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Abstract

In most kernel based online learning algorithms, when an incoming instance is misclassified, it
will be added into the pool of support vectors and assigned with a weight, which often remains
unchanged during the rest of the learning process. This is clearly insufficient since when a new
support vector is added, we generally expect the weights of the other existing support vectors to
be updated in order to reflect the influence of the added support vector. In this paper, we propose
a new online learning method, termedDouble Updating Online Learning, or DUOL for short,
that explicitly addresses this problem. Instead of only assigning a fixed weight to the misclassified
example received at the current trial, the proposed online learning algorithm also tries to update the
weight for one of the existing support vectors. We show that the mistake bound can be improved
by the proposed online learning method. We conduct an extensive set of empirical evaluations for
both binary and multi-class online learning tasks. The experimental results show that the proposed
technique is considerably more effective than the state-of-the-art online learning algorithms. The
source code is available to public athttp://www.cais.ntu.edu.sg/ ˜ chhoi/DUOL/ .

Keywords: online learning, kernel method, support vector machines, maximum margin learning,
classification

1. Introduction

Online learning has been studied extensively in the machine learning community (Rosenblatt, 1958;
Freund and Schapire, 1999; Kivinen et al., 2001; Crammer et al., 2006;Cesa-Bianchi and Lugosi,
2006). In general, for a misclassified example, most of the kernel basedonline learning algorithms
will simply assign to it a fixed weight that remains unchanged during the whole learning process.
Although such an approach is advantageous in computational efficiency,it has significant limita-
tions. This is because when a new example is added to the pool of support vectors, the weights
assigned to the existing support vectors may no longer be optimal, and shouldbe updated to reflect
the influence of the new support vector. We emphasize that although several online algorithms are
proposed to update the example weights as the learning process proceeds, most of them are not de-
signed to improve the classification accuracy. For instance, in Orabona etal. (2008) and Crammer
et al. (2003); Dekel et al. (2008), online learning algorithms are proposed to adjust the example
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weights in order to fit in the constraint on the number of support vectors; inKivinen et al. (2001),
example weights are adjusted to deal with the drifting concepts.

Motivated by the above observations, we propose a new strategy for online learning that explic-
itly addresses this problem. It is designed to dynamically tune the weights of support vectors in
order to improve the classification performance. In some trials of online learning, besides assign-
ing a weight to the misclassified example, the proposed online learning algorithmalso updates the
weight for one of the existing support vectors, referred to asauxiliary example. We refer to the
proposed approach asDouble Updating Online Learning (Zhao et al., 2009), orDUOL for short.

The key challenge in the proposed online learning approach is to decide which existing support
vector should be selected for updating weight. An intuitive choice is to selectthe existing support
vector that “conflicts” with the new misclassified example, that is the existing support vector which
on the one hand shares similar input pattern as the new example and on the other hand belongs
to a class different from that of the new example. In order to quantitativelyanalyze the impact of
updating the weight for such an existing support vector, we employ an analysis that is based on the
work of online convex programming by incremental dual ascent (Shalev-Shwartz and Singer, 2006,
2007). Our analysis shows that under certain conditions, the proposedonline learning algorithm
can significantly reduce the mistake bound of the existing online algorithms. Besides binary classi-
fication, we extend the double updating online learning algorithm to multi-class learning. Extensive
experiments show promising performance of the proposed online learning algorithm compared to
the state-of-the-art algorithms for online learning.

The rest of this paper is organized as follows. Section 2 reviews the related work for online
learning. Section 3 presents the proposed “double updating” approachfor online learning of binary
classification problems. Section 4 extends the double updating method to online multi-class learn-
ing. Section 5 gives our experimental results. Section 6 discusses the possible directions to explore
in the future. Section 7 concludes this work.

2. Related Work

Online learning has been extensively studied in machine learning (Rosenblatt, 1958; Crammer and
Singer, 2003; Cesa-Bianchi et al., 2004; Crammer et al., 2006; Fink et al., 2006). One of the most
well-known online approaches is the Perceptron algorithm (Rosenblatt, 1958; Freund and Schapire,
1999), which updates the learning function by adding the misclassified example with a constant
weight to the current set of support vectors. Recently a number of online learning algorithms have
been developed based on the criterion of maximum margin (Crammer and Singer, 2003; Gentile,
2001; Kivinen et al., 2001; Crammer et al., 2006; Li and Long, 1999). One example is the Relaxed
Online Maximum Margin algorithm (ROMMA) (Li and Long, 1999), which repeatedly chooses the
hyper-planes that correctly classify the existing training examples with a large margin. Another
representative example is the Passive-Aggressive (PA) algorithm (Crammer et al., 2006). It updates
the classification function when a new example is misclassified or its classificationscore does not
exceed the predefined margin. Empirical studies showed that the maximum margin based online
learning algorithms are generally more effective than the Perceptron algorithm. Despite the differ-
ence, most online learningalgorithms only update the weight of the newly added support vector, and
keep the weights of the existing support vectors unchanged. This constraint could significantly limit
the performance of online learning.
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The proposed online learning algorithm is closely related to the recent workof online convex
programming by incremental dual ascent (Shalev-Shwartz and Singer, 2006, 2007). Although the
idea of simultaneously updating the weights of multiple support vectors was mentioned in Shalev-
Shwartz and Singer (2006, 2007), neither efficient algorithm nor theoretical result was given explic-
itly in their work. Besides, our work is also related to budget online learning (Weston and Bordes,
2005; Crammer et al., 2003; Cavallanti et al., 2007; Dekel et al., 2008) and online learning for drift-
ing concepts. Although these online learning algorithms are capable of dynamically adjusting the
weights of support vectors, they are designed to either fit in the budget for the number of support
vectors or to handle drifting concepts, but not to reduce the number of classification mistakes in
online learning.

Finally, several algorithms were proposed for online training of SVM that update the weights
of more than one support vectors simultaneously (Cauwenberghs and Poggio, 2000; Bordes et al.,
2005, 2007; Dredze et al., 2008; Crammer et al., 2008, 2009). In particular, in Bordes et al. (2005,
2007), the authors proposed to update the weights of two support vectors simultaneously at each
iteration, similar to the proposed algorithm. These algorithms differ from the proposed one in that
they are designed for efficiently learning an SVM classification model, not for online learning, and
therefore do not provide guarantee for mistake bound.

3. Double Updating Online Learning for Binary Classification

In this section, we present the proposed double updating online learning method for solving online
binary classification tasks. Below we start by introducing some preliminaries and notations.

3.1 Preliminaries and Notations

We consider the problem of online classification. Our goal is to learn a function f :Rd→R based on
a sequence of training examples{(x1,y1), . . . ,(xT ,yT)}, wherext ∈ R

d is ad-dimensional instance
andyt ∈ Y = {−1,+1} is the class label assigned toxt . We usesign( f (x)) to predict the class
assignment for anyx, and| f (x)| to measure the classification confidence. Letℓ( f (x),y) :R×Y →R

be the loss function that penalizes the deviation of estimatesf (x) from observed labelsy. We refer
to the outputf of the learning algorithm as ahypothesisand denote the set of all possible hypotheses
byH = { f | f : Rd→ R}.

In this paper, we considerH a Reproducing Kernel Hilbert Space (RKHS) endowed with a
kernel functionκ(·, ·) : Rd×R

d→R (Vapnik, 1998) implementing the inner product〈·, ·〉 such that:
1) κ has the reproducing property〈 f ,κ(x, ·)〉= f (x) for x∈ R

d; 2) H is the closure of the span of
all κ(x, ·) with x∈ R

d, that is,κ(x, ·) ∈ H for everyx∈ X . The inner product〈·, ·〉 induces a norm
on f ∈ H in the usual way:‖ f‖H := 〈 f , f 〉

1
2 . To make it clear, we useHκ to denote an RKHS with

explicit dependence on kernel functionκ. Throughout the analysis, we assumeκ(x,x) ≤ 1 for any
x∈ R

d.

3.2 Motivation

We consider trialt in an online learning task where the training example(xa,ya) is misclassified (i.e.,
ya f (xa)≤ 0)). LetD = {(xi ,yi), i = 1, . . . ,n} be the collection ofn misclassified examples received
before the trialt. We also refer to these misclassified training examples as “support vectors”. We
denote byα = (α1, . . . ,αn) ∈ (0,C]n the weights assigned to the support vectors inD, whereC is a
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predefined constant. The resulting classifier, denoted byf (x), is given by

f (x) =
n

∑
i=1

αiyiκ(x,xi).

In the conventional approach for online learning, we simply assign a constant weight, denoted by
β ∈ (0,C], to (xa,ya), and the resulting classifier becomes

f ′(x) = βyaκ(x,xa)+
n

∑
i=1

αiyiκ(x,xi) = βyaκ(x,xa)+ f (x).

The shortcoming of the conventional online learning approach is that the introduction of the new
support vector(xa,ya) may harm the classification of existing support vectors inD, which is re-
vealed by the following proposition.

Proposition 1 Let (xa,ya) be an example misclassified by the current classifier f(x) =

∑n
i=1 αiyiκ(x,xi) with αi ≥ 0, i = 1, . . . ,n, that is, ya f (xa) < 0. Let f′(x) = βyaκ(x,xa) + f (x)

be the updated classifier withβ > 0. There exists at least one support vector xi ∈ D such that
yi f (xi)> yi f ′(xi).

Proof It follows from the fact that:∃ xi ∈D,yiyaκ(xi ,xa)< 0 whenya f (xa)< 0.

As indicated by Proposition 1, when a misclassified example(xa,ya) is added to the classifier, the
classification confidence of at least one existing support vector will be reduced. Whenya f (xa)≤−γ,
there exists one support vector(xb,yb) ∈ D that satisfiesβyaybk(xa,xb) ≤ −βγ/n. This support
vector will be misclassified by the updated classifierf ′(x) if yb f (xb) ≤ βγ/n. In order to alleviate
this problem, we propose to update the weight for the existing support vector whose classification
confidence is significantly affected by the new misclassified example. In particular, we consider a
support vector(xb,yb) ∈D for weight updating if it satisfies the following two conditions:

• yb f (xb)≤ 0, that is, support vector(xb,yb) is misclassified by the current classifierf (x);

• k(xb,xa)yayb ≤ −ρ whereρ ∈ (0,1) is a predetermined threshold, that is, support vector
(xb,yb) “conflicts” with the new misclassified example(xa,ya).

We refer to the support vector satisfying the above conditions as anauxiliary example. It is clear
that by adding the misclassified example(xa,ya) to classifierf (x) with weightβ, the classification
score of(xb,yb) will be reduced by at leastβρ, which could lead to a significant misclassification of
the auxiliary example(xb,yb). To avoid such a mistake, we propose to update the weights for both
(xa,ya) and(xb,yb) simultaneously. In the next section, we show the details of the double updating
algorithm for online learning, and the analysis for mistake bound.

Our analysis follows closely the previous work on the relationship between online learning and
the dual formulation of SVM (Shalev-Shwartz and Singer, 2006, 2007),in which the online learning
is interpreted as an efficient updating rule for maximizing the objective function in the dual form
of SVM. We denote by∆t the improvement of the objective function in dual SVM when adding
a misclassified example to the classification function at thet-th trial. According to Theorem 1 in
Shalev-Shwartz and Singer (2006), if an online learning algorithmA is designed to ensure that for
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all t, ∆t is bounded from below by abounding constant∆, then the number of mistakes made by
A when trained over a sequence of trials(x1,y1), . . . ,(xT ,yT), denoted byM, is upper bounded by

M ≤
1
∆

(
min
f∈Hκ

1
2
‖ f‖2Hκ

+C
T

∑
i=1

ℓ(yi f (xi))

)
,

whereℓ(yi f (xi)) = max(0,1−yi f (xi)) is the hinge loss function. According to Shalev-Shwartz and
Singer (2006, 2007), the bounding constant∆ = 1/2 when we only update the classifier with the
newly misclassified example. In our analysis, we will show that∆ can be significantly improved
when updating the weights for both the misclassified example and the auxiliary example.

For the remaining part of this section, we denote by(xb,yb) an auxiliary example that satisfies
the two conditions specified before. We define

ka = κ(xa,xa), kb = κ(xb,xb), kab = κ(xa,xb), wab = yaybkab.

According to the assumption of auxiliary example, we havewab= kabyayb≤−ρ. Finally, we denote
by γ̂b the weight for the auxiliary example(xb,yb) that is used in the current classifierf (x), by γa

andγb the updated weights for(xa,ya) and(xb,yb), respectively, and bydγb the differenceγb− γ̂b.

3.3 Double Updating Online Learning for Binary Classification

Recall an auxiliary example(xb,yb) should satisfy two conditions (I)yb f (xb)≤ 0, and (II)wab≤−ρ.
In addition, the example(xa,ya) received in the current iterationt is misclassified, that is,ya f (xa)≤
0. Following the framework of dual formulation for online learning, the following lemma shows
how to compute∆t , that is, the improvement in the objective function of dual SVM by adjusting
weights for(xa,ya) and(xb,yb).

Lemma 1 The maximal improvement in the objective function of dual SVM by adjusting weights
for (xa,ya) and (xb,yb), denoted by∆t , is computed by solving the following optimization prob-
lem(which is a special case of the optimization problem (28) in Shalev-Shwartz and Singer, 2006):

∆t = max
γa,dγb

{
h(γa,dγb) : 0≤ γa≤C, −γ̂b≤ dγb ≤C− γ̂b

}
(1)

where

h(γa,dγb) = γa(1−ya f (xa))+dγb(1−yb f (xb))−
ka

2
γ2

a−
kb

2
d2

γb
−wabγadγb.

The lemma follows directly the dual formulation of SVM. The theorem below bounds the bounding
constant∆ whenC is sufficiently large.

Theorem 1 Assume C≥ γ̂b+1/(1−ρ) with ρ ∈ [0,1) for the selected auxiliary example(xb,yb),
we have the following bound for the bounding constant∆:

∆≥
1

1−ρ
.

Proof First, we showdγb ≥ 0. This is because for givenγa ≥ 0, the optimal solution fordγb, given
by

dγb =
1−yb f (xb)−wabγa

kb
,
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is positive becauseyb f (xb) ≤ 0 andwab≤ −ρ. Using the factka,kb ≤ 1, γa,dγb ≥ 0, ya f (xa) ≤ 0,
yb f (xb)≤ 0, andwa,b≤−ρ, we have

h(γa,dγb)≥ γa+dγb−
1
2

γ2
a−

1
2

d2
γb
+ργadγb.

Thus,∆ is bounded as

∆≥ max
γb∈[0,C],dγb∈[0,C−γ̂b]

γa+dγb−
1
2
(γ2

a+d2
γb
)+ργadγb.

Under the condition thatC ≥ γ̂b+ 1/(1− ρ), it is easy to verify that the optimal solution for the
above problem isγa = dγb = 1/(1−ρ), which leads to the result in the theorem.

We refer to the case as astrong double updatewhen the condition of Theorem 1 is satisfied. We
have the following theorem for the general case when we only haveC≥ 1.

Theorem 2 Assume C≥ 1. We have the following bound for∆ when updating the weight for the
misclassified example(xa,ya) and the auxiliary example(xb,yb):

∆≥
1
2
+

1
2

min
(
(1+ρ)2,(C− γ̂)2) .

Proof By settingγa = 1, we haveh(γa,dγb) computed as

h(γa = 1,dγb)≥
1
2
+(1+ρ)dγb−

1
2

d2
γb
.

Hence,∆ is lower bounded by

∆≥
1
2
+ max

dγb∈[0,C−γ̂]

(
(1+ρ)dγb−

1
2

d2
γb

)
≥

1
2
+

1
2

min((1+ρ)2,(C− γ̂)2).

Although Theorem 1 and 2 show that the double update strategy could significantly improve
the bounding constant∆ over 1/2 and consequentially reduce the mistake bound, it is applicable
only when there exists an auxiliary example. Below, we extend the double update strategy to the
cases when there is no auxiliary example. Specifically, we relax the conditionfor performing double
update as follows: there exists(xb,yb)∈D that (i)wab≤−ρ, (ii) yb ft−1(xb)≤ 1, and (iii)C≥ γ̂b+ρ.
We refer to these cases asweak double update.

Theorem 3 Assume wab≤−ρ, yb ft−1(xb)≤ 1 and C≥ γ̂b+ρ, we have the following bound for the
bounding constant

∆≥
1+ρ2

2
.

Proof Following the definitions and assumptions, we have

∆ = max
γa,dγb

h(γa,dγb)≥ h(1,ρ)≥ 1−
1
2
+0−

ρ2

2
+ρ2 =

1+ρ2

2
.
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Algorithm 1 The Double Updating Online Learning Algorithm (DUOL )

PROCEDURE

1: InitializeS0 = /0, f0 = 0;
2: for t=1,2,. . . ,Tdo
3: Receive a new instancext

4: Predict ˆyt = sign( ft−1(xt));
5: Receive its labelyt ;
6: lt = max{0,1−yt ft−1(xt)}
7: if lt > 0 then
8: wmin = ∞;
9: for ∀i ∈ St−1 do
10: if ( f i

t−1≤ 1) then
11: if (yiytκ(xi ,xt)≤ wmin) then
12: wmin = yiytκ(xi ,xt);
13: (xb,yb) = (xi ,yi);
14: end if
15: end if
16: end for
17: f t

t−1 = yt ft−1(xt);
18: St = St−1∪{t};
19: if (wmin≤−ρ) then
20: Computeγt andγb by solving

the optimization (1)

21: for ∀i ∈ St do
22: f i

t ← f i
t−1+yiγtytκ(xi ,xt)
+yi(γb− γ̂b)ybκ(xi ,xb);

23: end for
24: ft = ft−1+ γtytκ(xt , ·)

+(γb− γ̂b)ybκ(xb, ·);
25: else/* no auxiliary example found */
26: γt = min(C, ℓt/κ(xt ,xt));
27: for ∀i ∈ St do
28: f i

t ← f i
t−1+yiγtytκ(xi ,xt);

29: end for
30: ft = ft−1+ γtytκ(xt , ·);
31: end if
32: else
33: ft = ft−1; St = St−1;
34: for ∀i ∈ St do
35: f i

t ← f i
t−1;

36: end for
37: end if
38: end for
return fT , ST
END

Figure 1: The Algorithms of Double Updating Online Learning (DUOL).

Solving the optimization problem (1) is the key to the double update. The followingproposition
provides the optimal solution to the problem (1).

Proposition 2 Denoteℓa := 1− ya f (xa) and ℓb := 1− yb f (xb). Assumeℓa, ℓb ≥ 0, ka,kb > 0 and
wab≤ 0, then the solution of optimization problem (1) is as follows:

(γa,dγb) =





(C,C− γ̂b) if (kaC+wab(C− γ̂b)− ℓa)< 0 and(kb(C− γ̂b)+wabC− ℓb)< 0

(C, ℓb−wabC
kb

) if
w2

abC−wabℓb−kakbC+kbℓa
kb

> 0 and ℓb−wabC
kb

∈ [−γ̂b,C− γ̂b]

( ℓa−wab(C−γ̂b)
ka

,C− γ̂b) if ℓa−wab(C−γ̂b)
ka

∈ [0,C] andℓb−kb(C− γ̂b)−wab
ℓa−wab(C−γ̂b)

ka
> 0

( kbℓa−wabℓb
kakb−w2

ab
, kaℓb−wabℓa

kakb−w2
ab

) if ( kbℓa−wabℓb
kakb−w2

ab
, kaℓb−wabℓa

kakb−w2
ab

) ∈ [0,C]× [−γ̂b,C− γ̂b]

.

The detailed proof for Proposition 2 can be found in Appendix A. Figure 1summarizes the proposed
Double Updating Online Learning (DUOL) algorithm. In this algorithm, to efficiently find the
auxiliary example(xb,yb), we introduce a variablef i

t for each support vector to keep track of its
classification score. Parameterρ is used to trade off between efficiency and efficacy for DUOL: the
smallerρ the more double updates will be performed.

Finally, we give the mistake bound for the DUOL algorithm. We denote byM the set of indexes
that correspond to the trials of misclassification, that is,

M =
{

t |yt 6= sign( ft−1(xt)),∀t ∈ [T]
}
.
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In addition, we denote byM s
d (ρ) andM w

d (ρ) the sets of indexes for the cases ofstrongandweak
double updating, respectively, that is,

M s
d (ρ) = {t |∃ auxiliary example(xb,yb) s.t.C≥ γ̂b+

1
1−ρ

for (xt ,yt), t ∈M },

M w
d (ρ) = {t |∃ (xb,yb) s.t. wab≤−ρ, yb ft−1(xb)≤ 1 andC≥ γ̂b+ρ, t ∈M /M s

d (ρ)}.

Note that in setM s
d (ρ), for the convenience of analysis, we only consider the subset of strong

updates when the conditionC≥ γ̂b+1/(1−ρ) is satisfied. Finally, we denote the cardinalities of
setsM , M s

d , andM w
d by M = |M |, Ms

d(ρ) = |M
s
d (ρ)|, Mw

d (ρ) = |M
w
d (ρ)|, andMs = M−Ms

d(ρ)−
Mw

d (ρ), respectively.

Theorem 4 Let (x1,y1), . . . ,(xT ,yT) be a sequence of examples, where xt ∈R
d, yt ∈ {−1,+1} and

κ(xt ,xt) ≤ 1 for all t, and assume C≥ 1. Then for any function f inHκ, the number of prediction
mistakes M made by DUOL on this sequence of examples is bounded by:

2

(
min
f∈Hκ

1
2
‖ f‖2Hκ

+C
T

∑
i=1

ℓ(yi f (xi))

)
−

ρ2

2
Mw

d (ρ)−
1+ρ
1−ρ

Ms
d(ρ),

whereρ ∈ [0,1).

Proof According to Theorem 1 and 3, we have

min
t∈M s

d (ρ)
∆t ≥

1
1−ρ

, min
t∈M w

d (ρ)
∆t ≥

1+ρ2

2
.

Moreover, according to Theorem 2, we have∆t ≥ 1/2,∀t ∈M . Putting them together, we have

1
2

Ms+
1+ρ2

2
Mw

d (ρ)+
1

1−ρ
Ms

d(ρ)≤

(
min
f∈Hκ

1
2
‖ f‖2Hκ

+C
T

∑
i=1

ℓ(yi f (xi))

)
.

We complete the proof usingM = Ms+Mw
d (ρ)+Ms

d(ρ).

As revealed by the above theorem, the number of mistakes made by the proposed double updat-
ing online learning algorithm will be smaller than the online learning algorithm that only performs
a single update in each trial. The difference in the mistake bound is essentially due to the double
updating, that is, the more the number of double updates, the more advantageous the proposed algo-
rithm will be. Besides, the above bound also indicates that a strong double update is more powerful
than a weak double update given that the associated weight of a strong double update(1+ρ)/(1−ρ)
is always much larger than that of a weak double updateρ2/2. It is worthwhile pointing out that al-
though according to Theorem 4, it seems that the larger the value ofρ the smaller the mistake bound
will be. This however may not be true becauseMs

d(ρ) in general decreases asρ increases. Finally,
we note that Theorem 4 bounds the number of mistakes made by the proposedDUOL algorithm
for C≥ 1. WhenC < 1, the mistake bound for the proposed algorithm follows Theorem 2, 3 and
Corollary 2 in Shalev-Shwartz and Singer (2007).
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4. Multiclass Double Updating Online Learning

In this section, we extend the proposed double updating online learning algorithm to multiclass
learning where each instance can be assigned to multiple classes.

4.1 Online Multiclass Learning

Similar to online binary classification, onlinemulticlasslearning is performed over a sequence
of training examples(x1,Y1), . . . ,(xT ,YT). Unlike binary classification whereyt ∈ {−1,+1}, in
multi-class learning, each class assignmentYt ⊆ Y = {1, . . . ,k} could contain multiple class labels,
making it a more challenging problem. We useŶt to represent the class set predicted by the online
learning algorithm. Before presenting our algorithm, we first review online multiclass learning
(Crammer and Singer, 2003; Fink et al., 2006) based on the framework oflabel ranking (Crammer
and Singer, 2005).

4.1.1 LABEL RANKING FOR MULTICLASS LEARNING

Given an instancex, the label ranking approach first computes a score for every class label in Y ,
and ranks the classes in the descending order of their scores. The predicted class set̂Yt is formed by
the classes with the highest scores. The objective of label ranking is to ensure that the score of class
r is significantly larger than that of classs if r ∈Yt is a true class assignment whiles∈ Y \Yt is not.
An instancex is classified incorrectly if that above condition is NOT satisfied.

We follow the protocol ofmulti-prototype(Vapnik, 1998; Crammer and Singer, 2001; Crammer
et al., 2006) for the design of multiclass multilabel learning algorithm. It learns multiple hypothe-
ses/classifiers, one classifier for each class inY , leading to a total ofk classifiers that are trained for
the classification task. Specifically, for trialt, upon receiving an instancext , the scores ofk classes
output by the set ofk hypotheses are given by

f̄t−1(xt) = ( ft−1,1(xt), · · · , ft−1,k(xt))
T ,

where ft−1,i ∈HK , i = 1, . . . ,k. We introduce two variablesrt andst that are defined as follows:

rt = argmin
r∈Yt

ft−1,r(xt) and st = argmax
s6∈Yt

ft−1,s(xt), (2)

here,rt andst represent the class of the smallest score among all relevant classes andthe class of the
largest score among the irrelevant classes, respectively. Using the notation of rt andst , themargin
with respect to the hypothesis setf̄t−1 at trial t is defined as follows:

Γ
(

f̄t−1;(xt ,Yt)
)
= ft−1,rt (xt)− ft−1,st (xt).

Based on the notation of classification margin, we define the loss function of hypotheses̄ft−1(x) for
training example(xt ,Yt) as follows:

ℓ
(

f̄t−1;(xt ,Yt)
)

= max
r∈Yt ,s6∈Yt

[
1− ( ft−1,r(xt)− ft−1,s(xt))

]
+
,

where[x]+ = max(0,x).
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4.1.2 A PERCEPTRONALGORITHM FOR ONLINE MULTICLASS LEARNING

According to Crammer and Singer (2003), when an example is misclassified attrial t, we update
each component of the classifier̄ft−1 as follows:

ft,i(x) = ft−1,i(x)+σYt (i, t)γtκ(xt ,x), ∀i ∈ Y , (3)

whereγt ∈ (0,C], and functionσYt (i, t), which is simplified asσ(i, t), is defined below:

σ(i, t) =





1 if i = rt

−1 if i = st

0 otherwise
.

Using notationH(Yt) =
(
σ(1, t), · · · ,σ(k, t)

)T
, we rewrite Equation (3) as̄ft(x) = f̄t−1(x)+

γtH(Yt)κ(xt ,x), or equivalently

f̄ (x) =
n

∑
i=1

γiH(Yi)κ(xi ,x),

wheren is the number of support vectors received so far.

4.2 Multiclass DUOL Algorithm

We extend the DUOL algorithm to multiclass learning. We denote by(xa,Ya) the misclassified
example received at the current trial, that is,( f̄ (xa))ra− ( f̄ (xa))sa ≤ 0. Similar to DUOL for binary
classification, we introduce an auxiliary example(xb,Yb) from the existing support vectors that obey
the following conditions:

1. ( f̄ (xb))rb− ( f̄ (xb))sb ≤ 0, that is,(xb,Yb) is misclassified by current classifier̄f ;

2. (H(Ya) ·H(Yb))κ(xa,xb) ≤ −2ρ whereρ ∈ (0,1) is a threshold. This property indicates that
example(xa,Ya) conflictswith example(xb,Yb).

Compared to auxiliary example defined for binary classification, we introduce H(Ya) ·H(Yb) in
above when defining two conflicting instances. Givenκ(xa,xb) ≥ 0, the second condition of aux-
iliary example impliesH(Ya) ·H(Yb) ≤ 0, which further indicates that two examples(xa,Ya) and
(xb,Yb) have the opposite prediction, that is, (ra = sb) or (sa = rb). This result is revealed by the
following proposition.

Proposition 3 The inequality H(Ya) ·H(Yb)< 0 holds if and only if (ra = sb) or (sa = rb).

The proof of Proposition 3 is given in the appendix.
Similar to the DUOL algorithm for binary classification, our analysis aims to show that by

updating weights for both misclassified example and the auxiliary example, we maybe able to
significantly improve the bounding constant∆, which is defined as follows:

M×∆≤
(

min
f̄∈H̄κ

F( f̄ )+C
T

∑
i=1

ℓ
(

f̄ ;(xi ,Yi)
))

, (4)

whereH̄κ = ∏k
i=1Hκ andF( f̄ ) = ∑k

i=1
1
2‖ fi‖2Hκ

. To ease our further discussions, we defineka =

κ(xa,xa),kb = κ(xb,xb),wab = (H(Ya) ·H(Yb))κ(xa,xb) .
The following proposition shows the optimization problem related to the multiclass double up-

dating online learning algorithm, which forms the basis for deriving the bounding constant∆.
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Proposition 4 With the double updating, that is, adjusting the weight of some auxiliary support
vector(xb,Yb) from γ̂b to γb (denoted by dγb = γb− γ̂b) and assigning weightγa to the current mis-
classified example(xa,Ya), the improvement in the objective function of dual SVM, denoted by∆t , is
computed by the following optimization problem:

max
γa,dγb

γa

(
1−
(

ft−1,ra(xa)− ft−1,sa(xa)
))

+dγb

(
1−
(

ft−1,rb(xb)− ft−1,sb(xb)
))

−kaγ2
a−kbd2

γb
−wabγadγb, (5)

s.t. 0≤ γa≤C,−γ̂b≤ dγb ≤C− γ̂b.

Theorem 5 Assumeκ(x,x) ≤ 1 for any x and C≥ γ̂b+
1

2(1−ρ) for the selected auxiliary example

(xb,Yb), we have the following bound for∆:

∆≥
1

2(1−ρ)
.

We refer to the case as a strong double update when there exists a auxiliaryexample(xb,Yb) s.t.
C ≥ γ̂b +

1
2(1−ρ) . Similar to double updating for binary classification, we introduceweakdouble

update when there exists(xb,Yb) s.t. wab≤−2ρ, ft−1,rb(xb)− ft−1,sb(xb)≤ 1, andC≥ γ̂b+
ρ
2 .

Theorem 6 Assume there exists(xb,Yb) s.t. wab≤ −2ρ, ft−1,rb(xb)− ft−1,sb(xb) ≤ 1, C≥ γ̂b+
ρ
2

and the current instance is misclassified, then we have the following boundingconstant

∆≥
1+ρ2

4
.

The exact solution to the Quadratic Programming (QP) problem in (5) is givenby the following
proposition.

Proposition 5 Denoteℓa := 1− ( ft−1,ra(xa)− ft−1,sa(xa)) andℓb := 1− ( ft−1,rb(xb)− ft−1,sb(xb)).
Assumeℓa, ℓb≥ 0, ka,kb > 0 and wab≤ 0, then the solution of optimization (5) is as follows:

(γa,dγb)=





(C,C− γ̂b) if (2kaC+wab(C− γ̂b)− ℓa)< 0 and(2kb(C− γ̂b)+wabC− ℓb)< 0

(C, ℓb−wabC
2kb

) if
w2

abC−wabℓb−4kakbC+2kbℓa
2kb

> 0 and ℓb−wabC
2kb

∈ [−γ̂b,C− γ̂b]

( ℓa−wab(C−γ̂b)
2ka

,C− γ̂b) if ℓa−wab(C−γ̂b)
2ka

∈ [0,C] andℓb−2kb(C− γ̂b)−wab
ℓa−wab(C−γ̂b)

2ka
> 0

(2kbℓa−wabℓb
4kakb−w2

ab
, 2kaℓb−wabℓa

4kakb−w2
ab

) if (2kbℓa−wabℓb
4kakb−w2

ab
, 2kaℓb−wabℓa

4kakb−w2
ab

) ∈ [0,C]× [−γ̂b,C− γ̂b]

.

We skip the proof due to its high similarity to that of Proposition 2. Figure 2 summarizes the steps
of the multiclass DUOL (M-DUOL) algorithm. Note that we replace the conditions for auxiliary
example with the margin error in order to make more double updates.

A mistake bound for the M-DUOL algorithm, similar to Theorem 4, is given by the following
theorem.

Theorem 7 Let (x1,Y1), . . . ,(xT ,YT) be a sequence of examples, where xt ∈ R
n, Yt ⊆ Y and

κ(xi ,x j) ∈ [0,1] for all i , j. And assume C≥ 1. Then for any function̄f ∈ ∏k
i=1Hκ, the number

of prediction mistakes M made by M-DUOL on this sequence of examples is bounded by:

4
(

min
f̄∈H̄κ

F( f̄ )+C
T

∑
i=1

ℓ
(

f̄ ;(xi ,Yi)
))
−

ρ2

2
Mw

d (ρ)−
1+ρ
1−ρ

Ms
d(ρ).
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Algorithm 2: The Multiclass DUOL Algorithm (M-DUOL )

PROCEDURE

1: InitializeH0 = /0, S0 = /0, f̄0 = 0;
2: for t=1,2,. . . ,Tdo
3: Receive a new instancext

4: PredictWt−1 = f̄t−1(xt);
5: Receive its label setYt

6: ℓt =
[
1−Wt−1 ·H(Yt)]+

7: if lt > 0 then
8: wmin = ∞;
9: for ∀i ∈ St−1 do
10: if f i

t−1 ≤ 1 then
11: if (Hkti < wmin then
12: wmin = Hkti ;
13: (xb,Yb) = (xi ,Yi);
14: end if
15: end if
16: end for
17: f t

t−1 =Wt−1 ·H(Yt);
18: St = St−1∪

{
t
}

; Ht = Ht−1∪
{

H(Yt)
}

;
19: if (wmin≤−2ρ) then
20: Computeγt andγb by solving

the optimization (5)

21: for ∀i ∈ St do
22: f i

t ← f i
t−1+[γt ∗H(Yt)∗κ(xt ,xi)] ·H(Yi)

+[(γb− γ̂b)∗H(Yb)∗κ(xb,xi)] ·H(Yi);
23: end for
24: f̄t = f̄t−1+ γt ∗H(Yt)∗κ(xt , ·)

+(γb− γ̂b)∗H(Yb)∗κ(xb, ·);
25: else/* no auxiliary example found */
26: γt = min(C, ℓt

2κ(xt ,xt )
);

27: for ∀i ∈ St do
28: f i

t ← f i
t−1+[γt ∗H(Yt)∗κ(xt ,xi)] ·H(Yi);

29: end for
30: f̄t = f̄t−1+ γt ∗H(Yt)∗κ(xt , ·);
31: end if
32: else
33: f̄t = f̄t−1; St = St−1; Ht = Ht−1;
34: for ∀i ∈ St do
35: f i

t ← f i
t−1;

36: end for
37: end if
38: end for
return f̄T , ST , HT
END

Figure 2: Algorithms of multiclass double-updating online learning (M-DUOL).

5. Experimental Results

In this section, we evaluate the empirical performance of the proposed double updating online learn-
ing algorithms for online learning tasks. We first evaluate the performance of DUOL for binary
classification, followed by the evaluation of multiclass double updating online learning.

5.1 Testbeds and Experimental Setup for Binary-class Online Learning

We compare our technique with a number of state-of-the-art techniques, including the kernel Per-
ceptron algorithm (Kivinen et al., 2001), the “ROMMA” algorithm and its aggressive version “agg-
ROMMA” (Li and Long, 1999), the ALMAp(α) algorithm (Gentile, 2001), and the
Passive-Aggressive algorithms (“PA”) (Crammer et al., 2006). For PA, two versions of algorithms
(PA-I and PA-II) are implemented as described in Crammer et al. (2006). Note that one may also
compare with the online SVM algorithm (Shalev-Shwartz and Singer, 2006),which updates the
weights for all support vectors in each trial. However, we do not includethis baseline for compari-
son because it is too computationally intensive to run on some large data sets.

For the proposed DUOL algorithms, we implement three variants based on different solvers to
the problem in (1): (i) “DUOLappr” that employs an approximate solution to (1), that is,γt =

1
1−ρ

andγb = γ̂b+
1

1−ρ , (ii)“DUOL” that uses the exact solution to (1) given in Proposition 2, and(iii)
“DUOL iter” that first updates the weight for the misclassified example and then the weight for
auxiliary example, as suggested in Shalev-Shwartz and Singer (2007)
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We test all the algorithms on eight benchmark data sets from web machine learning repositories,
which are listed in table 1. All of the data sets can be downloaded from LIBSVM website,1 UCI
machine learning repository,2 and MIT CBCL face data sets.3

Data Set # examples # features

sonar 208 60
splice 1,000 60
german 1,000 24
mushrooms 8,124 112
dorothea 1,150 100,000
spambase 4,601 57
MITFace 6,977 361
w7a 24,692 300

Table 1: Binary-class data sets used in the experiments.

To make a fair comparison, for all algorithms in comparison, we setC = 5 and use the same
Gaussian kernel withσ = 8. For the ALMAp(α) algorithm, parameterp andα are set to 2 and 0.9,
respectively, based on our experience. For the proposed DUOL algorithm, we fix ρ to be 0 for all
cases. All the experiments are repeated 20 times, each with an independentrandom permutation of
the data points. All the results are reported by averaging over the 20 runs. We evaluate the online
learning performance by measuring themistake rate, that is, the percentage of examples that are
misclassified by the online learning algorithm. We measure the sparsity of the learned classifiers
by the number of support vectors. We evaluate computational efficienciesof all the algorithms in
terms of their CPU running time (in seconds). All the experiments are run in Matlab over a windows
machine of 2.3GHz CPU.

5.2 Performance Evaluation for Binary-Class Online Learning

Table 2 summarizes the performance of all the compared online learning algorithms over the binary
data sets. We can draw several observations from the results.

First, among the six baseline algorithms in comparison, we observe that the agg-ROMMA and
two PA algorithms (PA-I and PA-II) perform considerably better than the other three algorithms
(i.e., Perceptron, ROMMA, and ALMA) in most cases. We also notice that theagg-ROMMA
and the two PA algorithms consume considerably larger numbers of supportvectors than the other
three algorithms. We believe this is because the agg-ROMMA and the two PA algorithms adopt
more aggressive strategies than the other three algorithms, resulting in more updates and better
classification performance. For the convenience of discussion, we refer to agg-ROMMA and two
PA algorithms asaggressivealgorithms, and the other three online learning algorithms asnon-
aggressiveones.

Second, we observe that among the three variants of double updating online learning, the DUOL
approach, which solves the optimization problem exactly, yields the leastmistake ratewith the
smallest number of support vectors for most of the cases. Comparing with the baseline algorithms,

1. LIBSVM website ishttp://www.csie.ntu.edu.tw/ ˜ cjlin/libsvmtools/datasets/ .
2. UCI ML repository is athttp://www.ics.uci.edu/ ˜ mlearn/MLRepository.html .
3. MIT CBCL face data sets can be found athttp://cbcl.mit.edu/software-datasets .
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Algorithm sonar splice
Mistake (%) Support Vectors (#) Time (s) Mistakes (%) Support Vectors (#) Time (s)

Perceptron 38.125± 3.815 79.30± 7.93 0.004 27.120± 0.975 271.20± 9.75 0.017

ROMMA 36.587± 2.976 76.10± 6.19 0.006 25.560± 0.814 255.60± 8.14 0.032

agg-ROMMA 34.928± 2.860 130.05± 7.51 0.009 22.980± 0.780 602.90± 7.42 0.044

ALMA 2(0.9) 36.370± 3.572 86.25± 6.43 0.006 26.040± 0.965 314.95± 9.41 0.032

PA-I 40.986± 2.837 154.15± 6.95 0.004 23.815± 1.042 665.60± 5.60 0.029

PA-II 40.481± 3.023 162.40± 6.26 0.004 23.515± 1.005 689.00± 7.85 0.029

DUOLiter 39.495± 3.299 149.85± 3.42 0.014 23.205± 0.932 566.85±13.08 0.097

DUOLappr 41.010± 2.335 162.25± 5.01 0.013 21.945± 1.134 721.85± 9.10 0.095

DUOL 34.255± 2.811 137.60± 6.99 0.017 20.875± 0.868 577.15±10.81 0.087

Algorithm german mushrooms
Mistake (%) Support Vectors (#) Time (s) Mistakes (%) Support Vectors (#) Time (s)

Perceptron 34.760± 0.947 347.60± 9.47 0.019 2.083± 0.278 169.25± 22.58 0.148

ROMMA 34.725± 1.009 347.25± 10.09 0.037 2.429± 0.101 197.35± 8.24 0.264

agg-ROMMA 32.925± 1.184 633.40± 14.02 0.049 1.568± 0.096 1307.90± 39.59 0.576

ALMA 2(0.9) 33.480± 0.681 394.75± 9.24 0.036 2.538± 0.297 304.80± 38.02 0.267

PA-I 33.010± 1.025 721.10± 12.99 0.031 1.661± 0.089 1221.55± 22.80 0.454

PA-II 32.630± 1.016 749.50± 11.84 0.032 1.657± 0.088 1326.20± 22.85 0.483

DUOLiter 35.985± 1.077 714.35± 12.75 0.125 1.537± 0.101 860.05± 23.00 0.521

DUOLappr 30.275± 0.937 716.10± 10.44 0.096 1.459± 0.101 1291.35± 32.03 0.658

DUOL 31.810± 1.090 656.30± 14.36 0.108 0.596± 0.053 453.70± 19.40 0.341

Algorithm dorothea spambase
Mistake (%) Support Vectors (#) Time (s) Mistakes (%) Support Vectors (#) Time (s)

Perceptron 13.257± 0.973 152.45± 11.18 0.016 24.987± 0.525 1149.65± 24.16 0.215

ROMMA 17.461± 0.537 200.80± 6.18 0.035 23.953± 0.510 1102.10± 23.44 0.275

agg-ROMMA 17.435± 0.500 438.30± 13.83 0.044 21.242± 0.384 2550.70± 27.28 0.515

ALMA 2(0.9) 14.478± 0.378 210.25± 5.68 0.035 23.579± 0.411 1550.15± 15.65 0.348

PA-I 17.500± 0.491 461.30± 15.80 0.026 22.112± 0.374 2861.50± 24.36 0.479

PA-II 17.500± 0.491 461.30± 15.80 0.027 21.907± 0.340 3029.10± 24.69 0.504

DUOLiter 21.109± 0.796 559.20± 19.44 0.080 21.907± 0.432 2511.20± 34.14 1.215

DUOLappr 17.500± 0.491 461.30± 15.80 0.054 20.185± 0.351 2981.00± 26.95 1.091

DUOL 11.757± 0.237 407.50± 12.80 0.080 19.438± 0.282 2494.95± 26.19 1.069

Algorithm MITFace w7a
Mistake (%) Support Vectors (#) Time (s) Mistakes (%) Support Vectors (#) Time (s)

Perceptron 4.665± 0.192 325.50± 13.37 0.207 4.027± 0.095 994.40± 23.57 3.392

ROMMA 4.114± 0.155 287.05± 10.84 0.285 4.158± 0.087 1026.75± 21.51 1.875

agg-ROMMA 3.137± 0.093 1121.15± 24.18 0.555 3.500± 0.061 2318.65± 60.49 3.257

ALMA 2(0.9) 4.467± 0.169 400.10± 10.53 0.297 3.518± 0.071 1031.05± 15.33 1.314

PA-I 3.190± 0.128 1155.45± 14.53 0.439 3.701± 0.057 2839.60± 41.57 2.691

PA-II 3.108± 0.112 1222.05± 13.73 0.463 3.571± 0.053 3391.50± 51.94 3.311

DUOLiter 2.551± 0.128 963.45± 23.80 0.572 4.456± 0.073 3048.85± 54.53 4.566

DUOLappr 2.687± 0.140 1262.50± 20.68 0.656 3.116± 0.104 2908.95± 28.65 3.679

DUOL 2.151± 0.106 697.95± 13.17 0.445 2.914± 0.045 2402.55± 39.88 6.470

Table 2: Evaluation of online learning algorithms on the binary-class data sets.
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we observe that DUOL achieves significantly smallermistake ratesthan the other single-updating
algorithms in all cases. This shows that the proposed double updating approach is effective in im-
proving the performance of online prediction. By examining the number of support vectors, we
observed that DUOL results in sparser classifiers than the three aggressive online learning algo-
rithms, and denser classifiers than the three non-aggressive algorithms.

Third, according to the results of running time, we observe that DUOL is overall efficient as
compared with the state-of-the-art online learning algorithms. Among all the algorithms in compar-
ison, Perceptron, due to its simplicity nature, is clearly the most efficient algorithm. Since DUOL
requires double updates, it is less efficient than PA, ROMMA and ALMA algorithms, but is compa-
rable to the agg-ROMMA algorithm. Note that the comparisons of running time costs are slightly
different compared with the results in our previous conference paper (Zhao et al., 2009) because we
did some improvements of efficiency for the implementations of some existing algorithms in this
journal article.

5.3 Evaluation of Different Auxiliary Example Selection Strategies andthe Sensitivity to
ParameterC for DUOL

As the performance of DUOL quite relies on the choice of auxiliary examples,in this section, we
evaluate different auxiliary example selection strategies. Specifically, we compare the proposed
strategy to a random selection approach, referred to as “DUOLrand”, which randomly chooses an
auxiliary example from the existing support vectors. The exact solution to the problem in (1), given
by Proposition 2, is used for updating the weights of both examples. We setρ = 0 andσ = 8 for all
the data sets, same as the previous experiments.

Figure 3 compares the online prediction performance between DUOL and DUOLrand as well
as the other competing algorithms with variedC values across eight different data sets. Several
observations can be drawn from the results.

First, it is clear to see that the proposed strategy for selecting auxiliary examples is more effec-
tive than the random selection strategy for most cases. Second, among allthe compared algorithms,
we observe that DUOL always achieves the best performance whenC is sufficiently large (e.g.,
C> 10), except for data sets “german” and “w7a” where a smallerC value tends to produce a better
result. This observation is consistent to our previous theoretical result, which indicates setting a
largeC value usually implies more strong updates and consequently a better mistake bound. Third,
we observe that the proposed DUOL algorithm is significantly more accuratethan the other two
variants of double updating online learning algorithms (DUOLiter and DUOLappr) for variedC val-
ues, as we expected. We observe that DUOLiter, the iterative updating approach, performs unstably,
which might be due to local optimum suffered from its heuristic update. This observation validates
the importance of performing the optimal double updates by the proposed DUOL algorithm.

5.4 Empirical Evaluation of Mistake Bounds

To examine how the double updating strategy affects the mistake bound, we empirically compareM,
the total number of mistakes made by the DUOL algorithm,Mw

d (ρ), the number of mistake cases
where the weak double updates are applied, andMs

d(ρ), the number of mistake cases where the
strong double updates are applied. Figure 4 shows the comparison between M, Mw

d (ρ), andMs
d(ρ)

by varyingρ from 0 to 1.
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Figure 3: Comparison between DUOL and DUOLrand with variedC values.
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First, we observe that double updates are frequently applied whenρ is small. This is because
it is easier to find an auxiliary example for double updating whenρ is small. Further, we find that
settingρ close to 0 by default often leads to the best or close to the best results. Second, we observe
that the number of weak updates is significantly larger than that of strong updates. This is because
the condition of conducting a strong double update is significantly more difficult to be satisfied
that that for a weak double update. Third, we observe that bothMw

d (ρ) andMs
d(ρ) monotonically

decrease when increasing the value ofρ. In the extreme case, whenρ is close to 1, their value often
drops to zero, indicating that no double update was applied. In the meantime, we find that the total
number of mistakes often reaches the maximum, asρ approaches 1. These results again validate the
importance and effectiveness of the proposed double updating algorithm.

5.5 Testbeds and Experimental Setup for Multiclass Online Learning

Table 3 shows the multiclass data sets from Web machine learning repository used in our experi-
ments. We compare the proposed M-DUOL algorithm with six state-of-the-artonline learning algo-
rithms. The first three algorithms are variants of Perceptron-based on methods studied in Crammer
and Singer (2003). They are: (i) “Max”, the perceptron method basedon themax-scoremulticlass
update, (ii) “Uniform”, the perceptron method based on theUniform multiclass update, and (iii)
“Prop”, the perceptron method based on theproportion multiclass update. We also compare the
proposed algorithm with the other three state-of-the-art online multi-class learning algorithms, in-
cluding the MIRA algorithm proposed by Crammer and Singer (2003), and the Passive-Aggressive
(PA) algorithms, “PA-I” and “PA-II” proposed by Crammer et al. (2006). Similar to the experiments
of binary classification, we implement three variants of the proposed M-DUOL algorithm based on
different solvers to the problem in (5), that is, “M-DUOLappr”, “M-DUOL”, and “M-DUOL iter”.
For all experiments, we use the Gaussian kernel withσ = 8 and setC = 10. The thresholdρ in the
proposed algorithms is set to 0 for all experiments. All the experiments were repeated 20 time and
the final results are averaged over 20 runs.

data set # training examples # classes # features

vehicle 846 4 18
dna 2,000 3 180
segment 2,310 7 19
satimage 4,435 6 36
usps 7,291 10 256
mnist 10,000 10 780
letter 15,000 26 16
protein 17,766 3 357

Table 3: Multiclass data sets used in the experiments.

5.6 Performance Evaluation for Multi-class Online Learning

Table 4 summarizes the empirical performance for multi-class online learning. Several observations
can be drawn from the experimental results.

First, by comparing all the baseline algorithms, we find that the two PA algorithms yield con-
siderably lower mistake rates than the other single-updating online learning algorithms. On the
other hand, the classifiers learned by the three Perceptron-based algorithms (Max, Uniform, and
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Figure 4: Empirical comparison ofM, Mw
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Algorithm vehicle dna
Mistake (%) Support Vectors (#) Time (s) Mistakes (%) Support Vectors (#) Time (s)

Max 64.882± 1.643 548.90± 13.90 0.079 20.460± 0.770 409.20± 15.41 0.192

Uniform 65.934± 1.554 557.80± 13.15 0.109 19.875± 0.427 397.50± 8.54 0.264

Prop 66.678± 1.757 564.10± 14.86 0.116 20.268± 0.555 405.35± 11.10 0.267

MIRA 62.252± 2.114 526.65± 17.89 1.821 26.920± 0.880 538.40± 17.61 5.304

PA-I 67.086± 1.479 781.70± 12.42 0.091 15.503± 0.474 1224.35± 13.48 0.326

PA-II 66.909± 1.475 789.30± 10.73 0.089 15.398± 0.467 1237.50± 13.12 0.325

M-DUOLiter 70.674± 1.194 758.05± 8.65 0.162 11.668± 0.599 1086.00± 16.39 0.502

M-DUOLappr 69.634± 1.463 828.05± 4.48 0.158 14.105± 0.611 1281.75± 14.44 0.495

M-DUOL 51.950± 1.948 719.25± 10.95 0.172 10.340± 0.513 869.80± 12.61 0.438

Algorithm segment satimage
Mistake (%) Support Vectors (#) Time (s) Mistakes (%) Support Vectors (#) Time (s)

Max 41.342± 1.013 955.00± 23.40 0.414 29.628± 0.561 1314.00± 24.89 0.826

Uniform 41.468± 0.550 957.90± 12.71 0.566 28.440± 0.398 1261.30± 17.64 1.071

Prop 41.589± 0.714 960.70± 16.48 0.565 28.878± 0.467 1280.75± 20.72 1.087

MIRA 35.784± 3.770 826.55± 87.08 9.193 27.536± 2.228 1221.20± 98.80 15.229

PA-I 39.775± 0.665 1852.75± 19.90 0.573 27.377± 0.361 2676.40± 24.88 1.296

PA-II 39.842± 0.655 1870.70± 18.97 0.577 27.258± 0.429 2709.50± 23.77 1.307

M-DUOLiter 41.416± 1.084 1787.90± 31.00 0.903 33.894± 0.567 2787.45± 43.18 2.024

M-DUOLappr 39.314± 0.791 1923.60± 14.31 0.871 26.222± 0.464 3052.50± 31.39 2.024

M-DUOL 20.580± 0.705 1265.15± 28.39 0.693 22.524± 0.482 2066.85± 32.99 1.505

Algorithm usps mnist
Mistake (%) Support Vectors (#) Time (s) Mistakes (%) Support Vectors (#) Time (s)

Max 10.025± 0.195 730.90± 14.21 1.459 15.318± 0.168 1531.80± 16.80 2.744

Uniform 9.445± 0.150 688.60± 10.91 1.858 14.603± 0.201 1460.25± 20.15 3.631

Prop 9.614± 0.176 700.95± 12.86 1.868 14.763± 0.228 1476.30± 22.78 3.635

MIRA 11.572± 0.403 843.75± 29.39 44.663 18.037± 0.539 1803.70± 53.93 67.168

PA-I 6.641± 0.158 2528.45± 23.48 2.669 11.026± 0.208 4773.70± 32.84 5.771

PA-II 6.568± 0.116 2561.95± 27.94 2.606 10.959± 0.238 4830.40± 27.06 5.824

M-DUOLiter 5.743± 0.158 2284.15± 40.06 3.160 8.947± 0.182 4398.95± 46.46 9.031

M-DUOLappr 6.002± 0.132 2725.40± 23.55 3.541 9.640± 0.164 5163.05± 37.34 10.386

M-DUOL 5.162± 0.149 1759.30± 23.44 2.408 8.282± 0.183 3557.15± 25.17 7.050

Algorithm letter protein
Mistake (%) Support Vectors (#) Time (s) Mistakes (%) Support Vectors (#) Time (s)

Max 71.562± 0.538 10734.35± 80.63 18.749 47.657± 0.221 8466.75± 39.21 12.842

Uniform 71.973± 0.280 10795.90± 41.99 47.031 46.828± 0.272 8319.45± 48.36 14.342

Prop 72.033± 0.273 10804.95± 40.89 43.683 47.260± 0.260 8396.15± 46.13 14.620

MIRA 67.709± 1.196 10156.35±179.54 467.019 47.905± 0.922 8510.80±163.74 42.174

PA-I 72.283± 0.338 14708.55± 15.27 24.848 47.657± 0.230 14153.25± 49.06 23.409

PA-II 72.339± 0.380 14735.55± 15.86 24.131 47.550± 0.285 14285.85± 44.94 23.602

M-DUOLiter 73.066± 0.326 14614.65± 22.26 210.684 50.070± 0.392 14191.85± 64.80 55.622

M-DUOLappr 69.992± 0.331 14892.70± 11.77 215.587 51.459± 0.582 16000.55± 72.07 63.065

M-DUOL 54.068± 0.351 13140.40± 37.33 186.452 46.281± 0.418 12550.10± 87.27 43.774

Table 4: Evaluation of multiclass online learning algorithms on the multiclass data sets.
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Prop) and MIRA are considerably sparser than those learned by the twoPA algorithms. We believe
that this can be attributed to the aggressive updating strategies used by the PA algorithms. Second,
among the three variants of double updating for multi-label learning, it is not surprising to observe
that M-DUOL yields the lowest mistake rates for all data sets. Further, amongall the algorithms,
we observe that the M-DUOL algorithm makes the least number of mistakes forall data sets, and
significantly outperforms all the baseline algorithms.

Second, by examining the sparsity of classifiers learned by the proposedalgorithms, we observe
that the number of support vectors identified by M-DUOL is usually smaller than that of the PA
algorithms (except for data set “vehicle”), but is significantly larger thanthose of the four non-
aggressive algorithms (i.e., Max, Uniform, Prop, and MIRA).

Finally, comparing the running time cost, we observe that the Max algorithm is themost effi-
cient one, while MIRA is the least efficient approach for all the data sets.Despite the additional
time needed for double updates, overall we found that the running time of theproposed M-DUOL
algorithm is comparable to those of the two PA algorithms (except for the “letter”data set where the
time costs of the M-DUOL algorithms are considerably greater than those of thePA algorithms).

6. Discussions and Future Directions

Although encouraging results have been achieved by the proposed novel DUOL algorithms, we
should address the limitations of our current work and discuss some research directions for future
improvements. First of all, the proposed DUOL algorithm is based on the Passive Aggressive on-
line learning algorithms (Crammer et al., 2006). For the future work, it is possible to extend other
single update online learning methods, such as EG (Kivinen and Warmuth, 1995), for double up-
dating. Second, the approach for choosing an auxiliary example from existing support vectors may
be further improved by exploring the heuristics for measuring the informativeness of an example.
Finally, we plan to extend the proposed double updating framework for budget online learning to
make sparse classifiers.

7. Conclusions

This paper presented a novel “double updating” approach to online learning named as “DUOL”,
which not only updates the weight of the misclassified example, but also adjusts the weight of one
existing support vector that the most seriously conflicts with the new support vector. We show
that the mistake bound for an online classification task can be significantly reduced by the proposed
DUOL algorithms. We have conducted an extensive set of experiments by comparing with a number
of algorithms for both binary and multiclass online classifications. Promising empirical results
showed that the proposed double updating online learning algorithms consistently outperform the
single-update online learning algorithms.
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Appendix A. The Proof for Proposition 2

Proof The optimization (1) can be rewritten to the following equivalent optimization:

min
γa,dγb

ka

2
γ2

a+
kb

2
d2

γb
+wabγadγb− ℓaγa− ℓbdγb,

s.t. γa−C≤ 0, (6)

−γa≤ 0, (7)

dγb−C+ γ̂b≤ 0, (8)

−dγb− γ̂b≤ 0, (9)

whereka,kb > 0, wab≤ 0, ℓa = 1− ya f (xa) ≥ 0, ℓb = 1− yb f (xb) ≥ 0 andγ̂b > 0. With λ1, λ2,
λ3 andλ4 as Lagrange multipliers, the KKT conditions for this problem consist of the constraints
(6)-(9), the nonnegativity constraintsλi ≥ 0, ∀i, the complementary slackness conditions

λ1(γa−C) = 0, λ2(−γa) = 0, λ3(dγb−C+ γ̂b) = 0, λ4(−dγb− γ̂b) = 0

and zero gradient conditions:

kaγa+wabdγb− ℓa+λ1−λ2 = 0 and kbdγb +wabγa− ℓb+λ3−λ4 = 0.

We will discuss every possible condition to compute the closed-form solution.Firstly, we will dis-
cuss the caseλ1 6= 0:

A.1 Case 1. Ifλ1 6= 0

Sinceλ1(γa−C) = 0, we haveγa = C; further, becauseλ2(−γa) = 0, we haveλ2 = 0. Under the
conditionλ1 6= 0, we will discussλ3 6= 0 andλ3 = 0 separately as follows:

A.1.1 SUB-CASE 1.1. IF λ3 6= 0

Sinceλ3[dγb− (C− γ̂b)] = 0, we havedγb =C− γ̂b, as a resultλ4(−C) = 0, soλ4 = 0. Plugging the
resultsγa =C, λ2 = 0, dγb =C− γ̂b andλ4 = 0 into the zero gradient condition, we have

kaC+wab(C− γ̂b)− ℓa+λ1 = 0 and kb(C− γ̂b)+wabC− ℓb+λ3 = 0.

Thus, we have

λ1 =−[kaC+wab(C− γ̂b)− ℓa] and λ3 =−[kb(C− γ̂b)+wabC− ℓb].

As a result, if

−(kaC+wab(C− γ̂b)− ℓa)> 0 and − (kb(C− γ̂b)+wabC− ℓb)> 0,

then KKT conditions are satisfied,(γa,dγb) = (C,C− γ̂b) is the unique solution.
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A.1.2 SUB-CASE 1.2. IF λ3 = 0

Whenλ3 = 0, we only concludedγb ∈ [−γ̂b,C− γ̂b].
Under the conditionsλ1 6= 0 andλ3 = 0, we will discuss the two casesλ4 6= 0 andλ4 = 0, respec-
tively as follows.
Sub-case 1.2.1. Ifλ4 6= 0. Sinceλ4(−dγb− γ̂b) = 0, we havedγb =−γ̂b. Plugging the resultsλ2 = 0,
γa =C, λ3 = 0 anddγb =−γ̂b in to the zero gradient conditions:

kaC+wab(−γ̂b)− ℓa+λ1 = 0 and kb(−γ̂b)+wabC− ℓb−λ4 = 0.

But sincekb(−γ̂b) < 0 wabC≤ 0 andℓb,λ4 ≥ 0, kb(−γ̂b)+wabC− ℓb−λ4 < 0, which contradicts
the equation above.
Sub-case 1.2.2. Ifλ4 = 0. Plugging the conditionsγa =C, λ2 = 0, λ3 = 0 andλ4 = 0 into the zero
gradient equations:

kaC+wabdγb− ℓa+λ1 = 0 and kbdγb +wabC− ℓb = 0.

Solving the above equations leads to the following:

λ1 =
w2

abC−wabℓb−kakbC+kbℓa

kb
and dγb =

ℓb−wabC
kb

.

If w2
abC−wabℓb−kakbC+kbℓa

kb
> 0 andℓb−wabC

kb
∈ [−γ̂b,C− γ̂b], then the KKT conditions are all satisfied; as

a result,(γa,dγb) = (C, ℓb−wabC
kb

) is the unique optimal solution.

Next we will discuss the situation with the conditionλ1 = 0.

A.2 Case 2. Ifλ1 = 0

Under the conditionλ1 = 0, we only concludeγa ∈ [0,C]. We will discuss the casesλ2 6= 0 and
λ2 = 0 under the conditionλ1 = 0, respectively.

A.2.1 SUB-CASE 2.1. IF λ2 6= 0

Sinceλ2(−γa) = 0, we concludeγa = 0. Under the conditionsλ1 = 0 andλ2 6= 0, we will discuss
the casesλ3 6= 0 andλ3 = 0:
Sub-case 2.1.1. Ifλ3 6= 0. Sinceλ3[dγb− (C− γ̂b)] = 0, plugging the conditionsλ1 = 0, γa = 0,
dγb =C− γ̂b andλ4 = 0 into the zero gradient conditions:

wab(C− γ̂b)− ℓa−λ2 = 0 and kb(C− γ̂b)− ℓb+λ3 = 0.

Sincewab≤ 0,C− γ̂b≥ 0 andℓa≥ 0, we conclude

λ2 = wab(C− γ̂b)− ℓa≤ 0.

But λ2≥ 0 andλ2 6= 0, concludeλ2 > 0, which contradicts the inequality above.
Sub-case 2.1.2. Ifλ3 = 0. Under these known conditions, we only knowdγb ∈ [−γ̂b,C− γ̂b]. Below,
we will discuss the casesλ4 6= 0 andλ4 = 0, under the conditionsλ1 = 0, λ2 6= 0 andλ3 = 0.
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• If λ4 6= 0, sinceλ4(−dγb− γ̂b) = 0, dγb = −γ̂b. From the conditionsλ1 = 0, γa = 0, λ3 = 0
anddγb =−γ̂b and the zero gradient conditions, we have

wab(−γ̂b)− ℓa−λ2 = 0 and kb(−γ̂b)− ℓb−λ4 = 0.

Sincekb, γ̂b > 0 andℓb≥ 0, we conclude

λ4 = kb(−γ̂b)− ℓb < 0.

But the equation above contradictsλ4 > 0.

• Else if λ4 = 0, from the conditionsλ1 = 0, γa = 0, λ3 = 0 andλ4 = 0 and the zero gradient
conditions, we have

wabdγb− ℓa−λ2 = 0 and kbdγb− ℓb = 0.

Sincewab≤ 0, ℓb, ℓa≥ 0 andkb > 0,

λ2 = wab
ℓb

kb
− ℓa≤ 0,

which contradictsλ2 > 0 (Sinceλ2 6= 0).

A.2.2 SUB-CASE 2.2. IF λ2 = 0

Under the conditionsλ1 = λ2 = 0, we only knowγa ∈ [0,C]. Below, we will discuss the two cases
λ3 6= 0 andλ3 = 0, under the conditionsλ1 = λ2 = 0.
Sub-case 2.2.1. Ifλ3 6= 0. Sinceλ3[dγb− (C− γ̂b)] = 0, dγb = C− γ̂b, as a resultλ4(−C) = 0, so
λ4 = 0. From the conditionsλ1 = λ2 = λ4 = 0, dγb =C− γ̂b and zero gradient conditions:

kaγa+wab(C− γ̂b)− ℓa = 0 and kb(C− γ̂b)+wabγa− ℓb+λ3 = 0.

As a result, if

ℓa−wab(C− γ̂b)

ka
∈ [0,C] and ℓb−kb(C− γ̂b)−wab

ℓa−wab(C− γ̂b)

ka
> 0,

the unique optimal solution is(γa,dγb) = ( ℓa−wab(C−γ̂b)
ka

,C− γ̂b).
Sub-case 2.2.2. Ifλ3 = 0. According toλ1 = λ2 = λ3 = 0, we only concludedγb ∈ [−γ̂b,C− γ̂b].

• If λ4 6= 0, sinceλ4(−dγb− γ̂b) = 0, dγb = −γ̂b. Fromλ1 = λ2 = λ3 = 0, dγb = −γ̂b and zero
gradient conditions:

kaγa+wab(−γ̂b)− ℓa = 0 and kb(−γ̂b)+wabγa− ℓb−λ4 = 0,

sinceλ4 = kb(−γ̂b)+wabγa− ℓb < 0 which contradicts with the conditionλ4 > 0.

• If λ4 = 0, fromλ1 = λ2 = λ3 = λ4 = 0 and zero gradient conditions:

kaγa+wabdγb− ℓa = 0 and kbdγb +wabγa− ℓb = 0.

As a result, ifγa anddγb satisfy the following:

γa =
kbℓa−wabℓb

kakb−w2
ab

∈ [0,C] and dγb =
kaℓb−wabℓa

kakb−w2
ab

∈ [−γ̂b,C− γ̂b],

then(γa,dγb) = ( kbℓa−wabℓb
kakb−w2

ab
, kaℓb−wabℓa

kakb−w2
ab

) is the unique optimal solution.
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Summary:The final closed-form solution to the optimization is summarized as:

(γa,dγb) =





(C,C− γ̂b) if (kaC+wab(C− γ̂b)− ℓa)< 0 and(kb(C− γ̂b)+wabC− ℓb)< 0

(C, ℓb−wabC
kb

) if
w2

abC−wabℓb−kakbC+kbℓa
kb

> 0 andℓb−wabC
kb

∈ [−γ̂b,C− γ̂b]

( ℓa−wab(C−γ̂b)
ka

,C− γ̂b) if ℓa−wab(C−γ̂b)
ka

∈ [0,C] andℓb−kb(C− γ̂b)−wab
ℓa−wab(C−γ̂b)

ka
> 0

( kbℓa−wabℓb
kakb−w2

ab
, kaℓb−wabℓa

kakb−w2
ab

) if ( kbℓa−wabℓb
kakb−w2

ab
, kaℓb−wabℓa

kakb−w2
ab

) ∈ [0,C]× [−γ̂b,C− γ̂b]

.

Appendix B. The Proof for Proposition 3

Proof First of all, the productH(Ya) ·H(Yb) can be simplified as:

H(Ya) ·H(Yb) =
k

∑
i=1

σ(i,a)σ(i,b) = σ(ra,a)σ(ra,b)+σ(sa,a)σ(sa,b) = σ(ra,b)−σ(sa,b).

We can check the value ofσ(ra,b)−σ(sa,b) by examining all possible cases as follows:

1 If ra = rb that implies thatxa and xb have the same relevant labels, then we should have
H(Ya) ·H(Yb) = 1−σ(sa,b)≥ 1 (either 1 or 2);

2 If ra 6= rb, then:

2.1 If ra = sb, thenHYa ·HYb = σ(sb,b)−σ(sa,b) =−1−σ(sa,b)≤−1;

2.2 If ra 6= sb, thenHYa ·HYb = σ(ra,b)−σ(sa,b) = 0−σ(sa,b):

2.2.1 Ifsa = sb, thenHYa ·HYb =−σ(sb,b) = 1;
2.2.2 Ifsa = rb, thenHYa ·HYb =−σ(rb,b) =−1;
2.2.3 Ifsa 6= sb andsa 6= rb, thenHYa ·HYb =−σ(sa,b) = 0.

We thus have the fact thatH(Ya) ·H(Yb)< 0 holds if and only if (ra = sb) or (sa = rb).

Appendix C. The Proof of Proposition 4

In this appendix, we will derive the dual ascent by the multiclass double updating approach. Our
approach to the proofs is mainly inspired by the study in Shalev-Shwartz (2007), but our problem is
different from their study.

For the convenience of our presentation, we introduce the following notation for our derivation.
We denote the loss function for a training example(x,Y) as follows:

g( f̄ ) = ℓ
(

f̄ ;(x,Y)
)
= max

r∈Y,s6∈Y

[
1−
(

fr(x)− fs(x)
)]

+
.

We order all the classesr in the assigned setY asr1, · · · , r‖Y‖, and the classs in the unassigned set
Y \Y ass1, · · · ,s‖[k]/Y‖. We slightly abuse our notations by simplifying〈 f ,g〉HK

as〈 f ,g〉 and‖ f‖HK

as‖ f‖ when there is no ambiguity about the space for computing dot product and norm.
We first give a lemma that shows the Fenchel conjugate of the above loss functiong.
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Lemma 2 Let Y = [k] be the possible labels set. Y⊆ Y is relevant labels set for x∈ Rn. f̄ =
( f1, · · · , fk)T , where∀i ∈ [k], fi ∈Hκ. And the loss function is defined as follows:

g( f̄ ) = max
r∈Y,s6∈Y

[
1−
(

fr(x)− fs(x)
)]

+
.

Then for anȳλ = (λ1, · · · ,λk)
T , where∀i λi ∈Hκ, we have g’s Fenchel conjugate as:

g∗(λ̄) =
{
−∑i, j αi j if λr i +∑ j αi j κ(x, ·) = 0 andλsj −∑i αi j κ(x, ·) = 0
∞ otherwise

,

whereᾱ = (αi j ) ∈ A = [A|A∈ R‖Y‖+ ×R(k−‖Y‖)
+ ,‖A‖1≤ 1] and(r i×sj) ∈ B =Y× ([k]/Y).

Proof The approach of our proof is similar to the method for proving the “Max-of-hinge” in Shalev-
Shwartz (2007). First of all, it is not difficult to show that the loss functioncan be re-formulated as
follows:

g( f̄ ) = max
ᾱ∈A ,(r i×sj )∈B

∑
i, j

αi j

[
1−
(

fr i (x)− fsj (x)
)]

= max
ᾱ∈A ,(r i×sj )∈B

∑
i, j

αi j

[
1−
(
〈 fr i (·),κ(x, ·)〉−〈 fsj (·),κ(x, ·)〉

)]
.

As a result, we have:

g∗(λ̄) = max
f̄

{
〈λ̄, f̄ 〉−g( f̄ )

}

= max
f̄

{ k

∑
n=1

〈λn, fn〉− max
ᾱ∈A ,(r i×sj )∈B

∑
i, j

αi j

[
1−
(
〈 fr i (·),κ(x, ·)〉−〈 fsj (·),κ(x, ·)〉

)]}
.

For any fn,λn∈Hκ, they can be written as:fn = βnκ(x, ·)+ f⊥n ,λn = γnκ(x, ·)+λ⊥n , where f⊥n ,λ⊥n ∈
V ⊥, V = span{κ(x, ·)}. As a result, we have

g∗(λ̄) = max
f̄

{ k

∑
n=1

(
〈λ⊥n , f⊥n 〉+βnγnκ(x,x)

)
− max
ᾱ∈A ,(r i×sj )∈B

∑
i, j

αi j

[
1−
(
βr i κ(x,x)−βsj κ(x,x)

)]}
.

Whenλ⊥n 6= 0, the maxf⊥〈λ⊥n , f⊥n 〉 will be ∞, resultingg∗(λ̄) = ∞. Otherwise, ifλ⊥n = 0, ∀n, the
term f⊥n does not take effect for the objective; as a result, the optimalfn can be written in the form
of βnκ(x, ·) and the conjugate is computed as follows:

g∗(λ̄) =max
βn

{ k

∑
n=1

βnγnκ(x,x)− max
ᾱ∈A ,(r i×sj )∈B

∑
i, j

αi j

[
1−
(
βr i κ(x,x)−βsj κ(x,x)

)]}

=max
βn

min
ᾱ∈A ,(r i×sj )∈B

{ k

∑
n=1
〈λn,βnκ(x, ·)〉−∑

i, j
αi j

[
1−
(
〈βr i κ(x, ·),κ(x, ·)〉−〈βsj κ(x, ·),κ(x, ·)〉

)]}

= min
ᾱ∈A ,(r i×sj )∈B

max
βn

{ k

∑
n=1
〈λn,βnκ(x, ·)〉−∑

i, j
αi j

[
1−
(
〈βr i κ(x, ·),κ(x, ·)〉−〈βsj κ(x, ·),κ(x, ·)〉

)]}

= min
ᾱ∈A ,(r i×sj )∈B

{
−∑

i, j
αi j +max

βn

[
∑
r i

〈βr i κ(x, ·),λr i +∑
j

αi j κ(x, ·)〉+∑
sj

〈βsj κ(x, ·),λsj−∑
i

αi j κ(x, ·)〉
]}
.
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The fourth equality is guaranteed by the strong max-min property (Boyd andVandenberghe, 2004),
and more importantly, we can see that only whenᾱ satisfiesλr i + ∑ j αi j κ(x, ·) = 0 and λsj −

∑i αi j κ(x, ·) = 0, the second term in the equation above will be zero; otherwise, it will be∞. There-
fore, we have the resulting Fenchel conjugate ofg( f̄ ) as follows:

g∗(λ̄) =
{
−∑i, j αi j λr i +∑ j αi j κ(x, ·) = 0 andλsj −∑i αi j κ(x, ·) = 0
∞ otherwise

.

Given the above Fenchel dual of loss function, we can derive the dual for the optimization problem
given on the right-hand side of Equation (4), as given in the following lemma.

Lemma 3 Suppose the complexity measure function is given as F( f̄ ) = ∑k
i=1

1
2‖ fi‖2Hκ

, and we set
αi j to zeros for∀(i, j) ∈ {[Yt × ([k]/Yt)]/(rt ,st)}, where(rt ,st) is defined in Equation (2). Then
the dual objective function for optimization given on the right-hand side of Equation (4) can be
expressed as follows:

D(γ1, · · · ,γT) =−
k

∑
i=1

1
2
‖

T

∑
t=1

σ(i, t)γtκ(xt , ·)‖
2+

T

∑
t=1

γt ,

whereγt ∈ [0,C] andσ(i, t) =





1 if i = rt

−1 if i = st

0 otherwise
.

Proof The proof here resembles the one in the section 3.2 of Shalev-Shwartz (2007). Firstly, we
note that the problem (4) is equivalent to the following:

inf
f̄0, f̄1,··· , f̄T

(
F( f̄0)+

T

∑
t=1

Cgt( f̄t)
)

s.t. f̄0, f̄t ∈ H̄κ and∀t ∈ [T], f̄t = f̄0.

By introducingT function vectors̄λ1, · · · , λ̄T , in which each̄λt = (λt,1, · · · ,λt,k) ∈ H̄κ is a Lagrange
multipliers for the constraint̄ft = f̄0, we can obtain the following Lagrangian:

L( f̄0, · · · , f̄T , λ̄1, · · · , λ̄T) = F( f̄0)+
T

∑
t=1

Cgt( f̄t)+
T

∑
t=1

〈λ̄t , f̄0− f̄t〉.

The dual objective function can be derived as follows:

D(λ̄1, · · · , λ̄T) = inf
f̄0, f̄1,··· , f̄T

L( f̄0, · · · , f̄T , λ̄1, · · · , λ̄T)

=−sup
f̄0

[
〈 f̄0,−

T

∑
t=1

λ̄t〉−F( f̄0)
]
−

T

∑
t=1

sup
f̄t

[
〈 f̄t , λ̄t〉−Cgt( f̄t)

]

=−F∗(−
T

∑
t=1

λ̄t)−
T

∑
t=1

(Cgt)
∗(λ̄t) =−F∗(−

T

∑
t=1

λ̄t)−
T

∑
t=1

Cg∗t (
λ̄t

C
).

BecauseF( f̄ ) = ∑k
i=1

1
2‖ fi‖2Hκ

, we haveF∗ = F . The dual problem thus becomes:

D(λ̄1, · · · , λ̄T) =−
k

∑
i=1

1
2
‖−

T

∑
t=1

λt,i‖
2
Hκ
−

T

∑
t=1

Cg∗t (
λ̄t

C
).
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Because we want to maximize the dual objective, according to Lemma 2, we should set

λt,rt
i

C
+∑

j

αt
i j k(xt , ·) = 0,

λt,st
j

C
−∑

i

αt
i j k(xt , ·) = 0,

where(αt
i j ) ∈ At ,(r t

i × st
j) ∈ Bt , At = [A|A ∈ R‖Yt‖

+ ×R(k−‖Yt‖)
+ ,‖A‖1 ≤ 1] andBt = Yt × ([k]/Yt).

Furthermore, we setαi j to zeros for∀(i, j) ∈ {[Yt × ([k]/Yt)]/(rt ,st)}. For simplicity, we denote
αt

rt ,st
as γt

C . As a result, the dual objective function becomes

D(γ1, · · · ,γT) =−
k

∑
i=1

1
2
‖

T

∑
t=1

σ(i, t)γtκ(xt , ·)‖
2+

T

∑
t=1

γt ,

whereγt ∈ [0,C] andσ(i, t) =





1 if i = rt

−1 if i = st

0 otherwise
.

By applying Lemma 3, we thus have the dual objective function for thet-th step as:

Dt(γ1, · · · ,γt) =−
k

∑
i=1

1
2
‖

t

∑
j=1

σ(i, j)γ jk(x j , ·)‖
2+

t

∑
j=1

γ j . (10)

Now our goal is to derive the dual ascent guaranteed by the proposeddouble updating scheme.
When pair(xa,Ya) is misclassified by the prediction function̄ft = ( ft,1, · · · , ft,k), we will perform
the update on the prediction function. Assume we conduct a double updatingfor (xa,Ya) and some
auxiliary example(xb,Yb), we can prove Proposition 4 as follows.

Proof According to Equation (10) obtained by Lemma 3, before performing the double updating,
the value of the dual function is expressed as:

Dt−1 =−
k

∑
i=1

1
2
‖

t−1

∑
j=1

σ(i, j)γ̂ jk(x j , ·)‖
2+

t−1

∑
j=1

γ̂ j =−
k

∑
i=1

1
2
‖ ft−1,i‖

2+
t−1

∑
j=1

γ̂ j ,

whereγ̂ j ’s denote the weights of the prediction function̄ft−1 before the updating. After performing
the dual update, the value of the new dual function can be written as:

Dt =−
k

∑
i=1

1
2
‖ ft−1,i +σ(i,a)γak(xa, ·)+σ(i,b)dγbk(xb, ·)‖

2+
t−1

∑
j=1

γ̂ j + γa+dγb.

Hence, the dual ascent is computed as follows:

∆D = Dt −Dt−1 = γa

(
1−
(

ft−1,ra(xa)− ft−1,sa(xa)
))

+dγb

(
1−
(

ft−1,rb(xb)− ft−1,sb(xb)
))

−γ2
asa−d2

γb
sb−

k

∑
i=1

σ(i,a)σ(i,b)γadγbk(xa,xb) .
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