
Journal of Machine Learning Research 12 (2011) 2649-2680 Submitted 6/09; Revised 5/11; Published 9/11

Bayesian Co-Training

Shipeng Yu SHIPENG.YU@SIEMENS.COM

Balaji Krishnapuram BALAJI .KRISHNAPURAM@SIEMENS.COM

Business Intelligence and Analytics
Siemens Medical Solutions USA, Inc.
51 Valley Stream Parkway
Malvern, PA 19355, USA
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Abstract
Co-training (or more generally, co-regularization) has been a popular algorithm for semi-supervised
learning in data with two feature representations (or views), but the fundamental assumptions un-
derlying this type of models are still unclear. In this paperwe propose a Bayesian undirected
graphical model for co-training, or more generally for semi-supervised multi-view learning. This
makes explicit the previously unstated assumptions of a large class of co-training type algorithms,
and also clarifies the circumstances under which these assumptions fail. Building upon new insights
from this model, we propose an improved method for co-training, which is a novel co-training ker-
nel for Gaussian process classifiers. The resulting approach is convex and avoids local-maxima
problems, and it can also automatically estimate how much each view should be trusted to accom-
modate noisy or unreliable views. The Bayesian co-trainingapproach can also elegantly handle
data samples with missing views, that is, some of the views are not available for some data points
at learning time. This is further extended to an active sensing framework, in which the missing
(sample, view) pairs are actively acquired to improve learning performance. The strength of active
sensing model is that one actively sensed (sample, view) pair would improve the joint multi-view
classification on all the samples. Experiments on toy data and several real world data sets illustrate
the benefits of this approach.
Keywords: co-training, multi-view learning, semi-supervised learning, Gaussian processes, undi-
rected graphical models, active sensing

1. Introduction

In machine learning, data samples may sometimes be characterized in multiple ways.For instance in
web page classification, the web pages can be described both in terms of thetextual content in each
page and the hyperlink structure between them; for cancer diagnosis where the goal is to determine
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if the patient has cancer or not, multiple medical imaging techniques (such as CT, Ultrasound and
MRI) might be considered to collect complete characteristic of the patient from different perspec-
tives. For learning under such a setting, it has been shown in Dasgupta et al. (2001) that the error
rate on unseen test samples can be upper bounded by the disagreement between the classification-
decisions obtained from independent characterizations (i.e.,views) of the data. Thus, in the web
page example,misclassification ratecan be indirectly minimized by reducing therate of disagree-
mentbetween hyperlink-based and content-based classifiers, provided these characterizations are
independent conditional on the class label.

As a completely new learning principle, multi-view consensus learning has been the subject of a
large body of research recently. This type of methods were originally developed for semi-supervised
learning, where class labels are expensive to obtain but unlabeled data are cheap and abundantly
available, such as in web page classification. When the data samples can be characterized in multiple
views, the disagreement between the class labels suggested by differentviews can be computed even
when using unlabeled data. Therefore, a natural strategy for using unlabeled data to minimize the
misclassification rate is to enforceconsistencybetween the classification decisions based on several
independent characterizations of the unlabeled samples. For brevity, unless otherwise specified, we
shall use the termco-training to describe the entire genre of methods that rely upon this intuition,
although strictly it should only refer to the original algorithm of Blum and Mitchell (1998).

In this pioneering paper, Blum and Mitchell introduced an iterative, alternating co-training
method, which works in a bootstrap mode by repeatedly adding pseudo-labeled unlabeled samples
into the pool of labeled samples, retraining the classifiers for each view, and pseudo-labeling addi-
tional unlabeled samples where at least one view is confident about its decision. The paper provided
PAC-style guarantees that if (a) there exist weakly useful classifiers on each view of the data, and (b)
these characterizations of the sample are conditionally independent giventhe class label, then the
co-training algorithm can use the unlabeled data to learn arbitrarily strong classifiers. Later Balcan
et al. (2004) tried to reduce the strong theoretical requirements, and theyshowed that co-training
would be useful if (a) there exist low error rate classifiers on each view, (b) these classifiers never
make mistakes in classification when they are confident about their decisions, and (c) the two views
are not too highly correlated, in the sense that there would be at least somecases where one view
makes confident classification decisions while the classifier on the other viewdoes not have much
confidence in its own decision. While each of these theoretical guaranteesis intriguing and theoret-
ically interesting, they are also rather unrealistic in many application domains. The assumption that
classifiers do not make mistakes when they are confident and that of classconditional independence
are rarely satisfied in practice. Empirical studies of co-training on many applications show mixed
results. See, for instance, Pierce and Cardie (2001) and Kiritchenko and Matwin (2002); Hwa et al.
(2003).

A strongly related algorithm is the co-EM algorithm from Nigam and Ghani (2000), which
extends the original bootstrap approach of the co-training algorithm to operate simultaneously on
all unlabeled samples in an iterative batch mode. Brefeld and Scheffer (2004) used this idea with
SVMs as base classifiers, and subsequently in unsupervised learning inBickel and Scheffer (2005).
However, co-EM also suffers from local maxima problems, and while eachiteration’s optimization
step is clear, the co-EM is not really an expectation maximization algorithm (i.e., it lacks a clearly
defined overall log-likelihood that monotonically improves across iterations).

In recent years, some co-training algorithms jointly optimize an objective function which in-
cludes misclassification penalties (i.e., loss terms) for classifiers from each view, and a regulariza-
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tion term that penalizes lack of agreement between the classification decisions of the different views.
This co-regularizationapproach has become the dominant strategy for exploiting the intuition be-
hind multi-view consensus learning, rendering obsolete earlier alternating-optimization strategies.
Krishnapuram et al. (2004) proposed an approach for two-view consensus learning based on simul-
taneously learning multiple classifiers by maximizing an objective function which penalized mis-
classifications by any individual classifier, and included a regularizationterm that penalized a high
level of disagreement between different views. This co-regularizationframework improves upon the
co-training and co-EM algorithms by maximizing a convex objective function; however the algo-
rithm still depends on an alternating optimization that optimizes one view at a time. Thisapproach
was later adapted to two-view spectral clustering in de Sa (2005). The two-view co-regularization
approach was subsequently adopted by Sindhwani et al. (2005), Brefeld et al. (2006), Sindhwani
and Rosenberg (2008) and Farquhar et al. (2005) for semi-supervised classification and regression
based on the reproducing kernel Hilbert space (RKHS). In these approaches a new co-regularization
term is added to the objective function which is based on the disagreement ofthe two views. Repre-
senter theorem still holds and solutions can be easily derived by direct optimization. However, it is
unclear how to set the regularization parameters (i.e., to control the weight of the co-regularization
term). Theoretical analysis of this and other types of algorithms can be found in Balcan and Blum
(2006), Sridharan and Kakade (2008), Wang and Zhou (2007) andWang and Zhou (2010).

Much of these previous work on co-training has been somewhat ad-hocin nature. Although
some algorithms were empirically successful in specific applications, it was not always clear what
precise assumptions were made, what was being optimized overall or why they worked well. In
this paper we propose a principled undirected graphical model for co-training which we call the
Bayesian co-training, and show that co-regularization algorithms provide one way for maximum-
likelihood (ML) learning under this probabilistic model. By explicitly highlighting previously un-
stated assumptions, Bayesian co-training provides a deeper understanding of the co-regularization
framework, and we are also able to discuss certain fundamental limitations of multi-view consen-
sus learning. Summarizing our algorithmic contributions, we show that co-regularization is exactly
equivalent to the use of a novelco-training kernelfor support vector machines(SVMs) andGaus-
sian processes(GP), thus allowing one to leverage the large body of available literature forthese
algorithms. The kernel is intrinsicallynon-stationary, that is, the level of similarity between any
pair of samples depends onall the available samples, whether labeled or unlabeled, thus promoting
semi-supervised learning. Therefore, this approach is significantly simpler and more efficient than
the alternating-optimization that is used in previous co-regularization implementations. Further-
more, we can automatically estimate how much each view should be trusted, and thus accommodate
noisy or unreliable views.

The basic idea of Bayesian co-training was published in a short conference paper by Yu et al.
(2008). In the current paper we have all the derivation details and morediscussions to its related
models. More importantly, we extend the Bayesian co-training model to handle data samples with
missing views (i.e., some views are missing for certain data samples), and introduce a novel ap-
plication called theactive sensing. This makes the current paper significantly different from its
conference version.

Active sensing aims to efficiently choose, among all the missing features (grouped in views),
what viewsand samples to additionally acquire (or sense) to improve the overall learning perfor-
mance. This is different from the typicalactive learning, which addresses the problem of efficiently
choosing data samples to be labeled in order to improve overall learning performance. From a can-
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cer diagnosis perspective, active learning is equivalent to choosing patients to do a biopsy such that
the tumor is correctly diagnosed (benign/malignant), whereas active sensing is targeting at collect-
ing (the not-yet-been-collected) medical imaging features (of, e.g., CT, Ultrasound and MRI) from
some patients such that all the patients can be better diagnosed. This is important, since a patient
does not undergo all possible tests at once (due to various side effectssuch as radiation and con-
trast), but these tests are selected based on the evidence collected up to a particular point. This is
normally referred to asdifferential diagnosis. Another example is in land mine detection in a sensor
network. We may have different types of sensors (as different views) deployed at one location, but
some sensors may not be available for all locations due to high cost. So active sensing is to decide
which location and which type of sensor we should additionally consider to achieve better detection
accuracy. Formulated within the Bayesian co-training framework, two approaches will be discussed
for efficiently choosing the (sample, view) pair, based on the mutual information (involving various
random variables) and on the predictive uncertainty, respectively.

This active sensing problem is similar to active feature acquisition—see, forexample, Melville
et al. (2004) and Bilgic and Getoor (2007)—but there is a clear difference. Previous feature acqui-
sition only considers one sample at a time, that is, when one sample is in consideration, the other
samples will not be affected. But in active sensing, one actively acquired (sample, view) pair will
improve the classification performance ofall the unlabeled samples via a co-training setting. A
related yet different problem was considered in Krause et al. (2008)to identify the optimal spatial
locations for placing a single type of sensor to model spatially varying phenomena; however, this
work addressed the use of a single type of sensor, and do not consider the scenario of multiple views.

The rest of the paper is organized as follows. We introduce the Bayesianco-training model in
Section 2, covering both the undirected graphical model and various marginalizations. Co-training
kernel will be discussed in detail to highlight the insight of the approach. The model is extended to
handle missing views in Section 4, and this provides the basics for the active sensing solution. The
active sensing problem is discussed in Section 5, in which we provide two methods for deciding
which incomplete samples should be further characterized, and which sensors should be deployed
on them. Experimental results are provided in Section 6, including both some toyproblems and
real world problems on web page classification and differential diagnosis. We conclude with a brief
discussion and future work in Section 7.

2. Bayesian Co-Training

We start from an undirected graphical model for single-view learning withGaussian processes,
and then present Bayesian co-training which is a new undirected graphical model for multi-view
learning.

2.1 Single-View Learning with Gaussian Processes

A Gaussian process (GP) defines a nonparametric prior over functionsin Bayesian statistics (Ras-
mussen and Williams, 2006). A random, real-valued functionf : Rd → R follows a GP, denoted
by f ∼ GP (h,κ), if for any finite number of data points x1, . . . ,xn ∈ R

d, f = { f (xi)}n
i=1 follows

a multivariate Gaussian distributionN (h,K) with mean vector h= {h(xi)}n
i=1 and covariance ma-

trix defined as K= {κ(xi ,x j)}n
i, j=1. The functionsh andκ are called the mean function and the

covariance function, respectively. Conventionally, the mean function is fixed ash≡ 0, and the co-
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Figure 1: Factor graph for (a) one-view and (b) two-view models.

variance functionκ is assumed to take a parametric (and usually stationary) form (e.g., the squared
exponential functionκ(xi ,x j) = exp(− 1

2ρ2‖xi −x j‖2) with ρ > 0 awidthparameter).
In a single-view, supervised learning scenario, an output or targetyi is given for each observation

xi (e.g., for regressionyi ∈ R and for classificationyi ∈ {−1,+1}). In the GP model we assume
there is a latent functionf underlying the output,

p(yi |xi) =
∫

p(yi | f ,xi) p( f )d f =
∫

p(yi | f (xi)) p( f )d f,

with the GP priorp( f ) = GP (h,κ). Given the latent functionf , for regressionp(yi | f (xi)) takes a
Gaussian noise modelN (yi | f (xi),σ2), with σ > 0 a parameter for the noise level; for classification
p(yi | f (xi)) takes the form of a sigmoid functionλ(yi f (xi)). For instance for GP logistic regression,
we haveλ(z) = (1+exp(−z))−1. See Rasmussen and Williams (2006) for more details on this.

The dependency structure of the single-view GP model can be shown as an undirected graph
as in Figure 1(a). The maximal cliques of the graphical model are the fully connected nodes
{ f (x1), . . . , f (xn)} and the pairs{yi , f (xi)}, i = 1, . . . ,n. Therefore, the joint probability of ran-
dom variables f= { f (xi)} and y= {yi} is defined as

p(f,y) =
1
Z

ψ(f)
n

∏
i=1

ψ(yi , f (xi)),

with potential functionsψ(f) = exp(−1
2f⊤K−1f), and1

ψ(yi , f (xi)) =

{

exp(− 1
2σ2‖yi − f (xi)‖2) for regression,

λ(yi f (xi)) for classification.
(1)

The normalization factorZ hereafter is defined such that the joint probability sums to 1.

1. The definition ofψ in this paper has been overloaded to simplify notation, but its meaning shouldbe clear from the
function arguments.
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Figure 2: Factor graph in the functional space for 2-view and multi-view learning.

2.2 Undirected Graphical Model for Multi-View Learning

In multi-view learning, suppose we havemdifferent views of a same set ofn data samples. Let x( j)
i ∈

R
d j be the features for theith sample obtained using thejth view, whered j is the dimensionality of

the input space for viewj. Note that subscripts index the data sample, and superscripts (with round
brackets) index the view. Then the vector xi , (x(1)i , . . . ,x(m)

i ) is the complete representation of the

ith data sample, and x( j) , (x( j)
1 , . . . ,x( j)

n ) represents all sample observations for thejth view. As in
the single-view learning, let y= [y1, . . . ,yn]

⊤ be the output whereyi is the single output assigned to
the ith data point.

One can certainly concatenate the multiple views of the data into a single view, andapply a
single-view GP model. But the basic idea of multi-view learning is to introduceone function per
view, which only uses the features from that specific view to make predictions. Multi-view learning
then jointly optimizes these functions such that they come to a consensus. Froma GP perspective,
let f j denote the latent function for thejth view (i.e., using features only from viewj), and let
f j ∼ GP (0,κ j) be its GP prior in viewj with covariance functionκ j . Since one data samplei has
only one single labelyi even though it has multiple features from the multiple views (i.e., latent
function valuef j(x

( j)
i ) for view j), the labelyi should depend onall of these latent function values

for data samplei.
The challenge here is to make this dependency explicit in a graphical model. We tackle this

problem by introducing a new latent function, theconsensus function fc, to ensure conditional
independence between the outputy and them latent functions{ f j} for themviews. See Figure 1(b)
for the undirected graphical model for multi-view learning. At the functional level, the outputy
dependsonlyon fc, and latent functions{ f j} depend on each otheronly viathe consensus function
fc (see Figure 2 for the factor graphs for 2-view and multi-view cases). That is, the joint probability
is defined as:

p(y, fc, f1, . . . , fm) =
1
Z

ψ(y, fc)
m

∏
j=1

ψ( f j , fc), (2)

with some potential functionsψ. In the ground network where we haven data samples, let fc =

{ fc(xi)}n
i=1 and fj = { f j(x

( j)
i )}n

i=1 be the functional values for the consensus view and thejth view,
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respectively. The graphical model leads to the following factorization:

p(y, fc, f1, . . . , fm) =
1
Z

n

∏
i=1

ψ(yi , fc(xi))
m

∏
j=1

ψ(f j)ψ(f j , fc). (3)

Here thewithin-view potentialψ(f j) specifies the dependency structure within each viewj, and
the consensus potentialψ(f j , fc) describes how each latent functionf j is related to the consensus
function fc. With a GP prior for each of themviews, we can define the following potentials:

ψ(f j) = exp

(

− 1
2

f⊤j K−1
j f j

)

, ψ(f j , fc) = exp

(

− ‖f j − fc‖2

2σ2
j

)

, (4)

where Kj is the covariance matrix of viewj, that is, Kj(xk,xℓ) = κ j(x
( j)
k ,x( j)

ℓ ), andσ j > 0 is a
scalar which quantifies how apart the latent function fj is from the consensus function fc. It is seen
that the within-view potentials only rely on theintrinsic structureof each view, that is, through the
covariance matrix in a GP setting. Finally, theoutput potentialψ(yi , fc(xi)) is defined the same as
that in (1) for regression or for classification.

The most important potential function in Bayesian co-training is the consensus potential, which
simply defines an isotropic multivariate Gaussian for the difference of fj and fc, that is, fj − fc ∼
N (0,σ2

j I). This can also be interpreted as assuming a conditional isotropic Gaussian for f j with
the consensus fc being the mean. Alternatively if fc is of interest, the joint consensus potentials
effectively define a conditional Gaussian prior for fc, fc|f1, . . . , fm, asN (µc,σ2

cI) where

µc = σ2
c ∑

j

f j

σ2
j

, σ2
c =

(

∑
j

1

σ2
j

)−1

. (5)

One can easily verify that this is a product of Gaussian distributions, with each Gaussian being
N (fc|f j ,σ2

j I).
2 This indicates that, given the latent functions{f j}m

j=1, the posterior mean of the
consensus function fc is a weighted averageof these latent functions, and the weight is given by
the inverse variance (i.e., the precision) of each consensus potential. The higher the variance, the
smaller the contribution to the consensus function. In the following we callσ2

j the view variance
for view j. In this paper these view variances are taken as parameters of the Bayesian co-training
model, but one can also assign a prior (e.g., a Gamma prior) to them and treat them instead as
hidden variables. We will discuss the consensus potential and the view variances in more details in
Section 3.

In (3) we assume the outputy is available for all then data samples. More generally we consider
semi-supervisedmulti-view learning, in which only a subset of data samples have outputs available.
This is actually the setting for which co-training and multi-view learning were originally motivated
(Blum and Mitchell, 1998). Formally, letnl be the number of data samples which have outputs
available, and letnu be the number of data samples which do not. We still keepn= nl +nu to be
the total number of data samples. Under this setting, we only have outputs available fornl samples,
that is, yl = [y1, . . . ,ynl ]

⊤.
In the functional space, the undirected graphical model for semi-supervised multi-view learning

is the same as in Figure 2. The joint probability is also the same as in (2). In the ground network,

2. Note that this conditional Gaussian for fc has a normalization factor which depends on f1, . . . , fm.
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since the output vector yl is only of lengthnl , the joint probability is now:

p(yl , fc, f1, . . . , fm) =
1
Z

nl

∏
i=1

ψ(yi , fc(xi))
m

∏
j=1

ψ(f j)ψ(f j , fc). (6)

Note that the product of output potentials contains only that of thenl labeled data samples, and
that fc = { fc(xi)}n

i=1 and fj = { f j(x
( j)
i )}n

i=1 are still of lengthn. Unlabeled data samples contribute
to the joint probability via the within-view potentialsψ(f j) and consensus potentialsψ(f j , fc). All
the potentials are defined similarly as in (4). In the following we will mainly discussthis more
interesting setting.

3. Inference and Learning in Bayesian Co-Training

In this section we discuss inference and learning in the proposed model, assuming first that there
is no missing data in any of the views (the setting with missing data will be discussed inSec-
tion 4). Instead of working with the undirected graphical model directly, weshow different types
of marginalizations under this model. The standard inference task is that of inferring y from the
observed data, that is, obtainingp(y); however, in order to gain insight into the proposed model and
co-training, we explore different marginalizations. All marginalizations leadto standard Gaussian
process inference with different latent function at consideration, butinterestingly, these different
marginalizations show different insights of the proposed undirected graphical model. One advan-
tage of the marginalizations is that it allows us to see that many existing multi-view learning models
are actually special cases of the proposed framework. In addition, this Bayesian interpretation helps
us understand both the benefits and the limitations of co-training. For clarity weput the derivations
into Appendix A.

3.1 Marginal 1: Co-Regularized Multi-View Learning

Our first marginalization focuses on the joint probability distribution of them latent functions, when
the consensus function fc is integrated out. This would lead to a GP model in which the latent
functions are the view specific functions f1, . . . , fm. Taking the integral of (3) over fc (and ignoring
the output potential for the moment), we obtain the joint marginal distribution as follows after some
mathematics (for derivations see Appendix A.1):

p(f1, . . . , fm) =
1
Z

exp

{

−1
2

m

∑
j=1

f⊤j K−1
j f j −

1
2 ∑

j<k

[

‖f j − fk‖2

σ2
j σ2

k

/

∑
ℓ

1

σ2
ℓ

]}

. (7)

It can be seen that the negation of the logarithm of this marginal recovers the regularization terms
in theco-regularized multi-view learning(see, e.g., Sindhwani et al., 2005; Brefeld et al., 2006). In
particular, we have

− logp(f1, . . . , fm) =
1
2

m

∑
j=1

f⊤j K−1
j f j +

1
2 ∑

j<k

[

‖f j − fk‖2

σ2
j σ2

k

/

∑
ℓ

1

σ2
ℓ

]

+ logZ

=
1
2

m

∑
j=1

Ω j(f j)+
1
2

1

∑ℓ
1

σ2
ℓ

∑
j<k

L(f j , fk)+ logZ,
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whereΩ j(f j) , f⊤j K−1
j f j regularizes the functional space of each individual viewj, and the loss

functionL(f j , fk), ‖f j − fk‖2
/

σ2
j σ2

k measures the disagreement of every pair of the function outputs,
inversely weighted by the product of the corresponding variances. The higher the varianceσ2

j of
view j, the less the contribution viewj brings to the overall loss. We refer to this asvariance-
sensitive co-regularized multi-view learning. Note that unlike the formulation in Brefeld et al.
(2006) where the disagreements are only with respect to the unlabeled data, here we regularize the
disagreements of all data samples. From the GP perspective, (7) actually defines ajoint multi-view
prior for them latent functions,(f1, . . . , fm) ∼ N (0,Λ−1), whereΛ is amn×mnprecision matrix
with block-wise definition:

Λ( j, j) = K−1
j +

1

∑ℓ
1

σ2
ℓ

∑
k6= j

1

σ2
j σ2

k

I, Λ( j, j ′) =− 1

∑ℓ
1

σ2
ℓ

1

σ2
j σ2

j ′
I, j ′ 6= j. (8)

It is seen that the block-wise precision matrix for viewj has contributions from all the other views.
When we take into account the observed output variable y, we can also easily derive the joint

marginal of y with all the latent functions f1, . . . , fm. For instance for regression, the marginal distri-
bution turns out to be (recall thatσ2 is the variance parameter in the output potential for regression):

p(y, f1, . . . , fm) =
1
Z

exp

{

− 1
2ρσ2 ∑

j

∑n
i=1(yi − f j(xi))

2

σ2
j

− 1
2 ∑

j

f⊤j K−1
j f j −

1
2ρ ∑

j<k

‖f j − fk‖2

σ2
j σ2

k

}

. (9)

Hereρ , 1
σ2 +∑ j

1
σ2

j
is the sum of all the inverse variances, including the regression variance. Max-

imizing this marginal distribution is equivalent to solving a minimization problem in co-regularized
multi-view learning with least square loss. It is seen that the least square loss with respect to the
jth latent functionf j is inversely weighted by the varianceσ2

j , which indicates again that a higher
variance leads to less contribution to the total loss.

3.2 Marginal 2: The Co-Training Kernel

The joint multi-view kernel defined in (8) is interesting, but it has a large dimension and is difficult
to work with. A more interesting kernel can be obtained if we instead integrate out all them latent
functions f1, . . . , fm in (3). This leads to a standard (transductive) Gaussian process model,with fc

being the latent function realizations, and GP prior beingp(fc) =N (0,Kc) where

Kc =

[

∑
j

(K j +σ2
j I)

−1

]−1

. (10)

See Appendix A.2 for the derivation. This indicates that by marginalization, we can transfer the
multi-view problem into a single-view problem with respect to the consensus function fc, without
loss of information. The new kernel matrix Kc is derived via all them kernels from them views,
and note that each entry(i, j) in Kc depends not only on the features of the corresponding data
items xi and xj , but also on all the other labeled and unlabeled data points (as seen in (10)through
matrix inverse). This is the result of the multi-view dependency in the graphical model in Bayesian

2657



YU, KRISHNAPURAM, ROSALES AND RAO

co-training, and it also means that this kernel lacks the marginalization property and can only be
used in a transductive setting.

This kernel definition is crucial to Bayesian co-training, and in the followingwe call Kc the
co-training kernelfor multi-view learning. This marginalization reveals the previously unclear
insight of how the kernels from different views are combined together in amulti-view learning
framework. This allows us to transform a multi-view learning problem into a single-view prob-
lem, and simply use the co-training kernel Kc to solve GP classification or regression. Since this
marginalization is equivalent to (7),3 we end up with solutions that are largely similar to any other
co-regularization algorithm, but however a key difference is the Bayesian treatment contrasting pre-
vious ML-optimization methods.

Formulation (10) can also be viewed as akernel designfor transductive multi-view learning,
namely, the inverse of the co-training kernel is the sum of the inverse of allindividual kernels,
corrected by the view specific variance term. Higher variance leads to lesscontribution to the
overall co-training kernel. In a transductive setting where the data are partially labeled, the co-
training kernel between labeled data is also dependent on the unlabeled data. Hence the proposed
co-training kernel, by the design in (10), can be used for semi-supervised GP learning (Zhu et al.,
2003).

Additional benefits of the co-training kernel include the following:

• With fixed hyperparameters (e.g.,σ2
j ), the co-training kernel avoids repeated alternating op-

timizations with respect to the different views fj , and directly works with a single consensus
view fc. This reduces both time complexity and space complexity (since we only maintain Kc

in memory) of multi-view learning.

• While other alternating optimization algorithms might converge to local minima (because
they optimize, not integrate), the single consensus view guarantees theglobal optimal infer-
ence solutionfor multi-view learning since it marginalizes other latent functions and leads to
a standard GP inference model.

• Even if all the individual kernels are stationary, Kc is in generalnon-stationary. This is
because the inverse-covariances are added and then inverted again.

3.3 Marginal 3: Individual View Learning with Side-Information

In Bayesian co-training model we can also focus on one particular viewj by marginalizing all the
other views and the consensus view. This is particularly interesting if there isone view that is of
the main interest (e.g., it provides the most useful features, or it has the least missing features), and
we want to understand how the other views influence this view in the inference process. This can
be done by integrating out the other latent functions fk, k 6= j, in (7), and it will lead to another GP
formulation with fj being the latent function. Since (7) represents a jointly Gaussian distribution,
we obtain fj ∼N (0,C j), where

C−1
j = K−1

j +

[

σ2
j I+ ∑

k6= j

(

Kk+σ2
kI
)−1

]−1

. (11)

3. The equivalence is in the sense that both marginalizations are based onthe same underlying graphical model, and
any optimal solution derived from these marginalizations should be a solution which optimizes the likelihood of the
graphical model.
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See Appendix A.3 for the derivation. This can be intuitively understood asthat the precision matrix
of the individual view, C−1

j , is the sum of its original precision matrix and the contributions from
other views, weighted by the inverse of the variance. Therefore ifσ2

k is big for some viewk, its
contribution to the other views will be compromised. Hence, if one particular view is of interest, we
can encode the additional information from the other views into the kernel for the interested view.

Another benefit of this marginalization is the possibility of introducing an inductive inference
scheme (rather than transductive as in Section 3.2)—given a new test datax∗, we try to make
a prediction ofy∗ if the jth view x( j)

∗ is available. Inspired by Yu et al. (2005), let us define
α j = [α j1, . . . ,α jn]

⊤ ∈R
n such thatf j(x) = ∑n

i=1 α ji κ j(x( j),x( j)
i ) (this is also motivated by the Rep-

resenter theorem). On the training data, this yields fj = K jα j . From (11) we can see that this
re-parameterization leads to a co-training prior forα j asα j ∼ N (0,K−1

j C jK
−1
j ). At testing time

when we have the posterior ofα j , y∗ can be approximated byf j(x∗) = ∑n
i=1 α ji κ j(x

( j)
∗ ,x( j)

i ). This
approach is particularly interesting in the case that one of the views is knownto be predictive (i.e.,
the other views are “side” information to help this primary view), or test data often come with fea-
tures only in a specific view (since the features from the other views would be disregarded at testing
time).

3.4 Optimization of Hyperparameters

One of the advantages of Bayesian co-training is that each viewj has a view-specific variance term
σ2

j to quantify how far the latent function fj is apart from the consensus view fc. In particular, a
larger value ofσ2

j implies less confidence on the observation of evidence provided by thejth view.
In the perspective of kernel design, this leads to a lesser weight on the kernel Kj . Thus when some
views of the data are better at predicting the output than the others, they areweighted more while
forming consensus opinions. These variance terms are hyperparameters of the Bayesian co-training
model.

To optimize these variance terms together with other hyperparameters involvedin each covari-
ance function (e.g., parameterρ > 0 in the Gaussian kernelκ(xi ,x j) = exp(−ρ‖xi − x j‖2)), we
can use thetype II maximum likelihoodmethod (sometimes called evidence approximation), which
maximizes the marginal likelihood with respect to each of these hyperparameters. For simplicity we
put the derivation and detailed equations in Appendix B. For more details on the type II maximum
likelihood in the GP setting, please refer to Rasmussen and Williams (2006).

3.5 Discussions

The proposed undirected graphical model provides better understanding of multi-view learning al-
gorithms. In each of the marginalizations, we end up with a standard GP model for some latent
functions (i.e.,{f1, . . . , fm} in Marginal 1, fc in Marginal 2, and fj in Marginal 3). This simpli-
fies learning and inference under the proposed model. Under a transductive setting, the co-training
kernel in (10) indicates thatBayesian co-training is equivalent to single-view learning with a spe-
cially designed (non-stationary) kernel. This is also the preferable way of working with multi-view
learning since it avoids alternating optimizations at the inference step.

The proposed graphical model also motivates new methods for unsupervised multi-view learn-
ing such as spectral clustering. While the similarity matrix of each viewj is encoded in Kj , the
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co-training kernel Kc encodes the similarity of two data sampleswith multiple views, and thus can
be used directly in spectral clustering.

We would also like to point out the limitations of the proposed consensus-based learning, which
are shared by co-training as proposed by Blum and Mitchell (1998) andmany other multi-view
learning algorithms. As mentioned before, the consensus-based potentialsin (4) can be interpreted
as defining a Gaussian prior (5) to fc, where the mean is aweighted averageof the m individual
views. This averaging indicates that the value of fc is never higher (or lower) than that of any single
view. While the consensus-based potentials are intuitive and useful for many applications, they are
limited for some real world problems where the evidence from different views should beadditive(or
enhanced) rather than averaging. For instance, when a radiologist is making a diagnostic decision
about a lung cancer patient, he or she might look at both the CT image and the MRI image. If
either of the two images gives a strong evidence of cancer by that image alone, he or she can make
a decision based on a single view (and thus, ignoring the other image completely); if either of the
images only gives a moderate evidence (i.e., from a single-view learner which ignores the other
image), it would be beneficial to look at both images (i.e., to consider both views), and the final
evidence of cancer after observing both images should be higher (or lower, depending on the specific
scenario) than either of them if observed individually. It’s clear that in thisscenario the multiple
views arereinforcingor weakeningeach other, not averaging. While all the previously proposed co-
training and co-regularization algorithms have thus far been based on enforcing consensus between
the views explicitly or implicitly, we make this clear from the graphical model perspective, and allow
effective tailoring of the view importance from the training data. As part of future work, it would
be interesting to explore the possibility of going beyond consensus-basedmulti-view learning.

4. Bayesian Co-Training with Missing Views

In the previous two sections we assume that the input data are complete, that is, all the views
are observed for every data sample. However for many real-world problems, the features could
be incomplete or missing for various reasons. For instance, in cancer diagnosis we cannot ask
every patient to take all the available imaging tests (e.g., CT, PET, Ultrasound,MRI) for the final
diagnosis, so some views (i.e., imaging tests) are missing for certain patients. Inthis section we
extend Bayesian co-training to the case where there are missing (sample, view) pairs in the input
data (which can happen both in labeled data and in unlabeled data). The three marginalizations will
also be discussed. To the best of our knowledge, this is the first elegantframework to account for
the missing views in the multi-view learning setting.

Let each viewj be observed for a subset ofn j ≤ n samples, and letI j denote the indices of
these samples in the whole sample set (including labeled and unlabeled data). Note that under this
notation, the single-view kernel matrix Kj for view j is of sizen j ×n j , which are defined over the
subset of samples denoted by indicatorI j . From the co-training kernel perspective, the difficulty
here is to combine the kernels of different sizes together from differentviews, if at all possible.

We start from the undirected graphical model and make necessary changes to the potentials to
account for the missing views. The idea is to treat the missing view information ashiddenin the
graphical model. The undirected graphical model is shown in Figure 3 forBayesian co-training
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with missing views, which is very similar to Figure 1(b). The joint probability can be defined as:

p(yl , fc, f1, . . . , fm) =
1
Z

nl

∏
i=1

ψ(yi , fc(xi))
m

∏
j=1

ψ(f j)ψ(f j , fc), (12)

where fc = { fc(xi)}n
i=1 ∈ R

n, and fj = { f j(x
( j)
i )}i∈I j ∈ R

n j . Note that fj is only realized on a subset
of samples and is of lengthn j (instead ofn). The within-view potentialψ(f j) is defined via the
GP prior,ψ(f j) = exp(−1

2f⊤j K−1
j f j), where Kj ∈ R

n j×n j is the covariance matrix for viewj; the
consensus potentialψ(f j , fc) is defined as follows:

ψ(f j , fc) = exp

(

−‖f j − fc(I j)‖2

2σ2
j

)

, (13)

in which fc(I j) takes the length-n j subset of vector fc with indices given inI j . In other words, the
consensus potentials is defined such that

ψ( f j(xi), fc(xi)) = exp

(

− 1

2σ2
j

(

f j(xi)− fc(xi)
)2

)

, i ∈ I j .

The idea here is to define the consensus potential for viewj using only the data samples observed in
view j. The other data samples with missing view information for viewj are treated as hidden (or
integrated out) in this potential definition. As before,σ j > 0 quantifies how far the latent function fj

is apart from fc. Note that the smallern j is, the less the contribution of viewj to the overall graphical
model.4 Next we look at the three marginalizations to gain more insight about this graphical model.

4.1 Co-Regularization with Missing Views

It is straightforward to derive all the marginalizations of Bayesian co-training with missing views.
For the co-regularization marginal, a simple calculation leads to the following jointdistribution for
them latent functions:

p(f1, . . . , fm) =
1
Z

exp

{

− 1
2

m

∑
j=1

f⊤j K−1
j f j −

1
2 ∑

j<k
∑

x∈I j∧Ik

[

[ f j(x)− fk(x)]2

σ2
j σ2

k

/

∑
ℓ:x∈Iℓ

1

σ2
ℓ

]}

.

As in the Bayesian co-training with fully observed views, this provides an equivalent form to co-
regularized multi-view learning. The first part regularizes the functionalspace of each view, and the
second part constrains that every pair of views need to agree on the outputs forco-observedsamples
(inversely weighted by view variances and the sum of inverse variancesof the views in which the
sample is observed). This is very intuitive and naturally extends the joint distribution in (7). If
view j and viewk do not share any data sample (i.e., no data sample has features from both view
j and viewk), the view pair( j,k) will not contribute to the joint distribution.5 A joint probability
distribution involving output yl can also be derived which takes a similar form as in (9).

4. Also note that after hyperparameter learning,σ j might not fully represent how strongly each viewj contributes to
the consensus, since the contribution also depends on the number of available datan j in the view j.

5. Note that viewj and viewk will still contribute to the overall distribution through other views that they share data
samples with.
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Figure 3: Factor graphs for Bayesian co-training with missing views, for (a) one-view and (b) two-
view problems. Observed variables are marked as dark/bold, and unobserved ones are
marked as red/non-bold, including functionsf1, f2, fc (blue/non-bold). Unobserved vari-
ables in a dotted box (such as x(1)

j ) are potential observations for active sensing (see
Section 5). All labelsy are denoted as observed in the graph, but this is not required.

4.2 Co-Training Kernel with Missing Views

We can also derive a co-training kernel Kc by integrating out all the latent functions{f j} in (12).
This leads to a Gaussian priorp(fc) =N (0,Kc), with

Kc = Λ−1
c , Λc =

m

∑
j=1

A j ,

where each Aj is an×n matrix defined as

A j(I j ,I j) = (K j +σ2
j I)

−1, and 0 otherwise. (14)

That is, Aj is an expansion of the one-view information matrix(K j +σ2
j I)

−1 to the full sizen×n,
with the other (unindexed) entries filled with 0. It is easily seen that such a kernel Kc is indeed
positive definite, as long as each one-view kernel Kj is positive definite and at least there are two
views sharing one data sample. We also callΛc theco-training precision matrix. Very importantly,
we note thatone additional observation of a (sample, view) pair will affect all the elements of the
co-training kernel. In other words, the kernel value for a pair of samples is potentially changed even
when a third (unrelated) object is further characterized by an additionalsensor.6 This property mo-
tivates us to do active feature acquisition (oractive sensing) in the Bayesian co-training framework.
Section 5 will discuss this in detail.

6. Note that the marginalizations in Section 4.2 and Section 4.1 are still equivalent (since they come from the same un-
derlying graphical model), despite the fact that additional (sample, view) pair influences the kernels (with dimension
nm×nm in Section 4.1 andn×n in Section 4.2) differently in these two marginalizations.
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4.3 Individual View Learning with Missing Views

If one particular viewj is of interest, we can also integrate out the consensus view and all the other
views, leading to a GP prior for viewj, f j ∼N (0,C j), with the precision matrix being

C−1
j = K−1

j +
[

σ2
j I+Λc\ j(I j ,I j)

−1]−1
.

Here we extract the(I j ,I j) sub-matrix from theleave-one-view-outco-training precision matrix
Λc\ j , which is defined asΛc\ j = ∑k6= j Ak. Each Ak is defined as in (14). This marginalization allows
us to, for example, measure how much benefit every other view brings to theinterested view. An
important fact to realize here is thatwith an observed (sample, view) pair from another view k, even
if this sample is not observed in the primarily interested view j, the kernel ofthe view j will still be
affected so long asI j ∧ Ik 6= /0. One can also introduce the inductive GP inference as in Section 3.3
under this setting.

4.4 Discussion

Bayesian co-training with missing views provides an elegant framework to combine information
from multiple views or multiple data sources together, even when different subsets of data samples
are measured in different views. For learning and inference, we still prefer using the co-training
kernel with the second marginalization due to its simplicity.

We note that the definition of the consensus potentials in (13) implies that the influence of the
different pairs of views has been factored into a product. As a consequence, the view-pairs are
combined in a linear manner. A way to go beyond this is by using higher-orderpotentials.

A higher order potential definitionψ(f1, ..., fm, fc), which combines f1, ..., fm simultaneously,
would produce a richer combination of views, but often at the expense ofincreased
inference/computational complexity. It is not clear how to achieve this effect with standard co-
training.

Since one observation of a (sample, view) pair will affect the overall co-training kernel, we
can derive a framework foractive sensing, which aims to actively select the best pair for feature
acquisition or sensing. This active sensing problem is different from active learning where the goal
is to select the best pair for labeling. We discuss this idea in detail in the next section.

5. Active Sensing in Bayesian Co-Training

In active sensing, we are interested in selecting the best unobserved (sample, view) pair for sensing,
or for view acquisition, which will improve the overall classification performance. In this section we
will focus on logistic regression loss for binary classification. For activesensing we mainly discuss
an approach based on the mutual information framework, which measures the expected information
gain after observing an additional (sample, view) pair. Another approach based on the predictive
uncertainty is also briefly discussed in Section 5.5.

In the following letDO andDU denote the observed and unobserved (sample, view) pairs,
respectively. Recall that under the second marginalization in which only theconsensus function fc

is of primary interest, the Bayesian co-training model for binary classification reduces to

p(yl , fc) =
1
Z

ψ(fc)
nl

∏
i=1

ψ(yi , fc(xi)),
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where yl contains the binary labels for thenl labeled samples,ψ(fc) is defined via the co-training
kernel asψ(fc) = exp

{

−1
2f⊤c K−1

c fc
}

, andψ(yi , fc(xi)) is the output potentialλ(yi fc(xi)) with λ(·)
the logistic function. The log marginal likelihood of the output yl under this model, conditioned on

the input data X, {x( j)
i } and model parametersΘ, is:

L , logp(yl |X,Θ) = log
∫

p(yl |fc,Θ)p(fc|X,Θ) dfc− logZ

= log
∫ nl

∏
i=1

λ(yi fc(xi)) ·exp

{

−1
2

f⊤c K−1
c fc

}

dfc− logZ.

5.1 Laplace Approximation

To calculate the mutual information we need to calculate the differential entropyof the consensus
view function fc. With co-training kernel and the logistic regression loss, Laplace approximation
can be applied to approximate thea posterioridistribution of fc as a Gaussian distribution. Thea
posterioridistribution of fc, p(fc|DO,yl ,Θ) ∝ p(yl |fc,Θ)p(fc|DO,Θ), is approximately

N (f̂c,(∆post)
−1), (15)

wheref̂c is the maximuma posteriori(MAP) estimate of fc, and thea posterioriprecision matrix is

∆post= K−1
c +Φ, (16)

with Φ the Hessian of the negative log-likelihood. It turns out thatΦ is a diagonal matrix, with
Φ(i, i) = ηi(1−ηi) whereηi = λ(f̂c(xi)). The differential entropy of fc under this Laplace approxi-
mation is

H(fc) =−n
2

log(2πe)− 1
2

logdet(∆post),

where det(·) denotes the matrix determinant.

5.2 Mutual Information for Active Sensing

Remind that x( j)
i denote the features in thejth view for theith sample. In active sensing, the mutual

information (MI) between the consensus view function fc and the unobserved (sample, view) pair
x( j)

i ∈DU is theexpected decrease in entropy offc when x( j)
i is observed,

I(fc,x
( j)
i ) = E[H(fc)]−E[H(fc|x( j)

i )] =−1
2

logdet(∆post)+
1
2
E [logdet(∆x(i, j)

post )],

where the expectation is with respect top(x( j)
i |DO,yl ), the distribution of the unobserved (sample,

view) pair given all the observed pairs and available outputs.∆x(i, j)
post is thea posterioriprecision

matrix, derived from (16), after one pair x( j)
i is observed.

The maximum MI criterion has been used before to identify the “best” unlabeled sample in
active learning (MacKay, 1992). Here we adopt this criterion and choose the unobserved pair which
maximizes MI:

(i∗, j∗) = arg max
x( j)

i ∈DU

I(fc,x
( j)
i ) = arg max

x( j)
i ∈DU

E [logdet(∆x(i, j)
post )]. (17)
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5.3 Density Modeling

In order to calculate the expectation in (17), we need a conditional density model for the unobserved
pairs, that is,p(x( j)

i |DO,yl ). This of course depends on the type of the features in each view, and
for our applications we use a special Gaussian mixture model (GMM). This model has the nice
property that all the marginals are still GMMs, and yet is not too flexible like thefull GMM. One
can certainly define other density models based on the applications.

For am-view input data x= (x(1), . . . ,x(m)), let the joint input density be

p(x(1), . . . ,x(m)) = p(y=+1)p(x(1), . . . ,x(m)|y=+1)+ p(y=−1)p(x(1), . . . ,x(m)|y=−1),

and each conditional density takes acomponent-wise factorizedGMM form, that is,

p(x(1), . . . ,x(m)|y=+1) = ∑
c

π+
c ∏

j
N (x( j)|µ+( j)

c ,Σ+( j)
c ),

p(x(1), . . . ,x(m)|y=−1) = ∑
c

π−
c ∏

j
N (x( j)|µ−( j)

c ,Σ−( j)
c ).

Here, for the positive class,µ+( j)
c and Σ+( j)

c are the mean and covariance matrix for viewj in
componentc, andπ+

c > 0, ∑c π+
c = 1 are the mixture weights. For the negative class we use sim-

ilar notations. Note that although the conditional density for each mixture component is decou-
pled for different views, the joint conditional density is not.7 Under this model, the joint density
p(x(1), . . . ,x(m)) is also a GMM, and any marginal (conditioned ony or not) density is still a GMM,

for example,p(x( j)|y=+1) = ∑c π+
c N (x( j)|µ+( j)

c ,Σ+( j)
c ).

Now it is easy to calculatep(x( j)
i |DO,yl ). Let x(O)

i be the set of observed views for xi , we need
to distinguish two different settings. When the labelyi is available, for example,yi =+1, we have

p(x( j)
i |DO,yl ) = p(x( j)

i |x(O)
i ,yi =+1) = ∑

c
π+( j)

c (x(O)
i ) ·N (x( j)

i |µ+( j)
c ,Σ+( j)

c ), (18)

which is again a GMM model, with the mixing weights being

π+( j)
c (x(O)

i ) = π+
c

∏k∈ON (x(k)i |µ+(k)
c ,Σ+(k)

c )

p(x(O)
i |yi =+1)

.

When the labelyi is not available, we need to integrate out the labeling uncertainty and compute

p(x( j)
i |DO,yl ) = p(x( j)

i |x(O)
i )

= p(yi =+1)p(x( j)
i |x(O)

i ,yi =+1)+ p(yi =−1)p(x( j)
i |x(O)

i ,yi =−1),

which is a GMM model as well, as can be seen from (18).

7. A straightforward EM algorithm can be derived to estimate all these parameters. When labels are only available for
a very limited number of samples, one might assume a full generative GMM model neglecting the dependency on
labels (instead of a conditional GMM model).
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5.4 Expectation Calculation

We are now ready to compute the expectation in (17). Thea posterioriprecision matrix after one
(sample, view) pair x( j)

i is observed,∆x(i, j)
post , can be calculated as

∆x(i, j)
post = (Kx(i, j)

c )−1+Φ = Ax(i, j)
j + ∑

k6= j

Ak+Φ, (19)

where Kx(i, j)
c and Ax(i, j)

j are the new Kc and Aj matrices after the new pair is observed. Based on

(14), to calculate Ax(i, j)j we need to recalculate the kernel for thejth view, Kj , after an additional

pair x( j)
i is observed. This is simply done by adding one row and column to the old Kj as:

Kx(i, j)
j =

[

K j b j

b⊤j a j

]

,

wherea j = κ j(x
( j)
i ,x( j)

i ) ∈ R, and bj ∈ R
n j has theℓth entry asκ j(x

( j)
ℓ ,x( j)

i ). Then from (14), the

non-zero part of Ax(i, j)j is calculated as

(

Kx(i, j)
j +σ2

j I
)−1

=

[

K j +σ2
j I b j

b⊤j a j +σ2
j

]−1

=

[

Γ j +λ jΓ jb jb⊤j Γ j −λ jΓ jb j

−λ jb⊤j Γ j λ j

]

, (20)

using the block-matrix inverse formula, whereΓ j = (K j +σ2
j I)

−1 andλ j =
1

a j+σ2
j−b⊤j Γ j b j

.

As seen from (19) and (20), it is difficult to directly calculate the expectation in (17). Since
for any matrix Q,E [logdet(Q)]≤ logdet(E [Q]) due to the concavity of logdet(·), we alternatively

take the upper bound logdet(E [∆x(i, j)
post ]) as the selection criteria and also take the risk that the best

pair (i, j) that optimizes logdet(E [∆x(i, j)
post ]) doesn’t necessarily optimizeE [logdet(∆x(i, j)

post )]. From

(19) and (20), this reduces to computingE[λ j ],E[λ jb j ] andE[λ jb jb⊤j ], where the expectations are

with respect top(x( j)
i |DO,y), a GMM model (cf. Section 5.3). In general one needs to calculate

these expectations numerically, as different kernel functions lead to different integrals. As another
approximation one might assume each of the GMM component is a point-mass such that the mean
is used for the calculation.

5.5 Discussion

The mutual information based approach directly measures the expected information gain for every
(sample, view) pair. A different (and simpler) approach is based on the predictive uncertainty, in
which the mostuncertainsample (after the current classifier is trained) is selected for view acqui-
sition. This approach was taken for a different problem in Melville et al. (2004). This uncertainty
(i.e., predictive variance) is estimated as the diagonal entries of thea posterioricovariance matrix
(∆post)

−1, as seen from (15). However it is not clear what view to acquire for thissample (if more
than one view is missing for the sample). The advantage of this approach is that no density modeling
is necessary for unobserved views.

6. Experiments

For the first part of the experiments we empirically evaluate some single-view and multi-view learn-
ing algorithms on several toy data and two real world data sets. We compare the proposed Bayesian
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co-training models with the original co-training method proposed by Blum and Mitchell (1998),
and several single-view learning algorithms. Since this co-training algorithm—sometimes we call it
thecanonical co-trainingalgorithm—was proposed for classification problems, we focus on classi-
fication in this section and compare all the methods with the logistic regression loss. We show both
problems where co-training works and does not work (i.e., is not better compared to the single-view
learning counterpart).

In the second part we evaluate the active sensing algorithms in the Bayesian co-training setting.
We are given a classification task with missing views, and at each iteration we are allowed to select
an unobserved (sample, view) pair for sensing (i.e., feature acquisition). The proposed methods are
compared with random sensing in which a random unobserved (sample, view) pair is selected for
sensing.

6.1 Toy Examples for Bayesian Co-Training

First of all, we show some 2D toy classification problems to visualize the co-training result in
Figure 4. We assume each of these 2D problems is a two-view problem, in whichone view only
contains one single feature. Canonical co-training is applied by iterativelytraining one classifier
based on one view, adding the most confident unlabeled data from one view to the training pool of
the other classifier, and retraining each classifier till convergence (i.e., no confident unlabeled data
can be added further). In Bayesian co-training we use the squared exponential covariance function
as mentioned in Section 2, and the widthρ is set to 1/

√
2 which yields the optimal performance.

Our first example is a two-Gaussian case with mean(2,−2) and(−2,2), where either feature
x(1) or x(2) can be used alone to fully solve the problem (Figure 4(a)). This is an idealcase for
co-training, since: 1) each single view is sufficient to train a classifier, and 2) both views are con-
ditionally independent given the class labels. Therefore we see that bothcanonical co-training and
Bayesian co-training yield the same perfect result (Figure 4(b),(c)).

For the second toy data (Figure 4(d)) we assume the two Gaussians are aligned to thex(1)-axis
(with mean(2,0) and(−2,0)). In this case the featurex(2) is totally irrelevant to the classification
problem. The canonical co-training fails here (Figure 4(e)) since whenwe add labels using thex(2)

feature , noisy labels will be introduced and expanded to future training. The Bayesian co-training
model can handle this situation since we can adapt the weight of each view and penalize the feature
x(2) (Figure 4(f)).

The third toy data follows an XOR shape where the data from four Gaussians (with mean(2,2),
(−2,2), (2,−2), (−2,−2)) lead to a binary classification problem that is not linearly separable
(Figure 4(g)). In this case both the two assumptions mentioned above are violated, and neither
canonical nor Bayesian co-training will work (Figure 4(i)).8 On the other hand, a supervised GP
classification model with squared exponential covariance function can easily recover the non-linear
underlying structure (see Figure 4(h)). This indicates that the learning amulti-view classifier for
this problem with the current co-training type algorithms will not succeed. From a kernel design
perspective, the consensus based co-training kernel Kc is not suitable for this type of problem.

In summary, these toy problems indicate that when co-training works, Bayesian co-training
performs better than or at least as well as canonical co-training models. But since Bayesian co-
training is fundamentally a kernel design for a single-view supervised learning, it will not work
when the problem calls for more flexible kernel form (e.g., in Figure 4(g)).

8. We also tried other types of covariance functions but they yield similar results.
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(h) GP classification on T3

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x
(1)

x
(2

)

(i) (Bayesian) co-training on T3

Figure 4: Toy problems for co-training. (b)∼(c) show canonical and Bayesian co-training results
on two-Gaussian data (a); (e)∼(f) show the results on two-Gaussian data (d); (h) shows
GP classification result on four-Gaussian XOR data (g); (i) shows (Bayesian) co-training
result on data (g). Square exponential covariance function was usedwith width 1 for GP
classification and 1/

√
2 for each feature in two-view learning. In the toy data big red-

square/blue-triangle markers denote the+1/− 1 labeled points, and black dots denote
the unlabeled points.
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# TRAIN +2/-10 # TRAIN +4/-20
MODEL AUC F1 AUC F1

TEXT 0.5725±0.0180 0.1359±0.0565 0.5770±0.0209 0.1443±0.0705
INBOUND L INK 0.5451±0.0025 0.3510±0.0011 0.5479±0.0035 0.3521±0.0017

OUTBOUND L INK 0.5550±0.0119 0.3552±0.0053 0.5662±0.0124 0.3600±0.0059
TEXT+L INK 0.5730±0.0177 0.1386±0.0561 0.5782±0.0218 0.1474±0.0721

CO-TRAINED GPLR 0.6459±0.1034 0.4001±0.2186 0.6519±0.1091 0.4042±0.2321
BAYESIAN CO-TRAINING 0.6536±0.0419 0.4210±0.0401 0.6880±0.0300 0.4530±0.0293

Table 1: Results for Citeseer with different numbers of labeled training data(positive/negative).
The first three lines are supervised learning results using only the single-view features.
The fourth line shows the supervised learning results by combining features from all the
three views. The fifth and sixth lines are the co-training results. Bold face indicates the
best performance.

MODEL # TRAIN +2/-2 # TRAIN +4/-4
AUC F1 AUC F1

TEXT 0.5767±0.0430 0.4449±0.1614 0.6150±0.0594 0.5338±0.1267
INBOUND L INK 0.5211±0.0017 0.5761±0.0013 0.5210±0.0019 0.5758±0.0015

TEXT+L INK 0.5766±0.0429 0.4443±0.1610 0.6150±0.0594 0.5336±0.1267
CO-TRAINED GPLR 0.5624±0.1058 0.5437±0.1225 0.5959±0.0927 0.5737±0.1203

BAYESIAN CO-TRAINING 0.5794±0.0491 0.5562±0.1598 0.6140±0.0675 0.5742±0.1298

Table 2: Results for WebKB with different numbers of labeled training data (positive/negative). The
first two lines are supervised learning results using only the single-view features. The third
line shows the supervised learning results by combining features from bothviews. The
fourth and fifth lines are the co-training results. Bold face indicates the best performance.

6.2 Bayesian Co-Training for Web Page Classification

We use two sets of linked documents for our experiment. The main purpose ofthese empirical
studies is to show the benefit of the proposed Bayesian co-training method compared to single-view
learning and the canonical co-training algorithms, and also highlight the limitations of co-training
type algorithms. As will be seen later, we show one case that co-training works, in which case
Bayesian co-training yields the best performance; we also show one case that co-training does not
improve over the single-view counterpart, in which case Bayesian co-training is slightly better than
canonical co-training. As the co-training kernel based approach is equivalent to the adaptive co-
regularized multi-view learning (since they are based on the same underlyinggraphical model), we
do not include a separate line of results for the co-regularization methods.

The Citeseerdata set contains 3,312 documents that belong to six classes. There are three
natural views for each document: the text view consists of title and abstractof the paper; the two
link views are inbound and outbound references. The bag-of-wordsfeatures are extracted from
each view, which amount to 3,703 for the text view, 1,107 for the inbound view and 903 for the
outbound view. We pick up the largest class which contains 701 documents and test the one-vs-
rest classification performance. TheWebKBdata set is a collection of 4,501 academic web pages
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manually grouped into six classes (student, faculty, staff, department, course, project). There are
two views containing the text on the page (24,480 features) and the anchortext (901 features) of
all inbound links, respectively. We consider the binary classification problem “student” against
“faculty”, for which there are 1,641 and 1,119 documents, respectively. The preprocessed data sets
are kindly shared by Steffen Bickel athttp://www.mpi-inf.mpg.de/∼bickel/mvdata/.

We compare the single-view learning methods based on logistic regression withGaussian pro-
cesses (using features in the single view such as TEXT, INBOUND L INK , and OUTBOUND L INK ),
concatenated-view method based on logistic regression with Gaussian processes (TEXT+L INK ), and
co-training methods CO-TRAINED GPLR (which stands for Co-Trained Gaussian Process Logistic
Regression using canonical co-training) and BAYESIAN CO-TRAINING (using co-training kernel
with logistic regression loss function). Linear kernels are used for all thecompeting methods since
it is very robust from our experience in these experiments. For CO-TRAINED GPLR method, we
repeat the procedure 50 times, and in each iteration we add the most predictable 1 positive sample
and r negative samples into the training set wherer depends on the number of negative/positive
ratio of each training data set. The classifier we use is the Gaussian process classifier with logistic
regression loss (or GPLR for short). For BAYESIAN CO-TRAINING, we use the co-training ker-
nel approach with the same GPLR classifier. Performance is evaluated using AUC score and F1
measure. We vary the number of labeled training documents as seen in Table 1and 2 (with ratio
proportional to the true positive/negative ratio). Single-view learning methods use only the labeled
data, and co-training algorithms are allowed to use all the unlabeled data in the training process.
The experiments are repeated 20 times and the prediction means and standarddeviations are shown
in Table 1 and 2.

It can be seen that for the binary classification problem in Citeseer data set, the co-training
methods are better than the single-view methods. In this case BAYESIAN CO-TRAINING is better
than CO-TRAINED GPLR and achieves the best performance. For WebDB, however, CO-TRAINED

GPLR is not as good as the single-view counterparts, and thus BAYESIAN CO-TRAINING is also
worse than the purely supervised methods though it is slightly better than CO-TRAINED GPLR.
This is maybe because the TEXT and LINK features are not independent given the class labels
(especially when two classes “faculty” and “staff” might share features). CO-TRAINED GPLR has
higher standard deviations than other methods due to the possibility of adding noisy labels. We have
also tried other number of iterations but 50 seems to give an overall best performance.

Note that the single-view learning with TEXT almost achieves the same performance as concatenated-
view method. This might be because the number of text features are much morethan the link fea-
tures (e.g., for WebKB there are 24,480 text features and only 901 link features). So these multiple
views are very unbalanced and should be taken into account in co-training with different weights.
Bayesian co-training provides a natural way of doing it.

6.3 Active Sensing on Toy Data

We show some empirical results on active sensing in this and the following subsections. Suppose we
are given a classification task with missing views, and at each iteration we areallowed to select an
unobserved (sample, view) pair for sensing (i.e., feature acquisition). We compare the classification
performance on unlabeled data using the following three sensing approaches:

• Active Sensing MI: The pair is selected based on the mutual information criteria (17).
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Figure 5: Toy data for active sensing (left). Big red-square/blue-triangle markers denote+1/−
1 labeled points, and black dots denote unlabeled points. Data are sampled from two
Gaussians with mean(2,−2), (−2,2) and unit variance. After “hiding” one feature for
some of the data points, the data look like (middle) with removed features replaced with
0. Comparison of active sensing with random sensing is shown on the right.The x-axis
labels each acquired pair in order.

• Active Sensing VAR: A sample is selected first which has the maximal predictive variance
and has missing views, and then one of the missing views is randomly selected for sensing.

• Random Sensing: A random unobserved (sample, view) pair is selected for sensing.

After the pair is acquired in each iteration, learning is done using the Bayesian co-training model
(with missing views), as discussed in Section 4. Note that for all the three approaches, the acquired
(sample, view) pair will affect all the samples in the next iteration (via the co-training kernel). In
active sensing with MI, we use EM algorithm to learn the GMM structure with missing entries, and
the GMM model is re-estimated after each pair is selected and filled in (this is fastthanks to the
incremental updates in the EM algorithm).

We first illustrate active sensing with a toy example. Figure 5 (left) shows a well separated
two-class problem which is similar to the one shown in Figure 4(a). To simulate our active sensing
experiment, we randomly “hide” one of the two features of each sample with 40% probability each,
and with 20% probability observe both features. The final incomplete trainingdata are shown in
Figure 5 (middle) with the incomplete samples shown along the first or second axis. It can be seen
that only 2 fully observed positive and negative samples are available. For active sensing MI we use
the Gaussian kernel with width 0.5, and let the GMM choose the number of clusters automatically
(see, e.g., Corduneanu and Bishop, 2001). Standard transductive setting is applied where all the
unlabeled data are available for co-training kernel calculation. In Figure5 (right) we compare
active sensing with random sensing, using AUC for the unlabeled data. This indicates that active
sensing is much better than random sensing in improving the classification performance. The Bayes
optimal accuracy (reachable when there is no missing data) is reached by the 16th query by active
sensing whereas random sensing improves much slower with the number of acquired pairs. The two
active sensing algorithms show similar results.
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Features for NSCLC 2-years Survival Prediction

Feature Description View

GENDER 1-Male, 2-Female 1st
WHO WHO performance status 1st

FEV1
Forced expiratory volume

1st
in 1 second

GTV Gross tumor volume 2nd

NPLN
Number of positive

2nd
lymph node stations
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Figure 6: Experiments on NSCLC survival prediction. The features forthe 2 views are listed in
the left table, and the performance comparison of active sensing and random sensing is
shown in the right figure. As baselines, training with full features (i.e., no sensing needed)
yields 0.73; training with mean imputation (i.e., using the mean of each feature to fill in
the missing entries) yields 0.62.

6.4 Active Sensing in Survival Prediction for Lung Cancer

We consider 2-year survival prediction for advanced non-small celllung cancer (NSCLC) patients
treated with (chemo-)radiotherapy. This is currently a very challenging problem in clinical research,
since the prognosis of this group of patients is very poor (less than 40% survive two years). Cur-
rently most models in the literature rely on various clinical factors of the patientsuch as gender and
the WHO performance status. Very recently, imaging-related factors suchas the size of the tumor
and the number of positive lymph node stations are shown to be better predictors (Dehing-Oberije
et al., 2009). However, it is expensive to obtain the images and to manually measure these factors.
Therefore we study how to select the best set of patients to go through imaging to get additional
features. All the relevant factors are listed in Figure 6 (left) with short descriptions. These factors
are all known to be predictive based on Dehing-Oberije et al. (2009). From Bayesian co-training
point of view we have 2 views, with 3 features in the first (clinical feature)view and 2 features in
the second (imaging-based feature) view.

Our study contains 233 advanced NSCLC patients treated at the MAASTRO Clinic in the
Netherlands from 2002 to 2006, among which 77 survived 2 years (labeled +1). All the features are
available for these patients, and are normalized to have zero mean and unit variance before training.
We randomly choose 30% of the patients as training samples (with labels known), and the rest 70%
as unlabeled samples. We use linear kernel for each view, and let the GMMalgorithm automatically
choose the number of clusters. As the active sensing setup, the first viewis available for all the
patients, and the second view is available only for randomly chosen 50% patients. So our goal is
to sequentially select patients to acquire features in view 2, such that the overall classifier perfor-
mance is maximized. Figure 6 (right) shows the test AUC scores (with error-bars) of active sensing
and random sensing, with different number of acquired pairs. Performance is averaged over 20 runs
with randomly chosen 50% patients at the start. Active sensing in general yields better performance,
and is significantly better after 5 first pairs. Active sensing based on MI and VAR again yield very

2672



BAYESIAN CO-TRAINING

similar results. We have also tested other experimental settings, and the comparison is not sensitive
to this setup.

6.5 Active Sensing in pCR Prediction for Rectal Cancer

Our second example is to predict tumor response after chemo-radiotherapy for locally advanced rec-
tal cancer. This is important in individualizing treatment strategies, since patients with a pathologic
complete response (pCR) after therapy, that is, with no evidence of viabletumor on pathologic anal-
ysis, would need less invasive surgery or another radiotherapy strategy instead of resection. Most
available models combine clinical factors such as gender and age, and pre-treatment imaging-based
factors such as tumor length and SUVmax (from CT/PET imaging), but it is expected that adding
imaging data collectedafter therapy would lead to a better predictive model (though with a higher
cost). In this study we show how to effectively select patients to go throughpre-treatment and
post-treatment imaging to better predict pCR.

We use the data from Capirci et al. (2007) which contains 78 prospectively collected rectal
cancer patients. All patients underwent a CT/PET scan before treatment and 42 days after treatment,
and 21 of them had pCR (labeled +1). We split all the features into 3 views (clinical, pre-treatment
imaging, post-treatment imaging), and the features are listed in Figure 7 (left).For active sensing,
we assume that all the (labeled or unlabeled) patients have view 1 features available, 70% of the
patients have view 2 features available, and 40% of the patients have view 3 features available. This
is to account for the fact that view 3 features are most expensive to get.All the other settings are the
same as the NSCLC survival prediction study. Figure 7 (right) shows the performance comparison of
active sensing with random sensing, and it is seen that after about 18 pair acquisitions, active sensing
is significantly better than random sensing. Active sensing MI and VAR share a similar trend, and
the MI based active sensing is overall better than VAR based active sensing. The difference is
however not statistically significant. The optimal AUC (when there are no missing features) is
shown as a dotted line, and we see that with around 34 actively acquired pairs, active sensing
can almost achieve the optimum. It takes however much longer for random sensing to reach this
performance.

7. Conclusion

This paper has two principal contributions. We have proposed a graphical model for combining
multi-view data, and shown that previously derived co-regularization based training algorithms
maximize the likelihood of this model. In the process, we showed that these algorithms have been
making an intrinsic assumption of the formp( fc, f1, f2, . . . , fm) ∝ ψ( fc, f1)ψ( fc, f2) . . .ψ( fc, fm),
even though it was not explicitly realized earlier. We also studied circumstances when this assump-
tion proves unreasonable. Thus, our first contribution was to clarify theimplicit assumptions and
limitations in multi-view consensus learning in general, and co-regularization in particular.

Motivated by the insights from the graphical model, our second contributionwas the devel-
opment of alternative algorithms for co-regularization; in particular the development of a non-
stationary co-training kernel. Unlike previously published co-regularization algorithms, our ap-
proach handles all the following in an elegant framework: (a) handles naturally more than 2 views;
(b) automatically learns which views of the data should be trusted more while predicting class la-
bels; (c) shows how to leverage previously developed methods for efficiently training GP/SVM; (d)
clearly explains our assumptions, for example, what is being optimizedoverall; (e) does not suffer

2673



YU, KRISHNAPURAM, ROSALES AND RAO

Features for pCR Prediction in Rectal Cancer

Feature Description View

GENDER 1-Male, 2-Female 1st
AGE Age in years 1st
STAGE Staging of cancer 1st

LENGTH Max diameter of the tumor 2nd
SUVPre SUVmax before treatment 2nd

∆SUV
Absolute difference of SUVmax 3rd
before and after treatment

RI Response Index,∆SUV in % 3rd 10 20 30 40 50
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Figure 7: Experiments on pCR prediction for rectal cancer. The features for the 3 views are listed
in the left table, and the performance comparison of active sensing and random sensing is
shown in the right figure. As baselines, training with full features (i.e., no sensing needed)
yields 0.74 (shown as a dotted line); training with mean imputation (i.e., using the mean
of each feature to fill in the missing entries) yields 0.55 (not shown).

from local maxima problems; (f) is less computationally demanding in terms of both speed and
memory requirements.

We also extend this framework to handle multi-view data with missing features, andintroduce
an active sensing framework which allows us to actively acquiring missing (sample, view) pairs to
maximize performance. In the future we plan to study alternative potentials based on the proposed
graphical model, and explore inductive multi-view learning in a more principledmanner.

Appendix A. Derivations of the Marginalizations

In this appendix we provide the derivations of the various marginalizations of the Bayesian co-
training model, described in Section 3. The joint probability of all the variablesis defined as in (6)
and is repeated here:

p(yl , fc, f1, . . . , fm) =
1
Z

nl

∏
i=1

ψ(yi , fc(xi))
m

∏
j=1

ψ(f j)ψ(f j , fc). (21)

Recall that the following integration result is true for any x∈ R
p, b∈ R

p, and symmetric matrix
A ∈ R

p×p.

∫
exp

{

−1
2

x⊤Ax+b⊤x

}

dx =

√

det(2πA−1)exp

{

1
2

b⊤A−1b

}

. (22)
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A.1 Marginal 1: Co-Regularized Multi-View Learning

The first marginalization integrates out the latent consensus function fc in (21). Ignoring the output
consensus functionψ(yi , fc(xi)) for the moment, we derive the joint likelihood

p(f1, . . . , fm) =
1
Z

∫ m

∏
j=1

ψ(f j)ψ(f j , fc)dfc

=
1
Z

∫ m

∏
j=1

exp

{

−1
2

f⊤j K−1
j f⊤j −

‖f j − fc‖2

2σ2
j

}

dfc

=
1
Z

∫
exp

{

−1
2

m

∑
j=1

[

f⊤j K−1
j f⊤j +

‖f j − fc‖2

σ2
j

]}

dfc

=
1
Z

∫
exp

{

−1
2

f⊤c Af c+b⊤fc+C

}

dfc,

in which we define

A = ∑
j

1

σ2
j

I, b= ∑
j

f j

σ2
j

, C=−1
2 ∑

j

[

f⊤j K−1
j f j +

‖f j‖2

σ2
j

]

. (23)

Note thatC does not depend on fc. Applying (22) and absorbing the constants into the normalization
factorZ, we have
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1
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This recovers the marginal 1 as in (7). To see the GP view of this marginal asin (8), we just need to
notice that (7) is a quadratic form of the joint latent functions(f1, . . . , fm), and relocate the terms in
(7) in the GP format.

When the output potentialsψ(yi , fc(xi)) are taken into account, the whole derivation follows
with the only difference that there is an additional term with respect to y in each summation in (23).
So we obtain (9) as the joint marginal likelihood.

A.2 Marginal 2: The Co-Training Kernel

To get the co-training kernel we integrate out all them latent functions in (21), leaving only fc and
yl . We calculate the marginal distribution of yl and fc as follows:

p(yl , fc) =
∫

p(yl , fc, f1, . . . , fm) df1 . . .dfm

=
1
Z

nl

∏
i=1

ψ(yi , fc(xi))
m

∏
j=1

∫
ψ(f j)ψ(f j , fc) df j , (24)
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and
∫

ψ(f j)ψ(f j , fc) df j =
∫

exp

{

−1
2

f⊤j K−1
j f j −

‖f j − fc‖2

2σ2
j

}

df j

=
∫

exp

{

−1
2

f⊤j

(

K−1
j +

1

σ2
j

I

)

f j +
f⊤c
σ2

j

f j −
‖fc‖2

2σ2
j

}

df j (25)

= exp







1
2

f⊤c
σ2

j

(

K−1
j +

1

σ2
j

I

)−1
fc

σ2
j

− ‖fc‖2

2σ2
j







(26)

= exp

{

−1
2

f⊤c A j fc

}

, (27)

where

A j ,
1

σ2
j

I− 1

σ2
j

(

K−1
j +

1

σ2
j

I

)−1
1

σ2
j

=
(

K j +σ2
j I
)−1

.

Note that from (25) to (26) we applied the integration result (22). Therefore, from (24) and (27) we
have

p(yl , fc) =
1
Z

nl

∏
i=1

ψ(yi , fc(xi))exp

{

−1
2

f⊤c

(

∑
j

A j

)

fc

}

,

in which the output potentials are equivalent to the conditional densityp(yl |fc), and the big expo-
nential term can be seen as aprior term for the consensus function fc. This leads to the co-training
Gaussian priorp(fc) =N (0,Kc), with Kc = (∑ j A j)

−1 being the co-training kernel (10).

A.3 Marginal 3: Individual View Learning with Side-Information

The third marginalization leaves out only the latent function fj and integrates out the consensus
function fc and all the other latent functions{fk}k6= j . Ignoring the output potentials for the moment,
based on (27) and (22) we have

p(f j) =
∫

p(fc, f1, . . . , fm) dfcdf1 . . .df j−1df j+1 . . .dfm

=
1
Z

ψ(f j)
∫ (

ψ(f j , fc)∏
k6= j

∫
ψ(fk)ψ(fk, fc) dfk

)

dfc

=
1
Z

ψ(f j)
∫

exp

{

−‖f j − fc‖2

2σ2
j

− 1
2

f⊤c

(

∑
k6= j

Ak

)

fc

}

dfc

=
1
Z

ψ(f j)
∫

exp

{

−1
2

f⊤c

(

∑
k6= j

Ak+
1

σ2
j

I

)

fc+
f⊤j
σ2

j

fc−
‖f j‖2

2σ2
j

}

dfc

=
1
Z

exp

{

−1
2

f⊤j K−1
j f j

}

exp







1
2

f⊤j
σ2

j

(

∑
k6= j

Ak+
1

σ2
j

I

)−1
f j

σ2
j

− ‖f j‖2

2σ2
j







=
1
Z

exp

{

−1
2

f⊤j C−1
j f j

}

,
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where in the last line we define

C−1
j = K−1

j +
1

σ2
j

I− 1

σ2
j

(

∑
k6= j

Ak+
1

σ2
j

I

)−1
1

σ2
j

= K−1
j +

(

σ2
j I+ ∑

k6= j

Ak

)−1

.

This yields the Equation (11). If we consider the output potentials, a similar GPprior for f j holds
but takes a more sophisticated form.

Appendix B. Optimization of the View Variance Parameters

In this appendix we derive the equations to optimize the view varianceσ2
j for each view j using

the type II maximum likelihood. Under the second marginalization in which only the consensus
function fc is of primary interest, the Bayesian co-training model reduces to

p(yl , fc) =
1
Z

ψ(fc)
nl

∏
i=1

ψ(yi , fc(xi)),

whereψ(yi , fc(xi)) is the output potential as defined in (1), andψ(fc) is defined via the co-training
kernel as

ψ(fc) =
1
Z

exp

{

−1
2

f⊤c K−1
c fc

}

. (28)

Note that fc is of lengthn≥ nl . This defines a single-view learning problem, and we are effectively
assigning a GP prior to fc with the co-training kernel Kc. The log marginal likelihood of the output
yl under this model, conditioned on the input data X, {x( j)

i } and model parametersΘ, is:

L , logp(yl |X,Θ) = log
∫

p(yl |fc,Θ)p(fc|X,Θ) dfc. (29)

In (29) all the probabilities are conditional probabilities, in whichp(yl |fc,Θ) is defined via (1) and
p(fc|X,Θ) is a Gaussian distribution defined via the co-training kernel (28). Here themodel param-
etersΘ contain all the view variance parameters{σ2

j}, all kernel parameters and other parameters
involved in the output potentials. In type II maximum likelihood we maximize (29) with respect to
these model parameters. In the following we derive the equations in the regression case, that is, the
output potential is a Gaussian noise model. Similar but more complicated equationscan be derived
for classification case and readers please refer to Rasmussen and Williams(2006) for details.

When the outputs yl are regression outputs, the integral in (29) can be computed analytically as

L =−1
2

y⊤l G−1yl −
1
2

logdetG− n
2

log2π,

in which for simplicity we rename G, Kc(1 : nl ,1 : nl )+σ2I. Note that since yl is only of length
nl ≤ n, matrix G only involves thenl ×nl sub-matrix of Kc. For eachθ ∈ Θ, the partial derivative
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of L with respect toθ is calculated as:

∂L
∂θ

=
1
2

y⊤l G−1 ∂G
∂θ

G−1yl −
1
2

tr

[

G−1 ∂G
∂θ

]

=
1
2

tr

[

(

αα⊤−G−1)∂G
∂θ

]

, (30)

whereα = G−1yl , and tr(·) denote the matrix trace. We are now ready to calculate the partial
derivative ofL with respect to each view varianceσ2

j . We first compute the partial derivative of Kc

with respect toσ2
j as:

∂Kc

∂σ2
j

=
∂

∂σ2
j

[

∑
j

(

K j +σ2
j I
)−1

]−1

=−Kc ·
∂

∂σ2
j

(

K j +σ2
j I
)−1 ·Kc

= Kc
(

K j +σ2
j I
)−1 · ∂

∂σ2
j

(

K j +σ2
j I
)

·
(

K j +σ2
j I
)−1

Kc

= Kc
(

K j +σ2
j I
)−1(

K j +σ2
j I
)−1

Kc.

Then if we name matrix Bj , Kc(K j +σ2
j I)

−1(K j +σ2
j I)

−1Kc, we have

∂G

∂σ2
j

=
∂

∂σ2
j

Kc(1 : nl ,1 : nl ) = B j(1 : nl ,1 : nl ). (31)

This equation follows since we have

∂
∂σ2

j

Kc(1 : nl ,1 : nl ) =
∂

∂σ2
j

(

Inl 0
)

·Kc ·
(

Inl

0

)

=
(

Inl 0
)

· ∂
∂σ2

j

Kc ·
(

Inl

0

)

=
(

Inl 0
)

·B j ·
(

Inl

0

)

= B j(1 : nl ,1 : nl ).

Note that even though we only need to consider the top left corner of matrix Bj in the derivative
calculation, each entry in this sub-matrix depends both on labeled data and onunlabeled data. This
provides some additional insight since even with fc integrated out, the marginal likelihood still
depends on unlabeled data, so as the optimization of the hyperparametersσ2

j .
With (30) and (31) we can calculate∂L/∂σ2

j and then use conjugate gradients to find the optimal
σ2

j . Since the derivatives for the differentσ2
j are coupled, one needs to iteratively optimize eachσ2

j

until convergence. The partial derivative forσ2 can be easily computed as∂G
∂σ2 = Inl . Similarly one

can derive the partial derivatives for other kernel parameters insideeach kernel Kj and we omit the
details.
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