
Journal of Machine Learning Research 13 (2012) 3207-3245 Submitted 4/10; Revised 3/12; Published 11/12

Dynamic Policy Programming

Mohammad Gheshlaghi Azar M.AZAR@SCIENCE.RU.NL

Vicenç Gómez V.GOMEZ@SCIENCE.RU.NL

Hilbert J. Kappen B.KAPPEN@SCIENCE.RU.NL

Department of Biophysics

Radboud University Nijmegen

6525 EZ Nijmegen, The Netherlands

Editor: Ronald Parr

Abstract

In this paper, we propose a novel policy iteration method, called dynamic policy programming

(DPP), to estimate the optimal policy in the infinite-horizon Markov decision processes. DPP is

an incremental algorithm that forces a gradual change in policy update. This allows us to prove

finite-iteration and asymptotic ℓ∞-norm performance-loss bounds in the presence of approxima-

tion/estimation error which depend on the average accumulated error as opposed to the standard

bounds which are expressed in terms of the supremum of the errors. The dependency on the av-

erage error is important in problems with limited number of samples per iteration, for which the

average of the errors can be significantly smaller in size than the supremum of the errors. Based on

these theoretical results, we prove that a sampling-based variant of DPP (DPP-RL) asymptotically

converges to the optimal policy. Finally, we illustrate numerically the applicability of these results

on some benchmark problems and compare the performance of the approximate variants of DPP

with some existing reinforcement learning (RL) methods.

Keywords: approximate dynamic programming, reinforcement learning, Markov decision pro-

cesses, Monte-Carlo methods, function approximation

1. Introduction

Many problems in robotics, operations research and process control can be represented as a control

problem that can be solved by finding the optimal policy using dynamic programming (DP). DP

is based on estimating some measures of the value of state-action Q∗(x,a), also known as action-

value function, through the Bellman equation. For high-dimensional discrete systems or for con-

tinuous systems, computing the value function by DP is intractable. The common approach to

make the computation tractable is to approximate the value function using function-approximation

and Monte-Carlo sampling (Szepesvári, 2010; Bertsekas and Tsitsiklis, 1996). Examples of such

approximate dynamic programming (ADP) methods are approximate policy iteration (API) and ap-

proximate value iteration (AVI) (Bertsekas, 2007; Lagoudakis and Parr, 2003; Perkins and Precup,

2003; de Farias and Van Roy, 2000). In addition to these approaches, there are methods which

do not rely exclusively on an approximate value function. These methods include, for instance,

actor-critic methods (Barto et al., 1983), which explicitly consider two interacting processes, policy

gradient methods (Baxter and Bartlett, 2001; Sutton et al., 2000), and dual dynamic programming

(Wang et al., 2007, 2008).

©2012 Mohammad Gheshlaghi Azar, Vicenç Gómez and Hilbert J. Kappen.

GHESHLAGHI AZAR, GÓMEZ AND KAPPEN

ADP methods have been successfully applied to many real world problems, and theoretical

results have been derived in the form of finite iteration and asymptotic performance guarantee on

the induced policy. In particular, the formal analysis of these algorithms is usually characterized in

terms of bounds on the difference between the optimal and the estimated value function induced by

the algorithm (performance loss) (Farahmand et al., 2010; Thiery and Scherrer, 2010; Munos, 2005;

Bertsekas and Tsitsiklis, 1996). For instance, in the case of AVI and API, the asymptotic ℓ∞-norm

performance-loss bounds in the presence of approximation error εk can be expressed as1

limsup
k→∞

‖Q∗−Qπk‖ ≤ 2γ

(1− γ)2
limsup

k→∞
‖εk‖ , (1)

where γ denotes the discount factor, ‖ · ‖ is the ℓ∞-norm w.r.t. the state-action pair (x,a) and πk is

the control policy at iteration k.

The bound of Equation 1 is expressed in terms of the supremum of the approximation errors.

Intuitively, the dependency on the supremum error means that to have a small overall performance

loss the approximation errors of all iterations should be small in size, that is, a large approximation

error in only one iteration can derail the whole learning process. This can cause a major problem

when the approximation error εk arises from sampling. In many problems of interest, the sampling

error can be large and hard to control, since only a limited number of samples can be used at each

iteration. Also, even in those cases where we have access to large number of samples, it may be

difficult, if not impossible, to control the size of errors for all iterations. This is due to the fact

that the sampling errors are random objects and, regardless of the number of samples used at each

iteration, there is always a fair chance that in some few outlier iterations the sampling errors take

large values in their interval of definition. In all those cases, a bound which depends on the average

accumulated error ε̄k = 1/(k+1)∑ k
j=0ε j instead of the supremum error is preferable. The rationale

behind this idea is that the average of the sum of random variables, under some mild assumptions,

can be significantly smaller in size than the supremum of the random variables. Also, the average

error ε̄k is less sensitive to the outliers than the supremum error. Therefore, a bound which depends

on the average error can be tighter than the one with dependency on the supremum error. To the

best of authors’ knowledge, there exists no previous work that provides such a bound.

In this paper, we propose a new incremental policy-iteration algorithm called dynamic policy

programming (DPP). DPP addresses the above problem by proving the first asymptotic and finite-

iteration performance loss bounds with dependency on ‖ε̄k‖. This implies the previously mentioned

advantages in terms of performance guarantees. The intuition is that DPP, by forcing an incremental

change between two consecutive policies, accumulates the approximation errors of all the previous

iterations, rather than just minimizing the approximation error of the current iteration. We also

introduce a new RL algorithm based on the DPP update rule, called DPP-RL, and prove that it

converges to the optimal policy with the convergence rate of order 1/
√

k. This rate of convergence

leads to a PAC (“probably approximately correct”) sample-complexity bound of order O(1/((1−
γ)6ε2)) to find an ε-optimal policy with high probability, which is superior to the best existing result

of standard Q-learning (Even-Dar and Mansour, 2003). See Section 6 for a detailed comparison

with incremental RL algorithms such as Q-learning and SARSA.

1. For AVI the approximation error εk is defined as the error associated with the approximation of the Bellman optimality

operator. In the case of API, εk is the policy evaluation error (see Farahmand et al., 2010; Bertsekas and Tsitsiklis,

1996, Chapter 6, for more details).

3208

DYNAMIC POLICY PROGRAMMING

DPP shares some similarities with the well-known actor-critic (AC) method of Barto et al.

(1983), since both methods make use of an approximation of the optimal policy by means of action

preferences and soft-max policy. However, DPP uses a different update rule which is only expressed

in terms of the action preferences and does not rely on the estimate of the value function to criticize

the control policy.

The contribution of this work is mainly theoretical, and focused on the problem of estimating

the optimal policy in an infinite-horizon MDP. Our setting differs from the standard RL setting in

the following: we rely on a generative model from which samples can be drawn. This means that

the agent has full control on the sample queries that can be made for any arbitrary state. Such an

assumption is commonly made in theoretical studies of RL algorithms (Farahmand et al., 2008;

Munos and Szepesvári, 2008; Kearns and Singh, 1999) because it simplifies the analysis of learning

and exploration to a great extent. We compare DPP empirically with other methods that make use

of this assumption. The reader should notice that this premise does not mean that the agent needs

explicit knowledge of the model dynamics to perform the required updates, nor does it need to learn

one.

This article is organized as follows. In Section 2, we present the notation which is used in this

paper. We introduce DPP and we investigate its convergence properties in Section 3. In Section 4,

we demonstrate the compatibility of our method with the approximation techniques by generalizing

DPP bounds to the case of function approximation and Monte-Carlo sampling. We also introduce a

new convergent RL algorithm, called DPP-RL, which relies on a sampling-based variant of DPP to

estimate the optimal policy. Section 5, presents numerical experiments on several problem domains

including the optimal replacement problem (Munos and Szepesvári, 2008) and a stochastic grid

world. In Section 6 we briefly review some related work. Finally, in Section 7, we summarize our

results and discuss some of the implications of our work.

2. Preliminaries

In this section, we introduce some concepts and definitions from the theory of Markov decision pro-

cesses (MDPs) and reinforcement learning (RL) as well as some standard notation (see Szepesvári,

2010, for further reading). We begin by the definition of the ℓ2-norm (Euclidean norm) and the

ℓ∞-norm (supremum norm). Assume that Y is a finite set. Given the probability measure µ over Y,

for a real-valued function g : Y→ R, we shall denote the ℓ2-norm and the weighted ℓ2,µ-norm of g

by ‖g‖2
2 , ∑y∈Y g(y)2 and ‖g‖2

2,µ , ∑y∈Y µ(y)g(y)2, respectively. Also, the ℓ∞-norm of g is defined

by ‖g‖ , maxy∈Y |g(y)| and log(·) denotes the natural logarithm.

2.1 Markov Decision Processes

A discounted MDP is a quintuple (X,A,P,R,γ), where X and A are, respectively, the state space

and the action space. P shall denote the state transition distribution and R denotes the reward kernel.

γ∈ [0,1) denotes the discount factor. The transition P is a probability kernel over the next state upon

taking action a from state x, which we shall denote by P(·|x,a). R is a set of real-valued numbers.

A reward r(x,a) ∈ R is associated with each state x and action a.

Assumption 1 (MDP Regularity) We assume that X and A are finite sets with the cardinalities

|X| and |A|, respectively. Also, the absolute value of the immediate reward r(x,a) is bounded from

above by Rmax > 0 for all (x,a) ∈ Z.

3209

GHESHLAGHI AZAR, GÓMEZ AND KAPPEN

Remark 1 To keep the representation succinct, we make use of the short-hand notation Z for the

joint state-action space X×A. We also denote Rmax

/
(1− γ) by Vmax.

A Markovian policy kernel determines the distribution of the control action given the current

state. The policy is called stationary if the distribution of the control action is independent of time.

Given the current state x, we shall denote the Markovian stationary policy, or in short only policy,

by π(·|x). A policy is called deterministic if for any state x ∈ X there exists some action a such that

π(a|x) = 1. Given the policy π, its corresponding value function V π : X→ R denotes the expected

total discounted reward in each state x, when the action is chosen by policy π, which we denote by

V π(x). Often it is convenient to associate value functions not with states but with state-action pairs.

Therefore, we introduce Qπ : Z→R as the expected total discounted reward upon choosing action a

from state x and then following policy π, which we shall denote by Qπ(x,a). We define the Bellman

operator Tπ on the action-value functions by2

TπQ(x,a), r(x,a)+ γ ∑
(y,b)∈Z

P(y|x,a)π(b|y)Q(y,b), ∀(x,a) ∈ Z.

The goal is to find a policy π∗ that attains the optimal value function, V ∗(x), supπV π(x), at all

states x ∈ X. The optimal value function satisfies the Bellman equation:

V ∗(x) = sup
π(·|x)

∑
y∈X
a∈A

π(a|x) [r(x,a)+P(y|x,a)V ∗(y)]

= max
a∈A

[
r(x,a)+ ∑

y∈X
P(y|x,a)V ∗(y)

]
,

∀x ∈ X. (2)

Likewise, the optimal action-value function Q∗ is defined by Q∗(x,a) = supπ Qπ(x,a) for all

(x,a) ∈ Z. We shall define the Bellman optimality operator T on the action-value functions as

TQ(x,a), r(x,a)+ γ ∑
y∈X

P(y|x,a)max
b∈A

Q(y,b), ∀(x,a) ∈ Z.

Q∗ is the fixed point of T. Both T and Tπ are contraction mappings, w.r.t. the supremum norm,

with the factor γ (Bertsekas, 2007, Chapter 1). In other words, for any two real-valued action-value

functions Q and Q′ and every policy π, we have

∥∥TQ−TQ′∥∥ ≤ γ
∥∥Q−Q′∥∥ ,

∥∥TπQ−TπQ′∥∥ ≤ γ
∥∥Q−Q′∥∥ .

The policy distribution π defines a right-linear operator Pπ· as

(PπQ)(x,a), ∑
(y,b)∈Z

π(b|y)P(y|x,a)Q(y,b), ∀(x,a) ∈ Z.

Further, we define two other right-linear operators π· and P· as

(πQ)(x), ∑
a∈A

π(a|x)Q(x,a), ∀x ∈ X,

(PV)(x,a), ∑
y∈X

P(y|x,a)V (y), ∀(x,a) ∈ Z.

2. We note that Qπ is the fixed point of Tπ.

3210

DYNAMIC POLICY PROGRAMMING

We note that for every Q : Z→ R, V : X→ R and policy π, we have

(π[Q+V])(x) = (πQ)(x)+V (x), ∀x ∈ X,

(Pπ[Q+V])(x,a) = (PπQ)(x,a)+(PV)(x,a), ∀(x,a) ∈ Z.
(3)

We define the max operator M on the action value functions as (MQ)(x),
maxa∈A Q(x,a), for all x ∈ X. Based on the new definitions one can rephrase the Bellman operator

and the Bellman optimality operator as

TπQ(x,a) = r(x,a)+ γ(PπQ)(x,a), TQ(x,a) = r(x,a)+ γ(PMQ)(x,a).

In the sequel, we repress the state(-action) dependencies in our notation wherever these depen-

dencies are clear, for example, Ψ(x,a) becomes Ψ, Q(x,a) becomes Q. Also, for simplicity of the

notation, we remove some parenthesis, for example, writing MQ for (MQ) and PπQ for (PπQ),
when there is no possible confusion.

3. Dynamic Policy Programming

In this section, we introduce and analyze the DPP algorithm. We first present the dynamic policy

programming (DPP) algorithm in Section 3.1 (see Appendix A for some intuition on how DPP

can be related to the Bellman equation). We then investigate the finite-iteration and the asymptotic

behavior of DPP and prove its convergence in Section 3.2.

3.1 Algorithm

DPP is a policy iteration algorithm which represents the policy πk in terms of some action prefer-

ence numbers Ψk (Sutton and Barto, 1998, Chapter 2.8). Starting at Ψ0, DPP iterates the action

preferences of all state-action pairs (x,a) ∈ Z through the DPP operator O (the pseudo code of DPP

is presented in Algorithm 1):

Ψk+1(x,a) = OΨk(x,a), Ψk(x,a)− (MηΨk)(x)+ r(x,a)+ γ(PMηΨk)(x,a),

where Mη denotes the softmax operator. The softmax operator Mη is defined on every f : Z→ R

as

(Mη f)(x),

∑
a∈A

exp(η f (x,a)) f (x,a)

∑
b∈A

exp(η f (x,b))
,

where η > 0 is the inverse temperature.

The control policy πk is then computed as a function of Ψk at each iteration k:

πk(a|x) =
exp(ηΨk(x,a))

∑
b∈A

exp(ηΨk(x,b))
, ∀(x,a) ∈ Z. (4)

Based on Equation 4 one can re-express the DPP operator on the action preferences Ψk as

3211

GHESHLAGHI AZAR, GÓMEZ AND KAPPEN

Ψk+1(x,a) = Ψk(x,a)+Tπk Ψk(x,a)−πkΨk(x), ∀(x,a) ∈ Z. (5)

Algorithm 1: (DPP) Dynamic Policy Programming

Input: Action preferences Ψ0(·, ·), γ and η

1 for k = 0,1,2, . . . ,K −1 do // main loop

2 foreach (x,a) ∈ Z do // compute the control policy

3 πk(a|x) :=
exp(ηΨk(x,a))

∑
b∈A

exp(ηΨk(x,b))
;

4 end

5 foreach (x,a) ∈ Z do // compute the new action-preferences

6 Ψk+1(x,a) := Ψk(x,a)+Tπk Ψk(x,a)−πkΨk(x); // DPP update rule

7 end

8 end

9 foreach (x,a) ∈ Z do // compute the last policy

10 πK(a|x) :=
exp(ηΨK(x,a))

∑
b∈A

exp(ηΨK(x,b))
;

11 end

12 return πK ;

3.2 Performance Guarantee

In this subsection, we investigate the finite-iteration and asymptotic behavior of Algorithm 1. We

begin by proving a finite-iteration performance guarantee for DPP:

Theorem 2 (The ℓ∞-norm performance loss bound of DPP) Let Assumption 1 hold. Also, as-

sume that Ψ0 is uniformly bounded by Vmax for all (x,a) ∈ Z, then the following inequality holds for

the policy induced by DPP at iteration k ≥ 0:

‖Q∗−Qπk‖ ≤
2γ
(

4Vmax +
log(|A|)

η

)

(1− γ)2(k+1)
.

Proof See Appendix B.1.

Note that the DPP algorithm converges to the optimal policy for every η > 0 and choosing

a different η only changes the rate of convergence. The best rate of convergence is achieved by

setting η = ∞, for which the softmax policy and the softmax operator Mη are replaced with the

greedy policy and the max-operator M, respectively. Therefore, for η = +∞ the DPP recursion is

re-expressed as

Ψk+1(x,a) = Ψk(x,a)− (MΨk)(x)+ r(x,a)+ γ(PMΨk)(x,a).

3212

DYNAMIC POLICY PROGRAMMING

We must point out that the choice of η < +∞ may be still useful in the presence of function

approximation, where the greedy update rule can be unstable due to the non-differentiability of the

max operator. In fact, our numerical results in Section 5.2 suggests that the performance of DPP in

the presence of function approximation is optimized for some finite value of η rather than η =+∞

(see Section 5.2 for more details).

As an immediate consequence of Theorem 2, we obtain the following result:

Corollary 3 The following relation holds in limit:

lim
k→+∞

Qπk(x,a) = Q∗(x,a), ∀(x,a) ∈ Z.

In words, the policy induced by DPP asymptotically converges to the optimal policy π∗. The

following corollary shows that there exists a unique limit for the action preferences in infinity if the

optimal policy π∗ is unique.

Corollary 4 Let Assumption 1 hold and k be a non-negative integer. Assume that the optimal policy

π∗ is unique and let Ψk(x,a), for all (x,a) ∈ Z, be the action preference after k iteration of DPP.

Then, we have:

lim
k→+∞

Ψk(x,a) =

{
V ∗(x) a = a∗(x)
−∞ otherwise

, ∀x ∈ X.

Proof See Appendix B.2.

Notice that the assumption on the uniqueness of the optimal policy π∗ is not required for the

main result of this section (Theorem 2). Also, the fact that in Corollary 4 the action preferences of

sub-optimal actions tend to −∞ is the natural consequence of the convergence of πk to the optimal

policy π∗, which forces the probability of the sub-optimal actions to be 0.

4. Dynamic Policy Programming with Approximation

Algorithm 1 (DPP) only applies to small problems with a few states and actions. Also, to compute

the optimal policy by DPP an explicit knowledge of the model is required. In many real world

problems, this information is not available. Instead it may be possible to simulate the state tran-

sition by Monte-Carlo sampling and then estimate the optimal policy using these samples. In this

section, we first prove some general bounds on the performance of DPP in the presence of approxi-

mation/estimation error and compare these bounds with those of AVI and API. We then present new

approximate algorithms for implementing DPP with Monte-Carlo sampling (DPP-RL) and linear

function approximation (SADPP). For both DPP-RL and SADPP we assume that we have access

to the generative model of MDP, that is, an oracle can generate the next sample y from P(·|x,a) for

every state-action pair (x,a) ∈ Z on the request of the learner.

4.1 The ℓ∞-Norm Performance-Loss Bounds for Approximate DPP

Let us consider a sequence of action preferences {Ψ0,Ψ1,Ψ2, . . .} such that, at round k, the ac-

tion preferences function Ψk+1 is the result of approximately applying the DPP operator by the

means of function approximation or Monte-Carlo simulation, that is, for all (x,a)∈Z: Ψk+1(x,a)≈
OΨk(x,a). The error εk is defined as the difference of OΨk and its approximation:

3213

GHESHLAGHI AZAR, GÓMEZ AND KAPPEN

εk(x,a), Ψk+1(x,a)−OΨk(x,a), ∀(x,a) ∈ Z. (6)

Note that this definition of εk is rather general and does not specify the approximation technique

used to compute Ψk+1. In the following subsections, we provide specific update rules to approx-

imate Ψk+1 for both DPP-RL and SADPP algorithms which also makes the definition of εk more

specific.

The approximate DPP update rule then takes the following forms:

Ψk+1(x,a) = OΨk(x,a)+ εk(x,a)

= Ψk(x,a)+ r(x,a)+ γPMηΨk(x,a)−MηΨk(x,a)+ εk(x,a)

= Ψk(x,a)+Tπk Ψk(x,a)−πkΨk(x,a)+ εk(x,a),

(7)

where πk is given by Equation 4.

We begin by the finite-iteration analysis of approximate DPP. The following theorem establishes

an upper-bound on the performance loss of DPP in the presence of approximation error. The proof

is based on generalization of the bound that we established for DPP by taking into account the error

εk:

Theorem 5 (Finite-iteration performance loss bound of approximate DPP) Let Assumption 1 hold.

Assume that k is a non-negative integer and Ψ0 is bounded by Vmax. Further, define εk for all k by

Equation 6 and the accumulated error Ek as

Ek(x,a),
k

∑
j=0

ε j(x,a), ∀(x,a) ∈ Z.

Then the following inequality holds for the policy induced by approximate DPP at round k:

‖Q∗−Qπk‖ ≤ 1

(1− γ)(k+1)




2γ
(

4Vmax +
log(|A|)

η

)

(1− γ)
+

k

∑
j=0

γk− j‖E j‖


 .

Proof See Appendix C.

Taking the upper-limit yields corollary 6.

Corollary 6 (Asymptotic performance-loss bound of approximate DPP) Define

ε̄ , limsupk→∞ ‖Ek‖
/
(k+1). Then, the following inequality holds:

limsup
k→∞

‖Q∗−Qπk‖ ≤ 2γ

(1− γ)2
ε̄. (8)

The asymptotic bound is similar to the existing results of AVI and API (Thiery and Scherrer,

2010; Bertsekas and Tsitsiklis, 1996, Chapter 6):

limsup
k→∞

‖Q∗−Qπk‖ ≤ 2γ

(1− γ)2
εmax,

3214

DYNAMIC POLICY PROGRAMMING

where εmax = limsupk→∞ ‖εk‖. The difference is that in Equation 8 the supremum norm of error

εmax is replaced by the supremum norm of the average error ε̄. In other words, unlike AVI and API,

the size of error at each iteration is not a critical factor for the performance of DPP and as long as the

size of average error remains close to 0, DPP is guaranteed to achieve a near-optimal performance

even when the individual errors εk are large

As an example: Consider a case in which, for both DPP and AVI/API, the sequence of errors

{ε0,ε1,ε2, . . .} are some i.i.d. zero-mean random variables bounded by 0 < U < ∞. Corollary 6

combined with the law of large numbers then leads to the following asymptotic bound for approxi-

mate DPP:

limsup
k→∞

‖Q∗−Qπk‖ ≤ 2γ

(1− γ)2
ε̄ = 0, w.p. (with probability) 1,

whilst for API and AVI we have

limsup
k→∞

‖Q∗−Qπk‖ ≤ 2γ

(1− γ)2
U.

In words, approximate DPP manages to cancel i.i.d. noise and asymptotically converges to the

optimal policy whereas there is no guarantee, in this case, for the convergence of API and AVI

to the optimal solution. This example suggests that DPP, in general, may average out some of the

simulation noise caused by Monte-Carlo sampling and eventually achieve a better performance than

AVI and API in the presence of sampling error.

Remark 7 The i.i.d. assumption may be replaced by some weaker and more realistic assumption

that only requires the error sequence {ε0,ε1, . . . ,εk} to be a sequence of martingale differences, that

is, the errors do not need to be independent as long as the expected value of εk, conditioned on the

past observations, is 0. We prove, in the next subsection, that DPP-RL satisfies this assumption and,

therefore, asymptotically converges to the optimal policy (see Theorem 9).

4.2 Reinforcement Learning with Dynamic Policy Programming

To compute the optimal policy by DPP one needs an explicit knowledge of the model. In many prob-

lems, we do not have access to this information but instead we can generate samples by simulating

the model. The optimal policy can then be learned using these samples. In this section, we introduce

a new RL algorithm, called DPP-RL, which relies on a sampling-based variant of DPP to update

the policy. The update rule of DPP-RL is very similar to Equation 5. The only difference is that we

replace the Bellman operator TπΨ(x,a) with its sample estimate Tπ
k Ψ(x,a) , r(x,a)+ γ(πΨ)(yk),

where the next sample yk is drawn from P(·|x,a):

Ψk+1(x,a), Ψk(x,a)+T
πk

k Ψk(x,a)−πkΨk(x), ∀(x,a) ∈ Z. (9)

Based on Equation 9, we estimate the optimal policy by iterating some initial Ψ0 through the

DPP-RL update rule, where at each iteration we draw yk for every (x,a) ∈ Z. From Equation 6, the

estimation error of the kth iterate of DPP-RL is then defined as the difference between the Bellman

operator Tπk Ψk(x,a) and its sample estimate:

εk(x,a) = T
πk

k Ψk(x,a)−Tπk Ψk(x,a), ∀(x,a) ∈ Z.

3215

GHESHLAGHI AZAR, GÓMEZ AND KAPPEN

The DPP-RL update rule can then be considered as a special case of the more general approxi-

mate DPP update rule of Equation 7.

Equation 9 is just an approximation of the DPP update rule of Equation 5. Therefore, the

convergence result of Corollary 3 does not hold for DPP-RL. However, the new algorithm still

converges to the optimal policy since one can show that the errors associated with approximating

Equation 5 are asymptotically averaged out by DPP-RL, as postulated by Corollary 6. To prove this

result we need the following lemma, which bounds the estimation error εk.

Lemma 8 (Boundedness of εk) Let Assumption 1 hold and assume that the initial action-preference

function Ψ0 is uniformly bounded by Vmax, then we have, for all k ≥ 0,

∥∥Tπk

k Ψk

∥∥ ≤ 2γ log(|A|)
η(1− γ)

+Vmax, ‖εk‖ ≤ 4γ log(|A|)
η(1− γ)

+2Vmax.

Proof See Appendix D.

Lemma 8 is an interesting result, which shows that, despite the fact that Ψk tends to −∞ for

the sub-optimal actions, the error εk is uniformly bounded by some finite constant. Note that

εk = Tπk Ψk −T
πk

k Ψk can be expressed in terms of the soft-max MηΨk, which unlike Ψk, is always

bounded by a finite constant, for every η > 0.

The following theorem establishes the asymptotic convergence of DPP-RL to the optimal policy.

Theorem 9 (Asymptotic convergence of DPP-RL) Let Assumption 1 hold. Assume that the initial

action-value function Ψ0 is uniformly bounded by Vmax and πk is the policy induced by Ψk after k

iteration of DPP-RL. Then, w.p. 1, the following holds:

lim
k→∞

Qπk(x,a) = Q∗(x,a), ∀(x,a) ∈ Z.

Proof See Appendix D.1.

We also prove the following result on the converge rate of DPP-RL to the optimal policy by

making use of the result of Theorem 5:

Theorem 10 (Finite-time high-probability loss-bound of DPP-RL) Let Assumption 1 hold and k

be a positive integer and 0 < δ < 1. Then, at iteration k of DPP-RL with probability at least 1−δ,

we have

‖Q∗−Qπk‖ ≤ 4(γ log(|A|)/η+2Rmax)

(1− γ)3


 1

k+1
+

√
2log

2|X||A|
δ

k+1


 .

Proof See Appendix D.2.

Theorem 5 implies that, regardless of the value of η and γ, DPP-RL always converges with the

rate of 1/
√

k.

We can optimize the bound of Theorem 10 w.r.t. η which leads to the following corollary:

3216

DYNAMIC POLICY PROGRAMMING

Corollary 11 Let Assumption 1 hold and k be a positive integer, also set the inverse temperature

η =+∞, Then, at iteration k of DPP-RL with probability at least 1−δ, we have

‖Q∗−Qπk‖ ≤ 8Rmax

(1− γ)3


 1

k+1
+

√
2log

2|X||A|
δ

k+1


 .

This result implies that, in order to achieve the best rate of convergence, one can set the value

of η to +∞, that is, to replace the soft-max Mη with the max operator M:

Ψk+1(x,a) := Ψk(x,a)+TkΨk(x,a)−MΨk(x), ∀(x,a) ∈ Z,

where TkΨ(x,a), r(x,a)+ γ(MΨ)(yk) for all (x,a) ∈ Z. The pseudo-code of DPP-RL algorithm,

which sets η =+∞, is shown in Algorithm 2.

Algorithm 2: (DPP-RL) Reinforcement learning with DPP

Input: Initial action preferences Ψ0(·, ·), discount factor γ and number of steps T

1 for k = 1,2,3, . . . ,K −1 do // main loop

2 foreach (x,a) ∈ Z do // update Ψk(·, ·) for all state-action pairs

3 yk ∼ P(·|x,a); // generate the next sample

4 TkΨk(x,a) := r(x,a)+ γMΨk(yk); // empirical Bellman operator

5 Ψk+1(x,a) := Ψk(x,a)+TkΨk(x,a)−MΨk(x); // DPP update rule

6 end

7 foreach x ∈ X do // compute the control policy

8 amax := argmaxa∈A Ψk+1(x,a);
9 π(·|x) := 0;

10 πk+1(amax|x) := 1;

11 end

12 end

13 return πK

Furthermore, the following PAC bound which determines the number of steps k required to

achieve the error ε > 0 in estimating the optimal policy, w.p. 1−δ, is an immediate consequence of

Theorem 10.

Corollary 12 (Finite-time PAC bound of DPP-RL) Let Assumption 1 hold. Then, for any ε > 0,

after

k =
256R2

max log
2|X||A|

δ

(1− γ)6ε2
.

steps of Algorithm 2, the uniform approximation error ‖Q∗−Qπk‖ ≤ ε, w. p. 1−δ.

4.3 Approximate Dynamic Policy Programming with Linear Function Approximation

In this subsection, we consider DPP with linear function approximation (LFA) and least-squares

regression. LFA is commonly used in many RL algorithms (Szepesvári, 2010, Section 3.2). Given

3217

GHESHLAGHI AZAR, GÓMEZ AND KAPPEN

a set of basis functions Fφ = {φ1, . . . ,φm}, where each φi : Z→R is a bounded real valued function,

the sequence of action preferences {Ψ0,Ψ1,Ψ2 . . .} are defined as a linear combination of these

basis functions: Ψk = θT

k Φ, where Φ is a m×1 column vector with the entries {φi}i=1:m and θk ∈R
m

is a m×1 vector of parameters.

The action preference function Ψk+1 is an approximation of the DPP operator OΨk. In the case

of LFA the common approach to approximate DPP operator is to find a vector θk+1 that projects

OΨk on the column space spanned by Φ by minimizing the loss function:

Jk(θ;Ψ),
∥∥∥θTΦ−OΨk

∥∥∥
2

2,µ
,

where µ is a probability measure on Z. The best solution, which minimizes J, is called the least-

squares solution:

θk+1 = arg min
θ∈Rm

Jk(θ;Ψ) =
[
E
(
ΦΦT

)]−1
E(ΦOΨk),

where the expectation is taken w.r.t. (x,a) ∼ µ. In principle, to compute the least squares solution

equation one needs to compute OΨk for all states and actions. For large scale problems this becomes

infeasible. Instead, one can make a sample estimate of the least-squares solution by minimizing the

empirical loss J̃k(θ;Ψ) (Bertsekas, 2007, Chapter 6.3):

J̃k(θ;Ψ),
1

N

N

∑
n=1

(θTΦ(Xn,An)−OnΨk)
2 +αθTθ,

where {(Xn,An)}n=1:N is a set of N i.i.d. samples drawn from the distribution µ. Also, OnΨk denotes

a single sample estimate of OΨk(Xn,An) defined by OnΨk , Ψk(Xn,An)+r(Xn,An)+γMηΨk(Yn)−
MηΨk(Xn), where Yn ∼ P(·|Xn,An). Further, to avoid over-fitting due to the small number of sam-

ples, one adds a quadratic regularization term to the loss function. The empirical least-squares

solution which minimizes J̃k(θ;Ψ) is given by

θ̃k+1 =

[
N

∑
n=1

Φ(Xn,An)Φ(Xn,An)
T+αNI

]−1
N

∑
n=1

OnΨkΦ(Xn,An), (10)

and Ψk(x,a) = θ̃k+1Φ(x,a). This defines a sequence of action preferences {Ψ0,Ψ1,Ψ2, . . .} and the

sequence of approximation error through Equation 6.

Algorithm 3 presents the sampling-based approximate dynamic policy programming (SADPP)

in which we rely on Equation 10 to approximate DPP operator at each iteration.

5. Numerical Results

In this section, we illustrate empirically the theoretical performance guarantee introduced in the

previous sections for both variants of DPP: the exact case (DPP-RL) and the approximate case

(SADPP). In addition, we compare with existing algorithms for which similar theoretical results

have been derived.

We first examine the convergence properties of DPP-RL (Algorithm 2) on several discrete state-

action problems with large state spaces. We compare it with a synchronous variant of Q-learning

3218

DYNAMIC POLICY PROGRAMMING

Algorithm 3: (SADPP) Sampling-based approximate dynamic policy programming

Input: θ̃0, η, γ, α, K and N

1 for k = 0,1,2, . . . ,K −1 do // main loop

2 {(Xn,An)}n=1:N ∼ µ(·, ·); // generate n i.i.d. samples from µ(·, ·)
3 {Yn}n=1:N ∼ P(·|{(Xn,An)}n=1:N) ; // generate next states from P(·|·)
4 foreach n = 1,2,3, . . . ,N do

5 foreach a ∈A do // compute Ψk for every action of states Xn,Yn

6 Ψk(Xn,a) = θ̃T

k Φ(Xn,a);

7 Ψk(Yn,a) = θ̃T

k Φ(Yn,a);

8 end

9 MηΨk(Xn) = ∑
a∈A

exp(ηΨk(Xn,a))Ψk(Xn,a)
∑

b∈A
expηΨk(Xn,b)

;

10 MηΨk(Yn) = ∑
a∈A

exp(ηΨk(Yn,a))Ψk(Yn,a)
∑

b∈A
expηΨk(Yn,b)

; // soft-max MηΨk for Xn and Yn

// empirical DPP operator

11 OnΨk = Ψk(Xn,An)− r(Xn,An)− γ(MηΨk)(Yn)+(MηΨk)(Xn);

12 end

// SADPP update rule

13 θ̃k+1 =
[
∑N

n=1 Φ(Xn,An)Φ(Xn,An)
T+αNI

]−1
∑N

n=1OnΨkΦ(Xn,An);

14 end

15 return θ̃K

(Even-Dar and Mansour, 2003) (QL) and a model-based Q-value iteration (VI) (Kearns and Singh,

1999). Next, we investigate the finite-time performance of SADPP (Algorithm 3) in the presence

of function approximation and a limited sampling budget per iteration. In this case, we compare

SADPP with regularized least-squares fitted Q-iteration (RFQI) (Farahmand et al., 2008) and reg-

ularized least-squares policy iteration (REG-LSPI) (Farahmand et al., 2009), two algorithms that,

like SADPP, control the complexity of the solution using regularization.3

5.1 DPP-RL

To illustrate the performance of DPP-RL, we consider the following MDPs:

Linear MDP: this problem consists of states xk ∈X,k= {1,2, . . . ,2500} arranged in a one-dimensional

chain (see Figure 1). There are two possible actions A = {−1,+1} (left/right) and ev-

ery state is accessible from any other state except for the two ends of the chain, which are

absorbing states. A state xk ∈ X is called absorbing if P(xk|xk,a) = 1 for all a ∈ A and

P(xl|xk,a) = 0,∀l 6= k. The state space is of size |X| = 2500 and the joint action state space

is of size |Z|= 5000. Note that naive storing of the model requires O(107) memory.

The transition probability from an interior state xk to any other state xl is inversely propor-

tional to the distance in the direction of the selected action. Formally, consider the following

quantity n(xl,a,xk) assigned to all non-absorbing states xk and to every (xl,a) ∈ Z:

3. The source code of all tested algorithms is available in http://www.mbfys.ru.nl/˜mazar/Research_Top.html.

3219

GHESHLAGHI AZAR, GÓMEZ AND KAPPEN

x1 x2500xk xk+1xk−1

a = −1

a = +1

Figure 1: Linear MDP: Illustration of the linear MDP problem. Nodes indicate states. States x1 and

x2500 are the two absorbing states and state xk is an example of interior state. Arrows indi-

cate possible transitions of these three nodes only. From xk any other node is reachable

with transition probability (arrow thickness) proportional to the inverse of the distance to

xk (see the text for details).

n(xl,a,xk) =





1

|l − k| for (l − k)a > 0

0 otherwise

.

We can write the transition probabilities as

P(xl|xk,a) =
n(xl ,a,xk)

∑
xm∈X

n(xm,a,xk)
.

Transitions to an absorbing state have associated reward 1 and transitions to any interior state

has associated reward −1.

The optimal policy corresponding to this problem is to reach the closest absorbing state as

soon as possible.

Combination lock: the combination lock problem considered here is a stochastic variant of the reset

state space models introduced in Koenig and Simmons (1993), where more than one reset

state is possible (see Figure 2).

In our case we consider, as before, a set of states xk ∈X,k ∈{1,2, . . . ,2500} arranged in a one-

dimensional chain and two possible actions A = {−1,+1}. In this problem, however, there

is only one absorbing state (corresponding to the state lock-opened) with associated reward

of 1. This state is reached if the all-ones sequence {+1,+1, . . . ,+1} is entered correctly.

Otherwise, if at some state xk, k < 2500, action −1 is taken, the lock automatically resets to

some previous state xl , l < k randomly (in the original problem, the reset state is always the

initial state x1).

For every intermediate state, the rewards of actions −1 and +1 are set to 0 and −0.01, re-

spectively. The transition probability upon taking the wrong action −1 from state xk to state

xl is P(xl|xk,−1), as before, inversely proportional to the distance of the states. That is

3220

DYNAMIC POLICY PROGRAMMING

x1 x2500xk xk+1xk−1

a = −1

a = +1

Figure 2: Combination lock: illustration of the combination lock MDP problem. Nodes indicate

states. State x2500 is the goal (absorbing) state and state xk is an example of interior state.

Arrows indicate possible transitions of these two nodes only. From xk any previous state

is reachable with transition probability (arrow thickness) proportional to the inverse of

the distance to xk. Among the future states only xk+1 is reachable (arrow dashed).

n(xk,xl) =





1

k− l
for l < k

0 otherwise
, P(xl|xk,−1) =

n(xk,xl)

∑
xm∈X

n(xk,xm)
.

Note that this problem is more difficult than the linear MDP since the goal state is only

reachable from one state, x2499.

Grid world: this MDP consists of a grid of 50× 50 states. A set of four actions {RIGHT, UP,

DOWN, LEFT} is assigned to every state x ∈ X. Although the state space of the grid world

is of the same size as the previous two problems, |X| = 2500, the joint action state space is

larger, |Z|= 104.

The location of each state x of the grid is determined by the coordinates cx = (hx,vx), where hx

and vx are some integers between 1 and 50. There are 196 absorbing wall states surrounding

the grid and another one at the center of grid, for which a reward −1 is assigned. The reward

for the walls is

r(x,a) =− 1

‖cx‖2

, ∀a ∈A.

Also, we assign reward 0 to all of the remaining (non-absorbing) states.

This means that both the top-left absorbing state and the central state have the least possible

reward (−1), and that the remaining absorbing states have reward which increases propor-

tionally to the distance to the state in the bottom-right corner (but are always negative).

The transition probabilities are defined in the following way: taking action a from any non-

absorbing state x results in a one-step transition in the direction of action a with probability

0.6, and a random move to a state y 6= x with probability inversely proportional to their Eu-

clidean distance 1/‖cx − cy‖2
.

This problem is interesting because of the presence of the absorbing walls, which prevent the

agent to escape and because of the high level of noise: from a non-absorbing state, many

states are reachable with significant probability.

3221

GHESHLAGHI AZAR, GÓMEZ AND KAPPEN

The resulting optimal policy is to survive in the grid as long as possible by avoiding both the

absorbing walls and the center of the grid. Note that because of the difference between the

cost of walls, the optimal control prefers the states near the bottom-right corner of the grid,

thus avoiding absorbing states with higher cost.

5.1.1 EXPERIMENTAL SETUP AND RESULTS

For consistency with the theoretical results, we evaluate the performance of all algorithms in terms

of ℓ∞-norm error of the action-value function ‖Q∗−Qπk‖ obtained by policy πk induced at iteration

k. The discount factor γ is fixed to 0.995 and the optimal action-value function Q∗ is computed with

high accuracy through value iteration.

We compare DPP-RL with two other algorithms:

Q-learning (QL): we consider a synchronous variant of Q-learning for which convergence results

have been derived in Even-Dar and Mansour (2003). Since QL is sensitive to the learning step,

we consider QL with polynomial learning step αk = 1/(k+1)ω where ω ∈ {0.51,0.75,1.0}.

It is known that ω needs to be larger than 0.5, otherwise QL may not asymptotically converge

(see Even-Dar and Mansour, 2003, for the proof).

Model-based Q-value iteration (VI): The VI algorithm (Kearns and Singh, 1999) first estimates a

model using all the data samples and then performs value iteration on the learned model.

Therefore, unlike QL and DPP, VI is a model-based algorithm and requires the algorithm to

store the model.

Comparison between VI and both DPP-RL and QL is especially problematic: first, the number

of computations per iteration is different. Whereas DPP-RL and QL require |Z| computations per

iteration, VI requires |Z||X|. Second, VI requires to estimate the model initially (using a given

number of samples) and then iterates until convergence. This latter aspect is also different from

DPP-RL and QL, which use one sample per iteration. Therefore, the number of samples determines

the number of iterations for DPP-RL and QL, but not for VI.

For consistency with the theoretical results, we use as error measure, the distance between the

optimal action-value function and the value function of the policy induced by the algorithms. instead

of the more popular average accumulated reward, which is usually used when the RL algorithm

learns from a stream of samples.

Simulations are performed using the following procedure: at the beginning of each run (i) the

action-value function and the action preferences are randomly initialized in the interval [−Vmax,Vmax],
and (ii) a set of 105 samples is generated from P(·|x,a) for all (x,a) ∈ Z. As mentioned before, this

fixes the maximum number of iterations for DPP-RL and QL to 105, but not for VI. We run VI until

convergence. We repeat this procedure 50 times and compute the average error in the end. Using

significantly fewer samples leads to a dramatic decrease of the quality of the solutions using all

approaches and no qualitative differences in the comparison.

To compare the methods using equivalent logical units independently of the particular imple-

mentation, we rescale their number of iterations by the number of steps required in one iteration.

For the case of VI, the step units are the number of iterations times |Z||X| and for DPP-RL and QL,

the number of iterations times |Z|.
Figure 3 shows the error as a function of the number of steps. First, in agreement with the theo-

retical results, we observe that the DPP-error decays very fast in the beginning and keeps decreasing

3222

DYNAMIC POLICY PROGRAMMING

0 1 2 3 4

x 10
8

10
−2

10
−1

10
0

10
1

10
2

Linear

Steps

E
rr

or

0 1 2 3 4

x 10
8

10
−2

10
−1

10
0

10
1

10
2

Combination lock

Steps
0 2 4 6 8

x 10
8

10
−2

10
−1

10
0

10
1

10
2

Grid world

Steps

QL (ω=0.51)

QL (ω=0.75)

QL (ω=1.00)

VI

DPP−RL

Figure 3: Comparison between DPP-RL, QL and VI in terms of number of steps, defined as the

number of iterations times the number of computations per iteration of the particular

algorithm. Each plot shows the averaged error of the induced policies over 50 different

runs (see the text for details).

at a smaller rate afterwards. We also observe that DPP-RL performs significantly better than QL.

The improvement is about two orders of magnitude in both the linear MDP and the combination

lock problems and more than four times better in the Grid world. QL shows the best performance

for ω = 0.51 and the quality degrades as a function of ω.

Although the performance of VI looks poor for the number of steps shown in Figure 3, we

observe that VI reaches an average error of 0.019 after convergence (≈ 2 ·1010 steps) for the linear

MDP and the combination lock and an error of 0.10 after ≈ 4 · 1010 steps for the grid problem.

This means for a fixed number of samples, the asymptotic solution of VI is better than the one of

DPP-RL, at the cost of much larger number of steps.

To illustrate the performance of the methods using a limited CPU time budget, we also compare

the average and standard deviations of the errors in terms of elapsed CPU time by running the

algorithms until a maximum allowed time is reached. We choose 30 seconds in the case of linear

MDP and combination lock and 60 seconds for the grid world, which has twice as many actions as

the other benchmarks. To minimize the implementation dependent variability, we coded all three

algorithms in C++ and ran them on the same processor. CPU time was acquired using the system

function times() which provides process-specific CPU time. Sampling time was identical for all

methods and not included in the analysis.

Table 1 shows the final average errors (standard deviations between parenthesis) in the CPU

time comparison. As before, we observe that DPP-RL converges very fast, achieving near optimal

performance after a few seconds. The small variance of estimation of DPP-RL suggests that, as

derived in Theorems 9 and 5, DPP-RL manages to average out the simulation noise caused by

sampling and converges to a near optimal solution, which is very robust.

Overall, these results complement the theory presented in previous sections. We can conclude

that for the chosen benchmarks DPP-RL converges significantly faster than VI and QL. However,

3223

GHESHLAGHI AZAR, GÓMEZ AND KAPPEN

Benchmark Linear MDP Combination lock Grid world

Run Time 30 sec. 30 sec. 60 sec.

DPP-RL 0.05 (0.02) 0.20 (0.09) 0.32 (0.03)

VI 16.60 (11.60) 69.33 (15.38) 5.67 (1.73)

QL

ω = 0.51 4.08 (3.21) 18.18 (4.36) 1.46 (0.12)
ω = 0.75 31.41 (12.77) 176.13 (25.68) 17.21 (7.31)
ω = 1.00 138.01 (146.28) 195.74 (5.73) 25.92 (20.13)

Table 1: Comparison between DPP-RL, QL and VI given a fixed computational and sampling bud-

get. Table 1 shows error means and standard deviations (between parenthesis) at the end

of the simulations for three different algorithms (columns) and three different benchmarks

(rows).

for a fixed number of samples, VI obtains a better solution than DPP-RL requiring significantly

more computation.

5.2 SADPP

In this subsection, we illustrate the performance of the SADPP algorithm in the presence of func-

tion approximation and limited sampling budget per iteration. The purpose of this subsection is to

analyze numerically the sample complexity, that is, the number of samples required to achieve a

near optimal performance with low variance.

We compare SADPP with ℓ2-regularized versions of the following two algorithms:

Regularized fitted Q-iteration (RFQI) (Farahmand et al., 2008):

RFQI performs value iteration to approximate the optimal action value function. See also

Antos et al. (2008) and Ernst et al. (2005).

Regularized Least Squares Policy Iteration (REG-LSPI) (Farahmand et al., 2009):

It can be regarded as a Monte-Carlo sampling implementation of approximate policy iteration

(API) with action-state representation (see also Lagoudakis and Parr, 2003).

The benchmark we consider is a variant of the optimal replacement problem presented in Munos

and Szepesvári (2008).

5.2.1 OPTIMAL REPLACEMENT PROBLEM

This problem is an infinite-horizon, discounted MDP. The state measures the accumulated use of

a certain product and is represented as a continuous, one-dimensional variable. At each time-step

t, either the product is kept a(t) = 0 or replaced a(t) = 1. Whenever the product is replaced by a

new one, the state variable is reset to zero x(t) = 0, at an additional cost C. The new state is chosen

according to an exponential distribution, with possible values starting from zero or from the current

state value, depending on the latest action:

p(y|x,a = 0) =

{
βeβ(y−x) if y ≥ x

0 if y < 0
p(y|x,a = 1) =

{
βeβy if y ≥ 0

0 if y < 0
.

3224

DYNAMIC POLICY PROGRAMMING

The reward function is a monotonically decreasing function of the state x if the product is kept

r(x,0) =−c(x) and constant if the product is replaced r(x,1) =−C− c(0), where c(x) = 4x.

The optimal action is to keep as long as the accumulated use is below a threshold or to replace

otherwise:

a∗(x) =

{
0 if x ∈ [0, x̄]

1 if x > x̄
. (11)

Following Munos and Szepesvári (2008), x̄ can be obtained exactly via the Bellman equation

and is the unique solution to

C =
∫ x̄

0

c′(y)
1− γ

(
1− γe−β(1−γ)y

)
dy.

5.2.2 EXPERIMENTAL SETUP AND RESULTS

For all algorithms we map the state-action space using twenty radial basis functions (ten for the

continuous one-dimensional state variable x, spanning the state space X , and two for the two

possible actions). Other parameter values where chosen to be the same as in Munos and Szepesvári

(2008), that is, γ = 0.6,β = 0.5,C = 30, which results in x̄ ≃ 4.8665. We also fix an upper bound for

the states, xmax = 10 and modify the problem definition such that if the next state y happens to be

outside of the domain [0,xmax] then the product is replaced immediately, and a new state is drawn

as if action a = 1 were chosen in the previous time step.

We measure the performance loss of the algorithms in terms of the difference between the

optimal action a∗ and the action selected by the algorithms. We use this performance measure

since it is easy to compute as we know the analytical solution of the optimal control in the optimal

replacement problem (see Equation 11). We discretize the state space in K = 100 and compute the

error as follows:

Error =
1

K

K

∑
k=1

|a∗(xk)− â(xk)|, (12)

where â is the action selected by the algorithm. Note that, unlike RFQI and REG-LSPI, SADPP

induces a stochastic policy, that is, a distribution over actions. We select â for SADPP by choosing

the most probable action from the induced soft-max policy, and then use this to compute Equation

12. RFQI and REG-LSPI select the action with highest action-value function.

Simulations are performed using the same following procedure for all three algorithms: at the

beginning of each run, the vector θ̃0 is initialized in the interval [−1,1]. We then let the algorithm

run for 103 iterations for 200 different runs. A new independent set of samples is generated at each

iteration.

For each of the algorithms and each N, we optimize their parameters for the best asymptotic

performance. Note that SADPP, in addition to the regularizer parameter α, has an extra degree of

freedom η. Empirically, we observe that the optimal performance of SADPP is attained for finite η.

This differs from DPP-RL, for which the convergence rate is optimized for η = ∞. This difference

may be related to the observation that replacing the non-differentiable max-operator (η =+∞) with

a differentiable soft-max operator (η<+∞) can improve the convergence behavior of the algorithm,

as shown in Perkins and Precup (2003); de Farias and Van Roy (2000).

3225

GHESHLAGHI AZAR, GÓMEZ AND KAPPEN

10 20 30 40 50

10
−2

10
−1

10
0

N = 500 samples

Iterations

10 20 30 40 50

10
−2

10
−1

10
0

N = 50 samples

E
rr

o
r

Iterations
10 20 30 40 50

10
−2

10
−1

10
0

N = 150 samples

Iterations

RFQI

REG-LSPI

SADPP

Figure 4: Numerical results for the optimal replacement problem. Each plot shows the error of

RFQI, REG-LSPI and SADPP for certain number of samples N. Error is defined as in

Equation 12 and averaged over 200 repetitions (see the text for details).

Num. samples 50 150 500

SADPP 0.07 (0.06) 0.02 (0.01) 0.01 (0.01)

RFQI 0.24 (0.19) 0.17 (0.12) 0.08 (0.07)

REG-LSPI 0.26 (0.16) 0.13 (0.10) 0.07 (0.06)

Table 2: Comparison between SADPP, RFQI and REG-LSPI for the optimal replacement problem.

Table shows error means and standard deviations (between parenthesis) at the end of the

simulations (after 103 iterations) for the three different algorithms (columns) and three

different number of samples (rows).

We are interested in the behavior of the error as a function of the iteration number for different

number of samples N per iteration. Figure 4 and Table 2 show the performance results of the three

different algorithms for N ∈ {50,150,500} for the first 50 iterations and the total 103 iterations

respectively. We observe that after an initial transient, all algorithms reach a nearly optimal solution

after 50 iterations.

First, we note that SADPP asymptotically outperforms RFQI and REG-LSPI on average in

all cases. Interestingly, there is no significant difference between the performance of RFQI and

REG-LSPI. The performance of all algorithms improve for larger N. We emphasize that SADPP

using only 50 samples shows comparable results to both RFQI and REG-LSPI using ten times more

samples.

A comparison of the variances after the transient (see Table 2) shows that the sample complexity

of SADPP is significantly smaller than RFQI and REG-LSPI. The variance of SADPP using again

only 50 samples is comparable to the one provided by the other two methods using N = 500 samples.

3226

DYNAMIC POLICY PROGRAMMING

Globally, we can conclude that SADPP has positive effects in reducing the effect of simulation

noise, as postulated in Section 4. We can also conclude that, for our choice of settings, SADPP

outperforms RFQI and REG-LSPI.

6. Related Work

In this section, we review some previous RL methods and compare them with DPP.

Policy-gradient actor-critic methods: As we explained earlier in Section 1, actor-critic method is a

popular incremental RL algorithm (Sutton and Barto, 1998; Barto et al., 1983, Chapter 6.6),

which makes use of a separate structure to store the value function (critic) and the control pol-

icy (actor). An important extension of AC, the policy-gradient actor critic (PGAC), extends

the idea of AC to problems of practical scale (Sutton et al., 2000; Peters and Schaal, 2008). In

PGAC, the actor updates the parameterized policy in the direction of the (natural) gradient of

performance, provided by the critic. The gradient update ensures that PGAC asymptotically

converges to a local maximum, given that an unbiased estimate of the gradient is provided

by the critic (Maei et al., 2010; Bhatnagar et al., 2009; Konda and Tsitsiklis, 2003; Kakade,

2002). The parameter η in DPP is reminiscent of the learning step β in PGAC methods, since

it influences the rate of change of the policy and in this sense may play a similar role as the

learning step β in PGAC (Konda and Tsitsiklis, 2003; Peters and Schaal, 2008). However, it

is known that in the presence of sampling error, asymptotic convergence to a local maximum

is only attained when β asymptotically decays to zero (Konda and Tsitsiklis, 2003; Baxter and

Bartlett, 2001), whereas the parameter η in DPP, and DPP-RL, can be an arbitrary constant.

Q-learning: DPP is not the only method which relies on an incremental update rule to control the

sampling error. There are other incremental RL methods which aim to address the same

problem (see, e.g., Maei et al., 2010; Singh et al., 2000; Watkins and Dayan, 1992).

One of the most well-known algorithms of this kind is Q-learning (QL) (Watkins and Dayan,

1992), which controls the sampling error by introducing a decaying learning step to the update

rule of value iteration. QL has been shown to converge to the optimal value function in tabular

case (Bertsekas and Tsitsiklis, 1996; Jaakkola et al., 1994). Also, there are some studies in

the literature concerning the asymptotic convergence of Q-learning in the presence of function

approximation (Melo et al., 2008; Szepesvári and Smart, 2004). However, the convergence

rate of QL is very sensitive to the choice of learning step, and a bad choice of the learning

step may lead to a slow rate of convergence (Even-Dar and Mansour, 2003). For instance,

the convergence rate of QL with a linearly decaying learning step is of order (1/k)1−γ, which

makes the Q-learning algorithm extremely slow for γ ≈ 1 (Szepesvári, 1998). This is in

contrast to our previously mentioned result on the convergence of DPP-RL in Theorem 10

which guarantees that, regardless of the value of η and γ, DPP-RL always converges to the

optimal policy with a rate of order 1/
√

k. The numerical results of Section 5.1 confirm the

superiority of DPP-RL to QL in terms of the rate of convergence.

One can also compare the finite-time behavior of DPP-RL and QL in terms of the PAC sample

complexity of these methods. We have proven a sample-complexity PAC bound of order

O(1/(1− γ)6) for DPP-RL in Section 4.2, whereas the best existing PAC bound for standard

QL, to find an ε-optimal policy, is of order O(1/(1− γ)7) (Even-Dar and Mansour, 2003;

3227

GHESHLAGHI AZAR, GÓMEZ AND KAPPEN

Azar et al., 2012, Section 3.3.1).4 This theoretical result suggests that DPP-RL is superior to

QL in terms of sample complexity of the estimating the optimal policy, especially, when γ is

close to 1.

There is an on-policy version of Q-learning algorithm called SARSA (see, e.g., Singh et al.,

2000) which also guarantees the asymptotic convergence to the optimal value function. How-

ever little is known about the rate of convergence and the finite-time behavior of this algo-

rithm.

Very recently, Azar et al. (2012) propose a new variant of Q-learning algorithm, called speedy

Q-learning (SQL), which makes use of a different update rule than standard Q-learning of

Watkins and Dayan (1992). Like DPP-RL, SQL converges to the optimal policy with the rate

of convergence of order 1/
√

k. However, DPP-RL is superior to SQL in terms of memory

space requirement, since SQL needs twice as much space as DPP-RL does.

Relative-entropy methods: The DPP algorithm is originally motivated (see Appendix A) by the

work of Kappen (2005) and Todorov (2007), who formulate a stochastic optimal control

problem to find a conditional probability distribution p(y|x) given an uncontrolled dynam-

ics p̄(y|x). The control cost is the relative entropy between p(y|x) and p̄(y|x)exp(r(x)). The

difference is that in their work a restricted class of control problems is considered for which

the optimal solution p can be computed directly in terms of p̄ without requiring Bellman-like

iterations. Instead, the present approach is more general, but does require Bellman-like iter-

ations. Likewise, our formalism is superficially similar to PoWER (Kober and Peters, 2009)

and SAEM (Vlassis and Toussaint, 2009), which rely on EM algorithm to maximize a lower

bound for the expected return in an iterative fashion. This lower-bound also can be writ-

ten as a KL-divergence between two distributions. Also, the natural policy gradient method

can be seen as a relative entropy method, in which the second-order Taylor expansion of the

relative-entropy between the distribution of the states is considered as the metric for policy

improvement (Bagnell and Schneider, 2003). Another relevant study is relative entropy policy

search (REPS) (Daniel et al., 2012; Peters et al., 2010) which relies on the idea of minimizing

the relative entropy to control the size of policy update. However there are some differences

between REPS and DPP. (i) In REPS the inverse temperature η needs to be optimized while

DPP converges to the optimal solution for any inverse temperature η, and (ii) unlike DPP, no

convergence analysis is presented REPS.

7. Discussion and Future Work

We have presented a new approach, dynamic policy programming (DPP), to compute the optimal

policy in infinite-horizon discounted-reward MDPs. We have theoretically proven the convergence

of DPP to the optimal policy for the tabular case. We have also provided performance-loss bounds

for DPP in the presence of approximation. The bounds have been expressed in terms of supremum

4. Note that Even-Dar and Mansour (2003) make use of a slightly different performance measure than the one we

use in this paper: The optimized result of Even-Dar and Mansour (2003), which is of order O(1/(1− γ)5), is a

bound on the sample complexity of estimating Q∗ with ε precision, whereas in this paper we consider the sample

complexity of finding an ε-optimal policy. However, the latter can be easily derived for QL from the inequality

‖Q∗−Qπk‖ ≤ 1/(1− γ)‖Q∗−Qk‖, where πk is the greedy policy w.r.t. Qk and Qk is the estimate of action-value

function at iteration k. This inequality combined with the result of Even-Dar and Mansour (2003) implies a sample

complexity bound of order O(1/(1− γ)7) for QL.

3228

DYNAMIC POLICY PROGRAMMING

norm of average accumulated error as opposed to the standard bounds which are expressed in terms

of supremum norm of the errors. We have then introduced a new incremental RL algorithm, called

DPP-RL, which relies on a sample estimate instance of the DPP update rule to estimate the optimal

policy. We have proven that DPP-RL converges to the optimal policy with the rate of 1/
√

k.

We have also compared numerically the finite-time behavior of DPP-RL with similar RL meth-

ods. Experimental results have shown a better performance of DPP-RL when compared to QL and

VI in terms of convergence rate. In these problems, for equal number of samples, VI converged to a

better solution than DPP-RL, at the cost of many more steps. When compared to VI, DPP-RL does

not need to store the model dynamics, resulting in significantly less memory requirements for large-

scale MDPs. This statement is general and holds when comparing DPP-RL to any model-based

method.

We have proposed SADPP as a variant of DPP which makes use of linear function approxi-

mation and regularization. SADPP has been shown to perform better than two other regularized

methods, RFQI and REG-LSPI. We think that this is mainly due to the reduction of the effect of

simulation noise (Section 4). At the same time, we admit that the existence of an additional param-

eter η favors SADPP since SADPP performs best for a finite-value of η. Therefore, it is interesting

to consider soft-max variants of RFQI and LSPI which also make use of the inverse temperature η.

In these cases, η should be initialized at a finite value and would gradually grow to +∞.

The empirical comparison with those methods that do not make use of generative model as-

sumption is outside of the scope of the current work and is left for future research. These methods

include, for instance, PGAC methods that use sequences of samples to learn the value function

of the current policy (Peters and Schaal, 2008; Konda and Tsitsiklis, 2003; Sutton et al., 2000),

or upper-confidence bounds methods which address the exploration-exploitation dilemma (Jaksch

et al., 2010; Szita and Szepesvári, 2010; Bartlett and Tewari, 2009; Strehl et al., 2009).

Another interesting line of future research is to devise finite-sample PAC bounds for SADPP

in the spirit of previous theoretical results available for fitted value iteration and fitted Q-iteration

(Munos and Szepesvári, 2008; Antos et al., 2008; Munos, 2005). This would require extending the

error propagation result of Theorem 5 to an ℓ2-norm analysis and combining it with the standard

regression bounds.

Finally, an important extension of our results would be to apply DPP to large-scale action prob-

lems. This would require an efficient way to approximate MηΨk(x) in the update rule of Equation 5,

since computing the exact summations becomes expensive. One idea is to sample estimate MηΨk(x)
using Monte-Carlo simulation (MacKay, 2003, Chapter 29), since MηΨk(x) is the expected value

of Ψk(x,a) under the soft-max policy πk.

Acknowledgments

We acknowledge A. Farahmand, R. Munos, N. Vlassis, M. Ghavamzadeh, J. Peters, W. Wiegerinck

and N. de Freitas for the useful comments and discussions. We also thank the action editor Ronald

Parr and the anonymous reviewers.

3229

GHESHLAGHI AZAR, GÓMEZ AND KAPPEN

Appendix A. From Bellman Equation to DPP Recursion

In this appendix, we give an informal derivation of the DPP equation. This is only for helping the

reader to understand the origin of the DPP equation and it is in no way meant as a justification of

DPP. The theoretical analysis and the proof of convergence of DPP is provided in Section 3.2.

Let π̄ be a stochastic policy, that is, π̄(a|x) > 0 for all (x,a) ∈ Z. Consider the relative entropy

between the policy π and some baseline policy π̄:

gπ
π̄(x), KL(π(·|x)‖π̄(·|x)) = ∑

a∈A
π(a|x) log

[
π(a|x)
π̄(a|x)

]
, ∀x ∈ X.

Note that gπ
π̄(x) is a positive function of x which is also bounded from above due to the as-

sumption that π̄ is a stochastic policy. We define a new value function V π
π̄ , for all x ∈ X, which

incorporates g as a penalty term for deviating from the base policy π̄ and the reward under the

policy π:

V π
π̄ (x), lim

n→∞
E

[
n

∑
k=0

γk

(
rt+k −

1

η
gπ

π̄(xt+k)

)∣∣∣∣∣xt = x

]
,

where η is a positive constant and rt+k is the reward at time t + k. Also, the expected value is taken

w.r.t. the state transition probability distribution P and the policy π. The optimal value function

V ∗
π̄ (x) , supπV π

π̄ (x) then exists and is bounded by some finite constant c > 0. Also, the value

function V ∗
π̄ (x) satisfies the following Bellman equation for all x ∈ X:

V ∗
π̄ (x) = sup

π(·|x)
∑

a∈A
π(a|x)

[
r(x,a)− 1

η
log

π(a|x)
π̄(a|x) + γ(PV ∗

π̄)(x,a)

]
. (13)

Equation 13 is a modified version of Equation 2 where, in addition to maximizing the expected

reward, the optimal policy π̄∗ also minimizes the distance with the baseline policy π̄. The max-

imization in Equation 13 can be performed in closed form. Following Todorov (2007), we state

Proposition 1 (closely related results to Proposition 1 can be found in the recent works of Still and

Precup, 2012; Peters et al., 2010):

Proposition 1 Let η be a positive constant, then for all x ∈X the optimal value function V ∗
π̄ (x) and

for all (x,a) ∈ Z the optimal policy π̄∗(a|x), respectively, satisfy:

V ∗
π̄ (x) =

1

η
log ∑

a∈A
π̄(a|x)exp

[
η(r(x,a)+ γ(PV ∗

π̄)(x,a))
]
,

π̄∗(a|x) = π̄(a|x)exp
[
η(r(x,a)+ γ(PV ∗

π̄)(x,a))
]

exp(ηV ∗
π̄ (x))

. (14)

Proof We must optimize π subject to the constraints ∑a∈A π(a|x) = 1 and 0< π(a|x)< 1. We define

the Lagrangian function L(x;λx) : X→ ℜ by adding the term λx

[
∑a∈A π(a|x)− 1

]
to the RHS of

Equation 13. Because π̄ is strictly positive, minimizing L ensures that the solution is positive and the

constraints 0 < π(a|x)≤ 1 are automatically satisfied. Note that the KL-divergence is well-defined

when both π̄ and π are positive.

3230

DYNAMIC POLICY PROGRAMMING

L(x;λx) = ∑
a∈A

π(a|x) [r(x,a)+ γ(PV ∗
π̄)(x,a)]−

1

η
KL(π(·|x)‖π̄(·|x))−λx

[

∑
a∈A

π(a|x)−1

]
.

The maximization in Equation 13 can be expressed as maximizing the Lagrangian function

L(x,λx). The necessary condition for the extremum with respect to π(·|x) is:

0 =
∂L(x,λx)

∂π(a|x) = r(x,a)+ γ(PV ∗
π̄)(x,a)−

1

η
− 1

η
log

(
π(a|x)
π̄(a|x)

)
−λx,

which leads to

π̄∗(a|x) = π̄(a|x)exp(−ηλx −1)exp [η(r(x,a)+ γ(PV ∗
π̄)(x,a))] , ∀x ∈ X. (15)

The Lagrange multipliers can then be solved from the constraints:

1 = ∑
a∈A

π̄∗(a|x) = exp(−ηλx −1) ∑
a∈A

π̄(a|x)exp [η(r(x,a)+ γ(PV ∗
π̄)(x,a))] ,

λx =
1

η
log ∑

a∈A
π̄(a|x)exp [η(r(x,a)+ γ(PV ∗

π̄)(x,a))]−
1

η
. (16)

By plugging Equation 16 into Equation 15 we deduce

π̄∗(a|x) = π̄(a|x)exp [η(r(x,a)+ γ(PV ∗
π̄)(x,a))]

∑
a∈A

π̄(a|x)exp [η(r(x,a)+ γ(PV ∗
π̄)(x,a))]

, ∀(x,a) ∈ Z. (17)

The results then follows by substituting Equation 17 in Equation 13.

The optimal policy π̄∗ is a function of the base policy, the optimal value function V ∗
π̄ and the state

transition probability P. One can first obtain the optimal value function V ∗
π̄ through the following

fixed-point iteration:

V k+1
π̄ (x) =

1

η
log ∑

a∈A
π̄(a|x)exp

[
η(r(x,a)+ γ(PV k

π̄)(x,a))
]
, (18)

and then compute π̄∗ using Equation 14. π̄∗ maximizes the value function V π
π̄ . However, we are not,

in principle, interested in quantifying π̄∗, but in solving the original MDP problem and computing

π∗. The idea to further improve the policy towards π∗ is to replace the base-line policy with the just

newly computed policy of Equation 14. The new policy can be regarded as a new base-line policy,

and the process can be repeated again. This leads to a double-loop algorithm to find the optimal

policy π∗, where the outer-loop and the inner-loop would consist of a policy update, Equation 14,

and a value function update, Equation 18, respectively.

We then follow the following steps to derive the final DPP algorithm: (i) We introduce some

extra smoothness to the policy update rule by replacing the double-loop algorithm by direct opti-

mization of both value function and policy simultaneously using the following fixed point iterations:

3231

GHESHLAGHI AZAR, GÓMEZ AND KAPPEN

V k+1
π̄ (x) =

1

η
log ∑

a∈A
π̄k(a|x)exp

[
η(r(x,a)+ γ(PV k

π̄)(x,a))
]
, (19)

π̄k+1(a|x) =
π̄k(a|x)exp

[
η(r(x,a)+ γ(PV k

π̄)(x,a))
]

exp
(
ηV k+1

π̄ (x)
) . (20)

Further, (ii) we define the action preference function Ψk (Sutton and Barto, 1998, Chapter 6.6),

for all (x,a) ∈ Z and k ≥ 0, as follows:

Ψk+1(x,a),
1

η
log π̄k(a|x)+ r(x,a)+ γ(PV k

π̄)(x,a). (21)

By comparing Equation 21 with Equation 20 and Equation 19, we deduce

π̄k(a|x) =
exp(ηΨk(x,a))

∑
a′∈A

exp(ηΨk(x,a′))
, (22)

V k
π̄ (x) =

1

η
log ∑

a∈A
exp(ηΨk(x,a))). (23)

Finally, (iii) by plugging Equation 22 and Equation 23 into Equation 21 we derive

Ψk+1(x,a) = Ψk(x,a)−LηΨk(x)+ r(x,a)+ γ(PLηΨk)(x,a), (24)

with Lη operator being defined by LηΨ(x), 1
/

η log∑a∈A exp(ηΨ(x,a)). Equation 24 is one form

of the DPP equations. There is an analytically more tractable version of the DPP equation, where we

replace Lη by the Boltzmann soft-max Mη defined by MηΨ(x) ,

∑a∈A
[
exp(ηΨ(x,a))Ψ(x,a)

/
∑a′∈A exp(ηΨ(x,a′))

]
.5 In principle, we can provide formal analy-

sis for both versions. However, the proof is somewhat simpler for the Mη case, which we make use

of it in the rest of this paper. By replacing Lη with Mη we deduce the DPP recursion:

Ψk+1(x,a) = OΨk(x,a), Ψk(x,a)+ r(x,a)+ γPMηΨk(x,a)−MηΨk(x)

= Ψk(x,a)+Tπk Ψk(x,a)−πkΨk(x)
, ∀(x,a) ∈ Z,

where O is an operator defined on the action preferences Ψk and πk is the soft-max policy associated

with Ψk:

πk(a|x),
exp(ηΨk(x,a))

∑
a′∈A

exp(ηΨk(x,a′))
.

5. Replacing Lη with Mη is motivated by the following relation between these two operators:

|LηΨ(x)−MηΨ(x)|= 1/ηHπ(x)≤
log(|A|)

η
, ∀x ∈ X, (25)

with Hπ(x) is the entropy of the policy distribution π obtained by plugging Ψ into Equation A. In words, MηΨ(x) is

close to LηΨ(x) up to the constant log(|A|)
/

η. Also, both LηΨ(x) and MηΨ(x) converge to MΨ(x) when η goes

to +∞. For the proof of Equation 25 and further readings see MacKay (2003, Chapter 31).

3232

DYNAMIC POLICY PROGRAMMING

Appendix B. The Proof of Convergence of DPP—Theorem 2 and Theorem 4

In this section, we provide a formal analysis of the convergence behavior of DPP.

B.1 Proof of Theorem 2

In this subsection we establish a rate of convergence for the value function of the policy induced

by DPP. The main result is in the form of following finite-iteration performance-loss bound, for all

k ≥ 0:

‖Q∗−Qπk‖ ≤
2γ
(

4Vmax +
log(|A|)

η

)

(1− γ)2(k+1)
. (26)

Here, Qπk is the action-values under the policy πk and πk is the policy induced by DPP at step k.

To derive Equation 26 one needs to relate Qπk to the optimal Q∗. Unfortunately, finding a direct

relation between Qπk and Q∗ is not an easy task. Instead, we relate Qπk to Q∗ via an auxiliary action-

value function Qk, which we define below. In the remainder of this Section we take the following

steps: (i) we express Ψk in terms of Qk in Lemma 13. (ii) we obtain an upper bound on the normed

error ‖Q∗−Qk‖ in Lemma 14. Finally, (iii) we use these two results to derive a bound on the

normed error ‖Q∗−Qπk‖. For the sake of readability, we skip the formal proofs of the lemmas in

this section since we prove a more general case in Section C.

Now let us define the auxiliary action-value function Qk. The sequence of auxiliary action-value

functions {Q0,Q1,Q2, . . .} is obtained by iterating the initial Q0 = Ψ0 from the following recursion:

Qk =
k−1

k
Tπk−1Qk−1 +

1

k
Tπk−1Q0, (27)

where πk is the policy induced by the kth iterate of DPP.

Lemma 13 relates Ψk with Qk:6

Lemma 13 Let k be a positive integer. Then, we have

Ψk = kQk +Q0 −πk−1((k−1)Qk−1 +Q0). (28)

The following lemma relates Qk and Q∗:

Lemma 14 Let Assumption 1 hold and k be a positive integer. Also assume that ‖Ψ0‖ ≤Vmax. Then

the following inequality holds:

‖Q∗−Qk‖ ≤
γ
(

4Vmax +
log(|A|)

η

)

(1− γ)k
.

Lemma 14 provides an upper bound on the normed-error
∥∥Qk −Q∗∥∥. We make use of Lemma 14

to prove the main result of this Subsection:

6. We make use of this lemma in the proof of convergence of DPP in Section B.2.

3233

GHESHLAGHI AZAR, GÓMEZ AND KAPPEN

‖Q∗−Qπk‖ = ‖Q∗−Qk+1 +Qk+1 −Tπk Q∗+Tπk Q∗−Qπk‖
≤ ‖Q∗−Qk+1‖+‖Qk+1 −Tπk Q∗‖+‖Tπk Q∗−Tπk Qπk‖
≤ ‖Q∗−Qk+1‖+‖Qk+1 −Tπk Q∗‖+ γ‖Q∗−Qπk‖ .

By collecting terms we obtain

‖Q∗−Qπk‖ ≤ 1

1− γ
(‖Q∗−Qk+1‖+‖Qk+1 −Tπk Q∗‖)

=
1

1− γ

(
‖Q∗−Qk+1‖+

∥∥∥∥
k

k+1
Tπk Qk +

1

k+1
Tπk Q0 −Tπk Q∗

∥∥∥∥
)

≤ 1

1− γ

(
‖Q∗−Qk+1‖+

k

k+1
‖Tπk Q∗−Tπk Qk‖+

1

k+1
‖Tπk Q∗−Tπk Q0‖

)

≤ 1

1− γ

(
‖Q∗−Qk+1‖+

γk

k+1
‖Q∗−Qk‖+

γ

k+1
‖Q∗−Q0‖

)

≤ 1

1− γ

(
‖Q∗−Qk+1‖+

γk

k+1
‖Q∗−Qk‖+

2γVmax

k+1

)

≤ 1

1− γ

(
‖Q∗−Qk+1‖+

γk

k+1
‖Q∗−Qk‖+

γ(4Vmax + log(|A|)/η)

k+1

)
.

This combined with Lemma 14 completes the proof.

B.2 Proof of Corollary 4

First, we note that Qk converges to Q∗ (Lemma 14) and πk converges to π∗ by Corollary 3. Therefore,

there exists a limit for Ψk since Ψk is expressed in terms of Qk, Q0 and πk−1 (Lemma 13).

Now, we compute the limit of Ψk. Qk converges to Q∗ with a linear rate from Lemma 14. Also,

we have V ∗ = π∗Q∗ by definition of V ∗ and Q∗. Then, by taking the limit of Equation 28 we deduce

lim
k→∞

Ψk(x,a) = lim
k→∞

[kQ∗(x,a)+Q0(x,a)− (k−1)V ∗(x)− (π∗Q0)(x)]

= lim
k→∞

k(Q∗(x,a)−V ∗(x))

+Q0(x,a)− (π∗Q0)(x)+V ∗(x).

We then deduce, for all (x,a) ∈ Z,

lim
k→∞

Ψk(x,a) =

{
Q0(x,a)− (π∗Q0)(x)+V ∗(x) a = a∗(x)

−∞ a 6= a∗(x)
,

where a∗(x) = maxa∈A(Q∗(x,a)). This combined with the assumption that the optimal policy is

unique completes the proof.

Appendix C. Proof of Theorem 5

This section provides a formal theoretical analysis of the performance of dynamic policy program-

ming in the presence of approximation.

3234

DYNAMIC POLICY PROGRAMMING

Consider a sequence of the action preferences {Ψ0,Ψ1,Ψ2, . . .} as the iterates of Equation 7.

Our goal is to establish an ℓ∞-norm performance loss bound of the policy induced by approximate

DPP. The main result is that at iteration k ≥ 0 of approximate DPP, we have

‖Q∗−Qπk‖ ≤ 1

(1− γ)(k+1)




2γ
(

4Vmax +
log(|A|)

η

)

(1− γ)
+

k+1

∑
j=1

γk− j+1‖E j−1‖


 , (29)

where Ek = ∑k
j=0 εk is the cumulative approximation error up to step k. Here, Qπk denotes the

action-value function of the policy πk and πk is the soft-max policy associated with Ψk.

As in the proof of Theorem 2, we relate Q∗ with Qπk via an auxiliary action-value function Qk.

In the rest of this section, we first express Ψk in terms of Qk in Lemma 15. Then, we obtain an

upper bound on the normed error ‖Q∗−Qk‖ in Lemma 19. Finally, we use these two results to

derive Equation 29.

Now, let us define the auxiliary action-value function Qk. The sequence of auxiliary action-

value functions {Q0,Q1,Q2, . . .} is resulted by iterating the initial action-value function Q0 = Ψ0

from the following recursion:

Qk =
k−1

k
Tπk−1Qk−1 +

1

k
(Tπk−1Q0 +Ek−1), (30)

where Equation 30 may be considered as an approximate version of Equation 27. Lemma 15 relates

Ψk with Qk:

Lemma 15 Let k be a positive integer and πk denotes the policy induced by the approximate DPP

at iteration k. Then we have

Ψk = kQk +Q0 −πk−1

(
(k−1)Qk−1 +Q0

)
. (31)

Proof We rely on induction for the proof of this theorem. The result holds for k = 1 since one can

easily show that Equation 31 reduces to Equation 7. We then show that if Equation 31 holds for k

then it also holds for k+1. From Equation 7 we have

Ψk+1 = Ψk +Tπk Ψk −πkΨk + εk

= kQk +Q0 −πk−1((k−1)Qk−1 +Q0)+Tπk(kQk +Q0 −πk−1((k−1)Qk−1 +Q0))

−πk(kQk +Q0 −πk−1((k−1)Qk−1 +Q0))+ εk

= kQk +Q0 +Tπk(kQk +Q0 −πk−1((k−1)Qk−1 +Q0))−πk(kQk +Q0)

+Ek −Ek−1

= kQk +Q0 + r+ γPπk(kQk +Q0 −πk−1((k−1)Qk−1 +Q0))−πk(kQk +Q0)

+Ek −Ek−1,

in which we rely on Equation 3. We then deduce

3235

GHESHLAGHI AZAR, GÓMEZ AND KAPPEN

Ψk+1 = kQk +Q0 + k(r+ γPπk Qk)+ r+ γPπk Q0 − (k−1)(r+ γPπk−1Qk−1)

− (r+ γPπk−1Q0)+πk−1((k−1)Qk−1 +Q0))−πk(kQk +Q0)+Ek −Ek−1

= kQk − (k−1)Tπk−1Qk−1 −Tπk−1Q0 −Ek−1 + kTπk Qk +Tπk Q0 +Ek

+Q0 −πk(kQk +Q0)

= (k+1)Qk+1 +Q0 −πk(kQk +Q0),

where in the last line we make use of Equation 30.

Thus Equation 31 holds for k+1, and is thus true for all k ≥ 1.

Based on Lemma 15, one can express the policy induced by DPP, πk, in terms of Qk and Q0:

Lemma 16 For all (x,a) ∈ Z:

πk(a|x) =
exp(η(kQk(x,a)+Q0(x,a)))

∑b∈A exp(η(kQk(x,b)+Q0(x,b)))
.

Proof

πk(a|x) =
exp(η(kQk(x,a)+Q0(x,a)−πk−1((k−1)Qk−1 +Q0)(x)))

Z(x)

=
exp(η(kQk(x,a)+Q0(x,a)))

Z′(x)
,

where Z(x) and Z′(x) = Z(x)exp(ηπk−1((k−1)Qk−1 +Q0)(x)) are the normalization factors.

In an analogy to Lemma 14 we establish a bound on ‖Q∗−Qk‖ for which we make use of the

following technical results:

Lemma 17 Let η > 0 and Y be a finite set with cardinality L. Also assume that F denotes the space

of real-valued functions on Y. Then the following inequality holds for all f ∈ F:

max
y∈Y

f (y)− ∑
y∈Y

exp(η f (y)) f (y)

∑
y′∈Y

exp(η f (y′))
≤ log(L)

η
.

Proof For any f ∈ F we have

max
y∈Y

f (y)− ∑
y∈Y

exp(η f (y)) f (y)

∑
y′∈Y

exp(η f (y′))
= ∑

y∈Y

exp(−ηg(y))g(y)

∑
y′∈Y

exp(−ηg(y′))
,

with g(y) = maxy∈Y f (y)− f (y). According to MacKay (2003, Chapter 31):

∑
y∈Y

exp(−ηg(y))g(y)

∑
y′∈Y

exp(−ηg(y′))
=− 1

η
log ∑

y∈Y
exp(−ηg(y))+

1

η
Hp,

where Hp is the entropy of probability distribution p defined by

3236

DYNAMIC POLICY PROGRAMMING

p(y) =
exp(−ηg(y))

∑
y′∈Y

exp(−ηg(y′))
.

Define Y
f
max ⊂ Y as the set of all entries of Y which maximizes f ∈ F. The following steps

complete the proof:

∑
y∈Y

exp(−ηg(y))g(y)

∑
y′∈Y

exp(−ηg(y′))
=− 1

η
log ∑

y∈Y
exp(−ηg(y))+

1

η
Hp

≤− 1

η
log


1+ ∑

y/∈Y f
max

exp(−ηg(y)))


+ 1

η
Hp

≤ 1

η
Hp ≤

log(L)

η
,

in which we make use of − 1
η log

[
1+∑y/∈Y f

max
exp(−ηg(y)))

]
≤ 0.

Lemma 18 Let η > 0 and k be a positive integer. Assume ‖Q0‖ ≤Vmax. Then, the following holds:

‖kTQk +TQ0 − kTπk Qk −Tπk Q0‖ ≤ γ

(
2Vmax +

log(|A|)
η

)
.

Proof We have, by definition of operator T,

‖kTQk +TQ0 − kTπk Qk −Tπk Q0‖ ≤ γ‖kPMQk +PMQ0 − kPπk Qk −Pπk Q0‖
= γ‖P(MkQk +MQ0 −πk(kQk +Q0))‖
≤ γ‖MkQk +MQ0 −πk(kQk +Q0)‖
≤ γ‖2MQ0 +M(kQk +Q0)−πk(kQk +Q0)‖
≤ γ(2‖Q0‖+‖M(kQk +Q0)−Mη(kQk +Q0)‖) ,

(32)

where in the last line we make use of Lemma 16. The result then follows by comparing Equation

32 with Lemma 17.

Now, we prove a bound on ‖Q∗−Qk‖:

Lemma 19 Let Assumption 1 hold. Define Qk by Equation 30. Let k be a non-negative integer,

also, assume that ‖Ψ0‖ ≤Vmax, then the following inequality holds:

‖Q∗−Qk‖ ≤
γ
(

4Vmax +
log(|A|)

η

)

(1− γ)k
+

1

k

k

∑
j=1

γk− j‖E j−1‖. (33)

3237

GHESHLAGHI AZAR, GÓMEZ AND KAPPEN

Proof We rely on induction for the proof of this lemma. Obviously the result holds for k = 0. Then

we need to show that if Equation 33 holds for k it also holds for k+1:

‖Q∗−Qk+1‖=
∥∥∥∥TQ∗−

(
k

k+1
Tπk Qk +

1

k+1
(Tπk Q0 +Ek)

)∥∥∥∥

=

∥∥∥∥
1

k+1
(TQ∗−Tπk Q0)+

k

k+1
(TQ∗−Tπk Qk)−

1

k+1
Ek

∥∥∥∥

=
1

k+1
‖TQ∗−TQ0 +TQ0 −Tπk Q0 + k(TQ∗−TQk +TQk −Tπk Qk)‖

+
1

k+1
‖Ek‖

≤ 1

k+1
[‖TQ∗−TQ0‖+‖kTQk +TQ0 − kTπk Qk −Tπk Q0‖]

+
k

k+1
‖TQ∗−TQk‖+

1

k+1
‖Ek‖

≤ 1

k+1
[γ‖Q∗−Q0‖+‖kTQk +TQ0 − kTπk Qk −Tπk Q0‖]

+
γk

k+1
‖Q∗−Qk‖+

1

k+1
‖Ek‖ .

(34)

Now based on Lemma 18 and by plugging Equation 33 into Equation 34 we have

‖Q∗−Qk+1‖ ≤
γ

k+1

[
4Vmax +

log(|A|)
η

]

+
γk

k+1




γ
(

4Vmax +
log(|A|)

η

)

k(1− γ)
+

1

k

k

∑
j=1

γk− j‖E j−1‖


+ 1

k+1
‖Ek‖

=
γ
(

4Vmax +
log(|A|)

η

)

(1− γ)(k+1)
+

1

k+1

k+1

∑
j=1

γk− j+1‖E j−1‖.

The result then follows, for all k ≥ 0, by induction.

Lemma 19 provides an upper-bound on the normed-error
∥∥Q∗−Qk

∥∥. We make use of this result

to derive a bound on the performance loss ‖Q∗−Qπk‖:

‖Q∗−Qπk‖ = ‖Q∗−Qk+1 +Qk+1 −Tπk Q∗+Tπk Q∗−Qπk‖
≤ ‖Q∗−Qk+1‖+‖Qk+1 −Tπk Q∗‖+‖Tπk Q∗−Tπk Qπk‖
≤ ‖Q∗−Qk+1‖+‖Qk+1 −Tπk Q∗‖+ γ‖Q∗−Qπk‖ .

3238

DYNAMIC POLICY PROGRAMMING

By collecting terms we obtain

‖Q∗−Qπk‖ ≤ 1

1− γ
(‖Q∗−Qk+1‖+‖Qk+1 −Tπk Q∗‖)

=
1

1− γ

[
‖Q∗−Qk+1‖+

∥∥∥∥
k

k+1
Tπk Qk +

1

k+1
(Tπk Q0 +Ek)−Tπk Q∗

∥∥∥∥
]

≤ 1

1− γ

[
‖Q∗−Qk+1‖+

k

k+1
‖Tπk Q∗−Tπk Qk‖+

1

k+1
‖Tπk Q∗−Tπk Q0‖

]

+
1

(1− γ)(k+1)
‖Ek‖

≤ 1

1− γ

[
‖Q∗−Qk+1‖+

γk

k+1
‖Q∗−Qk‖+

1

k+1
‖Ek‖+

γ

k+1
‖Q∗−Q0‖

]

≤ 1

1− γ

[
‖Q∗−Qk+1‖+

γk

k+1
‖Q∗−Qk‖+

1

k+1
‖Ek‖+

2γVmax

k+1

]

≤ 1

1− γ


‖Q∗−Qk+1‖+

γk

k+1
‖Q∗−Qk‖+

1

k+1
‖Ek‖+

γ(4Vmax +
log |A|

η)

k+1




This combined with the result of Lemma 19 completes the proof.

Appendix D. The Proof of Convergence of DPP-RL—Theorem 9 and Theorem 10

We begin the analysis by introducing some new notation. Let us define Fk as the filtration generated

by the sequence of all random variables {y1,y2,y3, . . . ,yk} drawn from the distribution P(·|x,a) for

all (x,a) ∈ Z. We know, by the definition of εk, that E(εk(x,a)|Fk−1) = 0, which means that for all

(x,a)∈Z the sequence of estimation errors {ε1,ε2, . . . ,εk} is a martingale difference sequence w.r.t.

the filtration Fk. Now, we provide the proof of Lemma 8, on which we rely for the analysis of both

Theorem 9 and Theorem 10:

3239

GHESHLAGHI AZAR, GÓMEZ AND KAPPEN

Proof of Lemma 8 We first prove that ‖Tπk

k Ψk‖ ≤ 2γ log(|A|)
η(1−γ) +Vmax by induction. Let us assume

that the bound ‖Tπk

k Ψk‖ ≤ 2γ log(|A|)
η(1−γ) +Vmax holds. Thus

‖Tπk

k+1Ψk+1‖ ≤ ‖r‖+ γ‖Pπk Ψk+1‖ ≤ ‖r‖+ γ‖MηΨk+1‖
= ‖r‖+ γ

∥∥Mη

(
Ψk +T

πk

k Ψk −MηΨk

)∥∥

≤ ‖r‖+ γ
∥∥Mη

(
Ψk +T

πk

k Ψk −MηΨk

)
−M

(
Ψk +T

πk

k Ψk −MηΨk

)∥∥

+ γ
∥∥M

(
Ψk +T

πk

k Ψk −MηΨk

)∥∥

≤ ‖r‖+ γ log(|A|)
η

+ γ
∥∥M

(
Ψk +T

πk

k Ψk −MηΨk

)∥∥

= ‖r‖+ γ log(|A|)
η

+ γ
∥∥M

(
Ψk +T

πk

k Ψk −MηΨk +MΨk −MΨk

)∥∥

≤ ‖r‖+ γ log(|A|)
η

+ γ‖M(MΨk −MηΨk)‖+ γ‖M (Ψk −MΨk)‖

+ γ
∥∥MT

πk

k Ψk

∥∥

≤ ‖r‖+ 2γ log(|A|)
η

+ γ
∥∥Tπk

k Ψk

∥∥ ≤ ‖r‖+ 2γ log(|A|)
η

+
2γ2 log(|A|)

η(1− γ)
+ γVmax

≤ 2γ log(|A|)
η(1− γ)

+Rmax + γVmax =
2γ log(|A|)

η(1− γ)
+Vmax,

where we make use of Lemma 17 to bound the difference between the max operator M(·) and the

soft-max operator Mη(·). Now, by induction, we deduce that for all k ≥ 0, ‖Tπk

k Ψk‖ ≤
2γ log(|A|)

/
(η(1− γ))+Vmax. The bound on εk is an immediate consequence of this result.

D.1 Proof of Theorem 9

In this subsection, we provide the proof of Theorem 9 which guarantees that DPP-RL asymptotically

converges to the optimal policy w.p. 1.

We make use of the result of Lemma 8 and Corollary 6 to prove the theorem. We begin by

recalling the result of Corollary 6:

limsup
k→∞

‖Q∗−Qπk‖ ≤ 2γ

(1− γ)2
lim
k→∞

1

k+1
‖Ek‖ .

Therefore, to prove the convergence of DPP-RL, one only needs to prove that 1/(k+ 1)‖Ek‖
asymptotically converges to 0 w.p. 1. For this we rely on the strong law of large numbers for

martingale differences (Hoffmann-Jørgensen and Pisier, 1976), which states that the average of

a sequence of martingale differences asymptotically converges, almost surely, to 0 if the second

moments of all entries of the sequence are bounded by some 0 ≤ U ≤ ∞. This is the case for

the sequence of martingales {ε1,ε2, . . .} since we already have proven the boundedness of ‖εk‖ in

Lemma 8. Thus, we deduce

lim
k→∞

1

k+1
|Ek(x,a)|= 0, w.p. 1.

3240

DYNAMIC POLICY PROGRAMMING

Thus

lim
k→∞

1

k+1
‖Ek‖ = 0, w.p. 1. (35)

The result then follows by combining Equation 35 with Corollary 6.

D.2 Proof of Theorem 10

In this subsection, we prove Theorem 10, for which we rely on a maximal Azuma’s inequality (see,

e.g., Cesa-Bianchi and Lugosi, 2006, Appendix, pg. 359):

Lemma 20 (Azuma, 1967) Let Y = {Y1,Y2, . . . ,YK} be a martingale difference sequence w.r.t. a

sequence of random variables {X1,X2, . . . ,XK}, that is, E(Yk+1|X1, . . .Xk) = 0 for all 0 < k ≤ K.

Also, let Y be uniformly bounded by U > 0. Define Sk = ∑k
i=1Yi. Then, for any ε > 0, we have

Pr

(
max

1≤k≤K
Sk > ε

)
≤ exp

(−ε2

2KU2

)
.

We recall the result of Theorem 5 at iteration k:

‖Q∗−Qπk‖ ≤
γ
(

4Vmax +
log(|A|)

η

)

(1− γ)2(k+1)
+

1

(1− γ)(k+1)

k

∑
j=0

γk− j‖E j‖.

Note that the main difference between this bound and the result of Theorem 10 is just in the

second term. So, to prove Theorem 10 we need to show that the following inequality holds, with

probability at least 1−δ:

1

k+1

k

∑
j=0

γk− j
∥∥E j

∥∥ ≤ 4(γ log(|A|)/η+2Rmax)

(1− γ)2

√
2log

2|X||A|
δ

k+1
. (36)

We first notice that

1

k+1

k

∑
j=0

γk− j
∥∥E j

∥∥ ≤ 1

k+1

j

∑
k=0

γk− j max
0≤ j≤k

‖E j‖ ≤
max0≤ j≤k ‖E j‖
(1− γ)(k+1)

. (37)

Therefore, in order to prove Equation 36 it is sufficient to bound max0≤ j≤k ‖E j‖ =
max(x,a)∈Z max0≤ j≤k |Ek−1(x,a)| in high probability.

We begin by proving high probability bound on max0≤ j≤k |E j(x,a)| for a given (x,a). We first

notice that

Pr

(
max

0≤ j≤k
|E j(x,a)|> ε

)
= Pr

(
max

[
max

0≤ j≤k
(E j(x,a)), max

0≤ j≤k
(−E j(x,a))

]
> ε

)

= Pr

({
max

0≤ j≤k
(E j(x,a))> ε

}⋃{
max

0≤ j≤k
(−E j(x,a))> ε

})

≤ Pr

(
max

0≤ j≤k
(E j(x,a))> ε

)
+Pr

(
max

0≤ j≤k
(−E j(x,a))> ε

)
,

(38)

3241

GHESHLAGHI AZAR, GÓMEZ AND KAPPEN

The sequence of random variables {ε0(x,a),ε1(x,a), . . . ,εk(x,a)} is a martingale difference se-

quence w.r.t. the filtration Fk (generated by the random samples {y0,y1, . . . ,yk}(x,a) for all (x,a)),
that is, E[εk(x,a)|Fk−1] = 0. It follows from Lemma 20 and Lemma 8 that for any ε > 0 we have

Pr

(
max

0≤ j≤k
(E j(x,a))> ε

)
≤ exp


 −ε2

2(k+1)(4γ log(|A|)
η(1−γ) +2Vmax)2




Pr

(
max

0≤ j≤k
(−E j(x,a))> ε

)
≤ exp


 −ε2

2(k+1)(4γ log(|A|)
η(1−γ) +2Vmax)2


 .

(39)

By combining Equation 39 with Equation 38 we deduce that

Pr

(
max

0≤ j≤k
|E j(x,a)|> ε

)
≤ 2exp


 −ε2

2(k+1)(4γ log(|A|)
η(1−γ) +2Vmax)2


 ,

and a union bound over the state-action space leads to

Pr

(
max

0≤ j≤k

∥∥E j

∥∥ > ε

)
≤ 2|X||A|exp


 −ε2

2(k+1)(4γ log(|A|)
η(1−γ) +2Vmax)2


 .

For any 0 < δ < 1, this bound can be re-expressed as

Pr

(
max

0≤ j≤k

∥∥E j

∥∥ ≤
(

4γ log(|A|)
η(1− γ)

+2Vmax

)√
2(k+1) log

2|X||A|
δ

)
≥ 1−δ.

This combined with Equation 37 proves Equation 36 and Theorem 10.

References

A. Antos, R. Munos, and C. Szepesvári. Fitted Q-iteration in continuous action-space MDPs. In

Advances in Neural Information Processing Systems 20, pages 9–16. MIT Press, 2008.

M. Gheshlaghi Azar, R. Munos, M. Ghavamzadeh, and H. J. Kappen. Speedy Q-learning. In

Advances in Neural Information Processing Systems 24, pages 2411–2419. MIT Press, 2012.

J. A. Bagnell and J. G. Schneider. Covariant policy search. In Proceedings of the 18th International

Joint Conference on Artificial Intelligence, pages 1019–1024. Morgan Kaufmann, 2003.

P. L. Bartlett and A. Tewari. REGAL: A regularization based algorithm for reinforcement learning

in weakly communicating MDPs. In Proceedings of the Twenty-Fifth Conference on Uncertainty

in Artificial Intelligence, pages 35–42. AUAI Press, 2009.

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve difficult

learning control problems. Systems, Man and Cybernetics, IEEE Transactions on, SMC–13(5):

834–846, 1983.

3242

DYNAMIC POLICY PROGRAMMING

J. Baxter and P. L. Bartlett. Infinite-horizon policy-gradient estimation. Journal of Artificial Intelli-

gence Research, 15(1):319–350, 2001.

D. P. Bertsekas. Dynamic Programming and Optimal Control, volume II. Athena Scientific, third

edition, 2007.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee. Natural actor-critic algorithms. Auto-

matica, 45(11):2471–2482, 2009.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press,

2006.

C. Daniel, G. Neumann, and J. Peters. Hierarchical relative entropy policy search. Journal of

Machine Learning Research - Proceedings Track, 22:273–281, 2012.

D. P. de Farias and B. Van Roy. On the existence of fixed points for approximate value iteration and

temporal-difference learning. Journal of Optimization Theory and Applications, 105(3):589–608,

2000.

D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforcement learning. Journal of

Machine Learning Research, 6(Apr):503–556, 2005.

E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of Machine Learning Research,

5(Dec):1–25, 2003.

A. Farahmand, M. Ghavamzadeh, Cs. Szepesvári, and S. Mannor. Regularized fitted Q-iteration:

Application to planning. In European Workshop on Reinforcement Learning, Lecture Notes in

Computer Science, pages 55–68. Springer, 2008.

A. Farahmand, M. Ghavamzadeh, Cs. Szepesvári, and S. Mannor. Regularized policy iteration. In

Advances in Neural Information Processing Systems 21, pages 441–448. Curran Associates, Inc.,

2009.

A. Farahmand, R. Munos, and Cs. Szepesvári. Error propagation for approximate policy and value

iteration. In Advances in Neural Information Processing Systems 23, pages 568–576. MIT Press,

2010.

J. Hoffmann-Jørgensen and G. Pisier. The law of large numbers and the central limit theorem in

banach spaces. The Annals of Probability, 4(4):587–599, 1976.

T. Jaakkola, M. I. Jordan, and S. Singh. On the convergence of stochastic iterative dynamic pro-

gramming. Neural Computation, 6(6):1185–1201, 1994.

T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning. Journal

of Machine Learning Research, 11(Apr):1563–1600, 2010.

S. Kakade. Natural policy gradient. In Advances in Neural Information Processing Systems 14,

pages 1531–1538. MIT Press, 2002.

3243

GHESHLAGHI AZAR, GÓMEZ AND KAPPEN

H. J. Kappen. Path integrals and symmetry breaking for optimal control theory. Statistical Mechan-

ics, 2005(11):P11011, 2005.

M. Kearns and S. Singh. Finite-sample convergence rates for Q-learning and indirect algorithms.

In Advances in Neural Information Processing Systems 12, pages 996–1002. MIT Press, 1999.

J. Kober and J. Peters. Policy search for motor primitives in robotics. In Advances in Neural

Information Processing Systems 21, pages 849–856. MIT Press, 2009.

S. Koenig and R. G. Simmons. Complexity analysis of real-time reinforcement learning. In Pro-

ceedings of the Eleventh National Conference on Artificial Intelligence, pages 99–105. AAAI

Press, 1993.

V. Konda and J. N. Tsitsiklis. On actor-critic algorithms. SIAM Journal on Control and Optimiza-

tion, 42(4):1143–1166, 2003.

M. G. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine Learning Re-

search, 4(Dec):1107–1149, 2003.

D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University

Press, 2003.

H. Maei, Cs. Szepesvári, S. Bhatnagar, and R. S. Sutton. Toward off-policy learning control with

function approximation. In Proceedings of the 27th International Conference on Machine Learn-

ing, pages 719–726. Omnipress, 2010.

F. Melo, S. Meyn, and I. Ribeiro. An analysis of reinforcement learning with function approxima-

tion. In Proceedings of the 25th International Conference on Machine Learning, pages 664–671.

ACM Press, 2008.

R. Munos. Error bounds for approximate value iteration. In Proceedings of the 20th national

conference on Artificial intelligence - Volume 2, pages 1006–1011. AAAI Press, 2005.

R. Munos and Cs. Szepesvári. Finite-time bounds for fitted value iteration. Journal of Machine

Learning Research, 9(May):815–857, 2008.

T. J. Perkins and D. Precup. A convergent form of approximate policy iteration. In Advances in

Neural Information Processing Systems 15, pages 1595–1602. MIT Press, 2003.

J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7–9):1180–1190, 2008.

J. Peters, K. Mülling, and Y. Altun. Relative entropy policy search. In Proceedings of the Twenty-

Fourth AAAI Conference on Artificial Intelligence, pages 1607–1612. AAAI Press, 2010.

S. Singh, T. Jaakkola, M.L. Littman, and Cs. Szepesvári. Convergence results for single-step on-

policy reinforcement-learning algorithms. Machine Learning, 38(3):287–308, 2000.

S. Still and D. Precup. An information-theoretic approach to curiosity-driven reinforcement learn-

ing. Theory in Biosciences, 131(3):139–148, 2012.

3244

DYNAMIC POLICY PROGRAMMING

A. L. Strehl, L. Li, and M. L. Littman. Reinforcement learning in finite MDPs: PAC analysis.

Journal of Machine Learning Research, 10(Nov):2413–2444, 2009.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement

learning with function approximation. In Advances in Neural Information Processing Systems

12, pages 1057–1063. MIT Press, 2000.

Cs. Szepesvári. The asymptotic convergence-rate of Q-learning. In Advances in Neural Information

Processing Systems 10, pages 1064–1070. MIT Press, 1998.

Cs. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial Intelli-

gence and Machine Learning. Morgan & Claypool Publishers, 2010.

Cs. Szepesvári and W. Smart. Interpolation-based Q-learning. In Proceedings of 21st International

Conference on Machine Learning, pages 791–798. ACM Press, 2004.

I. Szita and Cs. Szepesvári. Model-based reinforcement learning with nearly tight exploration com-

plexity bounds. In Proceedings of the 27th International Conference on Machine Learning, pages

1031–1038. Omnipress, 2010.

C. Thiery and B. Scherrer. Least-squares lambda policy iteration: Bias-variance trade-off in control

problems. In Proceedings of the 27th International Conference on Machine Learning. Omnipress,

2010.

E. Todorov. Linearly-solvable Markov decision problems. In Advances in Neural Information

Processing Systems 19, pages 1369–1376. MIT Press, 2007.

N. Vlassis and M. Toussaint. Model-free reinforcement learning as mixture learning. In Proceedings

of the 26th International Conference on Machine Learning, pages 1081–1088. ACM Press, 2009.

T. Wang, M. Bowling, and D. Schuurmans. Dual representations for dynamic programming and re-

inforcement learning. In IEEE International Symposium on Approximate Dynamic Programming

and Reinforcement Learning, pages 44–51. IEEE Press, 2007.

T. Wang, D. Lizotte, M. Bowling, and D. Schuurmans. Stable dual dynamic programming. In

Advances in Neural Information Processing Systems 20, pages 1569–1576. MIT Press, 2008.

C. Watkins and P. Dayan. Q-learning. Machine Learning, 3(8):279–292, 1992.

3245

