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Abstract

We propose a fully Bayesian methodology for generalizedédenixed models (GKMMs), which
are extensions of generalized linear mixed models in theafeaspace induced by a reproducing
kernel. We place a mixture of a point-mass distribution aie8nan’sg-prior on the regression
vector of a generalized kernel model (GKM). This mixtureopallows a fraction of the components
of the regression vector to be zero. Thus, it serves for spamieling and is useful for Bayesian
computation. In particular, we exploit data augmentati@ihradology to develop a Markov chain
Monte Carlo (MCMC) algorithm in which the reversible jump timed is used for model selection
and a Bayesian model averaging method is used for postaedighon. When the feature basis
expansion in the reproducing kernel Hilbert space is tobatea stochastic process, this approach
can be related to the Karhunenéwe expansion of a Gaussian process (GP). Thus, our sparse
modeling framework leads to a flexible approximation metfowdsPs.

Keywords: reproducing kernel Hilbert spaces, generalized kerneleisp&ilverman’s g-prior,
Bayesian model averaging, Gaussian processes

1. Introduction

Supervised learning based on reproducing kernel Hilbert spa¢d43B) has become increasingly
popular since the support vector machine (SVM) (Vapnik, 1998) andaitsumts such as penal-
ized kernel logistic regression models (Zhu and Hastie, 2005) havepbeposed. Sparseness has
also emerged as a significant theme generally associated with RKHS metlhedSVM naturally
embodies sparseness due to its use of the hinge loss function. Penatizelddgistic regression
models, however, are not naturally sparse. Thus, Zhu and Hastig)(g8fposed a methodology
that they refer to as thienport vector machinélVM), where a fraction of the training data—called
import vectordoy analogy to the support vectors of the SVM—are used to index keasés func-
tions.

Kernel supervised learning methods can be unified using the tools ofaregtion theory
(Hastie et al., 2001). The regularization term is usually defined ds;tbelL, norm of the vector of
regression coefficients. From a Bayesian standpoint, this term is obfednedssigning a Gaussian
or Laplacian prior to the regression vector. Moreover, using logarithooidrsy rules (Bernardo and
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Smith, 1994), a loss function can often be viewed as the negative condlitgri#elihood. This
perspective leads to interpreting regularization methods in terms of maxausteriori(MAP)
estimation, and has motivated recent Bayesian interpretations of kerneddadffipping, 2001;
Sollich, 2001; Mallick et al., 2005; Chakraborty et al., 2005; Zhang amdah, 2006; Pillai et al.,
2007; Liang et al., 2009; MacLehose and Dunson, 2009).

Although the use of either the hinge loss functionLgiregularization is an effective tool for
achieving sparsity in the frequentist paradigm (Vapnik, 1998; Tibshid®96), in the Bayesian
setting the corresponding prior yields posteriors that cannot be computddsed form. In the
Bayesian methods of Mallick et al. (2005), for example, since conjugatesgdor the regression
vector do not exist, a sampling methodology based on data augmentation wagextp update
the regression vector. In the Bayesian lasso (Park and Casella, @00&)Bayesian elastic net (Li
and Lin, 2010), Gibbs sampling was used, based on assumptions of noramiipdependence.
Given that an appeal to sampling methods must be made, it is not clear that mgrficdqnentist
methods is the best way to achieve sparsity within the Bayesian paradigred|redglicit support-
vector selection or variable selection is not straightforward for thesérexiBayesian approaches,
and sparsity is often enforced in an ad hoc manner via Bayesian creddsiis (Park and Casella,
2008; Li and Lin, 2010).

In this paper we proposgeneralized kernel mode{&KMs) as a framework in which sparsity
can be given an explicit treatment and in which a fully Bayesian methodolagye carried out.
The GKM is derived from generalized linear models (GLMs) (McCullagth Belder, 1989) in the
RKHS. We defineactive vectordo be those input vectors that are indexed by the nonzero com-
ponents of the regression vector in GKIM3/\Ve assign to the regression vector a mixture of the
point-mass distribution and a prior which we refer to as$ileerman g-prior(Silverman, 1985).
Our use of this prior is based on three facts. First, the Silvergaprior can induce an empiri-
cal RKHS norm on the training data (see Section 2.2). Second, posterisistency results are
available for Bayesian estimation procedures based on the Silvagipaar (Zhang et al., 2008).
Third, the mixture of the point-mass prior and the Silverrggurior allows a fraction of regression
coefficients in question to be zero and thus provides an explicit Bayegmnach to the selection
of active vectors.

It is worth noting that the Silvermag-prior is related to the Zellneg-prior (Zellner, 1986),
which has been widely applied to Bayesian variable selection and Bayesdei setection (Smith
and Kohn, 1996; George and McCulloch, 1997; Kohn et al., 2001; &mttGreen, 2004; Sha et al.,
2004) because of its computational tractability in evaluating marginal likelihoods

We develop Bayesian approaches to parameter estimation, model selecticgsponse pre-
diction for the GKM. In particular, motivated by the use of the data augmentatethodology
in Bayesian GLMs (Albert and Chib, 1993; Holmes and Held, 2006), weaoéxthis methodol-
ogy to devise an MCMC algorithm for our Bayesian GKMs. The algorithns aseeversible jump
procedure (Green, 1995) for the automatic selection of active veatdra 8ayesian model aver-
aging method (Raftery et al., 1997) for the posterior prediction of futbservations. We show
that our algorithm is amenable to low-rank matrix update techniques (seers@@)ahat make it
computationally feasible even for large data sets.

Another development in Bayesian kernel methods is based on Gausst@sses (GPs), which
provide a general approach to assigning prior distributions to functoymeohparametric modeling.

1. Our “active vectors” are the analogs of import vectors for the I\fid aupport vectors for the SVM.
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In geostatistics, GPs have been seen humerous applications to spatial statistigsis under the
name of “kriging.” Diggle et al. (1998) broadened the scope of krigipgekploiting the combi-
nation of kriging and GLMs. In the machine learning community, ideas relateddmg and its
extensions have been widely exploited in Bayesian treatments of classifiaatioegression prob-
lems (Williams and Barber, 1998; Neal, 1999; Rasmussen and Williams, 200Bese problems
the data in question are not necessarily spatial. A major concern with GP<@tipaitational bur-
den for large data sets. Thus, sparse approximations, such as teet‘stitegressors,” the Nysin
method, the informative vector machine, the “subset of data” and the “dateshking” technique,
are generally used to mitigate the computational burden (Williams and See@ér, 2®ola and
Bartlett, 2001; Lawrence et al., 2003; Snelson, 2007).

Building on existing connections between kernel methods and GP-basedsfeek, e.g., Pillai
etal., 2007), we use the Karhunendwe expansion of the Gaussian process to explore relationships
between our Bayesian GKMs and GP-based classification. In partisgahow that our reversible
jump method can be used to implement a “subset of regressors” approximmetibad for GP-based
classification.

The rest of this paper is organized as follows. Section 2 presents a&iBayfeamework for
kernel supervised learning. Sections 3 and 4 present the MCMC algdottfully Bayesian GKMs
and sparse GP classifiers, respectively. The experimental analysenipriisented in Section 5.
Two extensions and some conclusions are given in Sections 6 and &ctiesly.

2. A Bayesian Approach for Kernel Supervised Learning

We start with a supervised learning problem over a set of training{datay;) } |, wherex; € X C
RP is an input vector ang; is a univariate continuous output for the regression problem or binary
output for the classification problem. Our current concern is to learadigiive functionf (x) from
the training data.
Supposd =u+he ({1} + Hx ) where# is an RKHS. Estimatind (x) from data is formulated
as a regularization problem of the form

N I N o
min {ni;L(y., f(X.))+2||h!§4<}7 (1)

whereL(y, f(x)) is a loss functionL\hHiﬁ( is the RKHS norm and > 0 is the regularization param-
eter. By the representer theorem (Wahba, 1990), the solution for¢ijhe form

n
f(X):U+ZBjK<X,Xj), 2)
=1
whereu is called an offset ternK(-, -) is the kernel function and tH& are referred to as regression

coefficients. Noticing thaMhHi& = zﬂj:lK(xi,xj)BiBj and substituting (2) into (1) we obtain the
minimization problem with respect to (w.r.t.) theandp; as

(12 g
min< =¥ L(yi,u+k/B +B’KB}, (3)
min 3 LOn k) + 2
wheref3 = (B1,...,Bn)" is annx 1 regression vector arll = [K1,...,ky] is thenxn kernel matrix

with ki = (K(xi,X1),...,K(Xi,Xn))". SinceK is symmetric and positive semidefinite, the teik 3
is in fact an empirical RKHS norm w.r.t. the training data.
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The predictive functiorf (x) in (2) is based on a basis expansion of kernel functions. We now
show that the predictive function can also be expressed by a basissexpaf feature functions.
Given a Mercer reproducing kernil: X x X — R, there exists a corresponding mapping (say
) from the input spacex to a feature space (sa§ C R"). That is, we have a vector-valued
functionP(x) = (P1(x),...,Pr(x))’, which is called thdeature vectoof x, such thak (x;,x;) =
P(xi)'W(x;). By theMercer-Hilbert-Schmidt Theorefwahba, 1990), we know that there exists an
orthogonal sequence of continuous eigenfunctigpg in the square integrable Hilbert functional

spacel,(X) and eigenvaluek > 1, > ... > 0. Furthermore, we have a definition of the feature
r

functionsy : X — La(X) asW(x) = { /19, (x)}jzl. That is,Pj(x) = 1/1;@;(x). Thus they;(x)
constitute a set of basis functionslaf .X'). Consequently, they can be used to express the predictive

function as follows: ]

f(x) =u+ > bi(x) = u+w(x)'b, (4)
K=1
whereb = (by,...,by)". There are possibly infinitely many basis functions in (4) becauseos-
sibly infinite. In the case thatis infinite, one may use a finite-dimensional approximatioff (to)
by keeping the firsh Jj(x)’s and setting the remainirtgj, j > nto zero (Zhang et al., 2007). Now
lettingb = W'B, we re-derive (2) from (4) due t§ = YW whereW = [(X1),...,P(Xn)]

2.1 Generalized Kernel Models

Using the logarithmic scoring rule (Bernardo and Smith, 1994), thellggd (x)) can be viewed
as a negative conditional log-likelihood. This motivates us to construcbtlusving model

y~p(ylw) with p=t(u+k'p), (5)

wheret(-) is a known link function andk = (K(x,X1),...,K(x,Xn))’. This model can be obtained
from the model

y~pylw) with p=t(u+y(x)b) (6)
by using the transformatiom= Y. Since the model in (6) is a GLM in the feature space, we call
model (5) thegeneralized kernel modéGKM).

GKMs provide a unifying framework for kernel-based regression@asisification. With dif-
ferentp(y|n) andt, we have different kernel models. In the regression probigfyip) is usually
normal andt is the identity function.

In this paper we are mainly concerned with the classification problem whsrencoded as a
binary value, that isy € {0,1}. We thus modep(y|p) as Bernoulli distribution:

p(YIW) = W(1— W'Y = [t(u+KB)Y[L—t(u+k'B)" Y.

Typically, T is either the logistic link(z) = 1_?;‘)’((;32) or the probit linkt(z) = ®(z), the cumulative
distribution function of a standard normal variable. The probit link is widedgduin Bayesian
GLMs due to its tractability in calculating the marginal likelihood. In our fully BagasGKMs in

Section 3, we will use this link.

2.2 Silverman’sg-prior

Assume that théy are independent Gaussian variables vitly) = 0 andE(bZ) = g1, that is,
b ~ N (0, g71I,). Here and later, we denote by the mxm identity matrix, byly, themx 1 vector
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of ones, and by the zero vector or matrix with appropriate size. Becausk efW'(3, we have

B =K 1Wh. As a result, the prior fop is B ~ N, (0, g7*K 1) due toK 1WWK-1 =K1 It

is possible that the kernel matri is singular. For such &, we use its Moore-Penrose inverse
K™ instead and still havi *KK * = K*. The prior distribution fof3 becomes a singular normal
distribution (Mardia et al., 1979). In either case, we Ksé for notational simplicity.

The priorN, (0, K*l) for B was first proposed by Silverman (1985) in his Bayesian formulation
of spline smoothing. Thus, Zhang et al. (2008) referred to the |rierN, (0, g‘lK‘l) as the
Silverman g-priotbecause it is related to the Zellrgprior (Zellner, 1986). Since the prior density
of B is proportional to exp-gB'KB/2), the Silvermarg-prior is design-dependent. Moreover, the
regularization terngB'K B/2 in (3) is readily derived from this prior.

WhenK is singular, by analogy to thgeneralized singular g-priofgsgprior) (West, 2003) we
call Ny (0, g‘lK‘l) a generalized Silverman g-priorlt is worth pointing out that Green (1985)
argued that the definition of Silverman’s prior is implicit. We have presentexkplicit derivation
of this prior. Like the Zellneg-prior (Zellner, 1986; Liang et al., 2008), the Silvermgprior has
only a single shared global scaling parametefhus, the prior induces a global shrinkage rule.

2.3 Sparse Models

Recall that the number of active vectors is equal to the number of nhoneerponents of. That
is, if Bj = 0, thejth input vector is excluded from the basis expansion in (2), otherwisghhaput
vector is an active vector. We are thus interested in a prig8 fehich allows some components of
[3 to be zero. In particular, we assign a point-mass mixture pri@ridoilt on the Silvermarg-prior.

We introduce an indicator binary vectpt= (y1,...,¥n)" such thay; = 1 if x; is an active vector
andy; = 0 if it is not. Letn, = 3_;y; be the number of active vectors, and kg be thenxn,
submatrix ofK consisting of those columns &f for whichy; = 1. We further leKy be then,xny
submatrix ofKy consisting of those rows ¢f, for whichy; = 1, andB, andky be the corresponding
nyx1 subvectors o andk. Based on GKMs in (5) and the Silvermgsprior, we thus obtain the
following sparse model

y~pyt(f(x)) with f(x)=u+kB, and B, ~ Ny (0, g 'K h). (7)

In the existing literature for Bayesian sparse classification and regne@spping, 2001; Fig-
ueiredo, 2003; Park and Casella, 2008; Hans, 2009; Li and LinQ;20&rvalho et al., 2010), a
typical choice of the prior of is the class of multivariate scale mixtures of normals. The resulting
shrinkage rule is derived by mixing over a set of local scaling paramefehis differ from our
global shrinkage rule. See Carvalho et al. (2010) for further d&onf sparsity priors.

3. Methodology

In this section we present a fully Bayesian GKM (FBGKM) based on (ThceSp(y|t(f(x))) is
non-normal for the classification problem, conjugate priorg¥oaisually do not exist. In order to
facilitate the implementation of Bayesian inference in this setting, we make use datheaug-
mentation methodology which has been used by Albert and Chib (1993)afgedtan GLMs and
by Mallick et al. (2005) for their Bayesian SVMs. The basic idea is to intcedauxiliary variables
linking y and the model parameters. We apply this methodology to our FBGKM.
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3.1 Hierarchical Models

Lets=(s1,...,S)" be avector of auxiliary variables corresponding to the training flagay; ) }'_ ;.
We in particular define
s=uly+K\B,+€& with &~ Ny(0, °lp).

Sincet is defined as the probit link in our FBGKM, we hawé =1 and

)1 ifsg>0
=19 0 otherwise

Givens, y = (y1,...,¥n)" is independent ofi, B andy. Consequently, we can assign conjugate
priors for these parameters and perform an efficient Bayesian nufere

Firstly, we assume ~ N(0, n~*) andg ~ Ga(ag/2,by/2) whereGa(a, b) represents a gamma
distribution. LetB, = (u,B,)’. We thus have

= 1 . o n 0

By integrating ouﬁy, the marginal distribution of conditional ony is normal, namely,
p(sly) = Nn(0, Qy) (8)

with Qy = In+ KyZ, K| whereKy = [1,,K,] (nx(n,+1)). Bayes theorem yields the following
distribution ofﬂéy conditional ons andy:.

[B,/5.] ~ Nn41(Y; XKls, Yy by, )

whereYy = KKy + 2.

Secondly, the kernel functiod is assumed to be indexed by hyperparamefe(see, e.g.,
Mallick et al., 2005). For example, the Gaussian kekigd, X;) = exp(—||xi — X;||2/6?) is a func-
tion of the width parameted. For simplicity, the dependence Kfon 6 will be left implicit hence-
forth. If 8 is p-dimensional, we take a uniform prior for each elemerfi oh [ag;, bg;|. Namely,

p
0~ JI:IIU(aej,bej).

Thirdly, as in Kohn et al. (2001) and Nott and Green (2004), we assigndependent Bernoulli
prior to each component gf namely,

n

p(vla) = I_LGVJ (1-0)'™¥ =a™(@—a)"™,
=

wherea € (0,1). Itis natural to place a Beta prior @n a ~ B(aq,by). Marginalizing out results
in the following prior ony:
B +ag,n—ny+b
ply) = 220 rtbo)
Be(ada b(l)

(10)
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whereBe(-, ) is the Beta function. Kohn et al. (2001) proposed a method of selecting trez-hy
parametersy andby by controlling the value ofy,. In the following experiments, we use the
uninformative fixed specificatioa, = 1 andby = 1.

Finally, we assume that follows Ga(a, /2, by/2) and we shall keep the hyperparamet@yfs
b, ag andby fixed in this paper. In summary, we form a hierarchical model in which the join
density of all variables mentioned takes the form

p(Y,s,Y,u,B,0,n,9) = p(n)p(9) p(y) p(6) p(uln) p(Blg, Y, 8) p(slu, B, 8, y) p(y|s).

The corresponding directed acyclic graph is shown in Figure 1.

i

an

® o—a

Figure 1: A graphical representation for the hierarchical model.

3.2 Inference

Our goal is to generate realizations of parameters from the conditionabtjemnsityp(s, u,3,y,gly)
via an MCMC algorithm. In order to speed up mixing of the MCMC, we use makgiosterior
distributions whenever possible. Our MCMC algorithm consists of the follgwteps.

Start Giveay, by, ag andbg, and initializes, y, g, n, u andp,.

Step (a) Impute eacts from p(syi, u,B,).

Step (b) Updaten, g, Ey and® according top(n|u), p(g|B,), D(Ey|37y,ﬂ,g) andp(6[s,y), respec-
tively.

Step (c) Updatey from p(y|s).
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Step (a) is to drawfrom p(sly, u, B,). We perform this step by using a technique which was pro-
posed by Holmes and Held (2006) for the conventional probit regmeskigarticularsis updated
from its marginal distribution having integrated o\ that is,s is generated fronp(s |s-i, i, Y)
wheres_; = (s1,...,S-1,5+1,---,S)’. The details of this procedure is given in Appendix A. Please
also refer to Holmes and Held (2006).

We now consider the updates ff, n andg. Givens, these parameters are independent

of y, so their updates are based p@y,n,g|s,y). Hence, we updatéy from [Ey|s,y,r],g] ~

NW+1(Y;1R§S, Y;l). Sinceg is only dependent off, and the prior is conjugate, we use the Gibbs
sampler to updatg from its conditional distribution, which is given by

by + B K
ol ~ Ga( 20 BB

The update of is obtained from its conditional distribution as

2 2 '
In order to updat®, we need to use an MH sampler. We write the marginal conditional distri-
bution of@ as

inju ~ Ga(

p(8[s,y) O p(sly,n,9,0)p(6),

wherep(sly,n,g,0) is given by (8). In the following experiments (see Section 5.3), the padpos
distribution is specified as a Gaussian distribution with the current val@easfmean and 0.2 as
variance. Le®* denote the proposed move from the curr@niThen this move is accepted with
probability s )
H p S y7 r]7 g7 e*
mm{L M$%mgﬁ)}

This acceptance probability involves the calculations of the inverses dedrdeants of botlQ,
and Qy, whereQy is obtained fromQ, with 8* replacing6. To reduce computational costs, we
employ the formulas in (11) which is given below for computing these inveasdsleterminants.
Our Bayesian estimation method for the kernel param@tisr more efficient than that given in
BSVM and CSVM (Mallick et al., 2005), in which computing the inverses artdrd@nants of two
consecutive full kernel matricds andK* is required at each sweep of MCMC sampling.

Step (c) is used for the automatic choice of active vectors. To implement thisvgteborrow
a method devised by Nott and Green (2004). This method was derivedtlr@ reversible jump
methodology of Green (1995). Specifically, we generate a progyv$edm the current value of
by one of three possible moves:

Birth move randomly choose a 0 ipand change it to 1;
Death move randomly choose a 1 ipand change it to O;

Swap move randomly choose a 0 and a 1ym@&nd switch them.

The acceptance probability for each move is

min{1, likelihood ratiox prior ratiox proposal rati¢.
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Letting k = ny, we denote the probabilities of birth, death and swapbyk and 1-b,—dk, respec-
tively. For birth, death and swap moves, the acceptance probabilities are

(- p(sly)p(Y )ty 1 (n—K)
m'”{l’ p(sly) p(y)br(k+1) }

- {17 P(SlY") P(Y ) Bi1k }
p(sly) p(y)dk(n—k+1)
- {1, p<s|w>p<w>}
p(sly)p(y)
where p(sly) and p(y) are given in (8) and (10). In our experiments we lsgt= 1 anddp = O,
by = dx = 0.3 for 1 < k < kmax—1, anddx = 1 andby = 0 for knax < k < n. Here kmax is a specified
maximum number of active vectors such tkaty < n.

An alternative to this approach is the stochastic search method of Gearlyec&ulloch (1997).
This method also employs birth, death and swap moves; it differs from tleesible jump proce-
dure because it does not incorporate the probabilities of birth, deatbveayl into its acceptance
probabilities.

Recall that the main computational burden of our MCMC algorithm comes freroaltulations
of the determinant and inverse Qf; (Qy+) during the MCMC sweeps. It is worth noting that when
nis relatively large, we can reduce the computational burden by gkginga value far less than,
that is,kmax < N, and then computing:

Q,t=1n—K,Y; K, and Q= |Y|[Z/  =n"1g ™Kyl Yyl (11)

For example, for both the USPS and NewsGroups data sets used in ednsxms, we Seitnax =
200< n. In this setting, we always havg < kmax < n. SinceYy andK\, are (ny+1)x(ny+1)
andnyxny, these formulas foQ;l and |Qy| are feasible computationally. This is an advantage
over the stochastic search method of George and McCulloch (1997)lyFinahe reversible jump
method, the matrices obtained before and after each move only changeraoid a row. Thus,

it is possible to exploit rank-one matrix update techniques to make the method s8liefficient.

3.3 Prediction

Given a new input vectox,, we need to predict its labgl. The posterior predictive distribution of
Y IS
Py py) = [ Py By p(Byly) By

We know that this integral cannot be computed in closed form. Moreovsrintractable to select
the model which is parameterized Byfor prediction. An intuitive approach is to choose a model
with a value ofy having the highest posterior probability among thggbat appear during the
MCMC sweeps. However, this is expensive in terms of memory begetages 2 possible distinct
values. To deal with this problem, we use a Bayesian model averaging n{&thtery et al., 1997)
for posterior prediction.

The Bayesian model averaging method is based on the MCMC sampling pr&me=cifically,

we have .

p(y: = 1]x..y) ~ itzl p(y* = 1]y,x*,u(t>,[3$)>.
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Here(-)® is thetth MCMC realization of(-), which is taken at everith sweep after the burn-in
of the MCMC algorithm. In the following experiments, we run the MCMC algoritton X0,000
sweeps, discard the first@O0 as the burn-in, and retain every 5th (i}.,= 5) realization of
parameters after the burn-in for inference and prediction. This implieghbkaBayesian model
averaging method uses@0O0 (T = (10,000-5,000)/5) active sets for prediction.

We should point out that our Bayesian model does not treat the trainohgeahas two sep-
arate procedures. In fact, our reversible jump MCMC algorithm deals veitArpeter estimation,
model selection and posterior prediction jointly in a single paradigm. Morethesreversible jump
method is a sequential approach for model selection and posterior predithiis implies that after
the burn-in the selection of active vectors and the prediction of resp@rsesimultaneously im-
plemented. Thus, the MCMC algorithm does not require extra computationgblexity for the
prediction of responses.

4. Sparse Gaussian Processes for Classification

In nonparametric Bayesian methods for regression and classificétionis directly regarded as

a stochastic function; in particulaf(x) is often modeling as a Gaussian process. There has been
much discussion of the relationships between RKHS-based methods ahdsé&émethods (see,
e.g., Rasmussen and Williams, 2006; Pillai et al., 2007). In this section wefunthestigate this
relationship and then propose an effective and efficient GP-basssifidation method.

4.1 Gaussian Process Priors

The following proposition summarizes the connection between the Gaussizgsprand the feature
basis expansiof_; bWk(x) given in (4).

Proposition 1 Given a Gaussian procesgx) over X, with zero mean and covariance function
g K(,-), where K: X x X — R is a Mercer reproducing kernel, there exists a vector-valued
function P(x) = (P1(x),...,Pr(x))" from X to R" (r is possibly infinite) such that t;,x;) =
P(xi)'W(x;) for x;,x; € X and

{(x) = Y bai(x) with b "% N(0, g7, (12)
k=1

Conversely, given a functioh: X — R in (12), then( is a Gaussian process with zero mean and
covariance function gtK (xi,xj) where K(xi,X;) = W(x;)'W(x;).

If the feature expansion in (12) is regarded as a stochastic procsdaiwn as the Karhunen-
Loeve expansion. Proposition 1 provides a direct connection betweensGidl GP classifiers
(GPCs) (Neal, 1999; Girolami and Rogers, 2006), and between GKillsredel-based geostatis-
tics (Diggle et al., 1998). We see tHat= (by,...,b;)’ behaves as a regression vector in GKMs,
whereas it plays the role of a latent vector in GPCs. Consequently, theddanctiony(x) defines
the fixed-effect part of GKMs and the random-effect part of GPlDsparallel with the fact that
GKMs are GLMs in the feature space induced by the reproducing kirnek see that GPCs are
generalized linear mixed models (Harville, 1977) in the feature space.
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As discussed in Section 2, the Karhunerelze expansion can also be approximated by a finite-
dimensional expansion over the training data set; that is,

2= 3 BiKOoxi) with B= (B, Ba)' ~ No(O, g K.

Let{ = (¢(x1),--.,{(xn))’ be the vector of realizations o€ over the training data. We then have
{ = KB~ Ny(0,g71K). In our sparse treatment, some of fare set to zero and the subvedBor

of the nonzero elements is modeledNas(0, g—lK;yl). In this casef = K,f, follows a singular
normal distribution, that is{ ~ Ny(0,g KK 'K{). This sparse technique is called the “sub-
set of regressors” (Rasmussen and Williams, 2006). In the followingpssowe investigate this
sparsity-inducing approach to GP-based classification as an alterttative FBGKM introduced
in Section 3.

4.2 The MCMC Algorithm

By analogy with on the hierarchical model for our FBGKM in Section 3.1, welehthe auxiliary
variables as
S =S(Xi) =u+(x)+¢& with & ~ N(0, 1)

and keep other settings unchanged. Hépe) is the Gaussian process withH dx)) = 0 and
Cov(T(xi),L(x)) = g K (xi,X;). Applying Z(x) to the training data, we have

The inverses ohxn matrices are also required during Bayesian inference and prediction for
GPCs. In order to reduce the computational costs, weKyfe with B, ~ Ny, (O, g*lK;yl) to ap-
proximatel as in Section 4.1. This yieldssparse GPQSGPC) model. The MCMC algorithm
for SGPC is immediately obtained from that for FBGKM by simply removing the tgod&B, in
Section 3.2, becauﬁ is now the latent vector and it is not used for prediction. In particular, $SPC
use the expectation gf w.r.t. p(y.|X.,Y) as the predictor. We thus need to insert a step, which is to
samples, = s(x,) from p(s.|s,y,u,y), into the MCMC algorithm for prediction. This step is only
necessary at eveith sweep after the burn-in of the MCMC algorithm (see Diggle et al., 1998).

Now the marginal distribution o is [s|u,y] ~ Nn(uls, My), whereM = In+g*1KyK;y1K§,.
Sinces, is conditionally independent of, givens, we have

p(s.[s.Y,u) = N(u+g ky(x,)'K, KMt (s—uln), v),

wherev = g tky(X. ) Kty (X ) +1— g 2ky(X.) K IKIM K K Gy (x.) andky(x,) is the sub-
vector of (K(X,X1),...,K(X«,Xn)) corresponding te; = 1. Since we havé&(y.|s.) = 1(s.) and

the used probit linkt is a monotonically increasing function dp-c, «), we allocatey, = 1 if

s, > 0 andy, = 0 otherwise.

Let7={xi:yi=1,i=1,...,n} be the set of active vectors. If the kernel function is stationary,

thenv is near zero and the posterior predictive meas,afeverts tou whenx, is far from points

in the setl. Thus the sparse technique will give poor predictions, especially astigrates of the
predictive variance. However, this problem is mitigated in our SGPC methgylalioce it uses
Bayesian model averaging for prediction. That is, the prediction is basete average over

active sets. In the following experiments the average is taken@d0lactive sets.
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It is again worth noting that the reversible jump MCMC algorithm devised in thiepdeals
with parameter estimation and posterior prediction jointly in a single paradigm. dverethe
reversible jump methodology is a sequential approach to model selectioroatatipr prediction.
The main computational burden of the MCMC algorithm comes from the samplowegure for
parameter estimation, and the MCMC algorithm does not require extra compatat@mplexity
for the selection of active vectors and the prediction of responses.

The MCMC algorithms used in Neal (1999) and Diggle et al. (1998) is Id&gezit than ours
because they do not use data augmentation or exploit sparsity. GirolaRogeds (2006) proposed
a Bayesian multinomial probit regression model, using variational methodséoence. For addi-
tional discussion of sparse approaches to GPs, interested reanlgibretfier to Quilonero-Candela
and Rasmussen (2005), Rasmussen and Williams (2006) and Snels@pg@80eferences therein.

5. Experimental Evaluations

In this section we conduct several experiments to evaluate the perfoerobmar proposed Bayesian
classification methods: FBGKM and SGPC. We compare the methods with vatimaely re-
lated Bayesian and non-Bayesian classification methods, including thei8ay8VM (BSVM)
(Mallick et al., 2005), the complete SVM (CSVM) (Mallick et al., 2005), spaEaussian processes
(SGP+FIC) (Snelson and Ghahramani, 2006), and the conventiolbhiMd SVM.

We also implement our Bayesian GKM without Step (c) of the MCMC algorithm cliGe 3.2.
Thatis, we implement an MCMC algorithm that consists of Steps (a)-(b) mgfix, = n. We denote
the resulting model by BGKM to distinguish it from FBGKM. We could also implenzefutl (non-
sparse) GPC, but since such a full GPC would have almost the same ctiomalteomplexity as
the GBKM, we do not implement the non-sparse GPC. All experiments hareibglemented in
Matlab on a Pentium 4 with a 2.80GHz CPU and 2.00GB of RAM.

5.1 Setup

We perform the experiments on several benchmark data BEts:g241d, Digitl , COIL,, USPS
digits  {(O vs. 1), (0 vs. 9 )}, Letters {(A vs. B), (A vs. C)}, NewsGroups corpora |,
Adult 4, Adult 2, Mushrooms, Splice , Astroparticle , Ringnorm , Thyroid , Twonorm, and
Waveform . We first present a brief review of these data sets.

The BCI data set contains data obtained from project in brain-computer interfaegsch a
single subject performs 400 trials in which he imagines movements with either ther lefjht
hand. Theg241d data set is an artificial data set which is generated by two unit-variancepeotr
Gaussians with potentially misleading cluster structure. Digi(l data set is generated by ap-
plying a sequence of transformations to digit images, leading to a low-dimehsianifold ge-
ometrical structure embedded into a high-dimensional space.COlie data set is derived from
the Columbia object image library (COIL-100) under a sequence of amstions, for example,
rescaling, adding noise, and masking dimensions. Note th8hg241d, Digitl andCOIL, data
sets are available attp://www.kyb.tuebingen.mpg.de/ssl-book/ .

The USPS database is a handwritten digits data set which contains the digit8 fco9 auto-
matically scanned from envelopes by the U.S. Postal Service. In ouriegres, two digit pairs
{(0 vs. 1), (0 vs. 9 )} data sets are randomly constituted from the USPS database, and the di-
mensionality of each digit image and the number of digits in each digit class bfdzda set are
256 and 1000, respectively. Thetters data set consists of images of the 26 capital letters from
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“A” to “Z,” and two letter pairs{(A vs. B), (A vs. C)} are randomly constituted from “A,” “B”
and “C” with 789, 766, and 736 cases, respectively.

The20 NewsGroups data set is organized into 20 different newsgroups, each correisygoio
a different topic, and we randomly select thieatheism and comp.graphics topics for the binary
classification problem. The total vocabulary size is 1390. Based on themnafion gain, 893
features are employed.

TheAdult data set is originally extracted from the 1994 Census database with 1defgatil
which six features are continuous and eight are categorical. Furteéuh data set is processed
with dimensionality of 123, that is, each continuous feature is discretized initwaay feature and
each categorical feature withcategories is converted tpbinary features. Here, thidult 1 and
Adult , data sets are constituted according to different training and test sizes.

The Mushrooms data set is originally drawn from the Audubon Society Field Guide to North
American Mushrooms with 22 features. Similar to thault data set, thévlushrooms data set
is processed into the binary feature representations, leading to 123 dimefar each instance.
The Splice data set is based on the biological process whereby intronic DNA is rehthwéng
protein translation. Théstrop (Astroparticle) data set is obtained from Jan Conrad of Uppsala
University, Sweden. Thadult , Mushrooms, Splice , andAstrop data sets are available fatp:
[Iwww.csie.ntu.edu.tw/ ~cjlin

The Ringnorm data set is artificially generated from two multivariate Gaussian distributions
for the binary classification problem. That is, the instances within each atassbtained from
a 20-variate Gaussian distribution. Thkyroid is collected from several databases of thyroid
disease records. We use this data set to conduct a binary classificat@rimeent in which the class
euthyroidism is considered as the normal class and the classes hyjpdigngrand hyperthyroidism
are considered as an abnormal class.

TheTwonorm data set is also an artificial 20-dimensional two-class classification exantpéd
consists of 7400 instances. TWaveform data set is generated from a combination of 2 of 3 “base”
waves in a 21-dimensional space. TRiegnorm , Thyroid , Twonorm, andWaveform data sets are
widely used for the classification benchmarking, and they are availabigpafda.first.
gmd.de/ ~raetsch/data/benchmarks.htm

Table 1 gives a summary of these data sets. In our experiments, eacleti@aandomly
partitioned into two disjoint subsets as the training and test. Twenty randditioues are gener-
ated for each data set. Based on these patrtitions, several evaluatiaa,dntduding the average
classification error rate, standard deviation and average computationaatereported.

All of the methods that we implement are based on a Gaussian RBF kernel siitle width
parameter; that s (x;,x;) = exp(—|[xi—x;|3/6?). In Section 5.3 we present experiments in which
this hyperparameter is estimated from data based on the ideas discusse&tion S2. In the
remaining sections, however, we use a simpler procedure in which theofaus set to the mean
Euclidean distance between training data points. We found this setting todativeffempirically
in our applications. The gain in computational complexity is significant, partiguiarthe full GP
methods, BSVM and CSVM, whose calculations involve two full kernel matriteparticular, for
each new value d, it is necessary to recalculate the kernel mairitor each sweep of the MCMC
algorithms.

In addition, we set the hyperparameters in both FBGKM and SGPC as foleyws 1, b, =
0.1, ag = 4 andbg = 0.1. For all of the Bayesian classification methods, we run each MCMC
algorithm for 10000 sweeps, discard the firstd®0 as the burn-in, and retain every 5th realization
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Data Set n m p Knax

BCI 300 100 117 100
g241d 300 1200 241 200
Digitl 300 1200 241 200
COIL, 300 1200 241 200
USPS (0 vs.1) 500 1500 256 200
USPS (0 vs.9) 500 1500 256 200
Letters (A vs.B) 300 1255 16 100
Letters (A vs.C) 300 1225 16 100
NewsGroups 500 1485 893 200
Splice 2000 1175 60 200
Astrop(article) 4000 3089 4 200
Mushrooms 4000 4124 112 200
Adult 1 6000 10000 123 200
Adult - 20000 12500 123 200
Ringnorm 400 7000 20 400
Thyroid 140 75 5 140
Twonorm 400 7000 20 400
Waveform 400 4600 21 400

Table 1. Summary of the Benchmark Data Sets:the size of the training data setr—the size
of the test data sep—the dimension of the input vectde;,ax—the maximum number of
active vectors.

of parameters after the burn-in for inference and prediction. Thétegseare empirically validated
to be sufficient for these methods to achieve convergence. Recall ¢higsthis implemented after
the burn-in of the MCMC sampling. This implies that the Bayesian model aveyagimponent of

our Bayesian methods use®00 (T = (10,000-5,000)/5) active sets for test.

5.2 Evaluation 1

In the first evaluation, we compare BGKM, FBGKM and SGPC with BSVM ai&V/®I, because
they are the two existing Bayesian kernel methods most closely related tagesiBn classification
methods.

We conduct this evaluation on the first nine data sets in Table 1, randontitygmamg the data
into disjoint training and test data sets according to the corresponding satfingandm. All the
inputs are normalized to have zero mean and unit variance. Tables 2 apdr8the performance
of the five Bayesian methods on the nine different data sets in terms of tregaveassification
error rate (%), the standard deviation and the corresponding averagmitational times).

From Tables 2 and 3, we can see that our FBGKM, SGPC and BGKM mebas#sl on the
Silvermang-prior achieve slightly lower classification error rates than the BSVM and\L 8eth-
ods on the whole. Moreover, our methods have roughly similar classificaftionrates on the nine
data sets. In addition, FBGKM and SGPC are more efficient computationatlyBiG&M the other
methods; this is due to their exploitation of sparsity.
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Data Set BSVM CSVM BGKM SGPC FBGKM

err (+std) err (£std) err (£std) err (&std) err (+std)
BCI 28.15 (-2.15) 29.40£2.58) 29.3542.82) 27.10£1.85) 29.8342.36)
g241d 17.15 ¢-1.68) 17.6341.15) 16.3741.11) 16.5541.22) 16.3040.89)
Digit1 4.86 0.74) 4.88 £0.75) 4.87 £0.65) 5.51 £0.66) 4.85 £0.67)
COIL; 9.71 ¢0.81) 9.86 £0.71) 9.16 £0.99) 9.83 £0.97) 9.797 £0.32)
USPS(0 vs. 1) 0.40 @0.30) 0.35 £0.11) 0.28 £0.05) 0.31 £0.14) 0.28 £0.06)
USPS(0 vs. 9) 1.36 +0.36) 1.40 £0.29) 1.36 £0.28) 1.21 £0.19) 1.37 {0.24)
Letters(A vs. B) 0.92 0.59) 0.95 ¢0.45) 0.75 £0.24) 0.53 £0.19) 0.77 £0.24)
Letters(A vs. C) 0.83 @0.15) 0.93 £0.27) 0.87 £0.15) 0.65 £0.20) 0.84 £0.15)
NewsGroups 5.62 0.80) 5.08 £0.33) 4.92 £0.28) 4.66 {-0.38) 4.83 {0.25)

Table 2: Experimental results for the five methods on different data sats: the test error rates
(%); std— the corresponding standard deviation.

Data Set BSVM CSVM BGKM SGPC FBGKM

BCI 2.615x 10° 2.596x 10° 1.063x 10° 0.756x 10° 0.688x 10°

9241d 4.339x 10° 4.365x 10° 1.819x10° 1.227x10° 1.451x 1C°

Digit1 5.248x 10° 5.210x10° 2.459x10° 1.738x10° 2.011x 1C°
COIL, 4.988x10° 4.996x 10° 2454x10° 1.357x 10° 1.502x 10°
USPS(0 vs. 1) 2.133x 10* 2.047x10* 6.013x10° 2.464x10° 2.700x 10°
USPS(0 vs. 9) 2.239x 10 2.230x 10" 6.479x 10° 2.868x 10° 2.974x 10°
Letters(A vs. B) 2.009x 10° 2.007x10° 0.914x 10° 0.568x 10° 0.593x 10°
Letters(A vs. C) 2.026x 10° 2.042x 10° 0.896x 10° 0.604x 10° 0.596x 10°
NewsGroups 2.286x 10 2.291x10* 6.270x 10> 2.675x 10° 2.910x 10°

Table 3: The computational times) for the five methods on different data sets.

In the following experiments, we attempt to analyze the performance of the dsatfith respect
to different values of the training sizeand the maximum numbég,ax Of active vectors. For the
sake of simplicity, we only report results on thewsGroups data set.

Tables 4 and 5 show the experimental results when changing the training aiwkfixing the
maximum number of active vectors kg,ax = 200. As can be seen, all the five methods obtain a
lower classification error rate and have greater computational costs taithieg sizen increases.
Furthermore, FBGKM, SGPC and BGKM slightly outperform BSVM and CS¥ivboth classi-
fication error rate and computational cost. The FBGKM and SGPC methedlatively more
efficient for the data sets of large training size

Table 6 shows the experimental results for our FBGKM and SGPC methodgeasilect to
different values of the maximum numbky.x of active vectors and for a fixed training size of
n = 800. The performance of these two methods is roughly similar for each skifiggthat is,
they are insensitive téyax However, their computational costs tend to slightly increase as the
maximum numbekmnax Of active vectors increases.

Additionally, in order to study the MCMC mixing performance of our FBGKM a&®8GPC
methods we report the numbers of active vectors over different deta keparticular, Figure 2
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Training sizen BSVM CSVM BGKM SGPC FBGKM

err (+std) err (+std) err (+std) err (xstd) err (+std)
n=300 5.99 1.44) 5.84 £0.80) 5.37 £0.52) 5.34 £0.40) 5.08 {0.49)
n=400 5.65 0.98) 5.83 £0.93) 5.10 £0.35) 5.03 £0.55) 5.05 £0.39)
n=500 5.62 0.80) 5.08 £0.33) 4.92 £0.28) 4.66 {0.38) 4.83 {0.25)
n=600 5.77 ¢0.61) 5.13 £0.20) 4.92 £0.43) 4.35 £0.47) 4.74 £0.28)
n=700 5.63 0.82) 4.82 £0.21) 4.44 £0.36) 4.12 £0.22) 4.61 £0.52)
n=800 |/5.14 @0.59) 5.10 ¢0.16) 4.49 £0.47) 4.13 £0.51) 4.56 {0.34)

Table 4: Experimental results for the five methods corresponding todlifféraining sizes on the
NewsGroups data set withknax= 200: err— the test error rates (%3td— the correspond-
ing standard deviation.

Training sizen BSVM CSVM BGKM SGPC FBGKM
n=300 5.949x 10° 5.830x 10° 2467x10° 1.862x10° 2.085x 10°
n=400 1.173x 100 1.171x10* 4.674x10° 2555x 10° 2.804x 10°
n=500 2.286x 10" 2291x10* 6.270x10° 2.675x10° 2.910x 10°
n=600 3.458x 10* 3.461x10* 8.340x10° 2.748x10° 2.973x 10°
n=700 5195x 10* 5.186x 10 1.207x10* 3.279x10° 3.610x 1C°
n=800 7.754x 10*  7.757x10* 1.673x 10" 3.885x10° 4.327x 10°

Table 5: The computational times) for the five methods corresponding to different training sizes
n on theNewsGroups data set withkmax = 200.

) FBGKM SGPC
kmax OF active vectors err (+std) time err(£std) time
Kmax= 300 455{0.46) 6522x 10° 4.27 (£0.47) 5592x 10°
Kmax= 400 4.62 ¢0.45) 7189x 103 4.80 -0.49) 6808x 10°
Kmax= 500 4.64{0.37) 8536x 10° 4.75 (+0.38) 7704x 103
Kmax= 600 4.750.48) 1033x 10* 457 0.43) 9469x 1C°
Kmax= 700 4.72(0.28) 1170x10* 4.74 (£0.31) 1057x 10%

Table 6: Experimental results for FBGKM and SGPC corresponding terdiit maximum num-
bersknax Of active vectors on thdewsGroups data set witm = 800: err— the test error
rates (%);std— the corresponding standard deviatitime— the corresponding computa-
tional time §).

depicts the output of the numbergof active vectors corresponding to the first 6000 sweeps in the
MCMC inference procedure dBCl, Digitl , Letters {(A vs.B )} andNewsGroups. The results

in Figure 2 clearly show that the FBGKM and SGPC methods mix rapidly in thgseriexents,
yielding reliable estimates after the first 3000 sweeps.

126



BAYESIAN GENERALIZED KERNEL MIXED MODELS

3000 4000 5000 6000 0 2000 3000
No. of iteration No. of iteration

(a) FBGKM, kmax— 100 (b) SGPCKmax— 100
Lo TR,

) A

/“ M

s ol '

S 1ot 'w

Wwﬂww

3000 4000 5000 6000 0 1000 2000 3000
No. of iteration No. of iteration

(c) FBGKM, Knax= 200 (d) SGPCKmax= 200

No. of active vectors (n}
No. of active vectors (n‘)

3000 4000 5000 6000 o 2000 3000
No. of iteration No. of iteration

(e) FBGKM, kmax= 100 (f) SGPC knax= 100

S TR AR
IR %WM W

-
© © o
=] @ S

90
= =
I L o L
£ 185 £ 185
ks S
] 5
< <
o 180 o 180F (
= =2
k=) k=1
3 3
s 5 175f
S =]
= =
170 wrk

160 . . . . . 160
o 1000 2 3000 4000 5000 6000 () 2000 3000
No. of iteration No. of iteration

(g) FBGKM, kmax= 200 (h) SGPCkmax= 200

Figure 2: MCMC Output for the numbers, of active vectors of our FBGKM and SGPC meth-
ods on the four data sets: (a/BYI; (c/d) Digitl ; (eff) Letters (A vs. B) ; (g/h)
NewsGroups .
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In probit-type models, since the posterior distribution of egcis truncated normal, we are
able to update thg using the Gibbs sampler. Recall that we employ an efficient auxiliary variable
approach proposed by Holmes and Held (2006) for the implementation ofilthes Gampler (see
Appendix A). For the other models, however, a MH sampler is required datepthes. This
makes the corresponding MCMC algorithms take longer to mix. Thus, our medsth are based
on the probit link, can be expected to be more efficient computationally tha&38kW&1 and CSVM.
However, to standardize the experimental comparison, we use the samdéasaedCMC sweeps
and burn-in for all algorithms.

Table 7 describes distributions of active vectors to appear after theimim the last 5000
sweeps). As we can see, the numhgof active vectors jumps between a small range for different
data sets, due to the rapid mixing. The maximum frequency of active veciwesponding to the
numbem, of active vectors is also given in Table 7.

Data Set F.BGKM .SGPC
Max Min Most Max Min Most

BCI 100 85 99 (918) 100 87 99 (1145)

g241d 200 184 199 (1263) 200 153 196 (339)

Digitl 200 187 199 (1163) 200 184 188 (515)
COIL> 151 138 146 (1493) 149 139 147 (2870)
USPS(0 vs. 1) 170 151 165 (1080) 151 132 140 (1288)
USPS(0 vs. 9) 200 172 195 (1258) 200 177 199 (1095)
Letters(A vs. B) 100 80 99 (796) 100 89 99 (1422)
Letters(A vs. C) 100 80 97 (551) 100 84 99 (1006)
NewsGroups 200 186 199 (918) 200 182 199 (720)

Table 7: Distributions of active vectors after the burn-in under FBGKM3&6PC. Max—the max-
imum number of active vectors to appear; Min—the minimum number of activierssto
appear; Most—the number of active vectors with the maximum frequencyhantbrre-
sponding frequency shown in brackets.

5.3 Evaluation 2

We further evaluate the performance of our sparse Bayesian kerttfedsaunder kernel parameter
learning, and compare the FBGKM and SGPC with SGP+FIC and full GP &3 mussen and
Williams, 2006). In particular, we use the Gaussian RBF kernel with multiplanpaters, that
is, K(xi,xj) = exp(—3[_,(xi—xji)2/6?), and estimate those parametérs- (6y,...,0p) in all
compared Bayesian kernel methods. In order to distinguish from thesBaymethods with the
fixed kernel parameters, we label the Bayesian methods with the learreadgiars via x+KL.”
We conduct experimental analysis on thault , Mushrooms, Splice , andAstroparticle data
sets.

Since for FGP+KL learning the kernel parameters results in a huge cotiopialecost, we set
the sizes of the training and test data as 1000 fi.e:,m= 1000) in each data set. In this setting,
there is no distinction betweekdult 1 and Adult ,, so we just usé\dult to denote the corre-
sponding data set. Also, since it is infeasible to use MCMC inference f&HKE&, we employ the
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expectation propagation (EP) algorithm (Minka, 2001) for FGP+KL. E\mv, to provide an apples-
to-apples comparison with our sparse Bayesian kernel methods, we elm@NC inference for
SGP+FIC+KL. For the sparse methods compared here, we fix the sintive set to 100, that is,
Kmax= 100. Our implementations for SGP+FIC and FGP are based on the Matlabfomahdttp:
Ilwww.Ice.hut.filresearch/mm/gpstuff/ and http://lwww.gaussianprocess.org/gpml/ ,
respectively.

Tables 8 and 9 and Figure 3 report the performance of the SGP+FIGHE&R+KL, FBGKM+KL,
and SGPC+KL methods on the four data sets in terms of the average cléissifeaor rate (%),
the standard deviation and the corresponding average computationastinrére 3 depicts the
logarithm scale of the corresponding average computational sjren(the different data sets. It
is clear that FBGKM+KL and SGPC+KL outperform other methods on thelevhadditionally,
the computational times of all compared methods tend to increase when the ruoflibe kernel
parameters increases. We note that the computational times of SGP+FI@Q#KIGP+KL would
become huge if we directly applied them to the large data sets listed in TabAdult—, Adult »,
Mushrooms, Splice , andAstroparticle

SGP+FIC+KL FGP+KL FBGKM+KL SGPC+KL
err  (xstd) err  (xstd) err  (xstd) err  (%std)
Splice 18.05 @0.77) 9.19 £1.25) 7.49 £0.14) 11.54 £0.51)
Astrop 410 €0.36) 457 0.41) 345 0.31) 3.52 £0.31)
Mushrooms || 1.70 (0.27) 0.20 £0.20) 0.24 £0.18) 0.45 £0.30)
Adult 18.50 @0.56) 17.85 £0.35) 1594 £0.45) 15.56 £0.43)

Data Set

Table 8: Experimental results for the four Bayesian kernel methods offotltedata sets with
learned kernel parametes kmax = 100, n = 1000, andm = 1000: err— the test error
rates (%);std— the corresponding standard deviation.

Data Set SGP+FIC+KL FGP+KL FBGKM+KL SGPC+KL
Splice 2.542x 10° 1.228x 10° 1.132x 10* 1.121x 10*
Astrop 4.081x 10* 2.531x 104 7.431x 10° 7.103x 10°
Mushrooms 4.639x 10° 1.583x 10° 1.551x 10* 1.534x 10
Adult 4.713x 10° 1.605x 10° 1.606x 10* 1.557x 10*

Table 9: The computational times) Ef the four Bayesian kernel methods on the four data sets with
learned kernel parametddsknax= 100,n = 1000, andm = 1000.

In order to further evaluate the performance of our sparse Bayesiaelkmethods on some
larger data sets, we also conduct comparative experiments of FBGKRICS&d SGP+FIC (Snel-
son and Ghahramani, 2006) on tault 1, Adult », Mushrooms, Splice , andAstroparticle data
sets. Here, we consider both MCMC and EP inference methods for SGRe provide a fuller
comparison, referring to them as SGP+FIC+MCMC and SGP+FIC+EPeotively. For these
sparse methods, we fix the size of activelggito 200.
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Figure 3: The computational times) for the four Bayesian kernel methods

with learned kernel paramet@y kyax= 100,n = 1000, andn = 1000.

Adult

on the four data sets

Table 10 reports the classification performance of the SGP+FIC+MCIBe+&IC+EP, FBGKM
and SGPC methods on the five data sets. It should be pointed out hereettlatnaet report the cor-
responding results of SGP+FIC+MCMC on thault , data set due to the huge computational times
of performing it on this data set. From Table 10, we can see that our FB@dV5GPC methods
outperform other methods on the whole. Furthermore, it is still difficult 8P$FIC+MCMC and
SGP+FIC+EP to calculate the optimal solution for sparse approximation dbéulksian process,

due to the sensitivity of the performance to the initial active set.

Data Set SGP+FIC+EP SGP+FIC+MCMC  FBGKM SGPC SVM

err (+std) err (£std) err (+std) err (+std) err (+std)
Splice 14.38 ¢-1.10) 16.32 £0.15) 12.5340.57) 12.07£0.45) 13.01£0.69)
Astrop 5.20 0.26) 3.38 {0.11) 3.59 £0.18) 3.34 {0.16) 3.37 {0.14)
Mushrooms|[ 1.55 +0.21) 1.38 £0.13) 0.19 {0.08) 0.21 {0.06) 0.55 £0.37)
Adult 1 ||15.89 (-0.38) 15.79 +£0.26) 15.24{0.21) 15.594-0.16) 16.6440.33)
Adult » |[15.49 ¢-0.21) -— - 15.01 ¢-0.17) 15.2640.19) 16.27 £0.28)

Table 10: Experimental results for the five methods onliee , Astroparticle , Mushrooms,

Adult 1, andAdult , data sets wittkmax = 200: err— the test error rates (%¥td— the

corresponding standard deviation.

Table 11 and Figure 4 report the average computational times of the cahgmese Bayesian
kernel methods on the five data sets, with Figure 4 depicting the computationaktimagogarithm
scale. Table 11 and Figure 4 show that the SGP+FIC+MCMC has larggyutational times than
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Figure 4: The computational times) (of the four sparse Bayesian kernel methods orSifiiee |,
Astroparticle , Mushrooms, Adult 1, andAdult , data sets withkmnax= 200.

other methods on the five different data sets, and that the computational tir8€Pa-FIC+EP,
FBGKM and SGPC are very close to each other.

Data Set SGP+FIC+EP  SGP+FIC+MCMC FBGKM SGPC
Splice 1.293x 10* 8.952x 10 1.497x 10"  1.262x 10*
Astrop 2.701x 10* 2.425x 10° 3.443x10*  3.779x 10
Mushrooms 2.830x 10* 3.290x 10° 3.726x10*  3.814x 10
Adult 1 4.298x 10 8.283x 10° 4620x 100  4.548x 10
Adult » 2.221x 1P — 2276x10°  2.369x 10°

Table 11: The computational times) ©f the four sparse Bayesian kernel methods orSliee
Astroparticle , Mushrooms, Adult 1, andAdult » data sets withkmnax = 200.

In addition, we conduct a quantitative assessment of convergence si@MC algorithms
for the three sparse Bayesian kernel methods. We employ a method gadpp8rooks (1998).
The method uses a cusum criterion with “hairiness” definition to monitor cgemee. The length
of chain for convergence is determined, once the sequence on thaélsair definition statisti-
cally lies within the 90% confidence intervals under the binomial distributionleTEbreports the
convergence assessment results on the five data sets. From Table d2n wee that all MCMC
algorithms in the three sparse Bayesian kernel methods can achievegesmoeson the five data
sets after the first 5000 sweeps. Moreover, the convergence time is donikach method, while
the corresponding computational times of SGP+FIC+MCMC are obviougjgsaon the five data
sets.
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SGP+FIC+MCMC FBGKM SGPC

Data Set - » - - - .
time burnin time burnin time burnin

Splice 4.017x 10° 4566 1019x 10° 906 2195x% 10° 1898
Astrop 9.265x 10* 3874 7016x 10° 2125 1123x 10* 3218
Mushrooms || 9.857x 10* 3192 1362x 10* 3924 9677x 10° 2616
Adult 1.865x 10° 2451 8605x 10° 1906 1206x 10* 2873
Adult > — — 5.217x 104 2424 8142x 10 3605

Table 12: Monitoring convergence of MCMC algorithms for the three gpaayesian kernel meth-
ods on theSplice , Astroparticle , Mushrooms, Adult 1, andAdult > data sets with
kmax = 200: time— the computational times] for convergenceburn-in— the length of
chain for convergence.

5.4 Bayesian vs. Non-Bayesian

Since FBGKM and SGPC are Bayesian alternatives to IVM and SVM, it ifuluse compare
our FBGKM and SGPC with the conventional IVM and SVM. We comparedethmsthods on
the following data setsRingnorm , Thyroid , Twonorm andWaveform . These data sets were also
used by Zhu and Hastie (2005) and a detailed presentation of resulte danrtdl in Ratsch et al.
(2001). Each data set is randomly partitioned into two disjoint subsets asgraind test data sets
according to the training and test sizeandm given in Table 1. In addition, the maximum number
kmax Of active vectors is set according to Table 1. The results in Table 13aaexlon the average
of twenty realizations and the results with the conventional IVM and SVM iéed érom Zhu and
Hastie (2005). We also conduct a comparison of FBGKM and SGPC withotheentional SVM on
the Splice , Astroparticle , Mushrooms, Adult 1, andAdult , data sets. The classification results
are given in Table 10. From Tables 10 and 13 we can see that the Bagggisoaches slightly
outperform the non-Bayesian approaches.

Data Set SVM VM FBGKM SGPC
err  (£std) err  (+std) err  (£std) err  (£std)
Ringnorm 2.03 (+0.19) 1.97 (£0.29) 151 (£0.10) 156 (+0.12)
Thyroid 480 (+298) 500 (+3.02) 460 (+2.65 451 (+2.32)
Twonorm 2.90 (+0.25) 245 (+0.15) 286 (+0.21) 279 (+0.23)
Waveform 9.98 (+043) 1013 (+0.47) 9.80 (+0.31)  9.73 (+0.30)

Table 13: Experimental results for the four methods on the four dataesets:the test error rates
(%); std— the corresponding standard deviation.

6. Extensions

In this section we consider several extensions of the modeling framewatrkvthhave discussed
thus far. One extension is immediate: We can obtain a fully Bayesian appimaubdel selection
for the SVM by combining our work with the treatment of Mallick et al. (200Mafis, we form a
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conditional likelihood from the hinge loss (also see Sollich, 2001) andraasigxture of the point-
mass distribution and the Silvermarprior to the regression vector. In the following subsections
we consider two additional extensions.

6.1 Multiple Kernel Learning

Kernel learning has emerged as an important theme in the machine learning citynie have
provided a Bayesian foundation for kernel learning in Section 3. Itiquéar, given a kernel func-
tion, we can estimate parameters of the kernel function. We now discus®textend this capa-
bility to the learning of combinations of kernels; thriltiple kernel learning probler{Bach et al.,
2004).

Assume that we are giveqdistinct kernel function& (x;,x;), forl =1,...,q. Correspondingly,
we haveq feature functions (say, (x)). In this case, the predictive function is expressed as

() = u+|§w. (b

Letting b, = g/ W|B, whereW; = [W;(X1), ..., (Xn)], B, = (Bi1,---,Bin)’ @andg > 0, we have

q n

fx)=u+3 g ZKI(vai)BIi‘

=1 i=

Now we assigiB; ~ Nn(0, 0%(K(1))~1) and

g ~ pdo(a) + (1—p)Ga(glag/2, by/2),

whereK () = W@/ (nxn) is thelth kernel matrixdy(-) is a point-mass at zero and the user-specific
parametep € (0,1) controls the levels of the nonzegp. Thus, we only need to update the
instead ofg in the Bayesian computation in Section 3. Note that kernel parameter leaming a
multiple kernel learning can be incorporated together.

6.2 Multi-class Learning

We consider the extension of our fully Bayesian modeling approach-tass € > 2) classification
problem where the class labglis a binaryc-vector with values all zero except a one in positjon
if xi belongs to thgth class. In this case, we defineegression vectord; = (B1j,---,Bnj) € R"
andc auxiliary vectorss; = (syj,...,Sj) € R", j=1,...,c, for each class. We then have

Sj :1nt—|—KBj+ej, i=1...,c

where theg;j are i.i.d. fromN, (0, Iy).

We now denotel = (ug,...,Uc), B=[B4,...,Bc, S=[s1,...,5] andE = [ey, ..., e]. Asin the
binary problem, we also introduce a binarywectory with eithery; = 1 if x; is an active vector or
yi = 0 if x; is not an active vector. Ldz(@ andBy beK'’ andB with the rows for whichy; = 0 deleted.
Thus, we can form the following sparse model:

S=1.U'+KBy+E =K,By+E,
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whereK, = [1,,K,] andB = [u,B/]. Now giveny, we treat theB, as being independently from
Nn,+1(0,Z,1).

To make the model identifiable, the constre{'t’j;l(ujln +KBj) = Ois typically required (see,
e.g., Lee et al., 2004). Clearly, a sufficient condition for this constraiﬂtleii;zf:1 uj =0 and
>5-1B; = 0. To address this issue we impose the constrgifnt; s; = Sl = 0 and consider the
following error model:

S=1,u'H +KByH +EH = K,B/H +EH, (13)

whereH = I — 11.1; is thecxc centering matrix. Sinc&,H ~ Ny +1.(0, >y ®H) andEH ~
Nnc(0, In®H), we haveS= SH ~ N, ¢(0, Qy®H). Here we use the formal of matrix-variate normal
distributions; that isZ ~ Nm p(0,M®N) if and only if veqZ") ~ Nmp(0,M®N) whereZ = [z;] is
anmx p matrix, ve€Z') = (z11,212,...,Zmp)’ is its arrangement in a stack, aMiN represents
the Kronecker product o andN. Note that bothN, ¢(0, Qy®H) and Ny 11.¢(0, Z;y1®H) are
singular matrix-variate distributions, becausés singular. Please refer to Gupta and Nagar (2000)
for matrix-variate normal distributions and singular matrix-variate normalidigtons.

We rewrite (13) in vector form as

veq(S) = (H @ Ky)veqBy) + (H ® I ,)veqE).

We can apply the MCMC algorithm in Section 3.2 to the multi-class case. The maénediffe is in
Step (a) for the update &. That is, in the multi-class probit setting, the relationship between the
class labels and the auxiliary vectors becomes

) 1 if j=argmax yc{sk},
Yii=191 0 otherwise

Thus, the posterior distribution of easfj is truncated normals;y, uj, B;, ij] ~ N(uj +kiB;,1)
subjecttosj > s forall | # jif yjj = 1.

Finally, it is straightforward to develop a sparse GP method for multi-classifitadion prob-
lems. We should note that Girolami and Rogers (2006) proposed a Bayesltinomial probit
regression model and derived a fully variational Bayesian method for olats Gaussian pro-
cess classification. Specifically,andKB respectively correspond to latent and manifest Gaussian
random matrices in Bayesian multinomial probit regression. However, tidegad consider the
constrainty §_; (uj1n +Kp;) = 0, which is theoretically necessary for making the multi-class clas-
sification problem identifiable.

7. Conclusion

In this paper we have discussed Bayesian generalized kernel mixed miodglging Bayesian
generalized kernel models and Gaussian processes for classifitatamticular, we have proposed
fully Bayesian kernel methods based on the Silverrggomior and a Bayesian model averaging
method. We have developed an MCMC algorithm for parameter estimation, reeléetion and
posterior prediction. Because of the connection between kernel medhddSaussian processes,
the MCMC algorithm can be immediately applied to sparse Gaussian processes.
Sparsity is often treated using machinery that is not straightforward to emuititms the

Bayesian paradigm (e.g., loss functions with discontinuous derivatileghe current paper we
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have provided a framework in which sparsity is treated explicitly using stdri8ayesian tools.

Our empirical results show that this framework can yield prediction perfoca¢hat is comparable
with the best non-Bayesian methods, while retaining the advantages (e.gattinal treatment of

hyperparameters and of uncertainty) of the Bayesian approach. dhheutational requirements
of the framework are reasonable at the scale of the experiments we édwenged; moreover, as
emphasized in non-Bayesian treatments, the imposition of sparsity has commltativantages
within our framework, advantages that we have only partially exploited in thr& described here.
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Appendix A. Pseudo Matlab Code for the Updates of s an@,

Algorithm 1 Pseudo Matlab code for updatessandf3,

Input: Ky, 3y, s
Calculate and/y* = (5, +K{Ky)~* andQ;* = I, — K, Yy 'K,
CalculateA = Y“lK’ b = AsandH — KyA;
fori=1ton do
a<s(i);
w<—H(i,i)/(L—H(i,i));
p—1+w;
M= (L+W)Ky (i, )b —ws(i);
if y(i) == 1then
(i) < Itnormrnd(y, p, 0); > Generate from a left-truncated normal distribution
else
(i) < rtnormrnd(y, p, 0); > Generate a right-truncated normal distribution
b+« b+ (s(i)—a)A(:,i);
end if
end for
By < mvnormrnc{b,Y;l, 1). > Generate from a multivariate normal distribution
Output: s andp,.

Appendix B. The Proof of Proposition 1
Proof. Recall that
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The Karhunen-Léve expansion of(x) is then given by
r
LX) =Y bd(x),
K=1

where theby are random variables, which are given by= lku(x)qu(x)dx. It follows that

the by are independent Gaussian variables Vi) = 0 andE(bZ) = g~1. We thus have the
first part. To prove the second part of this proposition, we considgmagimensional vector
(= (U(x1),...,{(Xn))". Itis obvious thaE({(x;)) = 0 and

E(Q(x)2(x)) = E(k;gbkwk<xi>bk/wkf<x,->)
= glki (X ) Wie(%}) = 9K (X3, X ).
=1

This implies thatZ follows a multivariate normal distributiohl,(0, g~*K). ConsequentlyZ(x)
follows a Gaussian process.
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