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Abstract

The standard Bayesian Information Criterion (BIC) is derived under regularity conditions which
are not always satisfied in the case of graphical models with hidden variables. In this paper we
derive the BIC for the binary graphical tree models where allthe inner nodes of a tree represent
binary hidden variables. This provides an extension of a similar formula given by Rusakov and
Geiger for naive Bayes models. The main tool used in this paper is the connection between the
growth behavior of marginal likelihood integrals and the real log-canonical threshold.
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1. Introduction

A key step in the Bayesian learning of graphical models is to compute themarginal likelihoodof
the data, which is thelikelihood functionaveraged over the parameters with respect to the prior
distribution. Given a fully observed system, the theory of graphical modelsprovides a simple way
to obtain the marginal likelihood. This was explained for example by Cooper and Herskovits (1992)
and Heckerman et al. (1995). However, when some of the variables in thesystem arehidden(never
observed), the exact determination of the marginal likelihood is typically intractable (for example
Chickering and Heckerman, 1997). This motivates the search for efficient techniques to approxi-
mate the marginal likelihood. In this paper we focus on the large sample behavior of the marginal
likelihood called theBayes Information Criterion(BIC).

To present basic results on the BIC we need to introduce some notation. LetX be a random
variable with values in[m] := {1, . . . ,m}. Its distributionq = (q1, . . . ,qm) can be identified with
a point in theprobability simplex ∆m−1 = {x ∈ R

m : ∑i xi = 1, xi ≥ 0} ⊆ R
m. Consider a map

p : Θ → ∆m−1 and letM = p(Θ) be a parametric discrete model forX with the parameter spaceΘ
and parametrizationp. Let X(N) = X1, . . . ,XN be a random sample from the distributionq∈ ∆m−1.
By ZN we denote the marginal likelihood and byL(θ;X(N),M ) = P(X(N)|M ,θ) the likelihood
function. Thus

ZN = P(X(N)|M ) =
∫

Θ
L(θ;X(N),M )ϕ(θ)dθ,
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whereθ denotes the model parameters andϕ(θ) is a prior distribution onΘ. Thestochastic com-
plexity is defined by

FN =− logZN

and the entropy function by

S=−
m

∑
i=1

qi logqi .

In statistical theory to obtain the BIC we usually require that the asymptotic limit of the likeli-
hood function, asN → ∞, is maximized over a unique point in the interior of the parameter space
where the Jacobian matrix of the parametrization is full rank. For the class ofproblems for which
this assumption is satisfied Schwarz (1978) and Haughton (1988) showedthat, asN → ∞,

EFN = N S+
d
2

logN+O(1),

whered = dimΘ (Watanabe, 2009, Corollary 1.15 and Section 6). The same formula worksif the
limit of the likelihood is maximized over a finite number of points in the interior ofΘ. Geometri-
cally, for large sample sizes functionZN concentrates around the maxima. This enables us to apply
the Laplace approximation locally in the neighborhood of each maximum.

It can be proved (see Proposition 5) that the above formula can be generalized for the case when
the set, over which the limit of the likelihood is maximized, forms a sufficiently regular compact
subset of the parameter space. Denote this subset byΘ̂. Then, asN → ∞,

EFN = N S+
d−d′

2
logN+O(1), (1)

whered′ = dimΘ̂. Note that in our casêΘ is a set of zeros of a real analytic function. Therefore,
it will be always a semi-analytic set, that is given by{g1(θ) ≥ 0, . . . ,gr(θ) ≥ 0}, wheregi are all
analytic functions. It follows that the dimension is well defined (Bierstone and Milman, 1988,
Remark 2.12).

In the case of models with hidden variables the locus of the points maximizing the limit of
the likelihood may not be sufficiently regular. In this case the likelihood will havea different
asymptotic behavior around different points and relatively more mass of themarginal likelihood
integral will be related to neighborhoods of singular points (see Figure 1). For these points we
cannot use the Laplace approximation. Nevertheless, the computation of theBIC is still possible
using results of Watanabe (2009) and some earlier works of Arnold, Varchenko and collaborators
(Arnold et al., 1988). This formula will differ from the standard BIC. First, the coefficient of logN
can be different fromd−d′

2 in (1). Second, we sometimes encounter an additional log logN term
affecting the asymptotics (see Theorem 4).

Let againq be the true data generating distribution andM = p(Θ) a discrete parametric statisti-
cal model with the parameter spaceΘ. Let ϕ : Θ → R be a prior distribution. Throughout the paper
we always assume:

(A1) The prior distributionϕ is strictly positive, bounded and smooth onΘ.

(A2) There existsθ ∈ Θ such thatp(θ) = q andq lies in the interior of the probability simplex.

(A3) The setΘ ⊆ R
d is a compact andsemianalytic setof dimensiond.
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Figure 1: The case when the likelihood is maximized over a singular subset ofΘ = [−1,1]2 given
by θ1θ2 = 0.

In this paper we consider an important class of parametric models with large number of hidden
variables, calledgeneral Markov models, assuming for simplicity that all the random variables in
the system are binary. This model class is extensively used in phylogenetics(Semple and Steel,
2003, Chapter 8) and in the analysis of causal systems (see Pearl and Tarsi, 1986). We begin with a
quick informal introduction to general Markov models which is then formalizedin Section 3.1. Let
T = (V,E) be an undirected tree with the vertex setV and the edge setE. Let Tr denoteT rooted in
r, that is a tree with one distinguished vertexr and all the edges directed away fromr. Consider the
Markov process Y= (Yv)v∈V on Tr , which by definition is the Bayesian network onTr . Then, the
general Markov modelis a family of marginal distributions over the subvector ofY corresponding
to the leaves ofTr . It is well known that this model class does not depend on the rooting. Therefore,
we denote this model class, omitting the rooting, byMT .

For a treeT with n leaves we denote the subvector ofY corresponding to the leaves ofT by
X = (X1, . . . ,Xn) with some arbitrary numbering of leaves. The subvector ofY corresponding to the
inner nodes is denoted byH. By construction the general Markov model is a statistical model for
X. Let q ∈MT be the true distribution and̂Σ = [µ̂i j ] be the covariance matrix ofX. A surprising
fact proved in this paper is that the zeros inΣ̂, or equivalently, marginal independencies between
components ofX, completely determine the asymptotics for the marginal likelihood.

We say that two nodesu,v of T are separatedby another nodew, if w lies on the unique
path betweenu andv. Let l2 denote the number ofinner nodesv of T such that for each triple
i, j,k of leaves separated inT by v we haveµ̂i j µ̂ikµ̂jk = 0 but there exist leavesi, j separated byv
such that ˆµi j 6= 0. In terms of the conditional independence defining the general Markovmodel,
an inner nodev contributes tol2 if for every three leavesi, j,k such thatXi ⊥⊥ Xj ⊥⊥ Xk|Hv at least
two are marginally independent but there exist two leavesi, j such thatXi ⊥⊥ Xj |Hv but notXi ⊥⊥ Xj .
In addition, we say that an inner nodev is degenerate (or q-degenerate)if for any two leavesi, j
separated byv we haveµ̂i j = 0. In other wordsv is degenerate if for everyi, j such thatXi ⊥⊥ Xj |Hv

alsoXi ⊥⊥ Xj . All other nodes are callednondegenerate.
We denote byne the number of edges ofT and bynv the number of its nodes. The following

result is a special instance of (Watanabe, 2009, the Main Formula II, p. 34):
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Theorem 1 Let Tr = (V,E) be a tree rooted in r and X(N) be a random sample from q. With
assumptions (A1), (A2) and (A3), if there are no q-degenerate nodes then, as N→ ∞,

EFN = N S+
nv+ne−2l2

2
logN+O(1).

Note, in particular, that the above formula is independent of the rooting.

Example 1 Let n= 4 and assume that data are generated from the Bayesian network given by the
quartet tree in Figure 2. If q is such that̂Σ has no zeros then l2 = 0 and the coefficient oflogN is

Figure 2: A quartet tree rooted inr.

11
2 . This corresponds to the classical BIC since the dimension of the parameter space is11. If the

true distribution q∈MT satisfies in addition the marginal independence condition X1 ⊥⊥ (X2,X3,X4)
thenµ̂1i = 0 for i = 2,3,4 and r contributes to l2. We depict this situation on the left hand side in
Figure 3. Here the dashed edge means that for every pair i, j of leaves separated by this edgeµ̂i j = 0
and an inner node contributes to l2 if its valency, in the forest with the dashed edges removed, is2.
In this case l2 = 1 and the coefficient oflogN is 9

2. If, in addition, q satisfies X1 ⊥⊥ X3 ⊥⊥ (X2,X4)
then l2 = 2 and hence the coefficient is72. The corresponding graph is depicted in the middle of
Figure 3.

Example 2 (Naive Bayes model)Consider a star tree with one inner node and n leaves. If there
are no degenerate nodes this corresponds to q being either a regular point or a type1 singularity as
defined by Rusakov and Geiger (2005). If l2 = 0 then q is a regular point and the coefficient oflogN
is equal to2n+1

2 . If l2 = 1 then q is a type1 singularity and the coefficient is equal to2n−1
2 . This

corresponds exactly to (Rusakov and Geiger, 2005, Theorem 4). Ifthe inner node is degenerate this
corresponds to the type 2 singularity which does not satisfy assumptions ofTheorem 1.

If q is such that there are degenerate nodes the computation of the BIC is much harder because
the likelihood in this case maximizes over a singular subset of the parameter space. The case of star

Figure 3: Three graphs representing submodels of the quartet tree modelwith some additional
marginal independencies. In the third case the root is degenerate.
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trees was investigated by Rusakov and Geiger (2005). In this paper we obtain a closed form formula
for the BIC in the case oftrivalent trees, whose all inner nodes have valency three. This is provided
in Theorem 2 which together with Theorem 1 are the main results of this paper.The importance of
trivalent trees follows mainly from the fact that any other tree model is a submodel of a model for a
trivalent tree. They also form a natural class for models of evolution in biology.

If T is trivalent then for every inner nodev∈ V there existA,B,C ⊆ [n] such thatA∪B∪C =
[n] andA,B,C are separated byv. By the defining conditional independence conditions we have
that XA ⊥⊥ XB ⊥⊥ XC|Yv, whereXA = (Xi)i∈A. In this case we callv degenerate ifq is such that
XA ⊥⊥ XB ⊥⊥ XC. Let l0 denote the number of degenerate nodes.

Theorem 2 Let Tr =(V,E) be a rooted trivalent tree with n≥ 3 leaves and root r. With assumptions
(A1), (A2) and (A3) if r is degenerate but all its neighbors are not, then, as N→ ∞,

EFN = N S+

(
nv+ne−2l2

2
−

5l0+1
4

)
logN+O(1).

In all other cases, as N→ ∞,

EFN = N S+

(
nv+ne−2l2

2
−

5l0
4

)
logN−clog logN+O(1),

where c is a nonnegative integer. Moreover c= 0 always if either both r is nondegenerate or if r
and all its neighbors are degenerate.

The coefficients of logN above are given in this special form to show the correction term with
respect to the coefficient in the smooth case in Theorem 1.

Example 3 Consider again the quartet model from Example 1. IfΣ̂ has no zeros then l2 = 0, l0 = 0
and we get the same formula as previously with coefficient11

2 . Now assume that q is such that
in addition the marginal independence X1 ⊥⊥ X2 ⊥⊥ (X3,X4) holds. The situation is depicted on the
right hand side in Figure 3. The edge(r,a) is dashed since for any two leaves separated by this edge
the corresponding covariance is zero. In this case l2 = 1, l0 = 1, the root is degenerate but all its
neighbors are not and hence, by Theorem 2, the coefficient oflogN is3 and c= 0. Consider finally
the case when all off-diagonal elements ofΣ̂ are zero. In this case l2 = 0 and l0 = 2 and hence the
coefficient oflogN is also3. However, later in Example 5 and Remark 29 we will see that c may be
strictly greater than zero in this case.

Following Rusakov and Geiger (2005), the main method of the proof is to change the coordi-
nates of the model so that the induced parameterization becomes simple. This gives us a much better
insight into the model structure which is described by Zwiernik and Smith (2011b) and Zwiernik
and Smith (2011a). Since the BIC is invariant with respect to these changes, the reparameterized
problem still gives the solution to the original question. Our main analytical toolis the real log-
canonical threshold (see for example Watanabe, 2009). This is an important geometric invariant
which in certain cases can be computed in a relatively simple way using discretegeometry. The rel-
evance of this invariant to the BIC is given by Theorem 4. We remark that the techniques developed
in this paper can be applied to obtain the BIC also in the case of non-trivalenttrees.

The paper is organized as follows. In Section 2, following Watanabe (2009), we provide the
theory of asymptotic expansion of marginal likelihood integrals. This theory enables us to analyze
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the asymptotic behavior of the marginal likelihood without the standard regularity assumptions.
In Section 3 we define Bayesian networks on rooted trees. We also obtain abasic result on the
BIC in the case when the observed likelihood is maximised over a sufficiently smooth subset of the
parameter space. This gives a simple proof of Theorem 1. The proof ofTheorem 2 is more technical
and hence divided into three main steps split between Sections 4, 5 and 6. Finally, in Section 7, we
combine all these results.

2. Asymptotics of Marginal Likelihood Integrals

In this section we introduce the real log-canonical threshold and link it to theasymptotic behavior
of marginal likelihood integrals. We present how this enables us to obtain the BIC in the case of a
general class of statistical models, which is mostly based on previous resultsof Sumio Watanabe.

2.1 The Real Log-canonical Threshold

Givenθ0 ∈ R
d, letAθ0(R

d) be the ring of real-valued functionsf : Rd → R that are analytic atθ0.
Given a subsetΘ ⊂ R

d satisfying (A3), letAΘ(R
d) be the ring of real functions analytic at each

point θ0 ∈ Θ. If f ∈ AΘ(R
d), then for everyθ0 ∈ Θ, f can be locally represented as power series

centered atθ0. Denote byA≥
Θ (Rd) the subset ofAΘ(R

d) consisting of all non-negative functions.
Usually the ambient space is clear from the context and in this case we omit it in our notation writing
Aθ0, AΘ andA≥

Θ .

Definition 3 (The real log-canonical threshold) Given a compact semianalytic setΘ ⊆ R
d such

that dimΘ = d, a real analytic function f∈ A≥
Θ (Rd) and a smooth positive functionϕ : Rd → R,

consider the zeta function defined as

ζ(z) =
∫

Θ
f (θ)−zϕ(θ)dθ. (2)

By Theorem 2.4 of Watanabe (2009) this function is extended to a meromorphic function on the
entire complex line and its poles are real and positive. The real log-canonical threshold of f de-
noted byrlctΘ( f ;ϕ) is the smallest pole ofζ(z). By multΘ( f ;ϕ) we denote the multiplicity of this
pole. By convention ifζ(z) has no poles thenrlctΘ( f ;ϕ) = ∞ and multΘ( f ;ϕ) = d. If ϕ(θ) ≡ 1
then we omitϕ in the notation writingrcltΘ( f ) andmultΘ( f ). DefineRLCTΘ( f ;ϕ) to be the pair
(rlctΘ( f ;ϕ),multΘ( f ;ϕ)), and we order these pairs so that(r1,m1)> (r2,m2) if r1 > r2, or r1 = r2

and m1 < m2.

Let M = p(Θ) ⊆ ∆m−1 be a parametric discrete model andq∈ ∆m−1 be a probability distribu-
tion. WithM andq fixed the Kullback-Leibler distanceK : Θ → R is defined by

K(θ) =
m

∑
i=1

qi log
qi

pi(θ)
. (3)

It is well known thatK(θ) ≥ 0 on Θ andK(θ) = 0 if and only if p(θ) = q. If q is the true data
generating distribution then assumption (A2) means thatΘ̂ = {θ : K(θ) = 0} is non-empty.

The following theorem gives the motivation to study the real log-canonical threshold in the
statistical context.

3288



ASYMPTOTICS OF THEMARGINAL L IKELIHOOD FOR TREE MODELS

Theorem 4 (Watanabe) LetM be a parametric discrete statistical model, q the true data gener-
ating distribution and K the corresponding Kullback-Leibler distance. With assumptions (A1), (A2)
and (A3), as N→ ∞,

EFN = N S+ rlctΘ(K;ϕ) logN+(multΘ(K;ϕ)−1) log logN+O(1).

To compute the real log-canonical threshold we split the integral in (2) into asum of finitely
many integrals over small neighbourhoodsΘ0 of some pointsθ0 ∈ Θ for which we have efficient
tools of computation. We can always do this using the partition of unity sinceΘ is compact. For
each of the local integrals we use Hironaka’s theorem to reduce it to a locally monomial case. The
details are presented by Watanabe (2009).

Let θ0 ∈ Θ and letW0 be any sufficiently small open ball aroundθ0 in R
d. Then, by Theorem

2.4 of Watanabe (2009), RLCTW0( f ;ϕ) does not depend on the choice ofW0 and hence it is denoted
by RLCTθ0( f ;ϕ). If f (θ0) 6= 0 then RLCTW0( f ;ϕ) = (∞,d) and hence we can constrain only to
pointsθ0 such thatf (θ0) = 0. In our context this means that we consider only points in theq-fiber
Θ̂.

The local computations give the answer to the global question because, by(Lin, 2011, Proposi-
tion 2.5), the set of pairs RLCTΘ0( f ;ϕ) for θ0 ∈ Θ has a minimum and

RLCTΘ( f ;ϕ) = min
θ0∈Θ

RLCTΘ0( f ;ϕ), (4)

whereΘ0 = W0∩Θ is the neighbourhood ofθ0 in Θ. For eachθ0 ∈ Θ to compute RLCTΘ0( f ;ϕ)
we consider two cases. Ifθ0 lies in the interior ofΘ then we can assumeΘ0 = W0 and hence
RLCTΘ0( f ;ϕ) = RLCTθ0( f ;ϕ). If θ0 ∈ bd(Θ), where bd(Θ) denotes the set of boundary points of
Θ, the computations may change significantly because the real log-canonicalthreshold depends on
the boundary conditions (cf. Example 2.7 of Lin, 2011). Nevertheless, itcan be showed that at least
if there exists an open subsetU ⊆ R

d such thatU ⊃ Θ0 and f ∈ A≥
U (Rd) then

RLCTΘ0( f )≥ RLCTθ0( f ). (5)

Because in this case∫
W0

( f (θ))−zdθ =
∫

Θ0

( f (θ))−zdθ+
∫

W0\Θ0

( f (θ))−zdθ

which implies that RLCTθ0( f ) = min{RLCTΘ0( f ),RLCTW0\Θ0( f )}.

Finally, whenever̂Θ 6= /0 we have

RLCTΘ(K) = min
θ0∈Θ̂

RLCTΘ0(K). (6)

The following result enables us to obtain the BIC in the smooth case.

Proposition 5 LetM be a parametric statistical model with parametrization p, and q be the true
data generating distribution. Let K∈A≥

Θ (Rd) be the Kullback-Leibler distance defined in (3). Given

(A1), (A2) and (A3) assume that there exists a smooth manifold M⊆R
d satisfyingΘ̂=M∩Θ. Then,

as N→ ∞,

EFN = N S+
d−d′

2
logN+O(1),

where d′ = dimΘ̂.
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Proof By assumption (A1) there exist two constantsc,C> 0 such thatc<ϕ(θ)<C onΘ. Therefore

c
∫

Θ
(K(θ))−zdθ < ζ(z)<C

∫
Θ
(K(θ))−zdθ

and it follows that RLCTΘ(K;ϕ) = RLCTΘ(K). By Theorem 4 it suffices to prove the following
lemma which generalises Proposition 3.3 of Saito (2007).

Lemma 6 Let Θ ⊂ R
d be a compact semianalytic set and f∈ A≥

Θ (Rd). If there exists a smooth

manifold M⊆ R
d such thatΘ̂ = M ∩Θ and θ0 ∈ Θ̂ then RLCTθ0( f ) = RLCTΘ( f ) = (d−d′

2 ,1)

where d′ = dimΘ̂.

To prove this recall that the real log-canonical threshold RLCTθ0( f ) does not depend on the choice
of a sufficiently small neighborhoodW0 of θ0. SinceΘ̂ = M ∩Θ andM is a smooth manifold it
follows that for each pointθ0 of Θ̂ there exists an open neighborhoodW0 of θ0 in R

d with local
coordinatesw1, . . . ,wd centered atθ0 such that the local equation of̂Θ is w2

1+ · · ·+w2
c = 0, where

c= d−d′. A single blow-upπ at the origin satisfies all the conditions of Hironaka’s Theorem since
in the new coordinates over one of the chartsf (π(u)) = u2

1a(u) wherea(u) is nowhere vanishing
andπ′(u) = uc−1

1 . For other charts the situation is the same and hence RLCTθ0( f ) = (c/2,1). Since
by (4) RLCTΘ( f ) = minθ0∈Θ RLCTW0∩Θ( f ) it suffices to show that ifθ0 is a boundary point ofΘ
then RLCTW0∩Θ( f )≥ (c/2,1). But this follows from (5) and the fact that RLCTθ0( f ) = (c/2,1) as
θ0 is a smooth point ofM. The lemma is hence proved.

3. General Markov Models

In this section we formally define the general Markov modelMT and give in Theorem 1 the asymp-
totic expansion of the marginal likelihood whenq andMT satisfy conditions of Proposition 5.

3.1 Definition of the Model Class

All random variables considered in this paper are assumed to be binary withthe value either 0 or 1.
Let Tr = (V,E) be a rooted tree. For any directed edgee= (k, l)∈E we say thatk andl areadjacent
andk is aparentof l and we denote it byk=pa(l). For everyβ∈{0,1}V let pβ =P(

⋂
v∈V{Yv= βv}).

TheMarkov processonTr is a sequenceY = (Yv)v∈V of binary random variables such that for each
β = (βv)v∈V ∈ {0,1}V

pβ(θ) = θ(r)
βr ∏

v∈V\r

θ(v)
βv|βpa(v)

, (7)

whereθ(v)
βv|βpa(v)

= P(Yv = βv|Ypa(v) = βpa(v)) andθ(r)
βr

= P(Yr = βr). In a more standard statistical

language these models are just fully observed Bayesian networks on rooted trees. Recall thatne =

|E| andnv = |V|. Sinceθ(v)
0|i + θ(v)

1|i = 1 for all v ∈ V and i = 0,1 then the Markov process onTr

defined by (7) has exactly 2ne+1 free parameters in the vectorθ: one for the root distributionθ(r)
1

and two for each edge(u,v) ∈ E given byθ(v)
1|0 andθ(v)

1|1. The parameter space isΘT = [0,1]2ne+1.
The general Markov model onTr is induced from the Markov process onTr by assuming

that all the inner nodes represent hidden random variables. Hence weconsider induced marginal
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probability distributions over the leaves ofTr . The set of leaves is denoted byL. We assume that
Tr hasn leaves and hence we can associateL with the set[n] given some arbitrary numbering of
the leaves. LetY = (X,H) whereX = (X1, . . . ,Xn) denotes the variables represented by the leaves
of Tr andH denotes the vector of variables represented by inner nodes, that isX = (Yv)v∈L and
H = (Yv)v∈V\L. We define the general Markov modelMT to be the model in the probability simplex
∆2n−1 obtained by summing out in (7) over all possible values of the inner nodes. By definitionMT

is the image of the mapp : ΘT → ∆2n−1 given by

pα(θ) = ∑
H

θ(r)
βr ∏

v∈V\r

θ(v)
βv|βpa(v)

for anyα ∈ {0,1}L,

whereH is the set of all vectorsβ = (βv)v∈V such that(βv)v∈L = α. Because the model class does
not depend on the rooting we usually omit the rootr in the notation. For a more detailed treatment
see (Semple and Steel, 2003, Chapter 8).

3.2 The BIC in the Smooth Case

For q ∈ MT let Σ̂ = [µ̂i j ] ∈ R
n×n be the corresponding covariance matrix of the random vector

represented by the leaves ofT. We define theq-fiber as

Θ̂T = {θ ∈ ΘT : p(θ) = q} = {θ ∈ ΘT : K(θ) = 0}.

The geometry of̂ΘT is directly related to the real log-canonical threshold of the Kullback-Leibler
distance. We now show that this geometry is determined by zeros inΣ̂. For this we need to introduce
some new concepts. We say that that an edgee∈ E is isolated relative to qif µ̂i j = 0 for all i, j ∈ [n]
such thate∈ E(i j ), whereE(i j ) denotes the set of edges in the path joiningi and j. By Ê ⊆ E we
denote the set of all edges ofT which are isolated relative toq. By T̂ = (V,E \ Ê) we denote the
forest obtained fromT by removing edges in̂E.

We now define relations on̂E andE \ Ê. For two edgese,e′ with either{e,e′} ⊂ Ê or {e,e′} ⊂
E\ Ê write e∼ e′ if eithere= e′ or eande′ are adjacent and all the edges that are incident with both
e ande′ are isolated relative toq. Let us now take the transitive closure of∼ restricted to pairs of
edges in̂E to form an equivalence relation on̂E. Similarly, take the transitive closure of∼ restricted
to the pairs of edges inE \ Ê to form an equivalence relation inE \ Ê. We will let [Ê] and[E \ Ê]
denote the set of equivalence classes ofÊ andE \ Ê respectively.

By construction all the inner nodes ofT have either degree zero in̂T or the degree is strictly
greater than one. We say that a nodev∈V is non-degenerate with respect to qif eitherv is a leaf of
T or degv≥ 2 in T̂. Otherwise we say that the node isdegenerate with respect to q. Note that this
coincides with the definition of a degenerate node given in the introduction. Moreover, the isolated
edges in Examples 1 and 3 correspond precisely to the dashed edges in Figure 3. The set of all
nodes which are degenerate with respect toq is denoted bŷV.

Proposition 7 (Zwiernik and Smith, 2011b) Let T be a tree with n leaves. Let q∈ MT and let
T̂ be defined as above. If each of the inner nodes of T has degree at least two inT̂ thenΘ̂T is a
manifold with corners anddimΘ̂T = 2l2, where l2 is the number of nodes which have degree two in
T̂ .

In this way we can compute the asymptotic behavior of the marginal likelihood in thecase when
assumptions of Proposition 7 are satisfied.
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Proposition 8 Let T be a tree andMT be the corresponding general Markov model. Let q∈MT

be the real distribution generating the data such that each inner node of T has degree at least two
in T̂ . Then

RLCTΘT (K) =

(
nv+ne−2l2

2
,1

)
.

Proof Since every inner node ofT has degree at least two in̂T then by Proposition 7 there exists
a smooth manifoldM ⊆ R

nv+ne such that̂ΘT = M∩ΘT and dimΘ̂ = 2l2. The result follows from
Proposition 5 and the fact that dimΘT = 2ne+1= nv+ne.

By Theorem 4, Proposition 8 implies Theorem 1 sincel2 in its statement is exactly the number
of inner nodesv such that the degree ofv in T̂ is two.

Remark 9 Theorem 1 is still true if (A1) is replaced by the assumption that the prior distribution is
bounded onΘT and there exists an open subset ofΘT with a non-empty intersection witĥΘT where

the prior is strictly positive. In particular we can use conjugate Beta priorsθ(v)
1|i ∼ Beta(α(v)

i ,β(v)
i )

as long asα(v)
i ,β(v)

i ≥ 1.

4. The Ideal-theoretic Approach

In this section we define the real log-canonical threshold of an ideal. Theorem 11 translates the
problem of finding the real log-canonical threshold of the Kullback-Leibler distance into algebra.
We then analyse general Markov models from this perspective. In Theorem 14 we apply a useful
change of coordinates which enables us to work out the real log-canonical threshold in the singular
case.

4.1 The Real Log-canonical Threshold of an Ideal

Let f1, . . . , fr ∈ AΘ then theideal generatedby f1, . . . , fr is a subset ofAΘ denoted by

〈 f1, . . . , fr〉= { f ∈ AΘ : f (θ) =
r

∑
i=1

hi(θ) fi(θ),hi ∈ AΘ}.

Following Lin (2011) we generalize the notion of the real log-canonical thresholds to the ideal
I = 〈 f1, . . . , fr〉. This mirrors the analytic definition of the log-canonical threshold of an ideal (see
for example Lazarsfeld, 2004, Section 9.3.D). By definition

RLCTΘ(I ;ϕ) = RLCTΘ(〈 f1, . . . , fr〉;ϕ) := RLCTΘ( f ;ϕ),

where f (θ) = f 2
1 (θ)+ · · ·+ f 2

r (θ). By (Lin, 2011, Proposition 4.5) the real log-canonical threshold
does not depend on the choice of generators ofI .

The following important proposition enables us to use the full power of the ideal-theoretic ap-
proach.

Proposition 10 Let f,g∈ AΘ(R
d) and let I be an ideal inAΘ(R

d). Then
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i Letρ : Ω → Θ be a proper real analytic isomorphism andρ∗I = { f ◦ρ : f ∈ I} be the pullback of
I to AΩ. Then,

RLCTΘ(I ;ϕ) = RLCTΩ(ρ∗I ;(ϕ◦ρ)|ρ′|),

where|ρ′| denotes the Jacobian ofρ.

ii If ϕ is positive and bounded onΘ then

RLCTΘ(I ;ϕ) = RLCTΘ(I).

iii If there exist constants c,c′> 0such that cg(θ)≤ f (θ)≤ c′g(θ) for everyθ∈Θ thenRLCTΘ( f )=
RLCTΘ(g).

iv Let I = 〈 f1, . . . , fr〉 and J= 〈g1, . . . ,gr〉 where gi = ui fi for i = 1, . . . , r and there exist positive
constants c,C such that c< ui(θ)<C for all θ ∈ Θ and for all i= 1, . . . , r. ThenRLCTΘ(I) =
RLCTΘ(J).

The ideal-theoretic approach proves to be useful in a fairly general statistical context:

Theorem 11 (Lin, 2011) Let p= (p1, . . . , pm) : Θ → ∆m−1 be a polynomial mapping andM =
p(Θ) be the statistical model of X with values in[m]. For a given point q∈M define

I = 〈p1(θ)−q1, . . . , pm(θ)−qm〉 ⊂ AΘ. (8)

Let q denote the true data generating distribution and K(θ) be the corresponding Kullback-Leibler
distance defined in (3). Moreover, letϕ the prior distribution onΘ satisfying (A1). Then

RLCTΘ(K;ϕ) = RLCTΘ(I ;ϕ) = RLCTΘ(I ), (9)

where the second equation in (9) follows from Proposition 10 ii.

We now perform the change of coordinatesfθω : ΘT → ΩT , fpκ : ∆2n−1 → KT discussed in
detail by Zwiernik and Smith (2011b). We have the following diagram, where the top row is the
original parametrization and where the induced parameterisationψT is given in the bottom row.

ΘT

fθω
��

p
// ∆2n−1

fpκ
��

ΩT

fωθ

OO

ψT
//______ KT

fκp

OO

Here fθω and fpκ are polynomial isomorphisms, and hence, by Proposition 10 (i), in our compu-
tations of the real-log canonical threshold, we can alternatively constrainto the bottom row of the
diagram. We denote the coordinates ofKT by κ = (κI ) for I ⊆ [n], I 6= /0. The coordinates ofΩT

are denoted byω = ((sv),(ηuv)) for all v∈V and(u,v) ∈ E. Bothω andκ have a statistical mean-
ing as described by Zwiernik and Smith (2011b). However, in this work we use them in a purely
algebraic manner. We just note that the coordinates ofKT are certain functions of the moments. In
particular,κi = EXi for i = 1, . . . ,n and eachκi j corresponds to the covariance betweenXi andXj .
Interpretation of other coordinates is more complicated.
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Simple linear constraints definingΘT become only slightly more complicated when expressed in
the new parameters. The choice of parameter values is not free anymore inthe sense that constraints
for each of the parameters involve other parameters. The new parameter spaceΩT is given by
sr ∈ [−1,1] and for each(u,v) ∈ E (cf. Equation (19) in Zwiernik and Smith, 2011b)

−(1+sv)≤ (1−su)ηuv ≤ (1−sv)
−(1−sv)≤ (1+su)ηuv ≤ (1+sv).

(10)

In the new coordinate system the situation is more tractable becauseψT has a simpler structure.

Proposition 12 (Zwiernik and Smith, 2011b) Let Tr = (V,E) be a rooted trivalent tree with n
leaves. Then for each i= 1, . . . ,n one hasκi(ω) = 1

2(1−si) and

κI (ω) =
1
4
(1−s2

r(I)) ∏
v∈V(I)\I

sdegv−2
v ∏

(u,v)∈E(I)

ηuv for all |I | ≥ 2,

where the degree of v∈V(I) is considered in T(I) = (V(I),E(I)), which is the smallest subtree of
T containing I.

Let I denote the pullback of the idealI ⊆ AΘT to the ideal inAΩT induced by fθω. Thus
I = f ∗ωθI = { f ◦ fωθ : f ∈ I }. The ideal describeŝΩT = fθω(Θ̂T) as a subset ofΩT . Let [n]≥k

denote all subsets of[n] with at leastk elements. Then the pullback ofI satisfies

I = 〈κ1− κ̂1, . . . ,κn− κ̂n〉+

(

∑
I∈[n]≥2

〈κI (ω)− κ̂I 〉

)
, (11)

whereκ̂I are the corresponding coordinates offpκ(q). Here the sum of ideals results in another ideal
with the generating set which is the sum of generating sets of the summands.

For local computations we use the following reduction.

Proposition 13 (Lin, 2011) Let I ⊆ Ax0(R
m), J⊆ Ay0(R

n) be two ideals. IfRLCTx0(I) = (λx,mx)
andRLCTy0(J) = (λy,my) then

RLCT(x0,y0)(I +J) = (λx+λy,mx+my−1).

Theorem 14 Let Tr be a rooted tree with n leaves and q∈MT . LetI be the ideal defined by (8)
andI the ideal defined by (11). Then

RLCTΘT (I ) = RLCTΩT (I ) = min
ω0∈Ω̂T

RLCTΩ0(I ),

whereΩ0 is a sufficiently small neighborhood ofω0 in ΩT . Moreover, letJ =∑I∈[n]≥2
〈κI (ω)− κ̂I 〉.

Then, for everyω0 ∈ Ω̂T

RLCTω0(I ) =
(n

2
,0
)
+RLCTω0(J ). (12)
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Proof Since fωθ is an isomorphism with a constant Jacobian then the first part of the theorem
follows from Proposition 10 (i). Let nowW be anε-box aroundω0 = ((s0

v),(η0
uv)). If T is rooted

in an inner leaf then by Proposition 12 the idealJ does not depend ons1, . . . ,sn. Since for every
i = 1, . . . ,n the expressionκi − κ̂i depends only onsi then

RLCTω0(〈κ1− κ̂1, . . . ,κn− κ̂n〉) = (
n
2
,1),

which can be easily checked (see for example Proposition 3.3 of Saito, 2007). Equation (12) follows
from Proposition 13.

Now assume thatT is rooted in one of the leaves. In this case both〈κ1− κ̂1, . . . ,κn− κ̂n〉 and
J depend onsr becauseκI (ω) = (1−s2

r ) fI (ω) for some monomialfI (ω) wheneverr ∈ I . There-
fore, we cannot use Proposition 13 directly. However, by assumption (A2), q lies in the interior of
the probability simplex and hencêκi ∈ (0,1) for i = 1, . . . ,n which is equivalent tos0

i ∈ (−1,1).
Therefore, for eachω0 one can find two positive constantsc,C such thatc≤ 1− s2

r ≤C in W. By
Proposition 10 (iv) the real log canonical threshold ofJ in W is equal to the real log-canonical
threshold of a an ideal with generators induced from the generators ofJ by replacing each 1−s2

r
by 1. Now again (12) follows from Proposition 13.

5. The Main Reduction Step

Recall thatκ̂i j = Cov(Xi ,Xj). In this section we prove a technical result which enables us to reduce
the computations of RLCTω0(J ) to two simpler cases. First, whenq is such that̂κi j 6= 0 for all
i, j ∈ [n]. Second, whenq is such that̂κi j = 0 for all i, j ∈ [n]. Moreover, the second case is reduced
to computations for monomial ideals which are amenable to various combinatorial techniques.

Let T be a trivalent tree withn≥ 3 leaves and letq∈MT . If all the equivalence classes in[Ê]
are singletones or[Ê] is empty, which is equivalent to every inner node being of degree at leasttwo
in T̂, then Theorem 1 gives us the asymptotic behavior of the marginal likelihood.Thus, let assume
that there is at least one class in[Ê] which is not a singleton. LetT1, . . . ,Tk denote trees representing
the equivalence classes in[Ê] and letS1, . . . ,Sm denote trees induced by the connected components
of E\ Ê. Let L1, . . .Lk denote the sets of leaves ofT1, . . . ,Tk. For eachSi i = 1, . . . ,mby Remark 5.2
(iv) of Zwiernik and Smith (2011b) its set of leaves denoted by[ni ] is a subset of[n]. For eachSi

the number of nodes, edges and nodes of degree 2 inT̂ is denoted byni
v, ni

e andl i
2 respectively. We

illustrate this notation in Figure 4 where the dashed edges represent edgesin Ê. Simpler examples
are given in Figure 3.

Lemma 15 Let T = (V,E) be a trivalent rooted tree with n≥ 4 leaves and let q∈MT . LetJ =

∑I∈[n]≥2
〈κI (ω)− κ̂I 〉 as in Theorem 14. Ifω0 ∈ Ω̂T then

RLCTω0(J ) =
m

∑
i=1

RLCTω0(J (Si))+
k

∑
i=1

RLCTω0(J (Ti))+(0,1−m−k), (13)

whereJ (Si)=∑I∈[ni ]≥2
〈κI (ω)− κ̂I 〉 for i = 1, . . . ,m andJ (Ti)=∑w,w′∈Li

〈κww′(ω)〉 for i = 1, . . . ,k.

Proof We first show that∑I :κ̂I=0〈κI (ω)〉 = ∑i, j:κ̂i j=0〈κi j (ω)〉. The inclusion “⊇” is clear. We now
show “⊆”. First note that for everyI ∈ [n]≥2 if κ̂I = 0 then eitherη0

e = 0 for an edgee∈ E(I) or
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Figure 4: An example of a forest̂T induced by a pointq.

s2
r(I) = 1. There existi, j ∈ I such that such thatκ̂i j = 0 and ther(i j ) = r(I). It follows by Proposition

12 thatκI (ω) = κi j (ω) f (ω) for a polynomialf (ω) and therefore the inclusion “⊆” is also true. This
implies

J = ∑
I :κ̂I 6=0

〈κI (ω)− κ̂I 〉+ ∑
I :κ̂I=0

〈κI (ω)〉=
m

∑
i=1

J (Si)+ ∑
i, j:κ̂i j=0

〈κi j (ω)〉.

Hence, to proof the lemma, it suffices to show that for everyω0 ∈ Ω̂T

RLCTω0(
m

∑
i=1

J (Si)+ ∑
i, j:κ̂i j=0

〈κi j (ω)〉) (14)

is equal to the right hand side of (13).
If e∈ E \ Ê then by definition there existi, j ∈ [n] such thatκ̂i j 6= 0 ande∈ E(i j ). Since,

by Proposition 12,̂κi j = η0
e f (ω0) for a polynomial f then in particularη0

e 6= 0. It follows that
for a sufficiently smallε for eachE′ ⊆ E \ Ê one can find positive constantsc(ε),C(ε) such that
c(ε) ≤ ∏e∈E′ ηe ≤ C(ε) holds in theε-box aroundω0. Similarly if v /∈ V̂ (cf. Section 3.2) then
there exist positive constantsd(ε),D(ε) such thatd(ε) ≤ (1− s2

v) ≤ D(ε) in the ε-box aroundω0.
It follows by Proposition 10 (iv) that in computations of the real log-canonical threshold in (14) we
can replace eachκi j (ω) by

(1−s2
r(i j ))

δr(i j ) ∏
e∈E(i j )∩Ê

ηe (15)

whereδr(i j ) = 1 if r(i j ) ∈ V̂ and δr(i j ) = 0 otherwise. Thus, in (14) we can replace the ideal

∑i, j:κ̂i j=0〈κi j (ω)〉 by the idealJ1 = ∑i, j: κ̂i j=0〈(1− s2
r(i j ))

δr(i j ) ∏e∈E(i j )∩Ê ηe〉. However, if we de-
fine

J2 =
k

∑
i=1

∑
w,w′∈Li

〈(1−s2
r(ww′))

δr(ww′) ∏
e∈E(ww′)

ηe〉 (16)

then it can be checked thatJ1 = J2. To show thatJ2 ⊆ J1, fix j = 1, . . . ,k andw,w′ ∈ L j , and
show that the corresponding generator ofJ2 lies in J1. Note that by construction each ofw,w′

either has degree two in̂T or is a leaf ofT. Hence, by the definition of̂E, there existi, j ∈ [n] such
thatE(i j )∩ Ê = E(ww′). It follows that each generator in (16) is also in the set of generators ofJ1

and henceJ2 ⊆ J1. To show the opposite inclusion, note that, ifE(i j ) intersects with more than
one componentT1, . . . ,Tk then the corresponding generator in (15) is a product of some generators
in (16) and hence it lies inJ2.
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Since the generators of everyJ (Si) for i = 1, . . . ,mand every

∑
w,w′∈L j

〈(1−s2
r(ww′))

δr(ww′) ∏
e∈E(ww′)

ηe〉

for j = 1, . . . ,k involve disjoint sets of variables then by Proposition 13 the term in (14) is equal to

m

∑
i=1

RLCTω0(J (Si))+
k

∑
i=1

RLCTω0

(

∑
w,w′∈L j

〈(1−s2
r(ww′))

δr(ww′) ∏
e∈E(ww′)

ηe〉

)
+(0,1−m−k).

Again by Proposition 10 (iv) for eachi = 1, . . . ,k

RLCTω0

(

∑
w,w′∈Li

〈(1−s2
r(ww′))

δr(ww′) ∏
e∈E(ww′)

ηe〉

)
= RLCTω0(J (Ti))

which finishes the proof.

We note that, by Proposition 8 and the formula in (12) for eachSi :

RLCT(J (Si))+
ni

2
=

ni
v+ni

e−2l i
2

2
. (17)

6. The Case of Zero Covariances

In this subsection we assume thatq∈MT is such that̂κi j = 0 for all i, j ∈ [n]. This implies the full
joint marginal independenceX1 ⊥⊥ ·· · ⊥⊥ Xn. The aim is to prove the following proposition.

Proposition 16 Let T be a trivalent tree with n6= 3 leaves rooted in r∈V. Let q∈MT be such that
κ̂i j = 0 for all i , j ∈ [n]. LetJ be the ideal defined in Theorem 14. Then

min
ω0∈Ω̂T

RLCTω0(J ) =
(n

4
,m
)
,

where m= 1 if either r is a leaf of T or r together with all its neighbors are all inner nodes of T . In
all other cases we cannot obtain an explicit upper bound for m and hencem≥ 1.

The strategy of the proof of Proposition 16 is as follows. First, in Section 6.1, we show that
the local computations can be restricted to a special subset ofΩ̂T over whichJ can be replaced
by a monomial ideal. Then, in Section 6.2, we present a method to compute the real log-canonical
threshold of a monomial ideal. We use this method in Section 6.3.

6.1 The Deepest Singularity

Note that, by Lemma 15, RLCTω0(J ) = RLCTω0(∑i, j∈[n]〈κi j (ω)〉) so without loss of generality
we will assume in this section thatJ = ∑i, j∈[n]〈κi j (ω)〉. Moreover, for eachv ∈ V these ideals
depend onsv only through the value ofs2

v. It follows that the computations can be reduced only to
points satisfyingsv ≥ 0 for all inner nodesv of T. Henceforth, in this section, we always assume
this is the case. We define thedeepest singularityof Ω̂T as

Ω̂deep:= {ω ∈ Ω̂T : ηe = 0 for all e∈ Ê, sv = 1 for all v∈ V̂}.
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We note that, sincêκi j = 0 for all i, j ∈ [n], thenÊ = E andV̂ is equal to the set of all inner nodes
of T. It follows thatΩ̂deepis an affine subspace constrained toΩT with all coordinates either 0 or 1.

Proposition 17 Let T be a tree with n leaves. Let q∈MT such thatκ̂i j = 0 for all i , j ∈ [n]. Then

min
ω0∈Ω̂T

RLCTω0(J ) = min
ω0∈Ω̂deep

RLCTω0(J ).

Proof We first show that̂ΩT is a union of affine subspaces constrained toΩT with a common
intersection given bŷΩdeep. LetV0 ⊆ V̂ andE0 ⊆ Ê and

Ω(V0,E0) = {ω ∈ Ω̂T : sv = 1 for all v∈V0, ηuv = 0 for all (u,v) ∈ E0}.

We say that(V0,E0) isminimal forΣ̂ if for every pointω in Ω(V0,E0) and for everyi, j ∈ [n] κi j (ω)= 0,
and furthermore, that(V0,E0) is minimal with such a property (with respect to inclusion on both
coordinates). We now show that

Ω̂T =
⋃

(V0,E0) min.
Ω(V0,E0).

The first inclusion “⊆” follows from the fact that ifω ∈ Ω̂T thenκi j (ω) = κ̂i j = 0 for all i, j ∈ [n].
Thereforeω ∈ Ω(V0,E0) for some minimal(V0,E0). The second inclusion is obvious.

EachΩ(V0,E0) is an affine subspace inR|V|+|E|, denoted byM(V0,E0), constrained toΩT . Let S
denote the intersection lattice of allM(V0,E0) for (V0,E0) minimal with ordering denoted by≤. For
eachi ∈ S let M(i) denote the corresponding intersection and define

Si = M(i) \
⋃
j<i

M( j).

In this way we obtain anS -induced decompositionof R|V|+|E| (cf. Section 3.1 in Goresky and
MacPherson, 1988).

By (Lazarsfeld, 2004, Example 9.3.17) the functionω 7→ rlctω(J ) is lower semicontinuous
(the argument used there works over the real numbers). This means thatfor everyω0 ∈ ΩT and
ε > 0 there exists a neighborhoodU of ω0 such that rlctω0(J )≤ rlctω(J )+ε for all ω ∈U . Since
the set of values of the real log-canonical threshold is discrete this meansthat for everyω0 ∈ Ω̂T

and any sufficiently small neighborhoodW0 of ω0, one has rlctω0(J ) ≤ rlctω(J ) for all ω ∈W0.
Moreover, rlct(J ) is constant on eachSi . Since for any neighborhoodW0 of ω0 ∈ Ω̂deepwe have
W0∩Si 6= /0 for all i ∈ S then necessarily the minimum of the real log-canonical threshold is attained
for a point in the deepest singularity.

Proposition 17 shows that in the singular case we can restrict our analysisto the neighborhood
of Ω̂deep. Often however, we also consider points in a bigger set

Ω̂0 = {ω ∈ Ω̂T : ηuv = 0 for all (u,v) ∈ Ê}.

Note thatΩ̂deep lies on the boundary ofΩT (cf. (10)) butΩ̂0 also contains internal points ofΩT

which will be crucial for some of the arguments later.
We now formulate another technical lemma which enables us to reduce computations to the

monomial case.
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Lemma 18 Assume that q∈MT is such that̂κi j = 0 for all i , j ∈ [n]. LetJ (ω0) be the idealJ
translated to the origin. Then for everyω0 ∈ Ω̂0

RLCT0(J (ω0)) = RLCT0(J
′), (18)

whereJ ′ is a monomial ideal such that eachκi j (ω+ω0) in the set of generators ofJ (ω0) is
replaced either by

sr(i j ) ∏(u,v)∈E(i j ) ηuv if s0
r(i j ) = 1, or by

∏(u,v)∈E(i j ) ηuv if s0
r(i j ) 6= 1.

Proof Let i, j ∈ [n] and assume thatω0 = ((s0
v),(η0

e)) ∈ Ω̂0 so thatη0
e = 0 for all e∈ E. Then, by

Proposition 12:

κi j (ω+ω0) =
1
4
(1− (sr(i j )+s0

r(i j ))
2) ∏

e∈E(i j )

ηe. (19)

If s0
r(i j ) 6= 1 for a sufficiently smallε > 0 there exist positive constantsc(ε), C(ε) such thatc(ε) <

1− (sr(i j )+s0
r(i j ))

2 <C(ε) for sr(i j ) ∈ (−ε,ε). Therefore, by Proposition 10 (iv), we can replace this

term in (19) with 1. Ifs0
r(i j ) = 1 rewrite 1− (1+s2

r(i j ))
2 as−sr(i j )(2+sr(i j )). For a sufficiently small

ε we can find two positive constantsc(ε),C(ε) such thatc< 2+sr(i j ) <C wheneversr(i j ) ∈ (−ε,ε).
Again, by Proposition 10 (iv), we can replace 2+sr(i j ) with 1. This proves Equation (18).

SinceJ ′ is a monomial ideal then, by (Lin, 2011, Proposition 4.11) and Theorem 20 below, we
can compute RLCT0(J ′) using the method of Newton diagrams. We present this method in the
following subsection.

6.2 Newton Diagram Method

Given an analytic functionf ∈A0(R
d) we pick local coordinatesx= (x1, . . . ,xd) in a neighborhood

of the origin. This allows us to representf as a power series inx1, . . . ,xd such thatf (x) = ∑α cαxα.
The exponents of terms of the polynomialf are vectors inNd. TheNewton polyhedronof f denoted
by Γ+( f ) is the convex hull of the subset

{α+α′ : cα 6= 0,α′ ∈ R
d
≥0}.

A subsetγ ⊂ Γ+( f ) is a faceof Γ+( f ) if there existsβ ∈ R
d such that

γ = {α ∈ Γ+( f ) : 〈α,β〉 ≤ 〈α′,β〉 for all α′ ∈ Γ+( f )}.

If γ is a subset ofΓ+( f ) then we definefγ(x) = ∑α∈γ∩Nd cαxα. The principal part of f is, by
definition, the sum of all terms off supported on all compact faces ofΓ+( f ).

Example 4 Let f(x,y) = x3+2xy+6x2y+3x4y+y2. Then the Newton diagram looks as follows:
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where the dots correspond to the terms of f . There are only two boundedfacets ofΓ+( f ) and the
principal part of f is equal to x3+xy+y2.

Definition 19 The principal part of the power series f with real coefficients isR-nondegenerate if
for all compact facesγ of Γ+( f )

{
x∈ R

n :
∂ fγ

∂x1
(x) = · · ·=

∂ fγ

∂xn
(x) = 0

}
⊆ {ω ∈ R

n : x1 · · ·xn = 0} .

From the geometric point of view this condition means that the singular locus of the hypersurface
defined by fγ(x) = 0 lies outside of(R∗)n for all compact facesγ of Γ+( f ).

The following theorem shows that, if the principal part off isR-nondegenerate andf ∈A≥
Θ , the

computations are greatly facilitated. An example of an application of these methods in statistical
analysis can be found in Yamazaki and Watanabe (2004).

Theorem 20 (Arnold et al., 1988)Let f ∈ A≥
0 (Rd) and f(0) = 0. If the principal part of f isR-

nondegenerate thenRLCT0( f ) = (1
t ,c) where t is the smallest number such that the vector(t, . . . , t)

hits the polyhedronΓ+( f ) and c is the codimension of the face it hits.

For a proof see Theorem 4.8, Lin (2011).
Let now f ∈ A≥

θ0
such thatf (θ0) = 0. We can then centerf at θ0 obtaining a function inA≥

0 .
Then we can use Theorem 20 to compute RLCTθ0( f ).

Remark 21 Note that this theorem in general will not give usRLCTΘ0( f ) if 0 is a boundary point
of Θ in which case we also need to resolve the defining inequalities. For a discussion see (Arnold
et al., 1988, Section 8.3.4) and Example 2.7 in Lin (2011).

6.3 Proof of Proposition 16

Let n≥ 4. For eachω0 ∈ Ω̂0, let δ = δ(ω0) ∈ {0,1}V denote the indicator vector satisfyingδv = 1
if v∈V is such thats0

v = 1 andδv = 0 otherwise. In particularδi = 0 for all i = 1, . . . ,n because the
leaves, by (A2), are assumed to be non-degenerate. LetVδ =R

ne+|δ| =R
|δ|×R

ne, where|δ|=∑v δv,
be the real space with variables representing the edges(xe)e∈E and nodes(yv) for all v such that
δv = 1. With some arbitrary numbering of the nodes and edges we order the variables as follows:
y1 ≺ ·· · ≺ y|δ| ≺ xe1 ≺ ·· · ≺ xene

. In Lemma 18, for eachω0 ∈ Ω̂0, we reduced our computations
to the analysis of RLCT0(J ′) whereJ ′ has a simple monomial form. LetQδ be a polynomial
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function onΩT defined as a sum of squares of generators ofJ ′. In particular RLCT0(J ′) =
RLCT0(Qδ). The exponents of terms of the polynomialQδ(ω) are vectors in{0,2}ne+|δ|. We have
that

Qδ(ω) = ∑
i 6= j∈[n]

s
2δr(i j )

r(i j ) ∏
(u,v)∈E(i j )

η2
uv. (20)

The convex hull, inVδ, of the exponents of the terms inQδ is called theNewton polytope
of Qδ and denotedΓ(Qδ). We now investigate this polytope which is needed to understand the
polyhedronΓ+(Qδ), which is needed to use Theorem 20. Since each term ofQδ corresponds to a
path between two leaves then the construction of the Newton polytopeΓ(Qδ) ⊂ Vδ gives a direct
relationship between paths inT and the points generating the polytope. Convex combinations of
points corresponding to paths give rise to points in the polytope. LetE0 ⊆ E be the subset of edges
of T such that one of the ends is in the set of leaves ofT. We call these edgesterminal. Note that
each point generatingΓ(Qδ) satisfies∑e∈E0

xe = 4. This follows from the fact that each of these
points corresponds to a path between two leaves inT and every such a path need to cross exactly
two terminal edges. Consequently each point ofΓ(Qδ) needs to satisfy this equation as well. The
induced facet of the Newton polyhedronΓ+(Qδ) is given as

F0 = {(y,x) ∈ Γ+(Qδ) : ∑
e∈E0

xe = 4} (21)

and each point ofΓ+(Qδ) satisfies∑e∈E0
xe ≥ 4.

The following lemma proves one part of Proposition 16.

Lemma 22 (The real log-canonical threshold ofJ ) Under assumptions of Proposition 16 we have
that rclt0(J ′) = n

4.

Proof If n= 2 then, sinces0
1,s

0
2 6= 1, by Lemma 18 we have that

RLCTω0(J
′) = RLCT0(η2

12) =

(
1
2
,1

)
.

Therefore Proposition 16 holds in this case. Now assume thatn ≥ 4. By Theorem 20 we have to
show thatt = 4

n is the smallestt such that the vector(t, . . . , t) hitsΓ+(Qδ). To show that4n1∈Γ+(Qδ)
we construct a pointq∈Γ(Qδ) such thatq≤ 4

n1 coordinatewise. The point is constructed as follows.

Construction 23 Let T = (V,E) be a trivalent tree with n≥ 4 leaves, rooted in r. We present two
constructions of networks of paths between the leaves of T .

The first construction is for the case when the root is degenerate,δr = 1. In this case T is
necessarily rooted in an inner node. If n= 4 then the network consists of the two paths within
cherries counted with multiplicity two.

Each of the paths corresponds to a point inΓ(Qδ). We order the coordinates ofVδ =R
5+|δ| by ya ≺

yb ≺ x1 ≺ ·· · ≺ x5 where ya,yb are included only ifδa,δb = 1. For example the point corresponding
to the path involving edges e1 and e2 is (2,0;2,2,0,0,0). The barycenter of the points corresponding
to all the four paths in the network is(1,1;1,1,0,1,1) both if T is rooted in a or b.
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If n > 4 then we build the network recursively. Assume that T is rooted in an inner node a and
pick an inner edge(a,b). Label the edges incident with a and b as for the quartet tree above and
consider the subtree given by the quartet tree. Draw four paths as on the picture above. Let v be any
leaf of the quartet subtree which is not a leaf of T and label the two additional edges incident with
v by e6 and e7. Now we extend the network by adding e6 to one of the paths terminating in v and
e7 to the other. Next we add an additional path involving only e6 and e7 like on the picture below.
By construction v is the root of the additional path. We extend the network cherry by cherry until it
covers all terminal edges.

Note that we have made some choices building up the network and hence theconstruction is not
unique. However, each of the inner nodes is always a root of at least one and at most two paths.
Moreover, each edge is covered at most twice and each terminating edge is covered exactly two
times. We have n paths in the network, all representing points ofΓ(Qδ) denoted by q1, . . . ,qn. Let
q= 1

n ∑n
i=1qi then q∈ Γ(Qδ) is given by xab= 0, xe =

4
n for all e∈ E\ (a,b). The other coordinates

by construction satisfy ya =
4
n, yb =

4
n if δb = 1, and yv = 2

n for all v ∈V \{a,b} such thatδv = 1.
If δr = 0 then we proceed as follows. For n= 4 consider a network of all the possible paths all

counted with multiplicity one apart from the cherry paths (paths of length two) counted with mul-
tiplicity two. This makes eight paths and each edge is covered exactly four times. The coordinates
of the point representing the barycenter of all paths in the network satisfy xe = 1 for all e∈ E and
yv =

1
2 for all v such thatδv = 1. This construction generalizes recursively in a similar way as the

one for T rooted in an inner node. We always have2n paths and each edge is covered exactly four
times. The network induces a point q∈ Γ(Qδ) with coordinates given by yv =

2
n for all v ∈V such

that δv = 1 and xe = 4
n for e∈ E. (This finishes the construction.)

The point4
n 1 lies in Γ+(Qδ), which follows from Construction 23 and the fact that the constructed

point q ∈ Γ(Qδ) satisfiesq ≤ 4
n 1. Moreover, for anys< 4

n the points(1, . . . ,1) does not satisfy
∑e∈E0

xe ≥ 4 and hence it cannot be inΓ+(Qδ). It follows that 4
n is the smallestt such thatt1 ∈

Γ+(Qδ) and therefore rlct0(J
′) = n

4. Note that the result does not depend onδ.

To compute the multiplicity of the real log-canonical threshold ofQδ we have to get a better
understanding of the polyhedronΓ+(Qδ). According to Theorem 20 we need to find the codimen-
sion of the face ofΓ+(Qδ) hit by the vector4n1. First we find the hyperplane representation of the
Newton polytopeΓ(Qδ) reducing the problem to a simpler but equivalent one.

Definition 24 (A pair-edge incidence polytope)Let T=(V,E) be a trivalent tree with n≥ 4 leaves.
We define a polytope Pn ⊂ R

ne, where ne = 2n−3, as the convex combination of points(qi j )i, j∈[n]

where k-th coordinate of qi j is one if the k-th edge is in the path between i and j and there is zero
otherwise. We call Pn a pair-edge incidence polytope by analogy to the pair-edge incidence matrix
defined in (Mihaescu and Pachter, 2008, Definition 1).
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The reason to study the pair-edge incidence polytope is that its structure can be handled easily
and it can be shown to be affinely equivalent toΓ(Qδ). The latter is immediate ifδ = (0, . . . ,0) since
Q0 = 2Pn. For an arbitraryδ fix a rootingr of T and define a linear mapfr : Rne → R

|δ| as follows.
For eachv∈V \ r such thatδv = 1 set

yv =
1
2
(xvch1(v)+xvch2(v)−xpa(v)v),

where ch1(v), ch2(v) denotes the two children ofv. If δr = 1 then set

yr =
1
2
(xrch1(r)+xrch2(r)+xrch3(r)).

The map(id× fr) :Rne →R
ne×R

|δ| satisfies(id× fr)(2Pn) = Γ(Qδ) because, for each point,yr = 2
if and only if the path crossesr and for any other nodeyv = 2 if and only if the path crossesv andv
is the root of the path, that is if the path crosses both children ofv.

Lemma 25 Let Pn ⊂ R
ne be the pair-edge incidence polytope for a trivalent tree with n leaves

where n≥ 4. Thendim(Pn) = ne−1= 2n−4. The unique equation defining the affine span of Pn

is ∑e∈E0
xe = 2. For each inner node v∈V let e1(v), e2(v), e3(v) denote the three adjacent edges.

Then exactly3(n−2) facets define Pn and they are given by

xe1(v)+xe2(v)−xe3(v) ≥ 0, xe2(v)+xe3(v)−xe1(v) ≥ 0, (22)

and xe3(v)+xe1(v)−xe2(v) ≥ 0 for all v ∈V.

Proof Let Mn be the pair-edge incidence matrix, that is a
(n

2

)
×ne matrix with rows corresponding

to the points definingPn. By (Mihaescu and Pachter, 2008, Lemma 1) the matrix has full rank and
hencePn has codimension one inRne. Moreover since each path necessarily crosses two terminal
edges then each point generatingPn satisfies the equation∑e∈E0

xe= 2 and hence this is the equation
defining the affine subspace containingPn.

Now we show that the inequalities give a valid facet description forPn. This can be checked
directly forn= 4 using POLYMAKE Gawrilow and Joswig (2005). Assume this is true for allk< n.
By Qn we will denote the polyhedron defined by the equation∑e∈E0

xe= 2 and 3(n−2) inequalities
given by (22). We want to show thatPn = Qn. It is obvious thatPn ⊆ Qn since all points generating
Pn satisfy the equation and the inequalities. We show that the opposite inclusion also holds.

Consider any cherry{e1,e2} ⊂ E in the tree given by two leaves, which we denote by 1, 2, and
the separating inner nodea. Define a projectionπ : Rne →R

ne−2 on the coordinates related to all the
edges apart from the two in the cherry. We now show thatπ(Qn) = Q̂n−1, whereP̂= conv{0,P} is a
cone with the base given byP. The projectionπ(Qn) is described by all the triples of inequalities for
all the inner nodes apart from the one incident with the cherry and the defining equation becomes
an inequality

∑
e∈E0\{e1,e2}

xe ≤ 2.

Denote the edge incident withe1,e2 by e3 and the related coordinates ofx by xe1,xe2,xe3. The three
inequalities involvingxe1 andxe2 do not affect the projection since they imply that

max{xe1 −xe2,xe2 −xe1} ≤ xe3 ≤ xe1 +xe2
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and hence in particular ifxe1 = xe2 the constraint becomes[0,2xe1]. Consequently the set given by
xe1 + xe2 − xe3 ≥ 0, xe1 + xe3 − xe2 ≥ 0, xe2 + xe3 − xe1 ≥ 0 projects down toR≥0. However, since
Q̂n−1 is contained in the nonnegative orthant, there are no additional constraintsonxe3. Inequalities
in (22) define a polyhedral cone and the equation∑e∈E0\{e1,e2} xe = t for t ≥ 0 cuts out a bounded

slice of the cone which is equal tot ·Pn−1. The sum of all these fort ∈ [0,2] is exactlyQ̂n−1.
SinceQ̂n−1 = P̂n−1 by induction, then eachπ(x) for x∈Qn is a convex combination of the points

generatingPn−1 and zero, that isπ(x) = ∑ci j pi j where the sum is over alli 6= j ∈ {a,3, . . . ,n} and
ci j ≥ 0, ∑ci j ≤ 1. Next, we lift this combination back toQn, and show, that any such a lift has to lie
in Pn. This would imply that in particularx∈ Pn. Let y denote a lift ofπ(x) to Qn. We have

y= ∑ci j r i j +
(
1−∑ci j

)
r0,

wherer i j is a lift of π(pi j ) and r0 is a lift of the origin. It suffices to show that eachr i j and r0

necessarily lie inPn.
Consider the following three cases. First, ifpi j ∈ Pn−1 is such thatxe3 = 0. SincePn−1 = Qn−1

andQn−1 satisfy the equation∑e∈E0\{e1,e2} xe+ xe3 = 2, sum of all the other coordinates related to
the terminal edges of the smaller tree is 2. Hence, if we liftπ(pi j ) to Qn, thenxe3 = 0 and

xe1 +xe2 ≥ 0, xe1 −xe2 ≥ 0, xe2 −xe1 ≥ 0

by pluggingxe3 = 0 into the three inequalities for the nodea. But sincer i j ∈ Qn must also satisfy
the equation∑e∈E0

xe = 2, and, since we already have

∑
e∈E0\{e1,e2}

xe = 2,

thenxe1 +xe2 = 0 and hencexe1 = xe2 = 0. Consequently,r i j is a vertex ofPn corresponding to the
path betweeni and j. Second, ifpi j is a vertex ofPn−1 such thatxe3 = 1, then the sum of all the
other coordinates ofpi j related to the terminal edges of the smaller tree is 1. Because the lift lies in
Qn we havexe1 +xe2 = 1. The additional inequalities give thatxe1,xe2 ≥ 0. Hence in this caser i j is
a convex combination of two points inPn corresponding to paths terminating in either of the nodes
1 or 2. Finally, we can easily check that zero lifts uniquely to a point inPn corresponding to the path
E(12) joining the leaves 1 and 2. Indeed, from the equation definingQn we havexe1 +xe2 = 2 and
from the inequalities sincexe3 = 0 we havexe1 = xe2 = 1. Therefore every lifty of π(x) to Qn can
be written as a convex combination of points generatingPn and hencey∈ Pn. Consequentlyx∈ Pn

and henceQn ⊆ Pn.

Lemma 25 shows thatPn has an extremely simple structure. The inequalities give a polyhedral
cone and the equation cuts out the polytopePn as a slice of this cone. The result gives us also the
representation ofΓ(Qδ) in terms of the defining equations and inequalities.

Proposition 26 (Structure ofΓ(Qδ)) PolytopeΓ(Qδ) ⊂ Vδ is given as an intersection of the sets
defined by the inequalities in (22) together with|δ|+1 equations given by

2yv = xvch1(v)+xvch2(v)−xpa(v)v for all v 6= r such thatδv = 1,
2yr = xrch1(r)+xrch2(r)+xrch3(r) if δr = 1, and
∑e∈E0

xe = 4.
(23)
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From this we can partially understand the structure ofΓ+(Qδ). First note thatΓ+( f ) = Γ( f )+
R

d
≥0, where the plus denotes the Minkowski sum. TheMinkowski sumof two polyhedra is by

definition
Γ1+Γ2 = {x+y∈ R

d : x∈ Γ1,y∈ Γ2}.

Lemma 27 Let Γ ⊂ R
n
≥0 be a polytope and letΓ+ be the Minkowski sum ofΓ and the standard

coneRn
≥0. Then all the facets ofΓ+ are of the form∑i aixi ≥ c, where ai ≥ 0 and c≥ 0.

Now we are ready to compute multiplicities of the real log-canonical threshold RLCT0(Qδ) at
least in certain cases. This completes the proof of Proposition 16.

Lemma 28 (Computing multiplicities) Let T be a trivalent tree with n≥ 4 leaves, rooted in r. Let
q∈MT be such that̂κi j = 0 for all i , j ∈ [n] andω0 ∈ Ω̂0. Letδ = δ(ω0) be such thatδv = 1 if s0

v = 1
and it is zero otherwise. Define Qδ(ω) as in (20). If either: (i)δr = 0 or (ii) δr = 1 andδv = 1 for
all (r,v) ∈ E thenmult0(Qδ) = 1.

Proof A standard result for Minkowski sums says that each face of a Minkowski sum of two
polyhedra can be decomposed as a sum of two faces of the summands and this decomposition is
unique. Each facet ofΓ+(Qδ) is decomposed as a face of the standard coneR

ne+|δ|
≥0 ⊂Vδ plus a face

of Γ(Qδ). We say that a face ofΓ(Qδ) induces a facet ofΓ+(Qδ) if there exists a face of the standard

coneRne+|δ|
≥0 such that the Minkowski sum of these two faces gives a facet ofΓ+(Qδ). Since the

dimensionΓ(Qδ) is lower than the dimension of the resulting polyhedron it turns out that one face
of Γ(Qδ) can induce more than one facet ofΓ+(Qδ). In particularΓ(Qδ) itself induces more than
one facet where one of them isF0 given by (21).

Every facet ofΓ+(Qδ) containing the point4n1, after normalizing the coefficients to sum ton,
that is∑v αv+∑eβe = n, is of the form

∑
v

αvyv+∑
e

βexe ≥ 4, (24)

where by Lemma 27 we can assume thatαv,βe ≥ 0. Our approach can be summarized as follows.
Using Construction 23 we provide coordinates of a pointp∈ Γ(Qδ) such that4n1 lies on the bound-

ary of p+R
ne+|δ|
≥0 . Then 4

n1 can only lie on faces ofΓ+(Qδ) induced by faces ofΓ(Qδ) containing
p. To show that the multiplicity is exactly 1 we need to show that4

n1 lies in the interior ofF0.
First, assume thatδr = 0 which corresponds to the case when the rootr represents a non-

degenerate random variable. Consider the pointp ∈ Γ(Qδ) induced by the network of 2n paths
given in the second part of Construction 23. Sincexe =

4
n for all e∈ E then from the description of

Γ(Qδ) in Lemma 26 we can check that all defining inequalities are strict for this point. Thereforep
lies in the interior ofΓ(Qδ) and the only facets ofΓ+(Qδ) containingp are these induced byΓ(Qδ)
itself. The equation defining a facet induced byΓ(Qδ) has to be obtained as a combination of the
defining equations:∑e∈E0

xe = 4 and|δ| equations

2yv−xvch1(v)−xvch2(v)+xpa(v)v = 0 (25)

for all v∈ V such thatδv = 1. We check possible combinations such that the form of the induced
inequality in (24) is attained. The first inequality, definingF0, is already of this form (cf. (21)).
The sum of all the coefficients isn since there aren terminal edges. Any other facet has to be
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obtained by adding to the first equation (since the right hand side in (24) is 4) a non-negative (since
the coefficients in front ofyv need to be non-negative) combination of equations in (25). However,
since the sum of the coefficients in (25) is+1, this contradicts the assumption that the sum of
coefficients in the defining inequality isn. Consequently, ifδr = 0 the codimension of the face hit
by 4

n1 is 1 and hence by Theorem 20 we have that mult0(Qδ) = 1.

Second, ifδr = 1 andδv = 1 for all children ofr in T then since all the nodes adjacent tor
(denote them bya,b,c) are inner we have three different ways of conducting the constructionof the
n-path network in Construction 23 (by omitting each of the incident edges). Hence we get three
different points and their barycenter satisfiesxra = xrb = xrc =

8
3n andxe=

4
n for all the other edges;

yr =
4
n, ya = yb = yc =

8
3n andyv =

2
n for all the other inner nodes. Denote this point byp and note

thatp≤ 4
n1. By the facet description ofΓ(Qδ) derived in Proposition 26 we can check that this point

cannot lie in any of the facets definingΓ(Qδ) and hence it is an interior point of the polytope. As in
the first case it means that the facets ofΓ+(Qδ) containingp are induced byΓ(Qδ). By Proposition
26 the affine span is given by (23). Since the sum of coefficients in the equation involvingyr is
negative we cannot use the same argument as in the first case. Instead,we add to∑e∈E0

xe = 4 a
non-negative combination of equations in (25) each with coefficienttv ≥ 0 and then add the equation
in (23) involvingyr with coefficient∑v6=r tv. The sum of coefficients in the resulting equation will be
n by construction. The coefficient ofxra is ta−∑v6=r tv =−∑v6=r,a tv. Since it has to be non-negative
it follows thattv = 0 for all v apart froma. However, by checking the coefficient ofxrb one deduces
that tv = 0 for all inner nodesv. Consequently the only possible facet ofΓ+(Qδ) containing4

n1 is
F0 and hence again mult0(Qδ) = 1.

The following example shows that in certain cases mult0(Qδ) can be strictly greater than 1.

Example 5 Consider the quartet tree model with q such thatκ̂i j = 0 for all i , j = 1,2,3,4. In this
case Γ(Qδ) ⊆ R

7 has six vertices (2,0;2,2,0,0,0), (2,0;2,0,2,2,0), (2,0;2,0,2,0,2),
(2,0;2,0,2,2,0), (2,0;0,2,2,0,2) and(0,2;0,0,0,2,2). The facet description of the Newton poly-
hedronΓ+(Qδ) can be easily computed usingPOLYMAKE Gawrilow and Joswig (2005). From
this description it is easily checked that the point(1,1;1,1,1,1,1) lies on two facets ofΓ+(Qδ). It
follows that the codimension of the face hit by this vector is two, or equivalently,mult0(Qδ) = 2.

7. Proof of Theorem 2

In this section we complete the proof of Theorem 2 using results from the previous sections. We
split it into three steps.

7.1 Step 1

To analyze the asymptotic behavior of the stochastic complexityFN, by Theorem 4, equivalently we
can compute RLCTΘT (K;ϕ), whereK is the Kullback-Leibler distance defined in (3) andϕ is the
prior distribution satisfying (A1). By Theorem 11 and Theorem 14 this real log-canonical threshold
is equal to RLCTΩT (I ), whereI is the ideal defined by (11).

3306



ASYMPTOTICS OF THEMARGINAL L IKELIHOOD FOR TREE MODELS

7.2 Step 2

We compute separately RLCTΩT (I ) in the case whenn= 3. If T is rooted in the inner node the
expansion forEFN follows from Theorem 4 in Rusakov and Geiger (2005). Thus ifÊ = E, which
in Rusakov and Geiger (2005) corresponds to the type 2 singularity, then

EFN = N S+2logN+O(1) or RLCTΩT (I ) = (2,1). (26)

Since all the neighbours of the root are leaves and hence, by (A2), they are non-degenerate we need
only to make sure that the first equation in Theorem 2 gives (26). This follows from the fact that
l2 = 0 andl0 = 1, wherel i i = 0,1,2,3 defined in the introduction is the number ofinner nodes of
T whose degree in̂T is i. In the case when|Ê|= 1 (type 1 singularity) we have

EFN = N S+
5
2

logN+O(1) or RLCTΩT (I ) =

(
5
2
,1

)
.

The second equation in Theorem 2 holds sincel2 = 1, l0 = 0 andc= 0. If Ê = /0 we have

EFN = N S+
7
2

logN+O(1) or RLCTΩT (I ) =

(
7
2
,1

)
,

which again is true sincel2 = 0, l0 = 0 andc= 0.
Now assume thatT is rooted in a leaf, say 1. If there existsi, j = 1,2,3 such that̂κi j 6= 0 (or

equivalently|Ê| ≤ 1) thenV̂ = /0 and by Proposition 8

EFN = N S+
7−2l2

2
+O(1) or RLCTΩT (I ) =

(
7−2l2

2
,1

)
.

If Ê = E thenV̂ 6= /0 and by Theorem 14 for everyω0 ∈ Ω̂T

RLCTω0(I ) =

(
3
2
,0

)
+RLCTω0(J ).

Moreover, by Lemma 18, for everyω0 ∈ Ω̂0

RLCTω0(J ) = RLCT0(〈η1hηh2,η1hηh3,s
δh
h ηh2ηh3〉),

whereδh = 1 if s0
h = 1 andδh = 1 otherwise. It can be checked directly by using the Newton

diagram method and Theorem 20 that RLCTω0(J ) = (3
4,1) both if δh = 0 andδh = 1 and hence

RLCTω0(I ) = (9
4,1). Since the points in̂Ω0 such thats0

h 6= 1 lie in the interior ofΩT then for these
points RLCTω0(I ) = RLCTΩ0(I ) whereΩ0 is a neighborhood ofω0 in ΩT . Hence, by (6), we
have that

RLCTΩT (I ) = min
ω0∈Ω̂T

RLCTΩ0(I )≤ min
ω0∈Ω̂0

RLCTΩ0(I ) =

(
9
4
,1

)
.

On the other hand, by (5) and then Proposition 17, we obtain the following inequalities

RLCTΩT (I )≥ min
ω0∈Ω̂T

RLCTω0(I )≥ min
ω0∈Ω̂deep

RLCTω0(I ) =

(
9
4
,1

)
.

It follows that

EFN = N S+
9
4

logN+O(1) or RLCTΩT (I ) =

(
9
4
,1

)
,

which gives the the second equation in Theorem 2 since in this casel2 = c= 0 andl0 = 1.
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7.3 Step 3, Case 1

Assume now thatn≥ 4 andr /∈ V̂. In this case, using notation from Section 5, everyTi for i = 1, . . . ,k
is rooted in one of its leaves. Hence RLCTω0(J (Ti)) = ( |Li |

4 ,1) for everyi = 1, . . .k. If |Li | 6= 3 this
follows from Proposition 16. If|Li |= 3 it follows from Case 2 above. By Lemma 15 and Equation
(17), for everyω0 ∈ Ω̂0 we have that

rlctω0(I ) =
n
2
+

m

∑
i=1

ni
v+ni

e−ni −2l i
2

2
+

k

∑
i=1

|Li |

4
,

whereni
v, ni

e, l i
2 are respectively the number of vertices, edges and and degree two nodes in T̂ of

Si ; and Li is the set of leaves ofTi . Let mi denote the number of nodes ofT̂ whose degree is
i. Note thatm2 = l2 but m0 does not necessarily equall0. We now use three simple formulas:
∑i n

i
v = m1+m2+m3 (that is only degree zero nodes ofT̂ do not lie in theSi ’s), ∑i n

i
e = |E \ Ê|

(that isE \ Ê is the set of all edges of all theSi ’s) and ∑i |Li | = m2 + n−m1 (that is the leaves
of all the Ti ’s are precisely the degree two nodes ofT̂ and these leaves ofT which have degree
zero in T̂). Moreover, for any graph with the vertex setV and the edge setE, ∑v∈V deg(v) =
2ne (see Semple and Steel, 2003, Corollary 1.2.2). Therefore, with the formulaapplied for the
forest T̂, we havem1+ 2m2+ 3m3 = 2|E \ Ê|. Using these four formulas together we show that
rlctω0(I ) = 1

4(3n+m2 + 5m3). The final formula for the coefficient follows from the fact that

l2 = m2 and l0 = nv−n−m2−m3. Moreover, sinceδr = 0 for all ω0 ∈ Ω̂0 then, by Lemma 28,
mult0(J (Ti)) = 1 for everyω0 ∈ Ω̂0. Therefore,

RLCTω0(I ) =

(
nv+ne−2l2

2
−

5l0
4
,1

)
. (27)

Now we show that RLCTΩT (I ) also has the same form. Letω2 be a point inΩ̂0 such thatsv 6= 1
for all v ∈ V and letω1 ∈ Ω̂deep. Equation (27) is true both ifω0 = ω1 andω0 = ω2 and hence
RLCTω1(I ) = RLCTω2(I ). However, sinceω2 is an inner point ofΩT , it follows from the defini-
tion of RLCTΩT (I ) as the minimum over all points inΩT , that

RLCTΩT (I )≤ RLCT0(Iω2).

On the other hand by (5) and Proposition 17

RLCT0(Iω1) = min
ω0∈Ω̂T

RLCT0(Iω0)≤ min
ω0∈Ω̂T

RLCTΩ0(Iω0) = RLCTΩT (I ).

Therefore, ifr /∈ V̂, then in fact RLCTΩT (I ) = (λ,1), whereλ is the coefficient in (27), and

EFN = N S+λ logN+O(1).

The main formula in Theorem 2 is proved in this case becausec= 0.

7.4 Step 3, Case 2

Let now n ≥ 4 andr ∈ V̂. Let 1≤ j ≤ k be such thatr is an inner node ofTj andω0 ∈ Ω̂0. For
all i 6= j, Ti is rooted in one of its leaves. Therefore, by Lemma 22, Lemma 28 and Step 2 above
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for all i 6= j we have that RLCTω0(J (Ti)) = (|Li |/4,1). It remains to compute RLCTω0(J (Tj)).
If |L j | = 3 then RLCTω0(J (Tj)) = (1/2,1) = ((|L j |−1)/4,1) by the Step 2 above, (cf. (26)). In
this case the computations are the same as in Step 3, Case 1 but with a difference of 1

4 in the real
log-canonical threshold. We obtain

EFN = N S+

(
nv+ne−2l2

2
−

5l0+1
4

)
logN+O(1).

However, if |L j | ≥ 4 then, by Lemma 22, rlct0(J (Tj)) = |L j |/4 and hence as in Step 3, Case
1 we have∑k

i=1 rlct0(Jω0(Ti)) =
1
4(n−m1 +m2). Therefore rlctΩT (I ) = λ. We compute the

multiplicity by considering different subcases. If all the neighbours ofr are degenerate then for all
pointsω0 ∈ Ω̂deepwe have thatδr = 1 andδv = 1 for all neighboursv or r. It follows from Lemma
28 that multω0(J (Tj)) = 1 and hence multΩT (I ) = 1. Therefore,

EFN = N S+
1
4
(3n+ l2+5l3) logN+O(1).

Otherwise we do not have explicit bounds on the multiplicity. Since multΩT (I )≥ 1 then

EFN = N S+
1
4
(3n+ l2+5l3) logN− (m−1) log logN+O(1),

wherem≥ 1. This finishes the proof of Theorem 2. �

Remark 29 Example 5 showed thatmultω0(I ) may be strictly greater than1 for some bound-
ary points ofΩT . The analysis of how it affects the computation ofmultΩT (I ) is highly compli-
cated as it involves resolution of the boundary constraints. Typically we are just able to provide
upper bounds. For example, since in Example 5 we havemultΩ0(I ) = multω0(I ) then, by (5),
multΩ0(I )≤ multω0(I ) = 2.
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Vladimir I. Arnold, Sabir M. Gusĕın-Zade, and Aleksandr N. Varchenko.Singularities of Differen-
tiable Maps, volume II. Birkḧauser, 1988.
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