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Abstract
Given a setV of n elements we wish to linearly order them given pairwise preference labels which
may be non-transitive (due to irrationality or arbitrary noise).

The goal is to linearly order the elements while disagreeingwith as few pairwise preference
labels as possible. Our performance is measured by two parameters: The number of disagreements
(loss) and the query complexity (number of pairwise preference labels). Our algorithm adaptively
queries at mostO(ε−6nlog5n) preference labels for a regret ofε times the optimal loss. As a
function ofn, this is asymptotically better than standard (non-adaptive) learning bounds achievable
for the same problem.

Our main result takes us a step closer toward settling an openproblem posed by learning-to-
rank (from pairwise information) theoreticians and practitioners: What is a provably correct way to
sample preference labels? To further show the power and practicality of our solution, we analyze a
typical test case in which a large margin linear relaxation is used for efficiently solving the simpler
learning problems in our decomposition.
Keywords: statistical learning theory, active learning, ranking, pairwise ranking, preferences

1. Introduction

We study the problem of learning to rank from pairwise preferences, and solve a long-standing open
problem that has led to development of many heuristics but no provable results.

The setting is as follows: We are given a setV of n elements from some universe, and we wish
to linearly order them given pairwise preference labels. given two elements u,v ∈ V, a pairwise
preference label is obtained as a response, typically from a human, to thequestionwhich if preferred,
u or v? We assume no abstention, hence, eitheru is preferred tov (denotedu≺ v) or the other way
around.

The goal is to linearly order the elements from the most preferred to the leastpreferred, while
disagreeing with as few pairwise preference labels as possible. Our performance is measured by
two parameters: The loss (number of pairwise preference labels we disagree with) and the query
complexity (number of pairwise preference labels we obtain). This is a typical learning problem,
with the exception that the sample space is finite, consisting of

(n
2

)

possibilities only.
The loss minimization problem given the entiren×n preference matrix is a well known NP-

hard problem called MFAST (minimum feedback arc-set in tournaments) (Alon, 2006). Recently,
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Kenyon-Mathieu and Schudy (2007) have devised a PTAS for it, namely,a polynomial (inn) -time
algorithm computing a solution with loss at most(1+ε) the optimal, for andε> 0 (the degree of the
polynomial may depend onε). In our case each edge from the input graph is given for a unit cost.
Our main algorithm is derived from Kenyon et al’s algorithm. Our output, however, is not a solution
to MFAST, but rather a reduction of the original learning problem to a different, simpler one. The
reduced problem can be solved using any general ERM (empirical risk minimization) black-box.
The sampling of preference labels from the original problem is adaptive,hence the combination of
our algorithm and any ERM blackbox is an active learning one. We give examples with an SVM
based ERM black-box toward the end.

1.1 Our Setting vs. The Usual “Learning to Rank” Problem

Our setting defers from much of thelearning to rank(LTR) literature. Usually, the labels used in
LTR problems are responses to individual elements, and not to pairs of elements. A typical example
is the 1..5 scale rating for restaurants, or 0,1 rating (irrelevant/relevant) for candidate documents
retrieved for a query (known as thebinary rankingproblem). The goal there is, as in ours, to order
the elements while disagreeing with as little pairwise relations as possible, where apairwise relation
is derived from any two elements rated differently. Note that the underlyingpreference graph there
is transitive, hence no combinatorial problem due to nontransitivity. In fact, some view the rating
setting as an ordinal regression problem and not a ranking problem. Here the preference graph may
contain cycles, and is hence agnostic with respect to the concept class weare allowed to output
from, namely, permutations. We note that some LTR literature does consider thepairwise prefer-
ence label approach, and there is much justification to it (see Carterette et al. 2008; Ḧullermeier
et al. 2008 and reference therein). As far as we know, our work provides a sound solution to a
problem addressed by machine learning practitioners (e.g., Carterette et al. 2008) who use pairwise
preferences as labels for the task of learning to rank items, but wish to avoid obtaining labels for the
quadratically many preference pairs, without compromising low error bounds. We also show that
the problem of quadraticityfound in much work dealing with pairwise preference based learning
to rank (e.g., from Crammer and Singer 2001the [pairwise] approach is time consuming since it
requires increasing the sample size ... to O(n2)) can be alleviated in the light of new advances in
combinatorial optimization (Ailon et al., 2008a; Kenyon-Mathieu and Schudy,2007).

1.2 Using Kenyon and Schudy’s PTAS as a Starting Point

As mentioned above, our main algorithm is derived from the PTAS of Kenyon-Mathieu and Schudy
(2007), but it is important to note a significant difference between our work and theirs. A good
way to explain this is to compare two learners, Larry and Linda. On the first day, Larry queries all
(n

2

)

pairwise preference labels and sends them to a perfect solver for MFAST. Linda uses our work
to query onlyO(npoly(logn,ε−1)) preference labels and obtains a decomposition of the original
input V into an ordered listof sub-problemsV1, . . . ,Vk where eachVi is contained inV. Using
the same perfect solver for the induced subproblems corresponding to each part and concatenating
the individual output permutations, Linda will incur a loss of at most(1+ ε) that of Larry. If
the decomposition is nontrivial, then Linda enjoys reduced query complexity for a small regret
compared to Larry. The next day, both Larry and Linda realize that the perfect MFAST solver
cannot deal with large inputs (the problem is NP Hard). They cannot usethe PTAS of Kenyon-
Mathieu and Schudy (2007) because they seek a multiplicative regret of(1+ ε) with respect to the
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optimal solution (we also say arelative regretof ε), and the soughtε makes this infeasible.1 To
remedy this, Larry takes advantage of the fact that the setV does not merely consist of abstract
elements, but rather eachu ∈ V is endowed with a feature vectorϕ(u) and hence each pair of
pointsu,v is endowed with the combined feature vector(ϕ(u),ϕ(v)). As in typical learning, he
posits that the order relation betweenu,v can be deduced from a linear function of(ϕ(u),ϕ(v)),
and invokes an optimizer (e.g., SVM) on the relaxed problem, with all pairs as input. Note that
Larry may try to sample pairs uniformly to reduce the query complexity (and, perhaps, the running
time of the relaxed solver), but as we show below, he will be discouraged from doing so because
in certain realistic cases a relative regret ofε may entail sampling the entire pairwise preference
space. Linda uses the same relaxed optimizer, say, SVM. The labels she sends to the solver consist
of a uniform sample of pairs from each blockVi , together with all pairsu,v residing in separate
blocks from her aforementioned construction decomposition. From the former label type she would
need onlyO(npoly(logn,ε−1)) many, because (per our decomposition design) within the blocks the
cost of any solution is high, and hence arelativeerror is tantamount to an absolute error of similar
magnitude, for which careful arguments allow low query complexity. From thelatter label type, she
would generate a label for all pairsu,v in distinctVi ,Vj , using a ”made up” label corresponding to
the order ofVi ,Vj (recall that the decomposition is ordered).

As the above story suggests, we do not run the PTAS of Kenyon-Mathieuand Schudy (2007)
verbatim, but use it only to obtain a certain decomposition of the input. Among other changes,
a key change to their algorithm is required by replacing a highly sensitive greedy improvement
step into a robust approximate one, by careful sampling. The main difficulty stems from the fact
that after a single greedy improvement step, the sample becomes stale and requires refreshing. We
show a query efficient refreshing technique that allows iterated approximate greedy improvement
steps. Interestingly, the original analysis is amenable to this change. It is also interesting to note
that the sampling scheme used for identifying greedy improvement steps for acurrent solution are
similar to ideas used by Ailon et al. (2007, 2008b) and Halevy and Kushilevitz(2007) in the context
of property testing and reconstruction, where elements are sampled from exponentially growing
intervals in a linear order.

The 3-approximation algorithm for MFAST using QuickSort by Ailon et al. (2008a) is used in
Kenyon-Mathieu and Schudy (2007) as well as here as an initialization step. Note that this is a sub-
linear algorithm. In fact, it samples onlyO(nlogn) pairs from the

(n
2

)

possible, on expectation. Note
also that the pairs from which we query the preference relation in QuickSort are chosen adaptively.

1.3 Our Work in the Context of Machine Learning Reductions

Our main algorithm reduces a given instance to smaller subproblems decomposing it. We compare
the machine learning reduction approach to two other works, that of Balcanet al. (2008) and that
of Ailon and Mohri (2010). The former also considers a reduction of theproblem of learning to
rank, but in thebipartite ranking(see Section 1.1) setting where, in the first place, it is assumed
that individual elements are endowed with unknown labels on a scale (of size two). The output is
a permutation, and the loss function is the number of pairwise inversions. Their work shows that
the problem of minimizing the regrets of the underlying binary classification andranking problems
is, up to a constant, the same thing. Their work, in fact, questions the justification for the so-called

1. The running time of the PTAS is exponential inε−1. We note here, for the sake of comparison, that our sampling
scheme has complexity polynomial inε−1.

139



A ILON

binary ranking problem. The latter (Ailon and Mohri, 2010) considers the same setting as here, and
shows a query efficient algorithm that reduces the original instance, which may contain cycles, to a
binary classification problem over an adaptively chosen set ofO(nlogn) pairs on expectation. The
results there guarantee a total regret of at most twice that of the optimal.2 Here we obtain at most
1+ ε that of the optimal usingO(npoly(logn,ε−1)) pairwise queries.

1.4 Our Work in the Context of Active Learning

Active learning is an important field of statistical learning theory and practice(El-Yaniv and Wiener,
2010; Balcan et al., 2010; Hanneke, 2007; Dasgupta, 2005; Culotta and McCallum, 2005; Roth and
Small, 2006; Dasgupta et al., 2007; Atlas et al., 1994; Freund et al., 1997;Lindenbaum et al., 2004;
Begleiter et al., 2008; Balcan et al., 2009; Angluin, 2004; Dasgupta et al.,2009; Fine et al., 2002;
Baram et al., 2004; Atlas et al., 1994; Friedman, 2009; Atlas et al., 1990; Yu et al., 2006). In the most
general setting, one wishes to improve on standard query complexity bounds (using, for example,
VC or Rademacher complexity) by actively choosing which instances to obtainlabels for. Many
heuristics have been developed, while algorithms with provable bounds (especially in the agnostic
case) are known for few problems. Balcan et al. (2010) show that anylearning algorithm for a finite
VC dimensional space admits an active learning algorithm which asymptotically beats, in query
complexity, that of a passive learning algorithm. Their guarantees are, however, unverifiable in the
sense that the learner does not know when to stop querying in order to achieve a certain error. Also,
their scheme still requires a considerable amount of work in order to be applicable for individual
problems. It is an interesting open question to apply it to the problem at hand and compare the
results with our algorithms’ guarantees. Also, Balcan et al. (2009) proposed an active learning
algorithm called A2. A useful measure of complexity which was later defined by Hanneke (2007)
is key in analysis of A2. He defined a disagreement coefficient for a concept space and showed how
this measure could be used for active learning in certain cases. We show inAppendix B why this
measure does not help here.

1.5 Our Work in the Context of Noisy Sorting

There is much literature in theoretical computer science on sorting noisy data.For example, Braver-
man and Mossel (2008) present an algorithm with anO(nlogn) query complexity for exact order
reconstruction when the input is Bayesian with certain natural priors. Feigeet al. (2002) consider a
scenario in which the input preference graph is transitive, but queriesmay result in noisy compar-
isons which may be inconsistent with previous information (hence, queryingthe same pair multiple
times would result in difference independent responses). Ajtai et al. (2009) consider a setting in
which each element has a latent value, and comparisons of two elements with similar value may
result in errors. In this work the input is not Bayesian, query responses are fixed and elements do
not have a latent value.

1.6 Paper Organization

In Section 2 we present basic definitions and lemmata, and in particular definewhat a good decom-
position is and how it can be used in learning permutations from pairwise preferences. Section 3
presents our main active learning algorithm which is, in fact, an algorithm forproducing a good

2. Additionally, they consider the so called binary ranking, which is not the problem here.
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decomposition query efficiently. The main result is presented in Theorem 7.Section 4 discusses our
main results as a preconditioner for a standard SVM relaxation for the hardcombinatorial problems
underlying the problem of minimum feedback-arcset in sparse graphs.

2. Notation and Basic Lemmata

We start by introducing basic notations and definitions of the problem, together with results from
statistical learning theory which we will later improve.

2.1 The Learning Theoretical Problem

Let V denote a finite set that we wish to rank. In a more general setting we are given a sequence
V1,V2, . . . of sets, but there is enough structure and interest in the single set case,which we focus
on in this work. Denote byn the cardinality ofV. We assume there is an underlying preference
functionW on pairs of elements inV, which is unknown to us. For any ordered pairu,v∈V, the
preference valueW(u,v) takes the value of 1 ifu is deemed preferred overv, and 0 otherwise. We
enforceW(u,v)+W(v,u) = 1, hence,(V,W) is a tournament. We assume thatW is agnosticin the
sense that it does not necessarily encode a transitive preference function, and may contain errors
and inconsistencies. For convenience, for any two real numbersa,b we will let [a,b] denote the
interval{x : a≤ x≤ b} if a≤ b and{x : b≤ x≤ a} otherwise.

Assume now that we wish to predictW using a hypothesish from some concept classH .
The hypothesish will take an ordered pair(u,v) ∈ V as input, and will output label of 1 to assert
that u precedes vand 0 otherwise. We wantH to contain only consistent hypotheses, satisfying
transitivity (i.e., ifh(u,v) = h(v,w) = 1 thenh(u,w) = 1). A typical way to do this is using a linear
score function: Eachu∈V is endowed with a feature vectorϕ(u) in some RKHSH, a weight vector
w∈ H is used for parametrizing eachhw ∈H , and the prediction is as follows:3

hw(u,v) =











1 〈w,ϕ(u)〉> 〈w,ϕ(v)〉
0 〈w,ϕ(u)〉< 〈w,ϕ(v)〉
1u<v otherwise

.

Our work is relevant, however, to nonlinear hypothesis classes as well. We denote byΠ(V) the
set permutations on the setV, hence we always assumeH ⊆ Π(V). (Permutationsπ are natu-
rally viewed as binary classifiers of pairs of elements via the preference predicate: The notation is,
π(u,v) = 1 if and only if u≺π v, namely, ifu precedesv in π. Slightly abusing notation, we also
view permutations as injective functions from[n] to V, so that the elementπ(1) ∈V is in the first,
most preferred position andπ(n) is the least preferred one. We also define the functionρπ inverse
to π as the unique function satisfyingπ(ρπ(v)) = v for all v ∈ V. Hence,u≺π v is equivalent to
ρπ(u)< ρπ(v). )

As in standard ERM setting, we assume a non-negative risk functionCu,v penalizing the error of
h with respect to the pairu,v, namely,

Cu,v(h,V,W) = 1h(u,v) 6=W(u,v) .

3. We assume thatV is endowed with an arbitrary linear order relation, so we can formally writeu< v to arbitrarily yet
consistently break ties.
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The total loss,C(h,V,W) is defined asCu,v summed over all unorderedu,v ∈ V. Our goal is to
devise an active learning algorithm for the purpose of minimizing this loss.

In this paper we find an almost optimal solution to the problem using important breakthroughs
in combinatorial optimization of a related problem calledminimum feedback arc-set in tournaments
(MFAST). The relation between this NP-Hard problem and our learning problem has been noted
before (Cohen et al., 1998), but no provable almost optimal active learning has been devised, as far
as we know.

2.2 The Combinatorial Optimization Counterpart

MFAST is defined as follows: Assume we are givenV andW and its entirety, in other words, we
pay no price for readingW. The goal is to order the elements ofV in a full linear order, while
minimizing the total pairwise violation. More precisely, we wish to find a permutationπ on the
elements ofV such that the total backward cost:

C(π,V,W) = ∑
u≺πv

W(v,u) (1)

is minimized. The expression in (1) will be referred to as theMFAST costhenceforth.
WhenW is given as input, this problem is known as the minimum feedback arc-set in tourna-

ments (MFAST). A PTAS has been discovered for this NP-Hard very recently (Kenyon-Mathieu and
Schudy, 2007). Though a major theoretical achievement from a combinatorial optimization point of
view, the PTAS is not useful for the purpose oflearning to rank from pairwise preferencesbecause
it is not query efficient. Indeed, it may require in some cases to read all quadratically many entries
in W. In this work we fix this drawback, while using their main ideas for the purpose of machine
learning to rank. We are not interested in MFAST per se, but use the algorithm by Kenyon-Mathieu
and Schudy (2007) to obtain a certain useful decomposition of the input(V,W) from which our
main active learning result easily follows.

Definition 1 Given a set V of size n, an ordered decomposition is a list of pairwise disjoint subsets
V1, . . . ,Vk⊆V such that∪k

i=1Vi =V. For a given decomposition, we let W|Vi denote the restriction of
W to Vi×Vi for i = 1, . . . ,k. Similarly, for a permutationπ∈Π(v) we letπ|Vi denote the restriction of
the permutation to the elements of Vi (hence,π|Vi ∈Π(Vi)). We say thatπ∈Π(V) respects V1, . . . ,Vk

if for all u ∈ Vi ,v ∈ Vj , i < j, u≺π v. We denote the set of permutationsπ ∈ Π(V) respecting the
decomposition V1, . . . ,Vk by Π(V1, . . . ,Vk). We say that a subset U of V issmall in V if |U | ≤
logn/ log logn, otherwise we say that Uis big in V. A decomposition V1, . . . ,Vk is ε-good with
respect to W if:4

• Local chaos:

min
π∈Π(V)

∑
i:Vi big in V

C(π|Vi
,Vi ,W|Vi

)≥ ε2 ∑
i:Vi big in V

(

ni

2

)

. (2)

• Approximate optimality:

min
σ∈Π(V1,...,Vk)

C(σ,V,W)≤ (1+ ε) min
π∈Π(V)

C(π,V,W) . (3)

4. We will just sayε-good ifW is clear from the context.
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Intuitively, anε-good decomposition identifies a block-ranking of the data that is difficult to rank
in accordance withW internally on average among big blocks (local chaos), yet possible to rank
almost optimally while respecting the decomposition (approximate optimality). We show how to
take advantage of anε-good decomposition for learning in Section 2.3. The ultimate goal will be to
find anε-good decomposition of the input setV usingO(poly(logn,ε−1)) queries intoW.

2.3 Basic Results from Statistical Learning Theory

In statistical learning theory, one seeks to find a classifier minimizing an expected cost incurred on
a random input by minimizing the empirical cost on a sample thereof. If we view pairs of elements
in V as data points, then the MFAST cost can be cast, up to normalization, as an expected cost
over a random draw of a data point. The distribution space is finite, hence we may view this as a
transductive learning algorithm. Recall our notation ofπ(u,v) denoting the indicator function for
the predicateu≺π v. Thusπ is viewed as a binary hypothesis function over

(V
2

)

, andΠ(V) can be
viewed as the concept class of all binary hypotheses satisfying transitivity: π(u,v)+π(v,y)≥ π(u,y)
for all u,v,y.

A sampleE of unordered pairs gives rise to apartial cost, CE defined as follows:

Definition 2 Let (V,E) denote an undirected graph over V , which may contain parallel edges (Eis
a multi-set). The partial MFAST cost CE(π) is defined as

CE(π,V,W) =

(

n
2

)

|E|−1 ∑
(u,v)∈E
u<πv

W(v,u) .

(The accounting of parallel edges inE is clear.) The functionCE(·, ·, ·) can be viewed as anempirical
unbiased estimatorof C(π,V,W) if E⊆

(V
2

)

is chosen uniformly at random among all (multi)subsets
of a given size.

The basic question in statistical learning theory is, how good is the minimizerπ of CE, in terms
of C? The notion of VC dimension by Vapnik and Chervonenkis (1971) gives us a nontrivial bound
which is, albeit suboptimal (as we shall soon see), a good start for our purpose.

Lemma 3 The VC dimension of the set of permutations on V, viewed as binary classifiers on pairs
of elements, is n−1.

It is easy to show that the VC dimension is at mostO(nlogn). Indeed, the number of permutations
is at mostn!, and the VC dimension is always bounded by the log of the concept class cardinality.
That the bound is linear was proven by Ailon and Radinsky (2011). We present the proof here in
Appendix A for completeness. The implications of the VC bound are as follows.

Proposition 4 Assume E is chosen uniformly at random (with repetitions) as a sample of m ele-
ments from

(V
2

)

, where m> n. Then with probability at least1−δ over the sample, all permutations
π satisfy:

|CE(π,V,W)−C(π,V,W)|= n2O

(
√

nlogm+ log(1/δ)
m

)

.

The consequence of Proposition 4 are as follows: If we want to minimizeC(π,V,W) overπ to
within an additive error ofµn2, and succeed in doing so with probability at least 1−δ, it is enough
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to choose a sampleE of O(µ−2(nlogn+ logδ−1)) elements from
(V

2

)

uniformly at random (with
repetitions), and optimizeCE(π,V,W). Assume from now on thatδ is at leaste−n, so that we get a
more manageable sample bound ofO(µ−2nlogn). Before turning to optimizingCE(π,V,W), a hard
problem in its own right (Karp, 1972; Dinur and Safra, 2002), we should first understand whether
this bound is at all good for various scenarios. We need some basic notions of distance between
permutations. For two permutationsπ,σ, the Kendall-Tau distancedτ(π,σ) is defined as

dτ(π,σ) = ∑
u6=v

1[(u≺π v)∧ (v≺σ u)] .

The Spearman Footrule distancedfoot(π,σ) is defined as

dfoot(π,σ) = ∑
u
|ρπ(u)−ρσ(u)| .

The following is a well known inequality due to Diaconis and Graham (1977) relating the two
distance measures for allπ,σ:

dτ(π,σ)≤ dfoot(π,σ)≤ 2dτ(π,σ) . (4)

Clearlydτ anddfoot are metrics. It is also clear thatC(·,V, ·) is an extension ofdτ(·, ·) to distances
between permutations and binary tournaments, with the triangle inequality of the form dτ(π,σ) ≤
C(π,V,W)+C(σ,V,W) satisfied for allW andπ,σ ∈Π(V).

Assume now that we are able, using Proposition 4 and the ensuing comment, to find a solution
π for MFAST, with an additive regret ofO(µn2) with respect to an optimal solutionπ∗ for some
µ> 0. The triangle inequality implies that the distancedτ(π,π∗) between our solution and the true
optimal isΩ(µn2). By (4), this means thatdfoot(π,π∗) = Ω(µn2). By the definition ofdfoot, this
means that the average elementv ∈ V is translatedΩ(µn) positions away from its position inπ∗.
In a real life application (e.g., in information retrieval), one may want elements tobe at most a
constantγ positions away from their position in a correct permutation. This translates to asought
regret ofO(γn) in C(π,V,W), or, using the above notation, toµ= γ/n. Clearly, Proposition 4 cannot
guarantee less than a quadratic sample size for such a regret, which is tantamount to queryingW in
its entirety.We can do better: In this work, for anyε> 0 we will achieve a regret ofO(εC(π∗,V,W))
usingO(ε−6nlog5n) queries intoW, regardless of how small the optimal costC(π∗,V,W) is. Hence,
our regret is relative to the optimal loss. This is clearly not achievable usingProposition 4. Let us
outline another practical case of interest. Assume a scenario in which a ground truth permutation
π ∈Π(V) exists, and the noisy preference matrixW is generated by a human responder who errs on
a pairu,v with probability f (|ρπ(u)−ρπ(v)|), where f is some monotonically decreasing function.
Intuitively, this scenario posits that people confuse the order of two elements the “closer” they are
to each other. If, say,f (x) = px−ν for someν > 0 andp> 0, then the cost of the optimal solution
π would beΘ(pn2−ν) with high probability.5 Proposition 4 tells us that if we wanted to find a
permutation withrelative error of ε, namely, of absolute errorΘ(εpn2−ν), then we would need
O(ε−2p−2n1+2ν logn) queries. Our result achieves the same error with an almost linear dependence
onn (albeit a worse dependence onε).

One may argue that the VC bound measures the merits of uniform, non-adaptive sampling too
pessimistically. This isn’t the case. Consider the extreme case in which the optimal cost is zero. We

5. We are assuming stochastic noise for the sake of the example, althoughthis work deals with adversarial noise.
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argue that a uniform sample of pairsrequiresΩ(n2) query complexity. Indeed, if the optimal cost
is zero then unless one queries alln−1 consecutive pairs in the unique optimal permutation, one
cannot reveal it. It is now easy to see that samplingo(n2) pairs uniformly (either with or without
repetition) would succeed in doing so with exponentially (inn) small probability. A relativeε
approximation cannot be thus achieved. But we know that an adaptive sample ofO(nlogn) pairs on
expectation (QuickSort) does better. It is folklore thatΩ(nlogn) is also a lower bound in the perfect
(zero cost) case. Hence, one cannot hope to get rid of the logn factor in our main result, Theorem 7
below.

Before continuing, we need need a slight generalization of Proposition 4.

Proposition 5 Let V1, . . . ,Vk be an ordered decomposition of V . LetB denote the set of indices
i ∈ [k] such that Vi is big in V . Assume E is chosen uniformly at random (with repetitions) as a
sample of m elements from

⋃
i∈B
(Vi

2

)

, where m> n. For each i= 1, . . . ,k, let Ei = E∩
(Vi

2

)

. Define
CE(π,{V1, . . . ,Vk},W) to be

CE(π,{V1, . . . ,Vk},W) =

(

∑
i∈B

(

ni

2

)

)

|E|−1 ∑
i∈B

(

ni

2

)−1

|Ei |CEi (π|Vi
,Vi ,W|Vi

) . (5)

(The normalization is defined so that the expression is an unbiased estimator of

∑i∈BC(π|Vi
,Vi ,W|Vi

). If |Ei | = 0 for some i, formally define
(ni

2

)−1|Ei |CEi (π|Vi
,Vi ,W|Vi

) = 0.) Then
with probability at least1−e−n over the sample, all permutationsπ ∈Π(V) satisfy:

∣

∣

∣

∣

∣

CE(π,{V1, . . . ,Vk},W)−∑
i∈B

C(π|Vi ,Vi ,W|Vi )

∣

∣

∣

∣

∣

= ∑
i∈B

(

ni

2

)

O

(
√

nlogm+ log(1/δ)
m

)

.

Proof Consider the set of binary functions∏i∈B Π(Vi) on the domain
⋃

i∈BVi ×Vi , defined as
follows: If u,v∈Vj ×Vj for somej ∈ B, then

((πi)i∈B)(u,v) = π j(u,v) .

It is clear that the VC dimension of this function set is at most the sum of the VC dimensions of
{Π(Vi)}i∈B , hence by Lemma 3 at mostn. The result follows.

2.4 Using anε-Good Partition

The following lemma explains why anε-good partition is good for our purpose.

Lemma 6 Fix ε > 0 and assume we have anε-good partition (Definition 1) V1, . . . ,Vk of V . LetB
denote the set of i∈ [k] such that Vi is big in V , and letB̄ = [k] \B. Let ni = |Vi | for i = 1, . . . ,n,
and let E denote a random sample of O(ε−6nlogn) elements from

⋃
i∈B
(Vi

2

)

, each element chosen
uniformly at random with repetitions. Let Ei denote E∩

(Vi
2

)

. Let CE(π,{V1, . . . ,Vk},W) be defined
as in (5). For anyπ ∈Π(V1, . . . ,Vk) define:

C̃(π) :=CE(π,{V1, . . . ,Vk},W)+ ∑
i∈B̄

C(π|Vi
,Vi ,W|Vi

)+ ∑
1≤i< j≤k

∑
(u,v)∈Vi×Vj

1v≺πu .
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Then the following event occurs with probability at least1−e−n: For all σ ∈Π(V1, . . . ,Vk),
∣

∣C̃(σ)−C(σ,V,W)
∣

∣≤ ε min
π∈Π(V)

C(π,V,W) . (6)

Also, ifσ∗ is any minimizer of̃C(·) overΠ(V1, . . . ,Vk), then

C(σ∗,V,W)≤ (1+2ε) min
π∈Π(V)

C(π,V,W) . (7)

Before we prove the lemma, let us discuss its consequences: Given anε-good decomposition
V1, . . . ,Vk of V, the theorem implies that if we could optimizẽC(σ) over σ ∈ Π(V1, . . . ,Vk), we
would obtain a permutationπ with a relative regretof 2ε with respect to the optimizer ofC(·,V,W)
overΠ(V). Optimizing∑i∈B̂C(π|Vi

,Vi ,W|Vi
) is easy: EachVi is of size at most logn/ log logn, hence

exhaustively searching its corresponding permutation space can be done in polynomial time. In
order to compute the cost of each permutation inside the small setsVi , we would need to queryW|Vi

in its entirety. This incurs a query cost of at most∑i∈B̄
(ni

2

)

= O(nlogn/ log logn), which is domi-
nated by the cost of obtaining theε-good partition in the first place (see next section). Optimizing
CE(π,{V1, . . . ,Vk},W) givenE is a tougher nut to crack, is known as the minimum feedback arc-set
(MFAS) problem and is computationally much harder than than MFAST (Karp,1972; Dinur and
Safra, 2002). For now we focus on query and not computational complexity, and notice that the
size |E| = O(ε−4nlogn) of the sample set is all we need. In Section 4 we show a counterpart of
Lemma 6 which provides similar guarantees for practitioners who choose to relax it using SVM, for
which fast solvers exist.
Proof For any permutationσ ∈Π(V1, . . . ,Vk), it is clear that

C̃(σ)−C(σ,V,W) =CE(σ,{V1, . . . ,Vk},W)−∑
i∈B

C(σ|Vi
,Vi ,W|Vi

) .

By Proposition 5, with probability at least 1− e−n the absolute value of the RHS is bounded by
ε3 ∑i∈B

(ni
2

)

, which is at mostεminπ∈Π(V)C(π,V,W) by (2). This establishes (6). Inequality (7) is
obtained from (6) together with (3) and the triangle inequality.

3. A Query Efficient Algorithm for ε-Good Decomposing

The section is dedicated to proving the following:

Theorem 7 Given a set V of size n, a preference oracle W and an error tolerance parameter0<
ε < 1, there exists a polynomial time algorithm which returns, with constant probability, an ε-good
partition of V , querying at most O(ε−6nlog5n) locations in W on expectation. The running time of
the algorithm (counting computations) is O(npoly(logn,ε−1)).

Before describing our algorithm, we need some definitions.

Definition 8 Letπ denote a permutation over V . Let v∈V and i∈ [n]. We defineπv→i to be the per-
mutation obtained by moving the rank of v to i inπ, and leaving the rest of the elements in the same
order. For example, if V = {x,y,z} and (π(1),π(2),π(3)) = (x,y,z), then
(πx→3(1),πx→3(2),πx→3(3)) = (y,z,x).
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Definition 9 Fix a permutationπ over V , an element v∈ V and an integer i∈ [n]. We define
the numberTestMove(π,V,W,v, i) as the decrease in the cost C(·,V,W) achieved by moving from
π to πv→i . More precisely,TestMove(π,V,W,v, i) = C(π,V,W)−C(πv→i ,V,W) . Equivalently, if
i ≥ ρπ(v) then

TestMove(π,V,W,v, i) = ∑
u:ρπ(u)∈[ρπ(v)+1,i]

(Wuv−Wvu) .

A similar expression can be written for i< ρπ(v).
Now assume that we have a multi-set E⊆

(V
2

)

. We defineTestMoveE(π,V,W,v, i), for i ≥ ρπ(v),
as

TestMoveE(π,V,W,v, i) =
|i−ρπ(v)|
|Ẽ| ∑

u:(u,v)∈Ẽ

(W(u,v)−W(v,u)) ,

where the multiset̃E is defined as{(u,v) ∈ E : ρπ(u) ∈ [ρπ(v)+1, i]}. Similarly, for i< ρπ(v) we
define

TestMoveE(π,V,W,v, i) =
|i−ρπ(v)|
|Ẽ| ∑

u:(u,v)∈Ẽ

(W(v,u)−W(u,v)) , (8)

where the multiset̃E is now defined as{(u,v) ∈ E : ρπ(u) ∈ [i,ρπ(v)−1]}.

Lemma 10 Fix a permutationπ over V , an element v∈V, an integer i∈ [n] and another integer N.
Let E⊆

(V
2

)

be a random (multi)-set of size N with elements(v,u1), . . . ,(v,uN), drawn so that for
each j∈ [N] the element uj is chosen uniformly at random from among the elements lying between
v (exclusive) and position i (inclusive) inπ.
ThenE[TestMoveE(π,V,W,v, i)] = TestMove(π,V,W,v, i). Additionally, for anyδ > 0, except with
probability of failureδ,

|TestMoveE(π,V,W,v, i)−TestMove(π,V,W,v, i)|= O

(

|i−ρπ(v)|
√

logδ−1

N

)

.

The lemma is easily proven using, for example, Hoeffding tail bounds, usingthe fact that|W(u,v)| ≤
1 for all u,v.

3.1 The Decomposition Algorithm

Our decomposition algorithm SampleAndRank is detailed in Algorithm 1, with subroutines in Al-
gorithms 2 and 3. It can be viewed as a query efficient improvement of the main algorithm of
Kenyon-Mathieu and Schudy (2007). Another difference is that we are not interested in an approx-
imation algorithm for MFAST: Whenever we reach a small block (line 3) or a bigblock with a
probably approximately sufficiently high cost (line 8) in our recursion of Algorithm 2), we simply
output it as a block in our partition. Denote the resulting outputted partition byV1, . . . ,Vk. Denote
by π̂ the minimizer ofC(·,V,W) over Π(V1, . . . ,Vk). Most of the analysis is dedicated to showing
thatC(π̂,V,W)≤ (1+ ε)minπ∈Π(V)C(π,V,W), thus establishing (3).

In order to achieve an efficient query complexity compared to that of Kenyon-Mathieu and
Schudy (2007), we use procedure ApproxLocalImprove (Algorithm 3) to replace a greedy local
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improvement step there which isnot query efficient. Aside from the aforementioned differences,
we also raise here the reader’s awareness to the query efficiency of QuickSort, which was established
by Ailon and Mohri (2010).

SampleAndRank (Algorithm 1) takes the following arguments: The setV we want to rank, the
preference matrixW and an accuracy argumentε. It is implicitly understood that the argumentW
passed to SampleAndRank is given as a query oracle, incurring a unit cost upon each access to a
matrix element by the procedure and any nested calls.

The first step in SampleAndRank is to obtain an expected constant factor approximationπ to
MFAST onV,W, incurring an expected low query cost. More precisely, this step returnsa random
permutationπ with an expected cost ofO(1) times that of the optimal solution to MFAST onV,W.
The query complexity of this step isO(nlogn) on expectation(Ailon and Mohri, 2010). Before
continuing, we make the following assumption, which holds with constant probability using Markov
probability bounds.

Assumption 11 The cost C(π,V,W) of the initial permutationπ computed line 2 ofSampleAndRank
is at most O(1) times that of the optimal solutionπ∗ to MFAST on(V,W), and the query cost in-
curred in the computation is O(nlogn).

Following QuickSort, a recursive procedure SampleAndDecompose is called. It implements a
divide-and-conquer algorithm. Before branching, it executes the following steps. Lines 5 to 9 are
responsible for identifying local chaos, with sufficiently high probability. The following line 10
calls a procedure ApproxLocalImprove (Algorithm 3) which is responsible for performing query-
efficient approximate greedy steps. We devote the next Sections 3.2-3.4 todescribing this procedure.
The establishment of theε-goodness of SampleAndRank’s output (establishing (3)) is deferredto
Section 3.5.

3.2 Approximate Local Improvement Steps

The procedure ApproxLocalImprove takes as input a setV of sizeN, the preference oracleW, a
permutationπ on V, two numbersC0, ε and an integern. The numbern is the size of the input
in the root call to SampleAndDecompose, passed down in the recursion, and used for the purpose
of controlling the success probability of each call to the procedure (thereare a total ofO(nlogn)
calls, and a union bound will be used to bound a failure probability, hence each call may fail with
probability inversely polynomial inn). The goal of the procedure is to repeatedly identify, with
high probability, single vertex moves that considerably decrease the cost.Note that in the PTAS
of Kenyon-Mathieu and Schudy (2007), a crucial step in their algorithms entails identifying single
vertex moves that decrease the cost by a magnitude which, given our sought query complexity,
would not be detectable. Hence, our algorithm requires altering this crucial part in their algorithm.

The procedure starts by creating asample ensembleS = {Ev,i : v ∈ V, i ∈ [B,L]}, whereB =
log⌊Θ(εN/ logn)⌋ andL = ⌈logN⌉. The size of eachEv,i ∈ S is Θ(ε−2 log2n), and each element
(v,x) ∈ Ev,i was added (with possible multiplicity) by uniformly at random selecting, with repeti-
tions, an elementx∈V positioned at distance at most 2i from the position ofv in π. LetDπ denote
the distribution space from whichS was drawn, and let PrX∼Dπ [X = S ] denote the probability of
obtaining a given sample ensembleS .

We wantS to enable us to approximate the improvement in cost obtained by moving a single
elementu to position j.
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Definition 12 Fix u∈V and j∈ [n], and assumelog| j−ρπ(u)| ≥ B. Letℓ= ⌈log| j−ρπ(u)|⌉. We
say thatS is successful at u, j if |{x : (u,x) ∈ Eu,ℓ}∩{x : ρπ(x) ∈ [ρπ(u), j]}|= Ω(ε−2 log2n) .

In words, success ofS at u, j means that sufficiently many samplesx ∈ V such thatρπ(x) is be-
tweenρπ(u) and j are represented inEu,ℓ. Conditioned onS being successful atu, j, note that the
denominator of TestMoveE (defined in (8)) does not vanish, and we can thereby define:

Definition 13 S is a good approximationat u, j if

∣

∣TestMoveEu,ℓ(π,V,W,u, j)−TestMove(π,V,W,u, j)
∣

∣≤ 1
2

ε| j−ρπ(u)|/ logn ,

whereℓ is as in Definition 12.

In words, S being a good approximation atu, j allows us to approximate a quantity of interest
TestMove(π,V,W,u, j), and to detect whether it is sufficiently large, and more precisely, at least
Ω(ε| j−ρπ(u)|/ logn).

Definition 14 We say thatS is a good approximation if it is successful and a good approximation
at all u∈V, j ∈ [n] satisfying⌈log| j−ρπ(u)|⌉ ∈ [B,L].

Using Chernoff bounds to ensure thatS is successful∀u, j as in Definition 14, then using Hoeffding
to ensure thatS is a good approximation at all suchu, j and finally union bounding we get

Lemma 15 Except with probability1−O(n−4), S is a good approximation.

Algorithm 1 SampleAndRank(V,W,ε)
1: n← |V|
2: π← ExpectedO(1)-approx solution to MFAST usingO(nlogn) W-queries on expectation us-

ing QuickSort (Ailon et al., 2008a)
3: return SampleAndDecompose(V,W,ε,n,π)

3.3 Mutating the Pair Sample To Reflect a Single Element Move

Line 17 in ApproxLocalImprove requires elaboration. In lines 15-20, wecheck whether there exists
an elementu and positionj, such that movingu to j (giving rise toπu→ j ) would considerably im-
prove the MFAST cost of the procedure input, based on a high probabilityapproximate calculation.
The approximation is done using the sample ensembleS . If such an elementu exists, we execute
the exchangeπ← πu→ j . With respect to the new value of the permutationπ, the sample ensemble
S becomesstale. By this we mean, that ifS was a good approximation with respect toπ, then it is
no longer necessarily a good approximation with respect toπu→ j . We must refresh it. Before the
next iteration of the while loop, we perform in line 17 a transformationϕu→ j to S , so that the re-
sulting sample ensembleϕu→ j(S) is distributed according toDπu→ j . More precisely, we will define
a transformationϕ such that

ϕu→ j(Dπ) = Dπu→ j , (9)

where the left hand side denotes the distribution obtained by drawing fromDπ and applyingϕu→ j

to the result. The transformationϕu→ j is performed as follows. Denotingϕu→ j(S) = S ′ = {E′v,i :
v∈V, i ∈ [B,L]}, we need to define eachE′v,i .
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Algorithm 2 SampleAndDecompose(V,W,ε,n,π)
1: N← |V|
2: if N≤ logn/ log logn then
3: return trivial partition{V}
4: end if
5: E← random subset ofO(ε−4 logn) elements from

(V
2

)

(with repetitions)
6: C←CE(π,V,W) (C is an additiveO(ε2N2) approximation ofC w.p.≥ 1−n−4)
7: if C= Ω(ε2N2) then
8: return trivial partition{V}
9: end if

10: π1← ApproxLocalImprove(V,W,π,ε,n)
11: k← random integer in the range[N/3,2N/3]
12: VL←{v∈V : ρπ(v)≤ k}, πL← restriction ofπ1 to VL

13: VR←V \VL, πR← restriction ofπ1 to VR

14: return concatenation of decomposition SampleAndDecompose(VL,W,ε,n,πL) and decompo-
sition SampleAndDecompose(VR,W,ε,n,πR)

Algorithm 3 ApproxLocalImprove(V,W,π,ε,n) (Note: π used as both input and output)

1: N← |V|, B← ⌈log(Θ(εN/ logn)⌉, L← ⌈logN⌉
2: if N = O(ε−3 log3n) then
3: return
4: end if
5: for v∈V do
6: r ← ρπ(v)
7: for i = B. . .L do
8: Ev,i ← /0
9: for m= 1..Θ(ε−2 log2n) do

10: j ← integer uniformly at random chosen from[max{1, r−2i},min{n, r +2i}]
11: Ev,i ← Ev,i ∪{(v,π( j))}
12: end for
13: end for
14: end for
15: while ∃u∈V and j ∈ [n] s.t. (settingℓ := ⌈log| j−ρπ(u)|⌉):

ℓ ∈ [B,L] and TestMoveEu,ℓ(π,V,W,u, j)> ε| j−ρπ(u)|/ logn

do
16: for v∈V andi ∈ [B,L] do
17: refresh sampleEv,i with respect to the moveu→ j (see Section 3.3)
18: end for
19: π← πu→ j

20: end while
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Definition 16 We say that Ev,i is interestingin the context ofπ andπu→ j if the two sets T1,T2 defined
as

T1 = {x∈V : |ρπ(x)−ρπ(v)| ≤ 2i}
T2 = {x∈V : |ρπu→ j (x)−ρπu→ j (v)| ≤ 2i}

differ.

We setE′v,i = Ev,i for all v, i for whichEv,i is not interesting.

Observation 17 There are at most O(|ρπ(u)− j| logn) interesting choices of v, i. Additionally, if
v 6= u, then for T1,T2 as in Definition 16,|T1∆T2|= O(1), where∆ denotes symmetric difference.

Fix one interesting choicev, i. Let T1,T2 be as in Definition 16. By the last observation, each
of T1 andT2 containsO(1) elements that are not contained in the other. Assume|T1| = |T2|, let
X1 = T1 \ T2, andX2 = T2 \ T1. Fix any injectionα : X1 → X2, and extendα : T1 → T2 so that
α(x) = x for all x∈ T1∩T2. Finally, define

E′v,i = {(v,α(x)) : (v,x) ∈ Ev,i} . (10)

(The case|T1| 6= |T2| may occur due to the clipping of the ranges[ρπ(v)− 2i ,ρπ(v) + 2i ] and
[ρπu→ j (v)−2i ,ρπu→ j (v)+2i ] to a smaller range. This is a simple technicality which may be taken
care of by formally extending the setV by N additional elements ˜vL

1, . . . , ṽ
L
N, extending the definition

of ρπ for all permutationπ onV so thatρπ(ṽL
a) =−a+1 for all a and similarlyN = |V| additional

elements ˜vR
1 , . . . , ṽ

R
N such thatρπ(ṽR

a) = N+ a. Formally extendW so thatW(v, ṽL
a) = W(ṽL

a,v) =
W(v, ṽR

a) =W(ṽR
a ,v) = 0 for all v∈V anda. This eliminates the need for clipping ranges in line 10

in ApproxLocalImprove.)
Finally, for v= u we createE′v,i from scratch by repeating the loop in line 7 for thatv.
It is easy to see that (9) holds. We need, however, something stronger that (9). Since our

analysis assumes thatS ∼Dπ is successful, we must be able to measure the distance (in total vari-
ation) between the random variable(Dπ| success) defined by the process of drawing fromDπ and
conditioning on the result’s success, andDπu→ j . By Lemma 15, the total variation distance between
(Dπ| success) andDπu→ j is O(n−4). Using a simple chain rule argument, we conclude the following:

Lemma 18 Fix π0 on V of size N, and fix u1, . . . ,uk ∈V and j1, . . . , jk ∈ [n]. Consider the following
process. We drawS0 fromDπ0, and define

S1 = ϕu1→ j1(S
0),S2 = ϕu2→ j2(S

1), · · · ,Sk = ϕuk→ jk(S
k−1)

π1 = π0
u1→ j1,π

2 = π1
u2→ j2, · · · ,πk = πk−1

uk→ jk
.

Consider the random variable Sk conditioned on S0,S1, . . . ,Sk−1 being successful for
π0, . . . ,πk−1, respectively. Then the total variation distance between the distribution of Sk and the
distributionDπk is at most O(kn−4).
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3.4 Bounding the Query Complexity of Computingϕu→ j(S)

We now need a notion of distance betweenS andS ′, measuring how many extra pairs were intro-
duced ino the new sample family. These pairs may incur the cost of queryingW. We denote this
measure as dist(S ,S ′), and define it as dist(S ,S ′) :=

∣

∣

⋃
v,i Ev,i∆E′v,i

∣

∣ .

Lemma 19 AssumeS ∼Dπ for some permutationπ, andS ′ = ϕu→ j . Then
E[dist(S ,S ′)] = O(ε−3 log3n).

Proof DenoteS = {Ev,i} andS ′ = {E′v,i}. Fix somev 6= u. By construction, the setsEv,i for which
Ev,i 6= E′v,i must be interesting, and there are at mostO(|ρπ(u)− j| logn) such, using Observation 17.
Fix such a choice ofv, i. By (10),Ev,i will indeed differ fromE′v,i only if it contains an element(v,x)
for somex∈ T1\T2. But the probability of that is at most

1− (1−O(2−i))Θ(ε−2 log2 n) ≤ 1−e−Θ(ε−22−i log2 n) = O(ε−22−i log2n)

(We used the fact thati ≥ B, whereB is as defined in line 1 of ApproxLocalImprove, andN =
Ω(ε−3 log3n) as guaranteed in line 3 of ApproxLocalImprove.) Therefore, the expected size of
E′v,i∆Ev,i (counted with multiplicities) isO(ε−22−i log2n).

Now consider all the interesting setsEv1.i1, . . . ,EvP,iP. For each possible valuei it is easy to see
that there are at most 2|ρπ(u)− j| p’s for which ip = i. Therefore,

E

[

P

∑
p=1

|E′vp,ip
∆Evp,ip|

]

= O

(

ε−2|ρπ(u)− j| log2n
L

∑
i=B

2−i

)

,

whereB,L are defined in line 1 in ApproxLocalImprove. Summing overi ∈ [B,L], we get at most
O(ε−3|ρπ(u)− j| log3n/N). For v = u, the set{Ev,i} is drawn from scratch, clearly contributing
O(ε−2 log3n) to dist(S ,S ′). The claim follows.

3.5 Analysis ofSampleAndDecompose

Throughout the execution of the algorithm, varioushigh probabilityevents must occur in order for
the algorithm guarantees to hold. LetS1,S2, . . . denote the sample families that are given rise to
through the executions of ApproxLocalImprove, either between lines 5 and 14, or as a mutation
done between lines 15 and 20. We will need the firstΘ(n4) to be good approximations, based
on Definition 14. Denote this favorable eventE1. By Lemma 18, and using a union bound, with
constant probability (say, 0.99) this happens. We also need the cost approximationC obtained in
line 5 to be successful. Denote this favorable eventE2. By Hoeffding tail bounds, this happens
with probability 1−O(n−4) for each execution of the line. This line is obviously executed at most
O(nlogn) times, and hence we can lower bound the probability of success of all executions by 0.99.

From now throughout, we make the following assumption, which is true by the above with
probability at least 0.97.

Assumption 20 EventsE1 andE2 hold true.

Note that by conditioning the remainder of our analysis on this assumption may bias some expec-
tation upper bounds derived earlier and in what follows. This bias can multiplythe estimates by at
most 1/0.97, which can be absorbed in theO-notation of these bounds.
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Let π∗ denote the optimal permutation for the root call to SampleAndDecompose withV,W,ε.
The permutationπ is, by Assumption 11, a constant factor approximation for MFAST onV,W. Us-
ing the triangle inequality, we conclude thatdτ(π,π∗) ≤ C(π,V,W) + C(π∗,V,W). Hence,
E[dτ(π,π∗)] = O(C(π∗,V,W)) . From this we conclude, using (4), that

E[dfoot(π,π∗)] = O(C(π∗,V,W)) .

Now consider the recursion treeT of SampleAndDecompose. DenoteI the set of internal
nodes, and byL the set of leaves (i.e., executions exiting from line 8). For a call SampleAndDecompose
corresponding to a nodeX in the recursion tree, denote the input arguments by(VX,W,ε,n,πX). Let
L[X],R[X] denote the left and right children ofX respectively. LetkX denote the integerk in 11 in the
context ofX ∈ I . Hence, by our definitions,VL[X],VR[X],πL[X] andπR[X] are preciselyVL,VR,πL,πR

from lines 12-13 in the context of nodeX.
Take, as in line 1,NX = |VX|. Letπ∗X denote the optimal MFAST solution for instance(VX,W|VX

).
By E1 we conclude that the firstΘ(n4) times in which we iterate through the while loop in
ApproxLocalImprove (counted over all calls to ApproxLocalImprove),the cost ofπXu→ j is an actual
improvement compared toπX (for the current value ofπX,u and j in iteration), and the improvement
in cost is of magnitude at leastΩ(ε|ρπX(u)− j|/ logn), which isΩ(ε2NX/ log2n) due to the use of
B defined in line 1. But this means that the number of iterations of the while loop in line15 of
ApproxLocalImprove is

O(ε−2C(πX,VX,W|VX
) log2n/NX) .

Indeed, otherwise the true cost of the running solution would go below 0. Since
C(πX,VX,W|VX

) is at most
(NX

2

)

, the number of iterations is hence at mostO(ε−2NX log2n). By
Lemma 19 the expected query complexity incurred by the call to ApproxLocalImprove is therefore
O(ε−5NX log5n). Summing over the recursion tree, the total query complexity incurred by callsto
ApproxLocalImprove is, on expectation, at mostO(ε−5nlog6n).

Now consider the moment at which the while loop of ApproxLocalImprove terminates. Let
π1X denote the permutation obtained at that point, returned to SampleAndDecompose in line 10.
We classify the elementsv∈VX to two families:Vshort

X denotes allu∈VX s.t. |ρπ1X(u)−ρπ∗X(u)|=
O(εNX/ logn), andV long

X denotesVX \Vshort
X . We know, by assumption, that the last sample ensemble

S used in ApproxLocalImprove was a good approximation, hence for allu∈V long
X ,

TestMove(π1X,VX,W|VX
,u,ρπ∗X(u)) = O(ε|ρπ1X(u)−ρπ∗X(u)|/ logn). (11)

Definition 21 (Kenyon-Mathieu and Schudy, 2007) For u∈ VX, we say that u crosses kX if the
interval [ρπ1X(u),ρπ∗X(u)] contains the integer kX.

Let Vcross
X denote the (random) set of elementsu∈VX that crosskX as chosen in line 11. We define

a key quantityTX as in Kenyon-Mathieu and Schudy (2007) as follows:

TX = ∑
u∈Vcross

X

TestMove(π1X,VX,W|VX
,u,ρπ∗X(u)) .

Following (11), the elementsu∈V long
X can contribute at most

O



ε ∑
u∈V long

X

|ρπ1X(u)−ρπ∗X(u)|/ logn




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to TX. Hence the total contribution from such elements is, by definition,

O(εdfoot(π1X,π∗X)/ logn)

which is, using (4) at mostO(εdτ(π1X,π∗X)/ logn). Using the triangle inequality and the definition
of π∗X, the last expression, in turn, is at mostO(εC(π1X,VX,W|VX

)/ logn).
We now bound the contribution of the elementsu∈Vshort

X to TX. The probability of each such
element to crossk is O(|ρπ1X(u)− ρπ∗X(u)|/NX). Hence, the total expected contribution of these
elements toTX is

O



 ∑
u∈Vshort

X

|ρπ1X(u)−ρπ∗X(u)|
2/NX



 . (12)

Under the constraints∑u∈Vshort
X
|ρπ1X(u) − ρπ∗X(u)| ≤ dfoot(π1X,π∗X) and |ρπ1X(u) − ρπ∗X(u)| =

O(εNX/ logn), the maximal value of (12) is

O(dfoot(π1X,π∗X)εNX/(NX logn)) = O(dfoot(π1X,π∗X)ε/ logn) .

Again using (4) and the triangle inequality, the last expression is

O(εC(π1X,VX,W|VX
)/ logn) .

Combining the accounting forV long andVshort, we conclude

EkX [TX] = O(εC(π∗X,VX,W|VX
)/ logn) , (13)

where the expectation is over the choice ofkX in line 11 of SampleAndDecompose.
We are now in a position to use a key Lemma by Kenyon-Mathieu and Schudy (2007). First we

need a definition: Consider the optimal solutionπ′X respectingVL[X],VR[X] in lines 12 and 13. By
this we mean thatπ′X must rank all of the elements inVXL before (to the left of)VRX. For the sake
of brevity, letC∗X be shorthand forC(π∗X,VX,W|VX

) andC′X for C(π;
X,VX,W|VX

).

Lemma 22 (Kenyon-Mathieu and Schudy, 2007) With respect to the distribution of thenumber kX
in line 11 ofSampleAndDecompose,

E[C′X]≤O

(

dfoot(π1X,π∗X)3/2

NX

)

+E[TX]+C∗X . (14)

Using (4), we can replacedfoot(π1X,π∗X) with dτ(π1X,π∗X) in (14). Using the triangle inequality,
we can then, in turn, replacedτ(π1X,π∗X) with C(π1X,VX,W|VX

).

3.6 Summing Over the Recursion Tree

Let us study the implication of (14) for our purpose. Recall that{V1, . . . ,Vk} is the decomposition
returned by SampleAndRank, where eachVi corresponds to a leaf in the recursion tree. Also recall
that π̂ denotes the minimizer ofC(·,V,W) over all permutations inΠ(V1, . . . ,Vk) respecting the
decomposition. Given Assumption 20 it suffices, for our purposes, to show that π̂ is a (relative)
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small approximation for MFAST onV,W. Our analysis of this account is basically that of Kenyon-
Mathieu and Schudy (2007), with slight changes stemming from bounds we derive onE[TX]. We
present the proof in full detail for the sake of completeness. Let RT denote the root node.

For X ∈ I , let βX denote the contribution of the splitL[X],R[X] to the LHS of (3). More pre-
cisely,

βX = ∑
u∈L[X],v∈R[X]

1W(v,u)=1 ,

so we get∑1≤i< j≤k ∑(u,v)∈Vi×Vj
1W(v,u)=1 = ∑X∈I βX.

For anyX ∈ I , note also that by our definitionsβX =C′X−C∗L[X]−C∗R[X]. Hence, using Lemma 22
and the ensuing comment,

E[βX]≤O

(

E

[

C(π1X,VX,W|VX
)3/2

NX

])

+E[TX]+E[C∗X]−E[C∗L[X]]−E[C∗R[X]] ,

where the expectations are over the entire space of random decisions made by the algorithm execu-
tion. Summing the last inequality overX ∈ I , we get (minding the cancellations):

E

[

∑
X∈I

βX

]

≤ O

(

∑
X∈I

E

[

C(π1X,VX,W|VX
)3/2

NX

])

+E

[

∑
X∈I

TX

]

+

C∗RT− ∑
X∈L

E[C∗X] . (15)

The expressionE[∑X∈I TX] is bounded byO(E [∑X∈I ε∑C∗X/ logn]) using (13) (which depends
on Assumption 20). Clearly the sum ofC∗X for X ranging over nodesX ∈ I in a particular level is
at mostC(πRT,V,W) (again using Assumption 20 to assert that the cost ofπ1X is less than the cost
of πX at each nodeX). By taking Assumption 11 into account,C(πRT,V,W) is O(C∗RT). Hence,
summing over allO(logn) levels,

E

[

∑
X∈I

TX

]

= O(εC∗RT) .

Let C1X =C(π1X,VX,W|VX
) for all x∈ I . Denote byF the expression in theO-notation of the first

summand in the RHS of (15), more precisely:

F = ∑
X∈I

E

[

C1
3/2
X

NX

]

, (16)

where we remind the reader thatNX = |VX|. It will suffice to show that under Assumption 20, the
following inequality holds with probability 1:

G((C1X)X∈I ,(NX)X∈I ) := ∑
X∈I

C1
3/2
X /NX ≤ c3εC1RT , (17)

wherec3 > 0 is some global constant. This turns out to require a bit of elementary calculus. A
complete proof of this assertion is not included in the extended abstract of Kenyon-Mathieu and
Schudy (2007). We present a version of the proof here for the sakeof completeness.

Under assumption 20, the following two constraints hold uniformly for allX ∈ I with probabil-
ity 1: LettingCX =C(πX,VX,W|VX

),
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(A1) If X is other than RT, letY be its sibling andP their parent. In caseY ∈ I :

C1X +C1Y ≤C1P . (18)

(In caseY ∈ L , we simply have thatC1X ≤C1P.6) To see this, notice thatC1X ≤CX, and simi-
larly, in caseY ∈ I , C1Y ≤CY. ClearlyCX +CY ≤C1P, becauseπX,πY are simply restrictions
of π1P to disjoint blocks ofVP. The required inequality (18) is proven.

(A2) C1X ≤ c2ε2N2
X for some globalc2 > 0.

In order to show (17), we may increase the valuesC1X for X 6= RT in the following manner:
Start with the root node. If it has no children, there is nothing to do because thenG= 0. If it has
only one childX ∈ I , continuously increaseC1X until eitherC1X = C1RT (making (A1) tight) or
C1X = c2ε2N2

X (making(A2) above tight). Then recurse on the subtree rooted byX. In case RT
has two childrenX,Y ∈ I (say,X on left), continuously increaseC1X until eitherC1X +C1Y =C1RT

((A1) tight) or untilC1X = c2ε2N2
X ((A2) tight) . Then do the same forC1Y, namely, increase it until

(A1) is tight or untilC1Y = c2ε2N2
Y ((A2) tight). Recursively perform the same procedure for the

subtrees rooted byX,Y.
After performing the above procedure, letI1 denote the set of internal nodesX for which(A1) is

tight, namely, either the siblingY of X is a leaf andC1X =C1P (whereP is X’s parent) or the sibling
Y ∈ I andC1X +C1Y =C1P (in which case alsoY ∈ I1). Let I2 = I \I1. By our construction, for all
X ∈ I2, C1X = c2ε2N2

X.
Note that ifX ∈ I2 then its children (more precisely, those inI ) cannot be inI1. Indeed, this

would violate(A2) for at least one child, in virtue of the fact thatNY lies in the range[NX/3,2NX/3]
for any childY of X. Hence, the setI1∪ {RT} forms a connected subtree which we denote by
T1. Let P ∈ T1 be an internal node inT1. Assume it has one child inT1, call it X. Then
C1X = C1P and in virtue ofNX ≤ 2NP/3 we haveC1

3/2
P /NP ≤ (2/3)3/2C1

3/2
X /NX. Now assume

P has two childrenX,Y ∈ T1. ThenC1X +C1Y = C1P. Using elementary calculus, we also have
thatC1

3/2
P /NP≤ (C1

3/2
X /NX +C1

3/2
Y /NY)/

√
2 (indeed, the extreme case occurs forNX = NY = NP/2

andC1X = C1Y = C1P/2). We conclude that for anyP internal inT1, the corresponding contri-

butionC1
3/2
P /NP to G is geometrically dominated by that of its children inI1. Hence the entire

sumG1 = ∑X∈I1∪{RT}C1
3/2
X /NX is bounded byc4 ∑X∈L1

C1
3/2
X /NX for some constantc4, whereL1

is the set of leaves ofT1. For each such leafX ∈ L1, we have thatC1
3/2
X /NX ≤ c3/2

2 εC1X (using

(A2)), hence∑X∈L1
C1

3/2
X /NX ≤ ∑X∈L1

c3/2
2 εC1X ≤ c3/2

2 εC1R (the rightmost inequality in the chain
follows from{VX}X∈L1 forming a disjoint cover ofV =VRT, together with(A1)). We conclude that

G1≤ c4c3/2
2 εC1R.

To conclude (17), it remains to show thatG2 =G−G1 =∑X∈I2
. ForP∈G2, clearlyC1

3/2
P /NP =

c3/2
2 ε3N3

P. Hence, ifX,Y ∈ G2 are children ofP in I2 thenC1
3/2
P /NP ≥ c5C1

3/2
X /NX +C1

3/2
Y /NY

and if X is the unique child ofP in I2, thenC1
3/2
P /NP ≥ c5C1

3/2
X /NX, for some globalc5 > 1. In

other words, the contribution toG2 corresponding toP geometrically dominates the sum of the
corresponding contributions of its children. We conclude thatG2 is at most some constantc6 times

∑X∈root(I2)C1
3/2
X /NX, where root(I2) is the set of roots of the forest induced byI2. As before, it is

clear that{VX}X∈root(I2) is a disjoint collection, hence as before we conclude thatG2 ≤ c7εC1R for
some globalc7 > 0. The assertion (17) follows, and hence (16).

6. We can say something stronger in this case, but we won’t need it here.
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Plugging our bounds in (15), we conclude that

E

[

∑
X∈I

βX

]

≤C∗RT(1+O(ε))− ∑
X∈L

E[C∗X] .

ClearlyC(π̂,V,W) = ∑X∈I βX +∑X∈LC∗X. Hence

E[C(π̂,V,W)] = (1+O(ε))C∗RT = (1+O(ε))C∗ .

We conclude the desired assertion on expectation. Assumption 20, together with a simple counting
of accesses toW gives our main result, Theorem 7, as a simple corollary. A simple counting of
accesses toW proves Theorem 7.

4. Using Our Decomposition as a Preconditioner for SVM

We consider the following practical scenario, which is can be viewed as animprovement over a
version of the well known SVMrank (Joachims, 2002; Herbrich et al., 2000) for the preference
label scenario.

Consider the setting developed in Section 2.1, where each elementu in V is endowed with a
feature vectorϕ(u) ∈ R

d for somed (we can also use infinite dimensional spaces via kernels, but
the effective dimension is never more thann= |V|). Assume, additionally, that‖φ(u)‖2 ≤ 1 for all
u∈V (otherwise, normalize). Our hypothesis classH is parametrized by a weight vectorw∈ R

d,
and each associated permutationπw is obtained by sorting the elements ofV in decreasing order of
a score given by scorew(u) = 〈ϕ(u),w〉. In other words,u≺πw v if scorew(u) > scorew(v) (in case
of ties, assume any arbitrary tie breaking scheme).

The following SVM formulation is a convex relaxation for the problem of optimizingC(h,V,W)
over our chosen concept classH :

(SVM1) minimize F1(w,ξ) = ∑
u,v

ξu,v

s.t.∀u,v : W(u,v) = 1 scorew(u)−scorew(v)≥ 1−ξu,v

∀u,v ξu,v≥ 0

‖w‖ ≤ c

Instead of optimizing (SVM1) directly, we make the following observation. Anε-good decom-
positionV1, . . . ,Vk gives rise to a surrogate learning problem overΠ(V1, . . . ,Vk) ⊆ Π(V), such that
optimizing over the restricted set does not compromise optimality overΠ(V) by more than a rela-
tive regret ofε (property (3)). In turn, optimizing overΠ(V1, . . . ,Vk) can be done separately for each
blockVi . A natural underlying SVM corresponding to this idea is captured as follows:

(SVM2) minimize F2(w,ξ) = ∑
u,v∈∆1∪∆2

ξu,v

s.t.∀(u,v) ∈ ∆1∪∆2 scorew(u)−scorew(v)≥ 1−ξu,v

∀u,v ξu,v≥ 0

‖w‖ ≤ c ,
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where∆1 =
⋃

1≤i< j≤kVi×Vj and∆2 =
⋃k

i=1{(u,v) : u,v∈Vi ∧W(u,v) = 1}.
Abusing notation, forw∈Rd s.t.‖w‖ ≤ c, let F1(w) denote minF1(w,ξ), where the minimum is

taken over allξ that satisfy the constraints of SVM1. Observe thatF1(w) is simplyF1(w,ξ), where
ξ is taken as:

ξu,v =

{

max{0,1−scorew(u)+scorew(v)} W(u,v) = 1

0 otherwise
.

Similarly defineF2(w) as the minimizer ofF2(w,ξ), which is obtained by setting:

ξu,v =

{

max{0,1−scorew(u)+scorew(v)} (u,v) ∈ ∆1∪∆2

0 otherwise
. (19)

Let π∗ denote the optimal solution to MFAST onV,W.
We do not know how to directly relate the optimal solution to SVM1 and that of SVM2. How-

ever, we can can replace SVM2 with a careful sampling of constraints thereof, such that (i) the
solution to the subsampled SVM is optimal to within a relative error ofε as a solution to SVM2,
and (ii) the sampling is such that onlyO(npoly(logn,ε−1)) queries toW are necessary in order
to construct it. This result, which we quantify in what follows, strongly relieson the local chaos
property of theε-good decomposition (2) and some combinatorics on permutations.

Our subsampled SVM which we denote by SVM3, is obtained as follows. For ease of notation
we assume that all blocksV1, . . . ,Vk are big inV, otherwise a simple accounting of small blocks
needs to be taken care of, adding notational clutter. Let∆3 be a subsample of sizeM (chosen
shortly) of∆2, each element chosen uniformly at random from∆2 (with repetitions - hence∆3 is a
multi-set). Define:

(SVM3) minimize F3(w,ξ) = ∑
u,v∈∆1

ξu,v+
∑k

i=1

(ni
2

)

M ∑
u,v∈∆3

ξu,v

s.t.∀(u,v) ∈ ∆1∪∆3 scorew(u)−scorew(v)≥ 1−ξu,v

∀u,v ξu,v≥ 0

‖w‖ ≤ c

As before, defineF3(w) to beF3(w,ξ), whereξ = ξ(w) is the minimizer ofF3(w, ·) and is taken
as

ξu,v =

{

max{0,1−scorew(u)+scorew(v)} (u,v) ∈ ∆1∪∆3

0 otherwise
.

Our ultimate goal is to show that for quite smallM, SVM3 is a good approximation of SVM2.
To that end we first need another lemma.

Lemma 23 Any feasible solution(w,ξ) for SVM1 satisfies∑u,v ξu,v≥C(π∗,V,W).

Proof The following has been proven by Ailon et al. (2008a): Considernon-transitivetriangles
induced byW: These are triplets(u,v,y) of elements inV such thatW(u,v) =W(v,y) =W(y,u) = 1.
Note that any permutation must disagree with at least one pair of elements contained in a non-
transitive triangle. LetT denote the set of non-transitive triangles. Now consider an assignment of

158



ACTIVE LEARNING FROM PAIRWISE PREFERENCES

non-negative weightsβt for eacht ∈ T. We say that the weight system{βt}t∈T packs Tif for all
u,v∈V such thatW(u,v) = 1, the sum∑(u,v) in t βt is at most 1. (Byu,v in t we mean thatu,v are
two of the three elements inducingt.) Let{β∗t }t∈T be a weight system packingT with the maximum
possible value of the sum of weights. Then

∑
t∈T

β∗t ≥C(π∗,V,W)/3 . (20)

Now consider one non-transitive trianglet = (u,v,y) ∈ T. We lower boundξu,v + ξv,y + ξy,u

for any ξ such thatw,ξ is a feasible solution to SVM1. Lettinga = scorew(u)− scorew(v),b =
scorew(v)−scorew(y),c= scorew(y)−scorew(u), we get from the constraints in SVM1 thatξu,v≥
1−a,ξv,y≥ 1−b,ξy,u≥ 1−c. But clearlya+b+c= 0, hence

ξu,v+ξv,y+ξy,u≥ 3 . (21)

Now notice that the objective function of SVM1 can be bounded from belowas follows:

∑
u,v

ξu,v ≥ ∑
t=(u,v,y)∈T

β∗t (ξu,v+ξv,y+ξy,u)

≥ ∑
t=(u,v,y)∈T

β∗t ·3

≥ C(π∗,V,W) .

(The first inequality was due to the fact that{β∗t }t∈T is a packing of the non-transitive triangles,
hence the total weight corresponding to each pairu,v is at most 1. The second inequality is from
(21) and the third is from (20).) This concludes the proof.

Theorem 24 Letε ∈ (0,1) and M= O(ε−6(1+2c)2d log(1/ε)). Then with high constant probabil-
ity, for all w such that‖w‖ ≤ c,

|F3(w)−F2(w)|= O(εF2(w)) .

Proof Let Bd(c) = {z∈ R
d : ‖z‖ ≤ c}. Fix a vectorw∈ Bd(c). Over the random choice of∆3, it

is clear thatE[F3(w)] = F2(w). We need a strong concentration bound. From the observation that
|ξu,v| ≤ 1+2c for all u,v, we conclude (using Hoeffding bound) that for allµ> 0,

Pr[|F3(w)−F2(w)| ≥ µ]≤ exp

{

−µ2M
(

∑k
i=1

(ni
2

)

(1+2c)
)2

}

. (22)

Let η = ε3 and consider anη-net of vectorsw in the ballBd(c). By this we mean a subsetΓ⊆Bd(c)
such that for allz∈ Bd(c) there existsw∈ Γ s.t.‖z−w‖ ≤ η. Standard volumetric arguments imply
that there exists such a setΓ of cardinality at most(c/η)d.

Let z∈ Γ andw∈ Bd(c) such that‖w−z‖ ≤ η. From the definition ofF2,F3, it is clear that

|F2(w)−F2(z)| ≤
k

∑
i=1

(

ni

2

)

ε3, |F3(w)−F3(z)| ≤
k

∑
i=1

(

ni

2

)

ε3 . (23)
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Using (22), we conclude that for anyµ> 0, by takingM =O(µ−2(∑
(ni

2

)

)2(1+2c)2d log(cη−1)),
with constant probability over the choice of∆3, uniformly for all z∈ Γ:

|F3(z)−F2(z)| ≤ µ .

Takeµ= ε3 ∑k
i=1

(ni
2

)

. We conclude (plugging in our choice ofµ and the definition ofη) that by
choosing

M = O(ε−6(1+2c)2d log(c/ε)) ,

with constant probability, uniformly for allz∈ Γ:

|F3(z)−F2(z)| ≤ ε3
k

∑
i=1

(

ni

2

)

.

Using (23) and the triangle inequality, we conclude that for allw∈ Bd(c),

|F3(w)−F2(w)| ≤ 3ε3
k

∑
i=1

(

ni

2

)

. (24)

By property (2) of theε-goodness definition, (24) implies

|F3(w)−F2(w)| ≤ 3ε min
π∈Π(V)

k

∑
i=1

C(π|Vi
,Vi ,W|Vi

) = 3ε
k

∑
i=1

min
σ∈Π(Vi)

C(σ,Vi ,W|Vi
) .

By Lemma 23 applied separately in each blockVi , this implies

|F3(w)−F2(w)| ≤ 3ε
k

∑
i=1

∑
u,v∈Vi

ξu,v = 3εF2(w),

(whereξ = ξ(w) is as defined in (19).) This concludes the proof.

5. Limitations and Future Work

Optimality. The exponent ofε−6 in Theorem 7 seems rather high, and it would be interesting to
improve it. A better dependence ofε−4 has been recently claimed by Ailon et al. (2011). It would
be interesting to find the correct bound.

Practicality. Our bounds are asymptotic, and our work calls for experimentation in orderto
determine in which cases our sampling technique beats uniform sampling.

Searching in natural permutation subspaces.Algorithm 1, which leads to our main result Theo-
rem 7, is heavily based on dividing and conquering. This is also the main limitationof this work. To
understand this limitation, consider the scenario of Section 4. There, the practitioner searches in the
limited space oflinearly induced permutations, namely, permutations induced by a linear functional
applied to the features endowing the elements inV. It is not hard to conceive a scenario in which our
divide and conquer step constrains the algorithm to search in a region of permutations that does not
intersect this restricted search space. This, in fact, was the reason forour inability to relate between
SVM1 and SVM2 (and its subsampled counterpart, SVM3). There is nothing special about linearly
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induced permutations, for this matter. In a recently studied scenario (Jamieson and Nowak, 2011),
for example, one searches in the space of permutations induced by scorefunctions computed as the
distance from a fixed point from some metric space in whichV is embedded. The same problem
exists there as well: our sampling algorithm cannot be used to find almost optimalsolutions within
any restricted permutation subspace. Interestingly, the main result of Ailon et al. (2011), achieved
while this work has been under review, has alleviated this problem using newtechniques.
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Appendix A. Linear VC Bound of Permutation Set

To see why the VC dimension of the set of permutations viewed as binary function over the set of
all possible

(n
2

)

preferences, it is enough to show that any collection ofn pairs of elements cannot
be shatteredby the set of permutation. (Refer to the definition of VC dimension by Vapnik and
Chervonenkis (1971) for a definition of shattering). Indeed, any such collection must contain a
cycle, and the set of permutations cannot direct a cycle cyclically.

Appendix B. Why The Disagreement Coefficient Does Not Help Here

We now show why a straightforward application of the disagreement coefficient (Hanneke, 2007) is
not useful in our setting. The key idea of Hanneke (2007) is a definition of a measure of distance
between concepts, equalling the volume of data points on which they disagreeon. Using this mea-
sure, one then defines a ballBr(π) of radiusr around a concept (a permutation)π, in an obvious
way. The disagreement coefficientΘ is then defined as the smallest possible number bounding as
a linear functionΘr the volume of points on which the hypotheses inBr are not unanimous on.
Adopting this idea here, the underlying distance between hypotheses (permutations) is simply the
Kendall-tau distancedτ(π,σ) divided by

(n
2

)

. We need to normalize this distance because Hanneke’s
work, as does most statistical machine learning work, assumes a probability measure on the space of
instances (pairs of elements), while we used the counting measure for various reasons of simplicity.
We define the normalized distance function asd̂τ(π,σ) =

(n
2

)−1
dτ(π,σ).

If we consider a ballBr(π) of radiusr > 2/n around some permutationπ onV, then it is easy to
see that there does not exist a pair of elementsu,v∈V on whichBr(π) is unanimous on. Indeed, a
simple swap of any two elements results in a permutationπ′ satisfyingd̂τ(π,π′)≤ 2/n. This means
that the disagreement coefficient, by definition, is it leastΩ(n). Recall that the VC dimension
of the space of permutations, viewed as

(n
2

)

-dimensional binary preference vectors, is at mostn.
Plugging these bounds into the analysis of Hanneke (2007) of the famous A2 algorithm using the
disagreement coefficient results in a sample complexity which isΩ(n3) for any desired error rate.
Clearly this is suboptimal because the number of pairs is onlyO(n2).
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