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Abstract
We propose a fully Bayesian methodology for generalized kernel mixed models (GKMMs), which
are extensions of generalized linear mixed models in the feature space induced by a reproducing
kernel. We place a mixture of a point-mass distribution and Silverman’sg-prior on the regression
vector of a generalized kernel model (GKM). This mixture prior allows a fraction of the components
of the regression vector to be zero. Thus, it serves for sparse modeling and is useful for Bayesian
computation. In particular, we exploit data augmentation methodology to develop a Markov chain
Monte Carlo (MCMC) algorithm in which the reversible jump method is used for model selection
and a Bayesian model averaging method is used for posterior prediction. When the feature basis
expansion in the reproducing kernel Hilbert space is treated as a stochastic process, this approach
can be related to the Karhunen-Loève expansion of a Gaussian process (GP). Thus, our sparse
modeling framework leads to a flexible approximation methodfor GPs.

Keywords: reproducing kernel Hilbert spaces, generalized kernel models, Silverman’s g-prior,
Bayesian model averaging, Gaussian processes

1. Introduction

Supervised learning based on reproducing kernel Hilbert spaces (RKHSs) has become increasingly
popular since the support vector machine (SVM) (Vapnik, 1998) and its variants such as penal-
ized kernel logistic regression models (Zhu and Hastie, 2005) have beenproposed. Sparseness has
also emerged as a significant theme generally associated with RKHS methods. The SVM naturally
embodies sparseness due to its use of the hinge loss function. Penalized kernel logistic regression
models, however, are not naturally sparse. Thus, Zhu and Hastie (2005) proposed a methodology
that they refer to as theimport vector machine(IVM), where a fraction of the training data—called
import vectorsby analogy to the support vectors of the SVM—are used to index kernel basis func-
tions.

Kernel supervised learning methods can be unified using the tools of regularization theory
(Hastie et al., 2001). The regularization term is usually defined as theL1 or L2 norm of the vector of
regression coefficients. From a Bayesian standpoint, this term is obtainedfrom assigning a Gaussian
or Laplacian prior to the regression vector. Moreover, using logarithmic scoring rules (Bernardo and
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Smith, 1994), a loss function can often be viewed as the negative conditional log-likelihood. This
perspective leads to interpreting regularization methods in terms of maximuma posteriori(MAP)
estimation, and has motivated recent Bayesian interpretations of kernel methods (Tipping, 2001;
Sollich, 2001; Mallick et al., 2005; Chakraborty et al., 2005; Zhang and Jordan, 2006; Pillai et al.,
2007; Liang et al., 2009; MacLehose and Dunson, 2009).

Although the use of either the hinge loss function orL1 regularization is an effective tool for
achieving sparsity in the frequentist paradigm (Vapnik, 1998; Tibshirani, 1996), in the Bayesian
setting the corresponding prior yields posteriors that cannot be computedin closed form. In the
Bayesian methods of Mallick et al. (2005), for example, since conjugate priors for the regression
vector do not exist, a sampling methodology based on data augmentation was employed to update
the regression vector. In the Bayesian lasso (Park and Casella, 2008)or the Bayesian elastic net (Li
and Lin, 2010), Gibbs sampling was used, based on assumptions of normalityand independence.
Given that an appeal to sampling methods must be made, it is not clear that mimicking frequentist
methods is the best way to achieve sparsity within the Bayesian paradigm. Indeed, explicit support-
vector selection or variable selection is not straightforward for these existing Bayesian approaches,
and sparsity is often enforced in an ad hoc manner via Bayesian credible intervals (Park and Casella,
2008; Li and Lin, 2010).

In this paper we proposegeneralized kernel models(GKMs) as a framework in which sparsity
can be given an explicit treatment and in which a fully Bayesian methodology can be carried out.
The GKM is derived from generalized linear models (GLMs) (McCullagh and Nelder, 1989) in the
RKHS. We defineactive vectorsto be those input vectors that are indexed by the nonzero com-
ponents of the regression vector in GKMs.1 We assign to the regression vector a mixture of the
point-mass distribution and a prior which we refer to as theSilverman g-prior(Silverman, 1985).
Our use of this prior is based on three facts. First, the Silvermang-prior can induce an empiri-
cal RKHS norm on the training data (see Section 2.2). Second, posterior consistency results are
available for Bayesian estimation procedures based on the Silvermang-prior (Zhang et al., 2008).
Third, the mixture of the point-mass prior and the Silvermang-prior allows a fraction of regression
coefficients in question to be zero and thus provides an explicit Bayesian approach to the selection
of active vectors.

It is worth noting that the Silvermang-prior is related to the Zellnerg-prior (Zellner, 1986),
which has been widely applied to Bayesian variable selection and Bayesian model selection (Smith
and Kohn, 1996; George and McCulloch, 1997; Kohn et al., 2001; Nottand Green, 2004; Sha et al.,
2004) because of its computational tractability in evaluating marginal likelihoods.

We develop Bayesian approaches to parameter estimation, model selection and response pre-
diction for the GKM. In particular, motivated by the use of the data augmentationmethodology
in Bayesian GLMs (Albert and Chib, 1993; Holmes and Held, 2006), we exploit this methodol-
ogy to devise an MCMC algorithm for our Bayesian GKMs. The algorithm uses a reversible jump
procedure (Green, 1995) for the automatic selection of active vectors and a Bayesian model aver-
aging method (Raftery et al., 1997) for the posterior prediction of future observations. We show
that our algorithm is amenable to low-rank matrix update techniques (see Section 3.2) that make it
computationally feasible even for large data sets.

Another development in Bayesian kernel methods is based on Gaussian processes (GPs), which
provide a general approach to assigning prior distributions to functions for nonparametric modeling.

1. Our “active vectors” are the analogs of import vectors for the IVM and support vectors for the SVM.
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In geostatistics, GPs have been seen numerous applications to spatial statistical analysis under the
name of “kriging.” Diggle et al. (1998) broadened the scope of kriging by exploiting the combi-
nation of kriging and GLMs. In the machine learning community, ideas related to kriging and its
extensions have been widely exploited in Bayesian treatments of classificationand regression prob-
lems (Williams and Barber, 1998; Neal, 1999; Rasmussen and Williams, 2006).In these problems
the data in question are not necessarily spatial. A major concern with GPs is thecomputational bur-
den for large data sets. Thus, sparse approximations, such as the “subset of regressors,” the Nyström
method, the informative vector machine, the “subset of data” and the “data squashing” technique,
are generally used to mitigate the computational burden (Williams and Seeger, 2001; Smola and
Bartlett, 2001; Lawrence et al., 2003; Snelson, 2007).

Building on existing connections between kernel methods and GP-based models (see, e.g., Pillai
et al., 2007), we use the Karhunen-Loève expansion of the Gaussian process to explore relationships
between our Bayesian GKMs and GP-based classification. In particular,we show that our reversible
jump method can be used to implement a “subset of regressors” approximationmethod for GP-based
classification.

The rest of this paper is organized as follows. Section 2 presents a Bayesian framework for
kernel supervised learning. Sections 3 and 4 present the MCMC algorithm for fully Bayesian GKMs
and sparse GP classifiers, respectively. The experimental analysis is then presented in Section 5.
Two extensions and some conclusions are given in Sections 6 and 7, respectively.

2. A Bayesian Approach for Kernel Supervised Learning

We start with a supervised learning problem over a set of training data{(xi ,yi)}
n
i=1 wherexi ∈ X ⊂

R
p is an input vector andyi is a univariate continuous output for the regression problem or binary

output for the classification problem. Our current concern is to learn a predictive functionf (x) from
the training data.

Supposef = u+h∈ ({1}+HK)whereHK is an RKHS. Estimatingf (x) from data is formulated
as a regularization problem of the form

min
f∈HK

{
1
n

n

∑
i=1

L(yi , f (xi))+
g
2
‖h‖2

HK

}
, (1)

whereL(y, f (x)) is a loss function,‖h‖2
HK

is the RKHS norm andg> 0 is the regularization param-
eter. By the representer theorem (Wahba, 1990), the solution for (1) isof the form

f (x) = u+
n

∑
j=1

β jK(x,x j), (2)

whereu is called an offset term,K(·, ·) is the kernel function and theβ j are referred to as regression
coefficients. Noticing that‖h‖2

HK
= ∑n

i, j=1K(xi ,x j)βiβ j and substituting (2) into (1) we obtain the
minimization problem with respect to (w.r.t.) theu andβ j as

min
u,β

{
1
n

n

∑
i=1

L(yi ,u+k′iβ)+
g
2

β′Kβ
}
, (3)

whereβ = (β1, . . . ,βn)
′ is ann×1 regression vector andK = [k1, . . . ,kn] is then×n kernel matrix

with k i = (K(xi ,x1), . . . ,K(xi ,xn))
′. SinceK is symmetric and positive semidefinite, the termβ′Kβ

is in fact an empirical RKHS norm w.r.t. the training data.
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The predictive functionf (x) in (2) is based on a basis expansion of kernel functions. We now
show that the predictive function can also be expressed by a basis expansion of feature functions.
Given a Mercer reproducing kernelK : X ×X → R, there exists a corresponding mapping (say
ψ) from the input spaceX to a feature space (sayF ⊂ R

r ). That is, we have a vector-valued
functionψ(x) = (ψ1(x), . . . ,ψr(x))′, which is called thefeature vectorof x, such thatK(xi ,x j) =
ψ(xi)

′ψ(x j). By theMercer-Hilbert-Schmidt Theorem(Wahba, 1990), we know that there exists an
orthogonal sequence of continuous eigenfunctions{φ j} in the square integrable Hilbert functional
spaceL2(X ) and eigenvaluesl1 ≥ l2 ≥ . . . ≥ 0. Furthermore, we have a definition of the feature
functionsψ : X → L2(X ) asψ(x) =

{√
l jφ j(x)

}r
j=1. That is,ψ j(x) =

√
l jφ j(x). Thus theψ j(x)

constitute a set of basis functions ofL2(X ). Consequently, they can be used to express the predictive
function as follows:

f (x) = u+
r

∑
k=1

bkψk(x) = u+ψ(x)′b, (4)

whereb = (b1, . . . ,br)
′. There are possibly infinitely many basis functions in (4) becauser is pos-

sibly infinite. In the case thatr is infinite, one may use a finite-dimensional approximation tof (x)
by keeping the firstn ψ j(x)’s and setting the remainingb j , j > n to zero (Zhang et al., 2007). Now
lettingb = Ψ′β, we re-derive (2) from (4) due toK = ΨΨ′ whereΨ = [ψ(x1), . . . ,ψ(xn)]

′.

2.1 Generalized Kernel Models

Using the logarithmic scoring rule (Bernardo and Smith, 1994), the lossL(y, f (x)) can be viewed
as a negative conditional log-likelihood. This motivates us to construct the following model

y∼ p(y|µ) with µ= τ(u+k′β), (5)

whereτ(·) is a known link function andk = (K(x,x1), . . . ,K(x,xn))
′. This model can be obtained

from the model
y∼ p(y|µ) with µ= τ(u+ψ(x)′b) (6)

by using the transformationb = Ψ′β. Since the model in (6) is a GLM in the feature space, we call
model (5) thegeneralized kernel model(GKM).

GKMs provide a unifying framework for kernel-based regression andclassification. With dif-
ferent p(y|µ) andτ, we have different kernel models. In the regression problem,p(y|µ) is usually
normal andτ is the identity function.

In this paper we are mainly concerned with the classification problem wherey is encoded as a
binary value, that is,y∈ {0,1}. We thus modelp(y|µ) as Bernoulli distribution:

p(y|µ) = µy(1−µ)1−y = [τ(u+k′β)]y[1− τ(u+k′β)]1−y.

Typically, τ is either the logistic linkτ(z) = exp(z)
1+exp(z) or the probit linkτ(z) = Φ(z), the cumulative

distribution function of a standard normal variable. The probit link is widely used in Bayesian
GLMs due to its tractability in calculating the marginal likelihood. In our fully Bayesian GKMs in
Section 3, we will use this link.

2.2 Silverman’sg-prior

Assume that thebk are independent Gaussian variables withE(bk) = 0 andE(b2
k) = g−1, that is,

b ∼ Nr(0, g−1I r). Here and later, we denote byIm them×m identity matrix, by1m them×1 vector
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of ones, and by0 the zero vector or matrix with appropriate size. Because ofb = Ψ′β, we have
β = K−1Ψb. As a result, the prior forβ is β ∼ Nn

(
0, g−1K−1

)
due toK−1ΨΨ′K−1 = K−1. It

is possible that the kernel matrixK is singular. For such aK , we use its Moore-Penrose inverse
K+ instead and still haveK+KK + = K+. The prior distribution forβ becomes a singular normal
distribution (Mardia et al., 1979). In either case, we useK−1 for notational simplicity.

The priorNn
(
0, K−1

)
for β was first proposed by Silverman (1985) in his Bayesian formulation

of spline smoothing. Thus, Zhang et al. (2008) referred to the priorβ ∼ Nn
(
0, g−1K−1

)
as the

Silverman g-priorbecause it is related to the Zellnerg-prior (Zellner, 1986). Since the prior density
of β is proportional to exp(−gβ′Kβ/2), the Silvermang-prior is design-dependent. Moreover, the
regularization termgβ′Kβ/2 in (3) is readily derived from this prior.

WhenK is singular, by analogy to thegeneralized singular g-prior(gsg-prior) (West, 2003) we
call Nn

(
0, g−1K−1

)
a generalized Silverman g-prior. It is worth pointing out that Green (1985)

argued that the definition of Silverman’s prior is implicit. We have presented anexplicit derivation
of this prior. Like the Zellnerg-prior (Zellner, 1986; Liang et al., 2008), the Silvermang-prior has
only a single shared global scaling parameterg. Thus, the prior induces a global shrinkage rule.

2.3 Sparse Models

Recall that the number of active vectors is equal to the number of nonzerocomponents ofβ. That
is, if β j = 0, the jth input vector is excluded from the basis expansion in (2), otherwise thejth input
vector is an active vector. We are thus interested in a prior forβ which allows some components of
β to be zero. In particular, we assign a point-mass mixture prior toβ built on the Silvermang-prior.

We introduce an indicator binary vectorγ = (γ1, . . . ,γn)
′ such thatγ j = 1 if x j is an active vector

andγ j = 0 if it is not. Let nγ = ∑n
j=1 γ j be the number of active vectors, and letK γ be then×nγ

submatrix ofK consisting of those columns ofK for which γ j = 1. We further letK γγ be thenγ×nγ
submatrix ofK γ consisting of those rows ofK γ for whichγ j = 1, andβγ andkγ be the corresponding
nγ×1 subvectors ofβ andk. Based on GKMs in (5) and the Silvermang-prior, we thus obtain the
following sparse model

y∼ p(y|τ( f (x))) with f (x) = u+k′γβγ and βγ ∼ Nnγ(0, g−1K−1
γγ ). (7)

In the existing literature for Bayesian sparse classification and regression (Tipping, 2001; Fig-
ueiredo, 2003; Park and Casella, 2008; Hans, 2009; Li and Lin, 2010; Carvalho et al., 2010), a
typical choice of the prior onβ is the class of multivariate scale mixtures of normals. The resulting
shrinkage rule is derived by mixing over a set of local scaling parameters. This differ from our
global shrinkage rule. See Carvalho et al. (2010) for further discussion of sparsity priors.

3. Methodology

In this section we present a fully Bayesian GKM (FBGKM) based on (7). Since p(y|τ( f (x))) is
non-normal for the classification problem, conjugate priors forβ usually do not exist. In order to
facilitate the implementation of Bayesian inference in this setting, we make use of thedata aug-
mentation methodology which has been used by Albert and Chib (1993) for Bayesian GLMs and
by Mallick et al. (2005) for their Bayesian SVMs. The basic idea is to introduce auxiliary variables
linking y and the model parameters. We apply this methodology to our FBGKM.

115



ZHANG, DAI AND JORDAN

3.1 Hierarchical Models

Let s= (s1, . . . ,sn)
′ be a vector of auxiliary variables corresponding to the training data{(xi ,yi)}

n
i=1.

We in particular define
s= u1n+K γβγ + ε with ε ∼ Nn(0, σ2In).

Sinceτ is defined as the probit link in our FBGKM, we haveσ2 = 1 and

yi =

{
1 if si > 0
0 otherwise.

Givens, y = (y1, . . . ,yn)
′ is independent ofu, β andγ. Consequently, we can assign conjugate

priors for these parameters and perform an efficient Bayesian inference.
Firstly, we assumeu∼ N(0, η−1) andg∼ Ga(ag/2,bg/2) whereGa(a,b) represents a gamma

distribution. Letβ̃γ = (u,β′γ)′. We thus have

β̃γ ∼ Nnγ+1(0, Σ−1
γ ) with Σγ =

[ η 0
0 gK γγ

]
.

By integrating out̃βγ, the marginal distribution ofsconditional onγ is normal, namely,

p(s|γ) = Nn(0, Qγ) (8)

with Qγ = In + K̃ γΣ−1
γ K̃ ′γ whereK̃ γ = [1n,K γ] (n×(nγ+1)). Bayes theorem yields the following

distribution ofβ̃γ conditional ons andγ:

[β̃γ|s,γ]∼ Nnγ+1(ϒ−1
γ K̃ ′γs, ϒ−1

γ ), (9)

whereϒγ = K̃ ′γK̃ γ +Σγ.
Secondly, the kernel functionK is assumed to be indexed by hyperparametersθ (see, e.g.,

Mallick et al., 2005). For example, the Gaussian kernelK(xi ,x j) = exp(−‖xi−x j‖
2/θ2) is a func-

tion of the width parameterθ. For simplicity, the dependence ofK on θ will be left implicit hence-
forth. If θ is p-dimensional, we take a uniform prior for each element ofθ on [aθ j ,bθ j ]. Namely,

θ ∼

p

∏
j=1

U(aθ j ,bθ j ).

Thirdly, as in Kohn et al. (2001) and Nott and Green (2004), we assignan independent Bernoulli
prior to each component ofγ, namely,

p(γ|α) =
n

∏
j=1

αγ j (1−α)1−γ j = αnγ(1−α)n−nγ ,

whereα ∈ (0,1). It is natural to place a Beta prior onα, α ∼ B(aα,bα). Marginalizing outα results
in the following prior onγ:

p(γ) =
Be(nγ +aα,n−nγ +bα)

Be(aα,bα)
, (10)
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whereBe(·, ·) is the Beta function. Kohn et al. (2001) proposed a method of selecting the hyper-
parametersaα and bα by controlling the value ofnγ. In the following experiments, we use the
uninformative fixed specificationaα = 1 andbα = 1.

Finally, we assume thatη follows Ga(aη/2, bη/2) and we shall keep the hyperparametersaη,
bη, ag andbg fixed in this paper. In summary, we form a hierarchical model in which the joint
density of all variables mentioned takes the form

p(y,s,γ,u,β,θ,η,g) = p(η)p(g)p(γ)p(θ)p(u|η)p(β|g,γ,θ)p(s|u,β,θ,γ)p(y|s).

The corresponding directed acyclic graph is shown in Figure 1.

si

xi

yi u

σ

β

η
aη

bηn

g
ag

bg

α
aα

bα
γ

θ
aθj

bθj

p

p

Figure 1: A graphical representation for the hierarchical model.

3.2 Inference

Our goal is to generate realizations of parameters from the conditional jointdensityp(s,u,β,γ,g|y)
via an MCMC algorithm. In order to speed up mixing of the MCMC, we use marginal posterior
distributions whenever possible. Our MCMC algorithm consists of the following steps.

Start Giveaη, bη, ag andbg, and initializes, γ, g, η, u andβγ.

Step (a) Impute eachsi from p(si |yi ,u,βγ).

Step (b) Updateη, g, β̃γ andθ according top(η|u), p(g|βγ), p(β̃γ|s,γ,η,g) and p(θ|s,γ), respec-
tively.

Step (c) Updateγ from p(γ|s).
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Step (a) is to draws from p(s|y,u,βγ). We perform this step by using a technique which was pro-
posed by Holmes and Held (2006) for the conventional probit regression. In particular,s is updated
from its marginal distribution having integrated overβ̃γ; that is,si is generated fromp(si |s−i ,yi ,γ)
wheres−i = (s1, . . . ,si−1,si+1, . . . ,sn)

′. The details of this procedure is given in Appendix A. Please
also refer to Holmes and Held (2006).

We now consider the updates ofβ̃γ, η and g. Given s, these parameters are independent

of y, so their updates are based onp(β̃γ,η,g|s,γ). Hence, we updatẽβγ from [β̃γ|s,γ,η,g] ∼
Nnγ+1(ϒ−1

γ K̃ ′γs, ϒ−1
γ ). Sinceg is only dependent onβγ and the prior is conjugate, we use the Gibbs

sampler to updateg from its conditional distribution, which is given by

[g|βγ]∼ Ga
(ag+nγ

2
,
bg+β′γK γγβγ

2

)
.

The update ofη is obtained from its conditional distribution as

[η|u]∼ Ga
(aη+1

2
,
bη +u2

2

)
.

In order to updateθ, we need to use an MH sampler. We write the marginal conditional distri-
bution ofθ as

p(θ|s,γ) ∝ p(s|γ,η,g,θ)p(θ),

wherep(s|γ,η,g,θ) is given by (8). In the following experiments (see Section 5.3), the proposal
distribution is specified as a Gaussian distribution with the current value ofθ as mean and 0.2 as
variance. Letθ∗ denote the proposed move from the currentθ. Then this move is accepted with
probability

min
{

1,
p(s|γ,η,g,θ∗)
p(s|γ,η,g,θ)

}
.

This acceptance probability involves the calculations of the inverses and determinants of bothQγ
andQ∗γ , whereQ∗γ is obtained fromQγ with θ∗ replacingθ. To reduce computational costs, we
employ the formulas in (11) which is given below for computing these inversesand determinants.
Our Bayesian estimation method for the kernel parameterθ is more efficient than that given in
BSVM and CSVM (Mallick et al., 2005), in which computing the inverses and determinants of two
consecutive full kernel matricesK andK ∗ is required at each sweep of MCMC sampling.

Step (c) is used for the automatic choice of active vectors. To implement this step, we borrow
a method devised by Nott and Green (2004). This method was derived from the reversible jump
methodology of Green (1995). Specifically, we generate a proposalγ∗ from the current value ofγ
by one of three possible moves:

Birth move randomly choose a 0 inγ and change it to 1;

Death move randomly choose a 1 inγ and change it to 0;

Swap move randomly choose a 0 and a 1 inγ and switch them.

The acceptance probability for each move is

min{1, likelihood ratio×prior ratio×proposal ratio}.
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Lettingk= nγ, we denote the probabilities of birth, death and swap bybk, dk and 1−bk−dk, respec-
tively. For birth, death and swap moves, the acceptance probabilities are

min

{
1,

p(s|γ∗)p(γ∗)dk+1(n−k)
p(s|γ)p(γ)bk(k+1)

}
,

min

{
1,

p(s|γ∗)p(γ∗)bk−1k
p(s|γ)p(γ)dk(n−k+1)

}
,

min

{
1,

p(s|γ∗)p(γ∗)
p(s|γ)p(γ)

}
,

where p(s|γ) and p(γ) are given in (8) and (10). In our experiments we setb0 = 1 andd0 = 0,
bk = dk = 0.3 for 1≤ k≤ kmax−1, anddk = 1 andbk = 0 for kmax≤ k≤ n. Here,kmax is a specified
maximum number of active vectors such thatkmax≤ n.

An alternative to this approach is the stochastic search method of George and McCulloch (1997).
This method also employs birth, death and swap moves; it differs from the reversible jump proce-
dure because it does not incorporate the probabilities of birth, death andswap into its acceptance
probabilities.

Recall that the main computational burden of our MCMC algorithm comes from the calculations
of the determinant and inverse ofQγ (Qγ∗) during the MCMC sweeps. It is worth noting that when
n is relatively large, we can reduce the computational burden by givingkmax a value far less thann,
that is,kmax≪ n, and then computing:

Q−1
γ = In− K̃ γϒ−1

γ K̃ ′γ and |Qγ|= |ϒγ||Σγ|
−1 = η−1g−nγ |K γγ|

−1|ϒγ|. (11)

For example, for both the USPS and NewsGroups data sets used in our experiments, we setkmax=
200≪ n. In this setting, we always havenγ ≤ kmax≪ n. Sinceϒγ andK γγ are(nγ+1)×(nγ+1)
andnγ×nγ, these formulas forQ−1

γ and |Qγ| are feasible computationally. This is an advantage
over the stochastic search method of George and McCulloch (1997). Finally, in the reversible jump
method, the matrices obtained before and after each move only change a column and a row. Thus,
it is possible to exploit rank-one matrix update techniques to make the method still more efficient.

3.3 Prediction

Given a new input vectorx∗, we need to predict its labely∗. The posterior predictive distribution of
y∗ is

p(y∗|x∗,y) =
∫

p(y∗|x∗, β̃γ,y)p(β̃γ|y)dβ̃γ.

We know that this integral cannot be computed in closed form. Moreover, itis intractable to select
the model which is parameterized byβγ for prediction. An intuitive approach is to choose a model
with a value ofγ having the highest posterior probability among thoseγ that appear during the
MCMC sweeps. However, this is expensive in terms of memory becauseγ takes 2n possible distinct
values. To deal with this problem, we use a Bayesian model averaging method(Raftery et al., 1997)
for posterior prediction.

The Bayesian model averaging method is based on the MCMC sampling process. Specifically,
we have

p(y∗ = 1|x∗,y)≈
1
T

T

∑
t=1

p
(

y∗ = 1
∣∣y,x∗,u(t),β(t)

γ

)
.

119



ZHANG, DAI AND JORDAN

Here(·)(t) is thetth MCMC realization of(·), which is taken at everyMth sweep after the burn-in
of the MCMC algorithm. In the following experiments, we run the MCMC algorithm for 10,000
sweeps, discard the first 5,000 as the burn-in, and retain every 5th (i.e.,M = 5) realization of
parameters after the burn-in for inference and prediction. This implies thatthe Bayesian model
averaging method uses 1,000 (T = (10,000−5,000)/5) active sets for prediction.

We should point out that our Bayesian model does not treat the training and test as two sep-
arate procedures. In fact, our reversible jump MCMC algorithm deals with parameter estimation,
model selection and posterior prediction jointly in a single paradigm. Moreover, the reversible jump
method is a sequential approach for model selection and posterior prediction. This implies that after
the burn-in the selection of active vectors and the prediction of responses are simultaneously im-
plemented. Thus, the MCMC algorithm does not require extra computational complexity for the
prediction of responses.

4. Sparse Gaussian Processes for Classification

In nonparametric Bayesian methods for regression and classification,f (x) is directly regarded as
a stochastic function; in particular,f (x) is often modeling as a Gaussian process. There has been
much discussion of the relationships between RKHS-based methods and GP-based methods (see,
e.g., Rasmussen and Williams, 2006; Pillai et al., 2007). In this section we further investigate this
relationship and then propose an effective and efficient GP-based classification method.

4.1 Gaussian Process Priors

The following proposition summarizes the connection between the Gaussian process and the feature
basis expansion∑r

k=1bkψk(x) given in (4).

Proposition 1 Given a Gaussian processζ(x) over X , with zero mean and covariance function
g−1K(·, ·), where K: X × X → R is a Mercer reproducing kernel, there exists a vector-valued
function ψ(x) = (ψ1(x), . . . ,ψr(x))′ from X to R

r (r is possibly infinite) such that K(xi ,x j) =
ψ(xi)

′ψ(x j) for xi ,x j ∈ X and

ζ(x) =
r

∑
k=1

bkψk(x) with bk
i.i.d
∼ N(0, g−1). (12)

Conversely, given a functionζ : X → R in (12), thenζ is a Gaussian process with zero mean and
covariance function g−1K(xi ,x j) where K(xi ,x j) = ψ(xi)

′ψ(x j).

If the feature expansion in (12) is regarded as a stochastic process, itis known as the Karhunen-
Loève expansion. Proposition 1 provides a direct connection between GKMs and GP classifiers
(GPCs) (Neal, 1999; Girolami and Rogers, 2006), and between GKMs and model-based geostatis-
tics (Diggle et al., 1998). We see thatb = (b1, . . . ,br)

′ behaves as a regression vector in GKMs,
whereas it plays the role of a latent vector in GPCs. Consequently, the feature functionψ(x) defines
the fixed-effect part of GKMs and the random-effect part of GPCs.In parallel with the fact that
GKMs are GLMs in the feature space induced by the reproducing kernelK, we see that GPCs are
generalized linear mixed models (Harville, 1977) in the feature space.
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As discussed in Section 2, the Karhunen-Loève expansion can also be approximated by a finite-
dimensional expansion over the training data set; that is,

ζ(x) =
n

∑
i=1

βiK(x,xi) with β = (β1, . . . ,βn)
′
∼ Nn(0, g−1K−1).

Let ζ = (ζ(x1), . . . ,ζ(xn))
′ be the vector ofn realizations ofζ over the training data. We then have

ζ = Kβ ∼ Nn(0,g−1K). In our sparse treatment, some of theβi are set to zero and the subvectorβγ
of the nonzero elements is modeled asNnγ(0,g

−1K−1
γγ ). In this case,ζ = K γβγ follows a singular

normal distribution, that is,ζ ∼ Nn(0,g−1K γK−1
γγ K ′γ). This sparse technique is called the “sub-

set of regressors” (Rasmussen and Williams, 2006). In the following sections we investigate this
sparsity-inducing approach to GP-based classification as an alternativeto the FBGKM introduced
in Section 3.

4.2 The MCMC Algorithm

By analogy with on the hierarchical model for our FBGKM in Section 3.1, we model the auxiliary
variablesi as

si = s(xi) = u+ζ(xi)+ εi with εi ∼ N(0, 1)

and keep other settings unchanged. Hereζ(x) is the Gaussian process with E(ζ(x)) = 0 and
Cov(ζ(xi),ζ(x j)) = g−1K(xi ,x j). Applying ζ(x) to the training data, we have

s= u1n+ζ+ ε with ε ∼ Nn(0, In).

The inverses ofn×n matrices are also required during Bayesian inference and prediction for
GPCs. In order to reduce the computational costs, we useK γβγ with βγ ∼ Nnγ(0,g

−1K−1
γγ ) to ap-

proximateζ as in Section 4.1. This yields asparse GPC(SGPC) model. The MCMC algorithm
for SGPC is immediately obtained from that for FBGKM by simply removing the update of βγ in
Section 3.2, becauseβγ is now the latent vector and it is not used for prediction. In particular, GPCs
use the expectation ofy∗ w.r.t. p(y∗|x∗,y) as the predictor. We thus need to insert a step, which is to
samples∗ = s(x∗) from p(s∗|s,γ,u,y), into the MCMC algorithm for prediction. This step is only
necessary at everyMth sweep after the burn-in of the MCMC algorithm (see Diggle et al., 1998).

Now the marginal distribution ofs is [s|u,γ] ∼ Nn(u1n, M γ), whereM γ = In+g−1K γK−1
γγ K ′γ.

Sinces∗ is conditionally independent ofy, givens, we have

p(s∗|s,γ,u) = N
(
u+g−1kγ(x∗)′K−1

γγ K ′γM
−1
γ (s−u1n), v

)
,

wherev = g−1kγ(x∗)′K−1
γγ kγ(x∗)+1− g−2kγ(x∗)′K−1

γγ K ′γM
−1
γ K γK−1

γγ kγ(x∗) andkγ(x∗) is the sub-
vector of(K(x∗,x1), . . . ,K(x∗,xn))

′ corresponding toγi = 1. Since we haveE(y∗|s∗) = τ(s∗) and
the used probit linkτ is a monotonically increasing function on(−∞, ∞), we allocatey∗ = 1 if
s∗ > 0 andy∗ = 0 otherwise.

Let I = {xi : γi = 1, i = 1, . . . ,n} be the set of active vectors. If the kernel function is stationary,
thenv is near zero and the posterior predictive mean ofs∗ reverts tou whenx∗ is far from points
in the setI . Thus the sparse technique will give poor predictions, especially underestimates of the
predictive variance. However, this problem is mitigated in our SGPC methodology since it uses
Bayesian model averaging for prediction. That is, the prediction is basedon the average overT
active sets. In the following experiments the average is taken on 1,000 active sets.
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It is again worth noting that the reversible jump MCMC algorithm devised in this paper deals
with parameter estimation and posterior prediction jointly in a single paradigm. Moreover, the
reversible jump methodology is a sequential approach to model selection and posterior prediction.
The main computational burden of the MCMC algorithm comes from the sampling procedure for
parameter estimation, and the MCMC algorithm does not require extra computational complexity
for the selection of active vectors and the prediction of responses.

The MCMC algorithms used in Neal (1999) and Diggle et al. (1998) is less efficient than ours
because they do not use data augmentation or exploit sparsity. Girolami andRogers (2006) proposed
a Bayesian multinomial probit regression model, using variational methods forinference. For addi-
tional discussion of sparse approaches to GPs, interested readers should refer to Quĩnonero-Candela
and Rasmussen (2005), Rasmussen and Williams (2006) and Snelson (2007) and references therein.

5. Experimental Evaluations

In this section we conduct several experiments to evaluate the performance of our proposed Bayesian
classification methods: FBGKM and SGPC. We compare the methods with variousclosely re-
lated Bayesian and non-Bayesian classification methods, including the Bayesian SVM (BSVM)
(Mallick et al., 2005), the complete SVM (CSVM) (Mallick et al., 2005), sparse Gaussian processes
(SGP+FIC) (Snelson and Ghahramani, 2006), and the conventional IVM and SVM.

We also implement our Bayesian GKM without Step (c) of the MCMC algorithm in Section 3.2.
That is, we implement an MCMC algorithm that consists of Steps (a)-(b) by fixingnγ = n. We denote
the resulting model by BGKM to distinguish it from FBGKM. We could also implementa full (non-
sparse) GPC, but since such a full GPC would have almost the same computational complexity as
the GBKM, we do not implement the non-sparse GPC. All experiments have been implemented in
Matlab on a Pentium 4 with a 2.80GHz CPU and 2.00GB of RAM.

5.1 Setup

We perform the experiments on several benchmark data sets:BCI , g241d , Digit1 , COIL2, USPS
digits {(0 vs. 1 ), (0 vs. 9 )}, Letters {(A vs. B ), (A vs. C )}, NewsGroups corpora ,
Adult 1, Adult 2, Mushrooms , Splice , Astroparticle , Ringnorm , Thyroid , Twonorm, and
Waveform . We first present a brief review of these data sets.

The BCI data set contains data obtained from project in brain-computer interfacesin which a
single subject performs 400 trials in which he imagines movements with either the left or right
hand. Theg241d data set is an artificial data set which is generated by two unit-variance isotropic
Gaussians with potentially misleading cluster structure. TheDigit1 data set is generated by ap-
plying a sequence of transformations to digit images, leading to a low-dimensional manifold ge-
ometrical structure embedded into a high-dimensional space. TheCOIL2 data set is derived from
the Columbia object image library (COIL-100) under a sequence of transformations, for example,
rescaling, adding noise, and masking dimensions. Note that theBCI , g241d , Digit1 andCOIL2 data
sets are available athttp://www.kyb.tuebingen.mpg.de/ssl-book/ .

The USPS database is a handwritten digits data set which contains the digits from 0 to 9 auto-
matically scanned from envelopes by the U.S. Postal Service. In our experiments, two digit pairs
{(0 vs. 1 ), (0 vs. 9 )} data sets are randomly constituted from the USPS database, and the di-
mensionality of each digit image and the number of digits in each digit class of each data set are
256 and 1000, respectively. TheLetters data set consists of images of the 26 capital letters from
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“A” to “Z,” and two letter pairs{(A vs. B ), (A vs. C )} are randomly constituted from “A,” “B”
and “C” with 789, 766, and 736 cases, respectively.

The20 NewsGroups data set is organized into 20 different newsgroups, each corresponding to
a different topic, and we randomly select thealt.atheism andcomp.graphics topics for the binary
classification problem. The total vocabulary size is 1390. Based on the information gain, 893
features are employed.

TheAdult data set is originally extracted from the 1994 Census database with 14 features, of
which six features are continuous and eight are categorical. Further, theAdult data set is processed
with dimensionality of 123, that is, each continuous feature is discretized into abinary feature and
each categorical feature withq categories is converted toq binary features. Here, theAdult 1 and
Adult 2 data sets are constituted according to different training and test sizes.

The Mushrooms data set is originally drawn from the Audubon Society Field Guide to North
American Mushrooms with 22 features. Similar to theAdult data set, theMushrooms data set
is processed into the binary feature representations, leading to 123 dimensions for each instance.
The Splice data set is based on the biological process whereby intronic DNA is removed during
protein translation. TheAstrop (Astroparticle) data set is obtained from Jan Conrad of Uppsala
University, Sweden. TheAdult , Mushrooms , Splice , andAstrop data sets are available athttp:
//www.csie.ntu.edu.tw/ ˜ cjlin .

The Ringnorm data set is artificially generated from two multivariate Gaussian distributions
for the binary classification problem. That is, the instances within each classare obtained from
a 20-variate Gaussian distribution. TheThyroid is collected from several databases of thyroid
disease records. We use this data set to conduct a binary classification experiment in which the class
euthyroidism is considered as the normal class and the classes hypothyroidism and hyperthyroidism
are considered as an abnormal class.

TheTwonorm data set is also an artificial 20-dimensional two-class classification example,which
consists of 7400 instances. TheWaveform data set is generated from a combination of 2 of 3 “base”
waves in a 21-dimensional space. TheRingnorm , Thyroid , Twonorm, andWaveform data sets are
widely used for the classification benchmarking, and they are available athttp://ida.first.
gmd.de/ ˜ raetsch/data/benchmarks.htm .

Table 1 gives a summary of these data sets. In our experiments, each data set is randomly
partitioned into two disjoint subsets as the training and test. Twenty random partitions are gener-
ated for each data set. Based on these partitions, several evaluation criteria, including the average
classification error rate, standard deviation and average computational time, are reported.

All of the methods that we implement are based on a Gaussian RBF kernel with asingle width
parameter; that is,K(xi ,x j)= exp

(
−‖xi−x j‖

2
2/θ2

)
. In Section 5.3 we present experiments in which

this hyperparameter is estimated from data based on the ideas discussed in Section 3.2. In the
remaining sections, however, we use a simpler procedure in which the valueof θ is set to the mean
Euclidean distance between training data points. We found this setting to be effective empirically
in our applications. The gain in computational complexity is significant, particularly for the full GP
methods, BSVM and CSVM, whose calculations involve two full kernel matrices. In particular, for
each new value ofθ, it is necessary to recalculate the kernel matrixK for each sweep of the MCMC
algorithms.

In addition, we set the hyperparameters in both FBGKM and SGPC as follows: aη = 1, bη =
0.1, ag = 4 andbg = 0.1. For all of the Bayesian classification methods, we run each MCMC
algorithm for 10,000 sweeps, discard the first 5,000 as the burn-in, and retain every 5th realization
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Data Set n m p kmax

BCI 300 100 117 100
g241d 300 1200 241 200
Digit1 300 1200 241 200
COIL2 300 1200 241 200
USPS (0 vs.1) 500 1500 256 200
USPS (0 vs.9) 500 1500 256 200
Letters (A vs.B) 300 1255 16 100
Letters (A vs.C) 300 1225 16 100
NewsGroups 500 1485 893 200
Splice 2000 1175 60 200
Astrop(article) 4000 3089 4 200
Mushrooms 4000 4124 112 200
Adult 1 6000 10000 123 200
Adult 2 20000 12500 123 200
Ringnorm 400 7000 20 400
Thyroid 140 75 5 140
Twonorm 400 7000 20 400
Waveform 400 4600 21 400

Table 1: Summary of the Benchmark Data Sets:n—the size of the training data set;m—the size
of the test data set;p—the dimension of the input vector;kmax—the maximum number of
active vectors.

of parameters after the burn-in for inference and prediction. These settings are empirically validated
to be sufficient for these methods to achieve convergence. Recall that the test is implemented after
the burn-in of the MCMC sampling. This implies that the Bayesian model averaging component of
our Bayesian methods uses 1,000 (T = (10,000−5,000)/5) active sets for test.

5.2 Evaluation 1

In the first evaluation, we compare BGKM, FBGKM and SGPC with BSVM and CSVM, because
they are the two existing Bayesian kernel methods most closely related to our Bayesian classification
methods.

We conduct this evaluation on the first nine data sets in Table 1, randomly partitioning the data
into disjoint training and test data sets according to the corresponding settings of n andm. All the
inputs are normalized to have zero mean and unit variance. Tables 2 and 3 report the performance
of the five Bayesian methods on the nine different data sets in terms of the average classification
error rate (%), the standard deviation and the corresponding averagecomputational time (s).

From Tables 2 and 3, we can see that our FBGKM, SGPC and BGKM methodsbased on the
Silvermang-prior achieve slightly lower classification error rates than the BSVM and CSVM meth-
ods on the whole. Moreover, our methods have roughly similar classificationerror rates on the nine
data sets. In addition, FBGKM and SGPC are more efficient computationally than BGKM the other
methods; this is due to their exploitation of sparsity.
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Data Set
BSVM CSVM BGKM SGPC FBGKM

err (±std) err (±std) err (±std) err (±std) err (±std)
BCI 28.15 (±2.15) 29.40 (±2.58) 29.35 (±2.82) 27.10 (±1.85) 29.83 (±2.36)

g241d 17.15 (±1.68) 17.63 (±1.15) 16.37 (±1.11) 16.55 (±1.22) 16.30 (±0.89)
Digit1 4.86 (±0.74) 4.88 (±0.75) 4.87 (±0.65) 5.51 (±0.66) 4.85 (±0.67)
COIL2 9.71 (±0.81) 9.86 (±0.71) 9.16 (±0.99) 9.83 (±0.97) 9.797 (±0.32)

USPS(0 vs. 1) 0.40 (±0.30) 0.35 (±0.11) 0.28 (±0.05) 0.31 (±0.14) 0.28 (±0.06)
USPS(0 vs. 9) 1.36 (±0.36) 1.40 (±0.29) 1.36 (±0.28) 1.21 (±0.19) 1.37 (±0.24)

Letters(A vs. B) 0.92 (±0.59) 0.95 (±0.45) 0.75 (±0.24) 0.53 (±0.19) 0.77 (±0.24)
Letters(A vs. C) 0.83 (±0.15) 0.93 (±0.27) 0.87 (±0.15) 0.65 (±0.20) 0.84 (±0.15)

NewsGroups 5.62 (±0.80) 5.08 (±0.33) 4.92 (±0.28) 4.66 (±0.38) 4.83 (±0.25)

Table 2: Experimental results for the five methods on different data sets:err− the test error rates
(%); std− the corresponding standard deviation.

Data Set BSVM CSVM BGKM SGPC FBGKM
BCI 2.615×103 2.596×103 1.063×103 0.756×103 0.688×103

g241d 4.339×103 4.365×103 1.819×103 1.227×103 1.451×103

Digit1 5.248×103 5.210×103 2.459×103 1.738×103 2.011×103

COIL2 4.988×103 4.996×103 2.454×103 1.357×103 1.502×103

USPS(0 vs. 1) 2.133×104 2.047×104 6.013×103 2.464×103 2.700×103

USPS(0 vs. 9) 2.239×104 2.230×104 6.479×103 2.868×103 2.974×103

Letters(A vs. B) 2.009×103 2.007×103 0.914×103 0.568×103 0.593×103

Letters(A vs. C) 2.026×103 2.042×103 0.896×103 0.604×103 0.596×103

NewsGroups 2.286×104 2.291×104 6.270×103 2.675×103 2.910×103

Table 3: The computational times (s) for the five methods on different data sets.

In the following experiments, we attempt to analyze the performance of the methods with respect
to different values of the training sizen and the maximum numberkmax of active vectors. For the
sake of simplicity, we only report results on theNewsGroups data set.

Tables 4 and 5 show the experimental results when changing the training sizen and fixing the
maximum number of active vectors tokmax= 200. As can be seen, all the five methods obtain a
lower classification error rate and have greater computational costs as thetraining sizen increases.
Furthermore, FBGKM, SGPC and BGKM slightly outperform BSVM and CSVMin both classi-
fication error rate and computational cost. The FBGKM and SGPC methods are relatively more
efficient for the data sets of large training sizen.

Table 6 shows the experimental results for our FBGKM and SGPC methods withrespect to
different values of the maximum numberkmax of active vectors and for a fixed training size of
n = 800. The performance of these two methods is roughly similar for each settingkmax; that is,
they are insensitive tokmax. However, their computational costs tend to slightly increase as the
maximum numberkmax of active vectors increases.

Additionally, in order to study the MCMC mixing performance of our FBGKM andSGPC
methods we report the numbers of active vectors over different data sets. In particular, Figure 2
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Training sizen
BSVM CSVM BGKM SGPC FBGKM

err (±std) err (±std) err (±std) err (±std) err (±std)
n=300 5.99 (±1.44) 5.84 (±0.80) 5.37 (±0.52) 5.34 (±0.40) 5.08 (±0.49)
n=400 5.65 (±0.98) 5.83 (±0.93) 5.10 (±0.35) 5.03 (±0.55) 5.05 (±0.39)
n=500 5.62 (±0.80) 5.08 (±0.33) 4.92 (±0.28) 4.66 (±0.38) 4.83 (±0.25)
n=600 5.77 (±0.61) 5.13 (±0.20) 4.92 (±0.43) 4.35 (±0.47) 4.74 (±0.28)
n=700 5.63 (±0.82) 4.82 (±0.21) 4.44 (±0.36) 4.12 (±0.22) 4.61 (±0.52)
n=800 5.14 (±0.59) 5.10 (±0.16) 4.49 (±0.47) 4.13 (±0.51) 4.56 (±0.34)

Table 4: Experimental results for the five methods corresponding to different training sizesn on the
NewsGroups data set withkmax= 200:err− the test error rates (%);std− the correspond-
ing standard deviation.

Training sizen BSVM CSVM BGKM SGPC FBGKM
n=300 5.949×103 5.830×103 2.467×103 1.862×103 2.085×103

n=400 1.173×104 1.171×104 4.674×103 2.555×103 2.804×103

n=500 2.286×104 2.291×104 6.270×103 2.675×103 2.910×103

n=600 3.458×104 3.461×104 8.340×103 2.748×103 2.973×103

n=700 5.195×104 5.186×104 1.207×104 3.279×103 3.610×103

n=800 7.754×104 7.757×104 1.673×104 3.885×103 4.327×103

Table 5: The computational times (s) for the five methods corresponding to different training sizes
n on theNewsGroups data set withkmax= 200.

kmax of active vectors
FBGKM SGPC

err (±std) time err (±std) time
kmax= 300 4.55 (±0.46) 6.522×103 4.27 (±0.47) 5.592×103

kmax= 400 4.62 (±0.45) 7.189×103 4.80 (±0.49) 6.808×103

kmax= 500 4.64 (±0.37) 8.536×103 4.75 (±0.38) 7.704×103

kmax= 600 4.75 (±0.48) 1.033×104 4.57 (±0.43) 9.469×103

kmax= 700 4.72 (±0.28) 1.170×104 4.74 (±0.31) 1.057×104

Table 6: Experimental results for FBGKM and SGPC corresponding to different maximum num-
berskmax of active vectors on theNewsGroups data set withn= 800: err− the test error
rates (%);std− the corresponding standard deviation;time− the corresponding computa-
tional time (s).

depicts the output of the numbersnγ of active vectors corresponding to the first 6000 sweeps in the
MCMC inference procedure onBCI , Digit1 , Letters {(A vs.B )} andNewsGroups . The results
in Figure 2 clearly show that the FBGKM and SGPC methods mix rapidly in these experiments,
yielding reliable estimates after the first 3000 sweeps.
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(a) FBGKM,kmax= 100
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(b) SGPC,kmax= 100
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(c) FBGKM, kmax= 200
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(d) SGPC,kmax= 200
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(e) FBGKM,kmax= 100
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(f) SGPC,kmax= 100
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(g) FBGKM, kmax= 200
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(h) SGPC,kmax= 200

Figure 2: MCMC Output for the numbersnγ of active vectors of our FBGKM and SGPC meth-
ods on the four data sets: (a/b)BCI ; (c/d) Digit1 ; (e/f) Letters (A vs. B) ; (g/h)
NewsGroups .
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In probit-type models, since the posterior distribution of eachsi is truncated normal, we are
able to update thesi using the Gibbs sampler. Recall that we employ an efficient auxiliary variable
approach proposed by Holmes and Held (2006) for the implementation of the Gibbs sampler (see
Appendix A). For the other models, however, a MH sampler is required to update thesi . This
makes the corresponding MCMC algorithms take longer to mix. Thus, our models, which are based
on the probit link, can be expected to be more efficient computationally than theBSVM and CSVM.
However, to standardize the experimental comparison, we use the same setup for MCMC sweeps
and burn-in for all algorithms.

Table 7 describes distributions of active vectors to appear after the burn-in (in the last 5,000
sweeps). As we can see, the numbernγ of active vectors jumps between a small range for different
data sets, due to the rapid mixing. The maximum frequency of active vectors corresponding to the
numbernγ of active vectors is also given in Table 7.

Data Set
FBGKM SGPC

Max Min Most Max Min Most
BCI 100 85 99 (918) 100 87 99 (1145)

g241d 200 184 199 (1263) 200 153 196 (339)
Digit1 200 187 199 (1163) 200 184 188 (515)
COIL2 151 138 146 (1493) 149 139 147 (2870)

USPS(0 vs. 1) 170 151 165 (1080) 151 132 140 (1288)
USPS(0 vs. 9) 200 172 195 (1258) 200 177 199 (1095)

Letters(A vs. B) 100 80 99 (796) 100 89 99 (1422)
Letters(A vs. C) 100 80 97 (551) 100 84 99 (1006)

NewsGroups 200 186 199 (918) 200 182 199 (720)

Table 7: Distributions of active vectors after the burn-in under FBGKM and SGPC. Max—the max-
imum number of active vectors to appear; Min—the minimum number of active vectors to
appear; Most—the number of active vectors with the maximum frequency andthe corre-
sponding frequency shown in brackets.

5.3 Evaluation 2

We further evaluate the performance of our sparse Bayesian kernel methods under kernel parameter
learning, and compare the FBGKM and SGPC with SGP+FIC and full GP (FGP) (Rasmussen and
Williams, 2006). In particular, we use the Gaussian RBF kernel with multiple parameters, that
is, K(xi ,x j) = exp

(
−∑p

l=1(xil−x jl )
2/θ2

l

)
, and estimate those parametersθ = (θ1, . . . ,θp) in all

compared Bayesian kernel methods. In order to distinguish from the Bayesian methods with the
fixed kernel parameters, we label the Bayesian methods with the learned parameters via “⋆+KL.”
We conduct experimental analysis on theAdult , Mushrooms , Splice , andAstroparticle data
sets.

Since for FGP+KL learning the kernel parameters results in a huge computational cost, we set
the sizes of the training and test data as 1000 (i.e.,n= m= 1000) in each data set. In this setting,
there is no distinction betweenAdult 1 and Adult 2, so we just useAdult to denote the corre-
sponding data set. Also, since it is infeasible to use MCMC inference for FGP+KL, we employ the
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expectation propagation (EP) algorithm (Minka, 2001) for FGP+KL. However, to provide an apples-
to-apples comparison with our sparse Bayesian kernel methods, we employMCMC inference for
SGP+FIC+KL. For the sparse methods compared here, we fix the size of active set to 100, that is,
kmax= 100. Our implementations for SGP+FIC and FGP are based on the Matlab codes fromhttp:
//www.lce.hut.fi/research/mm/gpstuff/ andhttp://www.gaussianprocess.org/gpml/ ,
respectively.

Tables 8 and 9 and Figure 3 report the performance of the SGP+FIC+KL, FGP+KL, FBGKM+KL,
and SGPC+KL methods on the four data sets in terms of the average classification error rate (%),
the standard deviation and the corresponding average computational time (s). Figure 3 depicts the
logarithm scale of the corresponding average computational time (s) on the different data sets. It
is clear that FBGKM+KL and SGPC+KL outperform other methods on the whole. Additionally,
the computational times of all compared methods tend to increase when the numberp of the kernel
parameters increases. We note that the computational times of SGP+FIC+KL and FGP+KL would
become huge if we directly applied them to the large data sets listed in Table 1—Adult 1, Adult 2,
Mushrooms , Splice , andAstroparticle .

Data Set
SGP+FIC+KL FGP+KL FBGKM+KL SGPC+KL
err (±std) err (±std) err (±std) err (±std)

Splice 18.05 (±0.77) 9.19 (±1.25) 7.49 (±0.14) 11.54 (±0.51)
Astrop 4.10 (±0.36) 4.57 (±0.41) 3.45 (±0.31) 3.52 (±0.31)

Mushrooms 1.70 (±0.27) 0.20 (±0.20) 0.24 (±0.18) 0.45 (±0.30)
Adult 18.50 (±0.56) 17.85 (±0.35) 15.94 (±0.45) 15.56 (±0.43)

Table 8: Experimental results for the four Bayesian kernel methods on thefour data sets with
learned kernel parametersθ, kmax= 100, n = 1000, andm= 1000: err− the test error
rates (%);std− the corresponding standard deviation.

Data Set SGP+FIC+KL FGP+KL FBGKM+KL SGPC+KL
Splice 2.542×105 1.228×105 1.132×104 1.121×104

Astrop 4.081×104 2.531×104 7.431×103 7.103×103

Mushrooms 4.639×105 1.583×105 1.551×104 1.534×104

Adult 4.713×105 1.605×105 1.606×104 1.557×104

Table 9: The computational times (s) of the four Bayesian kernel methods on the four data sets with
learned kernel parametersθ, kmax= 100,n= 1000, andm= 1000.

In order to further evaluate the performance of our sparse Bayesian kernel methods on some
larger data sets, we also conduct comparative experiments of FBGKM, SGPC, and SGP+FIC (Snel-
son and Ghahramani, 2006) on theAdult 1, Adult 2, Mushrooms , Splice , andAstroparticle data
sets. Here, we consider both MCMC and EP inference methods for SGP+FIC to provide a fuller
comparison, referring to them as SGP+FIC+MCMC and SGP+FIC+EP, respectively. For these
sparse methods, we fix the size of active setkmax to 200.
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Figure 3: The computational times (s) for the four Bayesian kernel methods on the four data sets
with learned kernel parameterθ, kmax= 100,n= 1000, andm= 1000.

Table 10 reports the classification performance of the SGP+FIC+MCMC, SGP+FIC+EP, FBGKM
and SGPC methods on the five data sets. It should be pointed out here that we do not report the cor-
responding results of SGP+FIC+MCMC on theAdult 2 data set due to the huge computational times
of performing it on this data set. From Table 10, we can see that our FBGKMand SGPC methods
outperform other methods on the whole. Furthermore, it is still difficult for SGP+FIC+MCMC and
SGP+FIC+EP to calculate the optimal solution for sparse approximation of fullGaussian process,
due to the sensitivity of the performance to the initial active set.

Data Set
SGP+FIC+EP SGP+FIC+MCMC FBGKM SGPC SVM
err (±std) err (±std) err (±std) err (±std) err (±std)

Splice 14.38 (±1.10) 16.32 (±0.15) 12.53 (±0.57) 12.07 (±0.45) 13.01 (±0.69)
Astrop 5.20 (±0.26) 3.38 (±0.11) 3.59 (±0.18) 3.34 (±0.16) 3.37 (±0.14)

Mushrooms 1.55 (±0.21) 1.38 (±0.13) 0.19 (±0.08) 0.21 (±0.06) 0.55 (±0.37)
Adult 1 15.89 (±0.38) 15.79 (±0.26) 15.24 (±0.21) 15.59 (±0.16) 16.64 (±0.33)
Adult 2 15.49 (±0.21) − − 15.01 (±0.17) 15.26 (±0.19) 16.27 (±0.28)

Table 10: Experimental results for the five methods on theSplice , Astroparticle , Mushrooms ,
Adult 1, andAdult 2 data sets withkmax= 200: err− the test error rates (%);std− the
corresponding standard deviation.

Table 11 and Figure 4 report the average computational times of the compared sparse Bayesian
kernel methods on the five data sets, with Figure 4 depicting the computational times on a logarithm
scale. Table 11 and Figure 4 show that the SGP+FIC+MCMC has larger computational times than
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Figure 4: The computational times (s) of the four sparse Bayesian kernel methods on theSplice ,
Astroparticle , Mushrooms , Adult 1, andAdult 2 data sets withkmax= 200.

other methods on the five different data sets, and that the computational times of SGP+FIC+EP,
FBGKM and SGPC are very close to each other.

Data Set SGP+FIC+EP SGP+FIC+MCMC FBGKM SGPC
Splice 1.293×104 8.952×104 1.497×104 1.262×104

Astrop 2.701×104 2.425×105 3.443×104 3.779×104

Mushrooms 2.830×104 3.290×105 3.726×104 3.814×104

Adult 1 4.298×104 8.283×105 4.620×104 4.548×104

Adult 2 2.221×105 − 2.276×105 2.369×105

Table 11: The computational times (s) of the four sparse Bayesian kernel methods on theSplice ,
Astroparticle , Mushrooms , Adult 1, andAdult 2 data sets withkmax= 200.

In addition, we conduct a quantitative assessment of convergence of the MCMC algorithms
for the three sparse Bayesian kernel methods. We employ a method proposed by Brooks (1998).
The method uses a cusum criterion with “hairiness” definition to monitor convergence. The length
of chain for convergence is determined, once the sequence on the “hairiness” definition statisti-
cally lies within the 90% confidence intervals under the binomial distribution. Table 12 reports the
convergence assessment results on the five data sets. From Table 12, we can see that all MCMC
algorithms in the three sparse Bayesian kernel methods can achieve convergence on the five data
sets after the first 5000 sweeps. Moreover, the convergence time is similarfor each method, while
the corresponding computational times of SGP+FIC+MCMC are obviously largest on the five data
sets.
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Data Set
SGP+FIC+MCMC FBGKM SGPC

time burn-in time burn-in time burn-in
Splice 4.017×104 4566 1.019×103 906 2.195×103 1898
Astrop 9.265×104 3874 7.016×103 2125 1.123×104 3218

Mushrooms 9.857×104 3192 1.362×104 3924 9.677×103 2616
Adult 1 1.865×105 2451 8.605×103 1906 1.206×104 2873
Adult 2 − − 5.217×104 2424 8.142×104 3605

Table 12: Monitoring convergence of MCMC algorithms for the three sparse Bayesian kernel meth-
ods on theSplice , Astroparticle , Mushrooms , Adult 1, andAdult 2 data sets with
kmax= 200: time− the computational time (s) for convergence;burn-in− the length of
chain for convergence.

5.4 Bayesian vs. Non-Bayesian

Since FBGKM and SGPC are Bayesian alternatives to IVM and SVM, it is useful to compare
our FBGKM and SGPC with the conventional IVM and SVM. We compared these methods on
the following data sets:Ringnorm , Thyroid , Twonorm andWaveform . These data sets were also
used by Zhu and Hastie (2005) and a detailed presentation of results can be found in R̈atsch et al.
(2001). Each data set is randomly partitioned into two disjoint subsets as training and test data sets
according to the training and test sizesn andmgiven in Table 1. In addition, the maximum number
kmax of active vectors is set according to Table 1. The results in Table 13 are based on the average
of twenty realizations and the results with the conventional IVM and SVM are cited from Zhu and
Hastie (2005). We also conduct a comparison of FBGKM and SGPC with the conventional SVM on
theSplice , Astroparticle , Mushrooms , Adult 1, andAdult 2 data sets. The classification results
are given in Table 10. From Tables 10 and 13 we can see that the Bayesianapproaches slightly
outperform the non-Bayesian approaches.

Data Set
SVM IVM FBGKM SGPC

err (±std) err (±std) err (±std) err (±std)
Ringnorm 2.03 (±0.19) 1.97 (±0.29) 1.51 (±0.10) 1.56 (±0.12)
Thyroid 4.80 (±2.98) 5.00 (±3.02) 4.60 (±2.65) 4.51 (±2.32)
Twonorm 2.90 (±0.25) 2.45 (±0.15) 2.86 (±0.21) 2.79 (±0.23)

Waveform 9.98 (±0.43) 10.13 (±0.47) 9.80 (±0.31) 9.73 (±0.30)

Table 13: Experimental results for the four methods on the four data sets:err− the test error rates
(%); std− the corresponding standard deviation.

6. Extensions

In this section we consider several extensions of the modeling framework that we have discussed
thus far. One extension is immediate: We can obtain a fully Bayesian approachto model selection
for the SVM by combining our work with the treatment of Mallick et al. (2005). That is, we form a
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conditional likelihood from the hinge loss (also see Sollich, 2001) and assign a mixture of the point-
mass distribution and the Silvermang-prior to the regression vector. In the following subsections
we consider two additional extensions.

6.1 Multiple Kernel Learning

Kernel learning has emerged as an important theme in the machine learning community. We have
provided a Bayesian foundation for kernel learning in Section 3. In particular, given a kernel func-
tion, we can estimate parameters of the kernel function. We now discuss howto extend this capa-
bility to the learning of combinations of kernels; themultiple kernel learning problem(Bach et al.,
2004).

Assume that we are givenqdistinct kernel functionsKl (xi ,x j), for l = 1, . . . ,q. Correspondingly,
we haveq feature functions (sayψl (x)). In this case, the predictive function is expressed as

f (x) = u+
q

∑
l=1

ψl (x)
′bl .

Lettingbl = gl Ψ′l βl whereΨl = [ψl (x1), . . . ,ψl (xn)]
′, βl = (βl1, . . . ,βln)

′ andgl ≥ 0, we have

f (x) = u+
q

∑
l=1

gl

n

∑
i=1

Kl (x,xi)βli .

Now we assignβl ∼ Nn
(
0, σ2(K (l))−1

)
and

gl ∼ ρδ0(gl )+(1−ρ)Ga(gl |ag/2, bg/2),

whereK (l) = Ψl Ψ′l (n×n) is thel th kernel matrix,δ0(·) is a point-mass at zero and the user-specific
parameterρ ∈ (0,1) controls the levels of the nonzerogl . Thus, we only need to update thegl

instead ofg in the Bayesian computation in Section 3. Note that kernel parameter learning and
multiple kernel learning can be incorporated together.

6.2 Multi-class Learning

We consider the extension of our fully Bayesian modeling approach to ac-class (c> 2) classification
problem where the class labelyi is a binaryc-vector with values all zero except a one in positionj
if xi belongs to thejth class. In this case, we definec regression vectorsβ j = (β1 j , . . . ,βn j)′ ∈ Rn

andc auxiliary vectorssj = (s1 j , . . . ,sn j)
′ ∈ Rn, j = 1, . . . ,c, for each class. We then have

sj = 1nu j +Kβ j +ej , j = 1, . . . ,c,

where theej are i.i.d. fromNn(0, In).
We now denoteu = (u1, . . . ,uc)

′, B = [β1, . . . ,βc], S= [s1, . . . ,sc] andE = [e1, . . . ,ec]. As in the
binary problem, we also introduce a binaryn-vectorγ with eitherγi = 1 if xi is an active vector or
γi = 0 if xi is not an active vector. LetK ′γ andBγ beK ′ andB with the rows for whichγi = 0 deleted.
Thus, we can form the following sparse model:

S= 1nu′+K γBγ +E = K̃ γB̃γ +E,
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whereK̃ γ = [1n,K γ] andB̃′γ = [u,B′γ]. Now givenγ, we treat thẽBγ as being independently from
Nnγ+1(0,Σ−1

γ ).
To make the model identifiable, the constraint∑c

j=1(u j1n+Kβ j) = 0 is typically required (see,
e.g., Lee et al., 2004). Clearly, a sufficient condition for this constraint isthat ∑c

j=1u j = 0 and
∑c

j=1 β j = 0. To address this issue we impose the constraint∑c
j=1sj = S1c = 0 and consider the

following error model:

S= 1nu′H+K γBγH+EH = K̃ γB̃γH+EH, (13)

whereH = I c−
1
c1c1′c is thec×c centering matrix. SincẽBγH ∼ Nnγ+1,c(0, Σ−1

γγ ⊗H) andEH ∼

Nn,c(0, In⊗H), we haveS=SH∼Nn,c(0, Qγ⊗H). Here we use the formal of matrix-variate normal
distributions; that is,Z ∼ Nm,p(0,M⊗N) if and only if vec(Z′) ∼ Nmp(0,M⊗N) whereZ = [zi j ] is
an m×p matrix, vec(Z′) = (z11,z12, . . . ,zmp)

′ is its arrangement in a stack, andM⊗N represents
the Kronecker product ofM andN. Note that bothNn,c(0, Qγ⊗H) andNnγ+1,c(0, Σ−1

γγ ⊗H) are
singular matrix-variate distributions, becauseH is singular. Please refer to Gupta and Nagar (2000)
for matrix-variate normal distributions and singular matrix-variate normal distributions.

We rewrite (13) in vector form as

vec(S) = (H⊗ K̃ γ)vec(B̃γ)+(H⊗ In)vec(E).

We can apply the MCMC algorithm in Section 3.2 to the multi-class case. The main difference is in
Step (a) for the update ofS. That is, in the multi-class probit setting, the relationship between the
class labels and the auxiliary vectors becomes

yi j =

{
1 if j = argmax1≤k≤c{sik},
0 otherwise.

Thus, the posterior distribution of eachsi j is truncated normal,[si j |γ,u j ,β j ,yi j ] ∼ N(u j + k′iβ j ,1)
subject tosi j > sil for all l 6= j if yi j = 1.

Finally, it is straightforward to develop a sparse GP method for multi-class classification prob-
lems. We should note that Girolami and Rogers (2006) proposed a Bayesianmultinomial probit
regression model and derived a fully variational Bayesian method for multi-class Gaussian pro-
cess classification. Specifically,S andKB respectively correspond to latent and manifest Gaussian
random matrices in Bayesian multinomial probit regression. However, they did not consider the
constraint∑c

j=1(u j1n+Kβ j) = 0, which is theoretically necessary for making the multi-class clas-
sification problem identifiable.

7. Conclusion

In this paper we have discussed Bayesian generalized kernel mixed models, including Bayesian
generalized kernel models and Gaussian processes for classification.In particular, we have proposed
fully Bayesian kernel methods based on the Silvermang-prior and a Bayesian model averaging
method. We have developed an MCMC algorithm for parameter estimation, modelselection and
posterior prediction. Because of the connection between kernel methodsand Gaussian processes,
the MCMC algorithm can be immediately applied to sparse Gaussian processes.

Sparsity is often treated using machinery that is not straightforward to emulatewithin the
Bayesian paradigm (e.g., loss functions with discontinuous derivatives). In the current paper we
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have provided a framework in which sparsity is treated explicitly using standard Bayesian tools.
Our empirical results show that this framework can yield prediction performance that is comparable
with the best non-Bayesian methods, while retaining the advantages (e.g., thenatural treatment of
hyperparameters and of uncertainty) of the Bayesian approach. The computational requirements
of the framework are reasonable at the scale of the experiments we have performed; moreover, as
emphasized in non-Bayesian treatments, the imposition of sparsity has computational advantages
within our framework, advantages that we have only partially exploited in the work described here.
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Appendix A. Pseudo Matlab Code for the Updates of s andβγ

Algorithm 1 Pseudo Matlab code for updates ofs andβγ

Input: K̃ γ, Σγ, s;
Calculate andϒ−1

γ = (Σγ + K̃ ′γK̃ γ)
−1 andQ−1

γ = In− K̃ γϒ−1
γ K̃ ′γ;

CalculateA = ϒ−1
γ K̃ ′γ, b = As andH = K̃ γA;

for i = 1 to n do
a← s(i);
w← H(i, i)/(1−H(i, i));
ρ← 1+w;
µ← (1+w)K̃ γ(i, :)b−ws(i);
if y(i) == 1 then

s(i)← ltnormrnd(µ,ρ,0); ⊲ Generate from a left-truncated normal distribution
else

s(i)← rtnormrnd(µ,ρ,0); ⊲ Generate a right-truncated normal distribution
b← b+(s(i)−a)A(:, i);

end if
end for
βγ←mvnormrnd(b,ϒ−1

γ ,1). ⊲ Generate from a multivariate normal distribution
Output: s andβγ.

Appendix B. The Proof of Proposition 1

Proof. Recall that

K(xi ,x j) =
r

∑
k=1

ψk(xi)ψk(x j).
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The Karhunen-Lòeve expansion ofζ(x) is then given by

ζ(x) =
r

∑
k=1

bkψk(x),

where thebk are random variables, which are given bybk = 1
lk

∫
ζ(x)ψk(x)dx. It follows that

the bk are independent Gaussian variables withE(bk) = 0 andE(b2
k) = g−1. We thus have the

first part. To prove the second part of this proposition, we consider any n-dimensional vector
ζ = (ζ(x1), . . . ,ζ(xn))

′. It is obvious thatE(ζ(xi)) = 0 and

E
(
ζ(xi)ζ(x j)

)
= E

(
∑
k=1

∑
k′

bkψk(xi)bk′ψk′(x j)
)

= g−1
r

∑
k=1

ψk(xi)ψk(x j) = g−1K(xi ,x j).

This implies thatζ follows a multivariate normal distributionNn(0, g−1K). Consequently,ζ(x)
follows a Gaussian process.
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