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Abstract

Prediction markets are used in real life to predict outcomes of interest such as presidential elections.

This paper presents a mathematical theory of artificial prediction markets for supervised learning

of conditional probability estimators. The artificial prediction market is a novel method for fusing

the prediction information of features or trained classifiers, where the fusion result is the contract

price on the possible outcomes. The market can be trained online by updating the participants’

budgets using training examples. Inspired by the real prediction markets, the equations that govern

the market are derived from simple and reasonable assumptions. Efficient numerical algorithms are

presented for solving these equations. The obtained artificial prediction market is shown to be a

maximum likelihood estimator. It generalizes linear aggregation, existent in boosting and random

forest, as well as logistic regression and some kernel methods. Furthermore, the market mechanism

allows the aggregation of specialized classifiers that participate only on specific instances. Experi-

mental comparisons show that the artificial prediction markets often outperform random forest and

implicit online learning on synthetic data and real UCI data sets. Moreover, an extensive evalua-

tion for pelvic and abdominal lymph node detection in CT data shows that the prediction market

improves adaboost’s detection rate from 79.6% to 81.2% at 3 false positives/volume.

Keywords: online learning, ensemble methods, supervised learning, random forest, implicit on-

line learning

1. Introduction

Prediction markets, also known as information markets, are forums that trade contracts that yield

payments dependent on the outcome of future events of interest. They have been used in the US

Department of Defense (Polk et al., 2003), health care (Polgreen et al., 2006), to predict presiden-

tial elections (Wolfers and Zitzewitz, 2004) and in large corporations to make informed decisions

(Cowgill et al., 2008). The prices of the contracts traded in these markets are good approximations

for the probability of the outcome of interest (Manski, 2006; Gjerstad and Hall, 2005). predic-

tion markets are capable of fusing the information that the market participants possess through the

contract price. For more details, see Arrow et al. (2008).

In this paper we introduce a mathematical theory for simulating prediction markets numerically

for the purpose of supervised learning of probability estimators. We derive the mathematical equa-
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tions that govern the market and show how can they be solved numerically or in some cases even

analytically. An important part of the prediction market is the contract price, which will be shown to

be an estimator of the class-conditional probability given the evidence presented through a feature

vector x. It is the result of the fusion of the information possessed by the market participants.

The obtained artificial prediction market turns out to have good modeling power. It will be

shown in Section 3.1 that it generalizes linear aggregation of classifiers, the basis of boosting

(Friedman et al., 2000; Schapire, 2003) and random forest (Breiman, 2001). It turns out that to

obtain linear aggregation, each market participant purchases contracts for the class it predicts, re-

gardless of the market price for that contract. Furthermore, in Sections 3.2 and 3.3 will be presented

special betting functions that make the prediction market equivalent to a logistic regression and a

kernel-based classifier respectively.

We introduce a new type of classifier that is specialized in modeling certain regions of the fea-

ture space. Such classifiers have good accuracy in their region of specialization and are not used

in predicting outcomes for observations outside this region. This means that for each observation,

a different subset of classifiers will be aggregated to obtain the estimated probability, making the

whole approach become a sort of ad-hoc aggregation. This is contrast to the general trend in boost-

ing where the same classifiers are aggregated for all observations.

We give examples of generic specialized classifiers as the leaves of random trees from a random

forest. Experimental validation on thousands of synthetic data sets with Bayes errors ranging from

0 (very easy) to 0.5 (very difficult) as well as on real UCI data show that the prediction market using

the specialized classifiers outperforms the random forest in prediction and in estimating the true

underlying probability.

Moreover, we present experimental comparisons on many UCI data sets of the artificial pre-

diction market with the recently introduced implicit online learning (Kulis and Bartlett, 2010) and

observe that the market significantly outperforms the implicit online learning on some of the data

sets and is never outperformed by it.

2. The Artificial Prediction Market for Classification

This work simulates the Iowa electronic market (Wolfers and Zitzewitz, 2004), which is a real

prediction market that can be found online at http://www.biz.uiowa.edu/iem/.

2.1 The Iowa Electronic Market

The Iowa electronic market (Wolfers and Zitzewitz, 2004) is a forum where contracts for future

outcomes of interest (e.g., presidential elections) are traded.

Contracts are sold for each of the possible outcomes of the event of interest. The contract price

fluctuates based on supply and demand. In the Iowa electronic market, a winning contract (that

predicted the correct outcome) pays $1 after the outcome is known. Therefore, the contract price

will always be between 0 and 1.

Our market will simulate this behavior, with contracts for all the possible outcomes, paying 1 if

that outcome is realized.
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2.2 Setup of the Artificial Prediction Market

If the possible classes (outcomes) are 1, ...,K, we assume there exist contracts for each class, whose

prices form a K-dimensional vector c = (c1, ...,cK)∈ ∆⊂ [0,1]K , where ∆ is the probability simplex

∆ = {c ∈ [0,1]K,∑K
k=1 ck = 1}.

Let Ω⊂R
F be the instance or feature space containing all the available information that can be

used in making outcome predictions p(Y = k|x),x ∈Ω.

The market consists of a number of market participants (βm,φm(x,c)),m = 1, ...,M.

A market participant is a pair (β,φ(x,c)) of a budget β and a betting function φ(x,c) : Ω×∆→
[0,1]K,φ(x,c) =

(

φ1(x,c), ...,φK(x,c)
)

. The budget β represents the weight or importance of the

participant in the market. The betting function tells what percentage of its budget this participant

will allocate to purchase contracts for each class, based on the instance x ∈Ω and the market price

c. As the market price c is not known in advance, the betting function describes what the participant

plans to do for each possible price c. The betting functions could be based on trained classifiers

h(x) : Ω→ ∆,h(x) = (h1(x), ...,hK(x)),∑K
k=1 hk(x) = 1, but they can also be related to the feature

space in other ways. We will show that logistic regression and kernel methods can also be repre-

sented using the artificial prediction market and specific types of betting functions. In order to bet

at most the budget β, the betting functions must satisfy ∑K
k=1 φk(x,c))≤ 1.
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Figure 1: Betting function examples: a) Constant, b) Linear, c) Aggressive, d) Logistic. Shown are

φ1(x,1− c) (red), φ2(x,c) (blue), and the total amount bet φ1(x,1− c)+ φ2(x,c) (black

dotted). For a) through c), the classifier probability is h2(x) = 0.2.

Examples of betting functions include the following, also shown in Figure 1:

• Constant betting functions

φk(x,c) = φk(x)

for example based on trained classifiers φk(x,c) = ηhk(x), where η ∈ (0,1] is constant.

• Linear betting functions

φk(x,c) = (1− ck)h
k(x). (1)

• Aggressive betting functions

φk(x,c) = hk(x)











1 if ck ≤ hk(x)

0 if ck > hk(x)+ ε
hk(x)+ε−ck

ε otherwise

. (2)
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• Logistic betting functions:

φ1
m(x,1− c) = (1− c)(x+m− ln(1− c)/B),

φ2
m(x,c) = c(−x−m− lnc/B)

where x+ = xI(x > 0),x− = xI(x < 0) and B = ∑m βm.

The betting functions play a similar role to the potential functions from maximum entropy mod-

els (Berger et al., 1996; Ratnaparkhi et al., 1996; Zhu et al., 1998), in that they make a conversion

from the feature output (or classifier output for some markets) to a common unit of measure (energy

for the maximum entropy models and money for the market).

The contract price does not fluctuate in our setup, instead it is governed by Equation (4). This

equation guarantees that at this price, the total amount obtained from selling contracts to the partic-

ipants is equal to the total amount won by the winning contracts, independent of the outcome.
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Figure 2: Online learning and aggregation using the artificial prediction market. Given feature

vector x, a set of market participants will establish the market equilibrium price c, which

is an estimator of P(Y = k|x). The equilibrium price is governed by the Price Equations

(4). Online training on an example (x,y) is achieved through Budget Update (x,y,c)
shown with gray arrows.

Algorithm 1 Budget Update (x,y,c)

Input: Training example (x,y), price c

for m = 1 to M do

Update participant m’s budget as

βm← βm−
K

∑
k=1

βmφk
m(x,c)+

βm

cy

φy
m(x,c) (3)

end for
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2.3 Training the Artificial Prediction Market

Training the market involves initializing all participants with the same budget β0 and presenting to

the market a set of training examples (xi,yi), i = 1, ...,N. For each example (xi,yi) the participants

purchase contracts for the different classes based on the market price c (which is not known yet)

and their budgets βm are updated based on the contracts purchased and the true outcome yi. After

all training examples have been presented, the participants will have budgets that depend on how

well they predicted the correct class y for each training example x. This procedure is illustrated in

Figure 2.

Algorithm 2 Prediction Market Training

Input: Training examples (xi,yi), i = 1, ...,N
Initialize all budgets βm = β0,m = 1, ...,M.

for each training example (xi,yi) do

Compute equilibrium price ci using Equation 4

Run Budget Update (xi,yi,ci)
end for

The budget update procedure subtracts from the budget of each participant the amounts it bets

for each class, then rewards each participant based on how many contracts it purchased for the

correct class.

Participant m purchased βmφk
m(x,c) worth of contracts for class k, at price ck. Thus the number

of contracts purchased for class k is βmφk
m(x,c)/ck. Totally, participant m’s budget is decreased

by the amount ∑K
k=1 βmφk

m(x,c) invested in contracts. Since participant m bought βmφ
y
m(x,c)/cy

contracts for the correct class y, he is rewarded the amount βmφ
y
m(x,c)/cy.

2.4 The Market Price Equations

Since we are simulating a real market, we assume that the total amount of money collectively

owned by the participants is conserved after each training example is presented. Thus the sum of all

participants’ budgets ∑M
m=1 βm should always be Mβ0, the amount given at the beginning. Since any

of the outcomes is theoretically possible for each instance, we have the following constraint:

Assumption 1 The total budget ∑M
m=1 βm must be conserved independent of the outcome y.

This condition transforms into a set of equations that constrain the market price, which we call

the price equations. The market price c also obeys ∑K
k=1 ck = 1.

Let B(x,c) = ∑M
m=1 ∑K

k=1 βmφk
m(x,c) be the total bet for observation x at price c. We have

Theorem 1 Price Equations. The total budget ∑M
m=1 βm is conserved after the Budget Update(x,y,c),

independent of the outcome y, if and only if ck > 0,k = 1, ...,K and

M

∑
m=1

βmφk
m(x,c) = ckB(x,c), ∀k = 1, ...,K. (4)

The proof is given in the Appendix.
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2.5 Price Uniqueness

The price equations together with the equation ∑K
k=1 ck = 1 are enough to uniquely determine the

market price c, under mild assumptions on the betting functions φk(x,c).
Observe that if ck = 0 for some k, then the contract costs 0 and pays 1, so there is everything to

win. In this case, one should have φk(x,c)> 0.

This suggests a class of betting functions φk(x,ck) depending only on the price ck that are con-

tinuous and monotonically non-increasing in ck. If all φk
m(x,ck),m = 1, ...,M are continuous and

monotonically non-increasing in ck with φk
m(x,0)> 0 then fk(ck) =

1
ck

∑M
m=1 βmφk

m(x,ck) is continu-

ous and strictly decreasing in ck as long as fk(ck)> 0.

To obtain conditions for price uniqueness, we use the following function

fk(ck) =
1

ck

M

∑
m=1

βmφk
m(x,ck),k = 1, ...,K.

Remark 2 If all fk(ck) are continuous and strictly decreasing in ck as long as fk(ck)> 0, then for

every n > 0, n≥ nk = fk(1) there is a unique ck = ck(n) that satisfies fk(ck) = n.

The proof is given in the Appendix.

To guarantee price uniqueness, we need at least one market participant to satisfy the following

Assumption 2 The total bet of participant (βm,φm(x,c)) is positive inside the simplex ∆, that is,

K

∑
j=1

φ j
m(x,c j)> 0, ∀c ∈ (0,1)K ,

K

∑
j=1

c j = 1. (5)

Then we have the following result, also proved in the Appendix.

Theorem 3 Assume all betting functions φk
m(x,ck),m = 1, ...,M,k = 1, ...,K are continuous, with

φk(x,0) > 0 and φk
m(x,c)/c is strictly decreasing in c as long as φk

m(x,c) > 0. If the betting

function φm(x,c) of least one participant with βm > 0 satisfies Assumption 2, then for the Bud-

get Update(x,y,c) there is a unique price c = (c1, ...,cK) ∈ (0,1)K ∩∆ such that the total budget

∑M
m=1 βm is conserved.

Observe that all four betting functions defined in Section 2.2 ( constant, linear, aggressive and

logistic) satisfy the conditions of Theorem 3, so there is a unique price that conserves the budget.

2.6 Solving the Market Price Equations

In practice, a double bisection algorithm could be used to find the equilibrium price, computing each

ck(n) by the bisection method, and employing another bisection algorithm to find n such that the

price condition ∑K
k=1 ck(n) = 1 holds. Observe that the n satisfying ∑K

k=1 ck(n) = 1 can be bounded

from above by

n = n
K

∑
k=1

ck(n) =
K

∑
k=1

ck(n) fk(ck(n)) =
K

∑
k=1

M

∑
m=1

βmφk
m(x,c)≤

M

∑
m=1

βm

because for each m, ∑K
k=1 φk

m(x,c)≤ 1.
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A potentially faster alternative to the double bisection method is the Mann Iteration (Mann,

1953) described in Algorithm 3. The price equations can be viewed as fixed point equation F(c) = c,

where F(c) = 1
n
( f1(c), ..., fK(c)) with fk(c) =∑m

m=1 βmφk
m(x,ck). The Mann iteration is a fixed point

algorithm, which makes weighted update steps

ct+1 = (1− 1

t
)ct +

1

t
F(ct).

The Mann iteration is guaranteed to converge for contractions or pseudo-contractions. However,

we observed experimentally that it usually converges in only a few (up to 10) steps, making it about

100-1000 times faster than the double bisection algorithm. If, after a small number of steps, the

Mann iteration has not converged, the double bisection algorithm is used on that instance to compute

the equilibrium price. However, this happens on less than 0.1% of the instances.

Algorithm 3 Market Price by Mann Iteration

Initialize i = 1, ck =
1
K
,k = 1, ...,K

repeat

fk = ∑m βmφk
m(x,c)

n = ∑k fk

if n 6= 0 then

fk← fk

n

rk = fk− ck

ck← (i−1)ck+ fk

i

end if

i← i+1

until ∑k |rk| ≤ ε or n = 0 or i > imax

2.7 Two-class Formulation

For the two-class problem, that is, K = 2, the budget equation can be simplified by writing c =
(1− c,c) and obtaining the two-class market price equation

(1− c)
M

∑
m=1

βmφ2
m(x,c)− c

M

∑
m=1

βmφ1
m(x,1− c) = 0. (6)

This can be solved numerically directly in c using the bisection method. Again, the solution is

unique if φk
m(x,ck),m = 1, ...,M,k = 1,2 are continuous, monotonically non-increasing and obey

condition (5). Moreover, the solution is guaranteed to exist if there exist m,m′ with βm > 0,βm′ > 0

and such that φ2
m(x,0)> 0,φ1

m′(x,1)> 0.

3. Relation to Existing Supervised Learning Methods

There is a large degree of flexibility in choosing the betting functions φm(x,c). Different betting

functions give different ways to fuse the market participants. In what follows we prove that by

choosing specific betting functions, the artificial prediction market behaves like a linear aggregator

or logistic regressor, or that it can be used as a kernel-based classifier.
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3.1 Constant Betting and Linear Aggregation

For markets with constant betting functions, φk
m(x,c) = φk

m(x) the market price has a simple analytic

formula, proved in the Appendix.

Theorem 4 Constant Betting. If all betting function are constant φk
m(x,c) = φk

m(x), then the equi-

librium price is

c =
∑M

m=1 βmφm(x)

∑M
m=1 ∑K

k=1 βmφk
m(x)

. (7)

Furthermore, if the betting functions are based on classifiers φk
m(x,c) = ηhk

m(x) then the equilibrium

price is obtained by linear aggregation

c =
∑M

m=1 βmhm(x)

∑M
m=1 βm

= ∑
m

αmhm(x).

This way the artificial prediction market can model linear aggregation of classifiers. Methods

such as Adaboost (Freund and Schapire, 1996; Friedman et al., 2000; Schapire, 2003) and Random

Forest (Breiman, 2001) also aggregate their constituents using linear aggregation. However, there

is more to Adaboost and Random Forest than linear aggregation, since it is very important how to

construct the constituents that are aggregated.

In particular, the random forest (Breiman, 2001) can be viewed as an artificial prediction market

with constant betting (linear aggregation) where all participants are random trees with the same

budget βm = 1,m = 1, ...,M.

We also obtain an analytic form of the budget update:

βm← βm−βm

K

∑
k=1

φk
m(x)+βm

φ
y
m(x)∑M

j=1 ∑K
k=1 β jφ

k
j(x)

∑M
j=1 β jφ

y
j(x)

which for classifier based betting functions φk
m(x,c) = ηhk

m(x) becomes:

βm← βm(1−η)+ηβm

h
y
m(x)∑M

j=1 β j

∑M
j=1 β jh

y
j(x)

.

This is a novel online update rule for linear aggregation.

3.2 Prediction Markets for Logistic Regression

A variant of logistic regression can also be modeled using prediction markets, with the following

betting functions

φ1
m(x,1− c) = (1− c)(x+m−

1

B
ln(1− c)),

φ2
m(x,c) = c(−x−m−

1

B
lnc)

where x+ = xI(x > 0),x− = xI(x < 0) and B = ∑m βm. The two class equation (6) becomes:

∑M
m=1 βmc(1− c)(xm− ln(1− c)/B+ lnc/B) = 0 so ln 1−c

c
= ∑M

m=1 βmxm, which gives the logistic

regression model

p̂(Y = 1|x) = c =
1

1+ exp(∑M
m=1 βmxm)

.
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The budget update equation βm ← βm − ηβm [(1− c)x+m + cx−m−H(c)/B] + ηβmuy(c) is ob-

tained, where u1(c) = x+m− ln(1− c)/B,u2(c) =−x−m− ln(c)/B.

Writing xβ = ∑M
m=1 βmxm, the budget update can be rearranged to

βm← βm−ηβm

(

xm−
xβ

B

)(

y− 1

1+ exp(xβ)

)

. (8)

This equation resembles the standard per-observation update equation for online logistic regres-

sion:

βm← βm−ηxm

(

y− 1

1+ exp(xβ)

)

, (9)

with two differences. The term xβ/B ensures the budgets always sum to B while the factor βm

makes sure that βm ≥ 0.

The update from Equation (8), like Equation (9) tries to increase |xβ|, but it does that subject

to constraints that βm ≥ 0,m = 1, ...,M and ∑M
m=1 βm = B. Observe also that multiplying β by a

constant does not change the decision line of the logistic regression.

3.3 Relation to Kernel Methods

Here we construct a market participant from each training example (xn,yn),n = 1, ...N, thus the

number of participants M is the number N of training examples. We construct a participant from

training example (xm,ym) by defining the following betting functions in terms of um(x) =
xT

mx

‖xm‖‖x‖ :

φym
m (x) = um(x)

+ =

{

um(x) if um(x)≥ 0

0 else
,

φ2−ym
m (x) =−um(x)

− =

{

0 if um(x)≥ 0

−um(x) else
.

(10)

Observe that these betting functions do not depend on the contract price c, so it is a constant market

but not one based on classifiers. The two-class price equation gives

c =

∑
m

βmφ2
m(x)

∑
m

βm(φ
1
m(x)+φ2

m(x))
=

∑
m

βm[ymum(x)−um(x)
−]

∑
m

βm|um(x)|

since it can be verified that φ2
m(x) = ymum(x)−um(x)

− and φ1
m(x)+φ2

m(x) = |um(x)|.
The decision rule c > 0.5 becomes ∑m βmφ2

m(x) > ∑m βmφ1
m(x) or ∑m βm(φ

2
m(x)− φ1

m(x)) > 0.

Since φ2
m(x)− φ1

m(x) = (2ym− 2)um(x) = (2ym− 2) xT
mx

‖xm‖‖x‖ (since in our setup ym ∈ {1,2}), we

obtain the SVM type of decision rule with αm = βm/‖xm‖:

h(x) = sgn(
M

∑
m=1

αm(2ym−3)xT
mx).

The budget update becomes in this case:

βm← βm−ηβm|um(x)|+ηβm

φ
y
m(x)

cy

.
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The same reasoning carries out for um(x)=K(xm,x) with the RBF kernel K(xm,x)= exp(−‖xm−
x‖2/σ2). In Figure 3, left, is shown an example of the decision boundary of a market trained online

with an RBF kernel with σ = 0.2 on 1000 examples uniformly sampled in the [−1,1]2 interval. In

Figure 3, right is shown the estimated probability p̂(y = 1|x).
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1

Figure 3: Left: 1000 training examples and learned decision boundary (right) for an RBF kernel-

based market from Equation (10) with σ = 0.1. Right: estimated probability function.

This example shows that the artificial prediction market is an online method with enough mod-

eling power to represent complex decision boundaries such as those given by RBF kernels through

the betting functions of the participants. It will be shown in Theorem 5 that the constant market

maximizes the likelihood, so it is not clear yet what can be done to obtain a small number of sup-

port vectors as in the online kernel-based methods (Bordes et al., 2005; Cauwenberghs and Poggio,

2001; Kivinen et al., 2004).

4. Prediction Markets and Maximum Likelihood

This section discusses what type of optimization is performed during the budget update from Equa-

tion (3). Specifically, we prove that the artificial prediction markets perform maximum likelihood

learning of the parameters by a version of gradient ascent.

Consider the reparametrization γ = (γ1, ...,γM) = (
√

β1, ...,
√

βM). The market price c(x) =
(c1(x), ...,cK(x) is an estimate of the class probability p(y = k|x) for each instance x ∈ Ω. Thus a

set of training observations (xi,yi), i = 1, ...,N, since p̂(y = yi|xi) = cyi
(xi), the (normalized) log-

likelihood function is

L(γ) =
1

N

N

∑
i=1

ln p̂(y = yi|xi) =
1

N

N

∑
i=1

lncyi
(xi). (11)

We will again use the total amount bet B(x,c) = ∑M
m=1 ∑K

k=1 βmφk
m(x,c) for observation x at

market price c.

We will first focus on the constant market φk
m(x,c) = φk

m(x), in which case B(x,c) = B(x) =

∑M
m=1 ∑K

k=1 βmφk
m(x). We introduce a batch update on all the training examples (xi,yi), i = 1, ...,N:

βm← βm +βm

η

N

N

∑
i=1

1

B(xi)

(

φ
yi
m(xi)

cyi
(xi)
−

K

∑
k=1

φk
m(xi)

)

. (12)
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Equation (12) can be viewed as presenting all observations (xi,yi) to the market simultaneously

instead of sequentially. The following statement is proved in the Appendix

Theorem 5 ML for constant market. The update (12) for the constant market maximizes the

likelihood (11) by gradient ascent on γ subject to the constraint ∑M
m=1 γ2

m = 1. The incremental

update

βm← βm +βm

η

B(xi)

(

φ
yi
m(xi)

cyi
(xi)
−

K

∑
k=1

φk
m(xi)

)

(13)

maximizes the likelihood (11) by constrained stochastic gradient ascent.

In the general case of non-constant betting functions, the log-likelihood is

L(γ) =
N

∑
i=1

logcyi
(xi) =

N

∑
i=1

log
M

∑
m=1

γ2
mφyi

m(xi,c(xi))−
N

∑
i=1

log
K

∑
k=1

M

∑
m=1

γ2
mφk

m(xi,c(xi)). (14)

If we ignore the dependence of φk
m(xi,c(xi)) on γ in (14), and approximate the gradient as:

∂L(γ)

∂γ j

≈
N

∑
i=1

(

γ jφ
yi

j (xi,c(xi))

∑M
m=1 γ2

mφ
yi
m(xi,c(xi))

−
γ j ∑K

k=1 φk
j(xi,c(xi))

∑K
k=1 ∑M

m=1 γ2
mφk

m(xi,c(xi))

)

then the proof of Theorem 5 follows through and we obtain the following market update

βm← βm +βm

η

B(x,c)

[

φ
y
m(x,c)

cy

−
K

∑
k=1

φk
m(x,c)

]

, m = 1, ...,M. (15)

This way we obtain only an approximate statement in the general case

Remark 6 Maximum Likelihood. The prediction market update (15) finds an approximate max-

imum of the likelihood (11) subject to the constraint ∑M
m=1 γ2

m = 1 by an approximate constrained

stochastic gradient ascent.

Observe that the updates from (13) and (15) differ from the update (3) by using an adaptive step

size η/B(x,c) instead of the fixed step size 1.

It is easy to check that maximizing the likelihood is equivalent to minimizing an approximation

of the expected KL divergence to the true distribution

EΩ[KL(p(y|x),cy(x))] =
∫

Ω
p(x)

∫
Y

p(y|x) log
p(y|x)
cy(x)

dydx

obtained using the training set as Monte Carlo samples from p(x,y).

In many cases the number of negative examples is much larger than the positive examples, and

is desired to maximize a weighted log-likelihood

L(γ) =
1

N

N

∑
i=1

w(xi) lncyi
(xi).
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This can be achieved (exactly for constant betting and approximately in general) using the weighted

update rule

βm← βm +ηw(x)
βm

B(x,c)

[

φ
y
m(x,c)

cy

−
K

∑
k=1

φk
m(x,c)

]

, m = 1, ...,M. (16)

The parameter η and the number of training epochs can be used to control how close the budgets

β are to the ML optimum, and this way avoid overfitting the training data.

An important issue for the real prediction markets is the efficient market hypothesis, which states

that the market price fuses in an optimal way the information available to the market participants

(Fama, 1970; Basu, 1977; Malkiel, 2003). From Theorem 5 we can draw the following conclusions

for the artificial prediction market with constant betting:

1. In general, an untrained market (in which the budgets have not been updated based on training

data) will not satisfy the efficient market hypothesis.

2. The market trained with a large amount of representative training data and small η satisfies

the efficient market hypothesis.

5. Specialized Classifiers

The prediction market is capable of fusing the information available to the market participants,

which can be trained classifiers. These classifiers are usually suboptimal, due to computational or

complexity constraints, to the way they are trained, or other reasons.

In boosting, all selected classifiers are aggregated for each instance x∈Ω. This can be detrimen-

tal since some classifiers could perform poorly on subregions of the instance space Ω, degrading

the performance of the boosted classifier. In many situations there exist simple rules that hold on

subsets of Ω but not on the entire Ω. Classifiers trained on such subsets Di ⊂ Ω, would have small

misclassification error on Di but unpredictable behavior outside of Di. The artificial prediction mar-

ket can aggregate such classifiers, transformed into participants that don’t bet anything outside of

their domain of expertise Di ⊂ Ω. This way, for different instances x ∈ Ω, different subsets of par-

ticipants will contribute to the resulting probability estimate. We call these specialized classifiers

since they only give their opinion through betting on observations that fall inside their domain of

specialization.

Thus a specialized classifier with a domain D would have a betting function of the form:

φk(x,c) =

{

ϕk(x,c) if x ∈ D

0 else
. (17)

This idea is illustrated on the following simple 2D example of a triangular region, shown in

Figure 4, with positive examples inside the triangle and negatives outside. An accurate classifier for

that region can be constructed using six market participants, one for each half-plane determined by

each side of the triangle.

Three of these classifiers correspond to the three half planes that are outside the triangle. These

participants have 100% accuracy in predicting the observations, all negatives, that fall in their half

planes and don’t bet anything outside of their half planes. The other three classifiers are not very

good, and will have smaller budgets. On an observation that lies outside of the triangle, one or two

of the high-budget classifiers will bet a large amount on the correct prediction and will drive the
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Figure 4: A perfect classifier can be constructed for the triangular region above from a market of six

specialized classifiers that only bid on a half-plane determined by one side of the triangle.

Three of these specialized classifiers have 100% accuracy while the other three have low

accuracy. Nevertheless, the market is capable of obtaining 100% overall accuracy.

output probability. When an observation falls inside the triangle, only the small-budget classifiers

will participate but will be in agreement and still output the correct probability. Evaluating this

market on 1000 positives and 1000 negatives showed that the market obtained a prediction accuracy

of 100%.

There are many ways to construct specialized classifiers, depending on the problem setup. In

natural language processing for example, a specialized classifier could be based on grammar rules,

which work very well in many cases, but not always.

We propose two generic sets of specialized classifiers. The first set are the leaves of the random

trees of a random forest while the second set are the leaves of the decision trees trained by adaboost.

Each leaf f is a rule that defines a domain D f = {x ∈ Ω, f (x) = 1} of the instances that obey that

rule. The betting function of this specialized classifier is given in Equation (17) where ϕk
f (x,c) is

based on the associated classifier hk
f (x) = n f k/n f , obtaining constant, linear and aggressive versions.

Here n f k is the number of training instances of class k that obey rule f and n f = ∑k n f k. By the way

the random trees are trained, usually n f = n f k for some k.

In Friedman and Popescu (2008) these rules were combined using a linear aggregation method

similar to boosting. One could also use other nodes of the random tree, not necessarily the leaves,

for the same purpose.

It can be verified using Equation (7) that constant specialized betting is the linear aggregation

of the participants that are currently betting. This is different than the linear aggregation of all the

classifiers.

6. Related Work

This work borrows prediction market ideas from Economics and brings them to Machine Learning

for supervised aggregation of classifiers or features in general.

Related work in Economics. Recent work in Economics (Manski, 2006; Perols et al., 2009; Plott

et al., 2003) investigates the information fusion of the prediction markets. However, none of these

works aims at using the prediction markets as a tool for learning class probability estimators in a

supervised manner.
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Some works (Perols et al., 2009; Plott et al., 2003) focus on parimutuel betting mechanisms for

combining classifiers. In parimutuel betting contracts are sold for all possible outcomes (classes)

and the entire budget (minus fees) is divided between the participants that purchased contracts for

the winning outcome. Parimutuel betting has a different way of fusing information than the Iowa

prediction market.

The information based decision fusion (Perols et al., 2009) is a first version of an artificial

prediction market. It aggregates classifiers through the parimutuel betting mechanism, using a loop

that updates the odds for each outcome and takes updated bets until convergence. This insures a

stronger information fusion than without updating the odds. Our work is different in many ways.

First our work uses the Iowa electronic market instead of parimutuel betting with odds-updating.

Using the Iowa model allowed us to obtain a closed form equation for the market price in some

important cases. It also allowed us to relate the market to some existing learning methods. Second,

our work presents a multi-class formulation of the prediction markets as opposed to a two-class

approach presented in Perols et al. (2009). Third, the analytical market price formulation allowed

us to prove that the constant market performs maximum likelihood learning. Finally, our work

evaluates the prediction market not only in terms of classification accuracy but also in the accuracy

of predicting the exact class conditional probability given the evidence.

Related work in Machine Learning. Implicit online learning (Kulis and Bartlett, 2010) presents

a generic online learning method that balances between a “conservativeness” term that discourages

large changes in the model and a “correctness” term that tries to adapt to the new observation.

Instead of using a linear approximation as other online methods do, this approach solves an implicit

equation for finding the new model. In this regard, the prediction market also solves an implicit

equation at each step for finding the new model, but does not balance two criteria like the implicit

online learning method. Instead it performs maximum likelihood estimation, which is consistent and

asymptotically optimal. In experiments, we observed that the prediction market obtains significantly

smaller misclassification errors on many data sets compared to implicit online learning.

Specialization can be viewed as a type of reject rule (Chow, 1970; Tortorella, 2004). However,

instead of having a reject rule for the aggregated classifier, each market participant has his own

reject rule to decide on what observations to contribute to the aggregation. ROC-based reject rules

(Tortorella, 2004) could be found for each market participant and used for defining its domain of

specialization. Moreover, the market can give an overall reject rule on hopeless instances that fall

outside the specialization domain of all participants. No participant will bet for such an instance

and this can be detected as an overall rejection of that instance.

If the overall reject option is not desired, one could avoid having instances for which no classi-

fiers bet by including in the market a set of participants that are all the leaves of a number of random

trees. This way, by the design of the random trees, it is guaranteed that each instance will fall into

at least one leaf, that is, participant, hence the instance will not be rejected.

A simplified specialization approach is taken in delegated classifiers (Ferri et al., 2004). A first

classifier would decide on the relatively easy instances and would delegate more difficult examples

to a second classifier. This approach can be seen as a market with two participants that are not

overlapping. The specialization domain of the second participant is defined by the first participant.

The market takes a more generic approach where each classifier decides independently on which

instances to bet.

The same type of leaves of random trees (i.e., rules) were used by Friedman and Popescu (2008)

for linear aggregation. However, our work presents a more generic aggregation method through the
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prediction market, with linear aggregation as a particular case, and we view the rules as one sort of

specialized classifiers that only bid in a subdomain of the feature space.

Our earlier work (Lay and Barbu, 2010) focused only on aggregation of classifiers and did

not discuss the connection between the artificial prediction markets and logistic regression, kernel

methods and maximum likelihood learning. Moreover, it did not include an experimental compari-

son with implicit online learning and adaboost.

Two other prediction market mechanisms have been recently proposed in the literature. The

first one (Chen and Vaughan, 2010; Chen et al., 2011) has the participants entering the market

sequentially. Each participant is paid by an entity called the market maker according to a predefined

scoring rule. The second prediction market mechanism is the machine learning market (Storkey,

2011; Storkey et al., 2012), dealing with all participants simultaneously. Each market participant

purchases contracts for the possible outcomes to maximize its own utility function. The equilibrium

price of the contracts is computed by an optimization procedure. Different utility functions result

in different forms of the equilibrium price, such as the mean, median, or geometric mean of the

participants’ beliefs.

7. Experimental Validation

In this section we present experimental comparisons of the performance of different artificial predic-

tion markets with random forest, adaboost and implicit online learning (Kulis and Bartlett, 2010).

Four artificial prediction markets are evaluated in this section. These markets have the same

classifiers, namely the leaves of the trained random trees, but differ either in the betting functions or

in the way the budgets are trained as follows:

1. The first market has constant betting and equal budgets for all participants. We proved in

Section 3.1 that this is a random forest (Breiman, 2001).

2. The second market has constant betting based on specialized classifiers (the leaves of the

random trees), with the budgets initialized with the same values like the market 1 above, but

trained using the update equation (13). Thus after training it will be different from market 1.

3. The third market has linear betting functions (1), for which the market price can be computed

analytically only for binary classification. The market is initialized with equal budgets and

trained using Equation (15).

4. The fourth market has aggressive betting (2) with ε = 0.01 and the market price computed

using the Mann iteration Algorithm 3. The market is initialized with equal budgets and trained

using Equation (15). The value ε = 0.01 was chosen for simplicity; a better choice would be

to obtain it by cross-validation.

For each data set, 50 random trees are trained on bootstrap samples of the training data. These

trained random trees are used to construct the random forest and the other three markets described

above. This way only the aggregation capabilities of the different markets are compared.

The budgets in the markets 2-4 described above are trained on the same training data using the

update equation (15) which simplifies to (13) for the constant market.

A C++ implementation of these markets can be found at the following address: http://stat.

fsu.edu/˜abarbu/Research/PredMarket.zip.
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7.1 Case Study

We first investigate the behavior of three markets on a data set in terms of training and test error as

well as loss function. For that, we chose the satimage data set from the UCI repository (Blake and

Merz, 1998) since it has a supplied test set. The satimage data set has a training set of size 4435

and a test set of size 2000.

The markets investigated are the constant market with both incremental and batch updates, given

in Equations (13) and (12) respectively, the linear and aggressive markets with incremental updates

given in (15). Observe that the η in Equation (13) is not divided by N (the number of observations)

while the η in (12) is divided by N. Thus to obtain the same behavior the η in (13) should be the η

from (12) divided by N. We used η = 100/N for the incremental update and η = 100 for the batch

update unless otherwise specified.
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Figure 5: Experiments on the satimage data set for the incremental and batch market updates. Left:

The training error vs. number of epochs. Middle: The test error vs. number of epochs.

Right: The negative log-likelihood function vs. number of training epochs. The learning

rates are η = 100/N for the incremental update and η = 100 for the batch update unless

otherwise specified.

In Figure 5 are plotted the misclassification errors on the training and test sets and the negative

log-likelihood function vs. the number of training epochs, averaged over 10 runs. From Figure 5

one could see that the incremental and batch updates perform similarly in terms of the likelihood

function, training and test errors. However, the incremental update is preferred since it is requires

less memory and can handle an arbitrarily large amount of training data. The aggressive and constant

markets achieve similar values of the negative log likelihood and similar training errors, but the

aggressive market seems to overfit more since the test error is larger than the constant incremental

(p-value< 0.05). The linear market has worse values of the log-likelihood, training and test errors

(p-value< 0.05).

7.2 Evaluation of the Probability Estimation and Classification Accuracy on Synthetic Data

We perform a series of experiments on synthetic data sets to evaluate the market’s ability to predict

class conditional probabilities P(Y |x). The experiments are performed on 5000 binary data sets with

50 levels of Bayes error

E =
∫

min{p(x,Y = 0), p(x,Y = 1)}dx,
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ranging from 0.01 to 0.5 with equal increments. For each data set, the two classes have equal

frequency. Both p(x|Y = k),k = 0,1 are normal distributions N (µk,σ
2I), with µ0 = 0,σ2 = 1 and

µ1 chosen in some random direction at such a distance to obtain the desired Bayes error.

For each of the 50 Bayes error levels, 100 data sets of size 200 were generated using the bisection

method to find an appropriate µ1 in a random direction. Training of the participant budgets is done

with η = 0.1.

For each observation x, the class conditional probability can be computed analytically using the

Bayes rule

p∗(Y = 1|x) = p(x|Y = 1)p(Y = 1)

p(x,Y = 0)+ p(x,Y = 1)
.

An estimation p̂(y = 1|x) obtained with one of the markets is compared to the true probability
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Figure 6: Left: Class probability estimation error vs problem difficulty for 5000 100D problems.

Right: Probability estimation errors relative to random forest. The aggressive and linear

betting are shown with box plots.
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Figure 7: Left: Misclassification error minus Bayes error vs problem difficulty for 5000 100D prob-

lems. Right: Misclassification errors relative to random forest. The aggressive betting is

shown with box plots.

2193



BARBU AND LAY

p∗(Y = 1|x) using the L2 norm

E( p̂, p∗) =
∫
( p̂(y = 1|x)− p∗(y = 1|x))2 p(x)dx

where p(x) = p(x,Y = 0)+ p(x,Y = 1).
In practice, this error is approximated using a sample of size 1000. The errors of the probability

estimates obtained by the four markets are shown in Figure 6 for a 100D problem setup. Also shown

on the right are the errors relative to the random forest, obtained by dividing each error to the corre-

sponding random forest error. As one could see, the aggressive and constant betting markets obtain

significantly better (p-value < 0.01) probability estimators than the random forest, for Bayes errors

up to 0.28. On the other hand, the linear betting market obtains probability estimators significantly

better (p-value < 0.01) than the random forest for Bayes error from 0.34 to 0.5.

We also evaluated the misclassification errors of the four markets in predicting the correct class,

for the same 5000 data sets. The difference between these misclassification errors and the Bayes

error are shown in Figure 7, left. The difference between these misclassification errors and the

random forest error are shown in Figure 7, right. We see that all markets with trained participants

predict significantly better (p-value < 0.01) than random forest for Bayes errors up to 0.3, and

behave similar to random forest for the remaining data sets.

7.3 Comparison with Random Forest on UCI Data Sets

In this section we conduct an evaluation on 31 data sets from the UCI machine learning repository

(Blake and Merz, 1998). The optimal number of training epochs and η are meta-parameters that

need to be chosen appropriately for each data set. We observed experimentally that η can take any

value up to a maximum that depends on the data set. In these experiments we took η = 10/Ntrain.

The best number of epochs was chosen by ten fold cross-validation.

In order to compare with the results in Breiman (2001), the training and test sets were randomly

subsampled from the available data, with 90% for training and 10% for testing. The exceptions are

the satimage, zipcode, hill-valley and pokerdata sets with test sets of size 2000,2007,606,106

respectively. All results were averaged over 100 runs.

We present two random forest results. In the column named RFB are presented the random

forest results from Breiman (2001) where each tree node is split based on a random feature. In the

column named RF we present the results of our own RF implementation with splits based on random

features. The leaf nodes of the random trees from our RF implementation are used as specialized

participants for all the markets evaluated.

The CB, LB and AB columns are the performances of the constant, linear and respectively

aggressive markets on these data sets.

Significant mean differences (α < 0.01) from RFB are shown with +,− for when RFB is worse

respectively better. Significant paired t-tests (Demšar, 2006) (α < 0.01) that compare the markets

with our RF implementation are shown with •,† for when RF is worse respectively better.

The constant, linear and aggressive markets significantly outperformed our RF implementation

on 22, 19 respectively 22 data sets out of the 31 evaluated. They were not significantly outperformed

by our RF implementation on any of the 31 data sets.

Compared to the RF results from Breiman (2001) (RFB), CB, LB and AB significantly outper-

formed RFB on 6,5,6 data sets respectively, and were not significantly outperformed on any data

set.
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Data Ntrain Ntest F K RFB RF CB LB AB

breast-cancer 683 – 9 2 2.7 2.5 2.4 2.4 2.4

sonar 208 – 60 2 18.0 16.6 14.1 •+ 14.2 •+ 14.1 •+
vowel 990 – 10 11 3.3 2.9 2.6 •+ 2.7 + 2.6 •+
ecoli 336 – 7 8 13.0 12.9 12.9 12.8 12.9

german 1000 – 24 2 26.2 25.5 24.9 •+ 25.1 24.9 •+
glass 214 – 9 6 21.2 23.5 22.2 • 22.4 22.2 •
image 2310 – 19 7 2.7 2.7 2.5 • 2.5 • 2.5 •
ionosphere 351 – 34 2 7.5 7.4 6.7 • 6.9 • 6.7 •
letter-recognition 20000 – 16 26 4.7 4.2 + 4.2 •+ 4.2 •+ 4.2 •+
liver-disorders 345 – 6 2 24.7 26.5 26.3 26.2 26.2

pima-diabetes 768 – 8 2 24.3 24.1 23.8 23.7 23.8

satimage 4435 2000 36 6 10.5 10.1 + 10.0 •+ 10.1 •+ 10.0 •+
vehicle 846 – 18 4 26.4 26.3 26.1 26.2 26.1

voting-records 232 – 16 2 4.6 5.3 4.2 • 4.2 • 4.2 •
zipcode 7291 2007 256 10 7.8 7.7 7.6 •+ 7.7 •+ 7.6 •+
abalone 4177 – 8 3 – 45.5 45.4 45.4 45.4

balance-scale 625 – 4 3 – 15.4 15.4 15.4 15.4

car 1728 – 6 4 – 2.8 2.0 • 2.2 • 2.0 •
connect-4 67557 – 42 3 – 19.6 19.3 • 19.4 • 19.5 •
cylinder-bands 277 – 33 2 – 22.7 20.9 • 21.1 • 20.9 •
hill-valley 606 606 100 2 – 46.9 45.8 • 46.3 • 45.8 •
isolet 1559 – 617 26 – 17.0 15.7 • 15.8 • 15.7 •
king-rook-vs-king 28056 – 6 18 – 15.6 15.4 • 15.4 • 15.4 •
king-rk-vs-k-pawn 3196 – 36 2 – 2.0 1.5 • 1.6 • 1.5 •
madelon 2000 – 500 2 – 46.1 45.2 • 45.3 • 45.2 •
magic 19020 – 10 2 – 12.0 11.9 • 11.9 • 11.9 •
musk 6598 – 166 2 – 3.7 3.5 • 3.6 • 3.5 •
poker 25010 106 10 10 – 43.2 43.1 • 43.1 • 43.1 •
SAheart 462 – 9 2 – 30.8 30.8 30.7 30.8

splice-junction 3190 – 59 3 – 18.9 17.7 • 18.2 • 17.7 •
yeast 1484 – 8 10 – 38.3 38.1 38.0 38.1

Table 1: The misclassification errors for 31 data sets from the UC Irvine Repository are shown in

percent (%).. The markets evaluated are our implementation of random forest (RF), and

markets with Constant (CB), Linear (LB) and respectively Aggressive (AB) Betting. RFB

contains the random forest results from Breiman (2001).
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7.4 Comparison with Implicit Online Learning on UCI Data Sets

We implemented the implicit online learning (Kulis and Bartlett, 2010) algorithm for classification

with linear aggregation. The objective of implicit online learning is to minimize the loss ℓ(β) in a

conservative way. The conservativeness of the update is determined by a Bregman divergence

D(β,βt) = φ(β)−φ(βt)−〈∇φ(βt),β−βt〉
where φ(β) are real-valued strictly convex functions. Rather than minimize the loss function itself,

the function

ft(β) = D(β,βt)+ηtℓ(β)

is minimized instead. Here ηt is the learning rate. The Bregman divergence ensures that the optimal

β is not too far from βt . The algorithm for implicit online learning is as follows

β̃t+1 = argmin
β∈RM

ft(β)

βt+1 = argmin
β∈S

D(β, β̃t+1).

The first step solves the unconstrained version of the problem while the second step finds the nearest

feasible solution to the unconstrained minimizer subject to the Bregman divergence.

For our problem we use

ℓ(β) =− log(cy(β))

where cy(β) is the constant market equilibrium price for ground truth label y. We chose the squared

Euclidean distance D(β,βt) = ‖β−βt‖2
2 as our Bregman divergence and learning rate ηt = 1/

√
t. To

ensure that c = ∑M
m=1 hmβm = Hβ is a valid probability vector, the feasible solution set is therefore

S = {β ∈ [0,1]M : ∑M
m=1 βm = 1}. This gives the following update scheme

β̃t+1 = βt +ηt

1

p
(Hy)T

βt+1 = argmin
β∈S

{

‖β− β̃t+1‖2
2

}

where Hy =
(

h
y
1, h

y
2, . . . , h

y
M

)

is the vector of classifier outputs for the true label y, q = Hyβt , r =

Hy(Hy)T and p = 1
2

(

q+
√

q2 +4ηtr
)

.

The results presented in Table 2 are obtained by 10 fold cross-validation. The cross-validation

errors were averaged over 10 different permutations of the data in the cross-validation folds.

The results from CB online and implicit online are obtained in one epoch. The results from

the CB offline and implicit offline columns are obtained in an off-line fashion using an appropriate

number of epochs (up to 10) to obtain the smallest cross-validated error on a random permutation

of the data that is different from the 10 permutations used to obtain the results.

The comparisons are done with paired t-tests and shown with ∗ and ‡ when the constant betting

market is significantly (α < 0.01) better or worse than the corresponding implicit online learning.

We also performed a comparison with our RF implementation, and significant differences are shown

with • and †.

Compared to RF, implicit online learning won 5-0, CB online won in 9-1 and CB offline won

12-0.

Compared to implicit online, which performed identical with implicit offline, both CB online

and CB offline won 9-0.
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Implicit CB Implicit CB
Data Set Ntrain Ntest F K RF

Online Online Offline Offline

breast-cancer 683 – 9 2 3.1 3.1 3 3.1 3

sonar 208 – 60 2 15.1 15.2 15.3 15.1 14.6

vowel 990 – 10 11 3.2 3.2 3.2 3.2 2.9 •∗
ecoli 336 – 7 8 13.7 13.7 13.6 13.7 13.6

german 1000 – 24 2 23.6 23.5 23.5 23.5 23.4

glass 214 – 9 6 21.4 21.4 21.3 21.4 21

image 2310 – 19 7 1.9 1.9 1.9 1.9 1.8 •
ionosphere 351 – 34 2 6.4 6.5 6.5 6.5 6.5

letter-recognition 20000 – 16 26 3.3 3.3 3.3 •∗ 3.3 3.3

liver-disorders 345 – 6 2 26.4 26.4 26.4 26.4 26.4

pima-diabetes 768 – 8 2 23.2 23.2 23.2 23.2 23.2

satimage 4435 2000 36 6 8.8 8.8 8.8 8.8 8.7 •
vehicle 846 – 18 4 24.8 24.7 24.9 24.7 24.9

voting-records 232 – 16 2 3.5 3.5 3.5 3.5 3.5

zipcode 7291 2007 256 10 6.1 6.1 6.2 6.1 6.2

abalone 4177 – 8 3 45.5 45.5 45.6 † 45.5 45.5

balance-scale 625 – 4 3 17.7 17.7 17.7 17.7 17.7

car 1728 – 6 4 2.3 2.3 1.8 •∗ 2.3 1.1 •∗
connect-4 67557 – 42 3 19.9 19.9 • 19.5 •∗ 19.9 • 18.2 •∗
cylinder-bands 277 – 33 2 21.4 21.3 21.2 21.3 20.8 •
hill-valley 606 606 100 2 43.8 43.7 43.7 43.7 43.7

isolet 1559 – 617 26 6.9 6.9 6.9 6.9 6.9

king-rk-vs-king 28056 – 6 18 21.6 21.6 • 19.6 •∗ 21.5 • 15.7 •∗
king-rk-vs-k-pawn 3196 – 36 2 1 1 0.7 •∗ 1 0.5 •∗
magic 19020 – 10 2 11.9 11.9 • 11.8 •∗ 11.9 • 11.7 •∗
madelon 2000 – 500 2 26.8 26.5 • 25.6 •∗ 26.4 • 21.6 •∗
musk 6598 – 166 2 1.7 1.7 • 1.6 •∗ 1.7 • 1 •∗
splice-junction-gene 3190 – 59 3 4.3 4.3 4.2 •∗ 4.3 4.1 •∗
SAheart 462 – 9 2 31.5 31.5 31.6 31.5 31.6

yeast 1484 – 8 10 37.3 37.3 37.3 37.3 37.3

Table 2: Comparison with Implicit Online Learning and random forest using 10-fold cross-

validation.
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7.5 Comparison with Adaboost for Lymph Node Detection

Finally, we compared the linear aggregation capability of the artificial prediction market with ad-

aboost for a lymph node detection problem. The system is setup as described in Barbu et al. (2012),

namely a set of lymph node candidate positions (x,y,z) are obtained using a trained detector. Each

candidate is segmented using gradient descent optimization and about 17000 features are extracted

from the segmentation result. Using these features, adaboost constructed 32 weak classifiers. Each

weak classifier is associated with one feature, splits the feature range into 64 bins and returns a

predefined value (1 or −1), for each bin.

Thus, one can consider there are M = 32×64 = 2048 specialized participants, each betting for

one class (1 or −1) for any observation that falls in its domain. The participants are given budgets

βi j, i= 1, ..,32, j = 1, ..,64 where i is the feature index and j is the bin index. The participant budgets

βi j, j = 1, ...,64 corresponding to the same feature i are initialized the same value βi, namely the

adaboost coefficient. For each bin, the return class 1 or −1 is the outcome for which the participant

will bet its budget.

The constant betting market of the 2048 participants is initialized with these budgets and trained

with the same training examples that were used to train the adaboost classifier.

The obtained constant market probability for an observation x = (x1, ...,x32) is based on the bin

indexes b = (b1(x1), ...,b32(x32):

p(y = 1|b) = ∑32
i=1 βi,bi

hi(bi)

∑32
i=1 βi,bi

.

An important issue is that the number Npos of positive examples is much smaller than the number

Nneg of negatives. Similar to adaboost, the sum of the weights of the positive examples should be

the same as the sum of weights of the negatives. To accomplish this in the market, we use the

weighted update rule Equation (16), with wpos =
1

Npos
for each positive example and wneg =

1
Nneg

for

each negative.
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Figure 8: Left: Detection rate at 3 FP/vol vs. number of training epochs for a lymph node detection

problem. Right: ROC curves for adaboost and the constant betting market with partic-

ipants as the 2048 adaboost weak classifier bins. The results are obtained with six-fold

cross-validation.
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The adaboost classifier and the constant market were evaluated for a lymph node detection

application on a data set containing 54 CT scans of the pelvic and abdominal region, with a total

of 569 lymph nodes, with six-fold cross-validation. The evaluation criterion is the same for all

methods, as specified in Barbu et al. (2012). A lymph node detection is considered correct if its

center is inside a manual solid lymph node segmentation and is incorrect if it not inside any lymph

node segmentation (solid or non-solid).

In Figure 8, left, is shown the training and testing detection rate at 3 false positives per volume

(a clinically acceptable false positive rate) vs the number of training epochs. We see the detection

rate increases to about 81% for epochs 6 to 16 epochs and then gradually decreases. In Figure 8,

right, are shown the training and test ROC curves of adaboost and the constant market trained with

7 epochs. In this case the detection rate at 3 false positives per volume improved from 79.6% for

adaboost to 81.2% for the constant market. The p-value for this difference was 0.0276 based on

paired t-test.

8. Conclusion and Future Work

This paper presents a theory for artificial prediction markets for the purpose of supervised learning

of class conditional probability estimators. The artificial prediction market is a novel online learning

algorithm that can be easily implemented for two class and multi class applications. Linear aggre-

gation, logistic regression as well as certain kernel methods can be viewed as particular instances of

the artificial prediction markets. Inspired from real life, specialized classifiers that only bet on sub-

sets of the instance space Ω were introduced. Experimental comparisons on real and synthetic data

show that the prediction market usually outperforms random forest, adaboost and implicit online

learning in prediction accuracy.

The artificial prediction market shows the following promising features:

1. It can be updated online with minimal computational cost when a new observation (x,y) is

presented.

2. It has a simple form of the update iteration that can be easily implemented.

3. For multi-class classification it can fuse information from all types of binary or multi-class

classifiers: for example, trained one-vs-all, many-vs-many, multi-class decision tree, etc.

4. It can obtain meaningful probability estimates when only a subset of the market participants

are involved for a particular instance x ∈ X . This feature is useful for learning on manifolds

(Belkin and Niyogi, 2004; Elgammal and Lee, 2004; Saul and Roweis, 2003), where the

location on the manifold decides which market participants should be involved. For example,

in face detection, different face part classifiers (eyes, mouth, ears, nose, hair, etc) can be

involved in the market, depending on the orientation of the head hypothesis being evaluated.

5. Because of their betting functions, the specialized market participants can decide for which

instances they bet and how much. This is another way to combine classifiers, different from

the boosting approach where all classifiers participate in estimating the class probability for

each observation.
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We are currently extending the artificial prediction market framework to regression and density

estimation. These extensions involve contracts for uncountably many outcomes but the update and

the market price equations extend naturally.

Future work includes finding explicit bounds for the generalization error based on the number

of training examples. Another item of future work is finding other generic types specialized partici-

pants that are not leaves of random or adaboost trees. For example, by clustering the instances x∈Ω,

one could find regions of the instance space Ω where simple classifiers (e.g., logistic regression, or

betting for a single class) can be used as specialized market participants for that region.
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Appendix A. Proofs

Proof [of Theorem 1] From Equation (3), the total budget ∑M
m=1 βm is conserved if and only if

M

∑
m=1

K

∑
k=1

βmφk
m(x,c) =

M

∑
m=1

βmφy
m(x,c)/cy. (18)

Denoting n=∑M
m=1 ∑K

k=1 βmφk
m(x,c), and since the above equation must hold for all y, we obtain that

Equation (4) is a necessary condition and also ck 6= 0,k = 1, ...,K, which means ck > 0,k = 1, ...,K.

Reciprocally, if ck > 0 and Equation (4) hold for all k, dividing by ck we obtain Equation (18).

Proof [of Remark 2] Since the total budget is conserved and is positive, there exists a βm > 0,

therefore ∑M
m=1 βmφk

m(x,0)> 0, which implies limck→0 fk(ck) = ∞. From the fact that fk(ck) is con-

tinuous and strictly decreasing, with limck→0 fk(ck) = ∞ and limck→1 fk(ck) = 0, it implies that for

every n > 0 there exists a unique ck that satisfies fk(ck) = n.

Proof [of Theorem 3] From Remark 2 we get that for every n ≥ nk,n > 0 there is a unique ck(n)
such that fk(ck(n)) = n. Moreover, following the proof of Remark 2 we see that ck(n) is continuous

and strictly decreasing on (nk,∞), with limn→∞ ck(n) = 0.

If maxk nk > 0, take n∗ = maxk nk. There exists k ∈ {1, ...,K} such that nk = n∗, so ck(n
∗) = 1,

therefore ∑K
j=1 c j(n

∗)≥ 1.

If maxk nk = 0 then nk = 0,k = 1, ...,K which means φk
m(x,1)= 0,k = 1, ...,K for all m with βm >

0. Let ak
m =min{c|φk

m(x,c) = 0}. We have ak
m > 0 for all k since φk

m(x,0)> 0. Thus limn→0+ ck(n) =
maxm ak

m ≥ ak
1, where we assumed that φ1(x,c) satisfies Assumption 2. But from Assumption 2

there exists k such that ak
1 = 1. Thus limn→0+ ∑K

k=1 ck(n)≥ ∑K
k=1 ak

1 > 1 so there exists n∗ such that

∑K
k=1 ck(n

∗)≥ 1.

Either way, since ∑K
k=1 ck(n) is continuous, strictly decreasing, and since ∑K

k=1 ck(n
∗) ≥ 1 and

limn→∞ ∑K
k=1 ck(n) = 0, there exists a unique n > 0 such that ∑K

k=1 ck(n) = 1. For this n, from The-
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orem 1 follows that the total budget is conserved for the price c = (c1(n), ...,cK(n)). Uniqueness

follows from the uniqueness of ck(n) and the uniqueness of n.

Proof [of Theorem 4] The price equations (4) become:

M

∑
m=1

βmφk
m(x) = ck

K

∑
k=1

M

∑
m=1

βmφk
m(x), ∀k = 1, ...,K.

which give the result from Equation (7).

If φk
m(x) = ηhk

m(x), using ∑K
k=1 hk

m(x) = 1, the denominator of Equation (7) becomes

K

∑
k=1

M

∑
m=1

βmφk
m(x) = η

M

∑
m=1

βm

K

∑
k=1

hk
m(x) = η

M

∑
m=1

βm

so

ck =
η∑M

m=1 βmhk
m(x)

η∑M
m=1 βm

= ∑
m

αmhk
m(x), ∀k = 1, ...,K.

Proof [of Theorem 5] For the current parameters γ = (γ1, ...,γM) = (
√

β1, ...,
√

βm) and an obser-

vation (xi,yi), we have the market price for label yi:

cyi
(xi) =

M

∑
m=1

γ2
mφyi

m(xi)/(
M

∑
m=1

K

∑
k=1

γ2
mφk

m(xi)). (19)

So the log-likelihood is

L(γ) =
1

N

N

∑
i=1

logcyi
(xi) =

1

N

N

∑
i=1

log
M

∑
m=1

γ2
mφyi

m(xi)−
1

N

N

∑
i=1

log
M

∑
m=1

K

∑
k=1

γ2
mφk

m(xi).

We obtain the gradient components:

∂L(γ)

∂γ j

=
1

N

N

∑
i=1

(

γ jφ
yi

j (xi)

∑M
m=1 γ2

mφ
yi
m(xi)

−
γ j ∑K

k=1 φk
j(xi)

∑M
m=1 ∑K

k=1 γ2
mφk

m(xi)

)

. (20)

Then from (19) we have ∑M
m=1 γ2

mφ
yi
m(xi) = B(xi)cyi

(xi). Hence (20) becomes

∂L(γ)

∂γ j

=
γ j

N

N

∑
i=1

1

B(xi)

(

φ
yi

j (xi)

cyi
(xi)
−

K

∑
k=1

φk
j(xi)

)

.

Write u j =
1
N ∑N

i=1
1

B(xi)

(

φ
yi
j (xi)

cyi
(xi)
−∑K

k=1 φk
j(xi)

)

, then
∂L(γ)
∂γ j

= γ ju j. The batch update (12) is β j ←
β j +ηβ ju j. By taking the square root we get the update in γ

γ j← γ j

√

1+ηu j = γ j + γ j(
√

1+ηu j−1) = γ j + γ j

ηu j
√

1+ηu j +1
= γ′j.

2201



BARBU AND LAY

We can write the Taylor expansion:

L(γ′) = L(γ)+(γ′− γ)T ∇L(γ)+
1

2
(γ′− γ)T H(L)(ζ)(γ′− γ)

so

L(γ′) = L(γ)+
M

∑
j=1

γ ju j

ηγ ju j
√

1+ηu j +1
+η2A(η) = L(γ)+η

M

∑
j=1

γ2
ju

2
j

√

1+ηu j +1
+η2A(η)

where |A(η)| is bounded in a neighborhood of 0.

Now assume that ∇L(γ) 6= 0, thus γ ju j 6= 0 for some j. Then ∑M
j=1

γ2
j u

2
j√

1+ηu j+1
> 0 hence L(γ′)>

L(γ) for any η small enough.

Thus as long as ∇L(γ) 6= 0 the batch update (12) with any η sufficiently small will increase the

likelihood function.

The batch update (12) can be split into N per-observation updates of the form (13).
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