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Abstract

Co-training (or more generally, co-regularization) hasrba popular algorithm for semi-supervised
learning in data with two feature representations (or v)ewst the fundamental assumptions un-
derlying this type of models are still unclear. In this paper propose a Bayesian undirected
graphical model for co-training, or more generally for sempervised multi-view learning. This
makes explicit the previously unstated assumptions ofgelalass of co-training type algorithms,
and also clarifies the circumstances under which these gsguns fail. Building upon new insights
from this model, we propose an improved method for co-trgjnwhich is a novel co-training ker-
nel for Gaussian process classifiers. The resulting apbrizaconvex and avoids local-maxima
problems, and it can also automatically estimate how much e&w should be trusted to accom-
modate noisy or unreliable views. The Bayesian co-traiipgroach can also elegantly handle
data samples with missing views, that is, some of the vie@sat available for some data points
at learning time. This is further extended to an active senfiiamework, in which the missing
(sample, view) pairs are actively acquired to improve legyperformance. The strength of active
sensing model is that one actively sensed (sample, view)maild improve the joint multi-view
classification on all the samples. Experiments on toy dadesameral real world data sets illustrate
the benefits of this approach.

Keywords: co-training, multi-view learning, semi-supervised léagy Gaussian processes, undi-
rected graphical models, active sensing
1. Introduction

In machine learning, data samples may sometimes be characterized in multipléam=pstance in
web page classification, the web pages can be described both in termsetttted content in each
page and the hyperlink structure between them; for cancer diagnosis thieegoal is to determine
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if the patient has cancer or not, multiple medical imaging techniques (such,aslt€asound and
MRI) might be considered to collect complete characteristic of the patiemt d@ifferent perspec-
tives. For learning under such a setting, it has been shown in Dasdugdtg2001) that the error
rate on unseen test samples can be upper bounded by the disagreetweenithe classification-
decisions obtained from independent characterizations Yi@yg of the data. Thus, in the web
page examplanisclassification ratean be indirectly minimized by reducing thate of disagree-
mentbetween hyperlink-based and content-based classifiers, providesl ¢haracterizations are
independent conditional on the class label.

As a completely new learning principle, multi-view consensus learning hastbesubject of a
large body of research recently. This type of methods were originallsideed for semi-supervised
learning, where class labels are expensive to obtain but unlabeledrdathemp and abundantly
available, such as in web page classification. When the data samples ¢emdnterized in multiple
views, the disagreement between the class labels suggested by diffevesitan be computed even
when using unlabeled data. Therefore, a natural strategy for usiagaled data to minimize the
misclassification rate is to enforcensistencypetween the classification decisions based on several
independent characterizations of the unlabeled samples. For brevitgswtherwise specified, we
shall use the termo-trainingto describe the entire genre of methods that rely upon this intuition,
although strictly it should only refer to the original algorithm of Blum and Milt(e998).

In this pioneering paper, Blum and Mitchell introduced an iterative, altempaco-training
method, which works in a bootstrap mode by repeatedly adding pseudedab#abeled samples
into the pool of labeled samples, retraining the classifiers for each vielyssudo-labeling addi-
tional unlabeled samples where at least one view is confident aboutigsoted he paper provided
PAC-style guarantees that if (a) there exist weakly useful classifegsch view of the data, and (b)
these characterizations of the sample are conditionally independenttg&etass label, then the
co-training algorithm can use the unlabeled data to learn arbitrarily strosgjfedas. Later Balcan
et al. (2004) tried to reduce the strong theoretical requirements, andliogyed that co-training
would be useful if (a) there exist low error rate classifiers on each, \{(lewthese classifiers never
make mistakes in classification when they are confident about their de¢iaimhéc) the two views
are not too highly correlated, in the sense that there would be at leastcem@® where one view
makes confident classification decisions while the classifier on the otherdeies/not have much
confidence in its own decision. While each of these theoretical guarastegsguing and theoret-
ically interesting, they are also rather unrealistic in many application domaiesagdumption that
classifiers do not make mistakes when they are confident and that ofoteditional independence
are rarely satisfied in practice. Empirical studies of co-training on manlcagipns show mixed
results. See, for instance, Pierce and Cardie (2001) and Kiritchemkblatwin (2002); Hwa et al.
(2003).

A strongly related algorithm is the co-EM algorithm from Nigam and GhanD@Qwhich
extends the original bootstrap approach of the co-training algorithm t@tpsimultaneously on
all unlabeled samples in an iterative batch mode. Brefeld and Scheffe4)(28ed this idea with
SVMs as base classifiers, and subsequently in unsupervised lear@ioléh and Scheffer (2005).
However, co-EM also suffers from local maxima problems, and while gardtion’s optimization
step is clear, the co-EM is not really an expectation maximization algorithm (i.ecki aclearly
defined overall log-likelihood that monotonically improves across iterations)

In recent years, some co-training algorithms jointly optimize an objectivetitmavhich in-
cludes misclassification penalties (i.e., loss terms) for classifiers from éaghand a regulariza-
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tion term that penalizes lack of agreement between the classification deaéibe different views.
This co-regularizationapproach has become the dominant strategy for exploiting the intuition be-
hind multi-view consensus learning, rendering obsolete earlier alternapitigrization strategies.
Krishnapuram et al. (2004) proposed an approach for two-viewasus learning based on simul-
taneously learning multiple classifiers by maximizing an objective function wrectalzed mis-
classifications by any individual classifier, and included a regularizégion that penalized a high
level of disagreement between different views. This co-regularizé@mmework improves upon the
co-training and co-EM algorithms by maximizing a convex objective functiemydver the algo-
rithm still depends on an alternating optimization that optimizes one view at a timeapisach
was later adapted to two-view spectral clustering in de Sa (2005). Theiemoeo-regularization
approach was subsequently adopted by Sindhwani et al. (2005%IdBet al. (2006), Sindhwani
and Rosenberg (2008) and Farquhar et al. (2005) for semi-dapdrelassification and regression
based on the reproducing kernel Hilbert space (RKHS). In thegeagipes a new co-regularization
term is added to the objective function which is based on the disagreentaettefo views. Repre-
senter theorem still holds and solutions can be easily derived by dirttipgtion. However, it is
unclear how to set the regularization parameters (i.e., to control the wéitite co-regularization
term). Theoretical analysis of this and other types of algorithms can be fauBalcan and Blum
(2006), Sridharan and Kakade (2008), Wang and Zhou (2007Wamd) and Zhou (2010).

Much of these previous work on co-training has been somewhat athhwature. Although
some algorithms were empirically successful in specific applications, it weasways clear what
precise assumptions were made, what was being optimized overall or whyvtnked well. In
this paper we propose a principled undirected graphical model foragurig which we call the
Bayesian co-trainingand show that co-regularization algorithms provide one way for maximum-
likelihood (ML) learning under this probabilistic model. By explicitly highlightingepiously un-
stated assumptions, Bayesian co-training provides a deeper undergtahthe co-regularization
framework, and we are also able to discuss certain fundamental limitationsltdfview consen-
sus learning. Summarizing our algorithmic contributions, we show that adanégation is exactly
equivalent to the use of a noved-training kerneffor support vector machind§SVMs) andGaus-
sian processefGP), thus allowing one to leverage the large body of available literaturthése
algorithms. The kernel is intrinsicallyon-stationary that is, the level of similarity between any
pair of samples depends ah the available samples, whether labeled or unlabeled, thus promoting
semi-supervised learning. Therefore, this approach is significantly simptemore efficient than
the alternating-optimization that is used in previous co-regularization implemergatieurther-
more, we can automatically estimate how much each view should be trusted, aadtbmmodate
noisy or unreliable views.

The basic idea of Bayesian co-training was published in a short cocfem@aper by Yu et al.
(2008). In the current paper we have all the derivation details and discessions to its related
models. More importantly, we extend the Bayesian co-training model to haatdesdmples with
missing views (i.e., some views are missing for certain data samples), and cgracwvel ap-
plication called theactive sensing This makes the current paper significantly different from its
conference version.

Active sensing aims to efficiently choose, among all the missing featuregp@gan views),
what viewsand samples to additionally acquire (or sense) to improve the overall learnifgrper
mance. This is different from the typicattive learningwhich addresses the problem of efficiently
choosing data samples to be labeled in order to improve overall learnirayparice. From a can-
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cer diagnosis perspective, active learning is equivalent to chooaiigngs to do a biopsy such that
the tumor is correctly diagnosed (benign/malignant), whereas active gessargeting at collect-
ing (the not-yet-been-collected) medical imaging features (of, e.g., CBddlind and MRI) from
some patients such that all the patients can be better diagnosed. This is imsdniz@a patient
does not undergo all possible tests at once (due to various side effettsas radiation and con-
trast), but these tests are selected based on the evidence collected wrttoudap point. This is
normally referred to adifferential diagnosisAnother example is in land mine detection in a sensor
network. We may have different types of sensors (as different yidejsloyed at one location, but
some sensors may not be available for all locations due to high cost. Se setiging is to decide
which location and which type of sensor we should additionally considethie\aebetter detection
accuracy. Formulated within the Bayesian co-training framework, twooagpes will be discussed
for efficiently choosing the (sample, view) pair, based on the mutual inftteménvolving various
random variables) and on the predictive uncertainty, respectively.

This active sensing problem is similar to active feature acquisition—seexéwnple, Melville
et al. (2004) and Bilgic and Getoor (2007)—but there is a clear diftexeRrevious feature acqui-
sition only considers one sample at a time, that is, when one sample is in catisitiethe other
samples will not be affected. But in active sensing, one actively aatj(sample, view) pair will
improve the classification performance alf the unlabeled samples via a co-training setting. A
related yet different problem was considered in Krause et al. (2008gntify the optimal spatial
locations for placing a single type of sensor to model spatially varying phena; however, this
work addressed the use of a single type of sensor, and do not cat&deenario of multiple views.

The rest of the paper is organized as follows. We introduce the Bayesittaining model in
Section 2, covering both the undirected graphical model and variousmakzgtions. Co-training
kernel will be discussed in detail to highlight the insight of the approable.miodel is extended to
handle missing views in Section 4, and this provides the basics for the agtiging solution. The
active sensing problem is discussed in Section 5, in which we provide twoodsethr deciding
which incomplete samples should be further characterized, and whicbrsestmuld be deployed
on them. Experimental results are provided in Section 6, including both som@dbiems and
real world problems on web page classification and differential diagné&sonclude with a brief
discussion and future work in Section 7.

2. Bayesian Co-Training

We start from an undirected graphical model for single-view learning @idlussian processes,
and then present Bayesian co-training which is a new undirected gahphdziel for multi-view
learning.

2.1 Single-View Learning with Gaussian Processes

A Gaussian process (GP) defines a nhonparametric prior over funati®esy/esian statistics (Ras-
mussen and Williams, 2006). A random, real-valued funcfioRY — R follows a GP, denoted
by f ~ GP(h,k), if for any finite number of data points;x .., xn € RY, f = {f(x;)}, follows

a multivariate Gaussian distributiolf(h, K) with mean vector k= {h(x;)}'_; and covariance ma-
trix defined as K= {k(xi,Xj)}{';_;- The functionsh andk are called the mean function and the
covariance function, respectively. Conventionally, the mean functiomad fash = 0, and the co-
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Figure 1: Factor graph for (a) one-view and (b) two-view models.

variance functiork is assumed to take a parametric (and usually stationary) form (e.g., thedquar
exponential functiom (x;,x;) = exp(—z—Fl)ZHXi —X;||?) with p > 0 awidth parameter).

In a single-view, supervised learning scenario, an output or tgrggagiven for each observation
Xi (e.g., for regressiog; € R and for classificatiory; € {—1,+1}). In the GP model we assume
there is a latent functiof underlying the output,

i) = [ POl f.x) p(F) T = [ plyil () p(T)d T,

with the GP priorp(f) = GP(h,k). Given the latent functior, for regressiorp(yi| f(x;)) takes a
Gaussian noise mode{ (yi| f (xi),02), with ¢ > 0 a parameter for the noise level; for classification
p(yi| f(xi)) takes the form of a sigmoid functior(y; f (x;)). For instance for GP logistic regression,
we have(z) = (14 exp(—2)) 1. See Rasmussen and Williams (2006) for more details on this.

The dependency structure of the single-view GP model can be shownwawdaected graph
as in Figure 1(a). The maximal cliques of the graphical model are the fuliypamied nodes
{f(x1),...,f(xn)} and the pairgyi, f(xi)}, i = 1,...,n. Therefore, the joint probability of ran-
dom variables £ { f(x;)} and y= {yi} is defined as

p(fy) = (6 [0 Fx),

with potential functionsp(f) = exp(—3f'K~f), and

exp(— 55 ||yi — f(xi)[[?)  for regression,
A(yi f(xi)) for classification.

W(yi, f(xi)) = { (1)

The normalization factaZ hereafter is defined such that the joint probability sums to 1.

1. The definition ofp in this paper has been overloaded to simplify notation, but its meaning shewkdar from the
function arguments.
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2.2 Undirected Graphical Model for Multi-View Learning

In multi-view learning, suppose we hanedifferent views of a same set nfdata samples. LefQ €

RY be the features for thiégh sample obtained using th¢h view, whered; is the dimensionality of

the input space for vieyy. Note that subscripts index the data sample, and superscripts (with round
brackets) index the view. Then the vect(péx(xi(l),...,xi(m)) is the complete representation of the

ith data sample, andix £ (x(l”, . ,x&‘)) represents all sample observations for ftieview. As in
the single-view learning, let s [yi,...,yn] " be the output wherg is the single output assigned to
theith data point.

One can certainly concatenate the multiple views of the data into a single vievapahda
single-view GP model. But the basic idea of multi-view learning is to introcrefunction per
view, which only uses the features from that specific view to make predictioni-Mew learning
then jointly optimizes these functions such that they come to a consensusaReehperspective,
let f; denote the latent function for thigh view (i.e., using features only from viey), and let
f; ~ GP(0,K;j) be its GP prior in viewj with covariance functior;. Since one data sampiéas
only one single labey; even though it has multiple features from the multiple views (i.e., latent
function valuef,-(xi(”) for view j), the labely; should depend oall of these latent function values
for data samplé.

The challenge here is to make this dependency explicit in a graphical modetadkie this
problem by introducing a new latent function, thensensus function.,fto ensure conditional
independence between the outpaind them latent functiong f; } for themviews. See Figure 1(b)
for the undirected graphical model for multi-view learning. At the functidaeel, the outputy
depend®nly on f, and latent functiong f; } depend on each othenly viathe consensus function
fc (see Figure 2 for the factor graphs for 2-view and multi-view casest iShthe joint probability
is defined as:

1 m
p(y7 fCaf 7"-afm) = *llJ(y, fC) l*IJ(f'7fC)a (2)
1 7 JI:L j

with some potential functiong. In the ground network where we hawedata samples, let =
{fc(xi)}L, and f; = {f; (xf”) " , be the functional values for the consensus view andtiheiew,
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respectively. The graphical model leads to the following factorization:
1 n m
POy fefr,.. fm) = 5 iuw(yi, fe(xi)) J|1llJ(fj)llJ(fj,fc). 3)

Here thewithin-view potential(f;) specifies the dependency structure within each vjeand
the consensus potentia(f;,fc) describes how each latent functidpis related to the consensus
function f.. With a GP prior for each of then views, we can define the following potentials:

f; —fol2
LIJ(fJ) :exp(—;f]rKylfJ)’ qJ(fjfo) :exp<—||]”>, (4)

201-2

where K; is the covariance matrix of view, that is, K (xi,x,) = K;j(x\) x{!)), ando; > 0 is a
scalar which quantifies how apart the latent functipis ffrom the consensus functiog fit is seen
that the within-view potentials only rely on thtrinsic structureof each view, that is, through the
covariance matrix in a GP setting. Finally, tbetput potentialp(y;, fc(x;)) is defined the same as
that in (1) for regression or for classification.

The most important potential function in Bayesian co-training is the consgrmantial, which
simply defines an isotropic multivariate Gaussian for the difference ahdl ¢, that is, § —fc ~
A(O, fol). This can also be interpreted as assuming a conditional isotropic Gaussigrwiith
the consensus foeing the mean. Alternatively if fis of interest, the joint consensus potentials
effectively define a conditional Gaussian prior ferft|f1,. .., fm, asA(l, 02l) where

2 fi 2 1\
oty o= (3 ®
One can easily verify that this is a product of Gaussian distributions, with €aussian being
A(felfj, 0%1).2 This indicates that, given the latent functioff§}T;, the posterior mean of the
consensus function, fis aweighted averagef these latent functions, and the weight is given by
the inverse variance (i.e., the precision) of each consensus potent&hidtrer the variance, the
smaller the contribution to the consensus function. In the following wecxf-aﬂhe view variance

for view j. In this paper these view variances are taken as parameters of theaBay@graining
model, but one can also assign a prior (e.g., a Gamma prior) to them and treairtbtead as
hidden variables. We will discuss the consensus potential and the viameas in more details in
Section 3.

In (3) we assume the outputs available for all then data samples. More generally we consider
semi-supervisethulti-view learning, in which only a subset of data samples have outputs deailab
This is actually the setting for which co-training and multi-view learning weremaity motivated
(Blum and Mitchell, 1998). Formally, laty be the number of data samples which have outputs
available, and let, be the number of data samples which do not. We still keepn, + n, to be
the total number of data samples. Under this setting, we only have outputdbbvéilen, samples,
thatis, y = [y1,..-,¥n] -

In the functional space, the undirected graphical model for semi-gispdrmulti-view learning
is the same as in Figure 2. The joint probability is also the same as in (2). Inadhadynetwork,

2. Note that this conditional Gaussian fgitfas a normalization factor which depends on f., fi.
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since the output vector, ys only of lengthn;, the joint probability is now:

p(ylafC7f17 7 Z rlLIJ yl7 fC XI I_LLIJ fjafC (6)

Note that the product of output potentlals contains only that ofntHabeled data samples, and
that & = {fc(xi) L, and f; = {f; ( ) il are still of lengthn. Unlabeled data samples contribute
to the joint probablllty via the Wlthln view potentiaip(f;) and consensus potentiajgf;,fc). All
the potentials are defined similarly as in (4). In the following we will mainly disdbgs more
interesting setting.

3. Inference and Learning in Bayesian Co-Training

In this section we discuss inference and learning in the proposed mosigmiag) first that there
is no missing data in any of the views (the setting with missing data will be discuss®elcin
tion 4). Instead of working with the undirected graphical model directlysthaw different types
of marginalizations under this model. The standard inference task is thdedfirig y from the
observed data, that is, obtainipgy); however, in order to gain insight into the proposed model and
co-training, we explore different marginalizations. All marginalizations leastandard Gaussian
process inference with different latent function at considerationjrtatestingly, these different
marginalizations show different insights of the proposed undirectechiga@pmodel. One advan-
tage of the marginalizations is that it allows us to see that many existing multi-viemiriganodels
are actually special cases of the proposed framework. In addition, dlyissBan interpretation helps
us understand both the benefits and the limitations of co-training. For clarippttbe derivations
into Appendix A.

3.1 Marginal 1: Co-Regularized Multi-View Learning

Our first marginalization focuses on the joint probability distribution ofrtHatent functions, when
the consensus function fs integrated out. This would lead to a GP model in which the latent
functions are the view specific functions f..,fm. Taking the integral of (3) overf(and ignoring

the output potential for the moment), we obtain the joint marginal distributionliasvafter some
mathematics (for derivations see Appendix A.1):

ot — L ot ||f, fi?
1,--,fm) = exp ZZf i fi— 0202 ;GZ (7

It can be seen that the negation of the logarithm of this marginal recoversdhlarization terms
in the co-regularized multi-view learninfsee, e.g., Sindhwani et al., 2005; Brefeld et al., 2006). In

particular, we have
1 15— fll?
fJ pfit [ 0202 ;

l
— ZkL(fj,fk) +logZ,

fo?l<

—logp(fy,...,fm) +logZz

3 ,[Ma

o
+
\

|
NI~ NI
NI~

I
atl
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whereQ;j(f;) £ ijKj‘lf,- regularizes the functional space of each individual vigvand the loss
functionL(f;,fx) £ |If; —f«[|*/o%0f measures the disagreement of every pair of the function outputs,
inversely weighted by the product of the corresponding variances. higher the varianceyj2 of

view |, the less the contribution viey brings to the overall loss. We refer to this @riance-
sensitive co-regularized multi-view learningNote that unlike the formulation in Brefeld et al.
(2006) where the disagreements are only with respect to the unlabelethelzave regularize the
disagreements of all data samples. From the GP perspective, (7) acefallysdgoint multi-view
prior for them latent functions(fy,...,fm) ~ AL(0,A1), whereA is amnx mn precision matrix
with block-wise definition:

1
- 1 ~2-~2 "

, i"# . (8)
2
j 970k i

- _ 1 1 -
A(j.J) =K; 5 Y ol AG)D =
2oz '
It is seen that the block-wise precision matrix for vigWwas contributions from all the other views.
When we take into account the observed output variable y, we can aip @erive the joint
marginal of y with all the latent functions.f.. ., f. Forinstance for regression, the marginal distri-

bution turns out to be (recall thaf is the variance parameter in the output potential for regression):

_1 1 o Xba(i—fi(x0))?
Py f1,-. fm) = eXp{ ~ 2002 ; >

0]

1 - 1o Ifi —fll?
B T s et o b LU (9)
22 [ I 2ijk O'J-ZOE

Herep = é +3 % is the sum of all the inverse variances, including the regression varilteoe
J

imizing this marginal distribution is equivalent to solving a minimization problem inetpHarized
multi-view learning with least square loss. It is seen that the least squaravithsrespect to the
jth latent functionf; is inversely weighted by the variantﬁ, which indicates again that a higher
variance leads to less contribution to the total loss.

3.2 Marginal 2: The Co-Training Kernel

The joint multi-view kernel defined in (8) is interesting, but it has a large dsienand is difficult
to work with. A more interesting kernel can be obtained if we instead integtdatalldhe m latent
functions f,...,fn in (3). This leads to a standard (transductive) Gaussian process maithefl

being the latent function realizations, and GP prior be(fg) = A(0,K¢) where

-1
Ke = [Z(KjJroJZI)l] . (10)

J

See Appendix A.2 for the derivation. This indicates that by marginalizatiencawn transfer the
multi-view problem into a single-view problem with respect to the consensudifun f;, without

loss of information. The new kernel matrix. s derived via all then kernels from them views,

and note that each ent(y, j) in K. depends not only on the features of the corresponding data
items % and X, but also on all the other labeled and unlabeled data points (as seen thr@@h
matrix inverse). This is the result of the multi-view dependency in the gralpiiocdel in Bayesian
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co-training, and it also means that this kernel lacks the marginalization nyycged can only be
used in a transductive setting.

This kernel definition is crucial to Bayesian co-training, and in the followirggcall K; the
co-training kernelfor multi-view learning. This marginalization reveals the previously unclear
insight of how the kernels from different views are combined together rimubi-view learning
framework. This allows us to transform a multi-view learning problem into alestagw prob-
lem, and simply use the co-training kerne} # solve GP classification or regression. Since this
marginalization is equivalent to (?)we end up with solutions that are largely similar to any other
co-regularization algorithm, but however a key difference is the Bagédatment contrasting pre-
vious ML-optimization methods.

Formulation (10) can also be viewed akernel desigrfor transductive multi-view learning,
namely, the inverse of the co-training kernel is the sum of the inverse afidillidual kernels,
corrected by the view specific variance term. Higher variance leads tacdegsbution to the
overall co-training kernel. In a transductive setting where the data ate@lty labeled, the co-
training kernel between labeled data is also dependent on the unlab&edi@nce the proposed
co-training kernel, by the design in (10), can be used for semi-supdr@® learning (Zhu et al.,
2003).

Additional benefits of the co-training kernel include the following:

o With fixed hyperparameters (e.gxf), the co-training kernel avoids repeated alternating op-
timizations with respect to the different views &ind directly works with a single consensus
view f.. This reduces both time complexity and space complexity (since we only maintain K
in memory) of multi-view learning.

e While other alternating optimization algorithms might converge to local minima (becaus
they optimize, not integrate), the single consensus view guarantegbtia optimal infer-
ence solutiorfor multi-view learning since it marginalizes other latent functions and leads to
a standard GP inference model.

e Even if all the individual kernels are stationary, i in generalnon-stationary This is
because the inverse-covariances are added and then inverted again.

3.3 Marginal 3: Individual View Learning with Side-Information

In Bayesian co-training model we can also focus on one particular yiggyvmarginalizing all the
other views and the consensus view. This is particularly interesting if themeeizview that is of

the main interest (e.g., it provides the most useful features, or it has #tenessing features), and
we want to understand how the other views influence this view in the infengrocess. This can

be done by integrating out the other latent functian&t j, in (7), and it will lead to another GP
formulation with f; being the latent function. Since (7) represents a jointly Gaussian distribution,
we obtain §f ~ A(0,C;), where

1

_ _ 1

lesz1+ 01-2|+k;(Kk+GEI) ] . (11)
j

3. The equivalence is in the sense that both marginalizations are baskd same underlying graphical model, and
any optimal solution derived from these marginalizations should be a soltiech optimizes the likelihood of the
graphical model.
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See Appendix A.3 for the derivation. This can be intuitively understodtiatshe precision matrix
of the individual view, ql, is the sum of its original precision matrix and the contributions from
other views, weighted by the inverse of the variance. Therefoog i big for some vievk, its
contribution to the other views will be compromised. Hence, if one particular igef interest, we
can encode the additional information from the other views into the kerngiédanterested view.

Another benefit of this marginalization is the possibility of introducing an ingladgtiference
scheme (rather than transductive as in Section 3.2)—given a new test.date try to make
a prediction ofy, if the jth view xﬁ” is available. Inspired by Yu et al. (2005), let us define
o) = [aj,...,0jn] T € R such thatfj(x) = 7, ajik; (x(), 1)) (this is also motivated by the Rep-
resenter theorem). On the training data, this yields-K;a;. From (11) we can see that this
re-parameterization leads to a co-training priordgrasa; ~ N(O,K;lchjl). At testing time

when we have the posterior afj, y. can be approximated bf (x.) = 3., ajiK;( fﬁ,xf”). This
approach is particularly interesting in the case that one of the views is kil predictive (i.e.,
the other views are “side” information to help this primary view), or test daenafome with fea-
tures only in a specific view (since the features from the other views wauttidnegarded at testing

time).

3.4 Optimization of Hyperparameters

One of the advantages of Bayesian co-training is that each vieas a view-specific variance term
012 to quantify how far the latent functior) fs apart from the consensus view fin particular, a
larger value obj2 implies less confidence on the observation of evidence provided bjghiheew.

In the perspective of kernel design, this leads to a lesser weight orethelkS;. Thus when some
views of the data are better at predicting the output than the others, thexemteted more while
forming consensus opinions. These variance terms are hyperparsuwfdtee Bayesian co-training
model.

To optimize these variance terms together with other hyperparameters inuolgadh covari-
ance function (e.g., parametpr> 0 in the Gaussian kern&l(xi,x;j) = exp(—p||xi — Xj[|?)), we
can use theype Il maximum likelihoodnethod (sometimes called evidence approximation), which
maximizes the marginal likelihood with respect to each of these hyperparameteisimplicity we
put the derivation and detailed equations in Appendix B. For more detailsedypilk || maximum
likelihood in the GP setting, please refer to Rasmussen and Williams (2006).

3.5 Discussions

The proposed undirected graphical model provides better underggasfomulti-view learning al-
gorithms. In each of the marginalizations, we end up with a standard GP nwdsrhe latent
functions (i.e.,{f1,...,fm} in Marginal 1, £ in Marginal 2, and f{ in Marginal 3). This simpli-
fies learning and inference under the proposed model. Under a taivedsetting, the co-training
kernel in (10) indicates th&ayesian co-training is equivalent to single-view learning with a spe-
cially designed (non-stationary) kerndihis is also the preferable way of working with multi-view
learning since it avoids alternating optimizations at the inference step.

The proposed graphical model also motivates new methods for unsgeenaulti-view learn-
ing such as spectral clustering. While the similarity matrix of each viesvencoded in K, the
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co-training kernel K encodes the similarity of two data sampieish multiple viewsand thus can
be used directly in spectral clustering.

We would also like to point out the limitations of the proposed consensustbesming, which
are shared by co-training as proposed by Blum and Mitchell (1998)aandy other multi-view
learning algorithms. As mentioned before, the consensus-based potenfiglsan be interpreted
as defining a Gaussian prior (5) tg fvhere the mean is weighted averagef the m individual
views. This averaging indicates that the value.géfnever higher (or lower) than that of any single
view. While the consensus-based potentials are intuitive and useful for applications, they are
limited for some real world problems where the evidence from differentssvould bedditive(or
enhanced) rather than averaging. For instance, when a radiologiskisgr@adiagnostic decision
about a lung cancer patient, he or she might look at both the CT image andRharidge. If
either of the two images gives a strong evidence of cancer by that image hAbor she can make
a decision based on a single view (and thus, ignoring the other image comyléteither of the
images only gives a moderate evidence (i.e., from a single-view learneh vugriores the other
image), it would be beneficial to look at both images (i.e., to consider both }iend the final
evidence of cancer after observing both images should be higher (er, ldgpending on the specific
scenario) than either of them if observed individually. It's clear that in $himnario the multiple
views arereinforcingor weakeningeach other, not averaging. While all the previously proposed co-
training and co-regularization algorithms have thus far been based ortiewgf consensus between
the views explicitly or implicitly, we make this clear from the graphical model pextsge and allow
effective tailoring of the view importance from the training data. As parutire work, it would
be interesting to explore the possibility of going beyond consensus-badéeview learning.

4. Bayesian Co-Training with Missing Views

In the previous two sections we assume that the input data are complete,, thktthe views
are observed for every data sample. However for many real-worllems, the features could
be incomplete or missing for various reasons. For instance, in cancerodiagve cannot ask
every patient to take all the available imaging tests (e.g., CT, PET, UltrasdRi,for the final
diagnosis, so some views (i.e., imaging tests) are missing for certain patieritss Bection we
extend Bayesian co-training to the case where there are missing (samplep#ies in the input
data (which can happen both in labeled data and in unlabeled data). Therthrginalizations will
also be discussed. To the best of our knowledge, this is the first eliggardwork to account for
the missing views in the multi-view learning setting.

Let each viewj be observed for a subset of < n samples, and lel; denote the indices of
these samples in the whole sample set (including labeled and unlabeled dat&jh&t under this
notation, the single-view kernel matrix;Kor view j is of sizen; x nj, which are defined over the
subset of samples denoted by indicatpr From the co-training kernel perspective, the difficulty
here is to combine the kernels of different sizes together from diffeients, if at all possible.

We start from the undirected graphical model and make necessargeshtmthe potentials to
account for the missing views. The idea is to treat the missing view informatibidesnin the
graphical model. The undirected graphical model is shown in Figure Bdgesian co-training
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with missing views, which is very similar to Figure 1(b). The joint probability cardbfined as:
1n
p(ylafC7fla"'7f ) Zl_l Y|,fc XI I_!ll'p fJ7f (12)

where £ = {fc(xi)}L; € R", and f; = {fj(Xi(j))}ie]Ij € R". Note that f is only realized on a subset
of samples and is of length; (instead ofn). The within-view potential(fj) is defined via the

GP prior, y(fj) = exp(—f] K 'f}), where K € R"*Mi is the covariance matrix for view; the
consensus potentigl(f; ,fc) is deflned as follows:
I —fe(T))|1?
fi.fo) = —_ 13
llJ( IR C) eXp( 20_? 9 ( )

in which f;(I;) takes the lengtimy subset of vectorcfwith indices given inl;. In other words, the
consensus potentials is defined such that

lIJ(fj(xi),fc(xi)):exp< 212(f(x.) f(xi))z), i €.

The idea here is to define the consensus potential for yigsing only the data samples observed in
view j. The other data samples with missing view information for vieare treated as hidden (or
integrated out) in this potential definition. As befoog,> 0 quantifies how far the latent functiop f
is apart from §. Note that the smallar; is, the less the contribution of vieyto the overall graphical
model* Next we look at the three marginalizations to gain more insight about this igedphodel.

4.1 Co-Regularization with Missing Views

It is straightforward to derive all the marginalizations of Bayesian codtrgiwith missing views.
For the co-regularization marginal, a simple calculation leads to the followingddatrtbution for
them latent functions:

! L L [£300 = f(x))2 1
p(f1,...7f ):fexp N f—-rK-lf'—f / 1 '
) z 2 le P 2 JZk xe%ﬂk O-JZOE 18:)%]14 Gf?

As in the Bayesian co-training with fully observed views, this provides aivatent form to co-
regularized multi-view learning. The first part regularizes the functispate of each view, and the
second part constrains that every pair of views need to agree ontfheé®forco-observedamples
(inversely weighted by view variances and the sum of inverse variaidég views in which the
sample is observed). This is very intuitive and naturally extends the jointodigem in (7). If

view j and viewk do not share any data sample (i.e., no data sample has features from loth vie
j and viewk), the view pair(j,k) will not contribute to the joint distributioR. A joint probability
distribution involving output ycan also be derived which takes a similar form as in (9).

4. Also note that after hyperparameter learniogmight not fully represent how strongly each vigveontributes to
the consensus, since the contribution also depends on the numbeilaiblavdatan; in the viewj].

5. Note that viewj and viewk will still contribute to the overall distribution through other views that they stdata
samples with.
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Figure 3: Factor graphs for Bayesian co-training with missing views apoige-view and (b) two-
view problems. Observed variables are marked as dark/bold, andametisones are
marked as red/non-bold, including functiohs f,, f. (blue/non-bold). Unobserved vari-
ables in a dotted box (such a§1)>) are potential observations for active sensing (see
Section 5). All labels are denoted as observed in the graph, but this is not required.

4.2 Co-Training Kernel with Missing Views

We can also derive a co-training kerned By integrating out all the latent functiod$; } in (12).
This leads to a Gaussian pripffc) = A((0,K¢), with

m
Ke=A:t, A= ZAj,
J:

where each Ais an x n matrix defined as
Aj(1,I}) = (Kj+0%1)~*, and O otherwise (14)

That is, A is an expansion of the one-view information maifi; + crjzl)‘1 to the full sizen x n,
with the other (unindexed) entries filled with O. It is easily seen that suchrreek#; is indeed
positive definite, as long as each one-view kernglspositive definite and at least there are two
views sharing one data sample. We also 8althe co-training precision matrix\Very importantly,
we note thabne additional observation of a (sample, view) pair will affect all the elgmef the
co-training kernel In other words, the kernel value for a pair of samples is potentially ctthagen
when a third (unrelated) object is further characterized by an addits@mesiof. This property mo-
tivates us to do active feature acquisition &otive sensingin the Bayesian co-training framework.
Section 5 will discuss this in detail.

6. Note that the marginalizations in Section 4.2 and Section 4.1 are stilladgui\(since they come from the same un-
derlying graphical model), despite the fact that additional (sample)yeaw influences the kernels (with dimension
nmx nmin Section 4.1 and x n in Section 4.2) differently in these two marginalizations.
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4.3 Individual View Learning with Missing Views

If one particular viewj is of interest, we can also integrate out the consensus view and all the other
views, leading to a GP prior for viey f; ~ A’(0, C;), with the precision matrix being

Crt =Kyt (081 +Acy (1, 1) 7Y
Here we extract th€ll;,I;) sub-matrix from thdeave-one-view-outo-training precision matrix
NAe\j,» Which is defined af, ; = Y .j Ak. Each A is defined as in (14). This marginalization allows
us to, for example, measure how much benefit every other view brings fotérested view. An
important fact to realize here is thatth an observed (sample, view) pair from another view k, even
if this sample is not observed in the primarily interested view j, the kerrt@leofiew j will still be
affected so long ak A Ik # 0. One can also introduce the inductive GP inference as in Section 3.3
under this setting.

4.4 Discussion

Bayesian co-training with missing views provides an elegant frameworkrtite information
from multiple views or multiple data sources together, even when differéasiess of data samples
are measured in different views. For learning and inference, we stfiépusing the co-training
kernel with the second marginalization due to its simplicity.

We note that the definition of the consensus potentials in (13) implies that therio8wf the
different pairs of views has been factored into a product. As a coeseg, the view-pairs are
combined in a linear manner. A way to go beyond this is by using higher-padentials.

A higher order potential definitioq)(f1,...,fm,fc), which combinesf,....f, simultaneously,
would produce a richer combination of views, but often at the expensdnafkeased
inference/computational complexity. It is not clear how to achieve this teffith standard co-
training.

Since one observation of a (sample, view) pair will affect the overalra@ioing kernel, we
can derive a framework foaictive sensingwhich aims to actively select the best pair for feature
acquisition or sensing. This active sensing problem is different frdimealearning where the goal
is to select the best pair for labeling. We discuss this idea in detail in the ebids.

5. Active Sensing in Bayesian Co-Training

In active sensing, we are interested in selecting the best unobseamaplés view) pair for sensing,
or for view acquisition, which will improve the overall classification perfonoa In this section we
will focus on logistic regression loss for binary classification. For acemsing we mainly discuss
an approach based on the mutual information framework, which measaresgécted information
gain after observing an additional (sample, view) pair. Another apprbased on the predictive
uncertainty is also briefly discussed in Section 5.5.

In the following let Do and 7y, denote the observed and unobserved (sample, view) pairs,
respectively. Recall that under the second marginalization in which onlgathgensus function
is of primary interest, the Bayesian co-training model for binary classifitaéiduces to

Pl fo) = () [] 003 ),
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where y contains the binary labels for the labeled samplesy(fc) is defined via the co-training
kernel asy(fc) = exp{—3f Ko e}, andy(y;, fe(xi)) is the output potential (y; f(xi)) with A(-)
the logistic function. The log marginal likelihood of the outpuuyder this model, conditioned on
the input data X {xi(”} and model paramete®, is:

£ £ logp(y|X.®) = log | p(yfe.©)p(clX,0) e~ logZ

n 1
= Iog/rl)\(yi fc(xi)).exp{—szKclfc} dfc —logZ.
i=

5.1 Laplace Approximation

To calculate the mutual information we need to calculate the differential entroine consensus
view function £. With co-training kernel and the logistic regression loss, Laplace appation
can be applied to approximate theposterioridistribution of £ as a Gaussian distribution. The
posterioridistribution of ¢, p(fc| Do, y,,©) O p(y,|fc,®) p(fe| Do, ©), is approximately

N(fc, (Apost)_l)a (15)
wheref. is the maximuma posteriori(MAP) estimate of §, and thea posterioriprecision matrix is
Apost: Kgl + q), (16)

with ® the Hessian of the negative log-likelihood. It turns out tais a diagonal matrix, with
®(i,i) = ni(1—n;) wheren; = A(fc(xi)). The differential entropy offunder this Laplace approxi-
mation is

n 1
H (fc) = _E Iog(ZT[e) — é |Og de(Apost)a

where det-) denotes the matrix determinant.

5.2 Mutual Information for Active Sensing

Remind that§<j denote the features in thjéh view for theith sample. In active sensing, the mutual
information (MI) between the consensus view functigraifid the unobserved (sample, view) pair

( € 7y is theexpected decrease in entropyfeiwhen >{‘ is observed,
(fe, (") = EIH (fe)] ~ E[H (fep )] = —7 logdetfpos) + > E log de(afs )]

where the expectation is with respectﬂ(xi(j)\@o,yl), the distribl_Jt_ion of the unobserved (sample,
view) pair given all the observed pairs and available outpﬂ@%’s’t) is thea posterioriprecision
matrix, derived from (16), after one pai}@(is observed.

The maximum MI criterion has been used before to identify the “best” unldisdenple in

active learning (MacKay, 1992). Here we adopt this criterion and satize unobserved pair which
maximizes Ml:

(i*,j*)=arg maxl(fc, ())_arg maxIE[Iogde(ApOst )]. a7
x e@u x e@u
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5.3 Density Modeling

In order to calculate the expectation in (17), we need a conditional densitglroo the unobserved

pairs, that is,p(xi“)\@o,y|). This of course depends on the type of the features in each view, and
for our applications we use a special Gaussian mixture model (GMM). Thidehtas the nice
property that all the marginals are still GMMs, and yet is not too flexible likeftheGMM. One
can certainly define other density models based on the applications.

For amrview input data = (x, ..., x(M), let the joint input density be

p(xY,.. x™) = p(y = +1)p(xV,... xM|y = +1) + py = ~1)p(xV,... xM|y = -1),

and each conditional density takes@mponent-wise factoriz&édMM form, that is,
p(xD, . xMy=11) = ZT@ I—I N(X(j)\pé'(j),zg(j)),
c j

_ i) s=(0)
p(x® . xMly=-1) =5 g [TA D eV, 5cW).
Z lTl i

Here, for the positive clas:yér(j) and ZCT“) are the mean and covariance matrix for vigvin
component, andr > 0, Y. 1¢ = 1 are the mixture weights. For the negative class we use sim-
ilar notations. Note that although the conditional density for each mixture coempas decou-
pled for different views, the joint conditional density is fotJnder this model, the joint density
p(x®, ..., x(M) is also a GMM, and any marginal (conditionedyar not) density is still a GMM,
for example,p(x(]y = +1) = 5o AL(x D |pud V| 55,

Now it is easy to calculatp(xi(”wo,y,). Let xi(o) be the set of observed views for, we need
to distinguish two different settings. When the laigek available, for exampleg; = +1, we have

x| D0.y) = pod XV yi = +1) = T eV (x) A i =LYy, s
Cc

which is again a GMM model, with the mixing weights being

k)|uc+(k) Zcﬂk))

7 0(x) = ¢ I'IkeoN(X§

X.
p(x\?lyi = +1)

When the labey; is not available, we need to integrate out the labeling uncertainty and compute
' P, (0
p(x"|Do,y1) = p0x” )
p(yi = +1)p(x{” %% yi = +1) + p(yi = —1)p(x | yi = -1),

which is a GMM model as well, as can be seen from (18).

7. A straightforward EM algorithm can be derived to estimate all thesengteas. When labels are only available for
a very limited number of samples, one might assume a full generativisl Giddel neglecting the dependency on
labels (instead of a conditional GMM model).
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5.4 Expectation Calculation

We are now ready to compute the expectatlon in (17). dlpesterioriprecision matrix after one
(sample, view) palr& is observedApost , can be calculated as

BN = (KE) o= A0 gAkw, (19)
2

where Ié(i’j) and A’j((i’j) are the new Kand Ay matrices after the new pair is observed. Based on
(14), to calculate /Jﬁ(“’) we need to recalculate the kernel for tjta view, K;, after an additional
pair >q<j) is observed. This is simply done by adding one row and column to the pi$K

xi,j) _ [Kj b
SR

wherea; = Kj(Xi(J) a )) € R, and i € R" has the/th entry a (xi ), ,( )). Then from (14), the
non-zero part of lj\ is calculated as

(KD +02) [KJW?' b,

-1
; , [ J+)‘JerJbT i —AjTb; (20)
b; aj + o

i j TOj

~Ajb] T Ao

using the block-matrix inverse formula, whete= (K; +0%1) * andAj = 2.
| [t B g
As seen from (19) and (20), it is difficult to directly calculate the expjeotjaitio(ﬂ). Since
for any matrix Q/E [logdet{Q)] < logde{(E [Q]) due to the concavity of logde}, we alternatively
take the upper bound log dét [A ’F‘,E)"S’t)]) as the selection criteria and also take the risk that the best

pair (i, j) that optimizes log détt [A post)]) doesn’t necessarily optimiZ&[log de(AIOost )]. From
(19) and (20), thls reduces to computiBf)\;], E[Ajb;] andE[A;b; bJT], where the expectations are

with respect top( \Q)o, y), a GMM model (cf. Section 5.3). In general one needs to calculate
these expectatlons numerically, as different kernel functions lead &reliff integrals. As another
approximation one might assume each of the GMM component is a point-médsthatithe mean

is used for the calculation.

5.5 Discussion

The mutual information based approach directly measures the expectedatifin gain for every
(sample, view) pair. A different (and simpler) approach is based onrdmiqtive uncertainty, in
which the mostuncertainsample (after the current classifier is trained) is selected for view acqui-
sition. This approach was taken for a different problem in Melville et &104). This uncertainty
(i.e., predictive variance) is estimated as the diagonal entries @ gusterioricovariance matrix
(Apost)_l, as seen from (15). However it is not clear what view to acquire forghmsple (if more
than one view is missing for the sample). The advantage of this approachnsg tthansity modeling

is necessary for unobserved views.

6. Experiments

For the first part of the experiments we empirically evaluate some single-viéwalti-view learn-
ing algorithms on several toy data and two real world data sets. We comparsothosed Bayesian
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co-training models with the original co-training method proposed by Blum aitdhill (1998),
and several single-view learning algorithms. Since this co-training algorithometimes we call it
thecanonical co-trainingalgorithm—was proposed for classification problems, we focus on classi-
fication in this section and compare all the methods with the logistic regressiofesshow both
problems where co-training works and does not work (i.e., is not bettepared to the single-view
learning counterpart).

In the second part we evaluate the active sensing algorithms in the Bayediaining setting.
We are given a classification task with missing views, and at each iteratiorevedl@ved to select
an unobserved (sample, view) pair for sensing (i.e., feature acquisitibe)proposed methods are
compared with random sensing in which a random unobserved (samplg,paé is selected for
sensing.

6.1 Toy Examples for Bayesian Co-Training

First of all, we show some 2D toy classification problems to visualize the cdftgamesult in
Figure 4. We assume each of these 2D problems is a two-view problem, in améckiew only
contains one single feature. Canonical co-training is applied by iteratikaglying one classifier
based on one view, adding the most confident unlabeled data from améovike training pool of
the other classifier, and retraining each classifier till convergence @egomfident unlabeled data
can be added further). In Bayesian co-training we use the squapedential covariance function
as mentioned in Section 2, and the wigtfs set to ¥+/2 which yields the optimal performance.

Our first example is a two-Gaussian case with mgan-2) and(—2,2), where either feature
xM or x12 can be used alone to fully solve the problem (Figure 4(a)). This is an adeal for
co-training, since: 1) each single view is sufficient to train a classifier,2arboth views are con-
ditionally independent given the class labels. Therefore we see thatéotimical co-training and
Bayesian co-training yield the same perfect result (Figure 4(b),(c)).

For the second toy data (Figure 4(d)) we assume the two Gaussians asgldtighex(V-axis
(with mean(2,0) and(—2,0)). In this case the featuré? is totally irrelevant to the classification
problem. The canonical co-training fails here (Figure 4(e)) since wreeadd labels using thé?
feature , noisy labels will be introduced and expanded to future trainihg.BRyesian co-training
model can handle this situation since we can adapt the weight of each uiguenalize the feature
x@ (Figure 4(f)).

The third toy data follows an XOR shape where the data from four Gawss@iatih mean(2,2),
(—=2,2), (2,-2), (—2,—2)) lead to a binary classification problem that is not linearly separable
(Figure 4(g)). In this case both the two assumptions mentioned above #ategicand neither
canonical nor Bayesian co-training will work (Figure 48))YOn the other hand, a supervised GP
classification model with squared exponential covariance function cally eecover the non-linear
underlying structure (see Figure 4(h)). This indicates that the learningltkview classifier for
this problem with the current co-training type algorithms will not succeedmFa kernel design
perspective, the consensus based co-training kerisl ot suitable for this type of problem.

In summary, these toy problems indicate that when co-training works, Bawyes-training
performs better than or at least as well as canonical co-training modelssifige Bayesian co-
training is fundamentally a kernel design for a single-view superviseditegrit will not work
when the problem calls for more flexible kernel form (e.g., in Figure 4(g))

8. We also tried other types of covariance functions but they yield simisattse
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Figure 4: Toy problems for co-training. @jc) show canonical and Bayesian co-training results
on two-Gaussian data (a); ¢eff) show the results on two-Gaussian data (d); (h) shows
GP classification result on four-Gaussian XOR data (g); (i) showsg8&ag) co-training
result on data (g). Square exponential covariance function wasnitedidth 1 for GP
classification and Ay/2 for each feature in two-view learning. In the toy data big red-
square/blue-triangle markers denote the/ — 1 labeled points, and black dots denote
the unlabeled points.
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# TRAIN +2/-10

# TRAIN +4/-20

MODEL AUC \ F1 AUC \ F1
TEXT 0.5725+0.0180 | 0.13594+0.0565 || 0.57704+0.0209 | 0.1443+0.0705
INBOUND LINK 0.5451+0.0025 | 0.3510+0.0011 || 0.5479+0.0035 | 0.3521+0.0017
OUTBOUND LINK 0.5550+0.0119 | 0.35524-0.0053 || 0.56624-0.0124 | 0.36004-0.0059
TEXT+LINK 0.5730+£0.0177 | 0.13864-0.0561 || 0.57824+0.0218 | 0.14744-0.0721
Co-TRAINED GPLR 0.64594+-0.1034 | 0.4001+0.2186 || 0.6519+0.1091 | 0.4042+0.2321
BAYESIAN CO-TRAINING || 0.653640.0419 | 0.4210+0.0401 || 0.6880+0.0300 | 0.4530+0.0293

Table 1: Results for Citeseer with different numbers of labeled training (@aisitive/negative).
The first three lines are supervised learning results using only the siigglefeatures.
The fourth line shows the supervised learning results by combining feafinom all the
three views. The fifth and sixth lines are the co-training results. Bold fatiedtes the
best performance.

MODEL # TRAIN +2/-2 # TRAIN +4/-4
AUC \ F1 AUC \ F1
TEXT 0.5767+0.0430 | 0.44494-0.1614 || 0.61504+0.0594 | 0.53384-0.1267
INBOUND LINK 0.5211+0.0017 | 0.57614-0.0013 || 0.52104+0.0019 | 0.5758+0.0015
TEXT+LINK 0.5766+0.0429 | 0.44434+0.1610 || 0.6150+0.0594 | 0.5336+0.1267
Co-TRAINED GPLR 0.5624+0.1058 | 0.54374-0.1225 || 0.59594-0.0927 | 0.5737+0.1203
BAYESIAN CO-TRAINING || 0.57944-0.0491 | 0.5562+0.1598 || 0.6140+0.0675 | 0.57424-0.1298

Table 2: Results for WebKB with different numbers of labeled training qaaifive/negative). The
first two lines are supervised learning results using only the single-vieswres. The third
line shows the supervised learning results by combining features fromvietis. The
fourth and fifth lines are the co-training results. Bold face indicates thepleef®rmance.

6.2 Bayesian Co-Training for Web Page Classification

We use two sets of linked documents for our experiment. The main purpabessd empirical
studies is to show the benefit of the proposed Bayesian co-training meihgaheed to single-view
learning and the canonical co-training algorithms, and also highlight the limisatiboo-training
type algorithms. As will be seen later, we show one case that co-traininkswor which case
Bayesian co-training yields the best performance; we also show oedlasco-training does not
improve over the single-view counterpart, in which case Bayesian cortgamslightly better than
canonical co-training. As the co-training kernel based approachuisadgnt to the adaptive co-
regularized multi-view learning (since they are based on the same undeghgipgical model), we
do not include a separate line of results for the co-regularization methods.

The Citeseerdata set contains 3,312 documents that belong to six classes. Thereeare thr
natural views for each document: the text view consists of title and abstrétoe paper; the two
link views are inbound and outbound references. The bag-of-wieatsires are extracted from
each view, which amount to 3,703 for the text view, 1,107 for the inbound aied 903 for the
outbound view. We pick up the largest class which contains 701 documeahtest the one-vs-
rest classification performance. TiéebKBdata set is a collection of 4,501 academic web pages
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manually grouped into six classes (student, faculty, staff, departmense;quroject). There are
two views containing the text on the page (24,480 features) and the atecti@d®01 features) of
all inbound links, respectively. We consider the binary classificatiomlpro “student” against
“faculty”, for which there are 1,641 and 1,119 documents, respectiVélg preprocessed data sets
are kindly shared by Steffen Bickel latt p: / / www. npi - i nf. npg. de/ ~bi ckel / nvdat a/ .

We compare the single-view learning methods based on logistic regressioGavigsian pro-
cesses (using features in the single view such@sTT INBOUND LINK, and QJTBOUND LINK),
concatenated-view method based on logistic regression with Gaussiasgee¢EXT+LINK), and
co-training methods G-TRAINED GPLR (which stands for Co-Trained Gaussian Process Logistic
Regression using canonical co-training) andvrBsIAN CO-TRAINING (using co-training kernel
with logistic regression loss function). Linear kernels are used for altongpeting methods since
it is very robust from our experience in these experiments. FTRAINED GPLR method, we
repeat the procedure 50 times, and in each iteration we add the most grledictsositive sample
andr negative samples into the training set whemepends on the number of negative/positive
ratio of each training data set. The classifier we use is the Gaussianpotassifier with logistic
regression loss (or GPLR for short). FoAB:=SIAN CO-TRAINING, we use the co-training ker-
nel approach with the same GPLR classifier. Performance is evaluatepAls{D score and F1
measure. We vary the number of labeled training documents as seen in Tatde2l(with ratio
proportional to the true positive/negative ratio). Single-view learning nustiuse only the labeled
data, and co-training algorithms are allowed to use all the unlabeled data irithiedrprocess.
The experiments are repeated 20 times and the prediction means and stiaviletidns are shown
in Table 1 and 2.

It can be seen that for the binary classification problem in Citeseer dgttheeco-training
methods are better than the single-view methods. In this caseBAN CO-TRAINING is better
than G-TRAINED GPLR and achieves the best performance. For WebDB, howeweT,FAINED
GPLR is not as good as the single-view counterparts, and thugs AN CO-TRAINING is also
worse than the purely supervised methods though it is slightly better thalMRAINED GPLR.
This is maybe because theeXT and LINK features are not independent given the class labels
(especially when two classes “faculty” and “staff” might share feajui@s-TRAINED GPLR has
higher standard deviations than other methods due to the possibility of addsydjabels. We have
also tried other number of iterations but 50 seems to give an overall béstrpance.

Note that the single-view learning wittEKT almost achieves the same performance as concatenated-
view method. This might be because the number of text features are muchhanorihe link fea-
tures (e.g., for WebKB there are 24,480 text features and only 901 latiries). So these multiple
views are very unbalanced and should be taken into account in co-trauim different weights.
Bayesian co-training provides a natural way of doing it.

6.3 Active Sensing on Toy Data

We show some empirical results on active sensing in this and the following&itiss. Suppose we
are given a classification task with missing views, and at each iteration vadi@ane=d to select an

unobserved (sample, view) pair for sensing (i.e., feature acquisitiomdMpare the classification
performance on unlabeled data using the following three sensing appac

e Active Sensing MI: The pair is selected based on the mutual information criteria (17).
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Figure 5: Toy data for active sensing (left). Big red-square/bluedtéeamarkers denote-1/ —
1 labeled points, and black dots denote unlabeled points. Data are sanqutetivo
Gaussians with meaf2, —2), (—2,2) and unit variance. After “hiding” one feature for
some of the data points, the data look like (middle) with removed features rdpldite
0. Comparison of active sensing with random sensing is shown on the Tigatx-axis
labels each acquired pair in order.

e Active Sensing VAR A sample is selected first which has the maximal predictive variance
and has missing views, and then one of the missing views is randomly selecsssh$ing.

¢ Random Sensing A random unobserved (sample, view) pair is selected for sensing.

After the pair is acquired in each iteration, learning is done using the Bawyesi#raining model
(with missing views), as discussed in Section 4. Note that for all the threeages, the acquired
(sample, view) pair will affect all the samples in the next iteration (via the aioitrg kernel). In
active sensing with MI, we use EM algorithm to learn the GMM structure with mgssitiries, and
the GMM model is re-estimated after each pair is selected and filled in (this ithtasts to the
incremental updates in the EM algorithm).

We first illustrate active sensing with a toy example. Figure 5 (left) showslaseparated
two-class problem which is similar to the one shown in Figure 4(a). To simulataabue sensing
experiment, we randomly “hide” one of the two features of each sample withpt@bability each,
and with 20% probability observe both features. The final incomplete traghatg are shown in
Figure 5 (middle) with the incomplete samples shown along the first or secasdtacan be seen
that only 2 fully observed positive and negative samples are availabiackee sensing Ml we use
the Gaussian kernel with width® and let the GMM choose the number of clusters automatically
(see, e.g., Corduneanu and Bishop, 2001). Standard transdusttivey $s applied where all the
unlabeled data are available for co-training kernel calculation. In Figupéght) we compare
active sensing with random sensing, using AUC for the unlabeled daia.iridicates that active
sensing is much better than random sensing in improving the classificationrparfce. The Bayes
optimal accuracy (reachable when there is no missing data) is reached bgtthquery by active
sensing whereas random sensing improves much slower with the numloeuatka pairs. The two
active sensing algorithms show similar results.
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0.67
Features for NSCLC 2-years Survival Prediction
Feature | Description | View | o 0-66
GENDER | 1-Male, 2-Female Ist 3
WHO WHO performance status  1st S o065
i <
FEV1 _Forced expiratory volume 1st :
in 1 second °
GTV Gross tumor volume 2nd 0.64 —— Active Sensing MI
Number of positive —=— Active Sensing VAR
NPLN lymph node stations 2nd 063 — —Random Sensing

5 10 15 20
Number of acquired (sample, view) pairs in order

Figure 6: Experiments on NSCLC survival prediction. The featureshfer2 views are listed in
the left table, and the performance comparison of active sensing addmasensing is
shown in the right figure. As baselines, training with full features (i.e. emsing needed)
yields 0.73; training with mean imputation (i.e., using the mean of each feature to fill in
the missing entries) yields 0.62.

6.4 Active Sensing in Survival Prediction for Lung Cancer

We consider 2-year survival prediction for advanced non-smallwedj cancer (NSCLC) patients
treated with (chemo-)radiotherapy. This is currently a very challengiolglem in clinical research,
since the prognosis of this group of patients is very poor (less than 468gestwo years). Cur-

rently most models in the literature rely on various clinical factors of the patigit as gender and
the WHO performance status. Very recently, imaging-related factorsasitie size of the tumor
and the number of positive lymph node stations are shown to be better pred@ehing-Oberije

et al., 2009). However, it is expensive to obtain the images and to manualsuneghese factors.
Therefore we study how to select the best set of patients to go througimigntagget additional

features. All the relevant factors are listed in Figure 6 (left) with shostdptions. These factors
are all known to be predictive based on Dehing-Oberije et al. (200@mMBayesian co-training
point of view we have 2 views, with 3 features in the first (clinical featuteyv and 2 features in
the second (imaging-based feature) view.

Our study contains 233 advanced NSCLC patients treated at the MAASTIR@ @ the
Netherlands from 2002 to 2006, among which 77 survived 2 yeardéldbd). All the features are
available for these patients, and are normalized to have zero mean andriante before training.
We randomly choose 30% of the patients as training samples (with labels kraovathe rest 70%
as unlabeled samples. We use linear kernel for each view, and let the &§okithm automatically
choose the number of clusters. As the active sensing setup, the firstsvaaxailable for all the
patients, and the second view is available only for randomly chosen 50%tsat®o our goal is
to sequentially select patients to acquire features in view 2, such that tredl @lassifier perfor-
mance is maximized. Figure 6 (right) shows the test AUC scores (with earg)-bf active sensing
and random sensing, with different number of acquired pairs. Pedioce is averaged over 20 runs
with randomly chosen 50% patients at the start. Active sensing in gendds pietter performance,
and is significantly better after 5 first pairs. Active sensing based omBINAR again yield very
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similar results. We have also tested other experimental settings, and the mmmp&not sensitive
to this setup.

6.5 Active Sensing in pCR Prediction for Rectal Cancer

Our second example is to predict tumor response after chemo-radiotliersgcally advanced rec-

tal cancer. This is important in individualizing treatment strategies, sincenpatigth a pathologic
complete response (pCR) after therapy, that is, with no evidence of wiabhte on pathologic anal-
ysis, would need less invasive surgery or another radiotherapyggtriaigtead of resection. Most
available models combine clinical factors such as gender and age, atrdgireent imaging-based
factors such as tumor length and S (from CT/PET imaging), but it is expected that adding
imaging data collectedfter therapy would lead to a better predictive model (though with a higher
cost). In this study we show how to effectively select patients to go thrgughreatment and
post-treatment imaging to better predict pCR.

We use the data from Capirci et al. (2007) which contains 78 prospéctivllected rectal
cancer patients. All patients underwent a CT/PET scan before treatmb#Ralays after treatment,
and 21 of them had pCR (labeled +1). We split all the features into 3 vidimicéd, pre-treatment
imaging, post-treatment imaging), and the features are listed in Figure 7 Heftactive sensing,
we assume that all the (labeled or unlabeled) patients have view 1 featareble, 70% of the
patients have view 2 features available, and 40% of the patients have veatuBds available. This
is to account for the fact that view 3 features are most expensive tdljdte other settings are the
same as the NSCLC survival prediction study. Figure 7 (right) showseitiermmance comparison of
active sensing with random sensing, and it is seen that after abouir EEgaisitions, active sensing
is significantly better than random sensing. Active sensing Ml and VAReshaimilar trend, and
the MI based active sensing is overall better than VAR based activéngenghe difference is
however not statistically significant. The optimal AUC (when there are no ngideiatures) is
shown as a dotted line, and we see that with around 34 actively acquineg @etive sensing
can almost achieve the optimum. It takes however much longer for randwingdo reach this
performance.

7. Conclusion

This paper has two principal contributions. We have proposed a gephimdel for combining
multi-view data, and shown that previously derived co-regularizatioedasining algorithms
maximize the likelihood of this model. In the process, we showed that thesétlalgsthave been
making an intrinsic assumption of the forptfe, f1, f2,..., fm) O W(fe, f)W(fe, f2)... . W(fe, fm),
even though it was not explicitly realized earlier. We also studied circumestamisen this assump-
tion proves unreasonable. Thus, our first contribution was to clarifyntipdicit assumptions and
limitations in multi-view consensus learning in general, and co-regularizatioarticplar.
Motivated by the insights from the graphical model, our second contributas the devel-
opment of alternative algorithms for co-regularization; in particular theeldgwment of a non-
stationary co-training kernel. Unlike previously published co-regulidmaalgorithms, our ap-
proach handles all the following in an elegant framework: (a) handiesally more than 2 views;
(b) automatically learns which views of the data should be trusted more whiépng class la-
bels; (c) shows how to leverage previously developed methods foeeffictraining GP/SVM; (d)
clearly explains our assumptions, for example, what is being optinazerhll, (e) does not suffer
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Features for pCR Prediction in Rectal Cancer O g
| Feature [ Description | View | 0
GENDER | 1-Male, 2-Female 1st e
AGE Age in years 1st )
STAGE Staging of cancer 1st é) 0.65
LENGTH | Max diameter of the tumor 2nd 3
SUVPre | SUVmaxbefore treatment 2nd " oosk 114 =+ Active Sensing MI
ASUV Absolute difference of SUNax [ FlY ﬁg‘;ﬁ‘éﬁ?gfg%ﬂ
before and after treatment ---- Learn with Full Features
RI Response IndexdSUV in % 3rd 0.55 10 20 30 40 50

Number of acquired (sample, view) pairs in order

Figure 7: Experiments on pCR prediction for rectal cancer. The feafardhe 3 views are listed
in the left table, and the performance comparison of active sensing addmesensing is
shown in the right figure. As baselines, training with full features (i.e. emsing needed)
yields 0.74 (shown as a dotted line); training with mean imputation (i.e., using the mean
of each feature to fill in the missing entries) yields 0.55 (not shown).

from local maxima problems; (f) is less computationally demanding in terms of Ipatdsand
memory requirements.

We also extend this framework to handle multi-view data with missing featuresnanduce
an active sensing framework which allows us to actively acquiring missargke, view) pairs to
maximize performance. In the future we plan to study alternative potentiads! lmsssthe proposed
graphical model, and explore inductive multi-view learning in a more princigladner.

Appendix A. Derivations of the Marginalizations

In this appendix we provide the derivations of the various marginalizatibriseoBayesian co-
training model, described in Section 3. The joint probability of all the variaisldefined as in (6)
and is repeated here:

PO o fm) = 5 [0 fox) [ 00F 0T o) (21)
I= =

Recall that the following integration result is true for ang@RP, b € RP, and symmetric matrix
A € RP*P,

/exp{ —%XTAX - bTx} dx = \/mexp{ ;bTAlb} : (22)
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A.1 Marginal 1: Co-Regularized Multi-View Learning

The first marginalization integrates out the latent consensus fungtior§21). Ignoring the output
consensus functiog(y;, fc(xi)) for the moment, we derive the joint likelihood

p(fs, o fm) z/l_l‘“ o)
fj —fell®
== e K] — IIfi = fell” df
Z/rl, xp{ 202 ¢

A ot ’

{—fTAchr bec+c} dfe.

in which we define

1 o 1 TK-1 HfJH
A_zc—%l, b_zo—%, c=-3 [f 4 I o 23)

Note thaiC does not depend og.fApplying (22) and absorbing the constants into the normalization
factorZ, we have

||fl||2 11

f.
p(fi,....fm )_—exp fTK 1f _= i
( { zz z 22102

o2
T O

| J

1 11 [fj — fic||?
= Zexps —5 YK - .
z { 2Z T2y L jZk 0202

JUJ2 J

1 1 .11 N [
=Zexpq —= S K -2 -
z { 2ZJ J 221-0%2 ;02 2 0? Zcrz

This recovers the marginal 1 as in (7). To see the GP view of this marginma{&g we just need to
notice that (7) is a quadratic form of the joint latent functidhs. . .,fy), and relocate the terms in
(7) in the GP format.

When the output potential$(yi, fc(xi)) are taken into account, the whole derivation follows
with the only difference that there is an additional term with respect to y in gacmation in (23).
So we obtain (9) as the joint marginal likelihood.

A.2 Marginal 2: The Co-Training Kernel

To get the co-training kernel we integrate out all théatent functions in (21), leaving only find
y,. We calculate the marginal distribution qfand t as follows:

oy, fe) / Py, fo, o, fm) iy ... dfm

|‘l Wiy, fe(x)) ﬂl/m AL (24)
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and
/q;(f,-)lp(f ) df; = exp{— i, — A = 2‘3” }dfj
{ (K +I>f,+f°TfJ chnz}dfj (25)
crJ 207
T n 2
o1 () -]
_ { fTAfC} (27)
where

-1
1 1 1 1 -1
A& SI— Kil4 S =S =(Kj+02
: o? 012< 012> o? (Kj+ofl)
Note that from (25) to (26) we applied the integration result (22). Tloeeefrom (24) and (27) we

have
1n 1
p(y,fe) = Zﬂw(yi, fc(Xi)>eXp{_2fI(;Aj>fc}y

in which the output potentials are equivalent to the conditional dempsgityf.), and the big expo-
nential term can be seen api@or term for the consensus functiog. fThis leads to the co-training
Gaussian priop(fc) = A((0,K¢), with K¢ = (3Aj)~* being the co-training kernel (10).

A.3 Marginal 3: Individual View Learning with Side-Information

The third marginalization leaves out only the latent functiprufid integrates out the consensus
function f; and all the other latent functiorf$y }«..j. Ignoring the output potentials for the moment,
based on (27) and (22) we have

/p (foufs... frm) dfedify ... dlfj_1dlfjs1... dfm
—Wﬁ)/( P(fj,feo) /LIJ (fo)P(fi.fe) dfk) dfc
2 Il

1 fi—fcl2 1
_ leJ(fj)/exp{_ll 12012c|| _éch <k;Ak) fc} df.
J
21 (f-)/ex I W) PRI P U g
— ZL|J ] p 2 C k;] k 0_% [ 0_12 [ 20_]2 C
-1
1 1. 1ff 1 filfll

1 1+
—Zep{ 2fJC f}
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where in the last line we define

-1

1 1

0j 0j
=Kt + (ojzl + ;Ak>

K# |

This yields the Equation (11). If we consider the output potentials, a similagpr®Pfor f; holds
but takes a more sophisticated form.

Appendix B. Optimization of the View Variance Parameters

In this appendix we derive the equations to optimize the view varianj%der each viewj using
the type Il maximum likelihood. Under the second marginalization in which only ¢msensus
function f; is of primary interest, the Bayesian co-training model reduces to

p(y,fe) = rllu (vi, fe(x

wherey(y;, fc(x;)) is the output potential as defined in (1), apff.) is defined via the co-training
kernel as

i) = 3 exp| - 51K e . (28)

Note that § is of lengthn > n;. This defines a single-view learning problem, and we are effectively
assigning a GP prior tq fwith the co-training kernel K The log marginal likelihood of the output

y, under this model, conditioned on the input daté){x } and model paramete®, is:

£ 2 1ogp(y[X.©) = log | p(yi[fe.®)p(fclX,O) (29)

In (29) all the probabilities are conditional probabilities, in whialy, |f;, ©) is defined via (1) and
p(fc|X,®) is a Gaussian distribution defined via the co-training kernel (28). Henatiue| param-
eters® contain all the view variance parametQ[sJ?}, all kernel parameters and other parameters
involved in the output potentials. In type Il maximum likelihood we maximize (29) wedpect to
these model parameters. In the following we derive the equations in thesgsgm case, that is, the
output potential is a Gaussian noise model. Similar but more complicated equ=tiohs derived
for classification case and readers please refer to Rasmussen and W06} for details.

When the outputs,yare regression outputs, the integral in (29) can be computed analytically as

1+ .4 1 n
—éy, G y,—élogdetG—élogm

in which for simplicity we rename & Kc(1:n,1:n))+c?l. Note that since yis only of length
n, < n, matrix G only involves they x n; sub-matrix of k.. For eachd € ©, the partial derivative
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of £ with respect t® is calculated as:

0L 1 7519C5, 1,.15196
g0~ 2 C aC 2"{6 3
1 _1, 0G
:2tr[(aaTG 1)66}’ (30)

wherea = G ly,, and t(-) denote the matrix trace. We are now ready to calculate the partial
derivative of L with respect to each view varianoé. We first compute the partial derivative of K

with respect tav? as:

-1
oK 0
207 aoz[Z(KJ*"f') ]
j i L7
0 1

-1 0 -1
=Ke(Kj+0fl) o5 (Kj+afl) - (Kj+0fl) K
j
-1 -1
=Kc(Kj+0fl) " (Kj+0%1) K.
Then if we name matrix B2 K¢(K; +0%1) (K +a%l) 'K, we have

0G 0
ﬁ:ﬁKc(l:m,l:m):Bj(l:n|,l:n|). (31)
j j

This equation follows since we have

9 o d |

— (I 0).6502KC.('8| )

J

=(In o).Bj.<|81>

=Bj(1:n,1:m).

Note that even though we only need to consider the top left corner of magiix e derivative
calculation, each entry in this sub-matrix depends both on labeled data amiedseled data. This
provides some additional insight since even wighritegrated out, the marginal likelihood still
depends on unlabeled data, so as the optimization of the hyperparaufeters

With (30) and (31) we can calculaﬁkz:/aoj2 and then use conjugate gradients to find the optimal
012. Since the derivatives for the differeuf are coupled, one needs to iteratively optimize eral%:h
until convergence. The partial derivative fof can be easily computed §§ = ly,. Similarly one
can derive the partial derivatives for other kernel parameters ieside kernel Kand we omit the
details.
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