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Abstract

Previous studies dflon-Parametric Kernel LearningNPKL) usually formulate the learning task
as a Semi-Definite Programming (SDP) problem that is oftéreddoy some general purpose SDP
solvers. However, foN data examples, the time complexity of NPKL using a standairerior-
point SDP solver could be as high @N®®), which prohibits NPKL methods applicable to real
applications, even for data sets of moderate size. In tipgpave present a family of efficient
NPKL algorithms, termedSimpleNPKL”, which can learn non-parametric kernels from a large
set of pairwise constraints efficiently. In particular, wegose two efficient SimpleNPKL algo-
rithms. One is SimpleNPKL algorithm with linear loss, whiehjoys aclosed-formsolution that
can be efficiently computed by thenczossparse eigen decomposition technique. Another one is
SimpleNPKL algorithm with other loss functions (includisguare hinge loss, hinge loss, square
loss) that can be re-formulated as a saddle-point optimizgdroblem, which can be further re-
solved by a fast iterative algorithm. In contrast to the mes NPKL approaches, our empirical
results show that the proposed new technique, maintaihingame accuracy, is significantly more
efficient and scalable. Finally, we also demonstrate thatpioposed new technique is also ap-
plicable to speed up many kernel learning tasks, includimigred maximum variance unfolding
minimum volume embeddinandstructure preserving embedding

Keywords: non-parametric kernel learning, semi-definite prograngngemi-supervised learn-
ing, side information, pairwise constraints

1. Introduction

Kernel methods have been successfully applied in various real apptisaiaging from data min-
ing, computer vision and bioinformatics, and often show the state-of-th@edormance (refer to
Hofmann, Scblkopf, and Smola, 2008 and references therein). Empirical evidesiose that the

generalization performance of kernel methods is often dominated by tserhernel function.

Inappropriate kernels could lead to sub-optimal or even poor resultstefidre, the choice of an
effective kernel plays a crucial role in many kernel based machineifepmethods. Typically,

traditional kernel methods, for example, Support Vector Machines (§ybften adopt a prede-
fined kernel function that is empirically chosen from a pool of paramegiodd functions, such
as polynomial and Gaussian kernels. One major limitation of such an appsohett choosing an
appropriate kernel function manually may require a certain level of ekpewledge, which may
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be difficult in some situations. Another limitation lies in the difficulty of tuning optimabpaeters
for the predefined parametric kernel functions.

To address these limitations, a bunch of research on learning effeetimel& from data auto-
matically has been actively explored recently. An example technightiple Kernel Learning
(MKL) (Lanckriet et al., 2004; Bach et al., 2004), which aims at learrdrapnvex combination of
several predefined parametric kernels in order to identify a good tkegee! for the applications.
MKL has been actively studied in many applications, including bio-informaScsfienburg et al.,
2006a,b), computer vision (Duan et al., 2009; Sun et al., 2009; Veda#di,2009), and natural
language processing (Mao and Tsang, 2011), etc. Despite someagioguresults reported, these
techniques often assume the target kernel function is of sgarametricforms, which limits their
capacity of fitting diverse patterns in real complex applications.

Instead of assuming some parametric forms for the target kernel, an eghgrgup of kernel
learning studies are devoted Mon-Parametric Kernel LearninNPKL) methods, which aim to
learn a Positive Semi-Definite (PSD) kernel matrix directly from the data.mipl&techniques
include Cristianini et al. (2002), Lanckriet et al. (2004), Zhu et 200&), Zhang and Ando (2006),
Kulis et al. (2006), Hoi et al. (2007), Kulis et al. (2009) and Li et aD@9); Mao and Tsang (2010).
NPKL provides a flexible learning scheme of incorporating prior/side méiron into the known
similarity measures such that the learned kernel can exhibit better ability tactbaze the data
similarity. However, due to the PSD constraint, the resulting optimization task Kf_Ng§often in
the form of Semi-Definite Programing (SDP). Many existing studies have sisgbhed such SDP
problems by some general purpose SDP solvers, which often have theotinpéesity of O(N®-),
making the NPKL solution infeasible to real world large-scale applications.

In this paper, we aim at addressing the efficiency and scalability isslsgeddo the NPKL
techniques proposed by Hoi et al. (2007) and Zhuang et al. (2088¢h have shown the state-
of-the-art empirical performance in several applications (ZhuandgHamd2010). In particular, the
main contributions of this paper include:

1. We propose a family of Simple Non-Parametric Kernel Learning (SimplaNRkorithms
for efficient and scalable non-parametric kernel learning.

2. We present the first SimpleNPKL algorithm with linear loss function to leamparametric
kernels from pairwise constraints. The algorithm enjoydogsed-formsolution that can be
computed efficiently by sparse eigen-decomposition techniques, for éxathpLanczos
algorithm.

3. To achieve more robust performance, we propose the second SiRiflledNgorithm that has
other loss functions (including square hinge loss, hinge loss and slpsajewhich can be
re-formulated as anini-max optimizatiorproblem. This optimization can be solved by an
efficient iterative projection algorithm that mainly involves the computation afspeigen
decomposition.

4. To further speed up the SimpleNPKL algorithm of other loss functionsnpvestigate some
active constraint selection techniques to reduce the computation coshdtezation step.

5. We conducted extensive experiments, which show that SimpleNPKL igisagly more
efficient than existing NPKL methods. With the same linear loss function, SimleNs$
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on average 40 times faster than the original NPKL using a standard SDét.sbhis makes
the NPK learning techniques practical to large-scale applications.

6. We extend the proposed SimpleNPKL scheme to resolve other non-pecakeenel learn-
ing problems, includingolored maximum variance unfoldif§ong et al., 2008 minimum
volume embeddin¢shaw and Jebara, 2007), astducture preserving embeddii§haw and
Jebara, 2009). The encouraging results show that our technigue te apeed up the existing
non-parametric kernel learning solutions significantly for severalweald applications.

The rest of this paper is organized as follows. Section 2 presents sarkgrtvand of kernel
learning, briefly reviews some representative work on kernel leam@isgarch, and indicates the
motivations of our work. Section 3 introduces a framework of Non-patacnkernel Learning
(NPKL) from pairwise constraints proposed by Hoi et al. (2007).ti8ael describes our proposed
SimpleNPKL algorithms, which aim to resolve the NPKL task efficiently. Sectiois&udses some
implementation issues for developing a fast solver in practice. Section 6dextem technique
to speed up other kernel learning methods. Section 7 gives our empégdts and Section 8
concludes this work.

2. Background Review and Related Work

In this Section, we review some backgrounds of kernel methods, anedeark on kernel learning
research.

2.1 Notations

For the notation throughout the paper, we adopt bold upper case letemateda matrix, for exam-
ple, A € R™", andAjj to denote the entry at thith row andjth column of the matriXA, and bold
lower case letter to denote a vector, for example,Rd. We use0 andl to denote the column vec-
tors with all zeros and all ones, respectively, &rid denote an identity matrix. For some algebraic
operations:

e X' denotes the transposexaf

¢ [x]i denotes théth element ok;

¢ xP denotes the element-wise powemnxofvith degreep;

¢ |x| denotes the vector with entries equal to the absolute value of the entxigs of

e |x||p denotesp-norm ofx, that is, ¥/ i[xP];;

¢ X;joXx; denotes the element-wise multiplication between two vectoasdx;;

e X > 0means all entries ir is larger than or equal to 0;

e K= 0denotes a matrik € R™" that is symmetric and positive semi-definite;

e KP denotes the power of a symmetric matikixwvith degreep;

o tr K = ¥ Kj denotes the trace of a mati

e (A,B) =tr AB = 3;; AjjBjj computes the inner product between two square matAcasd
B. We also use it to denote general inner product of two square matrices.

o [|K|lF=4/%ij Kizj = +/tr KK denotes the Frobenius norm of a matix
e AoB denotes the element-wise multiplication between two matécasdB.
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2.2 Kernd Methods

In general, kernel methods work by embedding data in some Hilbert spacéssearching for
linear relations in the Hilbert spaces. The embedding is often done implicitly lyyspecifying

inner products between any pair of examples (Hofmann et al., 2008k fdonally, given an input
spaceX, and an embedding spage we can define a mapping: X — . For any two examples

Xj € X andx; € X, the functiork that returns the inner product between the two embedded examples
in the spacef is known as the kernel function, that is,

K(Xi, Xj) = (®P(Xi), P(X;))-

Given the kernel functiok, a matrixKk € R™" s called &ernel matrix also known agram matrix

if Kij = Kk(xi,x;) for a collection of examples,, ..., X, € X. Note that the choice of kernel plays a
central role for the success of kernel methods. However, the seletfiwaper kernels is nontrivial.
An inappropriate kernel could result in sub-optimal or even poor pedioces. Therefore, learning
kernels from data has become an active research topic.

2.3 Kernd Learning

We refer the ternkernel learningto the problem of learning a kernel function or a kernel matrix
from given data, corresponding to the inductive and transductiveifepsetting, respectively. Due
to the large volume of works on this topic, we do not intend to make this Sectioitlepedic.
Instead, we summarize some key ideas behind representative kernéideschemes. We discuss
the strengths and limitations of existing NPKL methods, which motivates our effisimpleNPKL
solution.

2.3.1 MULTIPLE KERNEL LEARNING AND BEYOND

Multiple kernel learning(MKL), initiated by Lanckriet et al. (2004), has been widely studied in
classical supervised learning tasks. The goal is to learn both the dassidaanel of a Reproducing
Kernel Hilbert Space (RKHS) and the classifier in this space simultaneously

MiNnk ¢ x MaXy a’l—%((aoy)(aoy)’,m (1)
s.t. a'y=0, 0<qa; <C,

where the solution spack is assumed to be in a convex hull spanned frarbasic kernelsK =
{3ipKi:0<p <1i=1,...,m}. Thus the optimization oveK is reduced to optimizing the
weight vectomp. Many studies have been focused on how to efficiently solve the optimizat{@j in
(Bach et al., 2004; Sonnenburg et al., 2006b; Rakotomamonjy et al., X0G&;al., 2008).

The assumption of MKL on the target kerri€l= 3; piK; implies to concatenate the mapped
feature spaces. Therefore, MKL is a natural choice where the databliple views or heteroge-
neous representations. Apparently, there is “no free lunch” fordkesgiection. Based on different
assumptions about the optimization domén one can propose different objective functions. For
example, generating a series of base kernels by varying the fred karaeneters could make the
cardinality| X| arbitrarily large. Argyriou et al. (2005) and Gehler and Nowozin (90fi8cussed
some interesting techniques for such situation. Other variants of MKL tewbsican also be found
in Lewis et al. (2006), @nen and Alpaydin (2008), Varma and Babu (2009) and Zhuang et al.
(2011).
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One basic motivation of kernel learning is to further relax the optimization dorfi@such
that the learned kernel can be as flexible as possible to fit the complexTdasamotivatesNon-
Parametric Kernel LearningNPKL) methods, which do not assume any parametric form of the
target kernel functions/matrices.

2.3.2 NON-PARAMETRIC KERNEL LEARNING

By simply relaxing the optimization domai’, one can turn a regular kernel learning scheme to
some NPKL formulations. For example, a recent approach, cailtéfinite kernel learningLuss
and d’Aspremont, 2008; Chen and Ye, 2008; Ying et al., 2010), estdms MKL formulation to
learn non-parametric kernels from an indefinite kedgl which does not assume the convex hull
assumption. The indefinite kernel learning rewrites the objective funcfi¢l) as follows:

. 1
minc-omax,  o'1—Z{(aoy)(aoy)’,K) +Vi|K Ko, )

whereK g is an initial kernel, which could be indefinite.

The kernel learning formulation discussed above aims to optimize both thédfielaaad the
kernel matrix simultaneously. Some theoretical foundations, such as edsaed uniqueness of
the target kernel, were given in Micchelli and Pontil (2005) and Argyebal. (2005).

Another line of kernel learning research mainly focuses on optimizing tireekenly with re-
spect to some criteria under some prior constraints or heuristics. An imptetamique is the
kernel target alignment criterion proposed in Cristianini et al. (200B)¢kvguides the kernel learn-
ing task to optimize the kernel by maximizing the alignment between the training datapées
and the class labels of the training examples:

<KN|7T>
\/<KN|7KN|><T7T>’

whereT = yy’ is the outer product of labelky, is the sub-matrix of which the entry values are ker-
nel evaluation oM, labeled data examples. Note tAatould be obtained by empirical experiments
and more general than class labels. The objective (3) only involves teethdata. A popular
assumption is to tredt to be spanned by the eigen-vectors of some known kernel definetater
the labeled and unlabeled data (Chapelle et al., 2003; Zhu et al., 2008t Blgi 2006; Zhang and
Ando, 2006; Johnson and Zhang, 2008):= {¥;AjvV' : A; > 0}. Thus the optimization variables
are reduced from the entire kernel matkixo the kernel spectruri.

Recently Hoi et al. (2007) proposed an NPKL technique that aims to Idally aon-parametric
kernel matrix from pairwise constraints. The target kernel is maximally afigoghe constraint
matrix T and minimally aligned to the graph Laplacian. The objective can be deemedan aff
kernel target alignment without normalization. Since our proposed famiiropleNPKL algo-
rithms follows this framework, we will discuss the details of this formulation in Se@io

Besides the normalized inner product, which measures the similarity betvesr the tar-
getT, researchers have also proposed dissimilarity based criteria. In fagirébheding indefinite
kernel learning (2) employs the Euclidean distance to measure the dissimiletutgdn kernels.
Besides, another example in Kulis et al. (2006) employed the Bregmarmeivea to measure dis-
tance betweeK and a known kerndf g:

mink-o Dg(K,Ko) £ tr KKy ! —logde(KKy1) — N, (4)

maxq o (3
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whereDy, is a Bregman divergence (Kulis et al., 2006).

The optimization over the above learning objective function (3) or (4) will $mneturn the
trivial solutionK ¢ without additional constraints, which would make NPKL meaningless. In-prac
tice, some prior knowledge about the target kernel will be added to eimsitre solution spac&’.
Most of the existing constraints over the entrieafould be expressed byKrT < b. For example,
as discussed in Kwok and Tsang (2003), the square of distance Ipew@eata examples, and
X in the feature space can be expressed®gxi) — ®(x;)||5 = Kii + Kj; — 2Kij; = tr KTjj, where
Tij is a matrix ofN x N only taking non-zeros & = T;; = 1, T;; = T; = —1. Moreover, one can
introduce slack variables for soft constraints.

Besides, some regularization terms over kekedre often included during the optimization
phase. For example, fixing the trac&te= 1 is rather common in SDP solvers.

At last, we summarize the typical schemes of existing NPKL methods:

e To encourage the similarity (e.qg., kernel target alignment) or penalize theckste.g., Breg-

man divergence) to some prior similarity information;

e To enforce some constraints to the kerelvith prior heuristics, such as distance constraint

Kii +Kjj — 2Kij = d,2J or side information, etc; and

e To include regularization terms ovErto control capacity, such askr= 1.

By the above steps, NPKL provides a flexible scheme to incorporate mioreimfiormation
into the target kernel. Due to the non-parametric nature, the solution spa&eapable of fitting
diverse empirical data such that the learned kelknean be more effective and powerful to achieve
better empirical performance than traditional parametric kernel functions.

2.3.3 OPTIMIZATION ASPECTS

Despite the powerful capacity achieved by NPKL, one key challenge WtKINs the difficulty of
the resulting optimization problem, in which

e the whole gram matriX is treated as the optimization variable, thatd$N?) variables;

e the kernel matriXX must be positive semi-definite.
As a result, NPKL is often turned into a Semi-Definite Programming (SDP) prolter instance,
a NPKL problem to learn a kernel matii with mlinear constraints is written as follows:

maxtr CK '[I’Tin:bij, (5)

K >0
whereC andT;;j’s areN x N symmetric matrices anldl;’s are scalars, and its dual problem can be
rewritten as:

minb'y : C— ¥ Tijyij= 0, (6)
y -
(i.J)
wherey is the vector of dual variableg;’s for the linear constraints in (5) aralis the vector of
bij’s.

Typically, this SDP problem of NPKL is usually solved by applying a genptapose SDP
solver. Among various SDP solvers, timerior-point algorithmis one of the state-of-the-art solu-
tions (Boyd and Vandenberghe, 2004). From Lobo et al. (1998jirtteecomplexity per iteration of
the SDP problem (6) i®(m?N?). Using the primal-dual method for solving this SDP, the accuracy
of a given solution can be improved by an absolute constant fac®fyfN) iterations (Nesterov
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and Nemirovskii, 1994). Whem approaches t®(N?), the overall computation complexity is often
as high a©O(N®®), which makes NPKL inapplicable to real applications.

In this work, we focus on solving the efficiency and scalability issues ddINEZhuang et al.,
2009). In particular, we propose a family of efficient SimpleNPKL algorithinas can solve large-
scale NPKL problems efficiently. Moreover, we also show that the pexpaiyorithms are rather
general, which can be easily extended to solving other kernel learnpigaions, including di-
mensionality reduction and data embedding applications.

3. A Framework of Non-Parametric Kernel Learning from Pairwise Constraints

In this Section, we introduce the framework of Non-Parametric Kernelrlieg (NPKL) (Hoi et al.,
2007; Zhuang et al., 2009), which aims to learn non-parametric kerrais $ide information,
which is presented in a collection of must-link and cannot-link pairs.

3.1 Side/ Labd Information

Let U = {x1,X2,...,Xn} denote the entire data collection, where each data ppimtx. Consider
a set ofN, labeled data exampleg, = {(x1,y1)...,(Xn,Yn,) }, One can usegiy; as the similarity
measurement for any two pattemsandx;. Sometimes, it is possible that the class label informa-
tion is not readily available, while it is easier to obtain a collection of similar (p@&itpairwise
constraintss (known as “must-links”, that is, the data pairs share the same class) atiection
of dissimilar (negative) pairwise constrairiis(known as “cannot-links”, that is, the data pairs have
different classes). These pairwise constraints are often refereesbide information

In general, kernel learning with labeled data can be viewed as a spas@&ab€kernel learning
with side information (Kwok and Tsang, 2003; Kulis et al., 2006; Hoi et &I07), that is, one can
construct the sets of pairwise constraigitand® from L. In real applications, it is often easier to
detect pairwise constraint while the class label is difficult to obtain. Fanel&, in bioinformatics,
the interaction between two proteins can be identified by empirical experinTérgse interactions
are expressed naturally by pairwise constraints. However, it coulcebedifficult to judge the
protein function, which corresponds to class labels. In the sequel, ous fon learning kernels
from pairwise constraints.

Givens and®D, we construct a similarity matrix € RN*N to represent the pairwise constraints,
that is,

+1 (Xi,Xj) €S
Tj=49 -1 (X,Xj)) €D (7)
0 otherwise.

A straightforward and intuitive principle for kernel learning is that thenktentryK;; should be
aligned with the side informatiofljj as much as possible (Cristianini et al., 2002), that is, the
alignmentT;;Kjj of each kernel entry is maximized.

3.2 Locality Preserving Regularization

In addition to side/label information, preserving the intrinsic geometric strei@fithe data have
also been explored to improve the performance of kernel learning. dfypicnost existing ker-
nel learning approaches (Kulis et al., 2006; Hoi et al., 2007; Hoi amd2D08) adopt the low
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dimensional data manifold (Sindhwani et al., 2005) for preserving thditpofthe data in kernel
learning. The following reviews an approach for exploring low dimengdidata manifold in kernel
learning (Hoi et al., 2007).

Let us denote byf (x,x’) a similarity function that measures the similarity between any two
data pointsq; andx;, andS € RN*N is a similarity matrix where each eleme®it = f(x;,x;) > 0.
Note thatf(-,-) does not have to be a kernel function that satisfies the Mercer’s candFior a
givenN data examples, a kernel matixcan be expressed &s= V'V = 0, whereV = [v1,...,V\]
is the matrix of the embedding of th¢ data examples. The regularizer of the kernel mattrix
which captures the local dependency between the embeddingodlv; (i.e., the low dimensional
embedding of similar data examples should be similar w.r.t. the simil§fitycan be defined as:

2

QV,9 = zs,

Ijl

Dj 2
= r(VLV):tr(LK), (8)

wherelL is the graph Laplacian matrix defined as:
L=1-D Y2sD %2 9)
whereD = diag(D1,D,...,Dy) is a diagonal matrix with the diagonal elements define®jas:

S S

3.3 Formulation of Non-Parametric Kernel Learning

Taking into consideration of both the side information in (7) and the regufariz@), the NPKL
problem is then formulated into thess + regularizationframework (Hoi et al., 2007) as follows:

mlrg tr LK +C¥ i jyecsum £(TijKif ), (10)

which generally belongs to a Semi-Definite Programming (SDP) problem (8aog&andenberghe,
2004). HereC > 0 is a tradeoff parameter to control the empirical 1o&s) of the alignment;; K
of the target kernel and the dependency among data examples withtresplee intrinsic data
structure.

4. SimpleNPKL: Simple Non-Parametric Kernel Learning

In this Section, we present a family of efficient algorithms for solving the Npkoblem in (10).
We refer to the proposed efficient algorithms as “SimpleNPKL” for short.

4.1 Regularization on K

As aforementioned, the solution space of NPKL has been relaxed toitsoftestibility and capacity
of fitting diverse patterns. However, arbitrarily relaxing the solution spgiicould result in over-
fitting. To alleviate this problem, we introduce a regularization term:

tr (KP), (11)

1. The common choice of the loss functié) can be hinge loss, square hinge loss or linear loss.

1320



A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

wherep > 1 is a parameter to regulate the capacitjofSimilar regularization terms ok have
also been adopted in previous kernel learning studies. For exampléadriset al. (2002) used
IK|lr = +/(K,K) = /tr (K2) in the objective to penalize the complexity k&f while Lanckriet
et al. (2004) proposed to adopt a hard constraifiir< B, whereB > 0 a constant, to control the
capacity ofK.

We refer the modified NPK learning problem with the regularization term (iti¢ein the ob-
jective or in the constraint to as Simple Non-Parametric Kernel Learning (8hfXL), which can
be solved efficiently without engaging any standard SDP solvers. Negtesent two SimpleNPKL
algorithms that adopt several different types of loss functions.

4.2 SimpleNPKL with Linear Loss

First of all, we consider a linear loss functiéqf ) = — f, and rewrite the formulation of (10) as the
SimpleNPKL formulation:

mintr ((L—C Z Tij>K> : K=0, trkKP<B, (12)
K (i,))EEUD)

whereTj; is the matrix of setting thei, j)-th entry toT;; and other entries to 0. To solve this
problem, we first present a proposition below.

Proposition 1 Given A is any symmetric matrix such th#& = Pdiag(o)P’, whereP contains
columns of orthonormal eigenvectors Afand o is a vector of the corresponding eigenvalues,
and B is any positive constant, the optimal solutiGhto the following SDP problem for p 1.

mKaxtrAK : K>=0, trKP <B, (13)

can be expressed as the following closed-form solution:

K* = (14)

P
tr AD

whereA ; = Pdiag(o; )P, ando is a vector with entries equal tmax0, [0];).
For p =1, the optimal solutiorK* can be expressed as the following closed-form solution:

K*=BA;

whereA; = Pdlag(cl)P , and.ol is a vector with entries equal tm for all i that [o]; =
max [0];; otherwise, the entries are zeros.

Proof By introducing a dual variablg> 0O for the constraint tkP < B, andZ € S (S is self-dual)
for the constrainK > 0, we have the Lagrangian of (13):

L(K;y,Z) =tr AK +y(B—tr KP) +-trKZ.
By the Karush-Kuhn-Tucker (KKT) conditions, we have:
A—ypKP14Z=0 and trKzZ=0.
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First, we show that ttKZ) = 0 is equivalent ttKZ = ZK = 0. SinceK> 0,Z>- 0, we have
tr (KZ) = tr (KY/2K1/22%/27%/2) = ||K1/2Z1/2||2. Thus, tr(KZ) = 0 follows thatk %/2Z%/2 = 0,
Pre-multiplying byK /2 and post-multiplying by /2 yieldsK Z = 0, which in turn impliesk Z =
0= (KZ) =ZK. HenceK andZ can be simultaneously diagonalized by the same set of orthonor-
mal eigenvectors (Alizadeh et al., 1997). From the first KKT condition exeih = ypKP~1 —Z.
ConsequentlyA can also be diagonalized with the same eigenvectoksasdZ.

AssumeA = Pdiag(o)P’, whereP contains columns of orthonormal eigenvector\ofando
is the vector of the corresponding eigenvalues. Then; PdiagA)P’ andZ = Pdiag(u)P’, where
A > 0andu > 0 denote the vector of the eigenvalueofindZ respectively. Therefore, we have

trkKP = |Ap<B, (15)
trAK = M\o, (16)
o = yP oy (17)
Ny = o (18)

Together withA > 0 andp > 0, and from (18)]A]; and[p]; cannot be both non-zeros. Hence, from
(17), we knowo . = ypA P~1 contains all positive componentso@f Moreover, from (16) andl > 0,
together with the constraint (15), the SDP problem (13) is reduced to

m)\ax)\’cu :IMIB<B.

By Holder inequality, we havd'c., < ||A||p||0|lq, Where it holds for 1p+1/q= 1. The equality
is achieved if and only ifA|P and|o..|9 are linearly dependent. Thus we can sdélsatisfying (15)
to arrive at the closed-form solution Kfin (14) forp > 1.
For p = 1, from Equations (15) and (16), the optimization task is simplified asNwax
A > 0,||All1 < B. Due to the linearity, the maximum objective value is obtained by choosing
[Ali = B/ ¥i:j0,—maxay; 1 for alli that[o]; = max|[o];; otherwise[A]; = 0. [ |

Based on Proposition 1, we can easily solve the SimpleNPKL problem. Inyarfiby setting
A =C3ijesun) Tij — L, we can directly compute the optimi&l to SimpleNPKL of (12) using
sparse eigen-decomposition as in (14). Thus the computation cost of SiRiflehth linear loss
is dominated by eigen-decomposition. It is clear that this can significantlgecithe time cost for
the NPKL tasks. Alternatively, we add(# P) directly into the objective, and arrive at the following

formulation:
) G
mintr ((L—C Z Tij>K>+ter : K>=0,
K . p
(i,j)e(SuD)

whereG > 0 is a tradeoff parameter. To solve this problem, we first present a gitmpobelow.

Proposition 2 Given A is any symmetric matrix such th@ = Pdiag(o)P’, whereP contains
columns of orthonormal eigenvectors &fand o is a vector of the corresponding eigenvalues,
and B is any positive constant, the optimal solutiohto the following SDP problem for p 1:

mKaxtr AK — (;tr KP : K=0, (19)
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can be expressed as the following closed-form solution:

o (20)” 0

whereA ; = Pdiag(o; )P, ando. is a vector with entries equal tmax0, [0];).
Following the techniques in the proof of Proposition 1, we obtain (20) immediaifelye set
p—1
P\ p
G= <étrA_‘;l) , these two formulations result in exactly the same solution. Moreover, if we

_P_
setB=tr AP, it means we just use the projectién asK. No re-scaling ofA; is performed. In

the sequel, we consider the regularizatiol Brwith p = 2 for its simplicity and smoothness.

4.3 SimpleNPKL with Square Hinge L oss

Although the formulation with linear loss in (12) gives rise to a closed-foriutsm for the NPKL,
one limitation of the NPKL formulation with linear loss is that it may be sensitive to ndaa
due to the employment of the linear loss function. To address this issue, irethisrs we present
another NPKL formulation that uses (square) hinge ig$$ = (max(0,1— f))9/d, which some-
times can be more robust, whede= 1 (hinge loss) or 2 (square hinge loss). We first focus on
the NPKL formulation with square hinge loss, which can be written into the follpwonstrained
optimization:

i C
minge, trLK+2 Y & (21)
(i.j) EBUD)
st V(i,j)e(SUD), TijKij>1—g;j, (22)
K> 0,trKP <B.

Note that we ignore the constrairgg > 0 since they can be satisfied automatically. However, (21)
is not in the form of (13), and thus there is no longer a closed-form salfioK .
4.3.1 DUAL FORMULATION: THE SADDLE-POINT MINIMAX PROBLEM
By Lagrangian theory, we introduce dual variabéggs (ajj > 0) for the constraints in (22), and
derive a partial Lagrangian of (21):

C

trLK+§Zsﬁ-— aij (TijKij — 1 +&jj). (23)
(i.5) (i.5)
For simplicity, we Us€ ;) to replacey (; jcsup) in the sequel. By setting the derivatives of

(23) w.r.t. the primal variableg;’s to zeros, we have

V(i) e (SUD), CSij = = 0

and substituting them back into (23), we arrive at the following saddletpoinimax problem
J(K,0):

. 1
maxg;ming  tr ((L—ZaijTij>K>—2C2aﬁ+2aij (24)
(i,J) (1,)) (i,1)
s.t. K= 0, trKP <B, V(i,j) e SUD, ajj >0,
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wherea = [a;j] denotes a matrix of dual variablag’s for (i, j) € SU D, and other entries are zeros.
This problem is similar to the optimization problem of DIFFRAC (Bach and Hayah&008), in
which K anda can be solved by an iterative manner.

4.3.2 ITERATIVE ALGORITHM

In this subsection, we present an iterative algorithm which follows the simidate strategy in
Boyd and Xiao (2005): 1) For a fixemt 1, we canleA = 3 a}flTij —L. Based on Proposition
1, we can compute the closed form solutkbnto (24) using (14); 2) For a fixeld;, we can update
ot usingo; = (ai—1+nN:0%)+; 3) Step 1) and 2) are iterated until convergence. Hatenotes the
objective function (24)[1J, abbreviates the derivative dfat a;, andn; > 0 is a step size param-
eter. The following Lemma guarantees the differentiable properties of timalps/alue function
(Bonnans and Shapiro, 1996; Ying et al., 2010):

Lemma 3 Let X be a metric space andl be a normed space. Suppose that for af X the
function f(x, ) is differentiable and that (f, u) and O, f (x,u) are continuous otX x U, and Q be a
compact subset of. Then the optimal value functior{u) := infycq f (X, u) is differentiable. When
the minimizer fu) of f(-,u) is unique, the gradient is given yf (u) = O, f (u,x(u)).

From Proposition 1, we see that the minimikgio) is unique for some fixed. Together with
the above lemma, we compute the gradient at the ot

1
DJijzl—trTin—Eaij, (25)

ol

1
_ B p-1 -5, .ot T.:. —
whereK = mﬁr AL A=) i —L.
Similarly, for the another formulation:

. C G
minge, trLK+2 Y €5+ —trKP (26)
(i,))EEUD) P
s.t. V(i,j)G(SUQ)),TinijZl—Sij,

we can derive the corresponding saddle-point minimax problem of (26):

maxgming tr ((L — Z GijTij)K) —% Z aﬁ+z aljj +9ter
) ) ) P
s.t. K>=0,V(i,j) e SUD, ajj >0.

Again, from the Proposition 2, we observe that the minimi&éa) is unique for some fixed.
Together with Lemma 3, we compute the gradient at the pwirih the same way as in (25) by

1
settingK = (éA+) PLA= > (i) a}jTij —L. The alternative optimization algorithm is summarized
in Algorithm 1.

4.3.3 ESTIMATING THE RANK OF K

According to Proposition 1 or Proposition 2, we are required to locate thigiygospectrums of,
which can be achieved by full eigen-decompositiorAof However, this can be computationally
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Algorithm 1 SimpleNPKL with (square) hinge loss.
Input: Pairwise constraint matriX, parameter€ andB (or G), k
Output: a andK.

1. Construct graph Laplacidn usingk nearest neighbors;

2: Initialize a©;

3: repeat

4 SetA = Z(lj) (X}j_lTij —L;

5. Compute the closed-form solutidty = (B/tr A? (P~ ¥/PpY/ (P71

/IFor the formulation (19), usk; = (A /G) Y(P-Y jnstead:

Compute the gradiertdj = 1—tr TjjK; — 2aj;

Determine a step sizg, updaten|; usingaf; = (a}j’1+ ne0dij) s
until convergence

© N o

prohibitive for large scale data sets. Moreover, the computation on traivegigen-vectors of
A should be avoided. The following proposition (Pataki, 1995) boundsahie of matrixK in a
general SDP setting.

Proposition 4 The rank r ofk in the SDP problemmax« -otr (AoK ) with m linear constraints on

K, follows the boun< Hz—l > <m.

Moreover, from the empirical study in Alizadeh et al. (1997), the naiskusually much smaller
than this bound. This implies that the full decomposition of matgxs not required. Our formula-
tion (21) has an additional constraint:k? < B for p = 2. This condition equivalently constraints
tr (K), which is a common assumption in SDP problems (Krishnan and Mitchell, 20063hdw
this, we haveB > tr KK = £ 5,A2N > 1(5; A - 1)2 = L (tr K)?, where the second inequality is re-
sulted from the Cauchy inequality. Hence, we havé t +/BN. Therefore, we can make use of
ther estimated from Proposition 4 as a suggestion to estimate the raak of

4.3.4 DETERMINING THE CONVERGENCEPROPERTIES

When then; is small enough or a universal choicemf= O(1/t) is used, the whole optimization
problem is guaranteed to converge (Boyd and Xiao, 2005). Practithdyyalue ofn plays an
important role for the convergence speed. Therefore, it is worth stgdige influence ofy on the
convergence rate, which requires to lower bound the incremelyt af each step. We first establish
the Lipschitz property oflJ(a).

Lemma’5 Assume we use the formulation of Proposition 2 at each iteration of Algorittthvem
the gradient of the objective function given by (25) is Lipschitz continuoushigthitz constant
L=2+ é where m= | S U D] is the number of nonzeros i That is,

i 1) g — ozl

G C

Proof For ana;, we useK; denote the corresponding minimizer dcomputed by (14). For a
spectral functiork defined orfS ., which is Lipschitz continuous with Lipschitz constantve have

IA(K1) =A(K2)[lF < K[[K1—Kal|F.

189(az) — DI(az) [F < (
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For our case, the p.s.d. projection is defined\bit) = ¥; max(0,A;)2. The Lipschitz constant of
this function is 1. Therefore, for ar; andK, given by (14), we have

K1 —Kzl[F ALy — Azl

1 @ )1 @ _
< Az Bz ),
1
=l el
|7J
1
< Zlar-azlklTle = *2oa ool
Consequently, we have,
_ ) 1 ) 1 @y)?
103(an) — Dd(aR) e = Z((l—trT.JKl—Eaij ) - (1-trTijKz— Zaf ))
t5)
1 2
= z (tI’Tij (Kz—Kl) +6(ai(j2) —ijl)))
t5)
1
< ITlellKe =Kzl + =llas - o2flr
1
< (g+6)l|0(1—0(2|||:-

With the Lipschitz property oflJ, we can further show each iteration of Algorithm 1 makes
progress towards the optimal solution. Interestingly, we are aware thptdbéis very similar to
the analysis of indefinite kernel learning, which is proposed very tgcby Ying et al. (2010).
This result is developed based on non-smooth optimization algorithm of deg2805). To make
the paper complete, we expose the detailed proof in the following proposition.

Proposition 6 Assume we use the formulation of Proposition 2, ane g +é at each iteration of
Algorithm 1. The iteration sequenge; } generated in Algorithm 1 satisfy:

J(0es1) > I() + 3 o — e

and

maxJ(a) - J(oi) < o flao — o',

N =

wherea* is the optimal solution ofax, J(a).

1326



A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

Proof LetL = 2+ & abbreviate the Lipschitz constant68(a), then we have

J(a) —J(ar) — (OJ(ay),a —0r) = ’ 0J(a)da — (OJ(ay),a — o)

Ot
— /Ol(DJ(GO(Jr(l—e)at)—DJ(at),a—at)de
> —/()l\]DJ(9a+(l—9)at)—DJ(at)HHa—atHFde
> _L/Oleua—atuéde
> —lla—al.
Applying this inequality witha = a1, we have
~ (o) — (03(0), a1 — ) = ~I(0tes2) — 2 flagsa — 2 (27)
From step 5 in Algorithm 1, it is easy to verify that
Orp1 = argamin||(a—at)—DJ(at)/nHE
= argumin—2<0(—at,DJ(at)/n>+||0(—0(t\|,2:

= argmin—0J(a;) — (o — o, 03(0r)) + gHa — atHE. (28)
a

Let f(a) denote the right side of (28). From the first-order optimality condition oyeg, for any
a we have(Of(ai1), 0 —0y1) > 0, that is,

—(0J(a),a —Ot+1) > N{Ot1 — Ay, Apgr — ). (29)
Adding (27) and (29) together yields thad(a;) — (0J(a;),a — o) > —JI(At1) +N{0¢ — g1, 00 —
o¢) + 2]/a; — ag41[|2. Note that—J is convex,—J(a) > —J(a;) — (0J(o),a — at). Thus we have
3(ae1) = I(@) + {0 — 0y, — @) + 2t — a2
Applying a = a;, we have that
J(0e1) = (@) + 2 oea — a2

Applying a = a*, we have that

n

Lo a2

3(0") = 3(etis2) <~ {0t — 1,0 — ) — 2 o — [ = 2 o” — 2 -
(30)

Taking summation ovdrfrom 0 tot — 1, we have
t—1 N ,
;(J(G*) —J(@i41)) = S ljo” —aolz.
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From (30), we see that the sequeRdéa; ) } increase monotonically. Thus we obtain
tQ(a") —I(a) < 30" — aoll?,

which completes the proof. |

4.4 SimpleNPKL with Square L oss

In this subsection, we consider square alignment loss for the SimpleNRKiefwvork:

. C
Ming g, trLK+— ; &
2 i.)&sum)

s.t.  V(i,j)e(SuUD), TijKij=1—-¢j,
K> 0,trKP <B.

Here we need not to enforee> 0. With the standard techniques of Section 4.3, we derive the
following min-max problem:

1
maxmintr <L - aijTij>K +5aj—==S0a : K=0trkKP<B.
a K % % 2C % "
Therefore, we can compute the gradienfav.r.t. a:
1
0Jj =1-tr TjjK — Eaij.

The whole analysis of Section 4.3 still holds. The difference just lies in the affl@omputing
gradient1J. We will show an application of square loss in Section 6.

4.5 SimpleNPKL with Hinge L oss
In this subsection, we consider hinge loss for the SimpleNPKL framework:

minge, trLK+C z &ij

(i,)EBUD)
st Y(i, ) €(SUD), TijKij > 1—&j,&; >0
K> 0,trKP <B.

Following the standard techniques of Lagrangian dual, we arrive at thenanproblem:
maxmintr <L— aijTij>K+ ajj : K=0,trKP<B, 0<ajj <C.
gy (1 g )< 7

Therefore, we can compute the gradienfav.r.t. a:
OJj = 1—-tr Tj;K

The whole analysis of Section 4.3 still holds. The difference just lies in the aff@omputing
gradientdJ. Note that the gradient updatimg= o + nJ may jump out of the rangf®,C|. We
need to projectt into this region at each iteration. We will also show an example of Hinge loss in
Section 6.
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5. Implementation | ssues

In this Section, we discuss some implementation issues that are important to tkessso€ the
proposed SimpleNPKL algorithms.

5.1 Building a Sparse Graph Laplacian

Recall that the graph Laplacianin (9) is often sparse, in particular, which is usually computed by
finding k-nearest neighbors for the purpose of constructing the similarity mat®pecifically, an
entry (i, j) = 1 if and only if data exampleisand j are among each otherksnearest neighbors;
otherwise, itis setto 0. So, there are at mosbnzero entries on each row lof

A naive implementation of finding-nearest neighbors often tak®@gN?logN) time. To enforce
the data examplesand j are among each othersnearest neighbors, one can use B-matching
algorithm (Jebara and Shchogolev, 2006) to findkmearest neighbors. However, when the data
set is very large, the construction bfbecomes non-trivial and very expensive. To address this
challenge, we suggest to first construct tdower treestructure (Beygelzimer et al., 2006), which
takesO(NlogN) time. The similar idea to construct a tree structure for distance metric learning
was discussed in Weinberger and Saul (2008). With the aid of this datéustuthe batch query of
finding k-nearest neighbors on the whole data set can be done V@tiNn time. Hence, the graph
LaplacianL can be constructed efficiently for large-scale problems.

5.2 Fast Eigendecomposition by L anczos Algorithm

Among various existing SDP approaches (Boyd and Vandenbergb),20e interior-point method

is often deemed as the most efficient one. However, as discussed ioysrsubsection, the graph
LaplacianL is often sparse. In addition, the number of pairwise constraints is usuallydumeao
expensive cost of human labels. Therefdre;  ; ;) aijTij is also sparse. Such sparse structure
is not yet exploited in such general algorithms. According to Propositidheliime cost of each
iteration in Algorithm 1 is dominated by eigen-decomposition. Moreover, froop@sition 4, the
rank r of the kernel matrixK is upper bounded by the number of active constraints. Therefore,
we can estimate the rank for sparse eigen-decomposition, which can bd sfficiently using the
so-calledmplicitly Restarted Lanczos AlgorithGRLA) (Lehoucq et al., 1998). Its computational
cost is dominated by matrix-vector multiplication. Specifically, the time cost of IRLAear with

the number of non-zeros . Assumek nearest neighbors are used to construct the graph Laplacian
L, then the number of non-zerosAnis at mostNk-+ m, wherem is the number of nonzeros ih,
andA is very sparse. Moreover, the time cost of computing gradied(iis). Therefore, the time
complexity per iteration of SimpleNPKL i©(Nk+ m).

5.3 Active Constraint Selection

As shown in Algorithm 1, the computational cost of the update proceduligligytdepends on the
number of pairwise constraints. However, some less informative corstrdtan do not contribute
much to the learning of the kernel mati and fitting some noisy pairwise constraints may also
lead to the poor generalization. Moreover, as discussed in Section 4e3tdantofK is lower when
there are fewer active constraints in (22). Therefore, selecting isaisenstraints for SimpleNPKL
may improve both the efficiency and the generalization of the NPK learning.
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To speed up the eigen-decomposition process, instead of engagingwaispaonstraints, we
propose to sample a subset®fs for SimpleNPKL. Instead of acquiring class label information
for kernel learning; here, we consider another simple active consselection scheme. Recall that
a general principle in active learning is to request the label of the data ploatigre most uncertain
for their predictions. Following this idea, we adopt the margin criterion to nreabe uncertainty
of the prediction value on a data point. In particular, given a data pgiassume that we have the
prediction function in the form:

F(xi) = 3 yiK(xi,x))-
J

We can usgy; f (x;)| to measure the uncertainty of prediction, whgre {—1,+1} is the class label
of data pointx;. As a result, for a data poini, we choose the constraints involving point

1
EzmyjK(Xi,Xj)

e

i* = argmin
|

,1i DIRISCRE
j,Tij#0

where we deerfij; as an entry ofy, andl; = [{j : (i, j) € SUD},T;j # 0}| is used as a normalization

of the margin value. Based on the above formula, we choose a sullseatd pointsSy that are

most uncertain according to the margin measure. Then, we chooseR|ldhiat involve any point

i € S as pairwise constraints to form a new set of constraints. Finally, we runl&@iRiL based

on this new set of constraints.

= argmin
|

5.4 Low Rank Approximation of K

Since the rank of K often satisfies < n, we may expres& asK = VEV’, where the columns
of Vn«, are eigenvectors df. If we fix the basev, the number of variables is reduced frodito
r2. With this approximation scheme, tlematrix in Algorithm 1 becomes = V/(L — Y aijTij)V.
Note V'LV can be pre-computed and y a;jT;;V can be computed efficiently by virtue of the
sparseness. Therefore, SimpleNPKL can be significantly faster withghisxmation.

6. Applications of SimpleNPK L

In this Section, we extend the proposed SimpleNPKL technique to other simildrimedearning
problems where the goal of the optimization is to find an optimal matrix such that &s prod-

uct with another matrix is maximized or minimized. In particular, we consider theeshaleedding
problems, where the goal is to find a new data representation that preseme similarity/distance
constraints between pairs of data points. These problems typically can beriemiésd by con-
straining the alignment of the target kernel matrix to some prior affinity or distatructures. As a
result, the kernel matriK = V'V implies a data embedding with a natural interpretation, in which
the column vector o¥ corresponds to the new data representation. We discuss several imiporta
data embedding methods below.

6.1 Colored Maximum Variance Unfolding

Colored MVU (Song et al., 2008) is an improvement of Maximum Varianceoldinig (MVU)
(Weinberger et al., 2004), which produces a low-dimensional reptatsen of the data by maximiz-
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ing the trace of a matriK subject to some positive definiteness, centering and distance-prgservin
constraints, that is:

ming —trkK : KEO,ZKHZO, trKTij:Dij,V(i,j)eN.
]

where trKTjj = Kji +-Kj; — 2K|; is the square distance betwegrandx;.

CMVU interprets MVU from a statistical perspective. It maximizes the depeod between
the domain of input pattemand the domain of label, which is measured by theilbert- Schmidt
Independence CriterioGretton et al., 2005; Song et al., 2008). Here we introduce slack vari-
ablest to measure the violations of distance constraints and penalize the coml@gpsquare loss.
Consequently the optimization task of colored MVU is reformulated as:

: C -
ming ¢ —tr HKHY—{—E Zzﬁ, : K=0,tr KTij = Dij —Eij, V(I, ]) € 9\[
whereH;j = &jj — N~1 such thaHKH centerK, Y = yy’ is the kernel matrix over labels. Appar-
ently this belongs to an SDP problem.

Following the SimpleNPKL algorithms, we derive the minimax optimization problem bg-intr
ducing dual variables for the inequality constraints:

. 1
max, Mink tr<—HYH—ZO‘ijTij>K+ZO‘ijDij—zczo‘izj . K= 0, trKK <B.
] ] ]
(31)

By substituting the following results

1
A=HYH+Y a;jTij and 0J;j = Djj —tr TjjK —Ea}j
1

back into Algorithm 1, the problem of (31) can be solved immediately.

6.2 Minimum Volume Embedding

Minimum Volume Embedding (MVE) is another improvement of MVU (Shaw andadei2007).
One limitation of MVU is that it simply maximizes the traceldf which may result in the solution
that engages considerably more dimensions than necessity. To addsessotilem, Shaw and
Jebara (2007) proposed to grow the top few eigenvalu&s while shrinking the remaining ones.
In particular, let = $;Ajvivi, A1 >,...,> Ay, andKg = zf’:lvivi’ — 3 4.1Vivi. When the intrinsic
dimensionalityd is available, MVE formulates the data embedding problem as follows:

ming —trKKg : the same set of constraints of MVU (32)
After obtaining the solutioik! at each step, MVE proceeds by substitutiig = K! back to the
optimization of (32) and repeatedly solving the optimization. Hence, MVE imgrttéU by de-

creasing the energy of the small eigen componenks. dfo find the solution, everi! is computed
by applying a general SDP solver in Shaw and Jebara (2007).
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To speed up the solution, following the similar derivation in the above CMV W avesolve (32)
by eigen-decomposition in an iterative manner. Specifically, we make the fojawodifications:

1
A=Kop+ ZaijTij and DJitj = Djj —tr TjjK — Ea}j
]
By substitute the above results back into Algorithm 1, we can solve the MVilgaroefficiently.

6.3 Structure Preserving Embedding

Structure Preserving Embedding (SPE) (Shaw and Jebara, 2009) ishinméearning technique
that embeds graphs in low-dimensional Euclidean space such that the dingbpdeserves the
global topological properties of the input graph. Suppose we havargectivity matrixW, where

W = 1 if x; andx; are connected and{; = 0 otherwise. SPE learns a kernel matdxsuch that

the similarity trkK W is maximized while the global topological properties of the input graph are
preserved. More formally, the SPE problem is formulated into the followinB §ptimization:

mink —tr KW +CE : Dij>(1—VV|j>mn?-)<VV|mDim)_Ea §>0

whereDjj = Kji +Kjj — 2Kj; = tr KTj; is the squared distance betwegm@ndx;.
Let [n] = {1,...,n} and A{ denote the set of indices of points which are among the nearest
neighbors ok;. Then for each point;, SPE essentially generates— |Af|) x |A{| constraints:

trKTij >trKTix—&, Vie[n],je[n—Aj ke N.

In order to speed up the SPE algorithm, we apply the SimpleNPKL techniquentthenSPE
optimization into the following minimax optimization problem:

maxy ming  tr (Z Z Z aijk(Tik—Tij)—W>K : K=0,tirkKK < B,Zaijk € [0,C].
ke ¢
Similarly, we can derive the following results:

A=W — zaijk(Tik —Tij) and DJitjk =trK(Tik—Tij).
]
Substituting them back into Algorithm 1 leads to an efficient solution for the SBiRlgm.

7. Experiments

In this Section, we conduct extensive experiments to examine the efficacgficiency of the
proposed SimpleNPKL algorithms.

7.1 Experimental Setup

We examine both efficacy and efficiency of the proposed SimpleNPKL s@teginformation to
learn a kernel matrix for kernddmeans clustering. As shown in Hoi et al. (2007), the learned
kernel matrix of the Non-Parametric Kernel Learning (NPKL) outpen®other kernel learning
methods in the task of clustering using side information. For simplicity, we only aoenpur
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proposed SimpleNPKL algorithms with the NPKL method in Hoi et al. (2007) én&lk-means
clustering. The results d-means clustering and constrainetheans clustering using Euclidean
metric are also reported as the performance of the baseline methods.braeiations of different
approaches are described as follows:

e k-means: k-means clustering using Euclidean metric;

e ck-means. The constrained&-means clustering algorithm using Euclidean metric and side
information;

e SimpleNPKL+LL: The proposed SimpleNPKL with linear loss defined in (12);

e SimpleNPKL+SHL: The proposed SimpleNPKL with squared hinge loss defined in (21);

e NPKL+LL: NPKL in (10) using linear loss;

e NPKL+HL: NPKL in (10) using hinge loss.

To construct the graph Laplacian matkixn NPKL, we adopt the cover tree data structtifEhe
sparse eigen-decomposition used in SimpleNPKL is implemented by the péppkcktoolkit.?
We also adopt the standard SDP solver, SDP38 the baseline solution for NPKL. The pair-wise
constraint is assigned for randomly generated pairs of points accdmthgir ground truth labels.
The number of constraints is controlled by the resulted amount of connemtgabnents as defined
in previous studies (Xing et al., 2003; Hoi et al., 2007). Note that typicaéyidiger the number of
constraints, the smaller the number of connected components.

Several parameters are involved in both NPKL and SimpleNPKL. Their notatid settings
are given as follows:

e k: The number of nearest neighbors for constructing the graph LaplawirixL , we set it
to 5 for small data sets in Table 1, and 50 for Adult database in Table 6;

e 1 : The ratio of the number of connected components compared with the daiaeddt In
our experiments, we set= 70%N which follows the setting of Hoi et al. (2007);

e B: The parameter that controls the capacity of the learned kernel in (14Yix\8 = N for
the adult data sets and fix= 1 for the data sets in Table 1 and;

e C: The regularization parameter for the loss term in NPKL and SimpleNPKL. ¥\@ $ 1
for the adult data sets and several constant values in the range@@tHg tlata sets in Table 1.

In our experiments, all clustering results were obtained by averagingsh#s from 20 different
random repetitions. All experiments were conducted on a 32bit Windowsith@.4GHz CPU and
3GB RAM.

7.2 Comparisonson Benchmark Data Sets
To evaluate the clustering performance, we adopt the clustering agais@d in Hoi et al. (2007):

l{Ci = Cj} = l{éi = ('fj}
0.5n(n—1)

Cluster Accuracy= Z
i>]

2. The cover tree data structure is describeutpt/hunch.net/ ~ jI/projects/cover_tree/cover_tree.html
3. TheArpacktoolkit can be found atttp://www.caam.rice.edu/software/ARPACK/
4. SDPT3 can be found attp://www.math.nus.edu.sg/ ~ mattohkc/sdpt3.html
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Data Set #Classes #Instances #Features
Chessboard 2 100 2

Glass 6 214 9

Heart 2 270 13

Iris 3 150 4
Protein 6 116 20

Sonar 2 208 60
Soybean 4 47 35

Spiral 2 100 3

Wine 3 178 12

Table 1: The statistics of the data sets used in our experiments.

This metric measures the percentage of data pairs that are correctlyaiustgether. We compare

the proposed SimpleNPKL algorithms with NPKL on the nine data sets from UChimatearning
repositories, as summarized in Table 1. The same data sets were also adopted in the NPKL stud
of Hoi et al. (2007).

The clustering accuracy and CPU time cost (the clustering time was exclofielifferent
NPKL methods are reported in Table 2 and 3. As can be observed frbla Zaall NPKL meth-
ods outperform the baselifemeans clustering and the constrainetheans clustering methods,
which use Euclidean metric fdemeans clustering. The proposed SimpleNPKL with square hinge
loss produces very competitive clustering performance to the resultsKE MRh hinge loss (as
reported in Hoi et al., 2007). SimpleNPKL with square hinge loss and NPK lnge loss often
perform better than the NPKL methods using linear loss.

For the CPU time cost, the time costs of SimpleNPKL and NPKL using linear losssagdly
lower than those of their counterparts with (square) hinge loss. Regatdirefficiency evaluation
in Table 3, our SimpleNPKL with linear loss or squared hinge loss is about & tinks faster than
NPKL using the SDPT3 solver. For some cases of linear loss, SimpleNPiKbheaven 100 times
faster.

Recall that our key Proposition 1 provides a closed-form solution to tedd&ernel matrix
for p> 1, in which the capacity parametBican be omitted for SimpleNPKL+linear loss. To show
the influence of the capacity parameRefor SimpleNPKL + square hinge loss, we present some
results in Table 4 with a fixegp = 2. To clearly show the influence on convergence, we present
the number of iterations instead of elapsed CPU time. We observe that SimgdleNBHuare
hinge loss is not sensitive ®on the bothris andProteindata sets. It even produces the identical
accuracy on théris data set foB € {2.5,3,3.5,4}. However, it affects the number of steps it takes
to converge. Similar phenomena can be observed on other data sets.

We also study the clustering performance of varymip Table 5. We fixed = 1 in this ex-
periment. From Table 5, we can observe that SimpleNPKL+square hingeriodsces the best
clustering accuracy for theis data set whemp = 4, but the improvement is not significant com-
paring withp = 2. For theProteindata set, our algorithm achieves the best results wher2. In
general, wherp < 2, the clustering performance drops significantly.

5. The data sets are availablendp://archive.ics.uci.edu/ml/
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NPKL SimpleNPKL
Data Set k-means | ck-means LL HL LL SHL
Chessboard 49.84+0.2 | 50.14+:0.3 | 61.1+69 56.3-6.1| 60.2- 0.0 58.8:0.8
Glass 69.74+1.9| 69.2£1.7 | 74.4-3.7 7914+49 | 73.0-25 73.5:2.9
Heart 51.540.1 | 52.3+3.7 | 86.0-0.3 86.2-0.0| 86.8-0.0 89.4+ 0.1
Iris 84.546.5| 89.4:8.5| 96.0:-6.1 97.44+0.0 | 97400 97.4+0.0
Protein 76.24+2.0 | 80.7+3.1| 78.2-3.2 86.44+-3.8|81.8:-1.8 75.9-2.0
Sonar 50.240.1 | 50.8+0.2 | 76.8-0.3 64.5-6.8| 70.2-10 78.0+ 0.0
Soybean 82.1+6.1 | 83.8+8.3 | 90.2+ 7.7 100.0+ 0.0 | 95.3- 5.1 95.4-4.9
Spiral 50.14+0.6 | 50.6+1.3 | 86.5+-0.0 94.14+:0.0| 92.2-0.0 94.1+0.0
Wine 71.2+1.2 | 76.1+:2.8 | 78.1+1.7 855+53 | 83. 7+ 4.8 85.0-2.6

standard SDP solver, afkeémeans.

Table 2: Clustering accuracy of SimpleNPKL, compared with the results 8NP (10) using a

NPKL SimpleNPKL
Data Set LL HL LLp SHL Speedup
Chessboard 1.38+0.07 5.23-0.06 | 0.05+0.00 0.13+0.00| 27.6
Glass 1.85+0.04 32.36:0.37 | 0.11+0.00 2.95+0.00| 16.8
Heart 2.64+0.10 63.840.68| 0.17+0.01 13.15+0.08| 155
Iris 1.36:0.03  1.65:0.04 | 0.04+0.00 3.45+0.01| 34.0
Protein 1.80+0.06 8.16:-0.11| 0.05+0.00 1.32+0.00| 36.0
Sonar 1.77+0.08 30.380.24 | 0.11+0.00 3.91+0.03| 16.1
Soybean 1.51+0.05 3.25:-0.04 | 0.01+0.00 0.16+0.00| 151.0
Spiral 1.78+0.10 6.23t0.08 | 0.05+0.00 1.95+0.00| 36.6
Wine 2.54+0.04 30.9%1.30| 0.094+0.00 1.53+0.01| 28.2
Table 3: CPU time of SimpleNPKL, compared with the results of NPKL in (10) uaistandard

SDP solver. (The best results are in bold and the last “Speedup” colulistei only for
the linear loss case.)

7.3 Scalability Study on Adult Data Set

In this Section, we evaluate our SimpleNPKL algorithms on another larger data £xamine
the efficiency and scalability. We adopt tAelult database, which is available at the website of
LibSVM.8 The database has a series of partitions: Ala, A2a,Aba (see Table 6). Since the
training time complexity of NPKL using standard SDP solver®(sI%°), which cannot be applied
on this database for comparison. We only report the results of keatkans and constraindd
means clustering as the baseline comparison.

Table 7 shows the clustering performance and CPU time cost (the clusteringaisrexcluded)
of SimpleNPKL on theAdult database. From the results, we can draw several observations. First
of all, we can see that by learning better kernels from pairwise constraintts SimpleNPKL al-
gorithms produce better clustering performance than th&trokans clustering and constrained

6. LibSVM can be found dittp://www.csie.ntu.edu.tw/cjlin/libsvmtools/datase ts/ .
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DataSet[ B [ 1 1.5 2 25 3 35 4
Iris Accur..(%) 94.8:0.0 94.8:0.0 95.2:0.4 95.74+0.0 95.740.0 95.20.0 95.74-0.0
#lterations 11 13 14 10 10 31 26
Protein Accur..(%) 745+08 73.6-1.6 74.4-0.8 74.3:0.9 74.H10 73.A1.1 73.#1.0
#lterations 51 32 51 11 14 27 19

Table 4: Results of varying capacity parameBewith fixed p = 2 andC = 1 onlris andprotein

data sets.

Data Set] P 1 15 2 25 3 35 4
. Accur.(%) | 61.6:35 58.6:4.0 94.8-00 94.8:00 95104 94.8:00 956+02
NS | #iterations 51 6 11 9 19 10 9

browen | ACCUr(R) | 72313 72822 74508 736EL5 73616 73516 73516
rotein | 4iterations 32 35 51 40 1 1 21

Table 5: Results of varying in the p-norm regularization oveK with fixed B=1 andC = 1 on
Iris andproteindata sets.

1480 2000
1470 | 1980
1 |
S 160t g 19960
© ©
> > 1940
2 1450 2
ﬂoi .°(i 1920
2 1440 ]
o O 1900
1430 1880
1420 1860
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
#lterations #lterations
(a) Ala (b) A2a

Figure 1: Convergence of SimpleNPKL using square hinge lossl@andA2a The parameters
areC=1,B=N.

k-means clustering methods using Euclidean metric. Further, comparing thégovithems them-
selves, in terms of clustering accuracy, they perform quite comparabhiah SimpleNPKL+SHL
outperforms slightly. However, in terms of CPU time cost, SimpleNPKL+LL with litess is con-
siderably lower than SimpleNPKL+SHL using square hinge loss.

We also plot the objective valuEK a) of SimpleNPKL on two data seslaandA2ain Fig-
ure 1. We observe that SimpleNPKL with square hinge loss often corwepgekly within 10
iterations. Similar results can be observed from the other data sets.
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DataSett| Ala A2a A3a Ada Aba
#lnstanceg 1,605 2,265 3,185 4,781 6,414
T: #Classes=2, #Features=123

Table 6: The statistics of thiedult database.

Accuracy(%) CPU Time(s)

Data Set| #Constraints kemeans| ck-means SimpleNPKL SimpleNPKL
LL SHL | LL SHL

Ala 4,104 | 56.4+3.5| 59.0+2.3 | 61.44+1.7 60.42.7| 85 3229
A2a 5443| 57.3+3.6 | 60.2t0.1 | 61.1+1.3 614+12 | 153 637.2
A3a 7,773| 57.8£3.5| 59.2:3.0| 61.1+1.7 61.54+2.0 | 288 1,160.8
Ada 12,465| 58.8+1.6 | 59.3+3.9| 61.6+1.3 61.4t1.5| 66.3 2,341.3
Aba 16,161 | 57.743.1 | 59.8+2.2 | 60.8:3.1 61.9+1.7 | 79.6 3,692.1

Table 7: Evaluation results odhdultdata set. (The best results are in bold.)

7.4 Comparisonson Constraint Selection

In this Section, we study the active constraint selection scheme for SimpleNfgure 2 shows
the clustering performance of active constraint selection by the agpdsscribed in Section 5.3.
Several observations can be drawn from the results: 1) Comparing \eitbridinal approach
using all constraints, the computation time is reduced by choosing a small awiopatrwise
constraints. This is because the Lanczos algorithm can perform theespigen-decomposition
faster on a sparse matrix with fewer nonzero entries; 2) Though thesamivstraint selection
costs more time than random selection, the former usually achieves betterictugéeEcuracy)
performance than the latter with the same amount of constraints; 3) Usingdhpespd active
constraint selection method to choose about half of the pairwise consti@r@smpleNPKL can
often produce comparable or even better clustering performance tharsihg all constraints.

7.5 Evaluations on Data Embedding Applications

In this Section, we evaluate the performance of the proposed SimpleNPHKtitatgs with appli-
cations to speed up three data embedding techniques, that is, CMVU, MUERE, respectively.
Our goal is to show that SimpleNPKL is capable of producing similar empirisalli®to the base-
line counterpart with significant efficiency gain. All the data sets are pyldiilable in the UCI
machine learning repository. In all the experiments, we simplZfix 1 for all the three methods,
and seB=mxN, me {0.1,1,2,10}.

7.5.1 MLOREDMAXIMUM VARIANCE UNFOLDING

The first experiment is to examine the efficiency by applying the propogsegl&NPKL tech-
nique to solve the CMVU problem. In particular, we examine the CMVU task famieg low-
dimensional embedding on three data sets which were used in Song e08)). (Z&o approaches
are compared:

e CMVU: An approximate efficient method employed by Song et al. (2008). Sepfos
VAV’, whereV (of sizenx d, d < n) is fixed to be the bottond eigenvectors of the graph
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Figure 2: Comparisons of clustering accuracy and CPU time by activéraoriselection and ran-
dom selection (constraint selection time is included) on Ala with param@&efN,C =
1, k=20,r =0.6. Using all 39K constraints directly, the accuracy is.8@ 2.9 and the
CPU time is 816 seconds.

Laplacian of the neighborhood graph W\ Thus the number of variables is reduced from
n? to d?.

e CMVU+NPKL: Our SimpleNPKL method introduced in Section 6.1. Unlike the above
CMVU algorithm by approximation, our method is able to obtain the global optimal so
tion using the SimpleNPKL scheme without approximation.

Figure 3, 4 and 5 show the experimental results of visualizing the embedsiotis in a 2D

space and the CPU time cost of CMVU. The time costs of CMVU+NPKL were ialdicated

in the captions of those figures. As we can observe from the visualizasuits, the proposed
CMVU+NPKL is able to produce comparable embedding results as those byidgfireal CMVU in
most cases. Further, by examining the time cost, we found that the time cost\df) @hcreases
with dimensionalityd exponentially due to the intensive computational cost of solving the SDP
problem. In contrast, the proposed CMVU+NPKL is able to find the globtrapefficiently, which

is much faster than CMVU whedhis large. Although CMVU could be faster than CMVU+NPKL
for very smalld values, it is important to note that the optintabalue is often unknown for many
applications. The proposed CMVU+NPKL approach can efficiently areattlly resolve the CMVU
problem without soliciting the approximation step.

7.5.2 MINIMUM VOLUME EMBEDDING AND STRUCTURE PRESERVINGEMBEDDING

This experiment is to examine the embedding performance of the SimpleNPKhidaehwith
applications to MVE (Shaw and Jebara, 2007) and SPE (Shaw an&,J20@89) tasks. In particular,
five approaches are compared:

e KPCA: The classical Kernel Principle Component Analysis algorithm;

e MVE: The algorithm summarized in Table 1 in Shaw and Jebara (2007). Pay aitentie
SDP solver in Step 5 and 6, which is the key for the success of MVE.

e MVE+NPKL: The embedding algorithm based on our SimpleNPKL algorithm. Refer to
Section 6.2 for detailed discussion.
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Figure 3: Comparisons of CMVU and CMVU+NPKL ogenate data set. Time cost of
CMVU+NPK is1.50+ 0.06 seconds.
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Figure 4: Comparisons of CMVU and CMVU+NPK onews20data set. Time cost of
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Figure 5: Comparisons of CMVU and CMVU+NPKL omnsps data set. Time cost of
CMVU+NPKL is 2895+ 1.8 seconds.

e SPE: The algorithm summarized in Table 1 of Shaw and Jebara (2009).
e SPE+NPKL: The embedding algorithm based on the proposed SimpleNPKL algorithm. Re-
fer to Section 6.3;
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To examine the embedding results quantitatively, we follow the previous st{&hasv and Jebara,
2007, 2009) to evaluate the classification performance on the embeddingydpaforming k-
nearest neighbor classification. Similar to the settings in Shaw and Jeld@@),(%ve randomly
choose 100 points from the largest two classes for each data set, artivige the data examples
into training/validation/test sets at the ratios of 60:20:20. The validation se¢dstadind the best
parameter ok for k-NN classification.

Table 8 shows the comparison of the classification results by five diffapgrbaches. From
the results, we can see that the two proposed algorithms, MVE+NPKL aBéNEPKL, are gen-
erally able to achieve the competitive classification results that are compéaoatble other two
original algorithms using a standard SDP solver. Among all compared algithlVE+NPKL
tends to achieve slightly better performance than the other approachdake#dl results show that
the proposed algorithms are effective to produce comparable embedaiogpance.

Data Set KPCA MVE MVE+NPKL SPE SPE+NPKL

Wine 90.5+£5.6 | 91.9+6.6 90.9+5.8 | 75.2+0.09 87.1£7.9
lonosphere | 79.8£7.3| 86.3+£7.3 84.2£8.5| 80.4+10.4 83.6+7.8
Heart 65.6 £84 | 62.4+9.8 62.9+9.8 | 54.9+10.2 62.2t11.1
Sonar 58.2+12.4| 59.2+10.2 59.8+12.2 | 57.4+11.1 59.4+11.4
Glass 70.7+9.8| 73.5+7.8 745+104 | 61.7£9.7 69.4+8.7
Spiral 98.7+2.4| 69.1+9.8 988 +24 | 76.74+0.07 82.9£8.4
Australian 63.2+9.8| 61.3+8.2 63.8+9.3 | 60.1+0.10 59.5+10.1
Breast cancer 91.9+5.4 | 92.9+4.6 92.4+5.8 | 93.4+0.07 944455

Table 8:k-NN classification accuracy on the 2D embedded results. (The befisramibolded.)

Next we compare the computational cost of the proposed algorithms atheginsiriginal meth-
ods, respectively. Table 9 shows the summary of average CPU time ¢bstafmpared algorithms.
From the results, it is clear to see that the two proposed algorithms, MVE+NRH SPE+NPKL,
are significantly more efficient than the other two original algorithms, reéseéc By comparing
MVE and MVE+NPKL, we found that MVE+NPKL achieves about 10 to 30 tnspeedups over
the original MVE algorithm; the speedup values are even more significaihédoSPE problem,
where the proposed SPE+NPKL algorithm attains about 50 to 90 times gpeeeuthe original
SPE algorithm. These promising results again validate the proposed SimpleiR#ective for
improving the efficiency and scalability of the three data embedding tasks.

To further illustrate the scalability of SPE+NPKL, we propose to solve aweald embedding
task on a large data set. In particular, we crawled a Flidata set, which consists of 3,660 Flickr
user profiles and a collection of 3.7 million photos uploaded by these usach fhoto was an-
notated with a set of textual tags by users. Accordingly the photos fortaydar Flickr user are
described by tiling these tags. In total, our data set has 359,832 tags &9@ 9®ique tags. Each
Flickr user has a contact list, which is a collection of Flickr users who masessimilar tastes /
interests in their photo sharing. In our data set, every user has 19.Tixoocaverage. We thus set
|| to 20 in both MVE and SPE. Moreover, there are2I2 interest groups, and each Flickr user
could belong to one or more interest groups. We comptitdf weight for the tags to represent a
Flickr user (here the document frequency for a tag is actually the nunflhesecs annotated with

7. Flickr can be found atttp://www.flickr.com/
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Data Set MVE MVE+NPKL SpeedUp SPE SPE+NPKL SpeedUp

Wine 2.924+0.06 0.34 +0.04 8.5 47.72+0.29 0.51+0.01 93.6
lonosphere| 16.98+0.16 1.144+0.01 14.9| 30.07+1.25 0.60 +0.01 50.1
Heart 9.64+0.00 0.38 +0.02 25.3] 48.184+0.31 0.51+0.11 94.5
Sonar 7.50+0.13  0.46 +0.01 16.3| 30.40+1.16 0.61+0.02 49.8
Glass 11.08+0.26  0.39 +£0.01 28.2] 29.10+0.12 0.53+0.01 54.9
Spiral 18.28+0.28  0.46 +0.00 39.7| 47.91+0.91 0.48+0.01 99.8
Australian | 4.61+0.03  0.30 +0.02 15.4| 28.94+0.11 0.53+0.01 54.6
Breast cancer16.59+0.10 0.49 +0.02 33.9| 48.72+0.26  0.56+0.01 87.0

Table 9: The evaluation of CPU time cost of different algorithms and thedsjpeef the Sim-
pleNPKL method over the standard SDP solver. (The best results amdbold

that tag, that is, one or more photos of this user annotated with the tag). -fibar&st neighbor
graph for MVE is constructed using cosine similarity between Flickr useos.SPE, we further
constrain that the intra-group distance is smaller than the inter-group distamgeneral, people
who are friends or similar to each other tend to join the same interest grougo@lis to apply the
proposed MVE+NPKL and SPE+NPKL algorithms on these Flickr usersderao draw the 2D
embedding results of the Flickr users exclusively belonging to two diffénéerest groupsB&We
andCatchy Color8 as shown in Figure 7.

(b): Sample of Catchy Colors

Figure 6: Sample photos from two Flickr interest group&\W andCatchy Colors

Specifically, the theme of the group B&W is related to a collection of photos withtktdad
white color only. The corresponding top 5 annotated tags for B&W{&re, black and white,
black, white, portrai}. In contrast, the top 5 tags for CatchyColors included, blue, green,
flower, yellow. Therefore, photos in the latter group are more colorful than the one&\W. B\n
illustration of photos belonging to these two groups are depicted in Figurev@evér, the semantics
of photos of these two groups are highly overlapping. Accordingly, thieeglding results of MVE
are highly overlapped as shown in Figure 7 (a), though it drives thetrgppenformation into the top

8. B&W can be found atttp://www.flickr.com/groups/blackwhite/
9. Catchy Colorscan be found atttp://www.flickr.com/groups/catchy/
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Flickr User Embedding (SPE)

CatchyColors

» B&W
CatchyColors

2 e s -

(b) SPE+NPKL
Figure 7: The 2D embedding result of Flickr users exclusively belongitige interest group&W

(blue points) andCatchy Colors(red points). The CPU time cost of MVE+NPKL and
SPE+NPKL are 27.2 minutes and 196.4 minutes, respectively.
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eigenvectors of the learned kernel matrix. On the other hand, by cimistyéntra-group distance
less that inter-group distance, SPE can preserve the topology stratthese two groups as shown
in Figure 7 (b). The 2D embedding shows the cluster structure rathelyclear

Note that the original algorithms using general SDP solvers cannot diagmily on the above
large real data set. The proposed SimpleNPKL framework makes it fetsinalyze the emerging
social networking problems using kernel learning methods. We hopeelimmary attempt in this
paper could shed a light on a series of important applications in the futaheding: 1)Visualiza-
tion: as illustrated in Figure 7, we are able to obtain an intuitive understanding thigadistribution
of the entities in a social networking community. From Figure 7 (b), one canadiserve the ab-
normal entities (e.g., the red dot on the right upper corner) and prowtype ones located at the
centers of clusters). This may also benefit spam user detection and intpaea identification ap-
plications; 2)Friend suggestion: Given a Flickr usel;, we can rank the other useads according
to their similarity toU; computed by the learned non-parametric kekggel With such information, a
user can quickly find the other users of similar interests/tastes in photogsaras to facilitate the
social communication between the userstr8erest group recommendation: It is interesting and
beneficial to develop an intelligent scheme for recommending a Flickr uses Buerest groups.
By applying the proposed kernel learning techniques to find similarity betwéekr users, it is
possible for us to develop some recommendation scheme that suggests agdickome interest
groups that received the highest numbers of votes from its neighbors.

8. Conclusion

In this paper, we investigated a family of SimpleNPKL algorithms for improving tfieiency and
scalability of the Non-Parametric Kernel Learning (NPKL) from large séfzirwise constraints.
We demonstrated that the proposed SimpleNPKL algorithm with linear loss fgraiheise con-
straints enjoys a closed-form solution, which can be simply computed byeeffisparse eigen-
decomposition, such as the Lanczos algorithm. Moreover, our SimpleNRjgLitam using other
loss functions (including square hinge loss, hinge loss, and squajetsbe transformed into a
saddle-point minimax optimization problem, which can be solved by an efficieatiite optimiza-
tion procedure that only involves sparse eigen-decomposition computatioontrast to the previ-
ous standard SDP solution, empirical results show that our approaigvedihe same/comparable
accuracy, but is significantly more efficient and scalable for largke steta sets. We also explore
some active constraint selection scheme to reduce the pairwise constr&@imgieNPKL, which
can further improve both computational efficiency and the clustering pedioce. Finally, we also
demonstrate that the proposed family of SimpleNPKL algorithms can be applicadtteer similar
machine learning problems, in which we studied three example applicationst@remaedding
problems. In the future, we will extend our technique for solving other 8fied machine learn-
ing problems.
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