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Abstract

Given a seV of n elements we wish to linearly order them given pairwise pexfee labels which
may be non-transitive (due to irrationality or arbitraryige).

The goal is to linearly order the elements while disagreeiity as few pairwise preference
labels as possible. Our performance is measured by two géeasn The number of disagreements
(loss) and the query complexity (number of pairwise prafeedabels). Our algorithm adaptively
queries at mosO(s®nlog®n) preference labels for a regret eftimes the optimal loss. As a
function ofn, this is asymptotically better than standard (non-adajptearning bounds achievable
for the same problem.

Our main result takes us a step closer toward settling an ppasiem posed by learning-to-
rank (from pairwise information) theoreticians and praatiers: What is a provably correct way to
sample preference labels? To further show the power antigatity of our solution, we analyze a
typical test case in which a large margin linear relaxatsunged for efficiently solving the simpler
learning problems in our decomposition.

Keywords: statistical learning theory, active learning, rankingrpwee ranking, preferences

1. Introduction

We study the problem of learning to rank from pairwise preferenceksalve a long-standing open
problem that has led to development of many heuristics but no provabiéstes

The setting is as follows: We are given a ¥etf n elements from some universe, and we wish
to linearly order them given pairwise preference labels. given two elEenc V, a pairwise
preference label is obtained as a response, typically from a human godktorwhich if preferred,

u or v? We assume no abstention, hence, eithisrpreferred tos (denotedu < v) or the other way
around.

The goal is to linearly order the elements from the most preferred to thepesstred, while
disagreeing with as few pairwise preference labels as possible. Cormpance is measured by
two parameters: The loss (number of pairwise preference labels weebsagh) and the query
complexity (number of pairwise preference labels we obtain). This is a tyie@aning problem,
with the exception that the sample space is finite, consistir{g)afossibilities only.

The loss minimization problem given the entitex n preference matrix is a well known NP-
hard problem called MFAST (minimum feedback arc-set in tournamentsh(&@06). Recently,
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Kenyon-Mathieu and Schudy (2007) have devised a PTAS for it, nam@glynomial (inn) -time
algorithm computing a solution with loss at mo$t+ €) the optimal, for an@ > 0 (the degree of the
polynomial may depend og). In our case each edge from the input graph is given for a unit cost.
Our main algorithm is derived from Kenyon et al’s algorithm. Our output,dwew, is not a solution

to MFAST, but rather a reduction of the original learning problem to a wiffe simpler one. The
reduced problem can be solved using any general ERM (empirical risiknmation) black-box.
The sampling of preference labels from the original problem is adaptarege the combination of
our algorithm and any ERM blackbox is an active learning one. We giaeples with an SVM
based ERM black-box toward the end.

1.1 Our Setting vs. The Usual “Learning to Rank” Problem

Our setting defers from much of thearning to rank(LTR) literature. Usually, the labels used in
LTR problems are responses to individual elements, and not to pairswéets. A typical example

is the 1.5 scale rating for restaurants, orlOrating (irrelevant/relevant) for candidate documents
retrieved for a query (known as tlénary rankingproblem). The goal there is, as in ours, to order
the elements while disagreeing with as little pairwise relations as possible, whairavise relation

is derived from any two elements rated differently. Note that the underpiefgrence graph there
is transitive, hence no combinatorial problem due to nontransitivity. If) &mene view the rating
setting as an ordinal regression problem and not a ranking problera.tiiepreference graph may
contain cycles, and is hence agnostic with respect to the concept claasvadiowed to output
from, namely, permutations. We note that some LTR literature does consideaithse prefer-
ence label approach, and there is much justification to it (see Carterette2608; Hillermeier

et al. 2008 and reference therein). As far as we know, our workigees a sound solution to a
problem addressed by machine learning practitioners (e.g., Carterett8@&) who use pairwise
preferences as labels for the task of learning to rank items, but wishi@btaining labels for the
guadratically many preference pairs, without compromising low error tui/e also show that
the problem of quadraticityffound in much work dealing with pairwise preference based learning
to rank (e.g., from Crammer and Singer 2G8& [pairwise] approach is time consuming since it
requires increasing the sample size ... ttn®) can be alleviated in the light of new advances in
combinatorial optimization (Ailon et al., 2008a; Kenyon-Mathieu and Schd@7).

1.2 Using Kenyon and Schudy’s PTAS as a Starting Point

As mentioned above, our main algorithm is derived from the PTAS of Kefyathieu and Schudy
(2007), but it is important to note a significant difference between oukwod theirs. A good
way to explain this is to compare two learners, Larry and Linda. On the fsstléarry queries all
(2) pairwise preference labels and sends them to a perfect solver foEMRAnda uses our work
to query onlyO(npoly(logn,e~1)) preference labels and obtains a decomposition of the original
inputV into anordered listof sub-problem3d/y,...,Vk where eachV; is contained inv. Using
the same perfect solver for the induced subproblems correspondiagh@art and concatenating
the individual output permutations, Linda will incur a loss of at m@st- €) that of Larry. |If
the decomposition is nontrivial, then Linda enjoys reduced query complexitg §mall regret
compared to Larry. The next day, both Larry and Linda realize that ¢énfegt MFAST solver
cannot deal with large inputs (the problem is NP Hard). They cannothes®TAS of Kenyon-
Mathieu and Schudy (2007) because they seek a multiplicative regfgtof) with respect to the
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optimal solution (we also say relative regretof €), and the sought makes this infeasiblé. To
remedy this, Larry takes advantage of the fact that thé/seébes not merely consist of abstract
elements, but rather eache V is endowed with a feature vectgu) and hence each pair of
pointsu,v is endowed with the combined feature vectd(u),$(v)). As in typical learning, he
posits that the order relation betweerv can be deduced from a linear function (@f(u),$(v)),
and invokes an optimizer (e.g., SVM) on the relaxed problem, with all pairspad.irNote that
Larry may try to sample pairs uniformly to reduce the query complexity (armthaps, the running
time of the relaxed solver), but as we show below, he will be discouraged doing so because
in certain realistic cases a relative regreteahay entail sampling the entire pairwise preference
space. Linda uses the same relaxed optimizer, say, SVM. The labelssisas¢he solver consist
of a uniform sample of pairs from each blogk together with all pairai, v residing in separate
blocks from her aforementioned construction decomposition. From theefdabel type she would
need onlyO(npoly(logn,£~1)) many, because (per our decomposition design) within the blocks the
cost of any solution is high, and henceedative error is tantamount to an absolute error of similar
magnitude, for which careful arguments allow low query complexity. Frontettter label type, she
would generate a label for all paissv in distinctV;,Vj, using a "made up” label corresponding to
the order oM, V; (recall that the decomposition is ordered).

As the above story suggests, we do not run the PTAS of Kenyon-Madméschudy (2007)
verbatim, but use it only to obtain a certain decomposition of the input. Among oltzmges,
a key change to their algorithm is required by replacing a highly sensitiedgrimprovement
step into a robust approximate one, by careful sampling. The main difficdeltgssfrom the fact
that after a single greedy improvement step, the sample becomes stale @inesresfreshing. We
show a query efficient refreshing technique that allows iterated appate greedy improvement
steps. Interestingly, the original analysis is amenable to this change. Ibigngdsesting to note
that the sampling scheme used for identifying greedy improvement stepsfioreant solution are
similar to ideas used by Ailon et al. (2007, 2008b) and Halevy and Kushil@027) in the context
of property testing and reconstruction, where elements are sampled kmonentially growing
intervals in a linear order.

The 3-approximation algorithm for MFAST using QuickSort by Ailon et al.q28) is used in
Kenyon-Mathieu and Schudy (2007) as well as here as an initializationdtdp that this is a sub-
linear algorithm. In fact, it samples on@®(nlogn) pairs from the(g) possible, on expectation. Note
also that the pairs from which we query the preference relation in Quitk&mchosen adaptively.

1.3 Our Work in the Context of Machine Learning Reductions

Our main algorithm reduces a given instance to smaller subproblems dedngipo¥/e compare
the machine learning reduction approach to two other works, that of Balcaln (2008) and that
of Ailon and Mohri (2010). The former also considers a reduction ofpitudlem of learning to
rank, but in thebipartite ranking(see Section 1.1) setting where, in the first place, it is assumed
that individual elements are endowed with unknown labels on a scale éofvgiy). The output is
a permutation, and the loss function is the number of pairwise inversionst Woik shows that
the problem of minimizing the regrets of the underlying binary classificatiorramking problems
is, up to a constant, the same thing. Their work, in fact, questions the justifidatithe so-called

1. The running time of the PTAS is exponentialsn®. We note here, for the sake of comparison, that our sampling
scheme has complexity polynomialgn?.
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binary ranking problem. The latter (Ailon and Mohri, 2010) considers #imessetting as here, and
shows a query efficient algorithm that reduces the original instandehwiay contain cycles, to a
binary classification problem over an adaptively chosen s€{nfogn) pairs on expectation. The
results there guarantee a total regret of at most twice that of the optimale we obtain at most
1+ ¢ that of the optimal usin@(npoly(logn,e~1)) pairwise queries.

1.4 Our Work in the Context of Active Learning

Active learning is an important field of statistical learning theory and pra¢fk&aniv and Wiener,
2010; Balcan et al., 2010; Hanneke, 2007; Dasgupta, 2005; Culattsle@allum, 2005; Roth and
Small, 2006; Dasgupta et al., 2007; Atlas et al., 1994; Freund et al., LBftienbaum et al., 2004;
Begleiter et al., 2008; Balcan et al., 2009; Angluin, 2004; Dasgupta 2Gf19; Fine et al., 2002;
Baram et al., 2004; Atlas et al., 1994; Friedman, 2009; Atlas et al., 1996t &., 2006). In the most
general setting, one wishes to improve on standard query complexity ®dusidg, for example,
VC or Rademacher complexity) by actively choosing which instances to olataéts for. Many
heuristics have been developed, while algorithms with provable boungiscially in the agnostic
case) are known for few problems. Balcan et al. (2010) show thatanying algorithm for a finite
VC dimensional space admits an active learning algorithm which asymptoticaltg,be query
complexity, that of a passive learning algorithm. Their guarantees ameveo, unverifiable in the
sense that the learner does not know when to stop querying in orddriew@@ certain error. Also,
their scheme still requires a considerable amount of work in order to Hecalple for individual
problems. It is an interesting open question to apply it to the problem at hahdanpare the
results with our algorithms’ guarantees. Also, Balcan et al. (2009) sexpan active learning
algorithm called A2. A useful measure of complexity which was later defiyeddnneke (2007)
is key in analysis of A2. He defined a disagreement coefficient for eagirspace and showed how
this measure could be used for active learning in certain cases. We stgpéndix B why this
measure does not help here.

1.5 Our Work in the Context of Noisy Sorting

There is much literature in theoretical computer science on sorting noisyrdatexample, Braver-
man and Mossel (2008) present an algorithm withCgnlogn) query complexity for exact order
reconstruction when the input is Bayesian with certain natural priors. Et@e(2002) consider a
scenario in which the input preference graph is transitive, but querdgsresult in noisy compar-
isons which may be inconsistent with previous information (hence, quetlygngame pair multiple
times would result in difference independent responses). Ajtai et @9)2consider a setting in
which each element has a latent value, and comparisons of two elements withr gahika may
result in errors. In this work the input is not Bayesian, query resgmase fixed and elements do
not have a latent value.

1.6 Paper Organization

In Section 2 we present basic definitions and lemmata, and in particular ddfate good decom-
position is and how it can be used in learning permutations from pairwiserprefes. Section 3
presents our main active learning algorithm which is, in fact, an algorithrprimducing a good

2. Additionally, they consider the so called binary ranking, which is not tbelpm here.
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decomposition query efficiently. The main result is presented in Theor&eclion 4 discusses our
main results as a preconditioner for a standard SVM relaxation for thecbartinatorial problems
underlying the problem of minimum feedback-arcset in sparse graphs.

2. Notation and Basic Lemmata

We start by introducing basic notations and definitions of the problem, tagettieresults from
statistical learning theory which we will later improve.

2.1 The Learning Theoretical Problem

LetV denote a finite set that we wish to rank. In a more general setting we ame gisequence
V1 V2 ... of sets, but there is enough structure and interest in the single sewddsk,we focus
on in this work. Denote by the cardinality ofV. We assume there is an underlying preference
functionW on pairs of elements ix, which is unknown to us. For any ordered pajv € V, the
preference valu&/(u,v) takes the value of 1 ifi is deemed preferred ovey and O otherwise. We
enforceW(u,v) + W(v,u) = 1, hence(V,W) is a tournament. We assume thtis agnosticin the
sense that it does not necessarily encode a transitive preferemt®f) and may contain errors
and inconsistencies. For convenience, for any two real numébéree will let [a,b] denote the
interval{x:a<x<b}if a<band{x:b<x<a} otherwise.

Assume now that we wish to predi¢¢ using a hypothesifé from some concept clas#.
The hypothesi$ will take an ordered paifu,v) € V as input, and will output label of 1 to assert
thatu precedes \and 0 otherwise. We wart to contain only consistent hypotheses, satisfying
transitivity (i.e., ifh(u,v) = h(v,w) = 1 thenh(u,w) = 1). A typical way to do this is using a linear
score function: Each € V is endowed with a feature vectd(u) in some RKH3H, a weight vector
w € H is used for parametrizing eatly € #, and the prediction is as follows:

T (wou) > {(wo(v)
hw(Uv) =90 (W (u) < (Wo(v)) -

1,y oOtherwise

Our work is relevant, however, to nonlinear hypothesis classes as welldéfbte byr(V) the
set permutations on the sét hence we always assun®é C (V). (Permutationgt are natu-
rally viewed as binary classifiers of pairs of elements via the preferamckcate: The notation is,
m(u,v) = 1 if and only if u < v, namely, ifu precedew in Tt Slightly abusing notation, we also
view permutations as injective functions frdmj to V, so that the element(1) € V is in the first,
most preferred position arm(n) is the least preferred one. We also define the fungtipimverse
to 1t as the unique function satisfying pr(v)) = v for all ve V. Hence,u <nV is equivalent to
Pr(U) < Pn(v). )

As in standard ERM setting, we assume a non-negative risk funCtippenalizing the error of
h with respect to the pain, v, namely,

Cu,v(h,V,W) = lh(u,v);éW(u,v) .

3. We assume thatis endowed with an arbitrary linear order relation, so we can formally writev to arbitrarily yet
consistently break ties.
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The total lossC(h,V,W) is defined asC,y summed over all unorderadv € V. Our goal is to
devise an active learning algorithm for the purpose of minimizing this loss.

In this paper we find an almost optimal solution to the problem using importaaktimeughs
in combinatorial optimization of a related problem calfeoshimum feedback arc-set in tournaments
(MFAST). The relation between this NP-Hard problem and our learniobglpm has been noted
before (Cohen et al., 1998), but no provable almost optimal activeitephas been devised, as far
as we know.

2.2 The Combinatorial Optimization Counterpart

MFAST is defined as follows: Assume we are giwerandW and its entirety, in other words, we
pay no price for readinV. The goal is to order the elements\fin a full linear order, while
minimizing the total pairwise violation. More precisely, we wish to find a permutatiam the
elements oV such that the total backward cost:

C(mV,W) = Z W(v,u) (1)

u=nv

is minimized. The expression in (1) will be referred to asMEAST costenceforth.

WhenW is given as input, this problem is known as the minimum feedback arc-setrimatou
ments (MFAST). A PTAS has been discovered for this NP-Hard vesmntic(Kenyon-Mathieu and
Schudy, 2007). Though a major theoretical achievement from a comhalatptimization point of
view, the PTAS is not useful for the purposelefrning to rank from pairwise preferencbscause
it is not query efficient. Indeed, it may require in some cases to readadrgtically many entries
in W. In this work we fix this drawback, while using their main ideas for the purpdanachine
learning to rank. We are not interested in MFAST per se, but use thetalgdry Kenyon-Mathieu
and Schudy (2007) to obtain a certain useful decomposition of the {iMpW) from which our
main active learning result easily follows.

Definition 1 Given a setV of size n, an ordered decomposition is a list of pairwise disjgisets
Vi,...,Vk CV such thaU}‘Zl\/i =V. For a given decomposition, we letyVdenote the restriction of
W toV xV; fori=1,... k. Similarly, for a permutatiome N(v) we letrty, denote the restriction of
the permutation to the elements gf{encejty, € M(Vi)). We say thatte (V) respectsy,.. .,

if for all u € Vi,veV;,i < j, u<rv. We denote the set of permutatians (V) respecting the
decomposition V..., Vk by M(V4,..., k). We say that a subset U of V ssnall inV if U| <
logn/loglogn, otherwise we say that s big inV. A decompositionyV...,V is e-good with
respect to W if

e Local chaos:

min C(Tty, Vi, Wy, ) > €2 < ) : (2)
TNV iy b%inv RY b%inv .

e Approximate optimality:

min  C(o,V,W) < (1+¢€) min C(ttV,W). 3
oeM(Vy,.... k) ( )_( + )nel‘l(V) ( ) 3)

4. We will just saye-good ifW is clear from the context.
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Intuitively, ane-good decomposition identifies a block-ranking of the data that is difficultuté r

in accordance withWV internally on average among big blockedal chao$, yet possible to rank
almost optimally while respecting the decompositiapgroximate optimality We show how to
take advantage of agood decomposition for learning in Section 2.3. The ultimate goal will be to
find ane-good decomposition of the input 8étusingO(poly(logn,£~1)) queries intoN.

2.3 Basic Results from Statistical Learning Theory

In statistical learning theory, one seeks to find a classifier minimizing an ®geaost incurred on
a random input by minimizing the empirical cost on a sample thereof. If we vééig pf elements
in V as data points, then the MFAST cost can be cast, up to normalization, apectezk cost
over a random draw of a data point. The distribution space is finite, heagray view this as a
transductive learning algorithm. Recall our notatiormiof, v) denoting the indicator function for
the predicates < V. ThusTtis viewed as a binary hypothesis function oy}, andr(V) can be
viewed as the concept class of all binary hypotheses satisfying tréaysitiyu, v) + 11(v, y) > 1(U,y)
forallu,v,y.

A sampleE of unordered pairs gives rise tqartial cost Cg defined as follows:

Definition 2 Let(V,E) denote an undirected graph over V, which may contain parallel edges (E
a multi-set). The partial MFAST costQr) is defined as

Ce(TLV,W) = <2>|Eyl T Wvu).

W
(The accounting of parallel edgesttis clear.) The functiofg(-, -, -) can be viewed as ampirical
unbiased estimatasf C(1t V,W) if E C (\é) is chosen uniformly at random among all (multi)subsets
of a given size.
The basic question in statistical learning theory is, how good is the minirmiaé€Cg, in terms
of C? The notion of VC dimension by Vapnik and Chervonenkis (1971) gisesnontrivial bound
which is, albeit suboptimal (as we shall soon see), a good start foruspoge.

Lemma 3 The VC dimension of the set of permutations on V, viewed as binary dessifi pairs
of elements, is A 1.

It is easy to show that the VC dimension is at mOshlogn). Indeed, the number of permutations
is at mostn!, and the VC dimension is always bounded by the log of the concept cdadmality.
That the bound is linear was proven by Ailon and Radinsky (2011). \Wseanmt the proof here in
Appendix A for completeness. The implications of the VC bound are as fallows

Proposition 4 Assume E is chosen uniformly at random (with repetitions) as a sample &-m e
ments fron(\é), where nt> n. Then with probability at least— & over the sample, all permutations
Tt satisfy:

|Ce (L, V,W) —C(TLV,W)| = nO (\/nlogm+nl]og(1/6)) .

The consequence of Proposition 4 are as follows: If we want to mini@{zeV,W) overrto
within an additive error ofir?, and succeed in doing so with probability at leastd, it is enough
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to choose a samplE of O(p~2(nlogn+logd1)) elements from%) uniformly at random (with
repetitions), and optimiz€g (1, V,W). Assume from now on thatis at lease ™", so that we get a
more manageable sample bounddgfi->nlogn). Before turning to optimizin€e (1,V,W), a hard
problem in its own right (Karp, 1972; Dinur and Safra, 2002), we fhéitst understand whether
this bound is at all good for various scenarios. We need some basic s\ofialistance between
permutations. For two permutatiornso, the Kendall-Tau distanag (1t,0) is defined as

di(TLo) = ; (u<gV)A(V=<gU)].

The Spearman Footrule distartig, (1T, 0) is defined as
root(TLO) = Z |Pr(U) — po(U)] -
u

The following is a well known inequality due to Diaconis and Graham (19€gting the two
distance measures for ato:

0c(T1,0) < doot(TL,0) < 20k (TT,0) . 4)

Clearlyd; anddset are metrics. Itis also clear that-,V, -) is an extension ad; (-, -) to distances
between permutations and binary tournaments, with the triangle inequality arthelf(1t,0) <
C(mV,W) +C(o,V,W) satisfied for alW andm,o € M(V).

Assume now that we are able, using Proposition 4 and the ensuing commemd, &osfblution
i for MFAST, with an additive regret o®(ur?) with respect to an optimal solution® for some
pn> 0. The triangle inequality implies that the distartkért 1t°) between our solution and the true
optimal isQ(ur?). By (4), this means thadie (Tt T¢) = Q(ur?). By the definition ofdyor, this
means that the average elemerd V is translated2(un) positions away from its position irt".

In a real life application (e.g., in information retrieval), one may want elemenks tat most a
constanty positions away from their position in a correct permutation. This translatesdoight
regret ofO(yn) in C(1t,V,W), or, using the above notation, is= y/n. Clearly, Proposition 4 cannot
guarantee less than a quadratic sample size for such a regret, whichnsdantdo queryingV in

its entirety.We can do better: In this work, for amgy> 0 we will achieve a regret @(eC(1t*,V,W))
usingO(e~®nlog® n) queries intdV, regardless of how small the optimal c@tt,V,W) is. Hence,
our regret is relative to the optimal loss. This is clearly not achievable U&iogosition 4. Let us
outline another practical case of interest. Assume a scenario in whiclhuadytath permutation
mie M(V) exists, and the noisy preference mavhixs generated by a human responder who errs on
a pairu,Vv with probability f (|pr(u) — pr(V)|), wheref is some monotonically decreasing function.
Intuitively, this scenario posits that people confuse the order of two elsntlea “closer” they are
to each other. If, sayf(x) = px¥ for somev > 0 andp > 0, then the cost of the optimal solution
mtwould be®(pr?~V) with high probability® Proposition 4 tells us that if we wanted to find a
permutation withrelative error of €, namely, of absolute errc@(spnz“’), then we would need
O(e~?p—2n*?|ogn) queries. Our result achieves the same error with an almost linear depende
onn (albeit a worse dependence gn

One may argue that the VC bound measures the merits of uniform, nonvadsatnpling too
pessimistically. This isn’'t the case. Consider the extreme case in which the bpbishés zero. We

5. We are assuming stochastic noise for the sake of the example, alttinisiglork deals with adversarial noise.
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argue that a uniform sample of paieqquiresQ(n?) query complexity. Indeed, if the optimal cost
is zero then unless one queriesralt 1 consecutive pairs in the unique optimal permutation, one
cannot reveal it. It is now easy to see that sampé?) pairs uniformly (either with or without
repetition) would succeed in doing so with exponentially rijnsmall probability. A relativee
approximation cannot be thus achieved. But we know that an adaptiyelesafO(nlogn) pairs on
expectation (QuickSort) does better. It is folklore tiihlogn) is also a lower bound in the perfect
(zero cost) case. Hence, one cannot hope to get rid of theflaor in our main result, Theorem 7
below.

Before continuing, we need need a slight generalization of Proposition 4.

Proposition 5 Let \,...,Vk be an ordered decomposition of V. LBtdenote the set of indices

i € [K] such that Vis big in V. Assume E is chosen uniformly at random (with repetitions) as a
sample of m elements frop. (%), where m> n. For each i= 1,....k, let = EN (}). Define
Ce(Tt{V1,...,W},W) to be

. N 1
Ce (Tt {Va,... Vi W) = (z (”2)) By (5) ECmMw . ©

(The normalization is defined so that the expression is an unbiased esthato
YiesC(Ty, Vi, Wy,). If |Ei| = O for some i, formally defineé’;)_l\EﬂCEi (T, Vi,Wy,) = 0.) Then
with probability at leastl — e~ " over the sample, all permutatioms= N(V) satisfy:

_s (g>o<\/nlogm+nl]og(1/5)> |

i€B

CE(T[v {V17 coe 7Vk}7W) - Z C(T[’Vm\/law‘\ﬂ)
ieB

Proof Consider the set of binary function3ic4M(V;) on the domairJic3 Vi x Vi, defined as
follows: If u,v € Vj x V; for somej € B, then

((T8)ies) (U,v) = T5(U,V) .

It is clear that the VC dimension of this function set is at most the sum of the iWf@rdions of
{MN(V)}ies, hence by Lemma 3 at most The result follows. [ |

2.4 Using ane-Good Partition

The following lemma explains why asgood partition is good for our purpose.

Lemma 6 Fix € > 0 and assume we have argood partition (Definition 1) ¥,..., Vi of V. LetB
denote the set ofd¢ [k] such that Vis big in V, and letB = [k]\ B. Letn = |Vi|fori=1,....n,
and let E denote a random sample ofeO°nlogn) elements fron ;. 4 (\g) each element chosen
uniformly at random with repetitions. Let Benote EN (\g) Let Ge(mt, {V4,...,V},W) be defined
asin (5). For anyrte N(V,...,\) define:

C(1) := Ce (T {Vi, ..., Vi, W) + 5 (T, Vi, Wy, ) + > S L

ieB 1<i< <K (U,v) €V xVj
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Then the following event occurs with probability at leaste™": For all o € M(V4,..., W),

|C(0) —C(0,V,W)| <& min C(TLV,W). (6)
men(V)

Also, ifo* is any minimizer oé(-) overM(Vy,...,V), then

C(o",V,W) < (14+2¢) min C(TtV,W). (7)
nen(v)

Before we prove the lemma, let us discuss its consequences: Givegand decomposition
Vi,...,Vi of V, the theorem implies that if we could optimigXc) overo e M(Vy,...,Vk), we
would obtain a permutationtwith arelative regretof 2¢ with respect to the optimizer &(-,V,W)
overl(V). Optimizingy,; _5;C(Tiy,Vi,Wy, ) is easy: Each is of size at most log/loglogn, hence
exhaustively searching its corresponding permutation space can berdpolynomial time. In
order to compute the cost of each permutation inside the smaWNsete would need to queiy,
in its entirety. This incurs a query cost of at mgst 5 (3) = O(nlogn/loglogn), which is domi-
nated by the cost of obtaining tlsegood partition in the first place (see next section). Optimizing
Ce (Tt {V1,...,W},W) givenE is a tougher nut to crack, is known as the minimum feedback arc-set
(MFAS) problem and is computationally much harder than than MFAST (KE®@2; Dinur and
Safra, 2002). For now we focus on query and not computational caitypland notice that the
size |[E| = O(e~*nlogn) of the sample set is all we need. In Section 4 we show a counterpart of
Lemma 6 which provides similar guarantees for practitioners who choosktatrasing SVM, for
which fast solvers exist.

Proof For any permutatiow € M(Va,..., V), itis clear that

C(0) —C(0,V,W) = Ce(0, {V1,..., i}, W) — 5 C(opy, Vi, Wy,) .
i€B
By Proposition 5, with probability at least-1e " the absolute value of the RHS is bounded by
€3Yies (), which is at mostmingen ) C(TLV,W) by (2). This establishes (6). Inequality (7) is
obtained from (6) together with (3) and the triangle inequality. |

3. A Query Efficient Algorithm for e-Good Decomposing
The section is dedicated to proving the following:

Theorem 7 Given a set V of size n, a preference oracle W and an error toleranaerpeter0O <

€ < 1, there exists a polynomial time algorithm which returns, with constant fmtiba an e-good
partition of V, querying at most @ ®nlog®n) locations in W on expectation. The running time of
the algorithm (counting computations) ii@poly(logn,e~1)).

Before describing our algorithm, we need some definitions.

Definition 8 Letmtdenote a permutation overV. LeeW and i€ [n]. We definet,_; to be the per-
mutation obtained by moving the rank of v to ifinand leaving the rest of the elements in the same
order. For example, if V= {xy,z} and (1(1),1(2),1(3)) = (X,y,2z), then
(T[X—>3(1)7nX—>3(2)7nX—>3(3)) = (y7 Z X)'
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Definition 9 Fix a permutationrt over V, an element & V and an integer i [n]. We define
the numbefTestMovér,V,W,v,i) as the decrease in the cos{-8/,W) achieved by moving from
T to T,,j. More precisely,TestMovet, V.W,v,i) = C(1tV,W) — C(1,-i,V,W) . Equivalently, if
i > pn(Vv) then
TestMoveT, V,W,v,i) = Z (Woy — W) -
u:pr(u)€[Pr(v)+1]

A similar expression can be written foki pr(V).

Now assume that we have a muIti-se;E{\é). We defindestMove: (Tt V,W, v, i), for i > pr(v),
as

TestMove (TLV,W,v,i) = [i=pn)l S (W(uv) ~W(wu),
|E| u:(uv)eE

where the multise is defined ag(u,v) € E : pr(u) € [pr(V) +1,i]}. Similarly, for i < pp(v) we

define

TestMove (TLV,W,v,i) = ['=pr(v)] S (W) -W(u,v), (8)
|E| u:(uv)eE

where the multisef is now defined a§(u,v) € E : pr(u) € [i,pr(v) — 1]}.

Lemma 10 Fix a permutationtover V, an element& V, an integer i€ [n] and another integer N.

Let EC (\é) be a random (multi)-set of size N with elemefmsl;), ..., (v,uy), drawn so that for
each je [N] the element pis chosen uniformly at random from among the elements lying between
v (exclusive) and position i (inclusive) m

ThenE[TestMove: (Tt V,W,V,i)] = TestMoveTt V,W,v,i). Additionally, for anyd > 0, except with
probability of failured,

: . . logd—1
| TestMove: (Tt V,W, V,i) — TestMoveTt, V,W,v,i)| = O <\| —pn(Vv)| ogN ) .
The lemma is easily proven using, for example, Hoeffding tail bounds, tisénfact thatw (u,v)| <
1forallu,v.

3.1 The Decomposition Algorithm

Our decomposition algorithm SampleAndRank is detailed in Algorithm 1, with suioes in Al-
gorithms 2 and 3. It can be viewed as a query efficient improvement of the afgorithm of
Kenyon-Mathieu and Schudy (2007). Another difference is that wenat interested in an approx-
imation algorithm for MFAST: Whenever we reach a small block (line 3) or abbagk with a
probably approximately sufficiently high cost (line 8) in our recursion tgfolithm 2), we simply
output it as a block in our partition. Denote the resulting outputted partitiovk hy. ,Vk. Denote
by Tt the minimizer ofC(-,V,W) overl(Vi,...,Vk). Most of the analysis is dedicated to showing
thatC(7t V,W) < (1+¢€) mingcn ) C(TLV,W), thus establishing (3).

In order to achieve an efficient query complexity compared to that of &eiWathieu and
Schudy (2007), we use procedure ApproxLocallmprove (Algorithnto3replace a greedy local
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improvement step there which ot query efficient. Aside from the aforementioned differences,
we also raise here the reader’s awareness to the query efficiencyoddSprt, which was established
by Ailon and Mohri (2010).

SampleAndRank (Algorithm 1) takes the following arguments: Th&/sge want to rank, the
preference matri¥V and an accuracy argumegtlt is implicitly understood that the argumevit
passed to SampleAndRank is given as a query oracle, incurring a whitijgon each access to a
matrix element by the procedure and any nested calls.

The first step in SampleAndRank is to obtain an expected constant fagiaxapationtt to
MFAST onV,W, incurring an expected low query cost. More precisely, this step returasdom
permutatiorrtwith an expected cost @(1) times that of the optimal solution to MFAST &HW.
The query complexity of this step 9(nlogn) on expectatior(Ailon and Mohri, 2010). Before
continuing, we make the following assumption, which holds with constant pitityaising Markov
probability bounds.

Assumption 11 The cost €t V,W) of the initial permutatiormtcomputed line 2 dbampleAndRank
is at most @1) times that of the optimal solution* to MFAST on(V,W), and the query cost in-
curred in the computation is @logn).

Following QuickSort, a recursive procedure SampleAndDecomposdiésicét implements a
divide-and-conquer algorithm. Before branching, it executes thewifpsteps. Lines 5to 9 are
responsible for identifying local chaos, with sufficiently high probabilitheTfollowing line 10
calls a procedure ApproxLocallmprove (Algorithm 3) which is respdedibr performing query-
efficient approximate greedy steps. We devote the next Sections 3.2e&ddebing this procedure.
The establishment of thegoodness of SampleAndRank’s output (establishing (3)) is deféored
Section 3.5.

3.2 Approximate Local Improvement Steps

The procedure ApproxLocallmprove takes as input avsef sizeN, the preference oracl, a
permutatiomt on'V, two number<y, € and an integen. The numbem is the size of the input
in the root call to SampleAndDecompose, passed down in the recursibmisaed for the purpose
of controlling the success probability of each call to the procedure (trere total ofO(nlogn)
calls, and a union bound will be used to bound a failure probability, heacke eall may fail with
probability inversely polynomial im). The goal of the procedure is to repeatedly identify, with
high probability, single vertex moves that considerably decrease the Mogt. that in the PTAS
of Kenyon-Mathieu and Schudy (2007), a crucial step in their algorithmele identifying single
vertex moves that decrease the cost by a magnitude which, given ogintsqpuery complexity,
would not be detectable. Hence, our algorithm requires altering this tpasian their algorithm.

The procedure starts by creatings@ample ensemblé = {E,;j : v € V.i € [B,L]}, whereB =
log| ©(eN/logn) | andL = [logN]. The size of eaclE,; € . is ©(¢ ?log?n), and each element
(v,X) € Eyj was added (with possible multiplicity) by uniformly at random selecting, withtiepe
tions, an element € V positioned at distance at mostfeom the position ok in 1. Let D denote
the distribution space from whick was drawn, and let Rr., [X = $] denote the probability of
obtaining a given sample ensembple

We wants to enable us to approximate the improvement in cost obtained by moving a single
elementu to positionj.
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Definition 12 Fix ueV and je [n], and assumég|j — pr(u)| > B. Letl = [log|j — pr(u)|]. We
say thats is successful at,yj if [{x: (u,x) € Ey/} N{X: pr(X) € [pr(u), j]}| = Q(e?log?n) .

In words, success of atu, | means that sufficiently many sampbes V such thatpy(x) is be-
tweenpr(u) and j are represented i, .. Conditioned ons being successful at, j, note that the
denominator of TestMove(defined in (8)) does not vanish, and we can thereby define:

Definition 13 S is agood approximatiomt u, j if
: . 1 .
‘TeStMOV%u,[(T[,V,W, u, J) - TeStMOVQT[,V,W, U, J)‘ < 58“ - pT[(u)|/ |Ogn )

where/ is as in Definition 12.

In words, S being a good approximation at j allows us to approximate a quantity of interest
TestMoveTt, V,W,u, j), and to detect whether it is sufficiently large, and more precisely, at least
Q(e[j — pr(u)|/logn).

Definition 14 We say thafS is a good approximation if it is successful and a good approximation
atallueV, je [n] satisfying[log|j — pr(u)|] € [B,L].

Using Chernoff bounds to ensure tigais successfufu, j as in Definition 14, then using Hoeffding

to ensure thas is a good approximation at all suehj and finally union bounding we get

Lemma 15 Except with probabilityl — O(n—#), S is a good approximation.

Algorithm 1 SampleAndRanl/,W, €)
1: N« |V|
2: T+ ExpectedO(1)-approx solution to MFAST usin@(nlogn) W-queries on expectation us-
ing QuickSort (Ailon et al., 2008a)
3: return SampleAndDecompoé€, W, ,n, 1)

3.3 Mutating the Pair Sample To Reflect a Single Element Move

Line 17 in ApproxLocallmprove requires elaboration. In lines 15-20¢theck whether there exists
an element and positionj, such that movingi to j (giving rise toy,—,;) would considerably im-
prove the MFAST cost of the procedure input, based on a high probadilisoximate calculation.
The approximation is done using the sample enseigiblé such an element exists, we execute
the exchanget « 1. With respect to the new value of the permutatgrthe sample ensemble
S becomestale By this we mean, that if was a good approximation with respectrtathen it is
no longer necessarily a good approximation with respect,tg. We must refresh it. Before the
next iteration of the while loop, we perform in line 17 a transformatpgn ; to §, so that the re-
sulting sample ensembdg, . ; (5) is distributed according t@®y, ,;. More precisely, we will define
a transformatiop such that

Guj(Pn) = Dr,. 9)
where the left hand side denotes the distribution obtained by drawingfrxeand applyingby_, j
to the result. The transformatiagn,j is performed as follows. Denotiny,j(S) = " = {E; :
ve Vi€ [B,L]}, we need to define eadtf;.
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Algorithm 2 SampleAndDecompoé€, W, €,n, 1)

10:
11:
12:
13:
14:

2
3
4
5:
6
7
8
9

: N« |V]|

. if N <logn/loglogn then

return trivial partition {V }

- end if

E « random subset dd(¢*logn) elements fron(\é) (with repetitions)

: C+ Cg(mV,W) (Cis an additiveD(£2N?) approximation oC w.p. > 1—n~%)
. if C=Q(g2N?) then

. return trivial partition {V}

. end if
T4 < ApproxLocallmprovéV,W, 1t €, n)

k <— random integer in the ranghl /3,2N /3]

VL« {veV :pn(v) <k}, T < restriction ofry to V.

VR V\\, TR < restriction ofry to Vr

return concatenation of decomposition SampleAndDecom{¢s®/, €, n, 1y ) and decompo-
sition SampleAndDecompoBé, W, €,n, TiR)

Algorithm 3 ApproxLocallmprovéV,W, 1€, n) (Note: rtused as both input and output)

1
2

3:

10:
11:
12:
13:

14
15

16:
17:
18:
19:

20

© o N a R

: N« |V|,B+« [log(®(eN/logn)], L + [logN]
. if N=0(g3log®n) then
return
end if
: for ve V do
r < pn(V)
fori=B...Ldo
Eyi 0
for m=1..0(s?log?n) do
j « integer uniformly at random chosen frgmax{1,r — 2'}, min{n,r 4+ 2'}]
Evi <~ By U{(v,(]))}
end for
end for
: end for
: while Ju eV andj € [n] s.t. (setting? := [log|j — pr(u)|]):

¢ € [B,L] and TestMove,,(TtV,W,u, j) > £|j — pr(u)|/logn

do
for veV andi € [B,L] do
refresh sampl&,; with respect to the move — j (see Section 3.3)
end for
T Ty
. end while
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Definition 16 We say that  isinterestingn the context oftandry,.,j if the two sets 1, T, defined
as

To= {xeVilpn®-pav <2}
T = {XeV:lpn, (0 —pr,, ()] <2}

differ.

We setEy; = Ey; for all v,i for which Ey; is notinteresting.

Observation 17 There are at most Qpr(u) — j|logn) interesting choices of,¥ Additionally, if
v # u, then for T, T as in Definition 16| T;AT,| = O(1), whereA denotes symmetric difference.

Fix one interesting choicgi. Let T;, T, be as in Definition 16. By the last observation, each
of T; and T, containsO(1) elements that are not contained in the other. Assifje= |T,|, let

X1 =T1\ Tz, and Xy = To\ T1. Fix any injectiona : X; — Xz, and extendx : T, — T, so that
a(x) = xfor all x e Ty N T,. Finally, define

Ey; = {(%a(x): (vx) € Eyi} - (10)

(The casgTy| # |To| may occur due to the clipping of the rangs(v) — 2, pr(v) + 2] and
[Pri_; (V) — 2‘,pmﬁj (v) + 2'] to a smaller range. This is a simple technicality which may be taken
care of by formally extending the 9étby N additional elements;’. .., vk, extending the definition
of pr for all permutationrtonV so thatpr(¥y) = —a+ 1 for all a and similarlyN = |V | additional
elements/, ... ¥R such thatpr(W]) = N+a. Formally extendV so thatW(v, ) = W(T,v) =
W(v, %) = W(¥R v) = 0 for allv € V anda. This eliminates the need for clipping ranges in line 10
in ApproxLocallmprove.)

Finally, forv=uwe creaté(,./i from scratch by repeating the loop in line 7 for tlat

It is easy to see that (9) holds. We need, however, something stroraje®th Since our
analysis assumes théit~ Dy is successful, we must be able to measure the distance (in total vari-
ation) between the random variali®,| successdefined by the process of drawing from, and
conditioning on the result’s success, a[DQHj. By Lemma 15, the total variation distance between
(Dr| succespand Dy, ,; is O(n~*). Using a simple chain rule argument, we conclude the following:

Lemma 18 Fix T® onV of size N, and fixy...,uc €V and j, ..., jk € [n]. Consider the following
process. We draw® from Do, and define

St =005, (89, = O (1), -+ S(:(I)uwjk(Sk_l)
Trlznﬁlﬁjl’nzznﬁzﬁjz’ ’Tﬂ(zrlﬁkjljk'

Consider the random variablé‘8onditioned on §S!, ..., 1 being successful for
To,..., T8 L, respectively. Then the total variation distance between the distributiok aficGthe
distribution Dy« is at most @kn—4).
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3.4 Bounding the Query Complexity of Computingdy_,j(5)

We now need a notion of distance betwegand.S’, measuring how many extra pairs were intro-
duced ino the new sample family. These pairs may incur the cost of quafjying/e denote this
measure as digf, '), and define it as dié§, ") := |Uy; E,iAE;| -

Lemma 19 Assumes ~ Dy for some permutatiom, and.S’ = ¢,_,j. Then
E[dist($,5")] = O(s 2log®n).

Proof DenoteS = {E,;} ands’ = {E/;}. Fix somev # u. By construction, the set,; for which
Evi # E|; must be interesting, and there are at n@§pr(u) — j|logn) such, using Observation 17.
Fix such a choice of,i. By (10), Ev; will indeed differ fromE\’,J only if it contains an elemeriy, x)
for somex € T; \ T,. But the probability of that is at most

1—(1- O(Zfi))e(aleogz n) <1- ef@(a*ZZ*i log?n) _ 0(87224 |0g2 n)

(We used the fact thdat> B, whereB is as defined in line 1 of ApproxLocallmprove, ahd=
Q(e2logn) as guaranteed in line 3 of ApproxLocallmprove.) Therefore, the egdesize of
E.;AEy; (counted with multiplicities) i(e~22 log?n).

 Now consider all the interesting s, i, , . .., Ev.jp. FOr each possible valuet is easy to see
that there are at most@(u) — j| p's for whichi, =i. Therefore,

=0 (82!pn(U) - jllogzn_22‘> ,

whereB, L are defined in line 1 in ApproxLocallmprove. Summing over[B,L], we get at most
O(g%|pn(u) — j|log®n/N). Forv = u, the set{E,;} is drawn from scratch, clearly contributing
O(g2log®n) to dist.$,.5"). The claim follows. u

P
E [Z |E} i, OBy,
p=1

3.5 Analysis ofSampleAndDecompose

Throughout the execution of the algorithm, varidugh probabilityevents must occur in order for
the algorithm guarantees to hold. L&t S»,... denote the sample families that are given rise to
through the executions of ApproxLocallmprove, either between linesd51dn or as a mutation
done between lines 15 and 20. We will need the ®¢h*) to be good approximations, based
on Definition 14. Denote this favorable evefif. By Lemma 18, and using a union bound, with
constant probability (say,.99) this happens. We also need the cost approxim&iobtained in
line 5 to be successful. Denote this favorable evEnt By Hoeffding tail bounds, this happens
with probability 1— O(n~) for each execution of the line. This line is obviously executed at most
O(nlogn) times, and hence we can lower bound the probability of success of alltexes by 099.

From now throughout, we make the following assumption, which is true by tbeealwith
probability at least @7.

Assumption 20 EventsE; and ‘£, hold true.

Note that by conditioning the remainder of our analysis on this assumption nagdiige expec-
tation upper bounds derived earlier and in what follows. This bias can muiltiplgstimates by at
most 1/0.97, which can be absorbed in t@enotation of these bounds.
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Let 1* denote the optimal permutation for the root call to SampleAndDecompos&/witle.
The permutationtis, by Assumption 11, a constant factor approximation for MFASVAN. Us-
ing the triangle inequality, we conclude thdf(m, ) < C(1tV,W) + C(1t*,V,W). Hence,
E[d: (Tt 1T%)] = O(C(1t",V,W)) . From this we conclude, using (4), that

E [doot(TLTF)] = O(C(TT, V,W))

Now consider the recursion treE of SampleAndDecompose. Denolethe set of internal
nodes, and by the set of leaves (i.e., executions exiting from line 8). For a call SampleAcaiDpose
corresponding to a nod¢in the recursion tree, denote the input argument8RyW, ,n, ik ). Let
L[X],R[X] denote the left and right children Kfrespectively. Lekx denote the integdein 11 in the
context ofX € I. Hence, by our definitiond/ x|, Vrix), Ti[x] andTiri) are preciselW, Vg, T, Tk
from lines 12-13 in the context of nodé

Take, asinline INx = |Vx|. Let Tt denote the optimal MFAST solution for instan@é, Wi, ).
By 1 we conclude that the firsD(n*) times in which we iterate through the while loop in
ApproxLocallmprove (counted over all calls to ApproxLocallmproweg, cost ofitk,_, ; is an actual
improvement compared tuk (for the current value dfix, u andj in iteration), and the improvement
in cost is of magnitude at lea§(g|pr, (u) — j|/logn), which isQ(g2Nx /log?n) due to the use of
B defined in line 1. But this means that the number of iterations of the while loop irlbnef
ApproxLocallmprove is

O(g%C(Tix, Vi, Wi ) log?n/Nx ) .

Indeed, otherwise the true cost of the running solution would go belown@eS
C(1x, Vx, Wiy, ) is at most("), the number of iterations is hence at ma¥g 2Ny log?n). By
Lemma 19 the expected query complexity incurred by the call to ApproxLopatve is therefore
O(s~5Nx log®n). Summing over the recursion tree, the total query complexity incurred bytoalls
ApproxLocallmprove is, on expectation, at m()?a(Is‘E'nlog6 n.

Now consider the moment at which the while loop of ApproxLocallmprove temtas Let
Thx denote the permutation obtained at that point, returned to SampleAndDeaindow 10.
We classify the elementsc Vy to two families:Vgho denotes alli € Vi s.t. |pry, (U) — Prg (U)] =

O(eNyx/ logn), andV,>"® denoted/y \ VSO We know, by assumption, that the last sample ensemble

S used in ApproxLocallmprove was a good approximation, hence faraN,"?,

TestMove Ty, Vi, Wiy, U, Prg, (U)) = O(€|pry, (U) — prg (U)|/logn). (11)

Definition 21 (Kenyon-Mathieu and Schudy, 2007) Forwy, we say that u crosses kf the
interval [pr, (U), prg (U)] contains the integerk

Let V¢'*5*denote the (random) set of elements Vx that croskx as chosen in line 11. We define
a key quantityTx as in Kenyon-Mathieu and Schudy (2007) as follows:

TX == Zr TeStMOV&T[lX 7VX7VV‘VX ) U, pr;( (U)) .
uel/gross

Following (11), the elements < \,>"? can contribute at most

Ole Z |Pry (U) — P (U)[/logn

ueVy "
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to Tx. Hence the total contribution from such elements is, by definition,

O(edkoot(Trx, T )/ lOgn)

which is, using (4) at mosD(ed; (Tux, T )/logn). Using the triangle inequality and the definition
of 15, the last expression, in turn, is at m@(EeC(myy, Vx, Wy, )/ logn).

We now bound the contribution of the elemeants V" to Tx. The probability of each such
element to crosk is O(|pm, (U) — Pr, (U)|/Nx). Hence, the total expected contribution of these

elements tdy is
O Zh |Pra (W) — Prg (U)[2/Nx | (12)
UGV; ort

Under the constraintquev;hodpnlx(u) — Prg (U)| < droot(Tax, 1) and [Py, (U) — prg (U)| =
O(eNx/logn), the maximal value of (12) is

O(dhoot(Tux T )eNx / (Nx logn) ) = O(dkoor(Ttux , T )€/ logn) .
Again using (4) and the triangle inequality, the last expression is
O(eC(ux, Vx, W )/ logn) .
Combining the accounting faf!°"9 andvsh°'t we conclude
Exx [Tx] = O(eC(1%, Vx, Wy, )/ logn) , (13)

where the expectation is over the choicégpfin line 11 of SampleAndDecompose.

We are now in a position to use a key Lemma by Kenyon-Mathieu and SchQ@y)2Z-irst we
need a definition: Consider the optimal solutitp respectingv, x;, Vr[X] in lines 12 and 13. By
this we mean thatt, must rank all of the elements W, before (to the left of\/rx. For the sake
of brevity, letCy be shorthand fo€(Tg;, Vx, Wy, ) andCy for C(Tg, Vi, Wy ).

Lemma 22 (Kenyon-Mathieu and Schudy, 2007) With respect to the distribution afuivder k
in line 11 ofSampleAndDecompose

3/2
E[C}] <O (df“t(”ﬁ’”?) ) FE[T+Cx. 14)
X

Using (4), we can repladdoot(Ttx , Tt ) With de(Ttx, Tt ) in (14). Using the triangle inequality,
we can then, in turn, repla@k(Tux, 1) with C(Tx, Vi, Wiy )-

3.6 Summing Over the Recursion Tree

Let us study the implication of (14) for our purpose. Recall 4t ..., Vi} is the decomposition
returned by SampleAndRank, where e&tlkorresponds to a leaf in the recursion tree. Also recall
that 7T denotes the minimizer dE(-,V,W) over all permutations if1(Vy,...,Vk) respecting the
decomposition. Given Assumption 20 it suffices, for our purposes, dw shatftis a (relative)
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small approximation for MFAST oW, W. Our analysis of this account is basically that of Kenyon-
Mathieu and Schudy (2007), with slight changes stemming from boundsvixednE[Tx|. We
present the proof in full detail for the sake of completeness. Let Rdtdahe root node.

For X € I, let Bx denote the contribution of the splifX], R[X] to the LHS of (3). More pre-
cisely,

Bx = > lwu=ts
ueL[X],veR[X]

So we ge§1§i<j§k Z(u,v)e\/i XV 1W(v,u):1 = Y Xel Bx-

For anyX € I, note also that by our definitioftx = C} —C,f[x] —CE[X]. Hence, using Lemma 22
and the ensuing comment,

C(Tux, Vx, Wiy, )¥/2
Nx

E[Bx] <0 (E

) +E[Tx] + E[Cx] ~ E[C{] — ElCrx]

where the expectations are over the entire space of random decisioadynt algorithm execu-
tion. Summing the last inequality ov&re I, we get (minding the cancellations):
C(Tax, Vx, Wiy )32

e |5 < o g[SRI ) e 5

Cir— 3 EICK]. (15)
XeL

+

The expressio& [y x.; Tx] is bounded by (E [S x<; €Y Cx/logn]) using (13) (which depends
on Assumption 20). Clearly the sum G§ for X ranging over nodeX < I in a particular level is
at mostC(1wt,V,W) (again using Assumption 20 to assert that the cost gfis less than the cost
of Tk at each nod&). By taking Assumption 11 into accour@(rrr,V,W) is O(C4r). Hence,
summing over alD(logn) levels,

= O(eChy) -

E L% Tx

Let Ci1x = C(Tux,Vx, Wy, ) for all x € I. Denote byF the expression in th@-notation of the first
summand in the RHS of (15), more precisely:

s
where we remind the reader thdg = |Vx|. It will suffice to show that under Assumption 20, the
following inequality holds with probability 1:

G((Cix)xer (Nx)xer) >Z C1 /Nx < C36Crgr, (17)

3/2

(16)

wherecs > 0 is some global constant. This turns out to require a bit of elementary cslcAlu
complete proof of this assertion is not included in the extended abstractrofok-Mathieu and
Schudy (2007). We present a version of the proof here for thefat@mpleteness.

Under assumption 20, the following two constraints hold uniformly foXad 7 with probabil-
ity 1 Letting Cx = C(T[X7VX7\N\VX):
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(A1) If X is other than RT, leY be its sibling andP their parent. In cas¥ € I:
Cix +Ciy <Cyp. (18)

(In caseY € £, we simply have thaEix < C1p.%) To see this, notice th&l x < Cx, and simi-
larly, in caseY € I,Ciy < Gy. ClearlyCx +Cy < Cyp, becausety, T are simply restrictions
of Typ to disjoint blocks oMp. The required inequality (18) is proven.

(A2) Cpx < ce2Ng for some globat; > 0.

In order to show (17), we may increase the valGeg for X £ RT in the following manner:
Start with the root node. If it has no children, there is nothing to do bectnenG = 0. If it has
only one childX € I, continuously increas€;yx until eitherCix = Cirr (making (Al) tight) or
Cix = C2€2NZ (making (A2) above tight). Then recurse on the subtree rooteXbyn case RT
has two childrerX,Y € I (say,X on left), continuously increage x until eitherCix +Ciy = Cirt
((A1) tight) or untilCyx = ce2NZ ((A2) tight) . Then do the same f@y, namely, increase it until
(A1) is tight or untilCyy = c€2NZ ((A2) tight). Recursively perform the same procedure for the
subtrees rooted bX,Y.

After performing the above procedure, lgtdenote the set of internal nod€gor which (Al) is
tight, namely, either the sibling of X is a leaf andC1x = C1p (WhereP is X’s parent) or the sibling
Y € I andC;x +Ciy = Cyp (in which case als¥ € ;). Let b, = I'\ ;. By our construction, for all
Xe b Cix= Cz€2N>2(.

Note that ifX € I then its children (more precisely, those ihcannot be inf;. Indeed, this
would violate(A2) for at least one child, in virtue of the fact th lies in the rangéNx /3, 2Nx /3]
for any childY of X. Hence, the sef; U {RT} forms a connected subtree which we denote by
T1. Let P € 7; be an internal node if;. Assume it has one child iff;, call it X. Then
Cix = C1p and in virtue ofNx < 2Np/3 we haveClﬁ/z/Np < (2/3)3/201>3</2/Nx. Now assume
P has two childrerX,Y € 7;3. ThenCix +Ciy = Cip. Using elementary calculus, we also have
thatCli/z/Np < (Cli/z/Nx +C1$/2/Ny)/ﬂ (indeed, the extreme case occursNigr= Ny = Np /2
andCi;x = Ciy = C1p/2). We conclude that for anp internal in‘Z3, the corresponding contri-
bution C]_:;/z/NP to G is geometrically dominated by that of its children In Hence the entire
sumGy = 3 xc ufRT} le’(/z/Nx is bounded bycs 3 xc /, Cli/z/Nx for some constant,, where£;
is the set of leaves of;. For each such leaX € £1, we have thaCli/z/Nx < cg/zsclx (using
(A2)), henceszLlcli/z/Nx < Sxer cg/zsclx < cg/zscm (the rightmost inequality in the chain
follows from {Vx }xc, forming a disjoint cover o = Vg, together with(A;)). We conclude that
G < C4C2/2€C1R.

To conclude (17), it remains to show tlad = G— Gy = S xc,. FOrP € Gy, cIearIyClﬁ,/z/Np =
02/253NS. Hence, ifX,Y € G, are children ofP in L, thenClﬁ/z/Np > c5C1>3(/2/Nx +01$/2/NY
and if X is the unique child oP in L, thenClﬁ/z/Np > %Cli/Z/NX, for some globats > 1. In
other words, the contribution t&, corresponding td®> geometrically dominates the sum of the
corresponding contributions of its children. We conclude @ais at most some constacy times
> Xeroot( 1) C1>3</ 2/ Nx, where rootl>) is the set of roots of the forest induced By As before, it is
clear that{V } xcroot 1) is @ disjoint collection, hence as before we conclude @at c7eCyg for
some globat; > 0. The assertion (17) follows, and hence (16).

6. We can say something stronger in this case, but we won't need it here
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Plugging our bounds in (15), we conclude that

E
Xer

; Bx] <Crr(1+0(e)) - > E[CK] .
el
ClearlyC(TLV,W) = Y x;Bx + > xe. Cx. Hence

E[C(7LV,W)] = (1+O())Cir = (1+0(e))C" .

We conclude the desired assertion on expectation. Assumption 20, togétharsimple counting
of accesses t@V/ gives our main result, Theorem 7, as a simple corollary. A simple counting of
accesses t@/ proves Theorem 7.

4. Using Our Decomposition as a Preconditioner for SVM

We consider the following practical scenario, which is can be viewed amparovement over a
version of the well known SVMrank (Joachims, 2002; Herbrich et alQ02Gor the preference
label scenario.

Consider the setting developed in Section 2.1, where each elamient is endowed with a
feature vecton (u) € RY for somed (we can also use infinite dimensional spaces via kernels, but
the effective dimension is never more thas- |V|). Assume, additionally, thaltp(u)||» < 1 for all
u eV (otherwise, normalize). Our hypothesis clagss parametrized by a weight vectare R¢,
and each associated permutatignis obtained by sorting the elements\bin decreasing order of
a score given by scagéu) = (¢(u),w). In other wordsu <, Vv if scorgy(u) > scorg,(v) (in case
of ties, assume any arbitrary tie breaking scheme).

The following SVM formulation is a convex relaxation for the problem of optingzih, V,W)
over our chosen concept clags

(SVM1) minimize Fi(w,&) = ZE“N

s.t.Yu,v:W(uv)=1  scorg(u)—scorg(v) >1—E&y
\V/U,V EU,V 2 O
Iwl[ <¢

Instead of optimizing (SVM1) directly, we make the following observation.eAgood decom-
positionV, ..., Vi gives rise to a surrogate learning problem oMé¥, ..., Vi) C MN(V), such that
optimizing over the restricted set does not compromise optimality [d¥en by more than a rela-
tive regret ofe (property (3)). In turn, optimizing ovd (V4, ..., Vi) can be done separately for each
blockVi. A natural underlying SVM corresponding to this idea is captured as fellow

(SVM2) minimize F(wE) = z Euv
u,veA UMy
s.t.V(u,v) € AUA scorgy(u) —scorgy(v) > 1—&,y
vu,v &uy >0
wl<c,
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whereA; = Ui j<xVi x Vj andAz = U, {(u,v) tu,v € Vi AW(u,v) = 1}

Abusing notation, fow € RY s.t. ||w|| < ¢, let Fy(w) denote mirFy(w, &), where the minimum is
taken over alk, that satisfy the constraints of SVM1. Observe tRgw) is simply F(w, &), where
¢ is taken as:

£, — max{0, 1 — scorg(u) +scorg,(v)} W(u,v)=1
"7 o otherwise

Similarly defineF,(w) as the minimizer of»(w,§), which is obtained by setting:
(19)

£y = max{0, 1 — scorg,(u) +scorg(v)} (u,v) € AjUN,
"o otherwise

Let 1" denote the optimal solution to MFAST aHW.

We do not know how to directly relate the optimal solution to SVM1 and that of 3VMow-
ever, we can can replace SVM2 with a careful sampling of constraintedhesuch that (i) the
solution to the subsampled SVM is optimal to within a relative errog ag a solution to SVM2,
and (i) the sampling is such that on®(npoly(logn,e~)) queries tow are necessary in order
to construct it. This result, which we guantify in what follows, strongly retiesthe local chaos
property of thee-good decomposition (2) and some combinatorics on permutations.

Our subsampled SVM which we denote by SVM3, is obtained as follows. && ef notation
we assume that all blocRg, ...,V are big inV, otherwise a simple accounting of small blocks
needs to be taken care of, adding notational clutter. Asebe a subsample of siZzd (chosen
shortly) of Az, each element chosen uniformly at random frgn(with repetitions - hencés is a
multi-set). Define:

k nj
(SVM3) minimize  R(w§) = % fuv+t ica(5) T Eu

U,VENL M u,vels
s.t.V(u,v) € AjUA3 scorgy(u) —scorg,(v) > 1—&yy
VU,V Eu,v Z O
[wl| <c

As before, definés(w) to beFs(w, &), whereg = &(w) is the minimizer ofF3(w, -) and is taken
as

max{0,1— scorg,(u) +scorg(v)} (u,v) € A;UA3
Eu7v = . .
0 otherwise

Our ultimate goal is to show that for quite smill SVM3 is a good approximation of SVM2.
To that end we first need another lemma.
Lemma 23 Any feasible solutiofw, &) for SVM1 satisfie§ ,, &uv > C(1T",V,W).

Proof The following has been proven by Ailon et al. (2008a): Consiu@n-transitivetriangles
induced byw: These are triplet&u, v, y) of elements itV such thaw(u,v) =W (v,y) =W(y,u) = 1.
Note that any permutation must disagree with at least one pair of elementénednita a non-
transitive triangle. LeT denote the set of non-transitive triangles. Now consider an assignient o
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non-negative weightg; for eacht € T. We say that the weight systeff: }.ct packs Tif for all
u,veV such that(u,v) = 1, the sunty ., jn (B is at most 1. (By,v in t we mean thati,v are
two of the three elements inducihg Let {B; }ict be a weight system packirigwith the maximum
possible value of the sum of weights. Then

“ > C(TT,V,W) /3. 20
t;Bt— ( )/ (20)

Now consider one non-transitive triangdle= (u,v,y) € T. We lower boundy + &vy + &yu
for any & such thatw,§ is a feasible solution to SVM1. Letting = scorg,(u) — scorg,(v),b =
scorg,(Vv) — scorg(y),c = scorg(y) — scorgy(u), we get from the constraints in SVM1 that, >
1-a&,y>1-bé&,,>1-c. Butclearlya+b+c=0, hence

Euy+ &y +E&yu>3. (22)

Now notice that the objective function of SVM1 can be bounded from be®¥ollows:

ZEU,V > Z Bt*(EuN"‘Ev,y"‘E.y,u)

t=(uvy)eT
> > B3

t=(uvy)eT
> C(Tt,V,W) .

(The first inequality was due to the fact thid; }ict is a packing of the non-transitive triangles,
hence the total weight corresponding to each pairis at most 1. The second inequality is from
(21) and the third is from (20).) This concludes the proof. |

Theorem 24 Lete € (0,1) and M= O(e~%(1+2c)2dlog(1/¢)). Then with high constant probabil-
ity, for all w such that|w|| <c,

[F3(w) — Fa(w)[ = O(eFa(w)) -

Proof LetBy(c) = {ze RY: ||z| < c}. Fix a vectorw € Bq(c). Over the random choice d¥s, it
is clear thatE[Fs3(w)] = Fx(w). We need a strong concentration bound. From the observation that
|&uv| < 14 2cfor all u,v, we conclude (using Hoeffding bound) that for @t O,

— M
Pr{|Fs(w) —F2(w)| > 1] < exp{ , } : (22)
(354 (3) (1 +2c))°

Letn = €3 and consider an-net of vectorsvin the ballBg(c). By this we mean a subsetC By(c)
such that for alk € By(c) there existsve I s.t. |[z—w]|| <n. Standard volumetric arguments imply
that there exists such a gebf cardinality at mostc/n)°.

Letze I’ andw € By(c) such that|jw — z|| <n. From the definition of, F3, it is clear that

R -R@< 5 (3)2 1Rm-ro <3 (5)e 23)
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Using (22), we conclude that for apy> 0, by takingM = O(u2(3 (%) )?(142c)?dlog(cn 1)),
with constant probability over the choice &4, uniformly forallze I

IFs(2) - R(2)| < u.

Takep = €2 Zik:1 (’;) We conclude (plugging in our choice pfand the definition of) that by
choosing
M = O(e~°(1+ 2c)?dlog(c/e)) ,

with constant probability, uniformly for alt e I':

R-ral<3 (3).

Using (23) and the triangle inequality, we conclude that fomed! By(c),

Fa(w) — Fa(w)] < ss?{_il (3)- (24)

|
By property (2) of thee-goodness definition, (24) implies

k

k
w) — F(w)| <3¢ min C(my,Vi,Wy, ) = 3¢ min C(o,Vi,Wy:) .
Fa(w) ~Fo(w)] < 36 min 3 C(1hy, Vi, Wiy) =3¢ 3 min C(o,, W)

By Lemma 23 applied separately in each bldtkhis implies

k

|Fs(w) —Fo(w)| < 3¢ Zl .Ew = 3R (W),

(whereg = &(w) is as defined in (19).) This concludes the proof. |

5. Limitations and Future Work

Optimality. The exponent o~ in Theorem 7 seems rather high, and it would be interesting to
improve it. A better dependence ©f* has been recently claimed by Ailon et al. (2011). It would
be interesting to find the correct bound.

Practicality. Our bounds are asymptotic, and our work calls for experimentation in éooder
determine in which cases our sampling technique beats uniform sampling.

Searching in natural permutation subspacAafgyorithm 1, which leads to our main result Theo-
rem 7, is heavily based on dividing and conquering. This is also the main limititibis work. To
understand this limitation, consider the scenario of Section 4. There, tti#ipreer searches in the
limited space ofinearly induced permutationsamely, permutations induced by a linear functional
applied to the features endowing the elements.ilt is not hard to conceive a scenario in which our
divide and conquer step constrains the algorithm to search in a regi@mofipations that does not
intersect this restricted search space. This, in fact, was the reasaur fioability to relate between
SVML1 and SVM2 (and its subsampled counterpart, SVM3). There is nothiega about linearly
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induced permutations, for this matter. In a recently studied scenario (JansieddNowak, 2011),
for example, one searches in the space of permutations induced bylsottiens computed as the
distance from a fixed point from some metric space in whicls embedded. The same problem
exists there as well: our sampling algorithm cannot be used to find almost optitaibns within
any restricted permutation subspace. Interestingly, the main result of Ailn(@011), achieved
while this work has been under review, has alleviated this problem usingewiniques.
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Appendix A. Linear VC Bound of Permutation Set

To see why the VC dimension of the set of permutations viewed as binartidaraver the set of
all possible(g) preferences, it is enough to show that any collection péirs of elements cannot
be shatteredby the set of permutation. (Refer to the definition of VC dimension by Vapnik an
Chervonenkis (1971) for a definition of shattering). Indeed, any simdlection must contain a
cycle, and the set of permutations cannot direct a cycle cyclically.

Appendix B. Why The Disagreement Coefficient Does Not Help Here

We now show why a straightforward application of the disagreement ciegifi(Hanneke, 2007) is
not useful in our setting. The key idea of Hanneke (2007) is a definiti@anmeasure of distance
between concepts, equalling the volume of data points on which they disagréksing this mea-
sure, one then defines a bBli(m) of radiusr around a concept (a permutatiom)in an obvious
way. The disagreement coefficie@tis then defined as the smallest possible number bounding as
a linear function®@r the volume of points on which the hypothesesBinare not unanimous on.
Adopting this idea here, the underlying distance between hypothesasufpéions) is simply the
Kendall-tau distance (1, o) divided by(3). We need to normalize this distance because Hanneke'’s
work, as does most statistical machine learning work, assumes a probabaisyira@n the space of
instances (pairs of elements), while we used the counting measure fars/egmsons of simplicity.

We define the normalized distance functiordast, o) = (3) ‘dv(r o).

If we consider a balB; (1) of radiusr > 2/n around some permutationonV, then it is easy to
see that there does not exist a pair of elemaniss V on whichB; () is unanimous on. Indeed, a
simple swap of any two elements results in a permutaticratisfyingds (11, 77) < 2/n. This means
that the disagreement coefficient, by definition, is it le@éh). Recall that the VC dimension
of the space of permutations, viewed @$-dimensional binary preference vectors, is at nost
Plugging these bounds into the analysis of Hanneke (2007) of the fanmbatgarithm using the
disagreement coefficient results in a sample complexity whi€(i§) for any desired error rate.
Clearly this is suboptimal because the number of pairs is Ohy).

161



AILON

References

Nir Ailon and Mehryar Mohri. Preference based learning to ravikchine Learning80:189-212,
2010.

Nir Ailon and Kira Radinsky. Ranking from pairs and triplets: Informatiorakfy, evaluation
methods and query complexity. Rroceedings of the 4th ACM International Conference on Web
Search and Data Mining (WSDV2011.

Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimdliegdistance to a
monotone functionRandom Struct. Algorithm81(3):371-383, 2007.

Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistémtmation: Ranking
and clusteringJ. ACM 55(5), 2008a.

Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Rtpg@eserving data recon-
struction. Algorithmica 51(2):160-182, 2008b.

Nir Ailon, Ron Begleiter, and Esther Ezra. A new active learning scheme ayfiications to
learning to rank from pairwise preferencesxiv:1110.21362011.

Miklos Ajtai, Vitaly Feldman, Avinatan Hassidim, and Jelani Nelson. Sorting ahelcion with
imprecise comparisons. lAutomata, Languages and Programminglume 5555 ofLecture
Notes in Computer Scienggages 37—48. Springer Berlin / Heidelberg, 2009.

Noga Alon. Ranking tournamentSIAM J. Discret. Math.20(1):137-142, 2006.
Dana Angluin. Queries revisitedheor. Comput. S¢i313(2):175-194, 2004.

Les Atlas, David Cohn, Richard Ladner, Mohamed A. El-Sharkawi, aoldeR J. Marks. Train-
ing connectionist networks with queries and selective samplindgeroceedings of Advances in
Neural Information Processing Systems (NIR&#)ges 566-573, 1990.

Les Atlas, David Cohn, and Richard Ladner. Improving generalization agtive learning.Ma-
chine Learning15(2):201-221, 1994.

Maria-Florina Balcan, Nikhil Bansal, Alina Beygelzimer, Don CoppersmithnlLangford, and
Gregory B. Sorkin. Robust reductions from ranking to classificatibfachine Learning 72
(1-2):139-153, 2008.

Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostivalearning.J. Comput.
Syst. Scj.75(1):78-89, 2009.

Maria-Florina Balcan, Steve Hanneke, and Jennifer Vaughan. Teésample complexity of active
learning.Machine Learning80:111-139, 2010.

Yoram Baram, Ran El-Yaniv, and Kobi Luz. Online choice of activerieay algorithms.Journal
of Machine Learning Research:255-291, 2004.

Ron Begleiter, Ran El-Yaniv, and Dmitry Pechyony. Repairing self-centicctive-transductive
learners using systematic exploratidtattern Recognition Letter29(9):1245-1251, 2008.

162



ACTIVE LEARNING FROM PAIRWISE PREFERENCES

Mark Braverman and Elchanan Mossel. Noisy sorting without resamplimgPraceedings of
the nineteenth Annual ACM-SIAM Symposium on Discrete algorithms (5@Bdes 268-276,
Philadelphia, PA, USA, 2008.

Ben Carterette, Paul N. Bennett, David Maxwell Chickering, and Susdtiefe or there: Prefer-
ence judgments for relevance. Pnmoceedings of the 30th European Conference on Information
Retrieval (ECIR)pages 16-27, 2008.

William W. Cohen, Robert E. Schapire, and Yoram Singer. Learningderahings. InProceedings
of the 10th Conference on Advances in Neural Information Processisigi8s (NIPS)pages
451-457, 1998.

Koby Crammer and Yoram Singer. Pranking with rankingPhoceedings of the 14th Conference
on Advances in Neural Information Processing Systems (N&8es 641-647, 2001.

Aron Culotta and Andrew McCallum. Reducing labeling effort for strualyseediction tasks. In
Proceedings of the 20th Conference on Artificial Intelligence (AA#dyes 746751, 2005.

Sanjoy Dasgupta. Coarse sample complexity bounds for active learnmBroteedings of the
18th Conference on Advances in Neural Information Processing Sy§liRS) pages 235-242,
2005.

Sanjoy Dasgupta, Daniel Hsu, and Claire Monteleoni. A general agraasive learning algorithm.
In Proceedings of the 21st Conference on Advances in Neural InformBtimcessing Systems
(NIPS) 2007.

Sanjoy Dasgupta, Adam Tauman Kalai, and Claire Monteleoni. Analysisoépton-based active
learning.Journal of Machine Learning ResearctD:281-299, 2009.

Persi Diaconis and Ronald L. Graham. Spearman’s footrule as a medslisarray.Journal of the
Royal Statistical Society. Series B (Methodologica®(2):pp. 262—268, 1977.

Irit Dinur and Shmuel Safra. On the importance of being biase®rdeeedings of the 34th Annual
Symposium on the Theory of Computing (ST@ayes 33—42, 2002.

Ran El-Yaniv and Yair Wiener. On the foundations of noise-free sgkectassificationJ. Machine
Learning Research1:1605-1641, 2010.

Uri Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal. Computitihgunreliable informa-
tion. InProceedings of the 22nd Annual Symposium on the Theory of Comp8Ti@) pages
128-137, 2002.

Shai Fine, Ran Gilad-Bachrach, and Eli Shamir. Query by committee, lieparation and random
walks. Theoretical Computer Scienc284(1):25-51, 2002.

Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali Tishby. ®&etampling using the
query by committee algorithmMach. Learn, 28(2-3):133-168, 1997.

Eric J. Friedman. Active learning for smooth problertrsProceedings of th82"d Annual Confer-
ence on Learning Theory (COLT)009.

163



AILON

Shirley Halevy and Eyal Kushilevitz. Distribution-free property-testiSgAM J. Comput.37(4):
1107-1138, 2007.

Steve Hanneke. A bound on the label complexity of agnostic active learimmyoceedings of the
24th International Conference on Machine Learning (ICMhages 353—-360, 2007.

Ralf Herbrich, Thore Graepel, and Klaus Obermagelvances in Large Margin Classifiershapter
7 (Large Margin Rank Boundaries for Ordinal Regression), pa$jgs132. MIT Press, 2000.

Eyke Hillermeier, Johannesifnkranz, Weiwei Cheng, and Klaus Brinker. Label ranking by learn
ing pairwise preference#irtif. Intell., 172(16-17):1897-1916, 2008.

Kevin G. Jamieson and Robert D. Nowak. Active ranking using pairwiseparisons. IrPro-
ceedings of the 25th Conference on Advances in Neural Informatiae®smg Systems (NIRS)
2011.

Thorsten Joachims. Optimizing search engines using clickthrough dat®roéeedings of the
8th ACM SIGKDD International Conference on Knowledge DiscoveryRath Mining pages
133-142, 2002.

Richard M. Karp. Reducibility among combinatorial problems.Clomplexity of Computer Com-
putations pages 85—-104. Plenum Press, New York, 1972.

Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errtmsProceedings of the
39th Annual Symposium on the Theory of Computing (STRHgEes 95-103, 2007.

Michael Lindenbaum, Shaul Markovitch, and Dmitry Rusakov. Selectarapding for nearest
neighbor classifierdvlachine Learning54:125-152, 2004.

Dan Roth and Kevin Small. Margin-based active learning for structurgzlibapaces. IRroceed-
ings of the European Conference on Machine Learning (ECGages 413—-424, 2006.

Vladimir N. Vapnik and Alexey Ya. Chervonenkis. On the uniform coneexe of relative frequen-
cies of events to their probabilitieg.heory of Probability and its Application46(2):264-280,
1971.

Kai Yu, Jinbo Bi, and Volker Tresp. Active learning via transductivperxmental design. In
Proceedings of the 23rd International Conference on Machine Legr(i@ML), pages 1081—
1088, 2006.

164



