following model of uncertainty on the kernel matrix corresponding to theitrgiset,

L
E(K):{K:K—{—ZmM7 Inflp<km=>0,1=1,...,L}. (11)
=1

The matriceX, K| € S are obtained by evaluating the known kernel functilink on the training
set. As anyK € E(k) is always positive semi-definite, the sé{k) defines a valid model for
describing uncertainty in psd matrices. In a later subsection we will discas®lévance of this
setup to protein structure classification problem.

The Robust SVM problem (2) with uncertai, as characterized in (11), can now be cast as
follows

. 1
max min ——a 'YKYa+a'e

aeS KeE(K)
or more explicitly
max min “Lovikya- Loty S (niK))Ya+a'e (12)
max minjg,sc —5 20 Y 2 ik :

Note that in the latter problem the constraint 0 is dropped. Indeed if we defirg= o 'YK, Ya
thena > 0 asK| € 5. The optimah is the solution of max.g,a" n whereBy(k) = {n|[[n||, <k}.
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-1
H;‘ﬁ > 0 where|| - ||q is the dual norm of| - [|p, with g = ;°; for any p > 1.

q
For p = 1 one needs to observe that optimality is achieveq;at 0. Indeed there exists sorhe
such thaty = ||af|». The optimaln is given by the condition th&f.5 —jja|,, i = 1 andn; > 0. If
a < ||all» thenn, is strictly 0. At optimalityn; > 0, and hence the resulant optimal kernel lies in
E(K).

Before proceeding further it might be useful to discuss the Computatibn Becall that one
also needs to compukein (1). The choice ob is governed by the following procedure. For a given
K,K1,...,K_ let the optimal solution of (12) be* andn*. Thisn* can be viewed as defining an
effective kerneK = K + S|, njK; and hencé can be computed as

which occurs at); =K

1

b=
#SV 4y

[yi — 3 vioiKi] SV= {ifoi > O}

For p = 2 the problem (12) can be solved as a Second Order Cone ProgramfS0C

min st+2a"YKYa—a'e (13)
aeSat
st lall2 <t

a'YKiYa<a, VI=1,...,L

SOCP problems such as (13) can be solved by Interior point(IP) algor{tnms CPLEX, MOSEK,
Sedumi) and will be denoted hyncertainty-Set SVM ( USSVMsocp).

Generic IP solvers are inadequate for large scale classification problestsad, we demon-
strate here that the minimax reformulation, (12), admits algorithms which are bettied to large
scale problems. For simplicity of exposition we will consider the gase2. The results can be
easily extended for the general cape> 1. Before we discuss the algorithmic aspects it maybe
useful to discuss the computation of the base kernels.

4.3 Evaluation of Base Kernels

Recall that in the protein structure classification problem each obseriasipacified by ;(1P_, U(P),y),
whereP(see (3)) is the nominal structuteé(P)(see (4)) is the uncertainty set specified by the reso-
lution andy is the label. We discuss this problem in a formal setup and motivate the untesatin
described in (10).

To closely parallel the protein structure classification setting we considdoltbe/iing setup.
Given a data sdD = {(X;,U;)|xi € Uj,U; € X,i = 1,...,m} where an observation;, is not directly
specified, instead a nominal valug, and an uncertainty s&t are given. When there is no uncer-
tainty the setJ; reduces to onl;. We are also given a kernel functiéh: X x X — R. We make
no assumptions about the functional formkaf, -), and we assume that there is a black box which
when presented with any pairZ € X returns a valu&(z 7).

Let us now consider the computationkofx;, X;). Sincex;,X; are uncertain the precise value of
K(xi,X;) is not known but it for sure lies in the set

Ux,x')={K(z,Z)|ze U(x),Z e U(X)}.

3. This is also true for angp > 1) because any p-norm can be represented by conic quadratic inequélitiess more
detailed discussion on this issue see Ben-Tal and Nemirovski (2001).
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If there is no uncertainty then the s&l(x,X’) is a singeltonK(X,X’). However as the functional
form of K is not known, it is not clear how to characterize the elementgl afhich is amenable
to the RO procedure. We propose to circumvent this problem by buildindtenmate description
of the setU using a sampling procedure. We makadependent draws from the uncertainty sets.
In the Ith draw we obtair0' = {Z,,...,2,,} whereZ is an independent and uniform draw from
Ui. Fora givenOI We invoke the kernel functioK to obtain anm x m kernel matrixK, where
Ki (i, Xj) z: . OnceK are determined we propose to approximateby uncertainty set
descrlbed in (10)

5. An Algorithm for a Special Class of Convex-Concave SaddIBoint Problems

In this section we describe a novel algorithm, which is essentially a spes@lafaan algorithm
presented in Juditski and Nemirovski (2011), for a class of coneexave saddle point problems.
The algorithm is iterative in nature, requires only first order information, lEasO(1/T?) conver-
gence wherd is the total number of iterations. The proposed algorithm applies generalig, mo
specifically we show that it can be used to solve (12) and the convenears(7).

5.1 Assumptions

LetU be a closed convex set in Euclidean spgg¢d] - || be a norm orE, andw(u) : U — R be a
function. We say that(-) is a distance-generating function (d.-g.f.) Ercompatible with| - ||, if
wis convex and continuous dh, admits a continuous on the $¢? = {u: dw(-) # 0} selection of
o/ (u) € 0w(u) and is strongly convex, modulus 1 w.it. ||:

(W (u)—w (U),u—U) > lu—u|? Vu,u e U°.
Assume that

e X is a closed and bounded convex subset in a Euclidean spaaedY is a closed convex
subset in a Euclidean spage

e X, are equipped with norms- || x, | - ||y, the conjugate norms being ||x « || - ||«

e X is equipped with a d.-g.fox (-) compatible with|| - ||, and9” is equipped with a d.-g.f.
Wy (-). We denote by, the minimizer ofwy(-) on X (note thatx,, € X°) and set

Qx = maxwx (X) —minwx ().
xeX

xeX

We assume that the minimizer @k, (-) is the origin inY’, and set

Qy = max wy(y) ~minay(y).

[vllo<1 yey

We are interested in solving a saddle point problem

SadVal= m|n maxcp(x y), (14)
X yeY

whereq(-, -) satisfies the following assumptions:
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Al @(x,y):Z:=XxY — Ris continuously differentiable function which is convexxia X and
is strongly concave, modul@s> 0 w.r.t. |- |4, iny €Y, that s,

<¢{/(X7y,) _%(X7Y)ay—)/> > eHy_}/Hfz}’ \V/(XE X,y,)/ S Y)

A.2. Og(-,-) is Lipschitz continuous o = X x Y

A3. @(x,y) is affine inx: @(x,y) = (x,a(y)) +9(y).

In the sequel, we set

=ma =min
o) =maxg(x.y).  @y) = mine(x.y).
so thatpis a continuous convex function of @is a continuous strongly concave, modutus.r.t.
|| - |l9, function onY, and

min @(X) = SadVa TE%X(B(W

and the set of saddle points@bn X x Y is X, x {y. }, whereX, = Argminy ¢, andy. = Argmax, @.
Finally, we denote bysadz), z € Z, the natural saddle point proximity measure:

EsadX,Y) = ®(X) — @ly) = [@(x) ~ming] + [mvaxw— @(y)} -

5.2 Fixed Step-size per Stage(FSS) Algorithm for Convex-Concagaddle Point Problem

The MPb algorithm presented in Juditski and Nemirovski (2011) is anraeelsefast algorithm
for convex-concave saddle point problems. Computation proceedvénasestages, each stage
consisting of multiple updates involving varying stepsizes. Here we introduegiation of the
MPb algorithm called FSS, which employs fixed stepsize at every stage algihiéthm. We prove
that this apparent limitation does not harm the theoretical convergeneeprobf (see Appendix
A) needs milder assumptions and is much simpler than the original MPb algorithm.

We present a variation of the algorithm where the stepsizes are fixedrgtstage without any
loss of convergence efficency. In the following we present the Fitegzbize per stage(FSS) version
of the MPb algorithm along with convergence analysis.

5.2.1 FSS AGORITHM

We begin by introducing some notation

0Q(x,y)
[0)4

=a(y);Gy(x,y) = _a(pg;y) Z=XxY =3 Z=XxY

G(xy) = |Gx(x,y) :=

be the monotone operator associated with the saddle point problem (14.1Bthis operator is
Lipschitz continuous, and, as we see,»xtsomponent depends solely gn As a result, we can
specify the partial Lipschitz constaritg, Ly such that

Vi, X e X,y,y €Y):
1Gx(%,Y) = Gx(X. Y )l ox« < Liyly =¥ llor [Gy(%,Y) = Gy(X,¥) [l < Lyl X=X x; (15)
1Gy(X.Y) = Gy(X.Y)lor s < Lyylly =Yl
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We are now ready to present FSS algorithm. Execution of the algorithm isrgplgtages At the
beginning of stage= 0, 1, ... we have at our disposal positi® and a point/s € Y such that

1Ys = Yxllo- < Rs/2. (Is)

These data define the quantities

Zs={(xy) € Z:|ly—Vslly <Rs},
L‘S = 2ny\ / QXQQ/R5+ LnyQng, TS == 1/LS
Os = [ny\/ QXQyRs]/Ls; Bs = [ny\/ QXQyRs+ LnyDng]/LS =1- Os,

— ~ NS
()
gese

0) @x(y) =[S0+ oy (y- /R (0
e) Ns=Cell 64"”\/@&%32%9?) .
At stages we carry outNs steps of the following recurrence:
1. Initialization: We setz; s = (X, Ys) = argmir, ws(-).
2. Stept =1,2,...,Ns: Givenz s € Z°, we compute
Ws = argmin.; { (1sG(z5) — Wh(zs),u) + (*)S(U)} (17)

Zi1s = argminez { (tsG(ws) — wh(z s), u) + ws(u) }

and pass to steipt 1, providedt < Ns. Whent = Ns, we define the approximate solution to
(14) built in course o stages as

Ns
0,y = Ng* Zth.,& (18)
=

set
)_/S+l = ys’ Rsi1= RS/2
and pass to staget 1.

5.2.2 ROOF OFCONVERGENCE

In this section we discuss the convergence properties of the FSS algofithifms end we present
the following proposition.

Proposition 2 Let assumptions A.1-3 hold and fgtc Y satisfyinglp) be given along with R- 0.
Then, for every gls) takes place, and

€sadS,Y®) < ORB272575, (19)

while the total number M= S7 N of steps of the algorithm needed to buikf,y®) admits the

bound
Lyyr/OxQ LyQy +6
Ms < O(1) | BROX el Wg (s+1)|.
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In particular, setting

Lyy+/QxQ
s = max|s: VX os o (s+1)Ro |,
we have o
S<S = £sad,Y5) < BRE2252) & Mg < O(1) 20 (s 1) 0)
2
§>8 = Eead ) < O(1) PEN & Mg < O(1) YR o8,
Proof See Appendix A. |

The above proposition points us to the convergence ra@ bfM2) when number of stages is
high. In the following, we explain how to apply the algorithm to the problem atiha

5.3 Application of FSS Algorithm to (12)

In this section we discuss the application of FSS algorithm for solving formuléti®). It isstrictly
concaven a, providedK is positive definite, andffinein . The domain ofr andn are non-empty
convex sets. Clearly the formulation obeys all the assumptions, A.1-3, ¢iSBeprocedure. In
order to be consistent with the notation of FSS procedure we define theifujlanap where LHS
denotes quantities involving formulation (12) and the right hand side gonels to the saddle point
procedure detailed in the previous section. In particular wayusex, a —vy,y — s, YKY — Q,

E; = R, leading to the following definitions.

Y={yeR":C>y; >0, ZS.-yi =0} CR"
|
X={xeR" :x>0,|x|2<1} cR"
L
_ } T T
o(x,y) = I;m(zy Qy)+y'e
1
Cx(xy)=—d, d=[di,....d.]" d = >y Qy
L
GY(X7y> :(ZXIQI>y_el, € = [17"'a1]T
=]

1 1
[Xlx =IX]l2; 0x(x) = SIIX|z %0 =0, Ox =3

NI =

1
1¥llor =[IYll2, 0o (y) = 5HYH§7 Qy =

~—

Proposition 3 Computing the right-hand sides in every step in (17) is equivalent to solvaly p
lems of the form

(@) X+ =argminey [3(x—X)T (x—X) —p'x],
(b) 'y, =argmin.y [3(y=Y)" (y=y)—qa'y], (21)
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wherexe X,y €Y are solution in previous iteration anc&p—%‘sz(i,y) andg=— Qg:ngGy(i,y).

The point(X, ) are intermediate points ifiL7).

Proof See that we havex(x,y) = %x"x+ %y"y with certain positiveys, vs (see (16)), hence a
computation of the type of (17), that is

[Z= (X¥) € 2°1 > 0,6(%,9)}
= Zp = (X4, Y4) 1= argmin,z {(TG(X.Y) — wi(z),u) + ws(u) }
reduces to
X, = argmingy {X" [1Gx(X,¥) — heX] + X" X}
— argmin {—pTx+ 3(x— %) (x— %)}
and _ B
y+ = argminey {y' [T1Gy(X,y) —Vvsy] + 5Y'y}
= argminey {—y'q+3(y—y) (y=y)}.
|

Assuming that we start with a feasible point, thatx8,> 0 andx? x° = 1, thenxk! =

Kk . . . . . .
\/ﬁ The computation steps involvingis solved by projecting a vector onto the con-

straint set of the Dual SVM problem. The problem can be solved by ai@tiagrogram. However
we propose a line search procedure described in Appendix B whialig@s considerable saving
of computation time. The solution of formulation (12) by FSS procedure willdferred to as
USSVM N -

5.4 Application of FSS Algorithm to the Chance Constraint Setting

The FSS procedure is fairly general and also applies to formulationf()islpsd then the formu-
lation (7) can be posed as a SOCP. In particular the following is true,

Theorem 4 [Bhadra et al., 2010] If both K, B are symmetric psd matrices then formulation (7) is
equivalent to
MiNg v v aes, %t —2idi
st. K|[Bzv| <t—t,
IY(K)zal3 <t
(Xiz <Vi.

(22)

One could recast this problem as a mini-max problem and solve it using thprb&&iure.
Theorem 5 Formulation(22) is equivalent to
- 1 e - 2
min max——-a' YKYa + Zlon — ZZiai ) (23)
(20./7p 1< 9 2 = 7

Proof At the optimum of (22) the constraint involvirtgandt’ is active. Using this we eliminate
botht andt’ and on further dualizing one obtains,

r}qz%xangig L(¢,a) (: % (aTYKYa —i—K\/VTBV) —iai +iili(ai2—vi)>
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whereg; is the lagrange multiplier of the constraim# < v;. Using first order conditions for opti-
mality, %. = 0 one obtains

EWTBY) ipv+7=0,

2
VOB =5,

Eliminatingv and noting that at optimality the constraint of (23) involviGgs active, the proof is
complete. |

Note that the objective, in the previous theorem, is Lipschitz continuousy lingaand strongly
concavein a as long aK is positive definite. Botl{ anda lie in a convex and compact set. In
principle the FSS procedure applies and could be an interesting altertwativee SOCP procedure
discussed in Bhadra et al. (2010).

5.5 Remarks

In this section we make some remarks on FSS algorithm and its suitability to therprablend.
A minimax problem migex max.cy @(X,y) can be approached as follows

min <g(><) = r;gxcp(x, )) - (24)
If Oxg were Lipschitz continuous, (24) could be solved at the @#/T?) by the fast gradient
algorithm for smooth convex minimization due to Nesterov (1983). Howewveolo problem,g
not necessarily possesses the desired smoothness. However, thiensitith allows to achieve
O(1/T?) convergence rate by applying the FSS algorithm to the saddle point rd&diomuof (24).
The FSS algorithm is essentially a modification of the Mirror Prox (MP) algorithesented in
Nemirovski (2004). The prototype algorithm MP solves saddle pointlprnol§24) with convex-
concave and smooth (with Lipschitz continuous gradign#) the rateO(1/T), with the hidden
factor in O(-) depending on the distance from the starting point to the solution set of (5ig) (
distance is taken w.r.t. a norjm|| assembling| - || x, || - || ) and the Lipschitz constant of the gradient
of @(this constant is taken w.r.t. the conjugate ndrr,.). Now, whengis strongly concave iy, the
above convergence implies qualified convergence oftb@mponents! of approximate solutions
to they-componeny. of the saddle point of, so that eventually we know thas! — .|| is, say,
twice smaller than (a priori upper bourlon) ||y* —Y«|ly. When it happens, affinity ap w.r.t.

X (AssumptionA.3) allows to rescale the problem and to restart 8&#if we were working with

a twice smaller domain than the original one, which result®(t/T) convergencewvith reduced
hidden factorIn FSS, we iterate the outlined rescalings and restarts (this is where tles stage
from), thus arriving aD(1/T?) convergence.

6. Prediction Rules and Error Metrics

Recall that in the classical SVM formulation the label of each observatioediqied by (1) where
(a,b) is obtained by solving (2). AK(x,X;) is known the classifier predicts a unique label to each
test examplex. The quality of the classifier is measured by comparing the prediction with the
actual label. In the problem setup considered here the kernel vakieslgrapproximately known
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and hence the prediction process is not as straightforward as in thefcag#. In this section we
introduce several prediction rules and evaluation measures.

6.1 Prediction Rules

For each observation, the valuesK(x:,X;), are only approximately known and lies in an uncer-
tainty set (10). Given anyu, b), application of decision rule (1) in this setting is not clear. To this
end we propose two heuristics for modelling the prediction process.

The essence of robust classification is that for any choidé(gf, x;), governed by (10), the
classifer will give the same label. In other words the classifier is robustidertainty in the value
of K.

The simplest case would be to uséx;,x;) = K(xt,X;), which when used in conjunction with
(1) gives the following labelling rule:

vP' = sign (ZyicxiK(xt,xi) + b) , (25)

which, in the sequel, will be referred to as theminal rule A more comprehensive process of
labelling would involve evaluating all possible choiceskofand see how robust the resultant pre-
diction is. Let{n'%,... ,n'R}, beRuniformly drawn instances din' € RY|||n||, < k,n; > 0}. Each
choice ofn! generates a realization of kernel of the form

L
Ke(xe, %) = K(Xe, xi) + 3 niKi (%, i)
=1

One option for arriving at a label would be to take thajority votewith the above kernel function,

R
yP' = sign ( Zlyts> , V¢ = sign (Z Qi YiKes(Xe, Xi) + b) . (26)

Once we have defined these two prediction rule , nam&ljority voteand thenominal rule it is
important to devise measures for evaluating the resultant classifiers.

6.2 Error Metrics

Consider a test data sét= {(X;,yt) t = 1,..., s}, Where,y; is the true label for observatioq.
We wish to measure the performance of the classifier (26) or (25) on thidatsset for a given
choice of(a,b).

For the nominal classifier (25) the usualldoss works well and we define

Mist 1 or
NominalErr (NE) = w
Ntst
Similarly for the majority vote based classifier (26), we define
Mist 7 pr
MajorityErr (ME) = Ztlnt(yt?éyt) @)
st

where,y; is the true label fox;. However as noted before a robust classifier is expected to ensure that
ye=Vy,s=1,...,Ris equal for alls. To capture this notion of robustness, we propose another error
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Formulation Required information

Nominal — SVM (2) | K

RSVM (5) K and Support

USSVMsocp(13) K andX = {Ky,...,K_} (set of valid kernels
USSVMun (21)

Table 1: Summary of Various formulations and associated Information eztjuir

measure RobustErr) which counts the fraction of data points 4n for which there is atleast one
error amongdR observations. More precisely

Nest 1
RobustErr (RE) = ZE1-CEA (28)

Nest
is a more appropriate measure than (ME) to evaltaiastness

In the following section, we report experimental results for the algorithmeldped in this
paper and benchmark them against the state of the art with respect tatleerabntioned metrics.

7. Experimental Evaluation

This section presents experimental evaluation of the formulations, nalN@tyinal — SVM,
USSVMsocp, USSVMyn andRSVM. The Nominal — SVM formulation is the usual SVM for-
mulation (2) with thenominalkernel. The minimax problem (12) when solved by the FSS procedure
will be referred asdJSSVMyn. The solution of the SOCP (13) will be referred @SSVMsocp.
Though as discussed before the setup of Bhadra et al. (2010) dbapply here but for sake of
completeness we have also included a comparisonREWM. A brief summary of the formula-
tions is presented in Table*7.

In particular it would be interesting to explore the following questions.

1. Comparison oUSSVMsocp andUSSVMyn against the non-robustominal — SVM.
2. Convergence and scalability 05SVMyy algorithm

The section is organized as follows. We begin by a brief description ofséésan Section 7.1.
A comparative study of robustness is presented in Section 7.2. Thedustisdiscussed in Section
7.3. The experimental verification of the convergence rate of FSSguoees discussed in Section
7.4. Next the scalability d)SSVMyn overUSSVMsocp is discussed in Section 7.5.

7.1 Data Sets

We created synthetic data sets to test the generalization and robustressiescof the proposed
formulations. Additionally we also have empirically tested them on protein steictata. We
describe them below.

4. Relevant data and scripts are availablgtat/mllab.csa.iisc.ernet.in/ ~ sahely/uncertainkernel.html
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7.1.1 SYNTHETIC DATA SETS AND KERNEL FUNCTIONS

It is important to evaluate the effect of robustness on wide variety of sitatito this end we use
the following data generation mechanism suited for binary classificationgmsb

Chooseal ~ Unif(2,100), whereUnif(ny,ny) is the uniform distribution over all integers from
n; to ny. For such a choice af create a mixture distribution consisting of 4 Gaussian distributions,
N(W, %), with diagonal covariance matrix. The mean of each Gaussian distribytieriRY, is
determined by independently choosimg~ Uniform(—5,5) j = 1,...,d. Each diagonal entry of
the diagonal matri¥ is independently drawn frotd ni f orm(0,5). We assigned labels to the centers
of each Gaussian distribution according to ggnw'x) wherew € RY is a random vector with
|lw|| = 1. A data set of Rl points was generated as follows. First a se¥lgfoints corresponding to
the positive class was generated by sampNr@pservations from the Gaussian mixture distribution
consisting of positively labeled mixture components. The sd\l gfoints were generated from
negatively labeled mixture components.

We study the problem of robust classification when the kernel valuescaravailable but are
governed by (10). Next we describe the constructiohade kernels needed in (10). A linear
kernel will be very effective for any data sBt created by the data generation process described.
GivenD = {(x;,yi)|i = 1,...,N} we defineK = x;' xj. Furthermorel kernels were simulated as
follows; K| = K +2'Z'", whereZ]; were generated using: aussian (0,1)) Uniform [-1,1] c)
centeredeta (0.5,0.5 istributions. After that, the generated values were multiplied by a random
lij ~ Uniform (0,0.05Kj;|). This leads toL valid positive semidefinite kernels for each of the
distribution, namely Gaussian, Uniform, or Beta.

We will denote byDg (S N,L), the set ofSdata sets{D1,...,Ds}. Each data set was created
by the data-generation mechanism discussed earlier and leaamples per class with kernels
generated by the Gaussian distribution. Simildly(S N,L) andDg(S,N,L) will correspond to
the Uniform and Beta distribution.

7.1.2 RESOLUTION-AWARE PROTEIN STRUCTURE CLASSIFICATION

We have used a data set based on the SCOP (Murzin et al., 1995) 40&msemon-redundant
data set taken from Bhadra et al. (2010). The data set has 15 (8§ superfamilies), having
10 structures each. The names of these superfamilies are reportedendhp. To study the
effect of robustness we studied the classification problem on all pogsibte which gave rise to
105 data sets in total. Each data Betan be thought ob = {R,,y;, ri|i = 1,...,n} whereR is the
nominal structure described in (3) with labygl Incorporation of resolution information leads to
uncertainty sett) (R) (see (4)). Using the kernel function described in Bhattacharya e2@0.7(
and assuming that the resultant uncertainty in kernel values obey (1Bt functionK ,K, are
computed by the procedure outlined in Section 4.3.

As described in the Section 3, the uncertainty set imposeRIZYM maynot always be appro-
priate. However we still provide a comparison to the robust formulationsitbes! in this paper for
the sake of completion. In the setting of the paper a set of kernel matkicesK1,Ko,..., K.}
are specified. The formulatioRSVM needs support information, (see Table 7), which could be
extracted as follows

L
z | ajj = mln (Ki;;) bij :mlax(Khj).
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The algorithmdJSSVMsocp andUSSVMyny andRSVM have been implemented in Matlab
with the help of Sedumi(Sturm, 1999). We have used libS\?NMs an SVM solver. All the ex-
periments have been performed on a 64 bits Linux PC with 8 Intel Xeon 2.66pB¢tessors and
16GB of RAM. TheRSVM implementation uses a Quasi Newton procedure outlined in Bhadra
et al. (2010). As it often gets stuck in a local minima we have used multiple staingsp All
results onRSVM reported here corresponds to the results of the best starting point atféng
randomly selected starting points accordindgr®VM objective function.

7.2 Comparison of Robustness

We begin by studying the effect of robustness on synthetic data. In dp@ged model of uncer-
tainty the parametex plays a very important role. Whea= 0, then there is no uncertainty and
as it increases the uncertainty becomes more pronounced. The utilityust fobmulations would
become clear as is increased. One would like to experimentally verify the fact that indeed this is
the case. To this end we conducted the following experiment.

We created data seBg (S N,L),Dy(SN,L),Dg(SN,L) with S= 10,N = 250,L = 200, as
described in Section 7.1. We have performed 5-fold cross-validatioril timealO data set. Here
we varyk € {0.1,0.2,0.3,0.5,1,1.5,2,2.5,3,3.5,4,5} with R=100. In Figure 2, we have plotted
the RobustErr (28) averaged over all 10 data sets for various distristaind choices of. Though
we get similar result for few different values Gfhere we have reported the results for the value of
C =100. AgainDg will refer to the Gaussian distributioly refers to the uniform case, aiith
refers to the Beta distribution.

The results of the experiment were as follows. It can be seen fromdé=®jilmat ak = 0, the RE
for bothUSSVMsocp andUSSVMy are exactly same as thatibminal — SVM. It confirms the
fact that ak = 0, USSVMsocp(USSVMy ) is equivalent tdNominal — SVM, as there is no uncer-
tainty. Figure 2 shows that, with the increase of uncertainty in the test exgripeRobustErr(28)
for Nominal — SVM increases substantially when comparedJ®SVMsocp andUSSVMyy on
all the 3 data sets. This shows that, non-robust classifiers, for exa&8\pi&, are unable to handle
uncertainty compared to the proposed robust classifiers. Also astedgeathUSSVMsocp and
USSVMuyn are equivalent and so on the test one they exhibit similar performance.

7.3 Comparison of Generalization Error

In this section we compare the error measures, RE (28) and ME (27).

We again use the same data sets described in the previous subsectioh.tifeomeetrics, we
have performed 5-fold cross-validation on all the 10 data sets comdsmpto each distribution.
The hyper-parameters (C amjl for each classifier, were chosen using a grid search mechanism
from the selC = {0.1, 1, 5, 10, 50, 100, 200, 500} ande = {0.05+ 0.05stepstep=0,...,9}.

For each metric, the cross-validation accuracy,(160ErrorMeasurg%, averaged over 10 data
sets for various distributions, are reported in Figure 3. NoteDiatefers to the Gaussian cagh,
refers to Uniform case aridg refers to the Beta case. The parametaras setto 1.

The results were as follows. All the formulations achieved an accura®9%fwhen NE was
used as a error measure. From Figure 3 we see thatWe8VMsocp and USSVMyy beats
RSVM in terms of RE indicating thaRSVM is not well suited for the uncertainty sets considered

5. Sedumi can be found http://sedumi.ie.lehigh.edu/ .
6. LibSVM can be found dittp://www.csie.ntu.edu.tw/ ~ cjlinflibsvm/
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Figure 2: Plot of RE for distributions (clockwise starting from top I&t) Dy, Dg with varyingk.

Formulations compared atdl5SSVMun , USSVMsocp andNominal — SVM. The legend
SVM refers toNominal — SVM

here. When we use ME, which is not as conservative as RE the gapusariThis experiment
demonstrates that in the presence of uncertainty the performance aheltraccurate classifiers
suffer drastically but the proposed robust formulations fare much bettendling uncertainty. In

addition, Figure 4 shows that the average training time&8EVMsocp is same as that dRSVM

butUSSVMuy is 10 times faster than both of them, even for these small scale data sets {(2i0@ tra
datapoints per class).

7.4 \ferification of Convergence of FSS Algorithm

In this section, we have experimentally verified that the proposed sadidiieased algorithm has

O(ﬁ) convergence rate (see (20)). Recall thgtis the actual number of steps, which one can
consider as iterations.
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Figure 3: Cross-validation accuracy (%) obtained WitBSVMsocp, USSVMyn, RSVM and
Nominal — SVM using RE (28)and ME (27). All values reported here are(160
Errormeasurg%

We report results on Data SB{;(1,N,5) whereN € {50,500}, andC was chosen to be 1 for
N = 50 and similarly forN = 500 it was fixed to be 10.

Figure 5 shows the convergence rate of the Saddle Point based algfmithkl8SVM formula-
tion. Thex-axis and the-axis denotdog;o(Ms) andlogio(€sag) respectively. All the points on the
graph indicate the “end” of thé" step and circled points indicate the “end” of thestep. When
s> s*, ideally the graph should be a straight-line with slope less thamnd one can observe the
same in Figure 5. On the other hand, $ct s« rate of decrease igy,q is much slower than the case
ins> Sk.

7.5 Scalability of USSVMun

In this section we study the relative performacdJ8SVMyn versusUSSVMsocp on large data
sets. We also verify the convergence criteria of propd$88VMyy .

In theUSSVMyn algorithm the number of stages and the number of iterations inside one stage
do not depend on the number of data points, see Section 5.2. In eachiitevaticeed to solve two
gradient projection type problems. It appears that they are extremedyp the€ompute; in one case
there is a closed form solution, while in the other case we could solve it by adereh algorithm.

Both USSVMsocp andUSSVMyn solves the same problem but the computation required may dif-
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Figure 5: Rate of convergence for Saddle point based algorithm

fer significantly. To this end we have compared the training timed &8VMsocp andUSSV My
with increasing the number of training data poirt§.(For this experiment, we have used following
data set.
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Figure 6: Training time fod SSVMsocp USSVMun with N = [500,100Q 2000 3000 4000 5000
andL = [10,50]

We have used synthetic data set generated similBytgplease see Section 7.1) with number
of data points in each class &250,500,100Q 1500 200Q 2500}, whereL = {10,50}. The values
of R=100,C = 10 andk = 1 were used.

Figure 6 shows training time (in sec) for varyilg One can observe that, with the increase
of N, the training time folUSSVMsocp increases very steeply compared to the training time for
USSVMun - As expected, training time fadSSVM in general increases with the increase of num-
ber of uncertain kerneld.J. As an example, to build a robust classifier with only 3000 data points,
USSVMspcp heeds more thab hours while USSVMyn completes withirR0 minutes This con-
cludes that, to build a robust classifier with a medium scale of data (even naor&@00) the saddle
point based algorithm is much more effective then a Quadratic Conic Pndgaiaed formulation.

7.6 Discussion of Experimental Results

The results on the synthetic experiments show tHa8VMsocp, USSVMyn performs better than
RSVM in terms of generalization as measured by various error measures. Aligleddinmulations
are more robust thaNominal — SVM. It is also demonstrated th&atSSVMyy IS much more
scalable thatuSSVMsocp. Even to build a robust classifier with 3000 data poittSSVMsocp
needs more thab hours while USSVMyn completes withirRO minutes

7.7 Resolution-aware Protein Structure Classification

This section presents experimental results for comparing the robustadesnmance of the pro-
posedUSSVM, with the existingRSVM formulation.
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Error Measure USSVMsocp USSVMwn | RSYM | Nominal — SVM
Robust Error(RE) 25.14 24.95 | 20.95 10.38
Majority Error(ME) 85.70 83.36 | 81.12 71.01
Nominal Error(NE) 80.76 79.67 | 80.38 71.57

Table 2: Comparison dJSSVMsocp, USSVMyn RSVM andNominal — SVM using accuracy
measures, 10Q — ErrorMeasure%, where Error measures are defined in Section 6.2.
Table shows average accuracy for all Ife-vs-oneclassification problems

The data set is described in Section 7.1. The experimental methodologydoltmve-vs-one”
classification setting with all 15 classes of protein structures. Leave@dbm¢tOQO) cross valida-
tion using SVM, RSVM and USSVM was performed on all 105 of such clasdiéin problem. In
all cases we report accuracy, computed ag 10 rrorMeasurg %.

Let © = {(R,ri,yi)} be a protein structure data sets whiris the set of coordinates df pro-
tein structure obtained from Astfaflatabase, whenmg is the corresponding resolution information
obtained from the PDB, ang is the class label. Using resolution information, we generated a set
of perturbed structure®; = {P!,...,P-} for eachP, as follows. For each atom, of P generated
structureP® with coordinates of atoms g8 = p;, +uandu~U(! , 5). One can create a set
of uncertain kernels, whet€(p, p’) is a kernel function computed between two protein structures
pe Q andp € Q;. For our experiments, we have generated a set of kernels consisting 60
base kernels. Denoting the kernel matriceg Ky, ...,K } the uncertainty set is defined @&51)

(see (11)) withKk = %ZI_:IK| andk = 1. Given the base kernels the prediction is implemented,
as reported in Section 6, witR= 100 andk = 1. For the purpose of our comparison, we have
used weighted pair-wise distance substructure kernel (Bhattachaalya2007). These kernels are
purely based on protein structure (specially position®f Please refer to Appendix C for details.
ForRSVM, we compute the following,

Kij =Kij,aj=_ min K(p,p),bj= max_ K(p,p).
i ij, &ij peQubeQJ (P, p),bij PGQhﬂéQj (p.p)

7.7.1 RESULTS ONPROTEIN STRUCTURE CLASSIFICATION

Table 2 and Table 3 report results REVM, USSVMyn andNominal — SVM (SVM with kernels
based omominal protein structure reported in PDB files) using both standard and robust e
measures defined in section 6.2 in the Leave-One-Out (LOO) procedilyper-parameters (C
and/org) for RSVM andC for USSVMyn andNominal — SVM were tuned separately using the
grid search mechanism. As this is a 15 class classification problem and weddlé “one-vs-one”
setting, we have reported average accuracy of all 105 classifidse(@a We have also provided a
list of a few individual classes (Table 3) whed&SSV Mperformed significantly better than RSVM.
The results are presented in the form of a histogram of performanezatiffes (%) otUSSVM
againstRSV MandSV Mobtained by using RE (28) in Figure 7.

It is clear thatRSVM, andUSSVM perform significantly better than their non-robust coun-
terparts, both in terms of Accuracy (measured by MajorityErr) and Robas (measured by Ro-
bustErr). This result indicates that, the use of resolution information impithesoverall classifica-

7. Astral can be found dittp://astral.berkeley.edu
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Figure 7: Histogram of performance differences (%) betwd8%VMsocp andRSVM is shown
in the top figure. The bottom figure correspotdSSVMsocp andSVM

tion accuracy. In factJSSVM even beatRSVM in terms of robustness. Note that, for more than
50% classification problem accuracy @ESVMsocp is more than 5% of that dRSVM in terms

of Robustness. For few classes difference in accuracy was morel@8ar(see Table 3). More-
over, this performance difference increases while compdd8&VM againstNominal — SVM.

For more than 60% classification problem accuracY88VMsocp is more than 15% of that of
Nominal — SVM in terms of robustness and notably for almost all the cases the margin was more
than 10% in term of RobustErr.

8. Conclusion

We studied the problem of designing robust classifiers when the kernetesaare uncertain. The
chance constraint model proposed in Bhadra et al. (2010) made imipombamness on this problem
but it had an important theoretical flaw. It did not constitute a valid modehoéttainty but instead
a relaxed version of the original problem. This led to non-convexity anal lménima problems.

Instead of a chance constraint approach we follow the robust optimizagiomunity and advocate
a geometric approach. The approach proposed here not only defiradisl model of uncertainty,
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Error Measure| UssviMoce  USSVMi | RSVM | Nominal —SvM
€c.66.1vsc.68.1

Robust Error 31.00 31.00 | 18.00 11.00
Majority Error |  56.00 65.00 | 50.00 50.00
Nominal Error| 50.00 55.00 | 40.00 50.00
c.37.1vsc.55.3
Robust Error 23.00 23.00 | 12.00 6.00
Majority Error |  60.00 60.00 | 55.00 51.00
Nominal Error| 55.00 55.00 | 35.00 55.00
d.58.4 vs c.108.1

Robust Error 21.00 21.00 | 12.00 6.00
Majority Error |  64.00 70.00 | 65.00 60.00
Nominal Error| 60.00 65.00 | 60.00 55.00
c.66.1vsc.108.1

Robust Error 27.00 27.00 | 18.00 12.00
Majority Error |  58.00 55.00 | 60.00 50.00
Nominal Error| 55.00 55.00 | 45.00 55.00
c.55.1vsc.2.1
Robust Error 27.00 27.00 | 19.00 10.00
Majority Error |  70.00 65.00 | 70.00 60.00
Nominal Error| 70.00 55.00 | 60.00 55.00
c.66.1vs d.58.4
Robust Error 33.00 33.00 | 25.00 18.00
Majority Error | 72.00 65.00 | 70.00 55.00
Nominal Error| 50.00 50.00 | 65.00 70.00
b.18.1 vs b.80.1
Robust Error 23.00 23.00 | 15.00 6.00
Majority Error |  65.00 70.00 | 63.00 58.00
Nominal Error| 60.00 60.00 | 60.00 50.00
c.55.3vsc.55.1
Robust Error 28.00 25.00 | 20.00 10.00
Majority Error |  88.00 70.00 | 80.00 65.00
Nominal Error| 60.00 60.00 | 85.00 60.00
€.66.1vs d.92.1
Robust Error 29.00 29.00 | 22.00 11.00
Majority Error | 75.00 75.00 | 72.00 55.00
Nominal Error| 65.00 60.00 | 70.00 65.00

Table 3: Comparison dJSSVMsocp, USSVMyn RSVM, andNominal — SVM using accuracy
measures, 10Q — ErrorMeasurg%, where Error measures are defined in Section 6.2.
Table shows accuracy fane-vs-oneclassification problem among few classes. Descrip-
tion of superfamilies of SOCP are in Table 4

2947



BEN-TAL, BHADRA, BHATTACHARYYA AND NEMIROVSKI

but leads to a tractable optimization problem namely a SOCP formulation. HogéeP formula-
tions maynot be well suited for large scale problems. We show that the praale be equivalently
posed as a minmax problem and can be solved by saddle-point algorithmdapethe general
purpose algorithm of Nemirovski (2004) for solving saddle point pdoce to this problem. The
algorithm proceeds istages We propose a novel special case of this algorithm, FSS, where the
stepsize remains fixed per stage. The FSS algorithm has same of@gt/a?) convergenceT
being the number of iterates. This procedure is widely applicable which is armattedepen-
dent study. We demonstrate its applicabilityR8VM and to the problem at hand. The proposed
algorithm,USSVMyn combines FSS with suitable projection steps and is more scalable than the
SOCP formulationlJSSVMsocp. Using a robust optimization based framework we pose the prob-
lem of classifier design as a minimax problem. The minimax procedure is solvadbyel FSS
procedure which ha®(1/T?2) convergence. Empirical results show thi8SVMsocp is indeed a
robust alternative to uncertainty in the kernel matrices both on syntheticeahavorld data sets.
Furthermore experimental results demonstrate tf&$VMyn indeed achieves the theoretical rate
of convergence and is a scalable alternatived 85V Msocp.
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Appendix A. Proofs for the Saddle Point Algorithm

In this section we prove the convergence of FSS algorithm.

A.1 An Important Lemma

We start with the following Lemma.

Lemma 6 Consider stage s of Algorithm FSS, and let

S Q 3
1Y) = & I3 + B IV = &M = /22 81, + 2 3.,

Functionws(-) is a d.-g.f. for Z compatible with the norjn ||, and

(a) argmin, ws(+) = (X, Ys) € Zs & maxz ws(-) — minzus(-) < 1, (29)
(b) V(zZ €2):(G(2)-G(2)|- < Lsllz—Z||.

Proof Sincewy (-) is a d.-g.f. for?, this function is convex and continuously differentiable on the
entire?’, It follows thatws(x,y) is continuous convex function df the seZ® := {(x,y) : dws(2) #

0} is equal to{x : dwx (X) # 0} x Y, andws(x, y) admits a continuous af’ selection of subgradient.
All we need in order to complete the verification of the fact #hats a d.-g.f. compatible wit - ||

is to verify thatws is strongly convex with modulus 1 w.r.t. the latter norm, which is immediate:
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with (x,y), (X,y) € Z° we have

(0% y) = (X, YY), (x =X,y —
')

); y))
§TX<(")$< Ck& X X=X 5

), x=X) + g2 ReH oy ([y = Yel /Re) =l ([Y = ¥l /Rs).y =)
= gy (W (X) — 6 (X), x— ’>

o (el (ly - ys)/Rs) W ([Y = Y8l /Rs), [y = Vsl /Rs = [y — Y5l /Rs)
X|| X%+ &y - YHy/F% = [l(x=x,y=y)I%.

It remains to prove (29). Relation (29.is evident. To verify (2%), letz= (x,y),Z = (X,Y) € Z°,

let Ax =X —X, Ay =Y —, & = |AX||x\/0s/Qx, N = [|Ay|ly/Bs/QyRsL, so that||z—Z|| =
I[&:n]ll2 by (16). We have

| \/

1Gx(2) = Gx(Z) llx < Lully =Y ll: [IGy(2) = Gy(Z) [l < LyylIx—=X[|xx +Lyylly =¥ llr
[see (15)]

Q 2
= [1G(2) - G(2) 2 < FELEIaY]5 + ng [nyIIAXIIerLyyHAYHy]

= QX%ZS b2y %5 {ny\/ME + '—vas\/m”]

= [IM&n]ll3,
xQ
M = ‘ GsBsy RSLXy — LSN N = |: ‘ (1_BS)/BS
\/QXQ Rsl_xy 9[93/:\% Lyy \/(1_ BS)/BS ‘ (ZBS_ l)/BS
where the relations in the last line are readily given by (16). In view of thimputation and the
fact that||z— Z|| = ||[&;n]||2, in order to verify (2%) it suffices to show that the spectral norm of

the symmetric matriN is < 1; sinceN is nonnegative due tfs > 1/2, see (16), the latter task is
exactly the same as verifying positive semidefiniteness of the matriX, which is immediatel

A.2 Proof of Proposition 2
Consider stags, assuming thatls) take place. Fore Z° andg € Z:= X x 9, let

VZ(U) = ws(u) — 0d5(2) — <03é(2)
Prox(&) = argmin{ (& — wj(2),

ueZ

u—-2:Z—R,
)+ ws(u)}: Z— Z;

note that Prox¢) is well defined due to strong convexity ak(-). Our basic observation is as
follows:

Lemma 7 Nemirovski, 2004, cf. Lemma 3.Given ze Z° &.n € E, let w= Prox(§) and z. =
Prox(n). Then for all ue Z it holds

(n,W—U) < VE(U) —VE () + (n,w—2,) —V3(z.) (@)
< VE(W) V2 (1) (0 —Ew—2,) ~VEW) —\3(2,) -
< VE(U) ~VE (0)+ [3In — &l w2, ~ 3z~ w2~ 3llz. ~w]?] (c)
<VE(W) V3 (W) + HIn 2 - w2/ (d).
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Proof. By definition ofz;. = Prox(n) we have(n — w(z) + wi(z;),u—z.) > 0; rearranging terms
and taking into account the definition \df(u), we get &). By definition ofw = Prox,(&) we have

(& — @l(2) + (W), Z. —w) > 0, whence(n,w—z.) < (N — §,W—2.) + (W) — wl(2),2¢ —W);
replacing the third term in the right-hand side af (ith this upper bound and rearranging terms,
we get p). (c) follows from (b) due to the strong convexity ofs implying thatV;(u) > %||u—v||2,
and @) is an immediate consequence(of. O
Applying Lemma 7 taz = z s, § = 1sG(z s) (Which results inw = w; s) andn = 1sG(ws) (which

results inz, = %, 1), we obtain due to (30) for all € Z:

Ts(G(Wh ), Whs —U) <V, (U) =V, () + 3 [TEl|G(whs) — Glzs) [ — IWhs—2]°] -
Bs

Observe thad s < 0 by (29b) and by definition ofts (see (16)), we arrive at

Ts(G(Wes), W s — U) < Vi (U) =z, (u)VueZ (31)
Letu € Zs, and let
@(x) = max _ @(x,y).

YeY:[ly—ys|ly<Rs

Summing up (31) over= 1,...,Ns, taking into account that; (u) < 1 due tou € Zs by (29a), that
V7(u) > 0, we get
Yue Z 1 NS(G( ), Wi s—U) < A= L
S - Z Wes), Wt s S8 NG

t=

On the other hand, settimg s = (X s, Yt s), U= (X,y) and noting that® = (x°,y®) = zt 1 Wes
(see (18)), we have

(G(wts) W s — u>

[ (% Yt.s), X5 — X) + <([{/(XtS>Yts) y— YI5>]

e (00X s Vi) — <P(X Yes)] + [00%s,Y) — OXes, Vs)l] (@) (32)
- [cp(xt sY) = ®X W, s)]
SZt DGY) = 0% THE W) = G0E,Y) — (X, ¥°) (b)

_NS
1
N

> ol

(inequalities in(a), (b) are due to the convexity-concavity @f, so that (32) results ip(x®,y) —
@(x,y°) < Aforall (x,y) € Zs. Taking supremum iiix,y) € Zs, we arrive at

Q0¢) —9(y?) <A< Ls

? SN (33)

where the concluding inequality follows from the definitionfoflue tots = 1/ £s. Observe that the
left-hand side in (33) i& @s(x°) — SadVal (due tap(y®) < SadVal), while the right-hand side in (33)
is < % due to (16¢). Thus, (33) implies that

= 4 6RS
¢;(X°) — SadVal< ETR (34)
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We claim that in factp,(x°) = @(x®). Indeed, assuming the opposite,Yet={y € Y : [ly—ys|o <

Rs}, and lety = argmay.y, @(x,y), so thaip,(x°) = @(x,y). Sinceq(x®) := m%xcp(xs, y) > @(x5) :=
ye

maxcp(xs y) andYs is cut offY by the inequalityl|y — ys||o < Rs, we havelly —ys||o = Rs, while by

yeYs
(Is) we havelly, —ys|ly < Rs/2, whence, in particulas, € Ys and |y, —ys|lo» > Rs/2. Since the

function@(x®,y) is strongly concave, modullﬁbw.r.t. H -|ly, and attains its maximum e Ys aty,
whiley, € Ys, we havep(x®,y.) < @(x%,y) — 5 Olly. — ﬂ\y < QOEy) — Rg It follows that SadValk=

mm(p(x Vi) < 006G, Yx) < @0Ey) — Rg @) — 9R§ The resulting inequality contradicts (34),

and this contradiction shows that in fag{x®) = (p( ). Thus, (33) reads

0
w00 -0 < 2<%, @)
as required in (19) (recall that by constructi®gn= 2-5Ry). Finally, (35) implies that
— S
aly.) — giy) — Sadval- gly") < 80 —00y") < 2 (36)

since the functiorp(-) is strongly concave, modulw.r.t. | - ||, and attains its maximum over
y €Y aty., we haveg(y.) — @(y*) > ZHy* ySHy, which combines with (36) to imply thalty, —
y¥lo < Rs/4 = Rs;1/2; this is nothing butls;1). Thus, we have proved that(ifs) takes place, then
Algorithm FSS ensures (19) ariti,1). Since(lp) holds true by assumption, we conclude that (19)
and(ls) take place for alk. All remaining claims in Proposition are now straightforward. [

Appendix B. Projection on the SVM Constraint Set

This appendix discusses the projection step encountered in Section 5candider the following
problem
yi = argrpin{ -y'a+ 3 (y V' (y— W}
ye
whereY = {y e R"0<y; <C,3;yis = 0} is the SVM constraint set argl € {1,—1}. When
y € Y the optimality conditions yield

0, Yi+G+vs <0
yii=4q G, Yi+g+vs>C .
Yi+0a+vs otherwise

Furthermorey, should satisfyy;y,is = 0. Itis easy to verify thamin(—max, (yi + q), min;_(y; +

i) —C) <v <maxC—min; (yi+0d),max_(¥i+ai)). Since the problem is feasible there exists at
least oney for which §;y.is = 0 holds. We compute this by grid search. If there are more than one
solution satisfying the constraift y.is = 0 we choose the solution which yields a lower objective.

Appendix C. Kernel Functions for Protein Structures

Experiments on protein structures have been conductedWgtighted Pairwise Distance Sub-
structure Kernel described in Bhattacharya et al. (2007). To make the paper self-cedtaia
describe the kernel function in brief, for more details please see Bhattacht al. (2007).

2951



BEN-TAL, BHADRA, BHATTACHARYYA AND NEMIROVSKI

Fix a positive integef. A substructureN;, consists ofl spatially nearest residues to thth
residue of proteir}. The substructure kernel between two substructdreandN;, is defined as

—lldig—m(dj )|

Kpds(Niayij): Z € o?
me(l)

whered;, denotes set of pairwise distance betwen all possible pair of residis iRlenced; =
{d},...,d™} wherem= | (I —1)/2. The distance between any two residaesdb are computed
by |lca—Col|, see (3), wherg](l) denote all possible permutationslaksidues in the substructure.
Finally the kernel function between two protein structures is defined as

N n;j

K(Plapj) = ; ; Kpds(NiaaNjc)Kpds(Nibade)Knorm(iaaibajc:jd)
=1c,d=1

o Ui =i |- leje 5 1)?
whereKnorm(ia, b, jc, jo) =€ o

Appendix D. List of Superfamilies

We list below the Superfamilies studied in Section 7.7.

Superfamily| Description

b.18.1 Galactose-binding domain-like

b.29.1 Concanavalin A-like lectins/glucanases

b.30.5 Galactose mutarotase-like

b.40.4 Nucleic acid-binding proteins

b.80.1 Pectin lyase-like

c.2.1 NAD(P)-binding Rossmann-fold domains

c.37.1 P-loop containing nucleoside triphosphate hydrolases
c.55.1 Actin-like ATPase domain

c.55.3 Ribonuclease H-like

c.66.1 S-adenosyl-L-methionine-dependent methyltransferases
c.68.1 Nucleotide-diphospho-sugar transferases

c.69.1 alpha/beta-Hydrolases

c.108.1 HAD-like

d.58.4 Dimeric alpha+beta barrel

d.92.1 Metalloproteases ("zincins”), catalytic domain

Table 4: List of Superfamilies

References

A. Ben-Tal and A. NemirovskilLectures on Modern Convex Optimization: Analysis, Algorithms,
and Engineering ApplicationsSociety for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2001. ISBN 0-89871-491-5.

2952



UNCERTAIN KERNEL MATRICES

A. Ben-Tal, L. El Ghaoui, and A. NemirovskiRobust Optimization Princeton University Press,
2009.

A. Ben-Tal, S. Bhadra, C. Bhattacharyya, and J. S. Nath. Chamstramed uncertain classification
via robust optimizationMath. Program, 127(1), 2011.

S. Bhadra, J. Saketha Nath, A. Ben-Tal, and C. Bhattacharyya.vahigata classification under
partial information: A chance-constraint approachPAKDD, pages 208-219, 2009.

S. Bhadra, S. Bhattacharya, C. Bhattacharyya, and A. Ben-TalusRétrmulations for handling
uncertainty in kernel matrices. Proceedings of International Conference on Machine Learning
(ICML), pages 71-78, 2010.

S. Bhattacharya, C. Bhattacharyya, and N. Chandra. Structurairadigirbased kernels for protein
structure classification. IRroceedings of 24th International Conference on Machine Learning
(ICML), pages 73-80, 2007. URittp://doi.acm.org/10.1145/1273496.1273506

C. Bhattacharyya, L. R. Grate, M. |. Jordan, L. El Ghaoui, and Midn. Robust sparse hyperplane
classiers: application to uncertain molecular proling dataurnal of Computational Biology
11(6):1073-1089, 2004.

C. Branden and John Toozktroduction to Protein StructureGarland Publishing, second edition,
1999. ISBN 0815323050.

L. El Ghaoui, G. R. G. Lanckriet, and G. Natsoulis. Robust ClassificatitmInterval Data. Tech-
nical Report UCB/CSD-03-1279, Computer Science Division, Unityeos California, Berkeley,
2003.

L. Holm and C. Sander. Mapping the protein univerSeience273(5275):595-602, 1996.

A. Juditski and A. Nemirovski. First order methods for large-scale epmptimization. In Sra S.,
S. Nowozin, and S. Wright, editor®ptimization for Machine Learningrhe MIT Press, 2011.

J. Mercer. Functions of Positive and Negative Type and their Conmestth the Theory of Integral
Equations. InProceedings of the Royal Society of London. Series A, Containings$apa
Mathematical and Physical Characterolume 209, pages 415-446, 1909.

A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. Scop: Acstiral classification of
proteins database for the investigation of sequences and structomesal of Molecular Biology
247(4):536-540, April 1995.

A. Nemirovski. Prox-method with rate of convergeraté/t) for variational inequalities with lips-
chitz continuous monotone operators and smooth convex-concave paifttiproblems.SIAM
J. Optim, 15:229-251, 2004.

Y. Nesterov. A method of solving a convex programming problem with coerere rate QL/k?).
Soviet Mathematics Doklady, 2Fages 372—-376, 1983.

J. Qiu, M. Hue, A. B.-Hur, J.-P. Vert, and W. S. Noble. A structural atigmt kernel for protein
structuresBioinformatics 23(9):1090-1098, 2007.

2953



BEN-TAL, BHADRA, BHATTACHARYYA AND NEMIROVSKI

J. Shawe-Taylor and N. CristianiniSupport Vector Machines and Other Kernel-based Learning
Methods Cambridge University Press, 2000.

I. N. Shindyalov and P. E. Bourne. Protein structure alignment by inareaheombinatorial exten-
sion (ce) of the optimal pattProtein Engineering11(9):739-747, 1998.

P. K. Shivaswamy, C. Bhattacharyya, and A. J. Smola. Second ardeqrogramming approaches
for handling missing and uncertain datkournal of Machine Learning Researchi1283—-1314,
2006.

J. F. Sturm. Using SeDuMi 1.02, A MATLAB toolbox for optimization over symntetones.
Optimization Methods and Softwarkl-12:625-653, 1999.

V. Vapnik. Statistical Learning TheoryJohn Wiley and Sons, New York, 1998.

2954



