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Abstract

In most kernel based online learning algorithms, when apriring instance is misclassified, it
will be added into the pool of support vectors and assignel wiweight, which often remains
unchanged during the rest of the learning process. Thisearlglinsufficient since when a new
support vector is added, we generally expect the weighteeobther existing support vectors to
be updated in order to reflect the influence of the added stuppotor. In this paper, we propose
a new online learning method, termBauble Updating Online Learning, or DUOL for short,
that explicitly addresses this problem. Instead of onlygassg a fixed weight to the misclassified
example received at the current trial, the proposed ondiaming algorithm also tries to update the
weight for one of the existing support vectors. We show thatrhistake bound can be improved
by the proposed online learning method. We conduct an exterst of empirical evaluations for
both binary and multi-class online learning tasks. The grpental results show that the proposed
technique is considerably more effective than the statifw@fart online learning algorithms. The
source code is available to publictetp://www.cais.ntu.edu.sg/ ~chhoi/DUOL/ .

Keywords: online learning, kernel method, support vector machinesiimum margin learning,
classification

1. Introduction

Online learning has been studied extensively in the machine learning comniRoggr{blatt, 1958;

Freund and Schapire, 1999; Kivinen et al., 2001; Crammer et al., ZD8&H-Bianchi and Lugosi,
2006). In general, for a misclassified example, most of the kernel lmadieg learning algorithms
will simply assign to it a fixed weight that remains unchanged during the whateile process.

Although such an approach is advantageous in computational efficiémag significant limita-

tions. This is because when a new example is added to the pool of suggptstsy the weights
assigned to the existing support vectors may no longer be optimal, and sleoupatiated to reflect
the influence of the new support vector. We emphasize that althougtakenéne algorithms are
proposed to update the example weights as the learning process prouestisf them are not de-
signed to improve the classification accuracy. For instance, in Oraba@ha(2008) and Crammer
et al. (2003); Dekel et al. (2008), online learning algorithms are egdo adjust the example
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weights in order to fit in the constraint on the number of support vectotsivinen et al. (2001),
example weights are adjusted to deal with the drifting concepts.

Motivated by the above observations, we propose a new strategylfioe tearning that explic-
itly addresses this problem. It is designed to dynamically tune the weights pbgugectors in
order to improve the classification performance. In some trials of onlineifegrbesides assign-
ing a weight to the misclassified example, the proposed online learning alg@isonupdates the
weight for one of the existing support vectors, referred t@aasliary example We refer to the
proposed approach &ouble Updating Online Learning (Zhao et al., 2009), ddUOL for short.

The key challenge in the proposed online learning approach is to decidle @tisting support
vector should be selected for updating weight. An intuitive choice is to sileaxisting support
vector that “conflicts” with the new misclassified example, that is the existingastpector which
on the one hand shares similar input pattern as the new example and on thbamttidbelongs
to a class different from that of the new example. In order to quantitatasedyyyze the impact of
updating the weight for such an existing support vector, we employ dpsithat is based on the
work of online convex programming by incremental dual ascent (Statevartz and Singer, 2006,
2007). Our analysis shows that under certain conditions, the promodiee learning algorithm
can significantly reduce the mistake bound of the existing online algorithmsld®dsinary classi-
fication, we extend the double updating online learning algorithm to multi-clagshga Extensive
experiments show promising performance of the proposed online leangiogtlam compared to
the state-of-the-art algorithms for online learning.

The rest of this paper is organized as follows. Section 2 reviews the dedatek for online
learning. Section 3 presents the proposed “double updating” appfoachline learning of binary
classification problems. Section 4 extends the double updating method to onliivelass learn-
ing. Section 5 gives our experimental results. Section 6 discusses tiblpalirections to explore
in the future. Section 7 concludes this work.

2. Related Work

Online learning has been extensively studied in machine learning (Rode@BE8; Crammer and
Singer, 2003; Cesa-Bianchi et al., 2004; Crammer et al., 2006; Firlk 2086). One of the most
well-known online approaches is the Perceptron algorithm (Rosenbl&f; Eeeund and Schapire,
1999), which updates the learning function by adding the misclassified éxamith a constant
weight to the current set of support vectors. Recently a number ofeoldarning algorithms have
been developed based on the criterion of maximum margin (Crammer and,3008r Gentile,
2001; Kivinen et al., 2001; Crammer et al., 2006; Li and Long, 1998 €xample is the Relaxed
Online Maximum Margin algorithm (ROMMA) (Li and Long, 1999), which egfiedly chooses the
hyper-planes that correctly classify the existing training examples with a laaygin. Another
representative example is the Passive-Aggressive (PA) algorithem(@er et al., 2006). It updates
the classification function when a hew example is misclassified or its classificztioa does not
exceed the predefined margin. Empirical studies showed that the maximurimrnasgd online
learning algorithms are generally more effective than the PerceptronthtgoiDespite the differ-
ence, most online learningalgorithms only update the weight of the newlyadgbport vector, and
keep the weights of the existing support vectors unchanged. This aimsiould significantly limit
the performance of online learning.
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The proposed online learning algorithm is closely related to the recent efarkline convex
programming by incremental dual ascent (Shalev-Shwartz and Sir@f#, 2007). Although the
idea of simultaneously updating the weights of multiple support vectors was medtin Shalev-
Shwartz and Singer (2006, 2007), neither efficient algorithm nor étieat result was given explic-
itly in their work. Besides, our work is also related to budget online leariivigson and Bordes,
2005; Crammer et al., 2003; Cavallanti et al., 2007; Dekel et al., 20@Byaime learning for drift-
ing concepts. Although these online learning algorithms are capable ofmilyally adjusting the
weights of support vectors, they are designed to either fit in the budgétd number of support
vectors or to handle drifting concepts, but not to reduce the number sdifitation mistakes in
online learning.

Finally, several algorithms were proposed for online training of SVM tipatate the weights
of more than one support vectors simultaneously (Cauwenberghs agiP2@00; Bordes et al.,
2005, 2007; Dredze et al., 2008; Crammer et al., 2008, 2009). In piarticn Bordes et al. (2005,
2007), the authors proposed to update the weights of two support sesitonltaneously at each
iteration, similar to the proposed algorithm. These algorithms differ from thegsexd one in that
they are designed for efficiently learning an SVM classification model,oratriline learning, and
therefore do not provide guarantee for mistake bound.

3. Double Updating Online Learning for Binary Classification

In this section, we present the proposed double updating online learnthgadrfer solving online
binary classification tasks. Below we start by introducing some preliminang:satations.

3.1 Preliminaries and Notations

We consider the problem of online classification. Our goal is to learn giimt: RY — R based on
a sequence of training examplg&a, y1),. .., (xr,y7)}, wherex, € RY is ad-dimensional instance
andy; € 9 = {—1,+1} is the class label assigned xo We usesign(f(x)) to predict the class
assignment for any, and|f (x)| to measure the classification confidence. d(étx),y) : R x 9" — R
be the loss function that penalizes the deviation of estimitesfrom observed labelg. We refer
to the outputf of the learning algorithm astaypothesisnd denote the set of all possible hypotheses
by # = {f|f :RY — R}.

In this paper, we considet/ a Reproducing Kernel Hilbert SpacRKHS) endowed with a
kernel functiork(-,-) : RY x RY — R (Vapnik, 1998) implementing the inner prod(ct) such that:
1) K has the reproducing property,k(x,-)) = f(x) for x € RY; 2) # is the closure of the span of
all k(x,-) with x € RY, that is,k(x,-) € # for everyx € X. The inner product-,-) induces a norm
on f € H in the usual way||f ||, = (f, f)é. To make it clear, we us@j to denote an RKHS with
explicit dependence on kernel functi@n Throughout the analysis, we assurig,x) < 1 for any
x e RY,

3.2 Motivation

We consider trial in an online learning task where the training exanigley,) is misclassified (i.e.,
Yaf (Xa) <0)). LetD = {(x,Vi),i =1,...,n} be the collection oh misclassified examples received
before the triat. We also refer to these misclassified training examples as “support Vedides
denote bya = (ay,...,0y) € (0,C]" the weights assigned to the support vector®irwhereC is a
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predefined constant. The resulting classifier, denotefik) is given by

n

f(x) = zlcxiyiK(x,xi).

In the conventional approach for online learning, we simply assign aamnseight, denoted by
B € (0,C], to (xa,Ya), and the resulting classifier becomes

P00 = Ba(xa) + 3 @) = Bya(x) + 10

The shortcoming of the conventional online learning approach is that tleglinttion of the new
support vector(x,, Ya) may harm the classification of existing support vector@inwhich is re-
vealed by the following proposition.

Proposition 1 Let (X;,Ya) be an example misclassified by the current classifi€k) =
S aivik(x,x) with a; > 0,i = 1,...,n, that is, ¥f(xa) < 0. Let f(x) = Byak(X,Xa) + f(X)
be the updated classifier wifp > 0. There exists at least one support vectpexD such that
Vi f(Xi) > f/(Xi).

Proof It follows from the fact that3 x; € D, yiyaK (X, Xa) < 0 wheny, f(xa) < O. [ ]

As indicated by Proposition 1, when a misclassified exaniglg/a) is added to the classifier, the
classification confidence of at least one existing support vector widheaed. Wheg, f (x3) < —v,
there exists one support vectoh, yp) € D that satisfiefyayok(Xa, Xp) < —By/n. This support
vector will be misclassified by the updated classifiix) if y,f(X,) < By/n. In order to alleviate
this problem, we propose to update the weight for the existing supportrwebtise classification
confidence is significantly affected by the new misclassified example. ticylar, we consider a
support vectofxy, yp) € D for weight updating if it satisfies the following two conditions:

e Vof(Xp) <O, thatis, support vectdxy, Yp) is misclassified by the current classifigix);

o K(Xp,Xa)Yayb < —p Wherep € (0,1) is a predetermined threshold, that is, support vector
(Xp,Yb) “conflicts” with the new misclassified examp(&y, Ya).

We refer to the support vector satisfying the above conditions asgiliary example. It is clear
that by adding the misclassified exampig, ya) to classifierf (x) with weight 3, the classification
score of(xy, Yp) Will be reduced by at leagp, which could lead to a significant misclassification of
the auxiliary exampléxy, yn). To avoid such a mistake, we propose to update the weights for both
(Xa,Ya) @and(xp,Yp) Simultaneously. In the next section, we show the details of the double updating
algorithm for online learning, and the analysis for mistake bound.

Our analysis follows closely the previous work on the relationship betwelmedearning and
the dual formulation of SVM (Shalev-Shwartz and Singer, 2006, 200Which the online learning
is interpreted as an efficient updating rule for maximizing the objective fumatiche dual form
of SVM. We denote by\; the improvement of the objective function in dual SVM when adding
a misclassified example to the classification function att {tretrial. According to Theorem 1 in
Shalev-Shwartz and Singer (2006), if an online learning algori¢his designed to ensure that for
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all t, A; is bounded from below by bounding constantA, then the number of mistakes made by
4 when trained over a sequence of trigls, y1), . .., (X1, yr), denoted byM, is upper bounded by

1 1 T
M< | minZ|[fl|2 +CS £(yif(x
_A<fel}£<2’ 15 + i; (i (m))>,

wherel(y; f(x)) = max(0,1—vy; f(x)) is the hinge loss function. According to Shalev-Shwartz and
Singer (2006, 2007), the bounding constAnt 1/2 when we only update the classifier with the
newly misclassified example. In our analysis, we will show thatan be significantly improved
when updating the weights for both the misclassified example and the auxilemypés

For the remaining part of this section, we denotekyyp) an auxiliary example that satisfies
the two conditions specified before. We define

Ka = K(Xa,Xa), Ko = K(Xb,X0), Kab = K(Xa,Xb), Wab = YaYbKab-

According to the assumption of auxiliary example, we haye= kapyayp < —p. Finally, we denote
by Vb the weight for the auxiliary examples, yp) that is used in the current classifiefx), by ya
andyy, the updated weights fdxa, ya) and (X, Yb), respectively, and bgh, the differencey, — Yb.

3.3 Double Updating Online Learning for Binary Classification

Recall an auxiliary examplew, yb) should satisfy two conditions (1), f (xp) <0, and (Il)wap < —p.

In addition, the exampléx,, Ya) received in the current iteratidris misclassified, that ig, f (xg) <

0. Following the framework of dual formulation for online learning, the follogvlemma shows
how to compute);, that is, the improvement in the objective function of dual SVM by adjusting
weights for(Xa, ya) and(Xp, Yb)-

Lemma 1 The maximal improvement in the objective function of dual SVM by adjustights
for (Xa,Ya) and (xp,Yp), denoted by\;, is computed by solving the following optimization prob-
lem(which is a special case of the optimization problem (28) in Shalev+&harad Singer, 2006):

b = max{h(ya,dy):0<¥a<C, b < dy <C—) (1)
where
_ ka 2
h(Ya,thy) = Ya(1 = Yaf (Xa)) + cy (1= Wb T (%6)) — V3~ *d ~ WabYaly,-

The lemma follows directly the dual formulation of SVM. The theorem below bisuhe bounding
constan?h whenC is sufficiently large.

Theorem 1 Assume C Y, + 1/(1— p) with p € [0,1) for the selected auxiliary exampigy, y»),
we have the following bound for the bounding constant

1
A>-——.
“1p

Proof First, we showd,, > 0. This is because for giveya > 0, the optimal solution fody,, given
by
1—ybf(Xp) — WabYa

dyb: kb ,
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is positive becausg, f (x,) < 0 andwa,p, < —p. Using the facka, ko < 1, Ya,dy, > 0, yaf (%) <0,
Yof(Xp) <0, andw,p < —p, we have

1 1
h(Ya, dy,) > Ya+dy, — évﬁ - édﬁ) + PYaly, -

Thus,A is bounded as

1
A> max +dy, — 5 (V2 +d2) + pyady,.
B Yo€[0,C],dy, €[0.C—Vh] Ya Yo z(yg dvb) PYaly,

Under the condition tha€ >y, +1/(1—p), it is easy to verify that the optimal solution for the
above problem ig, = dy, = 1/(1—p), which leads to the result in the theorem. |

We refer to the case assrong double updatewhen the condition of Theorem 1 is satisfied. We
have the following theorem for the general case when we only Gavd.

Theorem 2 Assume C> 1. We have the following bound férwhen updating the weight for the
misclassified examples, ya) and the auxiliary examplé, yp):

Proof By settingy, = 1, we haveh(ya, dy,) computed as

1 1

Hence A is lower bounded by

1 1 1
Aty max (<1+p>%—2d3b> > 25

; 2~ \2
25t max min((1+p)% (C~7)%).

NI =

Although Theorem 1 and 2 show that the double update strategy could cigtlifi improve
the bounding constar over 1/2 and consequentially reduce the mistake bound, it is applicable
only when there exists an auxiliary example. Below, we extend the doubbteipttategy to the
cases when there is no auxiliary example. Specifically, we relax the conftitiparforming double
update as follows: there exigts,,yp) € D that (i) Wap < —p, (ii) Yo fi—1(Xp) <1, and (iii)C > {p+p.
We refer to these caseswasak double update

Theorem 3 Assume w < —p, Vb fi—1(Xp) < 1and C> y,+ p, we have the following bound for the
bounding constant

Proof Following the definitions and assumptions, we have

1 p? 5, 14p?
A ;gglv?h(va,dyb) >h(1,p)21-5+0-"+p 3
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Algorithm 1 The Double Updating Online Learning Algorith®JOL)

PROCEDURE 21: for Vie S do
1: Initialize Sy =0, fo=0; 22: fl e L+ Vi (%i, )
2: fort=1,2,...,Tdo + i (Yo — ¥b) YoK (Xi, Xp);
3 Receive a new instancg 23: end for
4: Predicty; = sign(fi—1(xt)); 24: fr = fi_1 + ek (%, )
5: Receive its labgj; +(Yo — Yb)YoK (Xp, -);
6: lt =max{0,1—y;fi_1(xt)} 25: else/* no auxiliary example found */
7 if It > Othen 26: Yt = min(C, 4 /K (X, %));
8: Wmin = ; 27: for Vie § do
9: forvie § jdo 28: fl e £ Yk (Xi, xt);
10: if (f__; <1)then 29: end for
11 if (ViytK(Xi, Xt) < Wmin) then 30: fi = fro1 -+ WyK(Xe,-);
12: Wmin = YiYtK (Xi, Xt ); 31: end if
13: (Xp,Yb) = (Xi,¥i); 32: else
14: end if 33: fi=fi 1,§S=S_1;
15: end if 34: for Vie § do
16: end for 35: fl e fl 4
17: i =wfi1(x); 36: end for
18: S =S 1U{t}h 37: end if
19: if (Wmin < —p) then 38: end for
20: Computer andyy by solving returnfr, Sr
the optimization (1) END

Figure 1: The Algorithms of Double Updating Online Learning (DUOL).
|

Solving the optimization problem (1) is the key to the double update. The follogrimgosition
provides the optimal solution to the problem (1).

Proposition 2 Denotel, := 1 —yaf(Xa) andfp := 1 —ypf(Xp). ASSumea, {p > 0, ka,ky > 0 and
Wyp < 0, then the solution of optimization problem (1) is as follows:

(C,C—¥b) if (kaC +Wab(C — ¥b) — fa) < 0and (ko(C —¥b) +WatC — £p) <O
(C, Lp— WabC) if ngc_wabéb_l%kbc+kbfa < 0and Lp— WabC [_vb’c B Vb]
(
S

(Vavdyb) = la— Walt()ac ¥b) C y ) if éa—Walt()iC—Vb) c [O,C] andgb_ kb(C Vb) _Wabfa—waliC—vb) >0 .

kbfa Wabfb kaéb Wabfa) if (kbfa Waplh Kalp— Wabfa) € [0,C] x [_%7c_%]

G | Kako—w3, kakp—W3, * kakp—W3,

The detailed proof for Proposition 2 can be found in Appendix A. Figuserimarizes the proposed
Double Updating Online Learning (DUOL) algorithm. In this algorithm, to effidiefind the
auxiliary example(xy, Ys), We introduce a variabld' for each support vector to keep track of its

classification score. Paramefeis used to trade off between efficiency and efficacy for DUOL.: the

smallerp the more double updates will be performed.
Finally, we give the mistake bound for the DUOL algorithm. We denot@bthe set of indexes

that correspond to the trials of misclassification, that is,

A = {t lyc # sign(fi_a(x)), ¥t € [T]}.
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In addition, we denote b (p) and My'(p) the sets of indexes for the casessttbngandweak
double updating, respectively, that is,

MZ(p) = {t |3 auxiliary examplgXp,yp) S.t.C > Vph+ 1ip for (x,yt), t € M},
MF'(P) = {tI3 (Xo,Yb) S-t-Wap < —p, Yofr-1(X) < 1 andC>yp+p,t € M/ (p)}-

Note that in setMj(p), for the convenience of analysis, we only consider the subset ofgstron
updates when the conditidh> Y, + 1/(1 — p) is satisfied. Finally, we denote the cardinalities of
setsd, M3, and My’ by M =94, M3(p) = |5 (p)|, MY(p) = | M (p)], andMs = M — M(p) —

MY (p), respectively.

Theorem 4 Let(xg,y1), ..., (xT,yr) be a sequence of examples, where RY, y; € {—1,+1} and

K(X,%) < 1for all t, and assume C 1. Then for any function f irH, the number of prediction
mistakes M made by DUOL on this sequence of examples is bounded by:

T 2
2(frgi}r&]$||f||§&+cizle<yif<xi>>) - M) - ToME).

wherep € [0,1).

Proof According to Theorem 1 and 3, we have

. 1 _ 1+p°
min Ay > ——, min A > +p'
teM3(p) 1-p ten(p) 2

Moreover, according to Theorem 2, we hdvye> 1/2, vt € M. Putting them together, we have
~Ms+ ——M§( )+LMS( ) < min}\|f||2 +C S L(yif(x))
o'Vs 2 d(P 1_pdp_ g 211 g i; Yit(%)) |-

We complete the proof using = Ms+ MY (p) + M3(p). [ |

As revealed by the above theorem, the number of mistakes made by thequojoosble updat-
ing online learning algorithm will be smaller than the online learning algorithm thigtmerforms
a single update in each trial. The difference in the mistake bound is essentialtp dhe double
updating, that is, the more the number of double updates, the more advardaige proposed algo-
rithm will be. Besides, the above bound also indicates that a strong doudidéeuis more powerful
than a weak double update given that the associated weight of a strobig dpdaté1+p)/(1—p)
is always much larger than that of a weak double upgdét@. It is worthwhile pointing out that al-
though according to Theorem 4, it seems that the larger the vajuthefsmaller the mistake bound
will be. This however may not be true becaldg(p) in general decreases psncreases. Finally,
we note that Theorem 4 bounds the number of mistakes made by the prdpd&ddalgorithm
for C > 1. WhenC < 1, the mistake bound for the proposed algorithm follows Theorem 2, 3 and
Corollary 2 in Shalev-Shwartz and Singer (2007).
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4. Multiclass Double Updating Online Learning

In this section, we extend the proposed double updating online learningtiaitgdo multiclass
learning where each instance can be assigned to multiple classes.

4.1 Online Multiclass Learning

Similar to online binary classification, onlinaulticlasslearning is performed over a sequence
of training examplegxs,Y1),...,(Xr,Yr). Unlike binary classification wherg € {—1,+1}, in
multi-class learning, each class assignment 9 = {1,...,k} could contain multiple class labels,
making it a more challenging problem. We 0§eo represent the class set predicted by the online
learning algorithm. Before presenting our algorithm, we first review onlindictass learning
(Crammer and Singer, 2003; Fink et al., 2006) based on the framewtakealfranking (Crammer
and Singer, 2005).

4.1.1 LABEL RANKING FOR MULTICLASS LEARNING

Given an instance, the label ranking approach first computes a score for every claskitafy,
and ranks the classes in the descending order of their scores. Hhetguelass sef, is formed by
the classes with the highest scores. The objective of label ranking istoeetihat the score of class
r is significantly larger than that of class#f r € Y; is a true class assignment whie 9"\ Y; is not.
An instancex is classified incorrectly if that above condition is NOT satisfied.

We follow the protocol omulti-prototype(Vapnik, 1998; Crammer and Singer, 2001; Crammer
et al., 2006) for the design of multiclass multilabel learning algorithm. It learrspitauhypothe-
ses/classifiers, one classifier for each clag¥ jteading to a total ok classifiers that are trained for
the classification task. Specifically, for trialupon receiving an instancg, the scores ok classes
output by the set df hypotheses are given by

froa(x) = (fo12(%), -, foak(x)T,

wherefi_1; € Hx,i =1,...,k. We introduce two variables ands; that are defined as follows:
re=arg Pg%nftfl,r(xt) and s =arg Srggmm(xt), (2)

herer; ands represent the class of the smallest score among all relevant classbs atabs of the
largest score among the irrelevant classes, respectively. Using tdtéonafr; ands;, themargin
with respect to the hypothesis det; at trialt is defined as follows:

M (f1; (4, Y) = fonr (%) — frov.s (%)

Based on the notation of classification margin, we define the loss functiqrpoﬂhesesf_l(x) for
training exampléx, Y;) as follows:

((feaiCe) = max 1= (fwr() = foas0e)]

where[x]+ = max0,Xx).
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4.1.2 A PFERCEPTRONALGORITHM FORONLINE MULTICLASS LEARNING

According to Crammer and Singer (2003), when an example is misclassifigdl &t we update
each component of the classifigr 1 as follows:

ft,i (X> = ftfl,i(x)+0—Yt(i7t)ytK(XtaX)7 VI c 9/7 (3)
wherey; € (0,C], and functionoy, (i,t), which is simplified a®(i,t), is defined below:

1 ifi=r
oli,t)=4 -1 ifi=g

0 otherwise

Using notationH(¥;) = (a(L,t),---,a(k,t))", we rewrite Equation (3) afi(x) = fr_1(X)+
viH (YK (%, X), or equivalently

_ n
fxX) =Y viH(Y)K(x,X),
i; | | |
wheren is the number of support vectors received so far.

4.2 Multiclass DUOL Algorithm

We extend the DUOL algorithm to multiclass learning. We denotgxXayY,) the misclassified
example received at the current trial, that(is(xa) )r, — (f(Xa))s, < 0. Similar to DUOL for binary
classification, we introduce an auxiliary examptg, Y,) from the existing support vectors that obey
the following conditions:

1. (f(x0))r, — (F(X0))g, <O, that is,(xp, Yo) is misclassified by current classifiér

2. (H(Ya) - H(Yb))K(Xa, Xp) < —2p wherep € (0,1) is a threshold. This property indicates that
example(xa, Ya) conflicts with example(Xy, Yp).

Compared to auxiliary example defined for binary classification, we int@#él@s) - H(Yp) in
above when defining two conflicting instances. Givgra,X,) > 0, the second condition of aux-
iliary example impliesH (Ya) - H(Yy) < 0, which further indicates that two examples, Ya) and
(Xp, Yb) have the opposite prediction, that is; & ) Or (Sa = r'p). This result is revealed by the
following proposition.

Proposition 3 The inequality HYa) - H(Yy) < 0 holds if and only if (5 = ) or (Sa = rp).

The proof of Proposition 3 is given in the appendix.

Similar to the DUOL algorithm for binary classification, our analysis aims to shaw hly
updating weights for both misclassified example and the auxiliary example, webenaple to
significantly improve the bounding constaitwhich is defined as follows:

M><A§(r_ni}r[:F(f_)—kCilﬁ(f_;(Xi,Yi))), 4)
fe i=

Where}_& = M., H andF(f) = z!‘zl%ﬂ fi||§&. To ease our further discussions, we dekge-=

K(Xa,Xa),Ko = K(Xo,Xp),Wab = (H(Ya) - H(Yb) )K(Xa, Xo) -
The following proposition shows the optimization problem related to the multiclasslelop-
dating online learning algorithm, which forms the basis for deriving the biogncbnstanii.
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Proposition 4 With the double updating, that is, adjusting the weight of some auxiliary stippo
vector (Xp, Yb) fromyjp to v, (denoted by ¢ = yo — Yb) and assigning weight, to the current mis-
classified exampléx,, Ya), the improvement in the objective function of dual SVM, denotéy, by
computed by the following optimization problem:

max Va(l— (fie1ra(Xa) — ftfl,sa(xa))) +dy, <1— (fi—1r, (X0) — ftfl,sb(xb)))

yaadVb
—ka\é — kbdgb — WabYadyb, (5)
st. OSVaSCy*\A/bdebSC*\A/b-

Theorem 5 Assumex(x,x) < 1 for any x and C> y, + 3 ) for the selected auxiliary example
(Xp, Yp), we have the following bound fd.

1
A > .
~2(1-p)

We refer to the case as a strong double update when there exists a awexbanple(X,,Yy) S.t.
C>Ww+ 2(17179)' Similar to double updating for binary classification, we introdueakdouble
update when there exist®, Yy) S.t. Wap < —2p, fi_1r, (%) — fi_1.5, (%) < 1, andC >y + %.

Theorem 6 Assume there existSy,Yp) S.t. Wap < —2p, fi1r, (%) — fro15(X) <1, C> \”/b+%
and the current instance is misclassified, then we have the following boucwiisgant

1+ p?
> .
Az 4
The exact solution to the Quadratic Programming (QP) problem in (5) is diydme following
proposition.

Proposition 5 Denotels :=1— (fi_1r,(Xa) — fi—1,5,(Xa)) @and &y :=1— (fr_1r,(Xo) — fi—1,5,(Xp)).
Assuméy, {, > 0, Ky, ky > 0 and wy, < 0, then the solution of optimization (5) is as follows:

C,C—W) if (2kaC + Wap(C — W) — £a) < 0 and (2ky,(C — ¥b) + WarC — £p) < O
lp— WabC) if ngC—Wabéb;‘lkakbC*‘ZKbéa > 0and lp— WabC [_vac _ Vb]

(
©, %

(Ya, dVb) (fa Wap( C o) ,C— ) if [a—WaZbk(f_Vb) € [0,Cl and, — Zkb(C ) _Wab[a—WaztiéC—Vb) >0
(zzbléib ingib’ Zﬁjib Wabfa) if (2kbfa—Wabe 2ka€b—Wabfa) €10,C] x [—\A/b,C—\A/b]

Akakp—WZp, 7 4kakp—W3

We skip the proof due to its high similarity to that of Proposition 2. Figure 2 sumemtie steps
of the multiclass DUOL (M-DUOL) algorithm. Note that we replace the conditiamsafixiliary
example with the margin error in order to make more double updates.

A mistake bound for the M-DUOL algorithm, similar to Theorem 4, is given by tieding
theorem.

Theorem 7 Let (x1,Y1),...,(x1,Yr) be a sequence of examples, where=xR", ¥ C 9" and
K(x,Xj) € [0,1] for all i, j. And assume C 1. Then for any functiorf M., 4, the number
of prediction mistakes M made by M-DUOL on this sequence of examplesrisiéd by:

1+p

1-p M3(p).

({QI}ZF —I—Czlf F (%, Y )—pzzMév(P)
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Algorithm 2: The Multiclass DUOL Algorithm i1-DUOL ) ‘

PROCEDURE _ 21 for Vie § do
1: InitializeHp =0, S =0, fo =0; 22: fil £l e HO) =K (X, xi)] - H(Y)
2: fort=1,2,...,Tdo + (Yo — ¥b) * H(Yp) * K(Xp, Xi)] - H(Y);
3: Receive a new instanceg 23: end for
4: PI’EdiCW,]_: ft,]_(Xt); 24: ft = ft_1+yt>kH(Yt)>kK(Xt,-)
5: Receive its label sét + (Yo — Yb) *H(Yb) *K(Xp,-);
6: b= [1-W_1-H(%)]+ 25: else/* no auxiliary example found */
7: if I > Othen 26: yt = min(C, m)?
8: Winin = ; 27: forvieSdo
o for vie § 1 do 28: fl e £+ [ex HO) K (xe, %)) -H(Y);
10: if f__, <1lthen 209: end for
11: if (Hki < Wmin then 30: fo = fo1 -+ xHYM) *K(X,-);
12: Wmin = Hkti; 3L end if
13: (Xo,Yo) = (Xi, Yi); 32:  else
14: end if 33 fo=1f_1;§ =S-1; H = Hi_1;
15: end if 34: for Vi € § do
16: end for 35: fl —f
17: fl i =W_1-H%); 36: end for
18: S§=S1U{t};H=H_1U{HM)}; 37: end if
19: if (Wmin < —2p) then 38: end for
20: Computet andyy by solving return fr, Sr, Hr
the optimization (5) END

Figure 2: Algorithms of multiclass double-updating online learning (M-DUOL).

5. Experimental Results

In this section, we evaluate the empirical performance of the proposdidkedapdating online learn-
ing algorithms for online learning tasks. We first evaluate the performahB&JOL for binary
classification, followed by the evaluation of multiclass double updating onlimeitea

5.1 Testbeds and Experimental Setup for Binary-class Online Learnig

We compare our technique with a number of state-of-the-art techniquhsdimg the kernel Per-
ceptron algorithm (Kivinen et al., 2001), the “ROMMA’ algorithm and its eeggive version “agg-
ROMMA’ (Li and Long, 1999), the ALMAy(a) algorithm (Gentile, 2001), and the
Passive-Aggressive algorithms (“PA’) (Crammer et al., 2006). FqrtRA versions of algorithms
(PA-1 and PA-I1) are implemented as described in Crammer et al. (2006 that one may also
compare with the online SVM algorithm (Shalev-Shwartz and Singer, 20@&zh updates the
weights for all support vectors in each trial. However, we do not incthidebaseline for compari-
son because it is too computationally intensive to run on some large data sets.

For the proposed DUOL algorithms, we implement three variants based erediffsolvers to
the problem in (1): (i) “DUOl4pp,” that employs an approximate solution to (1), thatyis+= ?1‘)
andyp = Wb+ rlp (i)“DUOL” that uses the exact solution to (1) given in Proposition 2, &iig

“DUOL " that first updates the weight for the misclassified example and then the tweigh
auxiliary example, as suggested in Shalev-Shwartz and Singer (2007)
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We test all the algorithms on eight benchmark data sets from web machinepgapositories,
which are listed in table 1. All of the data sets can be downloaded from L8 bsite! UCI
machine learning repositofyand MIT CBCL face data sefs.

| Data Set | # examples| # features|

sonar 208 60
splice 1,000 60
german 1,000 24
mushrooms 8,124 112
dorothea 1,150| 100,000
spambase 4,601 57
MITFace 6,977 361
w7a 24,692 300

Table 1: Binary-class data sets used in the experiments.

To make a fair comparison, for all algorithms in comparison, weCset5 and use the same
Gaussian kernel witlh = 8. For the ALMA(a) algorithm, parametgp anda are set to 2 and.0,
respectively, based on our experience. For the proposed DUOLithlgowe fix p to be 0 for all
cases. All the experiments are repeated 20 times, each with an indepeartorh permutation of
the data points. All the results are reported by averaging over the 20 Wmgvaluate the online
learning performance by measuring timéstake rate that is, the percentage of examples that are
misclassified by the online learning algorithm. We measure the sparsity of tiedealassifiers
by the number of support vectors. We evaluate computational efficieotedkthe algorithms in
terms of their CPU running time (in seconds). All the experiments are run in Matier a windows
machine of 2.3GHz CPU.

5.2 Performance Evaluation for Binary-Class Online Learning

Table 2 summarizes the performance of all the compared online learniniffalgeover the binary
data sets. We can draw several observations from the results.

First, among the six baseline algorithms in comparison, we observe that tHRGIgiYIA and
two PA algorithms (PA-I and PA-II) perform considerably better than ttheiothree algorithms
(i.e., Perceptron, ROMMA, and ALMA) in most cases. We also notice thatititeROMMA
and the two PA algorithms consume considerably larger numbers of siygmtots than the other
three algorithms. We believe this is because the agg-ROMMA and the two PAtlilgs adopt
more aggressive strategies than the other three algorithms, resulting in paatesi and better
classification performance. For the convenience of discussion, weteefigg-ROMMA and two
PA algorithms asaggressivealgorithms, and the other three online learning algorithmeas
aggressivenes.

Second, we observe that among the three variants of double updating lealining, the DUOL
approach, which solves the optimization problem exactly, yields the teesake ratewith the
smallest number of support vectors for most of the cases. Comparing wibatieline algorithms,

1. LIBSVM website ishttp://www.csie.ntu.edu.tw/ ~ ¢jlin/libsvmtools/datasets/
2. UCI ML repository is ahttp:/iwww.ics.uci.edu/ ~ mlearn/MLRepository.html
3. MIT CBCL face data sets can be founchap://chcl.mit.edu/software-datasets
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Algorithm sonar splice

Mistake (%) Support Vectors (#)| Time (s) Mistakes (%) ‘ Support Vectors (#)| Time (s)
Perceptron 38.125+ 3.815 79.30+ 7.93 0.004 27.120+ 0.975 271.20+ 9.75 0.017
ROMMA 36.587+ 2.976 76.10+ 6.19 0.006 25.560+ 0.814 255.60+ 8.14 0.032
agg-ROMMA 34.928+ 2.860 130.05+ 7.51 0.009 22.980+ 0.780 602.90+ 7.42 0.044
ALMA »(0.9) 36.370+ 3.572 86.25+ 6.43 0.006 26.040+ 0.965 314.95+ 9.41 0.032
PA-I 40.986+ 2.837 154.15+ 6.95 0.004 23.815+ 1.042 665.60+ 5.60 0.029
PA-II 40.481+ 3.023 162.40+ 6.26 0.004 23.515+ 1.005 689.00+ 7.85 0.029
DUOLijter 39.495+ 3.299 149.85+ 3.42 0.014 23.205+ 0.932 566.85+13.08 0.097
DUOLappr 41.010+ 2.335 162.25+ 5.01 0.013 21.945+1.134 721.85+ 9.10 0.095
DUOL 34.255+ 2.811 137.60+ 6.99 0.017 20.875+ 0.868 577.15+10.81 0.087
Algorithm german mushrooms

Mistake (%) Support Vectors (#)| Time (s) Mistakes (%) Support Vectors (#)| Time (s)
Perceptron 34.7604+ 0.947 347.604+ 9.47 0.019 2.083+ 0.278 169.25+ 22.58 0.148
ROMMA 34.725+ 1.009 347.25+ 10.09 0.037 2.429+0.101 197.35+ 8.24 0.264
agg-ROMMA 32.925+ 1.184 633.40+ 14.02 0.049 1.568+ 0.096 1307.90+ 39.59 0.576
ALMA (0.9) 33.480+ 0.681 394.75+ 9.24 0.036 2.538+ 0.297 304.80+ 38.02 0.267
PA-1 33.010+ 1.025 721.10+ 12.99 0.031 1.661+ 0.089 1221.55+ 22.80 0.454
PA-II 32.630+ 1.016 749.50+ 11.84 0.032 1.657+ 0.088 1326.20+ 22.85 0.483
DUOLijter 35.985+ 1.077 714.35+ 12.75 0.125 1.537+0.101 860.05+ 23.00 0.521
DUOLappr 30.275+ 0.937 716.10+ 10.44 0.096 1.459+ 0.101 1291.35+ 32.03 0.658
DUOL 31.8104+ 1.090 656.30+ 14.36 0.108 0.596+ 0.053 453.70+ 19.40 0.341
Algorithm dorothea spambase

Mistake (%) Support Vectors (#) | Time (s) Mistakes (%) ‘ Support Vectors (#) | Time (s)
Perceptron 13.257+ 0.973 152.45+ 11.18 0.016 24.987+ 0.525 1149.65+ 24.16 0.215
ROMMA 17.461+ 0.537 200.80+ 6.18 0.035 23.953+ 0.510 1102.10+ 23.44 0.275
agg-ROMMA 17.435+ 0.500 438.30+ 13.83 0.044 21.242+ 0.384 2550.70+ 27.28 0.515
ALMA »(0.9) 14.478+ 0.378 210.25+ 5.68 0.035 23.579+ 0.411 1550.15+ 15.65 0.348
PA-| 17.500+ 0.491 461.30+ 15.80 0.026 22.112+ 0.374 2861.50+ 24.36 0.479
PA-II 17.500+ 0.491 461.30+ 15.80 0.027 21.907+ 0.340 3029.10+ 24.69 0.504
DUOLiter 21.109+ 0.796 559.20+ 19.44 0.080 21.907+ 0.432 2511.20+ 34.14 1.215
DUOLappr 17.500+ 0.491 461.30+ 15.80 0.054 20.185+ 0.351 2981.00+ 26.95 1.091
DUOL 11.757+ 0.237 407.50+ 12.80 0.080 19.438+ 0.282 2494.95+ 26.19 1.069
Algorithm MITFace w7a

Mistake (%) Support Vectors (#)| Time (s) Mistakes (%) Support Vectors (#)| Time (s)
Perceptron 4.665+ 0.192 325.50+ 13.37 0.207 4.027+ 0.095 994.40+ 23.57 3.392
ROMMA 4.114+ 0.155 287.05+ 10.84 0.285 4.158+ 0.087 1026.75+ 21.51 1.875
agg-ROMMA 3.137+ 0.093 1121.15+ 24.18 0.555 3.500+ 0.061 2318.65+ 60.49 3.257
ALMA »(0.9) 4.467+ 0.169 400.10+ 10.53 0.297 3.518+ 0.071 1031.05+ 15.33 1.314
PA-I 3.190+ 0.128 1155.45+ 14.53 0.439 3.701+ 0.057 2839.60+ 41.57 2.691
PA-II 3.108+ 0.112 1222.05+ 13.73 0.463 3.571+ 0.053 3391.50+ 51.94 3.311
DUOLijter 2.551+0.128 963.45+ 23.80 0.572 4.456+ 0.073 3048.85+ 54.53 4.566
DUOLappr 2.687+ 0.140 1262.50+ 20.68 0.656 3.116+ 0.104 2908.95+ 28.65 3.679
DUOL 2.1514+ 0.106 697.95+ 13.17 0.445 2.914+ 0.045 2402.55+ 39.88 6.470

Table 2: Evaluation of online learning algorithms on the binary-class data sets
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we observe that DUOL achieves significantly smaiteéstake rateshan the other single-updating
algorithms in all cases. This shows that the proposed double updatingeapgs effective in im-
proving the performance of online prediction. By examining the number @b vectors, we
observed that DUOL results in sparser classifiers than the three siggresline learning algo-
rithms, and denser classifiers than the three non-aggressive algorithms.

Third, according to the results of running time, we observe that DUOL isativefficient as
compared with the state-of-the-art online learning algorithms. Among all tieeiddms in compar-
ison, Perceptron, due to its simplicity nature, is clearly the most efficientitilgor Since DUOL
requires double updates, it is less efficient than PA, ROMMA and ALMAitlgms, but is compa-
rable to the agg-ROMMA algorithm. Note that the comparisons of running tinks slightly
different compared with the results in our previous conference pdpeo(et al., 2009) because we
did some improvements of efficiency for the implementations of some existing algsriththis
journal article.

5.3 Evaluation of Different Auxiliary Example Selection Strategies andhe Sensitivity to
ParameterC for DUOL

As the performance of DUOL quite relies on the choice of auxiliary exampidsjs section, we
evaluate different auxiliary example selection strategies. Specifically,ongare the proposed
strategy to a random selection approach, referred to as “DLwhich randomly chooses an
auxiliary example from the existing support vectors. The exact solutioretpritblem in (1), given
by Proposition 2, is used for updating the weights of both examples. We-sétando = 8 for all
the data sets, same as the previous experiments.

Figure 3 compares the online prediction performance between DUOL ar®@LR}) as well
as the other competing algorithms with vari@dvalues across eight different data sets. Several
observations can be drawn from the results.

First, it is clear to see that the proposed strategy for selecting auxiliangg®a is more effec-
tive than the random selection strategy for most cases. Second, amtrgampared algorithms,
we observe that DUOL always achieves the best performance @hersufficiently large (e.qg.,
C > 10), except for data sets “german” and “w7a” where a smé@lielue tends to produce a better
result. This observation is consistent to our previous theoretical resuithvindicates setting a
largeC value usually implies more strong updates and consequently a better mistake bbird,
we observe that the proposed DUOL algorithm is significantly more acctiratethe other two
variants of double updating online learning algorithms (Dy@land DUOLgpyy) for variedC val-
ues, as we expected. We observe that DiQlthe iterative updating approach, performs unstably,
which might be due to local optimum suffered from its heuristic update. Thisrvhtion validates
the importance of performing the optimal double updates by the proposed.@lgOrithm.

5.4 Empirical Evaluation of Mistake Bounds

To examine how the double updating strategy affects the mistake bound, viricaltyocompareM,

the total number of mistakes made by the DUOL algoritivif,p), the number of mistake cases
where the weak double updates are applied, M§tb), the number of mistake cases where the
strong double updates are applied. Figure 4 shows the comparison bétwit'(p), andM3(p)

by varyingp from 0 to 1.
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Figure 3: Comparison between DUOL and DUy with variedC values.
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First, we observe that double updates are frequently applied wlesmall. This is because
it is easier to find an auxiliary example for double updating wphés small. Further, we find that
settingp close to 0 by default often leads to the best or close to the best resultsmdsee observe
that the number of weak updates is significantly larger than that of strattefes This is because
the condition of conducting a strong double update is significantly more difficibe satisfied
that that for a weak double update. Third, we observe that bijtfp) andM3(p) monotonically
decrease when increasing the valupo the extreme case, whens close to 1, their value often
drops to zero, indicating that no double update was applied. In the meantefimdithat the total
number of mistakes often reaches the maximunp, @gproaches 1. These results again validate the
importance and effectiveness of the proposed double updating algorithm.

5.5 Testbeds and Experimental Setup for Multiclass Online Learning

Table 3 shows the multiclass data sets from Web machine learning reposigalynusur experi-
ments. We compare the proposed M-DUOL algorithm with six state-of-thenéirte learning algo-
rithms. The first three algorithms are variants of Perceptron-based ondsettudied in Crammer
and Singer (2003). They are: (i) “Max”, the perceptron method basdtiemax-scoremulticlass
update, (ii) “Uniform”, the perceptron method based on theform multiclass update, and (iii)
“Prop”, the perceptron method based on greportion multiclass update. We also compare the
proposed algorithm with the other three state-of-the-art online multi-classingaalgorithms, in-
cluding the MIRA algorithm proposed by Crammer and Singer (2003), anédssive-Aggressive
(PA) algorithms, “PA-I" and “PA-11" proposed by Crammer et al. (2Q008imilar to the experiments
of binary classification, we implement three variants of the proposed M{D&l@orithm based on
different solvers to the problem in (5), that is, “M-DU@}y,", “M-DUOL”, and “M-DUOL jte;”.
For all experiments, we use the Gaussian kernel with8 and seC = 10. The thresholg in the
proposed algorithms is set to O for all experiments. All the experiments wpeated 20 time and
the final results are averaged over 20 runs.

data set | # training exampleg # classeg # features|

vehicle 846 4 18
dna 2,000 3 180
segment 2,310 7 19
satimage 4,435 6 36
usps 7,291 10 256
mnist 10,000 10 780
letter 15,000 26 16
protein 17,766 3 357

Table 3: Multiclass data sets used in the experiments.

5.6 Performance Evaluation for Multi-class Online Learning

Table 4 summarizes the empirical performance for multi-class online learrewgra& observations
can be drawn from the experimental results.

First, by comparing all the baseline algorithms, we find that the two PA algorithelt gon-
siderably lower mistake rates than the other single-updating online learniogtlahgs. On the
other hand, the classifiers learned by the three Perceptron-baseithaigoMax, Uniform, and
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Algorithm vehicle dna

Mistake (%) Support Vectors (#)| Time (s) Mistakes (%) ‘ Support Vectors (#)| Time (s)
Max 64.882+ 1.643 548.90+ 13.90 0.079 20.460+ 0.770 409.20+ 15.41 0.192
Uniform 65.934+ 1.554 557.80+ 13.15 0.109 19.875+ 0.427 397.50+ 8.54 0.264
Prop 66.678+ 1.757 564.10+ 14.86 0.116 20.268+ 0.555 405.35+ 11.10 0.267
MIRA 62.252+ 2.114 526.65+ 17.89 1.821 26.920+ 0.880 538.40+ 17.61 5.304
PA-1 67.086+ 1.479 781.70+ 12.42 0.091 15.503+ 0.474 1224.35+ 13.48 0.326
PA-II 66.909+ 1.475 789.30+ 10.73 0.089 15.398+ 0.467 1237.50+ 13.12 0.325
M-DUOL iter 70.674+ 1.194 758.05+ 8.65 0.162 11.668+ 0.599 1086.00+ 16.39 0.502
M-DUOL appr 69.634+ 1.463 828.05+ 4.48 0.158 14.105+ 0.611 1281.75+ 14.44 0.495
M-DUOL 51.950+ 1.948 719.25+ 10.95 0.172 10.340+ 0.513 869.80+ 12.61 0.438
Algorithm segment satimage

Mistake (%) Support Vectors (#)| Time (s) Mistakes (%) Support Vectors (#)| Time (s)
Max 41.3424+1.013 955.00+ 23.40 0.414 29.628+ 0.561 1314.00+ 24.89 0.826
Uniform 41.468+ 0.550 957.90+ 12.71 0.566 28.440+ 0.398 1261.30+ 17.64 1.071
Prop 41.589+ 0.714 960.70+ 16.48 0.565 28.878+ 0.467 1280.75+ 20.72 1.087
MIRA 35.7844+ 3.770 826.55+ 87.08 9.193 27.536+ 2.228 1221.20+ 98.80 15.229
PA-1 39.775+ 0.665 1852.75+ 19.90 0.573 27.377+ 0.361 2676.40+ 24.88 1.296
PA-II 39.842+ 0.655 1870.70+ 18.97 0.577 27.258+ 0.429 2709.50+ 23.77 1.307
M-DUOLiter 41.416+ 1.084 1787.90+ 31.00 0.903 33.894+ 0.567 2787.45+ 43.18 2.024
M-DUOL appr 39.3144+ 0.791 1923.60+ 14.31 0.871 26.222+ 0.464 3052.50+ 31.39 2.024
M-DUOL 20.580+ 0.705 1265.15+ 28.39 0.693 22.524+ 0.482 2066.85+ 32.99 1.505
Algorithm usps mnist

Mistake (%) ‘ Support Vectors (#)‘ Time (s) Mistakes (%) Support Vectors (#) | Time (s)
Max 10.025+ 0.195 730.90+ 14.21 1.459 15.318+ 0.168 1531.80+ 16.80 2.744
Uniform 9.445+ 0.150 688.60+ 10.91 1.858 14.603+ 0.201 1460.25+ 20.15 3.631
Prop 9.614+ 0.176 700.95+ 12.86 1.868 14.763+ 0.228 1476.30+ 22.78 3.635
MIRA 11.572+ 0.403 843.75+ 29.39 44.663 18.037+ 0.539 1803.70+ 53.93 67.168
PA-I 6.641+ 0.158 2528.45+ 23.48 2.669 11.026+ 0.208 4773.70+ 32.84 5771
PA-II 6.568+ 0.116 2561.95+ 27.94 2.606 10.959+ 0.238 4830.40+ 27.06 5.824
M-DUOL jter 5.743+ 0.158 2284.15+ 40.06 3.160 8.947+ 0.182 4398.95+ 46.46 9.031
M-DUOL appr 6.002+ 0.132 2725.40+ 23.55 3.541 9.640+ 0.164 5163.05+ 37.34 10.386
M-DUOL 5.162+ 0.149 1759.30+ 23.44 2.408 8.282+ 0.183 3557.15+ 25.17 7.050
Algorithm letter protein

Mistake (%) Support Vectors (#)| Time (s) Mistakes (%) ‘ Support Vectors (#)| Time (s)
Max 71.562+ 0.538 10734.35+ 80.63 18.749 47.657+ 0.221 8466.75+ 39.21 12.842
Uniform 71.973+ 0.280 10795.90+ 41.99 47.031 46.828+ 0.272 8319.45+ 48.36 14.342
Prop 72.033+ 0.273 10804.95+ 40.89 43.683 47.260+ 0.260 8396.15+ 46.13 14.620
MIRA 67.709+ 1.196 10156.35+179.54 467.019 47.905+ 0.922 8510.80+163.74 42.174
PA-I 72.283+ 0.338 14708.55+ 15.27 24.848 47.657+ 0.230 14153.25+ 49.06 23.409
PA-II 72.339+ 0.380 14735.55+ 15.86 24131 47.550+ 0.285 14285.85+ 44.94 23.602
M-DUOLjter 73.066+ 0.326 14614.65+ 22.26 210.684 50.070+ 0.392 14191.85+ 64.80 55.622
M-DUOL appr 69.992+ 0.331 14892.70+ 11.77 215.587 51.459+ 0.582 16000.55+ 72.07 63.065
M-DUOL 54.068+ 0.351 13140.40+ 37.33 186.452 46.281+ 0.418 12550.10+ 87.27 43.774

Table 4: Evaluation of multiclass online learning algorithms on the multiclass data sets
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Prop) and MIRA are considerably sparser than those learned by theAwatgorithms. We believe
that this can be attributed to the aggressive updating strategies used BydlgoRthms. Second,
among the three variants of double updating for multi-label learning, it isurptising to observe
that M-DUOL vyields the lowest mistake rates for all data sets. Further, amlbitge algorithms,
we observe that the M-DUOL algorithm makes the least number of mistakedl fitata sets, and
significantly outperforms all the baseline algorithms.

Second, by examining the sparsity of classifiers learned by the proplggE@hms, we observe
that the number of support vectors identified by M-DUOL is usually smaller that of the PA
algorithms (except for data set “vehicle”), but is significantly larger ttiresse of the four non-
aggressive algorithms (i.e., Max, Uniform, Prop, and MIRA).

Finally, comparing the running time cost, we observe that the Max algorithm imdse effi-
cient one, while MIRA is the least efficient approach for all the data deespite the additional
time needed for double updates, overall we found that the running time pfdipesed M-DUOL
algorithm is comparable to those of the two PA algorithms (except for the “|ettdd set where the
time costs of the M-DUOL algorithms are considerably greater than those Bftladggorithms).

6. Discussions and Future Directions

Although encouraging results have been achieved by the proposet DOOL algorithms, we

should address the limitations of our current work and discuss someclsteections for future

improvements. First of all, the proposed DUOL algorithm is based on thevBasggressive on-

line learning algorithms (Crammer et al., 2006). For the future work, it isipblest extend other

single update online learning methods, such as EG (Kivinen and Warm@h), 8r double up-

dating. Second, the approach for choosing an auxiliary example fr@tingxsupport vectors may
be further improved by exploring the heuristics for measuring the inforeragiss of an example.
Finally, we plan to extend the proposed double updating framework faydiuzhline learning to

make sparse classifiers.

7. Conclusions

This paper presented a novel “double updating” approach to onlineinganamed as “DUOL”",

which not only updates the weight of the misclassified example, but alsasthaeswveight of one
existing support vector that the most seriously conflicts with the new stuppotor. We show
that the mistake bound for an online classification task can be significantlgeddby the proposed
DUOL algorithms. We have conducted an extensive set of experimentsgyazing with a number
of algorithms for both binary and multiclass online classifications. Promising eralpiesults

showed that the proposed double updating online learning algorithms temlsiutperform the

single-update online learning algorithms.
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Appendix A. The Proof for Proposition 2

Proof The optimization (1) can be rewritten to the following equivalent optimization:

min EvﬁJr @dgb-FWabVadVb — laYa — £pdy,,

YaCy, 2 2

S.t. Ya—C <0, (6)
_ya § 07 (7)
dy, —C+¥ <0, (8)
—dy, —¥ <0, 9)

whereka, ky > 0, Wap < 0, la=1—Yyaf(Xa) >0, &p = 1—ypf(xp) > 0 andyp > 0. With A1, Ay,
Az andA,4 as Lagrange multipliers, the KKT conditions for this problem consist of tmstraints
(6)-(9), the nonnegativity constraims > 0, Vi, the complementary slackness conditions

A1(Ya—C) =0, A2(—Ya) = 0, Az(dy, —C+¥p) =0, As(—dy, =) =0
and zero gradient conditions:
kaya+wabdyb —la+A1—A2=0 and kbdyb +WabYa— b +A3—As=0.

We will discuss every possible condition to compute the closed-form solUtiostly, we will dis-
cuss the cask; #0:

A.1 Case 1. IfA; #0

SinceA1(ya—C) = 0, we havey, = C; further, becaus@,(—ya) = 0, we have\, = 0. Under the
conditionA; #£ 0, we will discusshz # 0 andAz = 0 separately as follows:

A.1.1 SUB-CASE1.1. IFA3#0

SinceAz[dy, — (C—¥p)] = 0, we haveldy, = C—{, as a resulhs(—C) = 0, soh4 = 0. Plugging the
resultsy, = C, A2 = 0, dy, = C—yp andA4 = 0 into the zero gradient condition, we have

KaC+Wap(C—W) —la+A1=0 and ky(C—V¥p)+WaC—4lp+A3=0.
Thus, we have

A = —[KaC+Wap(C— W) —fa] and Az = —[kp(C— ) +WanC — £p).
As aresult, if

—(kaC+Wap(C—Vb) —fa) >0 and — (ky(C— Vo) +WarC — fp) > 0,

then KKT conditions are satisfiefya, dy,) = (C,C — ) is the unique solution.
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A.1.2 UB-CASE1.2. IFA3=0

WhenAz = 0, we only concludely, € [—Vb,C — Vo).

Under the condition&; = 0 andA3 = 0, we will discuss the two cas@g # 0 andA4 = 0, respec-
tively as follows.

Sub-case 1.2.1. K4 # 0. SinceA4(—dy, —¥b) = 0, we havedy, = —,. Plugging the results; =0,
Ya=C, A3 =0 anddy, = —y in to the zero gradient conditions:

KaC +Wap(—¥b) —la+A1=0 and ky(—¥b) +WapC— £ — A4 =0.

But sinceky(—Yb) < 0 WapC < 0 andlp,Ag > 0, kp(—¥b) + WanC — fp — Ag < 0, which contradicts
the equation above.
Sub-case 1.2.2. K4 = 0. Plugging the conditiong; = C, A, = 0, A3 = 0 andA4 = O into the zero
gradient equations:

Solving the above equations leads to the following:

ngC — Waplb — KakoC + Kpla
ko

fp — WoC

ko

A= and dy, =

If ngc*wﬁbg"k;kakb(”kbfa > 0 and®=€ ¢ [, C— {], then the KKT conditions are all satisfied; as
a result(ya, dy,) = (C, =€) is the unique optimal solution.

Next we will discuss the situation with the conditian= 0.

A.2 Case 2. IfA;=0

Under the conditior\; = 0, we only conclude/, € [0,C]. We will discuss the cases # 0 and
A2 = 0 under the condition; = 0, respectively.

A.2.1 SUB-CASE2.1. IFA2#0

SinceAz(—Ya) = 0, we concludey, = 0. Under the conditiond; = 0 andA; # 0, we will discuss
the cased; # 0 andAz = O:

Sub-case 2.1.1. K3 # 0. SinceAs[dy, — (C—¥b)] =0, plugging the conditiond; = 0, ya = 0,
dy, = C— ¥ andA4 = 0 into the zero gradient conditions:

Wab(C—Vb) —¥l3—MA>=0 and kb(C—%) —lp+A3=0.
Sincewyp < 0,C — %, > 0 and/, > 0, we conclude
A2 = Wap(C — ) — £a < O.

But A2 > 0 andA; # 0, conclude\, > 0, which contradicts the inequality above.
Sub-case 2.1.2. K3 = 0. Under these known conditions, we only kndyy € [, C — V). Below,
we will discuss the cases, # 0 andA4 = 0, under the conditions; = 0, A2 # 0 andA3 = 0.
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o If A4 # 0, sincers(—dy, — ) =0, dy, = —p. From the conditiond; =0, ya=0,A3=0
anddy, = —Yp and the zero gradient conditions, we have

Wap(—Yb) —la—A2=0 and kp(—Yp) —lp—As=0.
Sinceky, y, > 0 and/, > 0, we conclude
Az =Ko(—¥b) =l < 0.
But the equation above contradidts > 0.

e Else if A4 = 0, from the conditiond; = 0, ya = 0, A3 = 0 andA\4 = 0 and the zero gradient
conditions, we have

Sincewyp < 0, 4y, 44 > 0 andky, > 0,

V4
A2 =Wap 2 — £a < 0,

ko
which contradicta\, > 0 (SincehA, # 0).

A.2.2 QUB-CASE2.2. IFA>=0

Under the conditiona; = A, = 0, we only knowy, € [0,C]. Below, we will discuss the two cases
A3 # 0 andAz = 0, under the conditions; = A, = 0.

Sub-case 2.2.1. K3 # 0. SinceAs[dy, — (C—¥p)] =0, dy, = C— ¥, as a resulh4(—C) =0, so
A4 = 0. From the conditiond; = A, = A4 = 0, dy, = C—{, and zero gradient conditions:

KaYa+Wap(C—V¥b) —la=0 and ky(C—Vb)+WabYa— b +A3=0.
As aresult, if
la—Wap(C — o)
Ka

the unique optimal solution i/, dy,) = (W,C — ).
Sub-case 2.2.2. K3 = 0. According toA; = Ao = A3 = 0, we only conclude, € [—y,,C — ).

la—Wap(C— )
Ka

S [0, C] and ¢p— kb(C — Vb) — Wyp > 0,

o If A4 # 0, sinces(—dy, —¥b) =0, dy, = —Vb. FromAy = A, =A3 =0, dy, = —Vp and zero
gradient conditions:

KaYa+Wab(—¥b) —la=0 and kp(—Yb) +WabYa— b —As =0,
sincels = kp(—VYb) + WabYa — ¢» < O which contradicts with the conditioky > O.
e If A; =0, fromA1 = A, = A3 = A4 = 0 and zero gradient conditions:
KaYa+Wapdy, —la=0 and KOy, +Wapya — o = 0.
As a result, ify; anddy, satisfy the following:

_ Kpla — Wanlh Kal — Wabla
Kako — W3, Kako — W3,

— (kola—Wanlh Kalb—Wabla i i i i
then(ya,dy,) = ( AT ) is the unique optimal solution.

Va €[0,C] and dy, = € [~¥6,C— W),
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Summary:The final closed-form solution to the optimization is summarized as:

(C,C— %) if (kaC+Wap(C — ) — £a) < 0 and(ky(C — ) +WanC — fp) < 0
| . lo— Wabc) if W2, C—Waph —KaknC-+kpla < 0 and—WaC wabc € [~%b,C— )
(Ya,dy,) = ( Walk()ac o) C—) if W e[0,C] andgb_kb(C %) _Wab%kjw >0’
(T

kbfa Wab/b ka/b Wabfa) if (kbk:angigﬁb7 kﬁﬁing?/gfa) € [0,C] x [T, C — ]
~ ab ~ b

b kakp—W3

Appendix B. The Proof for Proposition 3

Proof First of all, the producH(Y;) - H(Yp) can be simplified as:

H(Ya)-HY) = ic(i ,a)0(i,b) = a(ra,a)o(ra,b) + 0(sa,2)0(Sa, b) = 0(ra,b) — 0(sa,b).

We can check the value of(r,,b) — a(s,, b) by examining all possible cases as follows:

1 If ry = rp that implies thatx, and x, have the same relevant labels, then we should have
H(Ya) -H(Ys) = 1—0(sa,b) > 1 (either 1 or 2);

2 If rg #ry, then:

2.1 Ifra=s, thenHy, - Hy, = 0(s,b) — 0(sa,b) = —1—0(sa,b) < —1;
2.2 Ifra # s, thenHy, - Hy, = 0(ra,b) — 0(sa,b) = 0— 0(sa, b):

2.2.1 Ifsg = s, thenHy, - Hy, = —0(s,b) = 1;

2.2.2 Ifsa =rp, thenHy, - Hy, = —0(rp,b) = -1,

2.2.3 Ifsg # s andsy # rp, thenHy, - Hy, = —0(sq,b) = 0.

We thus have the fact thét(Ya) - H(Yy) < 0 holds if and only if (5 = ) or (Sa = ). [ |

Appendix C. The Proof of Proposition 4

In this appendix, we will derive the dual ascent by the multiclass doublatiqgapproach. Our
approach to the proofs is mainly inspired by the study in Shalev-Shwai®z Y26ut our problem is
different from their study.

For the convenience of our presentation, we introduce the following notfati@ur derivation.
We denote the loss function for a training exam{er) as follows:

o(F) = £(fi(xY)) = max 1 (f(x) ~ £s(x) |
We order all the classesin the assigned sat asry,---,ry|, and the classin the unassigned set
Y\Y assy, -, |- We slightly abuse our notations by simplifyifg, g) », as(f,g) and|| || s
as||f|| when there is no ambiguity about the space for computing dot productand n
We first give a lemma that shows the Fenchel conjugate of the above faghyg.

+
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Lemma 2 Let & = [K] be the possible labels set. & 9 is relevant labels set for & R". f =
(f,---, f)T, wherevi € [K], fi € Hc. And the loss function is defined as follows:

o() = max. [1—(fr(x)—fs(x))}+.

Then for anw_\: (A1,---,A)T, whereVi A; € #H, we have g’'s Fenchel conjugate as:

)

g*()_\) =Y g if A, + Yi Gin(X,~) = Oand)\sj =i Gin(X,-) =0
] otherwise

(k=[IY1)

wherea = (a;) € 4 = [AA€ R x REIYD A < 17 and (1 x s7) € B=Y x ([K]/Y).

Proof The approach of our proof is similar to the method for proving the “Makiofze” in Shalev-
Shwartz (2007). First of all, it is not difficult to show that the loss functian be re-formulated as
follows:

o) = o mex S a1 (9~ 1509)]

aeAa,(ri xSj)€B

~ max za.,[ ({81, 06.9) = {5 (). 06))]

aeAa,(ri xSj)€B

As a result, we have:

g'(A) = max{ (1, ) —g() }
K
e e (000~ w01}
For anyfy, An € H, they can be written asfy, = BnK (X, -) + i, An = YnK (X, -) + A7, wheref A+ €
V4, vV =span(k(x,-)}. As a result, we have

K
* T\ _ Logl _ —
() =max{ 3 () B9 7 max S 1= (B~ B(x)
WhenAL 0, the max. (AL, fL) will be oo, resultingg? (A) = 0. Otherwise, i\t =0, ¥n, the

term f;- does not take effect for the objective; as a result, the optfmean be written in the form
of Bk (X, -) and the conjugate is computed as follows:

_ k

g' () :mgx{ z BaYnK(X,X) — _  max Za” [ (Brik( )—BSjK(x,x))”

Bn ‘iz aeA,(rixsj)eB

_max__min {ﬁxmsn D=3 [ (B0 ) = B0 )] )

Bn G€A,(rixs))eB

= min max{ % )\n7Bn ZGIJ { Br. ) ( )> - (stK(X,~),K(X,-)>)}}

Gea, (rixs)es g, ‘&

— Tlxns, ez;{ Za., +mzna>£z Br.K(X,-),Ar, +;uin x,-))+g(stK(x,-),)\sj—Zuin(x,-)%}.
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The fourth equality is guaranteed by the strong max-min property (Boy&¥amdenberghe, 2004),
and more importantly, we can see that only whemsatisfiesA;, + ¥ aijk(x,-) = 0 and As —
YiijK(x,-) = 0, the second term in the equation above will be zero; otherwise, it wéll. bEhere-
fore, we have the resulting Fenchel conjugatg(df) as follows:

g (h) = =300 A +Y;aijK(x,-) =0andAs — ¥ aijK(x,-) =0
"] o otherwise ‘

Given the above Fenchel dual of loss function, we can derive thidatluhe optimization problem
given on the right-hand side of Equation (4), as given in the following lemma.

Lemma 3 Suppose the complexity measure function is given(ds & 2}(:1%” fi ”:2%&’ and we set
ajj to zeros forv(i, j) € {[% x ([k]/Y)]/(rt,s)}, where(ry,s) is defined in Equation (2). Then
the dual objective function for optimization given on the right-hand side of &mu#4) can be
expressed as follows:

k 1 T T
D(y1, -, ¥r) = a;illtzic(i,t)vtK(xt,-)H2+t;vt,

1 ifi=n
wherey; € [0,C] ando(i,t) =< -1 ifi=¢5
0 otherwise

Proof The proof here resembles the one in the section 3.2 of Shalev-Shwab@)(Zarstly, we
note that the problem (4) is equivalent to the following:

— T - c £ ny £ £
oAt - (Flfo)+ 3 Cafy) st fo, o € Heandvt € [T, fi = fo
fo,f1, -, fr t=

By introducingT function vegtoril, e ,)_\T, in which eacr?_\t = (A1, Atk) € I—TK is a Lagrange
multipliers for the constrainf; = fp, we can obtain the foIIowing Lagrangian:

L(fo, -+, fr. A, A1) =F(fo) +ZC9 +zlm,fo—ft
The dual objective function can be derived as follows:
D()\lv"'7)\T) = 7inf 7[4(f0>"'7fT7)\17"'7)\T)
fo,f1,, fr
T — _
= —sup f07 )\t sup|((fi,At) —Ca(fi)
Z\ t; fi | }

T T N
— — — )\t
=—F'=YMN-YCa) M=-F(=Sn-SCqg(=)
SR LIRS L
Becausd(f) = T 12Hf.Hm,we haveF* = F. The dual problem thus becomes:

_ _ k 1 T 5 T Xt
D(hy.-++ hr) = = 3 5l = 3 Millf = 3 C&(Q)
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Because we want to maximize the dual objective, according to Lemma 2, wikdil Set

)\t—r+2ak ,)=0 Mo alik(x,)=0
1] I C z 1] ) !

where (afj) € 4, (1 x$) € &, 4 = [AA e RM < R A < 1) and B = ¥ x (K/W).

Furthermore we sdtjj to zeros forv(i, j) € {[Yt ( ]/Yt ]/(rt,st)}. For simplicity, we denote

ortrt 5 as%. As a result, the dual objective function becomes
k 1 T ) T
D(ylv”'7yT):_ 7” 0(|,t)YtK(Xt,)H + yt7
2,212, %
1 ifi =r¢
wherey; € [0,C] ando(i,t)=¢ -1 ifi=s . [
0 otherwise

By applying Lemma 3, we thus have the dual objective function fot-tiestep as:

De(ye, ) 21 HZG D)yik(xj, )12 +Zvj (10)

Now our goal is to derive the dual ascent guaranteed by the prophsesle updating scheme.
When pair(xa,Ya) is misclassified by the prediction functidn= (f;1,-- -, frx), we will perform
the update on the prediction function. Assume we conduct a double upfatifg,Ya) and some
auxiliary examplgxy, Ys), we can prove Proposition 4 as follows.

Proof According to Equation (10) obtained by Lemma 3, before performing theldaipdating,
the value of the dual function is expressed as:

k 1 t—1 k 1 ) t—lA
Dt 1——zl§||zl DYk, )12 +ZVJ i;QHftflJH +glyja

wherey;’s denote the weights of the prediction functin, before the updating. After performing
the dual update, the value of the new dual function can be written as:

t—1
22 |fi_1 +0(i,a)YaK(Xa, -) + (i, b)dy K(Xo, - || +ZVJ+Ya+dVb

Hence, the dual ascent is computed as follows:
AD=D{—Diq1 = Va( (fie1ra(Xa) — fie1,6(Xa ))) +dyb(1_ (fie1r, (X0) — ftfl,sb(xb)))

k
—V55a— d3 S — 210 0 (i, b)Yaty, K(Xa, Xo) -
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