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Abstract

The standard Bayesian Information Criterion (BIC) is dediwunder regularity conditions which
are not always satisfied in the case of graphical models vidttiem variables. In this paper we
derive the BIC for the binary graphical tree models wheredhalinner nodes of a tree represent
binary hidden variables. This provides an extension of alainformula given by Rusakov and
Geiger for naive Bayes models. The main tool used in this pipine connection between the
growth behavior of marginal likelihood integrals and thalleg-canonical threshold.
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1. Introduction

A key step in the Bayesian learning of graphical models is to computm#rginal likelihoodof

the data, which is thékelihood functionaveraged over the parameters with respect to the prior
distribution. Given a fully observed system, the theory of graphical mqutelddes a simple way

to obtain the marginal likelihood. This was explained for example by CoogeHanskovits (1992)
and Heckerman et al. (1995). However, when some of the variables ayskem arénidden(never
observed), the exact determination of the marginal likelihood is typically itatioées (for example
Chickering and Heckerman, 1997). This motivates the search for effi@ehniques to approxi-
mate the marginal likelihood. In this paper we focus on the large sample belo&tiee marginal
likelihood called theBayes Information CriterioiBIC).

To present basic results on the BIC we need to introduce some notatiorx theta random
variable with values ifm| := {1,...,m}. Its distributionq = (qs,...,qm) can be identified with
a point in theprobability simplex Am-1 = {x € R™: ¥;x = 1,% > 0} CR™. Consider a map
p:© — An_1 and letM = p(©) be a parametric discrete model fdwith the parameter spac2
and parametrizatiop. Let XN) = X1, ... XN be a random sample from the distributigre An_1.
By Zy we denote the marginal likelihood and hy8; XN ar) = P(X(N)|a1,6) the likelihood
function. Thus

Zy = P(XN)|9f) = /@ L@: XN, () (6)d,
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whereB® denotes the model parameters &r@) is a prior distribution or®. The stochastic com-
plexityis defined by
FN = — |OgZN

and the entropy function by
m
S=-Y qgilogg.
i; | |

In statistical theory to obtain the BIC we usually require that the asymptotic limiteolikili-
hood function, at\ — o, is maximized over a unique point in the interior of the parameter space
where the Jacobian matrix of the parametrization is full rank. For the clgg®bfems for which
this assumption is satisfied Schwarz (1978) and Haughton (1988) shbateddN — oo,

ER = NS+gIogN+O(1),

whered = dim® (Watanabe, 2009, Corollary 1.15 and Section 6). The same formula \Wahies
limit of the likelihood is maximized over a finite number of points in the interioBofGeometri-
cally, for large sample sizes functi@y concentrates around the maxima. This enables us to apply
the Laplace approximation locally in the neighborhood of each maximum.

It can be proved (see Proposition 5) that the above formula can beajjead for the case when
the set, over which the limit of the likelihood is maximized, forms a sufficiently regudanpact
subset of the parameter space. Denote this subs@t Bhen, adN — oo,

/

EFy = NS+

logN + O(1), 1)

whered’ = dim®. Note that in our cas® is a set of zeros of a real analytic function. Therefore,
it will be always a semi-analytic set, that is given fy(0) > 0,...,0,(0) > 0}, whereg; are all
analytic functions. It follows that the dimension is well defined (Bierstong fdiiiman, 1988,
Remark 2.12).

In the case of models with hidden variables the locus of the points maximizing the fimit o
the likelihood may not be sufficiently regular. In this case the likelihood will hawifferent
asymptotic behavior around different points and relatively more mass oh#érginal likelihood
integral will be related to neighborhoods of singular points (see FigureFd) these points we
cannot use the Laplace approximation. Nevertheless, the computation BfGHie still possible
using results of Watanabe (2009) and some earlier works of Arnol@¢heako and collaborators
(Arnold et al., 1988). This formula will differ from the standard BIC. Eitke coefficient of logN
can be different fronf%d/ in (1). Second, we sometimes encounter an additional Idy ltgm
affecting the asymptotics (see Theorem 4).

Let againg be the true data generating distribution @fd= p(©) a discrete parametric statisti-
cal model with the parameter spa@elet¢ : © — R be a prior distribution. Throughout the paper
we always assume:

(Al) The prior distributionp is strictly positive, bounded and smooth &n
(A2) There exist® € © such thatp(6) = g andq lies in the interior of the probability simplex.

(A3) The set® C RY is a compact andemianalytic sedf dimensiond.
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Figure 1: The case when the likelihood is maximized over a singular sub&etdf-1, 1] given
by 9192 =0.

In this paper we consider an important class of parametric models with langleenwf hidden
variables, calledjeneral Markov modejsassuming for simplicity that all the random variables in
the system are binary. This model class is extensively used in phyloge(@®ticgple and Steel,
2003, Chapter 8) and in the analysis of causal systems (see Peadrand 986). We begin with a
quick informal introduction to general Markov models which is then formaline®ection 3.1. Let
T = (V,E) be an undirected tree with the vertex ¥etind the edge sé&. LetT" denoteT rooted in
r, that is a tree with one distinguished verteand all the edges directed away fremConsider the
Markov process ¥= (Yy)vev ONT', which by definition is the Bayesian network @h. Then, the
general Markov modek a family of marginal distributions over the subvectorYo€orresponding
to the leaves of . It is well known that this model class does not depend on the rootingefidre,
we denote this model class, omitting the rooting My .

For a treeT with n leaves we denote the subvectorYotorresponding to the leaves ofby
X = (Xg,...,%n) with some arbitrary numbering of leaves. The subvectof obrresponding to the
inner nodes is denoted By. By construction the general Markov model is a statistical model for
X. Letq e M5 be the true distribution andl = [[5j] be the covariance matrix of. A surprising
fact proved in this paper is that the zerossinor equivalently, marginal independencies between
components oK, completely determine the asymptotics for the marginal likelihood.

We say that two nodes,v of T are separatedby another nodeav, if w lies on the unique
path betweeru andv. Letl, denote the number ahner nodesv of T such that for each triple
i, ],k of leaves separated ih by v we haveyjfikflix = O but there exist leavesj separated by
such thatyj # 0. In terms of the conditional independence defining the general Marlamel,
an inner nodev contributes td; if for every three leaves j,k such that; 1L X; L Xc|Hy at least
two are marginally independent but there exist two leavpsuch thai; L X;|H, but notX; L X;.

In addition, we say that an inner nodas degenerate (or g-degeneraté)or any two leaveg, |
separated by we have; = 0. In other wordss is degenerate if for every j such thafX; 1L X;|Hy
alsoX; 1L Xj. All other nodes are calledondegenerate

We denote by the number of edges df and byn, the number of its nodes. The following
result is a special instance of (Watanabe, 2009, the Main Formula I&)p. 3
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Theorem 1 Let T' = (V,E) be a tree rooted in r and X be a random sample from q. With
assumptions (Al), (A2) and (A3), if there are no g-degeneratestbea, as N— o,

-2l
W logN+O(1).

Note, in particular, that the above formula is independent of the rooting.

EFy = N S+

Example 1 Let n=4 and assume that Qata are generated from the Bayesian network givea by th
quartet tree in Figure 2. If g is such thathas no zeros then k= 0 and the coefficient dbgN is

4
Figure 2: A quartet tree rooted m

171. This corresponds to the classical BIC since the dimension of the pteaspace isll. If the
true distribution ge M satisfies in addition the marginal independence conditipd X X, X3, X4)
thenfyy = 0 for i = 2,3,4 and r contributes toJ. We depict this situation on the left hand side in
Figure 3. Here the dashed edge means that for every ppafieaves separated by this edge=0
and an inner node contributes tgif its valency, in the forest with the dashed edges removet, is
In this case 4 = 1 and the coefficient dbgN is % If, in addition, q satisfies X1 X3 1L (X2,X4)
then b = 2 and hence the coefficient gs The corresponding graph is depicted in the middle of
Figure 3.

Example 2 (Naive Bayes model)Consider a star tree with one inner node and n leaves. If there
are no degenerate nodes this corresponds to q being either a reglitatrgra typel singularity as
defined by Rusakov and Geiger (2005); K10 then q is a regular point and the coefficieniogN

is equal tozn—;l. If I, =1then q is a typdl singularity and the coefficient is equal ?éz‘—l This
corresponds exactly to (Rusakov and Geiger, 2005, Theoremti} itiner node is degenerate this
corresponds to the type 2 singularity which does not satisfy assumptidineofem 1.

If qis such that there are degenerate nodes the computation of the BIC is nndehlthecause
the likelihood in this case maximizes over a singular subset of the parameter e case of star

Figure 3: Three graphs representing submodels of the quartet tree mibdedome additional
marginal independencies. In the third case the root is degenerate.
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trees was investigated by Rusakov and Geiger (2005). In this papdstaie a closed form formula
for the BIC in the case dfivalent treeswhose all inner nodes have valency three. This is provided
in Theorem 2 which together with Theorem 1 are the main results of this pEpeimportance of
trivalent trees follows mainly from the fact that any other tree model is ensdlel of a model for a
trivalent tree. They also form a natural class for models of evolution ilogyo

If T is trivalent then for every inner nodec V there existA,B,C C [n] such thatAUBUC =
[n] andA,B,C are separated by. By the defining conditional independence conditions we have
that Xa L Xg L Xc|Yy, whereXa = (Xi)ica. In this case we calv degenerate ify is such that
Xa I Xg 1L Xc. Letlg denote the number of degenerate nodes.

Theorem 2 Let T" = (V, E) be arooted trivalent tree with i 3leaves and root r. With assumptions
(A1), (A2) and (A3) if r is degenerate but all its neighbors are not, tlasriN— oo,

2 4

IEFN:NS+< >|09N+O(1).

In all other cases, as N+ o,

Nv+ne—22 Slo

ERy=NS
N +( > 2

> logN — cloglogN + O(1),
where c is a nonnegative integer. Moreover® always if either both r is nondegenerate or if r
and all its neighbors are degenerate.

The coefficients of log)l above are given in this special form to show the correction term with
respect to the coefficient in the smooth case in Theorem 1.

Example 3 Consider again the quartet model from Example T Ifas no zeros then k= 0, lo =0

and we get the same formula as previously with coefﬁc%ntNow assume that g is such that
in addition the marginal independence X X, L (X3,X4) holds. The situation is depicted on the
right hand side in Figure 3. The edde a) is dashed since for any two leaves separated by this edge
the corresponding covariance is zero. In this cgse-11, | = 1, the root is degenerate but all its
neighbors are not and hence, by Theorem 2, the coefficidogdf is 3 and c= 0. Consider finally

the case when all off-diagonal elementSddre zero. In this case k= 0and b = 2 and hence the
coefficient ofogN is also3. However, later in Example 5 and Remark 29 we will see that ¢ may be
strictly greater than zero in this case.

Following Rusakov and Geiger (2005), the main method of the proof is togehtre coordi-
nates of the model so that the induced parameterization becomes simple v&kigga much better
insight into the model structure which is described by Zwiernik and Smith (®04dd Zwiernik
and Smith (2011a). Since the BIC is invariant with respect to these chahgesparameterized
problem still gives the solution to the original question. Our main analyticalisotile real log-
canonical threshold (see for example Watanabe, 2009). This is an impgaametric invariant
which in certain cases can be computed in a relatively simple way using digexateetry. The rel-
evance of this invariant to the BIC is given by Theorem 4. We remark teattthniques developed
in this paper can be applied to obtain the BIC also in the case of non-trivedest

The paper is organized as follows. In Section 2, following Watanabed{20¢ provide the
theory of asymptotic expansion of marginal likelihood integrals. This theoaples us to analyze
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the asymptotic behavior of the marginal likelihood without the standard régyussumptions.

In Section 3 we define Bayesian networks on rooted trees. We also obtasiaresult on the
BIC in the case when the observed likelihood is maximised over a sufficientlgtirsabset of the
parameter space. This gives a simple proof of Theorem 1. The prdtieafrem 2 is more technical
and hence divided into three main steps split between Sections 4, 5 andby, finSection 7, we

combine all these results.

2. Asymptotics of Marginal Likelihood Integrals

In this section we introduce the real log-canonical threshold and link it taskptotic behavior
of marginal likelihood integrals. We present how this enables us to obtainiéBhe case of a
general class of statistical models, which is mostly based on previous rels8lisio Watanabe.

2.1 The Real Log-canonical Threshold

Given8p € RY, let 4g,(RY) be the ring of real-valued functiorfs: RY — R that are analytic .
Given a subse® c R satisfying (A3), let4o(RY) be the ring of real functions analytic at each
pointBy € O. If f € Ao(RY), then for everydy € O, f can be locally represented as power series
centered ag. Denote by4s (RY) the subset ofip(RY) consisting of all non-negative functions.
Usually the ambient space is clear from the context and in this case we omitiitiotation writing

gy, Ao and A5 .

Definition 3 (The real log-canonical threshold) Given a compact semianalytic S8tC RY such
thatdim® = d, a real analytic function & ﬂg(Rd) and a smooth positive functign: RY — R,
consider the zeta function defined as

@)= [ 1) *0(0)cb, @

By Theorem 2.4 of Watanabe (2009) this function is extended to a merimdupction on the
entire complex line and its poles are real and positive. The real log-daabthreshold of f de-
noted byricto(f;¢) is the smallest pole df(z). By multe(f;¢) we denote the multiplicity of this
pole. By convention if(z) has no poles thencto(f;¢) = 0 and multe(f;¢) =d. If $(0) =1
then we omith in the notation writingrclto(f) andmultg(f). DefineRLCTo(f;¢) to be the pair
(rlcte(f;¢), multe(f;¢)), and we order these pairs so th@t,m) > (ro,mp) ifry >rp, 0rry=ry
and m < nmp.

Let M = p(©) C A1 be a parametric discrete model and An,_1 be a probability distribu-
tion. With 2/ andq fixed the Kullback-Leibler distandé : © — R is defined by

m
Qi
K(0) = ilo . 3
It is well known thatK(6) > 0 on© andK(6) = 0 if and only if p(8) = g. If g is the true data
generating distribution then assumption (A2) means@at{6 : K(6) = 0} is non-empty.

The following theorem gives the motivation to study the real log-canonicakkiold in the
statistical context.
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Theorem 4 (Watanabe) Let M be a parametric discrete statistical model, q the true data gener-
ating distribution and K the corresponding Kullback-Leibler distance. Widuagptions (Al), (A2)
and (A3), as N— oo,

EFy = N S+rlcte(K; ) logN + (multe (K; ¢) — 1) loglogN + O(1).

To compute the real log-canonical threshold we split the integral in (2) irstona of finitely
many integrals over small neighbourhodgélg of some point¥y € © for which we have efficient
tools of computation. We can always do this using the partition of unity sthisecompact. For
each of the local integrals we use Hironaka'’s theorem to reduce it to lylomanomial case. The
details are presented by Watanabe (2009).

Let By € © and letWp be any sufficiently small open ball aroufigin R9. Then, by Theorem
2.4 of Watanabe (2009), RLG{( f; ) does not depend on the choice/df and hence it is denoted
by RLCTg,(f;9). If f(8g) # 0 then RLCTy,(f;¢) = (c0,d) and hence we can constrain only to
points6o such thatf (8o) = 0. In our context this means that we consider only points irgtfiber
e.

The local computations give the answer to the global question becaudenb2011, Proposi-
tion 2.5), the set of pairs RLGI(f; ¢) for 8o € © has a minimum and

RLCTo(f:¢) = MInRLCTay (f;). @

where©y = WpN O is the neighbourhood dp in ©. For eactBy € © to compute RLCE,(f;¢)
we consider two cases. @ lies in the interior of© then we can assunm®,; = Wy and hence
RLCTe,(f;9) = RLCTg,(f;0). If 6o € bd(®©), where bd®) denotes the set of boundary points of
©, the computations may change significantly because the real log-cantméstiold depends on
the boundary conditions (cf. Example 2.7 of Lin, 2011). Neverthelesanibe showed that at least
if there exists an open subggtC RY such that) > @ andf € 47 (RY) then

RLCTo,(f) > RLCTg,(f). (5)

Because in this case

]/ (f(8)do= [ (f(B))"*dO+ (f(8))~*d®
Wo G Wo\®o

which implies that RLC§,(f) = min{RLCTg,(f),RLCTw,e,(f)}-
Finally, wheneve® % 0 we have

RLCTo(K) = min RLCTg, (K). (6)
906@

The following result enables us to obtain the BIC in the smooth case.

Proposition 5 Let M be a parametric statistical model with parametrization p, and q be the true
data generating distribution. Let K ﬂl@Z(Rd) be the Kullback-Leibler distance defined in (3). Given

(A1), (A2) and (A3) assume that there exists a smooth manifaidR{l satisfying® = MN©. Then,

as N— oo,
/

EFy=NS+—

logN+0O(1),

where d = dim©.
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Proof By assumption (A1) there exist two constaaitS > 0 such that < ¢(8) < Con®. Therefore

C/O(K(B))‘Zde <2< c/e(K(e))—Zde

and it follows that RLCH(K;¢) = RLCTe(K). By Theorem 4 it suffices to prove the following
lemma which generalises Proposition 3.3 of Saito (2007).

Lemma 6 Let® c RY be a compact semianalytic set andc 45 (RY). If there exists a smooth
manifold MC RY such that® = MN© and By € © thenRLCTg,(f) = RLCTo(f) = (93¢, 1)
where d = dim®.

To prove this recall that the real log-canonical threshold R§,CfT) does not depend on the choice
of a sufficiently small neighborhodd of 6p. Since® = MN©® andM is a smooth manifold it
follows that for each poin6, of O there exists an open neighborhddg of By in RY with local
coordinatesvy, ..., wy centered abg such that the local equation 6fis W% 4 +W§ =0, where
c=d—d'. Asingle blow-uprtat the origin satisfies all the conditions of Hironaka’s Theorem since
in the new coordinates over one of the chdfrts(u)) = u?a(u) wherea(u) is nowhere vanishing
andrt (u) = uS~. For other charts the situation is the same and hence BIET= (c/2,1). Since

by (4) RLCTe(f) = ming,co RLCTw,no(f) it suffices to show that iy is a boundary point o®
then RLCTw,no(f) > (c/2,1). But this follows from (5) and the fact that RLGI f) = (c/2,1) as

0o is a smooth point oM. The lemma is hence proved. |

3. General Markov Models

In this section we formally define the general Markov magigl and give in Theorem 1 the asymp-
totic expansion of the marginal likelihood whgrand 247 satisfy conditions of Proposition 5.

3.1 Definition of the Model Class

All random variables considered in this paper are assumed to be binartheittalue either 0 or 1.
LetT" = (V,E) be arooted tree. For any directed edge (k,|) € E we say thak andl areadjacent
andk s aparentof | and we denote it biy=pa(l). For evenp € {0,1}" let pg = P(Nyey {Yv =Bv})-
TheMarkov proces®n T" is a sequenc¥ = (Y,)yev Of binary random variables such that for each

B = (Bv)vev € {0,1}"

—_oM (v)
pB(e) o eBr er‘Bpa{v)’ (7)
veVAr
Whereeét)\ﬁpa(v) — P(Yy = Bu|Ypav) = Bpaw)) and e((Br,) =P(Y; = Br). In a more standard statistical

language these models are just fully observed Bayesian networks ted toges. Recall thai, =

E| andn, = |V]|. Sincee(V> + G(V-) = 1for allveV andi = 0,1 then the Markov process o
1li
)

0i

defined by (7) has exactlyng+ 1 free parameters in the vectér one for the root distributioﬁ(lr
and two for each edggey, V) € E given bye(l“’()) ande(lvi. The parameter space@ = [0, 1]2% "L,
The general Markov model om' is induced #rom the Markov process @i by assuming

that all the inner nodes represent hidden random variables. Hencensaler induced marginal
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probability distributions over the leaves ®f. The set of leaves is denoted by We assume that

T" hasn leaves and hence we can assoclateith the set[n] given some arbitrary numbering of
the leaves. LeY = (X,H) whereX = (Xy,...,Xn) denotes the variables represented by the leaves
of T" andH denotes the vector of variables represented by inner nodes, tKatigY, )y and

H = (Y)vev\L- We define the general Markov modéfr to be the model in the probability simplex
A1 obtained by summing out in (7) over all possible values of the inner nodedethition Mt

is the image of the map: ©r — Axn_1 given by

0=y eg) rl eé‘:)mpdv) for anya € {0,1}*,
H veVAr

where# is the set of all vector = (By)vev such thatBy)veL = a. Because the model class does
not depend on the rooting we usually omit the roat the notation. For a more detailed treatment
see (Semple and Steel, 2003, Chapter 8).

3.2 The BIC in the Smooth Case

Forge My let & = [lij] € R™" be the corresponding covariance matrix of the random vector
represented by the leavesf We define thay-fiber as

Or = {BeOr:pO)=q} = {6cOT:K(®O) =0}

The geometry oéT is directly related to the real log-canonical threshold of the Kullback-Leible
distance. We now show that this geometry is determined by zeasHar this we need to introduce
some new concepts. We say that that an edgé& is isolated relative to df {; =0 for alli, j € [n]
such thake € E(ij), whereE(ij) denotes the set of edges in the path joiriiagd j. By E C E we
denote the set of all edges Bfwhich are isolated relative tg. By T = (V,E \ E) we denote the
forest obtained frorT by removing edges k.

We now define relations o andE \ E. For two edgee, € with either{e,é} c E or {e, €} C
E\E writee ~ € if eithere= & oreandée are adjacent and all the edges that are incident with both
e andé€ are isolated relative tq. Let us now take the transitive closure-ofrestricted to pairs of
edges irE to form an equivalence relation & Similarly, take the transitive closure efrestricted
to the pairs of edges i&t \ E to form an equivalence relation B\ E. We will let [E] and[E \ E]
denote the set of equivalence classeg ahdE \ E respectively.

By construction all the inner nodes @fhave either degree zero hor the degree is strictly
greater than one. We say that a nedeV is non-degenerate with respect tafeitherv is a leaf of
T or degv > 2 in T. Otherwise we say that the nodedisgenerate with respect to §lote that this
coincides with the definition of a degenerate node given in the introductioneder, the isolated
edges in Examples 1 and 3 correspond precisely to the dashed edgesrim FigThe set of all
nodes which are degenerate with respect tbdenoted by7.

Proposition 7 (Zwiernik and Smith, 2011b) Let T be a tree with n leaves. Letafy and let
T be defined as above. If each of the inner nodes of T has degregsatue inT then@T is a
manifold with corners andlmOT = 2l5, where } is the number of nodes which have degree two in
T.

In this way we can compute the asymptotic behavior of the marginal likelihood raewhen
assumptions of Proposition 7 are satisfied.
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Proposition 8 Let T be a tree andWft be the corresponding general Markov model. L&t G/
be the real distribution generating the data such that each inner node @fsTdégree at least two
inT. Then

RLCTe, (K) = <n"+ne_2|2’1) )

2

Proof Since every inner node df has degree at least two 'IA'ntDen by Proposition 7 there exists
a smooth manifold C R™*" such tha®t = M N Ot and din® = 2l,. The result follows from
Proposition 5 and the fact that di&r = 2ne+ 1 = ny + ne. [ |

By Theorem 4, Proposition 8 implies Theorem 1 sihcim its statement is exactly the number
of inner nodew such that the degree ofin T is two.

Remark 9 Theorem 1 is still true if (A1) is replaced by the assumption that the prioribligton is
bounded or®1 and there exists an open subseBgfwith a non-empty intersection withr where
the prior is strictly positive. In particular we can use conjugate Beta prﬁﬁ‘%w Beta(O(i(V), Bi(v))

as long az” B > 1.

4. The ldeal-theoretic Approach

In this section we define the real log-canonical threshold of an idealoréhe 1l translates the
problem of finding the real log-canonical threshold of the Kullback-legidistance into algebra.
We then analyse general Markov models from this perspective. Inréhed4 we apply a useful
change of coordinates which enables us to work out the real log-ahdireshold in the singular
case.

4.1 The Real Log-canonical Threshold of an Ideal

Let f1,..., f, € Ao then thedeal generatedby fy,..., f; is a subset ofip denoted by
r
(f1,....fr)={fe40: f(0)= Zlhi(e)fi(e),hi € Ao}
i=

Following Lin (2011) we generalize the notion of the real log-canonicasiolds to the ideal
| = (f1,..., fr). This mirrors the analytic definition of the log-canonical threshold of anl itk
for example Lazarsfeld, 2004, Section 9.3.D). By definition

RLCTo(l;¢) = RLCTo({f1,..., f;);®) := RLCTo(f;9),

wheref(0) = f2(0) +--- + f2(8). By (Lin, 2011, Proposition 4.5) the real log-canonical threshold
does not depend on the choice of generatots of

The following important proposition enables us to use the full power of tha-itheoretic ap-
proach.

Proposition 10 Let f,g € 4o(RY) and let | be an ideal i (RY). Then

3292



ASYMPTOTICS OF THEMARGINAL LIKELIHOOD FOR TREEMODELS

i Letp:Q — © be a proper real analytic isomorphism aptl = {fop: f €1} be the pullback of
| to 4n. Then,

RLCTo(l;¢) = RLCTa(p*l; (¢ 0 p)|p']),

where|p’| denotes the Jacobian pf

i If ¢ is positive and bounded dd then

RLCTo(l;¢) = RLCTo(l).

iii If there exist constants ¢ > Osuch thatc@) < f(8) <c/g(0) for everyd € ©thenRLCTg(f) =
RLCTo(g).

iv Letl=(fq,...,f) and J= (01,...,0r) where g=u;f; fori =1,...,r and there exist positive
constants aC such thate< uj(6) <Cforall@c ©@andforalli=1,...,r. ThenRLCTg(l) =
RLCTo(J).

The ideal-theoretic approach proves to be useful in a fairly genetadtistal context:

Theorem 11 (Lin, 2011) Let p= (p1,...,Pm) : © — A1 be a polynomial mapping an@/ =
p(©) be the statistical model of X with values[m|. For a given point g¢ M define

S = (p1(0) —,...,Pm(8) — Om) C Ao. (8)

Let g denote the true data generating distribution an@®Kbe the corresponding Kullback-Leibler
distance defined in (3). Moreover, ipthe prior distribution on® satisfying (A1). Then

RLCTo(K;$) = RLCTo(.#;0) = RLCTo(.#), 9)
where the second equation in (9) follows from Proposition 10 ii.

We now perform the change of coordinatlg : Ot — Qt, o : Axn_1 — K7 discussed in
detail by Zwiernik and Smith (2011b). We have the following diagram, whesgedp row is the
original parametrization and where the induced parameterisdias given in the bottom row.

p
@T E— Azn,l

fwBT erm prT lfpx
g

Here fq,, and f are polynomial isomorphisms, and hence, by Proposition 10 (i), in our compu
tations of the real-log canonical threshold, we can alternatively condtrdire bottom row of the
diagram. We denote the coordinates#if by k = (k) for | C [n], | # 0. The coordinates ot

are denoted bw = ((sy), (Nuv)) for all ve V and(u,v) € E. Bothw andk have a statistical mean-
ing as described by Zwiernik and Smith (2011b). However, in this work sestbem in a purely
algebraic manner. We just note that the coordinate&zoére certain functions of the moments. In
particular,k; = EX; fori =1,...,n and eaclxjj corresponds to the covariance betwegandX;.
Interpretation of other coordinates is more complicated.
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Simple linear constraints defini@r become only slightly more complicated when expressed in
the new parameters. The choice of parameter values is not free anyntlvgesense that constraints
for each of the parameters involve other parameters. The new parampate(ys: is given by
s € [—1,1] and for eacHu, V) € E (cf. Equation (19) in Zwiernik and Smith, 2011b)

—(14+s)<(1-snw<(1-s)

—(1-s) < (I+s)Nw< (1+s). (10)

In the new coordinate system the situation is more tractable begdgusas a simpler structure.

Proposition 12 (Zwiernik and Smith, 2011b) Let T" = (V,E) be a rooted trivalent tree with n
leaves. Then for eachd 1,...,n one hak;(w) = 3(1—s) and

1
K (W) = 21(1—§(|)) M <% [1 nw foralfl|>2
veV(H\I (uv)eE(l)

where the degree of& V(1) is considered in T1) = (V(l),E(l)), which is the smallest subtree of
T containing I.

Let .# denote the pullback of the idea# C Ao, to the ideAaI inAg, induced byfg,. Thus
I = figd ={fofu: f €.7}. The ideal describeQr = fo,(Or) as a subset dt. Let [n]>k
denote all subsets @f] with at leask elements. Then the pullback of satisfies

f:<K1R1,...,Kan>+< Z <K|(Q))R|>), (11)

leln]>2

wherek, are the corresponding coordinatestgf(q). Here the sum of ideals results in another ideal
with the generating set which is the sum of generating sets of the summands.
For local computations we use the following reduction.

Proposition 13 (Lin, 2011) Let | C 4,,(R™), J C 4y,(R") be two ideals. IRLCTy, (1) = (Ax, M)
andRLCTy,(J) = (Ay,my) then

Theorem 14 Let T" be a rooted tree with n leaves and=gMs. Let.# be the ideal defined by (8)
and.# the ideal defined by (11). Then

RLCTe, (?) = RLCTQT(J) = mip RLCTQO(J),
woeQT

whereQo is a sufficiently small neighborhood@f in Qt. Moreover, let 7 = 3| (., (Ki (W) —Ki).
Then, for everyy € ﬁT

RLCTy, () = (g,o) +RLCTe (7). (12)
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Proof Since fyp is an isomorphism with a constant Jacobian then the first part of the theorem

follows from Proposition 10 (i). Let noW be ane-box aroundwy = ((),(n9,)). If T is rooted

in an inner leaf then by Proposition 12 the idedl does not depend o, ..., s. Since for every

i =1,...,nthe expressioR; — K; depends only os, then
RLCTyy, ((K1 —K1,...,Kn—Kn)) = (5,1),

which can be easily checked (see for example Proposition 3.3 of Saitf). Z@uation (12) follows

from Proposition 13.

Now assume thaf is rooted in one of the leaves. In this case both— Ky, ..., Ky —Kp) and
¥ depend ors: because (w) = (1— ) fi (w) for some monomiaf; (w) whenever € I. There-
fore, we cannot use Proposition 13 directly. However, by assumpti@h ¢Aies in the interior of
the probability simplex and hendg € (0,1) for i = 1,...,n which is equivalent ta&® € (—1,1).
Therefore, for eachy one can find two positive constardsC such thatt < 1— § <CinW. By
Proposition 10 (iv) the real log canonical threshold gf in W is equal to the real log-canonical
threshold of a an ideal with generators induced from the generatoys by replacing each & §
by 1. Now again (12) follows from Proposition 13. |

5. The Main Reduction Step

Recall thatk;; = Cov(X;,X;). In this section we prove a technical result which enables us to reduce
the computations of RLGJ,(_#) to two simpler cases. First, whenis such thak;; # 0 for all
i, € [n]. Second, when is such thaki; = 0 for alli, j € [n]. Moreover, the second case is reduced
to computations for monomial ideals which are amenable to various combinatchaldees.

Let T be a trivalent tree witln > 3 leaves and leg € 94r. If all the equivalence classes ﬂﬁ]
are singletones c{é] is empty, which is equivalent to every inner node being of degree attigast
in T, then Theorem 1 gives us the asymptotic behavior of the marginal likelifidad, let assume
that there is at least one class{ﬁj which is not a singleton. Léf, ..., Ty denote trees representing
the equivalence classes[lﬁ} and letS,, ..., Sy denote trees induced by the connected components
of E\\ E. Let L1,...Lx denote the sets of leavesTf,..., Tx. Foreact5i=1,...,mby Remark 5.2
(iv) of Zwiernik and Smith (2011b) its set of leaves denotedyyis a subset ofn]. For eachS
the number of nodes, edges and nodes of degreéA'ZsjrmIenoted byil,, nl, andl‘2 respectively. We
illustrate this notation in Figure 4 where the dashed edges representiedfeSimpler examples

are given in Figure 3.

Lemma 15 Let T = (V,E) be a trivalent rooted tree with i 4 leaves and let ¢ M7. Let 7 =
Yieln)., (Ki (W) —K;) as in Theorem 14. iy € Qt then

m k
RLCTw(2) :.;RLCT&O(/(S))+-ZlRLCTwO(/(Ti))+(0,1—m—k), (13)

where_7 (S) = 3 cjn., (Ki (@) —Ki) fori=1,....mand_# (Ti) = Ywwer (Kww (w)) fori=1,... k.

Proof We first show thay |z, —o(Ki (w)) = i j:;=o(Kij (w)). The inclusion D" is clear. We now
show “C”. First note that for every € [n]s; if k| = 0 then eithend = 0 for an edgee € E(I) or
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A8
__aO-.).

S3

Figure 4: An example of a forestinduced by a pointy.

f(l) = 1. There exist, j € | such that such tha&t; =0andthe (ij) =r(l). It follows by Proposition
12 thatk (w) = Kij (w) f (w) for a polynomialf (w) and therefore the inclusior” is also true. This
implies

= K () — K )+ Kii (0)).
' |;K.2¢o< 1(0) —Kp) |K. Zf .,K.,_o< j(w)
Hence, to proof the lemma, it suffices to show that for evayy QT
RLCTu(3 #(S)+ 5 (i (@) (14)
i= i,j:Kij=0

is equal to the right hand side of (13).

If e c E\ E then by definition there exist j € [n] such thatj; # 0 ande € E(ij). Since,
by Proposition 12ki; = n3f(wp) for a polynomialf then in particulam? # 0. It follows that
for a sufficiently smalk for eachE’ C E \ E one can find positive constant),C(¢) such that
c(€) < [ece' Ne < C(€) holds in thee-box aroundwy. Similarly if v ¢ V (cf. Section 3.2) then
there exist positive constantige), D(€) such thatd(g) < (1—s2) < D(g) in the e-box aroundu.
It follows by Proposition 10 (iv) that in computations of the real log-cacalrthreshold in (14) we

can replace eaakj (w) by
(1_§(ij))6m” [T ne (15)
ecE(ij)NE

whered, i) = 1 if r(ij) € V and O ij) = O otherwise. Thus, in (14) we can replace the ideal

Yi.j&;—o(Kij(w)) by the ideal 71 = §; j:z,—o((1— sf<ij))5r<ii> ﬂeeE(ij)mE”e>' However, if we de-
fine
k

S2=3 3 (1= SFaw))™ ] ne) (16)
i=lwwel; ecE(ww)
then it can be checked thgt; = #5. To show that 7, C _#3, fix j =1,...,kandw,w € L, and
show that the correspondmg generator g5 lies in _#1. Note that by constructlon each afw
either has degree two i or is a leaf ofT. Hence, by the definition d, there exist ,] € [n] such
thatE(ij) NE = E(ww). It follows that each generator in (16) is also in the set of generatogs;of
and hence#, C _¢#;. To show the opposite inclusion, note that(fij ) intersects with more than
one componenty, ..., Tx then the corresponding generator in (15) is a product of some gerserato
in (16) and hence it lies ing>.
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Since the generators of every (S) fori=1,...,mand every

(1= Suw)> [T Me)
wWW eL ecE(ww)

for j =1,...,kinvolve disjoint sets of variables then by Proposition 13 the term in (14) ialéqu

m k
_ZLRLCTm(/(S))f;RLCTm( VZL-<(1_§(WW))6r(WW) [ ﬂe>> +(0,1—m—Kk).

ecE(ww)

Again by Proposition 10 (iv) for eadh=1,...,k

RLCT,, (

W,

T AL S ne>> — RLCTy( 7 (T))

ecE(Ww)

which finishes the proof. |

We note that, by Proposition 8 and the formula in (12) for égch

RLCT(/(S))+E — M

> > a7)

6. The Case of Zero Covariances

In this subsection we assume tlogt 27 is such thaki; = 0 for alli, j € [n]. This implies the full
joint marginal independencg L --- L X,. The aim is to prove the following proposition.

Proposition 16 Let T be a trivalent tree with g 3 leaves rooted in E V. Let ge M7y be such that
Kij =0foralli,j € [n]. Let_# be the ideal defined in Theorem 14. Then

: n
min RLCTy,( 7) = (f,m),
WEQT 4

where m= 1if either r is a leaf of T or r together with all its neighbors are all inner nodé3olIn
all other cases we cannot obtain an explicit upper bound for m and hared.

The strategy of the proof of Proposition 16 is as follows. First, in Sectionvelshow that
the local computations can be restricted to a special sub€®$ @ver which ¥ can be replaced
by a monomial ideal. Then, in Section 6.2, we present a method to compute lthegreanonical
threshold of a monomial ideal. We use this method in Section 6.3.

6.1 The Deepest Singularity

Note that, by Lemma 15, RLGJ (7 ) = RLCTuwy, (3 jem (Kij(w))) so without loss of generality
we will assume in this section tha¥ = y; ;i (Kij(w)). Moreover, for eaclv € V these ideals
depend ors, only through the value of. It follows that the computations can be reduced only to
points satisfyings, > O for all inner nodew of T. Henceforth, in this section, we always assume
this is the case. We define theepest singularitpf ﬁT as

Queep:= {we Qr :ne=0forallecE, s,= 1forallve V}.
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We note that, sinc&;j = 0 for alli, j € [n], thenE = E andV is equal to the set of all inner nodes
of T. It follows thatQgeepis an affine subspace constrainedp with all coordinates either O or 1.

Proposition 17 Let T be a tree with n leaves. LetgMy such thak;j = Ofor all i, j € [n]. Then

min RLCT,(#)= min RLCT( 7).
woEeQT WoEQdeep

Proof We first shon thaﬁT is a union of affine subspaces constrainedto with a common
intersection given b¥qeep LetVo CV andEg C E and

Q) = € Qr: s,=1forallve Vo, nu=0forall (u,v) € Eo}.

We say thatVp, Eg) is minimal fors if for every pointwin Q, g,) and for every, j € [n] kjj (w) =0,
and furthermore, thafVp, Eg) is minimal with such a property (with respect to inclusion on both
coordinates). We now show that

~

QT == U Q(VO7EO)‘
(Vo,Eo) MinN.

The first inclusion " follows from the fact that ifw € ﬁT thenkij(w) =Kij =0 foralli, j € [n].
Thereforew € Qy, g,) for some minimalVp, Eo). The second inclusion is obvious.

EachQy, g, is an affine subspace iV/I*/El, denoted byM v, g,), constrained t®. Let.s
denote the intersection lattice of &ll, g, for (Vo, Eo) minimal with ordering denoted by. For
eachi € 5 letM() denote the corresponding intersection and define

S::|w0)\LJhAUX

j<i

In this way we obtain ars-induced decompositionf RVI*IEl (cf. Section 3.1 in Goresky and
MacPherson, 1988).

By (Lazarsfeld, 2004, Example 9.3.17) the funct@n- rlct,(_#) is lower semicontinuous
(the argument used there works over the real numbers). This mearfsrtlezery w € Qr and
€ > 0 there exists a neighborhotldof wy such that ricg, (_#) <rlct,(_#)+¢eforallwe U. Since
the set of values of the real log-canonical threshold is discrete this ntieatn®r everywy € ﬁT
and any sufficiently small neighborho®d of wy, one has rlct, (_# ) < rlct,(_#) for all w € W.
Moreover, rlct_# ) is constant on eac. Since for any neighborhoddl of wg € ﬁdeepwe have
WoNS # 0foralli € S then necessarily the minimum of the real log-canonical threshold is attained
for a point in the deepest singularity. |

_Proposition 17 shows that in the singular case we can restrict our analykes neighborhood
of Qqeep Often however, we also consider points in a bigger set

Qo = {we Qr :nu = 0forall (u,v) € E}.

Note thatﬁdeeplies on the boundary ot (cf. (10)) butQy also contains internal points 61t
which will be crucial for some of the arguments later.

We now formulate another technical lemma which enables us to reduce compsitatithe
monomial case.
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Lemma 18 Assume that g My is such thak;; =O0for alli, j € [n]. Let_# (wo) be the ideal #
translated to the origin. Then for eveay € Qo

RLCTo(_7 (wo)) = RLCTo( #"), (18)

where ¢’ is a monomial ideal such that easfy (w+ wy) in the set of generators of7 (wy) is
replaced either by

S ij) [M(uv)eedj) Nuv if SE(”) =1, or by

Muv)eEdj) Nuv if ) 7 1

Proof Leti,j € [n] and assume thaty = (), (n2)) € Qo so thatn? = 0 for alle € E. Then, by
Proposition 12;

1
Kij (0.)—1—0\)0) = Z(l_ (S’r(ij) +s?(ij))2) I_J Ne. (19)
ecE(ij)

If §(ij) # 1 for a sufficiently smalk > 0 there exist positive constartée), C(€) such thatc(e) <
1-(sj) +s?(ij))2 < C(e) for 5jj) € (—¢,€). Therefore, by Proposition 10 (iv), we can replace this
term in (19) with 1. Ifs?(ij) = 1 rewrite 1— (lJrsrz(ij))2 as—Sij)(2+syj))- For a sufficiently small

& we can find two positive constantée),C(€) such that < 2+s,4;) < C whenevers,j € (—&,€).
Again, by Proposition 10 (iv), we can replace-2;;) with 1. This proves Equation (18). |

Since ¢’ is a monomial ideal then, by (Lin, 2011, Proposition 4.11) and TheorermeR@vbwe
can compute RLCJ(_¢#’) using the method of Newton diagrams. We present this method in the
following subsection.

6.2 Newton Diagram Method

Given an analytic functiori € 4o(IRY) we pick local coordinates= (x1,...,Xq) in a neighborhood
of the origin. This allows us to represehtis a power series i, ..., Xq such thatf (x) = 5 4 cax“.
The exponents of terms of the polynomfadre vectors ifNY. TheNewton polyhedroof f denoted
by I (f) is the convex hull of the subset

{a+0a":cg#0,a' € RYGL.
A subsety c I (f) is afaceof I, () if there existg3 € RY such that
y={ael.(f): (a,p) < («,B) foralla’ e M (f)}.

If yis a subset of ,(f) then we definefy(x) = 3 ycyrna CaX®. The principal part of f is, by
definition, the sum of all terms df supported on all compact faceslof (f).

Example 4 Let f(x,y) = X3+ 2xy+ 6x%y + 3x*y +y?. Then the Newton diagram looks as follows:
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1 2 3 4 5

where the dots correspond to the terms of f. There are only two bouadet$ ofr () and the
principal part of f is equal to X+ xy+ Y.

Definition 19 The principal part of the power series f with real coefficientRiaondegenerate if
for all compact facey of ', (f)

oty
aX]_

~ofy
©OXn

{XGR”: (X)="--- (x):O}g{weR”:xlmxn:O}.
From the geometric point of view this condition means that the singular lotctieedypersurface

defined by f(x) = O lies outside of R*)" for all compact faceg of I ().

The following theorem shows that, if the principal partfdé R-nondegenerate arfde ﬂlg the
computations are greatly facilitated. An example of an application of these nseithathtistical
analysis can be found in Yamazaki and Watanabe (2004).

Theorem 20 (Arnold et al., 1988) Let f JZIOZ(R“) and f(0) = 0. If the principal part of f isR-
nondegenerate theRLCTy(f) = (%,c) where t is the smallest number such that the ve(tor. ,t)
hits the polyhedrof ;. (f) and c is the codimension of the face it hits.

For a proof see Theorem 4.8, Lin (2011).
Letnow f € /'21920 such thatf (8p) = 0. We can then centefr at 8y obtaining a function in; .
Then we can use Theorem 20 to compute RyCT).

Remark 21 Note that this theorem in general will not give BECTg, (f) if O is a boundary point
of ® in which case we also need to resolve the defining inequalities. For a disousse (Arnold
et al., 1988, Section 8.3.4) and Example 2.7 in Lin (2011).

6.3 Proof of Proposition 16

Letn > 4. For eachwy € Qo, letd = 8(uwy) € {0,1}V denote the indicator vector satisfyilg= 1

if ve V is such that) = 1 andd, = 0 otherwise. In particulad; = 0 for alli = 1,...,n because the
leaves, by (A2), are assumed to be non-degenerately-etR"™+ 3 = RI% x R where|d| = 5,3y,
be the real space with variables representing the efgg¢se and nodegyy) for all v such that
oy = 1. With some arbitrary numbering of the nodes and edges we order thelearas follows:
Y1 < <Y < Xg <+ < Xe,- InLemma 18, for eachy € ﬁo, we reduced our computations
to the analysis of RLCJ{_#’) where_¢#’ has a simple monomial form. L& be a polynomial
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function onQr defined as a sum of squares of generatorsZgf In particular RLCH(_#') =
RLCTo(Qz). The exponents of terms of the polynom@j(w) are vectors if{0,2}"*13 . We have
that
@@= i [ N (20)
i#j€n) (uv)eE(ij)

The convex hull, in?}, of the exponents of the terms @5 is called theNewton polytope
of Qs and denoted (Qs). We now investigate this polytope which is needed to understand the
polyhedronl (Qs), which is needed to use Theorem 20. Since each ter@saborresponds to a
path between two leaves then the construction of the Newton polyto@g) C 7} gives a direct
relationship between paths hand the points generating the polytope. Convex combinations of
points corresponding to paths give rise to points in the polytopeEj €t E be the subset of edges
of T such that one of the ends is in the set of leave§.ofVe call these edgderminal Note that
each point generating(Qs) satisfiesy ¢.g,Xe = 4. This follows from the fact that each of these
points corresponds to a path between two leavés amd every such a path need to cross exactly
two terminal edges. Consequently each point @®s) needs to satisfy this equation as well. The
induced facet of the Newton polyhedrbn (Qs) is given as

Fo={(y,X) € T+(Qs): Z Xe = 4} (21)

and each point of | (Qp) satisfiesy g, Xe > 4.
The following lemma proves one part of Proposition 16.

Lemma 22 (The real log-canonical threshold of #) Under assumptions of Proposition 16 we have
thatrclto(_7') = §.

Proof If n= 2 then, sinca? ) # 1, by Lemma 18 we have that

RLCT( #') = RLCTo(n%,) = <;1> .

Therefore Proposition 16 holds in this case. Now assumentira#t. By Theorem 20 we have to
show that = 4 is the smallestsuch that the vectdt, . .., t) hitsI", (Qs). To show that1e ', (Qs)
we construct a poirg € ' (Q5) such thaty < 21 coordinatewise. The point is constructed as follows.

Construction 23 Let T = (V,E) be a trivalent tree with > 4 leaves, rooted in r. We present two
constructions of networks of paths between the leaves of T.

The first construction is for the case when the root is degenebdate, 1. In this case T is
necessarily rooted in an inner node. If=n4 then the network consists of the two paths within
cherries counted with multiplicity two.

N 42 N
>>,oa— g >>,O; o X
Ox 2 5 \O OK 2 5 \O

Each of the paths corresponds to a poinfifQs). We order the coordinates af; = R513 by y, <

Vb < X1 < -+ < X5 Where \, Yy are included only id,, &, = 1. For example the point corresponding
to the path involving edges and e is (2,0;2 2,0,0,0). The barycenter of the points corresponding
to all the four paths in the network {4,1;1,1,0,1,1) both if T is rooted in a or b.
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If n > 4 then we build the network recursively. Assume that T is rooted in an inrker aand
pick an inner edgéa,b). Label the edges incident with a and b as for the quartet tree above and
consider the subtree given by the quartet tree. Draw four paths as oridtuegpabove. Let v be any
leaf of the quartet subtree which is not a leaf of T and label the two additedges incident with
v by g and &. Now we extend the network by addingte one of the paths terminating in v and
ey to the other. Next we add an additional path involving onjyaad & like on the picture below.
By construction v is the root of the additional path. We extend the netwerkychy cherry until it
covers all terminal edges.

Note that we have made some choices building up the network and hemrcagteiction is not
unique. However, each of the inner nodes is always a root of at lesstind at most two paths.
Moreover, each edge is covered at most twice and each terminatirgyisedgvered exactly two
times. We have n paths in the network, all representing point§@§) denoted by g...,q,. Let
g= % S 10 then ge M(Qp) is given by ¥, =0, xe = ‘ﬁ‘ foralle € E\ (a,b). The other coordinates
by construction satisfyay= 2, yop = 2 if &, = 1, and y, = 2 for all v € V \ {a, b} such tha®, = 1.

If &, = 0then we proceed as follows. For=a4 consider a network of all the possible paths all
counted with multiplicity one apart from the cherry paths (paths of length twohted with mul-
tiplicity two. This makes eight paths and each edge is covered exactly fow: tithe coordinates
of the point representing the barycenter of all paths in the network satisfyixfor all e € E and
Y= % for all v such thatd, = 1. This construction generalizes recursively in a similar way as the
one for T rooted in an inner node. We always h@aeaths and each edge is covered exactly four
times. The network induces a poinEd (Qs) with coordinates given by,y= % for all v e V such

thatdy =1 and % = ‘ﬁ‘ for ee E. (This finishes the construction.)

The point‘ﬁ" llies inl 4 (Qs), which follows from Construction 23 and the fact that the constructed
point g € ' (Qj) satisfiesq < ‘5‘1. Moreover, for anys < ‘ﬁ‘ the points(1,...,1) does not satisfy
Y eck, Xe = 4 and hence it cannot be In, (Qg). It follows that‘ﬁ‘ is the smallest such thatl
I (Qs) and therefore rlg(_#') = §. Note that the result does not dependdn
[ |

To compute the multiplicity of the real log-canonical thresholdgfwe have to get a better
understanding of the polyhedrdn (Qs). According to Theorem 20 we need to find the codimen-
sion of the face of . (Qj) hit by the vector%l. First we find the hyperplane representation of the
Newton polytopd (Qs) reducing the problem to a simpler but equivalent one.

Definition 24 (A pair-edge incidence polytope)Let T= (V, E) be a trivalent tree with r> 4 leaves.

We define a polytope,F- R, where R = 2n— 3, as the convex combination of poirfts )i jen
where k-th coordinate ofjgis one if the k-th edge is in the path between i and j and there is zero
otherwise. We call Pa pair-edge incidence polytope by analogy to the pair-edge incidencéxmatr
defined in (Mihaescu and Pachter, 2008, Definition 1).
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The reason to study the pair-edge incidence polytope is that its structuledzandled easily
and it can be shown to be affinely equivalenf{@s). The latter is immediate 8= (0, ...,0) since
Qo = 2P,. For an arbitranp fix a rootingr of T and define a linear maf : R" — RI% as follows.
For eachv € V \ r such thad, = 1 set

1
W= é (chhl(V) + Xvehp(v) — Xpa(v)v)v

where ch(v), chp(v) denotes the two children of If 8 = 1 then set

1
Yr = é(xrchl(r) + XI’Chz(I‘) + XI‘Cl’kg(l’))‘

The map(id x f,) : R" — R" x RI% satisfieqid x f,)(2P,) = I'(Qs) because, for each poiry, = 2
if and only if the path crosseasand for any other nodg, = 2 if and only if the path crossesandv
is the root of the path, that is if the path crosses both childran of

Lemma 25 Let R, ¢ R™ be the pair-edge incidence polytope for a trivalent tree with n leaves
where n> 4. Thendim(P,) = ne— 1= 2n— 4. The unique equation defining the affine spanpf P
iS Y ecE, Xe = 2. For each inner node €V let e (v), ex(v), e3(v) denote the three adjacent edges.
Then exacth(n— 2) facets define Pand they are given by

Xey(v) T Xex(v) ~Xes(v) 2 0 Xep(v) +Xey(v) ~Xer(v) 2 0, (22)
and Xe3(v) T Xey (v) — Xey(v) >0 forallveV.

Proof Let M, be the pair-edge incidence matrix, that i€# x ne matrix with rows corresponding

to the points definindp,. By (Mihaescu and Pachter, 2008, Lemma 1) the matrix has full rank and
henceP, has codimension one iR"™. Moreover since each path necessarily crosses two terminal
edges then each point generatigatisfies the equatiofleg, Xe = 2 and hence this is the equation
defining the affine subspace containihg

Now we show that the inequalities give a valid facet descriptiorPforThis can be checked
directly forn =4 using ®LYMAKE Gawrilow and Joswig (2005). Assume this is true forkadt n.

By Qn we will denote the polyhedron defined by the equafiQpg, Xe = 2 and 3n— 2) inequalities
given by (22). We want to show thBf, = Qp. It is obvious thal, C Q, since all points generating
P, satisfy the equation and the inequalities. We show that the opposite inclusicmodds.

Consider any cherrye;,e;} C E in the tree given by two leaves, which we denote by 1, 2, and
the separating inner node Define a projectiom: R" — R"~2 on the coordinates related to all the
edges apart from the two in the cherry. We now showit,) = Q,_1, whereP = conv{0, P} is a
cone with the base given B The projectiorm(Q,) is described by all the triples of inequalities for
all the inner nodes apart from the one incident with the cherry and theimigiquation becomes
an inequality

Xe < 2.
ecEo\{e1,e2}

Denote the edge incident with, e, by e3 and the related coordinates»oby Xe, , Xe,, Xe;. The three
inequalities involvingk, andxe, do not affect the projection since they imply that

Max{Xe, — Xy, Xe, = Xey | < Xey < Xe; +Xe,
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and hence in particular ¥, = X, the constraint becomg8, 2x.,]. Consequently the set given by
Xe; +Xe, — Xey 2> 0, Xgy + X3 — X, > 0, X, +Xe3 — Xg; > O projects down tdRo. However, since
Qn_1 is contained in the nonnegative orthant, there are no additional constaix{s Inequalities
in (22) define a polyhedral cone and the equafQpg, (e, e,) Xe =t for t > 0 cuts out a bounded
slice of the cone which is equal teP,_1. The sum of all these fdre [0, 2] is exactly@n_l.
Since@n,l =P 1 by induction, then each(x) for x € Q, is a convex combination of the points
generating®,_1 and zero, that isi(x) =  cij pij where the sum is over alk~ j € {a,3,...,n} and
cij >0,y cj < 1. Next, we lift this combination back 1@Q,, and show, that any such a lift has to lie
in P,. This would imply that in particulax € R,. Lety denote a lift ofri(x) to Q,. We have

y="3 cijrij+ (1= ¢j) ro,
wherer;j is a lift of 1i(pjj) andro is a lift of the origin. It suffices to show that each andrg
necessarily lie irP,.
Consider the following three cases. Firstpjf € P,_1 is such thake, = 0. SinceP,_1 = Qn_1

andQ,_1 satisfy the equatiorzee,go\{el,ez}xe+xe3 = 2, sum of all the other coordinates related to
the terminal edges of the smaller tree is 2. Hence, if wetlifij) to Q, thenxe, = 0 and

Xe +Xe, 20, Xey —Xe, 20, Xey =X 20

by pluggingxe, = 0 into the three inequalities for the nodeBut sincerj; € Q, must also satisfy
the equatiory .g, Xe = 2, and, since we already have

Xe = 2,
ecEo\{er,e}

thenxe, +Xe, = 0 and hencee, = Xe, = 0. Consequently;;; is a vertex ofP, corresponding to the
path betweem and j. Second, ifp;; is a vertex of,_; such thatxe, = 1, then the sum of all the
other coordinates qfj; related to the terminal edges of the smaller tree is 1. Because the lift lies in
Qn we havexe, +xe, = 1. The additional inequalities give that ,xe, > 0. Hence in this case; is

a convex combination of two points B, corresponding to paths terminating in either of the nodes
1 or 2. Finally, we can easily check that zero lifts uniquely to a poiRtioorresponding to the path
E(12) joining the leaves 1 and 2. Indeed, from the equation defi@inge havexe, + Xe, = 2 and

from the inequalities since., = 0 we havexe, = X, = 1. Therefore every lify of 1(x) to Q, can

be written as a convex combination of points generaingnd hence € B,. Consequentlyx € P,

and henc&), C P,. |

Lemma 25 shows thd, has an extremely simple structure. The inequalities give a polyhedral
cone and the equation cuts out the polytéheas a slice of this cone. The result gives us also the
representation df (Qs) in terms of the defining equations and inequalities.

Proposition 26 (Structure of [ (Qg)) Polytopel’ (Qs) C 75 is given as an intersection of the sets
defined by the inequalities in (22) together widh+ 1 equations given by

2Yy = Xychy(v) T Xuchp(v) — Xpavyy  for all v #r such thatd, = 1,
2Yr = Xrehy(r) + Xrchy(r) + Xrehg(ry  if & =1, and (23)
ZGGEO Xe = 4
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From this we can partially understand the structur€ ofQs). First note that . (f) =T (f)+
Rio, where the plus denotes the Minkowski sum. TMinkowski sunof two polyhedra is by
definition

Fi+Mo={x+yeRy: xel,yel,}.

Lemma 27 Letl" C RY, be a polytope and left ;. be the Minkowski sum df and the standard
coneRgo. Then all the facets df.. are of the formy;ax > ¢, where a> 0and c> 0.

Now we are ready to compute multiplicities of the real log-canonical threshib€iTi(Qs) at
least in certain cases. This completes the proof of Proposition 16.

Lemma 28 (Computing multiplicities) Let T be a trivalent tree with i 4 leaves, rooted inr. Let
q € Mt be such thak;; = Oforalli, j € [n] andwyg € Qo. Letd = 3(uy) be such thab, = 1ifs0 =1
and it is zero otherwise. DefinesQu) as in (20). If either: (i)d = 0 or (ii) & =1 andd, = 1 for
all (r,v) € E thenmultp(Qs) = 1.

Proof A standard result for Minkowski sums says that each face of a Minkiossm of two
polyhedra can be decomposed as a sum of two faces of the summandssashettmposition is
unique. Each facet df . (Qj) is decomposed as a face of the standard mih;é‘a' C V5 plus a face
of I (Qs). We say that a face @f(Qs) induces a facet df , (Qj) if there exists a face of the standard
coneRQear ® such that the Minkowski sum of these two faces gives a fac€t,¢f)s). Since the
dimension (Q;) is lower than the dimension of the resulting polyhedron it turns out that aee fa
of '(Qs) can induce more than one facetlof (Qs). In particularl (Qp) itself induces more than
one facet where one of themhg given by (21).

Every facet off  (Qs) containing the poinﬁl, after normalizing the coefficients to sumrp
thatisy, oy + SePBe =N, is of the form

> At ) Bexe > 4, (24)

where by Lemma 27 we can assume thaf3 > 0. Our approach can be summarized as follows.

Using Construction 23 we provide coordinates of a ppiatl (Qs) such thal‘ﬁ‘l lies on the bound-

ary of p+ R;eg‘é‘. Then‘ﬁ‘l can only lie on faces df , (Qs) induced by faces df (Qs) containing

p. To show that the multiplicity is exactly 1 we need to show @hties in the interior ofF.

First, assume thal, = 0 which corresponds to the case when the moot¢presents a non-
degenerate random variable. Consider the ppiatl'(Qs) induced by the network ofr2paths
given in the second part of Construction 23. Sirge- ‘ﬁ‘ for all e € E then from the description of
(Qs) in Lemma 26 we can check that all defining inequalities are strict for this poirgreforep
lies in the interior of” (Qg) and the only facets df , (Qs) containingp are these induced Hy(Qs)
itself. The equation defining a facet inducedb{Qs) has to be obtained as a combination of the
defining equationsy g, Xe = 4 and|d| equations

2yy — Xvehy (v) — Xvehy(v) + Xpa(v)v = 0 (25)

for all v e V such tha®, = 1. We check possible combinations such that the form of the induced
inequality in (24) is attained. The first inequality, definiRg is already of this form (cf. (21)).
The sum of all the coefficients is since there ar@ terminal edges. Any other facet has to be
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obtained by adding to the first equation (since the right hand side in (23pisdn-negative (since
the coefficients in front ofy, need to be non-negative) combination of equations in (25). However,
since the sum of the coefficients in (25)4sl, this contradicts the assumption that the sum of
coefficients in the defining inequality is Consequently, id; = 0 the codimension of the face hit
by #1is 1 and hence by Theorem 20 we have that si@§) = 1.

Second, ifd; = 1 andd, = 1 for all children ofr in T then since all the nodes adjacentrto
(denote them by, b, ¢) are inner we have three different ways of conducting the constructitire
n-path network in Construction 23 (by omitting each of the incident edgeshcélee get three
different points and their barycenter satisfigs= Xn = Xrc = % andxe = ‘ﬁ‘ for all the other edges;
Vr = ‘ﬁ", Ya=VYpb=VYc= % andy, = % for all the other inner nodes. Denote this pointggind note
thatp < ‘ﬁ‘l. By the facet description df(Qs) derived in Proposition 26 we can check that this point
cannot lie in any of the facets definindQs) and hence it is an interior point of the polytope. As in
the first case it means that the facet$ of Qs) containingp are induced by (Qs). By Proposition
26 the affine span is given by (23). Since the sum of coefficients in thatieq involvingy; is
negative we cannot use the same argument as in the first case. Ingteadd t0y g Xe =4 a
non-negative combination of equations in (25) each with coeffitjen0 and then add the equation
in (23) involvingy; with coefficienty .., t,. The sum of coefficients in the resulting equation will be
n by construction. The coefficient afa ista — Y.« tv = — Y4 alv. Since it has to be non-negative
it follows thatt, = O for all v apart froma. However, by checking the coefficientxf, one deduces
thatt, = O for all inner nodew. Consequently the only possible facetlof(Qs) containing%l is
Fo and hence again my(iQs) = 1. [ |

The following example shows that in certain cases giQ§) can be strictly greater than 1.

Example 5 Consider the quartet tree model with q such tkgt=0for all i, j = 1,2,3,4. In this
case (Qs) € R’ has six vertices(2,0;22,0,0,0), (2,0;2,0,2,2,0), (2,0;20,2,0,2),
(2,0;2,0,2,2,0), (2,0;0,2,2,0,2) and (0,2;0,0,0,2,2). The facet description of the Newton poly-
hedronl"; (Qs) can be easily computed usii®pLYMAKE Gawrilow and Joswig (2005). From
this description it is easily checked that the paibt1;1,1,1,1,1) lies on two facets of , (Qs). It
follows that the codimension of the face hit by this vector is two, or equivalemiliy(Qs) = 2.

7. Proof of Theorem 2

In this section we complete the proof of Theorem 2 using results from thopeesections. We
split it into three steps.

7.1 Step 1

To analyze the asymptotic behavior of the stochastic compl&xitpy Theorem 4, equivalently we
can compute RLC3, (K;¢), whereK is the Kullback-Leibler distance defined in (3) apds the
prior distribution satisfying (Al). By Theorem 11 and Theorem 14 thislogacanonical threshold
is equal to RLCh, (-#), where.7 is the ideal defined by (11).
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7.2 Step 2

We compute separately RLGT(.#) in the case when= 3. If T is rooted in theinner node the
expansion foifFy follows from Theorem 4 in Rusakov and Geiger (2005). Thus # E, which
in Rusakov and Geiger (2005) corresponds to the type 2 singularity, then

EFRy =NS+2logN+0(1) or  RLCTq,(#) = (2,1). (26)
Since all the neighbours of the root are leaves and hence, by (A2)atbenon-degenerate we need
only to make sure that the first equation in Theorem 2 gives (26). Thisafslfoom the fact that
l,=0andlp =1, vlhereli i=0123 defirled in the introduction is the numberiofer nodes of
T whose degree it isi. In the case whefE| = 1 (type 1 singularity) we have

EFRy =N S+glogN +0(1) or RLCTq, () = <2,1> .

The second equation in Theorem 2 holds sihce 1,1p =0 andc = 0. If E = 0 we have
7 7
ER =NS+ éIogN +0(1) or RLCTq, () = <2,1> ,
which again is true since = 0,1p = 0 andc = 0.

Now assume thal is rooted in a leaf, say 1. If there exist§ = 1,2,3 such thak;; # O (or
equivalently|E| < 1) thenV = 0 and by Proposition 8

7-2
ERy =NS+-——2

+0(1) or RLCTQT(ﬂ):<7_22|2,1>.

If E = E thenV # 0 and by Theorem 14 for everyo € Qt
RLCTy (#) = (‘Z’o) +RLCTwy (7).

Moreover, by Lemma 18, for eveny € ﬁo

RLCTw (7 ) = RLCTo({N1nNh2, N1nNh3, S Nh2Nn3)),
whered, = 1 if # =1 andd®, = 1 otherwise. It can be checked directly by using the Newton
diagram method and Theorem 20 that RLET 7 ) = (%, 1) both if &, = 0 andd, = 1 and hence

RLCT,(#) = (%, 1). Since the points if, such that? + 1 lie in the interior ofQr then for these
points RLCT,,(-#) = RLCTq,(-#) whereQq is a neighborhood oy in Qr. Hence, by (6), we
have that

. . 9
RLCTQT(f) = min RLCTQO(J) < min RLCTQO(ﬂ) = <,1).
WoeQT wWEQo 4

On the other hand, by (5) and then Proposition 17, we obtain the followingai#ies

RLCTq,(«#) > min RLCT,(#) > min RLCTy () = <9,1>.
WoEQT W€ Qdeep 4

It follows that
ER =N S+§IogN +0(1) or RLCTq, () = <Z,1> ,
which gives the the second equation in Theorem 2 since in thidgase= 0 andlp = 1.
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7.3 Step 3, Case 1

Assume now that > 4 andr ¢ V. Inthis case, using notation from Section 5, evefpri=1,...,k

is rooted in one of its leaves. Hence RLGT 7 (Ti)) = (‘%", 1) for everyi =1,...k. If |Lj| # 3 this
follows from Proposition 16. IfLi| = 3 it follows from Case 2 above. By Lemma 15 and Equation
(17), for everyuy € Qo we have that

n{,+n' K |Li|

rIthD 21 + A
2 2,4

wherenl, n, II are respectively the number of vertices, edges and and degree tws indd of

S; andL; |s the set of leaves ofj. Let mj denote the number of nodes dfwhose degree is

i. Note thatm, = I, but my does not necessarily equal We now use three simple formulas:
yin, = my +my +mg (that is only degree zero nodes Bfdo not lie in theS's), yin,=|E\ E|
(that isE \ E is the set of all edges of all th@’s) and YilLi| = mp+n—my (that is the leaves
of all the T;’s are precisely the degree two nodesTofind these leaves af which have degree
zero inT). Moreover, for any graph with the vertex détand the edge sef, Svev degv) =

2ne (see Semple and Steel, 2003, Corollary 1.2.2). Therefore, with the forappléed for the
forestT, we havem, + 2m, + 3mg = 2|E \ E|. Using these four formulas together we show that
flcte, () = %(3n+ M+ 5mg). The final formula for the coefficient follows from the fact that

l[o=mandlg=n—n—np— mg. Moreover, sinced, = 0 for all wy € ﬁo then, by Lemma 28,
multo(_Z (Ti)) = 1 for everyuy € Qo. Therefore,

ny+ne—2 Blg )

201

2 4’ 7)

RLCT, () = (

Now we show that RLC#, (.#) also has the same form. Leb be a point inﬁo such thats, # 1
for all ve V and letw,; € ﬁdeep Equation (27) is true both ifyp = w3 andwy = wp and hence
RLCT,, (-#) = RLCT,(-.#). However, sincex, is an inner point of2r, it follows from the defini-
tion of RLCTq, (.#) as the minimum over all points Q+, that

RLCTg, (#) < RLCTo(Hy,)-
On the other hand by (5) and Proposition 17

RLCTo(fwl) = mip RLCTo(wa) < mip RLCTQO(JQ)O) = RLCTQT(J).
WoEQT WEQT

Therefore, ifr ¢ V, then in fact RLCh, (.#) = (A, 1), where) is the coefficient in (27), and
ERy =N S+AlogN+O(1).

The main formula in Theorem 2 is proved in this case becaus®.

7.4 Step 3, Case 2

Let nown >4 andr € V. Let 1< j <k be such that is an inner node ofj anduy € ﬁo. For
all i # |, Ti is rooted in one of its leaves. Therefore, by Lemma 22, Lemma 28 and Stepwv@ ab
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for all i # j we have that RLCE,(_# (Ti)) = (|Li|/4,1). It remains to compute RLG(_Z (T;)).

If |L;| =3 then RLCTy(_ 7 (Tj)) = (1/2,1) = ((|Lj| — 1)/4,1) by the Step 2 above, (cf. (26)). In
this case the computations are the same as in Step 3, Case 1 but with a céfkmfr%rin the real
log-canonical threshold. We obtain

~20, Slg+1
Em:Ns+(”V+n§ 2—50: )IogN+O(1).

However, if|L;| > 4 then, by Lemma 22, rlgt_# (Tj)) = |L;|/4 and hence as in Step 3, Case
1 we havesk ;ricto(_Ze(Ti)) = 3(n—my +myp). Therefore rlcy, (.#) = A. We compute the
multiplicity by considering different subcases. If all the neighbours afe degenerate then for all
pointsuwy € ﬁdeepwe have thad, = 1 andd, = 1 for all neighbourw orr. It follows from Lemma
28 that mulgy, (_7 (Tj)) = 1 and hence mult (.#) = 1. Therefore,

1
EFRy=NS+ 2 (3n+12+5I3)logN +O(1).

Otherwise we do not have explicit bounds on the multiplicity. Since gn#) > 1 then

EFRy =NS+ % (3n+12+5l3)logN — (m—1)loglogN + O(1),
wherem > 1. This finishes the proof of Theorem 2. O

Remark 29 Example 5 showed thault,,(.#) may be strictly greater thad for some bound-
ary points ofQr. The analysis of how it affects the computatiomufity, (.#) is highly compli-
cated as it involves resolution of the boundary constraints. Typically wguest able to provide
upper bounds. For example, since in Example 5 we maukg (.#) = mult,,(.#) then, by (5),
multg, () < multy, (&) = 2.
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