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Abstract

Previous studies ofNon-Parametric Kernel Learning(NPKL) usually formulate the learning task
as a Semi-Definite Programming (SDP) problem that is often solved by some general purpose SDP
solvers. However, forN data examples, the time complexity of NPKL using a standard interior-
point SDP solver could be as high asO(N6.5), which prohibits NPKL methods applicable to real
applications, even for data sets of moderate size. In this paper, we present a family of efficient
NPKL algorithms, termed “SimpleNPKL”, which can learn non-parametric kernels from a large
set of pairwise constraints efficiently. In particular, we propose two efficient SimpleNPKL algo-
rithms. One is SimpleNPKL algorithm with linear loss, whichenjoys aclosed-formsolution that
can be efficiently computed by theLanczossparse eigen decomposition technique. Another one is
SimpleNPKL algorithm with other loss functions (includingsquare hinge loss, hinge loss, square
loss) that can be re-formulated as a saddle-point optimization problem, which can be further re-
solved by a fast iterative algorithm. In contrast to the previous NPKL approaches, our empirical
results show that the proposed new technique, maintaining the same accuracy, is significantly more
efficient and scalable. Finally, we also demonstrate that the proposed new technique is also ap-
plicable to speed up many kernel learning tasks, includingcolored maximum variance unfolding,
minimum volume embedding, andstructure preserving embedding.

Keywords: non-parametric kernel learning, semi-definite programming, semi-supervised learn-
ing, side information, pairwise constraints

1. Introduction

Kernel methods have been successfully applied in various real applications ranging from data min-
ing, computer vision and bioinformatics, and often show the state-of-the-art performance (refer to
Hofmann, Scḧolkopf, and Smola, 2008 and references therein). Empirical evidencesshow that the
generalization performance of kernel methods is often dominated by the chosen kernel function.
Inappropriate kernels could lead to sub-optimal or even poor results. Therefore, the choice of an
effective kernel plays a crucial role in many kernel based machine learning methods. Typically,
traditional kernel methods, for example, Support Vector Machines (SVMs), often adopt a prede-
fined kernel function that is empirically chosen from a pool of parametric kernel functions, such
as polynomial and Gaussian kernels. One major limitation of such an approachis that choosing an
appropriate kernel function manually may require a certain level of expert knowledge, which may
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be difficult in some situations. Another limitation lies in the difficulty of tuning optimal parameters
for the predefined parametric kernel functions.

To address these limitations, a bunch of research on learning effective kernels from data auto-
matically has been actively explored recently. An example technique isMultiple Kernel Learning
(MKL) (Lanckriet et al., 2004; Bach et al., 2004), which aims at learninga convex combination of
several predefined parametric kernels in order to identify a good targetkernel for the applications.
MKL has been actively studied in many applications, including bio-informatics (Sonnenburg et al.,
2006a,b), computer vision (Duan et al., 2009; Sun et al., 2009; Vedaldi et al., 2009), and natural
language processing (Mao and Tsang, 2011), etc. Despite some encouraging results reported, these
techniques often assume the target kernel function is of someparametricforms, which limits their
capacity of fitting diverse patterns in real complex applications.

Instead of assuming some parametric forms for the target kernel, an emerging group of kernel
learning studies are devoted toNon-Parametric Kernel Learning(NPKL) methods, which aim to
learn a Positive Semi-Definite (PSD) kernel matrix directly from the data. Example techniques
include Cristianini et al. (2002), Lanckriet et al. (2004), Zhu et al. (2005), Zhang and Ando (2006),
Kulis et al. (2006), Hoi et al. (2007), Kulis et al. (2009) and Li et al. (2009); Mao and Tsang (2010).
NPKL provides a flexible learning scheme of incorporating prior/side information into the known
similarity measures such that the learned kernel can exhibit better ability to characterize the data
similarity. However, due to the PSD constraint, the resulting optimization task of NPKL is often in
the form of Semi-Definite Programing (SDP). Many existing studies have simplysolved such SDP
problems by some general purpose SDP solvers, which often have the time complexity ofO(N6.5),
making the NPKL solution infeasible to real world large-scale applications.

In this paper, we aim at addressing the efficiency and scalability issues related to the NPKL
techniques proposed by Hoi et al. (2007) and Zhuang et al. (2009),which have shown the state-
of-the-art empirical performance in several applications (Zhuang andHoi, 2010). In particular, the
main contributions of this paper include:

1. We propose a family of Simple Non-Parametric Kernel Learning (SimpleNPKL) algorithms
for efficient and scalable non-parametric kernel learning.

2. We present the first SimpleNPKL algorithm with linear loss function to learn non-parametric
kernels from pairwise constraints. The algorithm enjoys aclosed-formsolution that can be
computed efficiently by sparse eigen-decomposition techniques, for example, theLanczos
algorithm.

3. To achieve more robust performance, we propose the second SimpleNPKL algorithm that has
other loss functions (including square hinge loss, hinge loss and squareloss), which can be
re-formulated as amini-max optimizationproblem. This optimization can be solved by an
efficient iterative projection algorithm that mainly involves the computation of sparse eigen
decomposition.

4. To further speed up the SimpleNPKL algorithm of other loss functions, weinvestigate some
active constraint selection techniques to reduce the computation cost at each iteration step.

5. We conducted extensive experiments, which show that SimpleNPKL is significantly more
efficient than existing NPKL methods. With the same linear loss function, SimpleNPKL is
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on average 40 times faster than the original NPKL using a standard SDP solver. This makes
the NPK learning techniques practical to large-scale applications.

6. We extend the proposed SimpleNPKL scheme to resolve other non-parametric kernel learn-
ing problems, includingcolored maximum variance unfolding(Song et al., 2008),minimum
volume embedding(Shaw and Jebara, 2007), andstructure preserving embedding(Shaw and
Jebara, 2009). The encouraging results show that our technique is able to speed up the existing
non-parametric kernel learning solutions significantly for several real-world applications.

The rest of this paper is organized as follows. Section 2 presents some background of kernel
learning, briefly reviews some representative work on kernel learningresearch, and indicates the
motivations of our work. Section 3 introduces a framework of Non-parametric Kernel Learning
(NPKL) from pairwise constraints proposed by Hoi et al. (2007). Section 4 describes our proposed
SimpleNPKL algorithms, which aim to resolve the NPKL task efficiently. Section 5 discusses some
implementation issues for developing a fast solver in practice. Section 6 extends our technique
to speed up other kernel learning methods. Section 7 gives our empirical results and Section 8
concludes this work.

2. Background Review and Related Work

In this Section, we review some backgrounds of kernel methods, and related work on kernel learning
research.

2.1 Notations

For the notation throughout the paper, we adopt bold upper case letter to denote a matrix, for exam-
ple, A ∈ R

m×n, andAi j to denote the entry at theith row and jth column of the matrixA, and bold
lower case letter to denote a vector, for example,x ∈ R

d. We use0 and1 to denote the column vec-
tors with all zeros and all ones, respectively, andI to denote an identity matrix. For some algebraic
operations:

• x′ denotes the transpose ofx;

• [x]i denotes theith element ofx;

• xp denotes the element-wise power ofx with degreep;

• |x| denotes the vector with entries equal to the absolute value of the entries ofx;

• ‖x‖p denotesp-norm ofx, that is, p
√

∑i [xp]i ;

• xi ◦x j denotes the element-wise multiplication between two vectorsxi andx j ;

• x ≥ 0 means all entries inx is larger than or equal to 0;

• K� 0 denotes a matrixK ∈ R
n×n that is symmetric and positive semi-definite;

• Kp denotes the power of a symmetric matrixK with degreep;

• tr K = ∑i Kii denotes the trace of a matrixK;

• 〈A,B〉 = tr AB = ∑i j Ai j Bi j computes the inner product between two square matricesA and
B. We also use it to denote general inner product of two square matrices.

• ‖K‖F =
√

∑i j K2
i j =

√
tr KK denotes the Frobenius norm of a matrixK;

• A◦B denotes the element-wise multiplication between two matricesA andB.
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2.2 Kernel Methods

In general, kernel methods work by embedding data in some Hilbert spaces, and searching for
linear relations in the Hilbert spaces. The embedding is often done implicitly by only specifying
inner products between any pair of examples (Hofmann et al., 2008). More formally, given an input
spaceX , and an embedding spaceF , we can define a mappingΦ : X → F . For any two examples
xi ∈X andx j ∈X , the functionk that returns the inner product between the two embedded examples
in the spaceF is known as the kernel function, that is,

k(xi ,x j) = 〈Φ(xi),Φ(x j)〉.

Given the kernel functionk, a matrixK∈R
n×n is called akernel matrix, also known asgram matrix,

if Ki j = k(xi ,x j) for a collection of examplesx1, . . . ,xn ∈ X . Note that the choice of kernel plays a
central role for the success of kernel methods. However, the selectionof proper kernels is nontrivial.
An inappropriate kernel could result in sub-optimal or even poor performances. Therefore, learning
kernels from data has become an active research topic.

2.3 Kernel Learning

We refer the termkernel learningto the problem of learning a kernel function or a kernel matrix
from given data, corresponding to the inductive and transductive learning setting, respectively. Due
to the large volume of works on this topic, we do not intend to make this Section encyclopedic.
Instead, we summarize some key ideas behind representative kernel learning schemes. We discuss
the strengths and limitations of existing NPKL methods, which motivates our efficient SimpleNPKL
solution.

2.3.1 MULTIPLE KERNEL LEARNING AND BEYOND

Multiple kernel learning(MKL), initiated by Lanckriet et al. (2004), has been widely studied in
classical supervised learning tasks. The goal is to learn both the associated kernel of a Reproducing
Kernel Hilbert Space (RKHS) and the classifier in this space simultaneously:

minK∈K maxα α′1− 1
2
〈(α◦y)(α◦y)′,K〉 (1)

s.t. α′y = 0, 0≤ αi ≤C,

where the solution spaceK is assumed to be in a convex hull spanned fromm basic kernels:K =
{∑i piKi : 0 ≤ pi ≤ 1, i = 1, . . . ,m}. Thus the optimization overK is reduced to optimizing the
weight vectorp. Many studies have been focused on how to efficiently solve the optimization in(1)
(Bach et al., 2004; Sonnenburg et al., 2006b; Rakotomamonjy et al., 2008;Xu et al., 2008).

The assumption of MKL on the target kernelK = ∑i piKi implies to concatenate the mapped
feature spaces. Therefore, MKL is a natural choice where the data has multiple views or heteroge-
neous representations. Apparently, there is “no free lunch” for kernel selection. Based on different
assumptions about the optimization domainK , one can propose different objective functions. For
example, generating a series of base kernels by varying the free kernel parameters could make the
cardinality|K | arbitrarily large. Argyriou et al. (2005) and Gehler and Nowozin (2008) discussed
some interesting techniques for such situation. Other variants of MKL techniques can also be found
in Lewis et al. (2006), G̈onen and Alpaydin (2008), Varma and Babu (2009) and Zhuang et al.
(2011).
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One basic motivation of kernel learning is to further relax the optimization domainK such
that the learned kernel can be as flexible as possible to fit the complex data.This motivatesNon-
Parametric Kernel Learning(NPKL) methods, which do not assume any parametric form of the
target kernel functions/matrices.

2.3.2 NON-PARAMETRIC KERNEL LEARNING

By simply relaxing the optimization domainK , one can turn a regular kernel learning scheme to
some NPKL formulations. For example, a recent approach, calledindefinite kernel learning(Luss
and d’Aspremont, 2008; Chen and Ye, 2008; Ying et al., 2010), extends the MKL formulation to
learn non-parametric kernels from an indefinite kernelK0, which does not assume the convex hull
assumption. The indefinite kernel learning rewrites the objective function of (1) as follows:

minK�0 maxα α′1− 1
2
〈(α◦y)(α◦y)′,K〉+ γ‖K−K0‖2

F , (2)

whereK0 is an initial kernel, which could be indefinite.
The kernel learning formulation discussed above aims to optimize both the classifier and the

kernel matrix simultaneously. Some theoretical foundations, such as existence and uniqueness of
the target kernel, were given in Micchelli and Pontil (2005) and Argyriou et al. (2005).

Another line of kernel learning research mainly focuses on optimizing the kernel only with re-
spect to some criteria under some prior constraints or heuristics. An important technique is the
kernel target alignment criterion proposed in Cristianini et al. (2002), which guides the kernel learn-
ing task to optimize the kernel by maximizing the alignment between the training data examples
and the class labels of the training examples:

maxK�0
〈KNl ,T〉

√

〈KNl ,KNl 〉〈T,T〉
, (3)

whereT = yy′ is the outer product of labels,KNl is the sub-matrix of which the entry values are ker-
nel evaluation onNl labeled data examples. Note thatT could be obtained by empirical experiments
and more general than class labels. The objective (3) only involves the labeled data. A popular
assumption is to treatK to be spanned by the eigen-vectors of some known kernel defined overboth
the labeled and unlabeled data (Chapelle et al., 2003; Zhu et al., 2005; Hoiet al., 2006; Zhang and
Ando, 2006; Johnson and Zhang, 2008):K = {∑i λivv′ : λi ≥ 0}. Thus the optimization variables
are reduced from the entire kernel matrixK to the kernel spectrumλ.

Recently Hoi et al. (2007) proposed an NPKL technique that aims to learn afully non-parametric
kernel matrix from pairwise constraints. The target kernel is maximally aligned to the constraint
matrix T and minimally aligned to the graph Laplacian. The objective can be deemed as a form of
kernel target alignment without normalization. Since our proposed family ofSimpleNPKL algo-
rithms follows this framework, we will discuss the details of this formulation in Section 3.

Besides the normalized inner product, which measures the similarity betweenK and the tar-
getT, researchers have also proposed dissimilarity based criteria. In fact, the preceding indefinite
kernel learning (2) employs the Euclidean distance to measure the dissimilarity between kernels.
Besides, another example in Kulis et al. (2006) employed the Bregman divergence to measure dis-
tance betweenK and a known kernelK0:

minK�0 Dφ(K,K0), tr KK−1
0 − logdet(KK−1

0 )−N, (4)
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whereDφ is a Bregman divergence (Kulis et al., 2006).
The optimization over the above learning objective function (3) or (4) will simply return the

trivial solutionK0 without additional constraints, which would make NPKL meaningless. In prac-
tice, some prior knowledge about the target kernel will be added to constrain the solution spaceK .
Most of the existing constraints over the entries ofK could be expressed by trKT ≤ b. For example,
as discussed in Kwok and Tsang (2003), the square of distance between two data examplesxi and
x j in the feature space can be expressed by‖Φ(xi)−Φ(x j)‖2

2 = Kii +K j j −2Ki j = tr KTi j , where
Ti j is a matrix ofN×N only taking non-zeros atTii = Tj j = 1,Ti j = Tji = −1. Moreover, one can
introduce slack variables for soft constraints.

Besides, some regularization terms over kernelK are often included during the optimization
phase. For example, fixing the trace trK = 1 is rather common in SDP solvers.

At last, we summarize the typical schemes of existing NPKL methods:
• To encourage the similarity (e.g., kernel target alignment) or penalize the distance (e.g., Breg-

man divergence) to some prior similarity information;
• To enforce some constraints to the kernelK with prior heuristics, such as distance constraint

Kii +K j j −2Ki j = d2
i j , or side information, etc; and

• To include regularization terms overK to control capacity, such as trK = 1.
By the above steps, NPKL provides a flexible scheme to incorporate more prior information

into the target kernel. Due to the non-parametric nature, the solution spaceK is capable of fitting
diverse empirical data such that the learned kernelK can be more effective and powerful to achieve
better empirical performance than traditional parametric kernel functions.

2.3.3 OPTIMIZATION ASPECTS

Despite the powerful capacity achieved by NPKL, one key challenge with NPKL is the difficulty of
the resulting optimization problem, in which

• the whole gram matrixK is treated as the optimization variable, that is,O(N2) variables;
• the kernel matrixK must be positive semi-definite.

As a result, NPKL is often turned into a Semi-Definite Programming (SDP) problem. For instance,
a NPKL problem to learn a kernel matrixK with m linear constraints is written as follows:

max
K�0

tr CK : tr Ti j K = bi j , (5)

whereC andTi j ’s areN×N symmetric matrices andbi j ’s are scalars, and its dual problem can be
rewritten as:

min
y

b′y : C− ∑
(i, j)

Ti j yi j� 0, (6)

wherey is the vector of dual variablesyi j ’s for the linear constraints in (5) andb is the vector of
bi j ’s.

Typically, this SDP problem of NPKL is usually solved by applying a generalpurpose SDP
solver. Among various SDP solvers, theinterior-point algorithmis one of the state-of-the-art solu-
tions (Boyd and Vandenberghe, 2004). From Lobo et al. (1998), thetime complexity per iteration of
the SDP problem (6) isO(m2N2). Using the primal-dual method for solving this SDP, the accuracy
of a given solution can be improved by an absolute constant factor inO(

√
N) iterations (Nesterov
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and Nemirovskii, 1994). Whenmapproaches toO(N2), the overall computation complexity is often
as high asO(N6.5), which makes NPKL inapplicable to real applications.

In this work, we focus on solving the efficiency and scalability issues of NPKL (Zhuang et al.,
2009). In particular, we propose a family of efficient SimpleNPKL algorithmsthat can solve large-
scale NPKL problems efficiently. Moreover, we also show that the proposed algorithms are rather
general, which can be easily extended to solving other kernel learning applications, including di-
mensionality reduction and data embedding applications.

3. A Framework of Non-Parametric Kernel Learning from Pairwise Constraints

In this Section, we introduce the framework of Non-Parametric Kernel Learning (NPKL) (Hoi et al.,
2007; Zhuang et al., 2009), which aims to learn non-parametric kernels from side information,
which is presented in a collection of must-link and cannot-link pairs.

3.1 Side / Label Information

Let U = {x1,x2, . . . ,xN} denote the entire data collection, where each data pointxi ∈ X . Consider
a set ofNl labeled data examples,L = {(x1,y1) . . . ,(xNl ,yNl )}, one can useyiy j as the similarity
measurement for any two patternsxi andx j . Sometimes, it is possible that the class label informa-
tion is not readily available, while it is easier to obtain a collection of similar (positive) pairwise
constraintsS (known as “must-links”, that is, the data pairs share the same class) and a collection
of dissimilar (negative) pairwise constraintsD (known as “cannot-links”, that is, the data pairs have
different classes). These pairwise constraints are often referred toasside information.

In general, kernel learning with labeled data can be viewed as a special case of kernel learning
with side information (Kwok and Tsang, 2003; Kulis et al., 2006; Hoi et al., 2007), that is, one can
construct the sets of pairwise constraintsS andD from L . In real applications, it is often easier to
detect pairwise constraint while the class label is difficult to obtain. For example, in bioinformatics,
the interaction between two proteins can be identified by empirical experiments.These interactions
are expressed naturally by pairwise constraints. However, it could be very difficult to judge the
protein function, which corresponds to class labels. In the sequel, we focus on learning kernels
from pairwise constraints.

GivenS andD, we construct a similarity matrixT ∈R
N×N to represent the pairwise constraints,

that is,

Ti j =







+1 (xi ,x j) ∈ S

−1 (xi ,x j) ∈D

0 otherwise.
(7)

A straightforward and intuitive principle for kernel learning is that the kernel entryKi j should be
aligned with the side informationTi j as much as possible (Cristianini et al., 2002), that is, the
alignmentTi j Ki j of each kernel entry is maximized.

3.2 Locality Preserving Regularization

In addition to side/label information, preserving the intrinsic geometric structure of the data have
also been explored to improve the performance of kernel learning. Typically, most existing ker-
nel learning approaches (Kulis et al., 2006; Hoi et al., 2007; Hoi and Jin, 2008) adopt the low
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dimensional data manifold (Sindhwani et al., 2005) for preserving the locality of the data in kernel
learning. The following reviews an approach for exploring low dimensional data manifold in kernel
learning (Hoi et al., 2007).

Let us denote byf (x,x′) a similarity function that measures the similarity between any two
data pointsxi andx j , andS ∈ R

N×N is a similarity matrix where each elementSi j = f (xi ,x j) ≥ 0.
Note that f (·, ·) does not have to be a kernel function that satisfies the Mercer’s condition. For a
givenN data examples, a kernel matrixK can be expressed asK = V′V� 0, whereV = [v1, . . . ,vN]
is the matrix of the embedding of theN data examples. The regularizer of the kernel matrixK,
which captures the local dependency between the embedding ofvi andv j (i.e., the low dimensional
embedding of similar data examples should be similar w.r.t. the similaritySi j ), can be defined as:

Ω(V,S) =
1
2

N

∑
i, j=1

Si j

∥

∥

∥

∥

∥

vi√
Di

− v j
√

D j

∥

∥

∥

∥

∥

2

2

= tr (VLV
′
) = tr (LK), (8)

whereL is the graph Laplacian matrix defined as:

L = I−D−1/2SD−1/2, (9)

whereD = diag(D1,D2, . . . ,DN) is a diagonal matrix with the diagonal elements defined asDi =

∑N
j=1Si j .

3.3 Formulation of Non-Parametric Kernel Learning

Taking into consideration of both the side information in (7) and the regularizer in (8), the NPKL
problem is then formulated into theloss + regularizationframework (Hoi et al., 2007) as follows:

min
K�0

tr LK+C∑(i, j)∈(S∪D) ℓ
(

Ti j Ki j
)

, (10)

which generally belongs to a Semi-Definite Programming (SDP) problem (Boydand Vandenberghe,
2004). Here,C> 0 is a tradeoff parameter to control the empirical loss1 ℓ(·) of the alignmentTi j Ki j

of the target kernel and the dependency among data examples with respect to the intrinsic data
structure.

4. SimpleNPKL: Simple Non-Parametric Kernel Learning

In this Section, we present a family of efficient algorithms for solving the NPKL problem in (10).
We refer to the proposed efficient algorithms as “SimpleNPKL” for short.

4.1 Regularization on K

As aforementioned, the solution space of NPKL has been relaxed to boostits flexibility and capacity
of fitting diverse patterns. However, arbitrarily relaxing the solution spaceK could result in over-
fitting. To alleviate this problem, we introduce a regularization term:

tr (Kp), (11)

1. The common choice of the loss functionℓ(·) can be hinge loss, square hinge loss or linear loss.
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wherep≥ 1 is a parameter to regulate the capacity ofK. Similar regularization terms onK have
also been adopted in previous kernel learning studies. For example, Cristianini et al. (2002) used
‖K‖F =

√

〈K,K〉 =
√

tr (K2) in the objective to penalize the complexity ofK; while Lanckriet
et al. (2004) proposed to adopt a hard constraint tr(K)≤ B, whereB> 0 a constant, to control the
capacity ofK.

We refer the modified NPK learning problem with the regularization term (11) either in the ob-
jective or in the constraint to as Simple Non-Parametric Kernel Learning (SimpleNPKL), which can
be solved efficiently without engaging any standard SDP solvers. Next we present two SimpleNPKL
algorithms that adopt several different types of loss functions.

4.2 SimpleNPKL with Linear Loss

First of all, we consider a linear loss functionℓ( f ) =− f , and rewrite the formulation of (10) as the
SimpleNPKL formulation:

min
K

tr

((

L−C ∑
(i, j)∈(S∪D)

Ti j

)

K

)

: K� 0, tr Kp≤B, (12)

whereTi j is the matrix of setting the(i, j)-th entry toTi j and other entries to 0. To solve this
problem, we first present a proposition below.

Proposition 1 Given A is any symmetric matrix such thatA = Pdiag(σ)P′, whereP contains
columns of orthonormal eigenvectors ofA and σ is a vector of the corresponding eigenvalues,
and B is any positive constant, the optimal solutionK∗ to the following SDP problem for p> 1:

max
K

tr AK : K� 0, tr Kp ≤ B, (13)

can be expressed as the following closed-form solution:

K∗ =





B

tr A
p

p−1
+





1
p

A
1

p−1
+ (14)

whereA+ = Pdiag(σ+)P′, andσ+ is a vector with entries equal tomax(0, [σ]i).
For p= 1, the optimal solutionK∗ can be expressed as the following closed-form solution:

K∗ = BA1

whereA1 = Pdiag(σ1)P′, andσ1 is a vector with entries equal to 1
∑i:[σ]i=maxi [σ]i

1 for all i that [σ]i =
maxi [σ]i ; otherwise, the entries are zeros.

Proof By introducing a dual variableγ≥ 0 for the constraint trKp ≤B, andZ∈ Sn
+ (Sn

+ is self-dual)
for the constraintK � 0, we have the Lagrangian of (13):

L(K;γ,Z) = tr AK+ γ(B− tr Kp)+ tr KZ.

By the Karush-Kuhn-Tucker (KKT) conditions, we have:

A− γpKp−1+Z = 0 and trKZ = 0.
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First, we show that tr(KZ) = 0 is equivalent toKZ = ZK = 0. SinceK� 0,Z� 0, we have
tr (KZ) = tr (K1/2K1/2Z1/2Z1/2) = ‖K1/2Z1/2‖2

F . Thus, tr(KZ) = 0 follows thatK1/2Z1/2 = 0.
Pre-multiplying byK1/2 and post-multiplying byZ1/2 yieldsKZ = 0, which in turn impliesKZ =
0 = (KZ)′ = ZK. Hence,K andZ can be simultaneously diagonalized by the same set of orthonor-
mal eigenvectors (Alizadeh et al., 1997). From the first KKT condition we haveA = γpKp−1−Z.
Consequently,A can also be diagonalized with the same eigenvectors asK andZ.

AssumeA = Pdiag(σ)P′, whereP contains columns of orthonormal eigenvectors ofA, andσ
is the vector of the corresponding eigenvalues. Then,K = Pdiag(λ)P′ andZ = Pdiag(µ)P′, where
λ ≥ 0 andµ≥ 0 denote the vector of the eigenvalues ofK andZ respectively. Therefore, we have

tr Kp = ‖λ‖p
p ≤ B, (15)

tr AK = λ′σ, (16)

σ = γpλp−1−µ, (17)

λ′µ = 0. (18)

Together withλ ≥ 0 andµ≥ 0, and from (18),[λ]i and[µ]i cannot be both non-zeros. Hence, from
(17), we knowσ+ = γpλp−1 contains all positive components ofσ. Moreover, from (16) andλ ≥ 0,
together with the constraint (15), the SDP problem (13) is reduced to

max
λ

λ′σ+ : ‖λ‖p
p ≤ B.

By Hölder inequality, we haveλ′σ+ ≤ ‖λ‖p‖σ+‖q, where it holds for 1/p+1/q= 1. The equality
is achieved if and only if|λ|p and|σ+|q are linearly dependent. Thus we can scaleK satisfying (15)
to arrive at the closed-form solution ofK in (14) for p> 1.

For p = 1, from Equations (15) and (16), the optimization task is simplified as maxλ′σ :
λ ≥ 0,‖λ‖1 ≤ B. Due to the linearity, the maximum objective value is obtained by choosing
[λ]i = B/∑i:[σ]i=maxi [σ]i 1 for all i that[σ]i = maxi [σ]i ; otherwise,[λ]i = 0.

Based on Proposition 1, we can easily solve the SimpleNPKL problem. In particular, by setting
A =C∑(i, j)∈(S∪D) Ti j −L, we can directly compute the optimalK∗ to SimpleNPKL of (12) using
sparse eigen-decomposition as in (14). Thus the computation cost of SimpleNPKL with linear loss
is dominated by eigen-decomposition. It is clear that this can significantly reduce the time cost for
the NPKL tasks. Alternatively, we add tr(Kp) directly into the objective, and arrive at the following
formulation:

min
K

tr

((

L−C ∑
(i, j)∈(S∪D)

Ti j

)

K

)

+
G
p

tr Kp : K� 0,

whereG> 0 is a tradeoff parameter. To solve this problem, we first present a proposition below.

Proposition 2 Given A is any symmetric matrix such thatA = Pdiag(σ)P′, whereP contains
columns of orthonormal eigenvectors ofA and σ is a vector of the corresponding eigenvalues,
and B is any positive constant, the optimal solutionK∗ to the following SDP problem for p> 1:

max
K

tr AK− G
p

tr Kp : K� 0, (19)
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can be expressed as the following closed-form solution:

K∗ =

(

1
G

A+

) 1
p−1

(20)

whereA+ = Pdiag(σ+)P′, andσ+ is a vector with entries equal tomax(0, [σ]i).

Following the techniques in the proof of Proposition 1, we obtain (20) immediately. If we set

G =

(

1
Btr A

p
p−1
+

)
p−1

p

, these two formulations result in exactly the same solution. Moreover, if we

setB= tr A
p

p−1
+ , it means we just use the projectionA+ asK. No re-scaling ofA+ is performed. In

the sequel, we consider the regularization trKp with p= 2 for its simplicity and smoothness.

4.3 SimpleNPKL with Square Hinge Loss

Although the formulation with linear loss in (12) gives rise to a closed-form solution for the NPKL,
one limitation of the NPKL formulation with linear loss is that it may be sensitive to noisydata
due to the employment of the linear loss function. To address this issue, in this section, we present
another NPKL formulation that uses (square) hinge lossℓ( f ) = (max(0,1− f ))d/d, which some-
times can be more robust, whered = 1 (hinge loss) or 2 (square hinge loss). We first focus on
the NPKL formulation with square hinge loss, which can be written into the following constrained
optimization:

minK,εi j tr LK+
C
2 ∑

(i, j)∈(S∪D)

ε2
i j (21)

s.t. ∀(i, j)∈(S ∪D), Ti j Ki j ≥1−εi j , (22)

K� 0, tr Kp ≤ B.

Note that we ignore the constraintsεi j ≥ 0 since they can be satisfied automatically. However, (21)
is not in the form of (13), and thus there is no longer a closed-form solution for K.

4.3.1 DUAL FORMULATION : THE SADDLE-POINT M INIMAX PROBLEM

By Lagrangian theory, we introduce dual variablesαi j ’s (αi j ≥ 0) for the constraints in (22), and
derive a partial Lagrangian of (21):

tr LK+
C
2 ∑

(i, j)

ε2
i j − ∑

(i, j)

αi j (Ti j Ki j −1+ εi j ). (23)

For simplicity, we use∑(i, j) to replace∑(i, j)∈(S∪D) in the sequel. By setting the derivatives of
(23) w.r.t. the primal variablesεi j ’s to zeros, we have

∀(i, j) ∈ (S ∪D), Cεi j = αi j ≥ 0

and substituting them back into (23), we arrive at the following saddle-point minimax problem
J(K,α):

maxαminK tr

((

L− ∑
(i, j)

αi j Ti j

)

K

)

− 1
2C ∑

(i, j)

α2
i j+∑

(i, j)

αi j (24)

s.t. K� 0, tr Kp ≤ B, ∀(i, j) ∈ S ∪D, αi j ≥0,
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whereα= [ai j ] denotes a matrix of dual variablesαi j ’s for (i, j)∈ S ∪D, and other entries are zeros.
This problem is similar to the optimization problem of DIFFRAC (Bach and Harchaoui, 2008), in
whichK andα can be solved by an iterative manner.

4.3.2 ITERATIVE ALGORITHM

In this subsection, we present an iterative algorithm which follows the similar update strategy in
Boyd and Xiao (2005): 1) For a fixedαt−1, we can letA = ∑(i, j) αt−1

i j Ti j −L. Based on Proposition
1, we can compute the closed form solutionKt to (24) using (14); 2) For a fixedKt , we can update
αt usingαt = (αt−1+ηt∇Jt)+; 3) Step 1) and 2) are iterated until convergence. HereJ denotes the
objective function (24),∇Jt abbreviates the derivative ofJ at αt , andηt > 0 is a step size param-
eter. The following Lemma guarantees the differentiable properties of the optimal value function
(Bonnans and Shapiro, 1996; Ying et al., 2010):

Lemma 3 Let X be a metric space andU be a normed space. Suppose that for all x∈ X the
function f(x, ·) is differentiable and that f(x,u) and∇u f (x,u) are continuous onX ×U, and Q be a
compact subset ofX . Then the optimal value function f(u) := infx∈Q f (x,u) is differentiable. When
the minimizer x(u) of f(·,u) is unique, the gradient is given by∇ f (u) = ∇u f (u,x(u)).

From Proposition 1, we see that the minimizerK(α) is unique for some fixedα. Together with
the above lemma, we compute the gradient at the pointα by:

∇Ji j = 1− tr Ti j K− 1
C

αi j , (25)

whereK =

(

B

tr A
p

p−1
+

) 1
p

A
1

p−1
+ , A = ∑(i, j) αt

i j Ti j −L.

Similarly, for the another formulation:

minK,εi j tr LK+
C
2 ∑

(i, j)∈(S∪D)

ε2
i j +

G
p

tr Kp (26)

s.t. ∀(i, j)∈(S ∪D), Ti j Ki j ≥1−εi j ,

we can derive the corresponding saddle-point minimax problem of (26):

maxαminK tr

((

L− ∑
(i, j)

αi j Ti j

)

K

)

− 1
2C ∑

(i, j)

α2
i j+∑

(i, j)

αi j +
G
p

tr Kp

s.t. K� 0, ∀(i, j) ∈ S ∪D, αi j ≥0.

Again, from the Proposition 2, we observe that the minimizerK(α) is unique for some fixedα.
Together with Lemma 3, we compute the gradient at the pointαt in the same way as in (25) by

settingK =
(

1
GA+

)
1

p−1 , A = ∑(i, j) αt
i j Ti j −L. The alternative optimization algorithm is summarized

in Algorithm 1.

4.3.3 ESTIMATING THE RANK OF K

According to Proposition 1 or Proposition 2, we are required to locate the positive spectrums ofA,
which can be achieved by full eigen-decomposition ofA. However, this can be computationally
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Algorithm 1 SimpleNPKL with (square) hinge loss.
Input: Pairwise constraint matrixT, parametersC andB (or G),k
Output: α andK.

1: Construct graph LaplacianL usingk nearest neighbors;
2: Initialize α0;
3: repeat
4: SetA = ∑(i, j) αt−1

i j Ti j −L;

5: Compute the closed-form solutionKt =
(

B/tr Ap/(p−1)
+

)1/pA1/(p−1)
+

//For the formulation (19), useKt =
(

A+/G
)1/(p−1)

instead;
6: Compute the gradient∇Ji j = 1− tr Ti j Kt − 1

Cαi j ;
7: Determine a step sizeηt , updateαt

i j usingαt
i j =

(

αt−1
i j +ηt∇Ji j

)

+
;

8: until convergence

prohibitive for large scale data sets. Moreover, the computation on the negative eigen-vectors of
A should be avoided. The following proposition (Pataki, 1995) bounds the rank of matrixK in a
general SDP setting.

Proposition 4 The rank r ofK in the SDP problem:maxK�0 tr (A0K) with m linear constraints on

K, follows the bound

(

r +1
2

)

≤ m.

Moreover, from the empirical study in Alizadeh et al. (1997), the rankr is usually much smaller
than this bound. This implies that the full decomposition of matrixA0 is not required. Our formula-
tion (21) has an additional constraint: trK2 ≤ B for p= 2. This condition equivalently constraints
tr (K), which is a common assumption in SDP problems (Krishnan and Mitchell, 2006). To show
this, we haveB≥ tr KK = 1

N ∑i λ2
i N ≥ 1

N(∑i λi ·1)2 = 1
N(tr K)2, where the second inequality is re-

sulted from the Cauchy inequality. Hence, we have trK ≤
√

BN. Therefore, we can make use of
ther estimated from Proposition 4 as a suggestion to estimate the rank ofK.

4.3.4 DETERMINING THE CONVERGENCEPROPERTIES

When theηt is small enough or a universal choice ofηt = O(1/t) is used, the whole optimization
problem is guaranteed to converge (Boyd and Xiao, 2005). Practically,the value ofη plays an
important role for the convergence speed. Therefore, it is worth studying the influence ofη on the
convergence rate, which requires to lower bound the increment ofJαt at each step. We first establish
the Lipschitz property of∇J(α).

Lemma 5 Assume we use the formulation of Proposition 2 at each iteration of Algorithm 1, then
the gradient of the objective function given by (25) is Lipschitz continuous withLipschitz constant
L = m

G + 1
C , where m= |S ∪D| is the number of nonzeros inT. That is,

‖∇J(α1)−∇J(α2)‖F ≤
(m

G
+

1
C

)

‖α1−α2‖F .

Proof For anαt , we useKt denote the corresponding minimizer ofJ computed by (14). For a
spectral functionλ defined onS+, which is Lipschitz continuous with Lipschitz constantκ, we have

‖λ(K1)−λ(K2)‖F ≤ κ‖K1−K2‖F .
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For our case, the p.s.d. projection is defined byλ(K) = ∑i max(0,λi)
2. The Lipschitz constantκ of

this function is 1. Therefore, for anyK1 andK2 given by (14), we have

‖K1−K2‖F = ‖A1+−A2+‖F

≤
∥

∥

∥

1
G

(

∑
(i, j)

α(1)
i j Ti j −L

)

− 1
G

(

∑
(i, j)

α(2)
i j Ti j −L

)∥

∥

∥

F

=
1
G

∥

∥

∥∑
(i, j)

(

α(1)
i j −α(2)

i j

)

Ti j

∥

∥

∥

F

≤ 1
G
‖α1−α2‖F‖T‖F =

√
m

G
‖α1−α2‖F .

Consequently, we have,

‖∇J(α1)−∇J(α2)‖F =

√

∑
(i, j)

(

(

1− tr Ti j K1−
1
C

α(1)
i j

)

−
(

1− tr Ti j K2−
1
C

α(2)
i j

)

)2

=

√

∑
(i, j)

(

tr Ti j
(

K2−K1
)

+
1
C

(

α(2)
i j −α(1)

i j

)

)2

≤ ‖T‖F‖K1−K2‖F +
1
C
‖α1−α2‖F

≤
(m

G
+

1
C

)

‖α1−α2‖F .

With the Lipschitz property of∇J, we can further show each iteration of Algorithm 1 makes
progress towards the optimal solution. Interestingly, we are aware that theproof is very similar to
the analysis of indefinite kernel learning, which is proposed very recently by Ying et al. (2010).
This result is developed based on non-smooth optimization algorithm of Nesterov (2005). To make
the paper complete, we expose the detailed proof in the following proposition.

Proposition 6 Assume we use the formulation of Proposition 2, andη ≥ m
G + 1

C at each iteration of
Algorithm 1. The iteration sequence{αt} generated in Algorithm 1 satisfy:

J(αt+1)≥ J(αt)+
η
2
‖αt+1−αt‖2

F ,

and

max
α

J(α)−J(αt)≤
η
2t
‖α0−α∗‖2

F ,

whereα∗ is the optimal solution ofmaxα J(α).

1326



A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

Proof Let L = m
G + 1

C abbreviate the Lipschitz constant of∇J(α), then we have

J(α)−J(αt)−〈∇J(αt),α−αt〉 =
∫ α

αt

∇J(α)dα−〈∇J(αt),α−αt〉

=
∫ 1

0
〈∇J(θα+(1−θ)αt)−∇J(αt),α−αt〉dθ

≥ −
∫ 1

0
‖∇J(θα+(1−θ)αt)−∇J(αt)‖‖α−αt‖Fdθ

≥ −L
∫ 1

0
θ‖α−αt‖2

Fdθ

≥ −η
2
‖α−αt‖2

F .

Applying this inequality withα = αt+1, we have

−J(αt)−〈∇J(αt),αt+1−αt〉 ≥ −J(αt+1)−
η
2
‖αt+1−αt‖2

F . (27)

From step 5 in Algorithm 1, it is easy to verify that

αt+1 = argmin
α

‖(α−αt)−∇J(αt)/η‖2
F

= argmin
α

−2〈α−αt ,∇J(αt)/η〉+‖α−αt‖2
F

= argmin
α

−∇J(αt)−〈α−αt ,∇J(αt)〉+
η
2
‖α−αt‖2

F . (28)

Let f (α) denote the right side of (28). From the first-order optimality condition overαt+1, for any
α we have〈∇ f (αt+1),α−αt+1〉 ≥ 0, that is,

−〈∇J(αt),α−αt+1〉 ≥ η〈αt+1−αt ,αt+1−α〉. (29)

Adding (27) and (29) together yields that−J(αt)−〈∇J(αt),α−αt〉 ≥−J(αt+1)+η〈αt −αt+1,α−
αt〉+ η

2‖αt −αt+1‖2
F . Note that−J is convex,−J(α)≥−J(αt)−〈∇J(αt),α−αt〉. Thus we have

J(αt+1)≥ J(α)+η〈αt −αt+1,α−αt〉+
η
2
‖αt −αt+1‖2

F .

Applying α = αt , we have that

J(αt+1)≥ J(αt)+
η
2
‖αt+1−αt‖2

F .

Applying α = α∗, we have that

J(α∗)−J(αi+1)≤−η〈αi −αi+1,α∗−αi〉−
η
2
‖αi −αi+1‖2

F =
η
2
‖α∗−αi‖2

F − η
2
‖α∗−αi+1‖2

F .

(30)
Taking summation overi from 0 tot −1, we have

t−1

∑
i=0

(J(α∗)−J(αi+1))≤
η
2
‖α∗−α0‖2

F .
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From (30), we see that the sequence{J(αt)} increase monotonically. Thus we obtain

t(J(α∗)−J(αt))≤
η
2
‖α∗−α0‖2

F ,

which completes the proof.

4.4 SimpleNPKL with Square Loss

In this subsection, we consider square alignment loss for the SimpleNPKL framework:

minK,εi j tr LK+
C
2 ∑

(i, j)∈(S∪D)

ε2
i j

s.t. ∀(i, j)∈(S ∪D), Ti j Ki j =1−εi j ,

K� 0, tr Kp ≤ B.

Here we need not to enforceε ≥ 0. With the standard techniques of Section 4.3, we derive the
following min-max problem:

max
α

min
K

tr

(

L−∑
i j

αi j Ti j

)

K+∑
i j

αi j −
1

2C ∑
i j

α2
i j : K� 0, tr Kp ≤ B.

Therefore, we can compute the gradient ofJ w.r.t. α:

∇Ji j = 1− tr Ti j K− 1
C

αi j .

The whole analysis of Section 4.3 still holds. The difference just lies in the way of computing
gradient∇J. We will show an application of square loss in Section 6.

4.5 SimpleNPKL with Hinge Loss

In this subsection, we consider hinge loss for the SimpleNPKL framework:

minK,εi j tr LK+C ∑
(i, j)∈(S∪D)

εi j

s.t. ∀(i, j)∈(S ∪D), Ti j Ki j ≥1−εi j ,εi j ≥ 0

K� 0, tr Kp ≤ B.

Following the standard techniques of Lagrangian dual, we arrive at the min-max problem:

max
α

min
K

tr

(

L−∑
i j

αi j Ti j

)

K+∑
i j

αi j : K� 0, tr Kp ≤ B, 0≤ αi j ≤C.

Therefore, we can compute the gradient ofJ w.r.t. α:

∇Ji j = 1− tr Ti j K

The whole analysis of Section 4.3 still holds. The difference just lies in the way of computing
gradient∇J. Note that the gradient updatingα = α+η∇J may jump out of the range[0,C]. We
need to projectα into this region at each iteration. We will also show an example of Hinge loss in
Section 6.
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5. Implementation Issues

In this Section, we discuss some implementation issues that are important to the success of the
proposed SimpleNPKL algorithms.

5.1 Building a Sparse Graph Laplacian

Recall that the graph LaplacianL in (9) is often sparse, in particular, which is usually computed by
finding k-nearest neighbors for the purpose of constructing the similarity matrixS. Specifically, an
entry S(i, j) = 1 if and only if data examplesi and j are among each other’sk-nearest neighbors;
otherwise, it is set to 0. So, there are at mostk nonzero entries on each row ofL.

A näıve implementation of findingk-nearest neighbors often takesO(N2 logN) time. To enforce
the data examplesi and j are among each other’sk-nearest neighbors, one can use B-matching
algorithm (Jebara and Shchogolev, 2006) to find thek-nearest neighbors. However, when the data
set is very large, the construction ofL becomes non-trivial and very expensive. To address this
challenge, we suggest to first construct thecover treestructure (Beygelzimer et al., 2006), which
takesO(N logN) time. The similar idea to construct a tree structure for distance metric learning
was discussed in Weinberger and Saul (2008). With the aid of this data structure, the batch query of
finding k-nearest neighbors on the whole data set can be done withinO(N) time. Hence, the graph
LaplacianL can be constructed efficiently for large-scale problems.

5.2 Fast Eigendecomposition by Lanczos Algorithm

Among various existing SDP approaches (Boyd and Vandenberghe, 2004), the interior-point method
is often deemed as the most efficient one. However, as discussed in previous subsection, the graph
LaplacianL is often sparse. In addition, the number of pairwise constraints is usually small due to
expensive cost of human labels. Therefore,L−∑(i, j) αi j Ti j is also sparse. Such sparse structure
is not yet exploited in such general algorithms. According to Proposition 1,the time cost of each
iteration in Algorithm 1 is dominated by eigen-decomposition. Moreover, from Proposition 4, the
rank r of the kernel matrixK is upper bounded by the number of active constraints. Therefore,
we can estimate the rank for sparse eigen-decomposition, which can be solved efficiently using the
so-calledImplicitly Restarted Lanczos Algorithm(IRLA) (Lehoucq et al., 1998). Its computational
cost is dominated by matrix-vector multiplication. Specifically, the time cost of IRLAis linear with
the number of non-zeros inA. Assumek nearest neighbors are used to construct the graph Laplacian
L, then the number of non-zeros inA is at mostNk+m, wherem is the number of nonzeros inT,
andA is very sparse. Moreover, the time cost of computing gradient isO(m). Therefore, the time
complexity per iteration of SimpleNPKL isO(Nk+m).

5.3 Active Constraint Selection

As shown in Algorithm 1, the computational cost of the update procedure is highly depends on the
number of pairwise constraints. However, some less informative constraints often do not contribute
much to the learning of the kernel matrixK, and fitting some noisy pairwise constraints may also
lead to the poor generalization. Moreover, as discussed in Section 4.3.3, the rank ofK is lower when
there are fewer active constraints in (22). Therefore, selecting pairwise constraints for SimpleNPKL
may improve both the efficiency and the generalization of the NPK learning.
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To speed up the eigen-decomposition process, instead of engaging all pairwise constraints, we
propose to sample a subset ofTi j ’s for SimpleNPKL. Instead of acquiring class label information
for kernel learning; here, we consider another simple active constraint selection scheme. Recall that
a general principle in active learning is to request the label of the data pointsthat are most uncertain
for their predictions. Following this idea, we adopt the margin criterion to measure the uncertainty
of the prediction value on a data point. In particular, given a data pointxi , assume that we have the
prediction function in the form:

f (xi) = ∑
j

y jK(xi ,x j).

We can use|yi f (xi)| to measure the uncertainty of prediction, whereyi ∈ {−1,+1} is the class label
of data pointxi . As a result, for a data pointxi , we choose the constraints involving pointi:

i∗ = argmin
i

∣

∣

∣

∣

1
l i

∑
j

yiy jK(xi ,x j)

∣

∣

∣

∣

= argmin
i

∣

∣

∣

∣

1
l i

∑
j,Ti j 6=0

Ti j K(xi ,x j)

∣

∣

∣

∣

,

where we deemTi j as an entry ofyy′, andl i = |{ j : (i, j)∈ S∪D},Ti j 6= 0}| is used as a normalization
of the margin value. Based on the above formula, we choose a subset ofk data pointsSk that are
most uncertain according to the margin measure. Then, we choose all theTi j ’s that involve any point
i ∈ Sk as pairwise constraints to form a new set of constraints. Finally, we run SimpleNPKL based
on this new set of constraints.

5.4 Low Rank Approximation of K

Since the rankr of K often satisfiesr < n, we may expressK asK = VEV′, where the columns
of Vn×r are eigenvectors ofK. If we fix the baseV, the number of variables is reduced fromn2 to
r2. With this approximation scheme, theA matrix in Algorithm 1 becomesA = V′(L−∑αi j Ti j )V.
Note V′LV can be pre-computed andV′ ∑αi j Ti j V can be computed efficiently by virtue of the
sparseness. Therefore, SimpleNPKL can be significantly faster with this approximation.

6. Applications of SimpleNPKL

In this Section, we extend the proposed SimpleNPKL technique to other similar machine learning
problems where the goal of the optimization is to find an optimal matrix such that its inner prod-
uct with another matrix is maximized or minimized. In particular, we consider the dataembedding
problems, where the goal is to find a new data representation that preserves some similarity/distance
constraints between pairs of data points. These problems typically can be implemented by con-
straining the alignment of the target kernel matrix to some prior affinity or distance structures. As a
result, the kernel matrixK = V′V implies a data embedding with a natural interpretation, in which
the column vector ofV corresponds to the new data representation. We discuss several important
data embedding methods below.

6.1 Colored Maximum Variance Unfolding

Colored MVU (Song et al., 2008) is an improvement of Maximum Variance Unfolding (MVU)
(Weinberger et al., 2004), which produces a low-dimensional representation of the data by maximiz-
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ing the trace of a matrixK subject to some positive definiteness, centering and distance-preserving
constraints, that is:

minK −tr K : K� 0,∑
i j

Ki j = 0, tr KTi j = Di j , ∀(i, j) ∈N .

where trKTi j = Kii +K j j −2Ki j is the square distance betweenxi andx j .
CMVU interprets MVU from a statistical perspective. It maximizes the dependence between

the domain of input patternx and the domain of labely, which is measured by theHilbert- Schmidt
Independence Criterion(Gretton et al., 2005; Song et al., 2008). Here we introduce slack vari-
ablesξ to measure the violations of distance constraints and penalize the corresponding square loss.
Consequently the optimization task of colored MVU is reformulated as:

minK,ξ −tr HKHY+
C
2 ∑ξ2

i j , : K� 0, tr KTi j = Di j −ξi j , ∀(i, j) ∈N

whereHi j = δi j −N−1 such thatHKH centersK, Y = yy′ is the kernel matrix over labels. Appar-
ently this belongs to an SDP problem.

Following the SimpleNPKL algorithms, we derive the minimax optimization problem by intro-
ducing dual variables for the inequality constraints:

maxα minK tr

(

−HYH−∑
i j

αi j Ti j

)

K+∑
i j

αi j Di j −
1

2C ∑
i j

α2
i j : K� 0, tr KK ≤ B.

(31)

By substituting the following results

A = HYH+∑
i j

αi j Ti j and ∇Jt
i j = Di j − tr Ti j K− 1

C
αt

i j

back into Algorithm 1, the problem of (31) can be solved immediately.

6.2 Minimum Volume Embedding

Minimum Volume Embedding (MVE) is another improvement of MVU (Shaw and Jebara, 2007).
One limitation of MVU is that it simply maximizes the trace ofK, which may result in the solution
that engages considerably more dimensions than necessity. To address this problem, Shaw and
Jebara (2007) proposed to grow the top few eigenvalues ofK while shrinking the remaining ones.
In particular, letK = ∑i λiviv′i , λ1 ≥, . . . ,≥ λn, andK0 = ∑d

i=1 viv′i −∑n
i=d+1 viv′i . When the intrinsic

dimensionalityd is available, MVE formulates the data embedding problem as follows:

minK −tr KK0 : the same set of constraints of MVU. (32)

After obtaining the solutionKt at each step, MVE proceeds by substitutingK0 = Kt back to the
optimization of (32) and repeatedly solving the optimization. Hence, MVE improves MVU by de-
creasing the energy of the small eigen components ofK. To find the solution, everyKt is computed
by applying a general SDP solver in Shaw and Jebara (2007).
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To speed up the solution, following the similar derivation in the above CMVU, wecan solve (32)
by eigen-decomposition in an iterative manner. Specifically, we make the following modifications:

A= K0+∑
i j

αi j Ti j and ∇Jt
i j = Di j − tr Ti j K− 1

C
αt

i j

By substitute the above results back into Algorithm 1, we can solve the MVE problem efficiently.

6.3 Structure Preserving Embedding

Structure Preserving Embedding (SPE) (Shaw and Jebara, 2009) is a machine learning technique
that embeds graphs in low-dimensional Euclidean space such that the embedding preserves the
global topological properties of the input graph. Suppose we have a connectivity matrixW, where
Wi j = 1 if xi andx j are connected andWi j = 0 otherwise. SPE learns a kernel matrixK such that
the similarity trKW is maximized while the global topological properties of the input graph are
preserved. More formally, the SPE problem is formulated into the following SDP optimization:

minK −tr KW+Cξ : Di j > (1−Wi j )max
m

(WimDim)−ξ, ξ ≥ 0

whereDi j = Kii +K j j −2Ki j = tr KTi j is the squared distance betweenxi andx j .
Let [n] = {1, . . . ,n} andNi denote the set of indices of points which are among the nearest

neighbors ofxi . Then for each pointxi , SPE essentially generates(n−|Ni |)×|Ni| constraints:

tr KTi j > tr KTik −ξ, ∀i ∈ [n], j ∈ [n]−Ni,k∈Ni .

In order to speed up the SPE algorithm, we apply the SimpleNPKL technique to turn the SPE
optimization into the following minimax optimization problem:

maxα minK tr

(

∑
i

∑
k∈Ni

∑
j /∈Ni

αi jk(Tik −Ti j )−W
)

K : K� 0, tr KK ≤ B,∑αi jk ∈ [0,C].

Similarly, we can derive the following results:

A = W−∑
i jk

αi jk(Tik −Ti j ) and ∇Jt
i jk = tr K(Tik −Ti j ).

Substituting them back into Algorithm 1 leads to an efficient solution for the SPE problem.

7. Experiments

In this Section, we conduct extensive experiments to examine the efficacy and efficiency of the
proposed SimpleNPKL algorithms.

7.1 Experimental Setup

We examine both efficacy and efficiency of the proposed SimpleNPKL usingside information to
learn a kernel matrix for kernelk-means clustering. As shown in Hoi et al. (2007), the learned
kernel matrix of the Non-Parametric Kernel Learning (NPKL) outperforms other kernel learning
methods in the task of clustering using side information. For simplicity, we only compare our
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proposed SimpleNPKL algorithms with the NPKL method in Hoi et al. (2007) for kernelk-means
clustering. The results ofk-means clustering and constrainedk-means clustering using Euclidean
metric are also reported as the performance of the baseline methods. The abbreviations of different
approaches are described as follows:

• k-means: k-means clustering using Euclidean metric;

• ck-means: The constrainedk-means clustering algorithm using Euclidean metric and side
information;

• SimpleNPKL+LL: The proposed SimpleNPKL with linear loss defined in (12);

• SimpleNPKL+SHL: The proposed SimpleNPKL with squared hinge loss defined in (21);

• NPKL+LL: NPKL in (10) using linear loss;

• NPKL+HL: NPKL in (10) using hinge loss.

To construct the graph Laplacian matrixL in NPKL, we adopt the cover tree data structure.2 The
sparse eigen-decomposition used in SimpleNPKL is implemented by the popularArpacktoolkit.3

We also adopt the standard SDP solver, SDPT3,4 as the baseline solution for NPKL. The pair-wise
constraint is assigned for randomly generated pairs of points accordingto their ground truth labels.
The number of constraints is controlled by the resulted amount of connectedcomponents as defined
in previous studies (Xing et al., 2003; Hoi et al., 2007). Note that typically the larger the number of
constraints, the smaller the number of connected components.

Several parameters are involved in both NPKL and SimpleNPKL. Their notation and settings
are given as follows:

• k : The number of nearest neighbors for constructing the graph Laplacian matrixL, we set it
to 5 for small data sets in Table 1, and 50 for Adult database in Table 6;

• r : The ratio of the number of connected components compared with the data setsizeN. In
our experiments, we setr ≈ 70%N which follows the setting of Hoi et al. (2007);

• B : The parameter that controls the capacity of the learned kernel in (11). We fix B= N for
the adult data sets and fixB= 1 for the data sets in Table 1 and;

• C : The regularization parameter for the loss term in NPKL and SimpleNPKL. We fix C = 1
for the adult data sets and several constant values in the range (0, 1] for the data sets in Table 1.

In our experiments, all clustering results were obtained by averaging the results from 20 different
random repetitions. All experiments were conducted on a 32bit Windows PCwith 3.4GHz CPU and
3GB RAM.

7.2 Comparisons on Benchmark Data Sets

To evaluate the clustering performance, we adopt the clustering accuracy used in Hoi et al. (2007):

Cluster Accuracy= ∑
i> j

1{ci = c j}= 1{ĉi = ĉ j}
0.5n(n−1)

.

2. The cover tree data structure is described athttp://hunch.net/ ˜ jl/projects/cover_tree/cover_tree.html .
3. TheArpacktoolkit can be found athttp://www.caam.rice.edu/software/ARPACK/ .
4. SDPT3 can be found athttp://www.math.nus.edu.sg/ ˜ mattohkc/sdpt3.html .
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Data Set #Classes #Instances #Features
Chessboard 2 100 2
Glass 6 214 9
Heart 2 270 13
Iris 3 150 4
Protein 6 116 20
Sonar 2 208 60
Soybean 4 47 35
Spiral 2 100 3
Wine 3 178 12

Table 1: The statistics of the data sets used in our experiments.

This metric measures the percentage of data pairs that are correctly clustered together. We compare
the proposed SimpleNPKL algorithms with NPKL on the nine data sets from UCI machine learning
repositories,5 as summarized in Table 1. The same data sets were also adopted in the NPKL study
of Hoi et al. (2007).

The clustering accuracy and CPU time cost (the clustering time was excluded)of different
NPKL methods are reported in Table 2 and 3. As can be observed from Table 2, all NPKL meth-
ods outperform the baselinek-means clustering and the constrainedk-means clustering methods,
which use Euclidean metric fork-means clustering. The proposed SimpleNPKL with square hinge
loss produces very competitive clustering performance to the results of NPKL with hinge loss (as
reported in Hoi et al., 2007). SimpleNPKL with square hinge loss and NPKL with hinge loss often
perform better than the NPKL methods using linear loss.

For the CPU time cost, the time costs of SimpleNPKL and NPKL using linear loss are usually
lower than those of their counterparts with (square) hinge loss. Regarding the efficiency evaluation
in Table 3, our SimpleNPKL with linear loss or squared hinge loss is about 5 to 10 times faster than
NPKL using the SDPT3 solver. For some cases of linear loss, SimpleNPKL can be even 100 times
faster.

Recall that our key Proposition 1 provides a closed-form solution to the learned kernel matrixK
for p≥ 1, in which the capacity parameterB can be omitted for SimpleNPKL+linear loss. To show
the influence of the capacity parameterB for SimpleNPKL + square hinge loss, we present some
results in Table 4 with a fixedp = 2. To clearly show the influence on convergence, we present
the number of iterations instead of elapsed CPU time. We observe that SimpleNPKL + square
hinge loss is not sensitive toB on the bothIris andProteindata sets. It even produces the identical
accuracy on theIris data set forB∈ {2.5,3,3.5,4}. However, it affects the number of steps it takes
to converge. Similar phenomena can be observed on other data sets.

We also study the clustering performance of varyingp in Table 5. We fixedB = 1 in this ex-
periment. From Table 5, we can observe that SimpleNPKL+square hinge lossproduces the best
clustering accuracy for theIris data set whenp = 4, but the improvement is not significant com-
paring withp= 2. For theProteindata set, our algorithm achieves the best results whenp= 2. In
general, whenp< 2, the clustering performance drops significantly.

5. The data sets are available athttp://archive.ics.uci.edu/ml/ .
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Data Set k-means ck-means
NPKL SimpleNPKL

LL HL LL SHL
Chessboard 49.8±0.2 50.1±0.3 61.1± 6.9 56.3± 6.1 60.2± 0.0 58.8± 0.8
Glass 69.7±1.9 69.2±1.7 74.4± 3.7 79.1± 4.9 73.0± 2.5 73.5± 2.9
Heart 51.5±0.1 52.3±3.7 86.0± 0.3 86.2± 0.0 86.8± 0.0 89.4± 0.1
Iris 84.5±6.5 89.4±8.5 96.0± 6.1 97.4± 0.0 97.4± 0.0 97.4± 0.0
Protein 76.2±2.0 80.7±3.1 78.2± 3.2 86.4± 3.8 81.8± 1.8 75.9± 2.0
Sonar 50.2±0.1 50.8±0.2 76.8± 0.3 64.5± 6.8 70.2± 10 78.0± 0.0
Soybean 82.1±6.1 83.8±8.3 90.2± 7.7 100.0± 0.0 95.3± 5.1 95.4± 4.9
Spiral 50.1±0.6 50.6±1.3 86.5± 0.0 94.1± 0.0 92.2± 0.0 94.1± 0.0
Wine 71.2±1.2 76.1±2.8 78.1± 1.7 85.5± 5.3 83.7± 4.8 85.0± 2.6

Table 2: Clustering accuracy of SimpleNPKL, compared with the results of NPKL in (10) using a
standard SDP solver, andk-means.

Data Set
NPKL SimpleNPKL

Speedup
LL HL LL SHL

Chessboard 1.38±0.07 5.23±0.06 0.05±0.00 0.13±0.00 27.6
Glass 1.85±0.04 32.36±0.37 0.11±0.00 2.95±0.00 16.8
Heart 2.64±0.10 63.84±0.68 0.17±0.01 13.15±0.08 15.5
Iris 1.36±0.03 1.65±0.04 0.04±0.00 3.45±0.01 34.0
Protein 1.80±0.06 8.16±0.11 0.05±0.00 1.32±0.00 36.0
Sonar 1.77±0.08 30.38±0.24 0.11±0.00 3.91±0.03 16.1
Soybean 1.51±0.05 3.25±0.04 0.01±0.00 0.16±0.00 151.0
Spiral 1.78±0.10 6.23±0.08 0.05±0.00 1.95±0.00 36.6
Wine 2.54±0.04 30.91±1.30 0.09±0.00 1.53±0.01 28.2

Table 3: CPU time of SimpleNPKL, compared with the results of NPKL in (10) usinga standard
SDP solver. (The best results are in bold and the last “Speedup” column islisted only for
the linear loss case.)

7.3 Scalability Study on Adult Data Set

In this Section, we evaluate our SimpleNPKL algorithms on another larger data set to examine
the efficiency and scalability. We adopt theAdult database, which is available at the website of
LibSVM.6 The database has a series of partitions: A1a, A2a,· · · , A5a (see Table 6). Since the
training time complexity of NPKL using standard SDP solvers isO(N6.5), which cannot be applied
on this database for comparison. We only report the results of bothk-means and constrainedk-
means clustering as the baseline comparison.

Table 7 shows the clustering performance and CPU time cost (the clustering timewas excluded)
of SimpleNPKL on theAdult database. From the results, we can draw several observations. First
of all, we can see that by learning better kernels from pairwise constraints, both SimpleNPKL al-
gorithms produce better clustering performance than that ofk-means clustering and constrained

6. LibSVM can be found athttp://www.csie.ntu.edu.tw/cjlin/libsvmtools/datase ts/ .
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DataSet B 1 1.5 2 2.5 3 3.5 4

Iris
Accur.(%) 94.8±0.0 94.8±0.0 95.2±0.4 95.7±0.0 95.7±0.0 95.7±0.0 95.7±0.0
#Iterations 11 13 14 10 10 31 26

Protein
Accur.(%) 74.5±0.8 73.6±1.6 74.4±0.8 74.3±0.9 74.1±1.0 73.7±1.1 73.7±1.0
#Iterations 51 32 51 11 14 27 19

Table 4: Results of varying capacity parameterB with fixed p = 2 andC = 1 on Iris andprotein
data sets.

Data Set p 1 1.5 2 2.5 3 3.5 4

Iris
Accur.(%) 61.6±3.5 58.6±4.0 94.8±0.0 94.8±0.0 95.1±0.4 94.8±0.0 95.6±0.2
#Iterations 51 6 11 9 19 10 9

Protein
Accur.(%) 72.3±1.3 72.8±2.2 74.5±0.8 73.6±1.5 73.6±1.6 73.5±1.6 73.5±1.6
#Iterations 32 35 51 40 11 11 21

Table 5: Results of varyingp in the p-norm regularization overK with fixed B= 1 andC = 1 on
Iris andproteindata sets.
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Figure 1: Convergence of SimpleNPKL using square hinge loss onA1aandA2a. The parameters
areC= 1, B= N.

k-means clustering methods using Euclidean metric. Further, comparing the two algorithms them-
selves, in terms of clustering accuracy, they perform quite comparably, inwhich SimpleNPKL+SHL
outperforms slightly. However, in terms of CPU time cost, SimpleNPKL+LL with linear loss is con-
siderably lower than SimpleNPKL+SHL using square hinge loss.

We also plot the objective valueJ(K,α) of SimpleNPKL on two data setsA1aandA2a in Fig-
ure 1. We observe that SimpleNPKL with square hinge loss often converges quickly within 10
iterations. Similar results can be observed from the other data sets.
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Data Set† A1a A2a A3a A4a A5a
#Instances 1,605 2,265 3,185 4,781 6,414

†: #Classes=2, #Features=123

Table 6: The statistics of theAdultdatabase.

Accuracy(%) CPU Time(s)
Data Set #Constraints

k-means ck-means
SimpleNPKL SimpleNPKL

LL SHL LL SHL
A1a 4,104 56.4±3.5 59.0±2.3 61.4±1.7 60.7±2.7 8.5 322.9
A2a 5,443 57.3±3.6 60.2±0.1 61.1±1.3 61.4±1.2 15.3 637.2
A3a 7,773 57.8±3.5 59.2±3.0 61.1±1.7 61.5±2.0 28.8 1,160.8
A4a 12,465 58.8±1.6 59.3±3.9 61.6±1.3 61.4±1.5 66.3 2,341.3
A5a 16,161 57.7±3.1 59.8±2.2 60.8±3.1 61.9±1.7 79.6 3,692.1

Table 7: Evaluation results onAdultdata set. (The best results are in bold.)

7.4 Comparisons on Constraint Selection

In this Section, we study the active constraint selection scheme for SimpleNPKL. Figure 2 shows
the clustering performance of active constraint selection by the approach described in Section 5.3.

Several observations can be drawn from the results: 1) Comparing with the original approach
using all constraints, the computation time is reduced by choosing a small amountof pairwise
constraints. This is because the Lanczos algorithm can perform the sparse eigen-decomposition
faster on a sparse matrix with fewer nonzero entries; 2) Though the active constraint selection
costs more time than random selection, the former usually achieves better clustering (accuracy)
performance than the latter with the same amount of constraints; 3) Using the proposed active
constraint selection method to choose about half of the pairwise constraintsfor SimpleNPKL can
often produce comparable or even better clustering performance than that using all constraints.

7.5 Evaluations on Data Embedding Applications

In this Section, we evaluate the performance of the proposed SimpleNPKL algorithms with appli-
cations to speed up three data embedding techniques, that is, CMVU, MVE, and SPE, respectively.
Our goal is to show that SimpleNPKL is capable of producing similar empirical results to the base-
line counterpart with significant efficiency gain. All the data sets are publicly available in the UCI
machine learning repository. In all the experiments, we simply fixC = 1 for all the three methods,
and setB= m×N, m∈ {0.1,1,2,10}.

7.5.1 COLORED MAXIMUM VARIANCE UNFOLDING

The first experiment is to examine the efficiency by applying the proposed SimpleNPKL tech-
nique to solve the CMVU problem. In particular, we examine the CMVU task for learning low-
dimensional embedding on three data sets which were used in Song et al. (2008). Two approaches
are compared:

• CMVU: An approximate efficient method employed by Song et al. (2008). Suppose K =
VAV′, whereV (of sizen×d, d < n) is fixed to be the bottomd eigenvectors of the graph
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Figure 2: Comparisons of clustering accuracy and CPU time by active constraint selection and ran-
dom selection (constraint selection time is included) on A1a with parameters:B=N,C=
1,k = 20, r = 0.6. Using all 3.9K constraints directly, the accuracy is 60.8±2.9 and the
CPU time is 81.6 seconds.

Laplacian of the neighborhood graph viaN . Thus the number of variables is reduced from
n2 to d2.

• CMVU+NPKL: Our SimpleNPKL method introduced in Section 6.1. Unlike the above
CMVU algorithm by approximation, our method is able to obtain the global optimal solu-
tion using the SimpleNPKL scheme without approximation.

Figure 3, 4 and 5 show the experimental results of visualizing the embedding results in a 2D
space and the CPU time cost of CMVU. The time costs of CMVU+NPKL were alsoindicated
in the captions of those figures. As we can observe from the visualization results, the proposed
CMVU+NPKL is able to produce comparable embedding results as those by theoriginal CMVU in
most cases. Further, by examining the time cost, we found that the time cost of CMVU increases
with dimensionalityd exponentially due to the intensive computational cost of solving the SDP
problem. In contrast, the proposed CMVU+NPKL is able to find the global optima efficiently, which
is much faster than CMVU whend is large. Although CMVU could be faster than CMVU+NPKL
for very smalld values, it is important to note that the optimald value is often unknown for many
applications. The proposed CMVU+NPKL approach can efficiently and directly resolve the CMVU
problem without soliciting the approximation step.

7.5.2 MINIMUM VOLUME EMBEDDING AND STRUCTUREPRESERVINGEMBEDDING

This experiment is to examine the embedding performance of the SimpleNPKL technique with
applications to MVE (Shaw and Jebara, 2007) and SPE (Shaw and Jebara, 2009) tasks. In particular,
five approaches are compared:

• KPCA: The classical Kernel Principle Component Analysis algorithm;
• MVE: The algorithm summarized in Table 1 in Shaw and Jebara (2007). Pay attention to the

SDP solver in Step 5 and 6, which is the key for the success of MVE.
• MVE+NPKL: The embedding algorithm based on our SimpleNPKL algorithm. Refer to

Section 6.2 for detailed discussion.
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Figure 3: Comparisons of CMVU and CMVU+NPKL onsenate data set. Time cost of
CMVU+NPK is 1.50±0.06 seconds.
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Figure 4: Comparisons of CMVU and CMVU+NPK onnews20 data set. Time cost of
CMVU+NPKL is 120.4±1.7 seconds.
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Figure 5: Comparisons of CMVU and CMVU+NPKL onusps data set. Time cost of
CMVU+NPKL is 28.95±1.8 seconds.

• SPE: The algorithm summarized in Table 1 of Shaw and Jebara (2009).
• SPE+NPKL: The embedding algorithm based on the proposed SimpleNPKL algorithm. Re-

fer to Section 6.3;
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To examine the embedding results quantitatively, we follow the previous studies(Shaw and Jebara,
2007, 2009) to evaluate the classification performance on the embedding databy performing k-
nearest neighbor classification. Similar to the settings in Shaw and Jebara (2009), we randomly
choose 100 points from the largest two classes for each data set, and then divide the data examples
into training/validation/test sets at the ratios of 60:20:20. The validation set is used to find the best
parameter ofk for k-NN classification.

Table 8 shows the comparison of the classification results by five differentapproaches. From
the results, we can see that the two proposed algorithms, MVE+NPKL and SPE+NPKL, are gen-
erally able to achieve the competitive classification results that are comparableto the other two
original algorithms using a standard SDP solver. Among all compared algorithms, MVE+NPKL
tends to achieve slightly better performance than the other approaches. Allthese results show that
the proposed algorithms are effective to produce comparable embedding performance.

Data Set KPCA MVE MVE+NPKL SPE SPE+NPKL
Wine 90.5±5.6 91.9 ±6.6 90.9±5.8 75.2±0.09 87.1±7.9

Ionosphere 79.8±7.3 86.3 ±7.3 84.2±8.5 80.4±10.4 83.6±7.8
Heart 65.6 ±8.4 62.4±9.8 62.9±9.8 54.9±10.2 62.2±11.1
Sonar 58.2±12.4 59.2±10.2 59.8 ±12.2 57.4±11.1 59.4±11.4
Glass 70.7±9.8 73.5±7.8 74.5 ±10.4 61.7±9.7 69.4±8.7
Spiral 98.7±2.4 69.1±9.8 98.8 ±2.4 76.7±0.07 82.9±8.4

Australian 63.2±9.8 61.3±8.2 63.8 ±9.3 60.1± 0.10 59.5±10.1
Breast cancer 91.9±5.4 92.9±4.6 92.4±5.8 93.4±0.07 94.4 ±5.5

Table 8:k-NN classification accuracy on the 2D embedded results. (The best results are bolded.)

Next we compare the computational cost of the proposed algorithms againsttheir original meth-
ods, respectively. Table 9 shows the summary of average CPU time cost ofthe compared algorithms.
From the results, it is clear to see that the two proposed algorithms, MVE+NPKL and SPE+NPKL,
are significantly more efficient than the other two original algorithms, respectively. By comparing
MVE and MVE+NPKL, we found that MVE+NPKL achieves about 10 to 30 times speedups over
the original MVE algorithm; the speedup values are even more significant for the SPE problem,
where the proposed SPE+NPKL algorithm attains about 50 to 90 times speedup over the original
SPE algorithm. These promising results again validate the proposed SimpleNPKLis effective for
improving the efficiency and scalability of the three data embedding tasks.

To further illustrate the scalability of SPE+NPKL, we propose to solve a real-world embedding
task on a large data set. In particular, we crawled a Flickr7 data set, which consists of 3,660 Flickr
user profiles and a collection of 3.7 million photos uploaded by these users. Each photo was an-
notated with a set of textual tags by users. Accordingly the photos for a particular Flickr user are
described by tiling these tags. In total, our data set has 359,832 tags and 93,692 unique tags. Each
Flickr user has a contact list, which is a collection of Flickr users who may share similar tastes /
interests in their photo sharing. In our data set, every user has 19.1 contacts on average. We thus set
|N | to 20 in both MVE and SPE. Moreover, there are 97,212 interest groups, and each Flickr user
could belong to one or more interest groups. We computetf-idf weight for the tags to represent a
Flickr user (here the document frequency for a tag is actually the number of users annotated with

7. Flickr can be found athttp://www.flickr.com/ .
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Data Set MVE MVE+NPKL SpeedUp SPE SPE+NPKL SpeedUp
Wine 2.92±0.06 0.34 ±0.04 8.5 47.72±0.29 0.51±0.01 93.6

Ionosphere 16.98±0.16 1.14±0.01 14.9 30.07±1.25 0.60 ±0.01 50.1
Heart 9.64±0.00 0.38 ±0.02 25.3 48.18±0.31 0.51±0.11 94.5
Sonar 7.50±0.13 0.46 ±0.01 16.3 30.40±1.16 0.61±0.02 49.8
Glass 11.08±0.26 0.39 ±0.01 28.2 29.10±0.12 0.53±0.01 54.9
Spiral 18.28±0.28 0.46 ±0.00 39.7 47.91±0.91 0.48±0.01 99.8

Australian 4.61±0.03 0.30 ±0.02 15.4 28.94±0.11 0.53±0.01 54.6
Breast cancer16.59±0.10 0.49 ±0.02 33.9 48.72±0.26 0.56±0.01 87.0

Table 9: The evaluation of CPU time cost of different algorithms and the speedup of the Sim-
pleNPKL method over the standard SDP solver. (The best results are bolded.)

that tag, that is, one or more photos of this user annotated with the tag). The k-nearest neighbor
graph for MVE is constructed using cosine similarity between Flickr users. For SPE, we further
constrain that the intra-group distance is smaller than the inter-group distance. In general, people
who are friends or similar to each other tend to join the same interest group. Our goal is to apply the
proposed MVE+NPKL and SPE+NPKL algorithms on these Flickr users in order to draw the 2D
embedding results of the Flickr users exclusively belonging to two different interest groups:B&W8

andCatchy Colors9 as shown in Figure 7.

Figure 6: Sample photos from two Flickr interest groups:B&W andCatchy Colors.

Specifically, the theme of the group B&W is related to a collection of photos with black and
white color only. The corresponding top 5 annotated tags for B&W are{bw, black and white,
black, white, portrait}. In contrast, the top 5 tags for CatchyColors include{red, blue, green,
flower, yellow}. Therefore, photos in the latter group are more colorful than the ones in B&W. An
illustration of photos belonging to these two groups are depicted in Figure 6. However, the semantics
of photos of these two groups are highly overlapping. Accordingly, the embedding results of MVE
are highly overlapped as shown in Figure 7 (a), though it drives the spectral information into the top

8. B&W can be found athttp://www.flickr.com/groups/blackwhite/ .
9. Catchy Colorscan be found athttp://www.flickr.com/groups/catchy/ .
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(a) MVE+NPKL

(b) SPE+NPKL

Figure 7: The 2D embedding result of Flickr users exclusively belongingto the interest groupB&W
(blue points) andCatchy Colors(red points). The CPU time cost of MVE+NPKL and
SPE+NPKL are 27.2 minutes and 196.4 minutes, respectively.
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eigenvectors of the learned kernel matrix. On the other hand, by constraining intra-group distance
less that inter-group distance, SPE can preserve the topology structureof these two groups as shown
in Figure 7 (b). The 2D embedding shows the cluster structure rather clearly.

Note that the original algorithms using general SDP solvers cannot directlyapply on the above
large real data set. The proposed SimpleNPKL framework makes it feasibleto analyze the emerging
social networking problems using kernel learning methods. We hope our preliminary attempt in this
paper could shed a light on a series of important applications in the future, including: 1)Visualiza-
tion: as illustrated in Figure 7, we are able to obtain an intuitive understanding about the distribution
of the entities in a social networking community. From Figure 7 (b), one can also observe the ab-
normal entities (e.g., the red dot on the right upper corner) and prototypes (the ones located at the
centers of clusters). This may also benefit spam user detection and important user identification ap-
plications; 2)Friend suggestion: Given a Flickr userUi , we can rank the other usersU j according
to their similarity toUi computed by the learned non-parametric kernelKi j . With such information, a
user can quickly find the other users of similar interests/tastes in photo sharing so as to facilitate the
social communication between the users; 3)Interest group recommendation: It is interesting and
beneficial to develop an intelligent scheme for recommending a Flickr user some interest groups.
By applying the proposed kernel learning techniques to find similarity between Flickr users, it is
possible for us to develop some recommendation scheme that suggests a Flickruser some interest
groups that received the highest numbers of votes from its neighbors.

8. Conclusion

In this paper, we investigated a family of SimpleNPKL algorithms for improving the efficiency and
scalability of the Non-Parametric Kernel Learning (NPKL) from large setsof pairwise constraints.
We demonstrated that the proposed SimpleNPKL algorithm with linear loss for thepairwise con-
straints enjoys a closed-form solution, which can be simply computed by efficient sparse eigen-
decomposition, such as the Lanczos algorithm. Moreover, our SimpleNPKL algorithm using other
loss functions (including square hinge loss, hinge loss, and square loss) can be transformed into a
saddle-point minimax optimization problem, which can be solved by an efficient iterative optimiza-
tion procedure that only involves sparse eigen-decomposition computation.In contrast to the previ-
ous standard SDP solution, empirical results show that our approach achieved the same/comparable
accuracy, but is significantly more efficient and scalable for large-scale data sets. We also explore
some active constraint selection scheme to reduce the pairwise constraints inSimpleNPKL, which
can further improve both computational efficiency and the clustering performance. Finally, we also
demonstrate that the proposed family of SimpleNPKL algorithms can be applicableto other similar
machine learning problems, in which we studied three example applications on data embedding
problems. In the future, we will extend our technique for solving other SDPrelated machine learn-
ing problems.
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