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Abstract

Common visual codebook generation methods used in a bagwdivivords model, for example,
k-means or Gaussian Mixture Model, use the Euclidean distemcluster features into visual code
words. However, most popular visual descriptors are histog of image measurements. It has
been shown that with histogram features, the Histogranndattion Kernel (HIK) is more effective
than the Euclidean distance in supervised learning taskbkid paper, we demonstrate that HIK can
be used in an unsupervised manner to significantly improyvgdmeration of visual codebooks. We
propose a histogram kernel k-means algorithm which is easyplement and runs almost as fast
as the standard k-means. The HIK codebooks have consjsteglier recognition accuracy over
k-means codebooks by 2-4% in several benchmark object am secognition data sets. The
algorithm is also generalized to arbitrary additive kesndts speed is thousands of times faster
than a naive implementation of the kernel k-means algorittmaddition, we propose a one-class
SVM formulation to create more effective visual code worisially, we show that the standard k-
median clustering method can be used for visual codeboodrgton and can act as a compromise
between the HIK / additive kernel and the k-means approaches

Keywords: visual codebook, additive kernel, histogram interseckiemel

1. Introduction

Bag of visual word¢BOV) is currently a popular approach to object and scene recognitioonm
puter vision. Local features are extracted from an image, and the imagmisdhsidered aslzag
of featuresthat is, completely ignoring the spatial relationship among features. Ryadhadto the
lack of an efficient and effective mechanism to encode spatial informatimng features, BOV is
widely adopted in vision tasks. A typical BOV-based method consists of tlmiag stages:

e Extract features. Visual features and their corresponding descriptors are extraated fr
local image patches. Two typical visual descriptors are SIFT by Lowe4Rand HOG by
Dalal and Triggs (2005). Usually two ways are used to determine whergtrtace local
features. Some methods extract features at certain detected interest f@timer methods
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densely sample local features in a regular grid of pixel locations, fanplg in Lazebnik
et al. (2006). Visual descriptors extracted from these local pataeesoasidered as feature
vectors that describe these local regions.

e Generate a codebook and map features to visual code word9A visual codebook is a
method that divides the space of visual descriptors into several regieatures in one region
correspond to the samsual code wordwhich is represented by an integer between 1 and
the size of the codebook. An image is then encoded as a histogram of caslealvords.

e Learn and test. Various machine learning methods can be applied to the histogram represen-
tation of images. For example, SVM is a frequently used learner in BOV moaetshfect
and scene recognition.

The quality of the visual codebook has a significant impact on the suot8&3V-based meth-
ods. Popular and successful methods for object and scene castigorizy/pically employ unsu-
pervised learning methods (for example, k-means clustering or Gaussituré/Model) to obtain
a visual codebook. When there is a need to compute the dissimilarity of twodeadators, the
Euclidean distance is the most frequently used metric.

However, in spite of its mathematical simplicity and efficacy in many other applicatiemfind
that the Euclidean distance is not the most suitable similarity (or dissimilarity) mestswreating
visual codebooks.

Two observations support our argument. First, most of the popularl\dssariptors are based
on histograms of various image measurements such as spatial gradientd, flggticor color. For
example, both SIFT and HOG use histograms of pixel intensity gradients irdésgriptors. Sec-
ond, for the case of supervised classification, it has been shown #hatdistance is not the most
effective metric for comparing two histograms, for example, in Maji et al080 In particular,
the Histogram Intersection Kernel (HIK) was demonstrated to give signifiz improved results.
Other similarity measures designed for comparing histograms, for example? theasure, have
also exhibited higher accuracy in SVM classification than the dot-produnek(which corresponds
to the Euclidean distance). One common characteristic of HIKx&nslthat they are instances in a
family of kernels called the additive kernel (Maji and Berg, 2009; Veidahdl Zisserman, 2010).

In this paper we demonstrate that HIK and other additive kernels candoetagenerate bet-
ter visual codebooks with unsupervised learning, in comparison to thdgrdpmeans clustering
method. The proposed methods are simple to implement, and our software implioneraae
freely available. We show that using roughly twice the computational time otémelard k-means
based method (which uses thedistance), we can gain consistent accuracy improvements of 2—-4%
across a diverse collection of object and scene recognition problgrasifiBally, this paper makes
four contributions:

First, we show that HIK generates better codebooks and thus impraamiton accuracy. We
generalize and speedup the method in Maji et al. (2008), such that taeagjen and application of
HIK codebook has the same theoretical complexity as the standard k-nt&ansrtoposed method
achieves consistent performance improvements over k-means codebhodkas established state-
of-the-art performance numbers for four benchmark object anteseeognition data sets. We also
show that a one-class SVM formulation can be used to improve the effeetis®f HIK codebooks,
by providing well-separated, compact clusters in the histogram feataoe sp

Second, we show that all additive kernels can be used to efficientlyaengsual codebooks.
The HIK visual codebook creation method is also generalized to be compatihleny additive
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kernel, while the learning cost remains unchange®@asnd), wheren, m, andd are the number
of features to be clustered, the codebook size, and the feature dimemsipectively. In contrast,
a naive implementation has complexi®(n®d). Sincen > m, in practice the speedup is more
than three orders of magnitude. Similar recognition accuracies are elddervdifferent additive
kernels, including HIK ang®. More generally, we suggest thatK (or other additive kernel such
asx?) should be used whenever two histograms are compared

Third, we empirically show that k-median is a compromise between k-meanslditt@kernel
codebooks. K-median’s performance is consistently lower than the gedpdIK codebook, but
better than k-means in most cases. On the other hand, it runs as fastpaspgbsed method, and
also uses less storage.

Finally, we validate our method through experiments on standard data setsbath the SIFT
feature and CENTRIST, a recently proposed feature based on GHNMansform hiISTogram (Wu
and Rehg, 2011), which has been shown to offer performance &dyesfor scene classification.

The rest of the paper is organized as followRelated methods are discussed in Section 2. Sec-
tion 3 introduces the histogram intersection kernel and various otheneadkiginels, and presents
a general kernel k-means based method for visual codebook tjenerm Section 4 we propose
methods to efficiently generate visual codebooks for HIK and other sddiérnels. Experiments
are shown in Section 5, and Section 6 concludes this paper.

2. Related Works

In this section we will briefly review two categories of related works: défeikernels for comparing
histograms, and various visual codebook generation methods.

The main point of this paper is that when histogram features are emplogduistbgram inter-
section kernel or another additive kernel should be used to compamre tikK was introduced by
Swain and Ballard (1991) for color-based object recognition. Odbak €005) demonstrated that
HIK forms a positive definite kernel when feature values are nontivegategers, facilitating its
use in SVM classifiers. Simultaneously, works such as Lowe (2004) atel Bnd Triggs (2005)
demonstrated the value of histogram features for a variety of tasks.davilee high computational
cost of HIK at run-time remained a barrier to its use in practice. This bamasrremoved for the
case of SVM classifiers by various recent research works (Malji,62@G08; Wu, 2010; Vedaldi and
Zisserman, 2010), based on techniques to accelerate the kernetievedluAdditive kernels, which
include HIK as one of its instances, have also shown excellent perfoemar®/M classification
of histograms (Vedaldi and Zisserman, 2010).

In this paper, we extend the results of Maji et al. (2008) in two ways: Rirstdemonstrate
that the speedup of HIK can be extended to codebook generation (esugearvised learning in
general). Second, our Algorithm 2 provides an exa@d) method, which makes it possible to
obtain the maximum efficiency without the loss of accuracy.

On the visual codebook side, k-means is the most widely used method fat e@®iebook gen-
eration (Sivic and Zisserman, 2003). However, several alternatistegies have been explored.
K-means usually positions its clusters almost exclusively around the deagess. A mean-shift
type clustering method was used to overcome this drawback in Jurie and T2ig@5). There are
also information theoretic methods that try to capture the “semantic’ common dsoglonents
by minimizing information loss (Liu and Shah, 2007; Lazebnik and Ragin€d§9p An extreme

1. A preliminary version of portions of this work has been published in WdiRehg (2009).
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method was presented in Tuytelaars and Schmid (2007), which divideddbe ef visual descrip-
tors into regular lattice instead of learning a division of the space from tgaotta. There are also
efforts to build hash functions (that is, multiple binary functions / hash bitsyder to accelerate
distance computations (Weiss et al., 2009). Recently, sparse coding issal$do vector quantize
visual descriptors, for example, in Yang et al. (2009) and Gao et@l0(2 In this work, we propose
a new alternative to k-means, based on the histogram intersection kednaheer additive kernels.

In k-means based methods, a visual code word is usually representieel tyster center (that
is, the average of all features that belong to this code word), which is sempléast to compute.
It was discovered that assigning a feature to multiple code words (whidsdstermed as soft-
assignment) may improve the codebook quality (Philbin et al., 2008; van Getnalt, 2008).
Within a probabilistic framework, code words can be represented by thesizen Mixture Model
(GMM) (Perronnin, 2008; Winn et al., 2005). GMM has better repreg@n power than a single
cluster center. However, it requires more computational power. Anotteresting representation
is the hyperfeature in Agarwal and Triggs (2008), which considersiéuygped code word indexes
as a type of image feature and repeatedly generates new codeboak&landords into a hierarchy.

Methods have been proposed to accelerate the space division and/@atimapping. Nigtr
and Stewvenius (2006) used a tree structure to divide the space of visual dessrijerarchically
and Moosmann et al. (2008) used ensembles of randomly created clasterBoth methods map
visual features to code words much faster than k-means.

Some methods do not follow thivide then represemgattern. For example, Yang et al. (2008)
unified the codebook generation step with the classifier learning step sebmlgsanother in-
teresting research work, Vogel and Schiele (2007) manually specifiest aode words and used
supervised learning to learn these concepts from manually labeled examples

It is worth noting that all of these previous methods used/thdistance metric (except Gao
et al., 2010 which followed our previous work Wu and Rehg, 2009, aadl iHIK). They could
therefore in principle be improved through the use of HIK or other addkgreels.

3. Visual Codebook for Additive Kernels

In this section we will first introduce the Histogram Intersection KerneKHand then its gener-
alization to the additive kernel case. In order to make our presentatiaecleg will use boldface
characters (for exampl®) to represent vectors. The scalkaiis the j-th dimension ok.

3.1 Histogram Intersection Kernel

Letx = (X1,...,X4) € Ri be a histogram of non-negative real values withistogram bins, where
R, is the set of non-negative real numbetrsould represent an image (for example, a histogram of
visual code words in the bag of visual words model) or an image patclexXtmple, a SIFT visual
descriptor). The histogram intersection kerkgl is defined as follows (Swain and Ballard, 1991):

Khi (X1,X2) = N(Xy,j,%2,j) - (1)

HMQ

It is proved in Wu (2010) that HIK is a valid positive definite kernel whea tatax ]Ri. Thus
there exists a mapping that maps any histogramto a corresponding vectag(x) in a high di-
mensional (possibly infinite dimensional) feature spdcesuch thaty (X1,X2) = (p(xl)T(p(xz).
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Through the nonlinear mapping histogram similarity is equivalent to a dot product in the feature
spaced. Furthermore, when the feature values are non-negative integerss,tha N9, we can
explicitly find the mappingp(-). If we constrain the feature values to be bounded from abowg by
that is, 0< x; < v for all x and 1< j <d, the mappingp(-) for HIK is then the following unary
representatioB(-) of an integer (Odone et al., 2005):

B(x) :x+— |1---10---0

x1's v—x0's

It is easy to verify thatky (x1,X2) = B(x1)"B(x2), in which B(x) is the concatenation of
B(x1),B(X2), .., B(xg). Note thatB(xj) € RV andB(x) € RY.

This kernel trick makes it possible to use HIK in creating codebooks, whigikg the simplic-
ity of k-means clustering. That is, we may use a kernel k-means algoritbhdli®pf et al., 1998)
to generate visual codebooks. In Algorithm 1, histograms are companeg HIK instead of the
inappropriate Euclidean distance if we g¢t) = B(-).?

When the data points € RY, that is, allowing negative feature values, HIK is not a positive
definite kernel. And it can not be used in Algorithm 1 to generate visuadtmooks?

3.2 Additive Kernels

Algorithm 1 is not restricted to work only with the histogram intersection kelihed.a general ker-
nel k-means algorithm which can be used together with any positive deferitelk In particular,
we are interested in a family of kernels called ddditive kernel{Maji and Berg, 2009). Algo-
rithm 1 instantiated with an additive kernel can be greatly accelerated hichwve will present in
Section 4.

An additive kernel is a positive definite kernel that can be expressihe ifollowing form

K(X1,X2)

HMD.

X117X21

A positive semidefinite functior(-,-) is used to compute the similarity of two scalar values. An
additive kernekk then compares two vectors by comparing and summing up every dimension of
these two vectors usirgy

It is obvious that the histogram intersection kernel is an instance of thvaddernels. In fact,
a family of additive kernels can be derived from HIK df-) is a non-negative and non-decreasing
function, then the generalized histogram intersection kernel,

[oX

K(X1,X2) = Z g(min(xyj,%2,j)) ,

is a valid additive kernel. HIK correspondsg(x) = x,x > 0. The GHI kernel proposed in Boughor-
bel et al. (2005) is also an instance of this family wgitx) = x? for 8 > 0 andx > 0. In this paper

2. Note that sinc&-means++is used in Algorithm 1 and it is a randomized algorithm, two runs of Algorithmith w
the same input will possibly generate different results.

3. HIK is a conditionally positive definite kernel whare RY (Maji and Berg, 2009). It can still be used in some SVM
solvers.
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Algorithm 1 Codebook Generation Using Kernel k-means

1:
2

o

10
11

Input: X1,...,Xp € ]Rii (ninput histograms)m (size of the codebook), areftolerance).
{The output is a function that maps a histogram to its visual code word imdéx, ) : R‘i —
{1,...,m}.}
t« 0, {Initialize t, the iteration counter, to P.
g + . {Initialize the current clustering error to.}
Initialize the visual codebook. First, use tkemeans++method (Arthur and Vassilvitskii,
2007) to choosendistinct examples from the input sety, ..., X, }. We denote these examples
asxi,...,Xm. Second, usen; = @(x;), i = 1,2,...,m, as the initial visual code wordsp(-) is
the mapping associated with a positive definite kernel.
repeat
For every input histogram;, find the visual code word thag belongs to, and denote the
index of this visual code word ds
li < argminf|@(xi) —mj[?, 1<i<n.
1<j<m
For every visual code wonah;, find the set of the input histograms that belong to this visual
code word, and denote this setas
n={jllj=i1<j<n}, 1<i<m
For every visual code wonah;, update it to be the centroid of input histograms that belong to
this visual code word:
i
Update the iteration counter and compute the current clustering error:
tt+4+1,
1 n
g== le\cp(xi) —m |2
n.<
- until -1 —¢gt <€,
: Qutput: For any histogranx,, € Ri, its corresponding visual code word index is:
wa(x.) = argmin@(x.) —m; %, )
1<i<m

we will explore one specific instance from this family, which we call expdiaerlIK (or eHIK),
defined as

d
Keri(X1,X2) = Z min(e®i &) y>0 .
=1

X2 is another additive kernel that has been used for comparing histograhes original x?

measure is defined ad(x, %) = ax)® for 5. ¥, € R, . Alternatively, a variant of? is explored

X1+X2
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in Vedaldi and Zisserman (2010) for SVM classification when the feataitgeg are positive:

d 2 jxp,)

Ky2(X1,X2) = z

=X X2

We will adopt this definition in our experiments.

3.3 K-median Codebook Generation

Although k-means (or equivalently, using the distance) is the most popular codebook genera-
tion method, the histogram intersection kernel has a closer connection 49 distance. For two
numbersa andb, it is easy to show that

2min(a,b) +|a—b|=a+b.
As a consequence, we have
2Kn1 (X1, X2) + [|X1 — X2l = [[Xall1 + X2l

in which ||x]||1 is the/; norm ofx. In cases whefjx||; is constant for any histogram Ky, and the
¢1 distance are linearly correlated.
For an arrayq, ..., Xy, it is well known that the value which minimizes thgerror,

n
X, = arg minzl|x— Xi| ,
X =

equals the median value of the array. Thus, k-median is a natural alterf@ativodebook genera-
tion. The only difference between k-median and k-means is that k-medésf uimstead off» as
the distance metric.

K-median has been less popular than k-means for the creation of visieb@oks. An online
k-median algorithm has been used by Larlus and Jurie to create visugthaulds in the Pascal
challenge (Everingham et al., 2006). In Section 5, we empirically compsuahcodebooks gener-
ated by the k-median algorithm to those generated by both the k-means alganithiime proposed
additive kernel k-means method.

4. The Efficient Additive Kernel k-means Clustering Method

As mentioned in Section 3.2, additive kernels are attractive for kerneldambecause very fast
clustering is possible for these kernels. In this section, we first prognoséficient kernel k-means
algorithm for the histogram intersection kernel, and then generalize thatatgdo all additive
kernels.

4.1 Common Computation Bottleneck

Givenn examples irRY, the standard k-means clustering method (thag(is) = x in Algorithm 1)
requiresO(nmd) steps in one iteration (from line 5 to line 10). Similarly, the k-median algorithm
also require®(nmd) steps in one iteration.

Wheng(x) # X, the centersn; are vectors in the unrealized, high dimensional sgaa®; might
even be infinite dimensional for some kernels (for example, the RBF keffrtet)computations are
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then carried out in the following way (using the usual kernel tgtks )T @(x2) = K (X1, X2) such that
m; does not need to be explicitly generated):

(%) —m;||?
_ . 2jem (p(xj) 2
_Hq’(X*) 7|
1
=[jp(x)]|%+ K(Xi, K (X, X (3)
H H |Twzjg€ i k J;_ﬁ

The first term in Equation 3 does not affect the result in lines 6 and 1llgdrdshm 1. The
second term does not change within a specific iteration of Algorithm 1., Weiseed to compute
this term only once for every visual code word in each iteration. Most@ttdmputations are then
spent in computing the last terfiy e K(X«,X;).

A naive implementation to compute this term will be costly. For example, if we useishe h
togram intersection kernel and compute this term literally using Equation 1,ctmplexity is
O(|mg|d). The complexity of line 6 in Algorithm 1 will be on the order

Zim’m d= ;( by mITnld) :immzd,

since there ar@rg| input histograms; satisfyinglj = i. Using the Cauchy-Schwarz inequality, it is

clear that
¢ s ($ )
mE>—(Siml ) = —
i; m i;

becaus§ ", [T5| = n. In practice, the sizes af, are usually similar for differerit and one iteration
of this naive implementation will have complexi®(n?d). We generally have > m, thus a kernel
k-means will be much more expensive than the standard k-means. In sunthsalgst term in
Equation 3 is the bottleneck in the computations.

The form of this term,y ;. K(X.,X;), is similar to the binary SVM classifier, which has the
following form:

sign(Z GiyiK(X*,Xi)—i—p) , 4)

wherex;, a;, andy; are, respectively, the support vectors, and their correspondiightseand
labels.
Based on these observations, we propose a more general objective,

f(xe) = ZCiK(X*,Xi) , (5)
1ETT
whereTt indexes a set of histograms (data points to be clustered, or supportsjeztalc; are
constant coefficients. Note that both Equation 4 and the last term in Eq@ati@nspecial forms of
Equation 5, withc; = aijy; andc; = 1, respectively.

Our goal is then to reduce the complexity of Equation ®td) (the same complexity as that of
standard k-means whegix) = x), which will in turn yield efficient kernel k-means clustering and
SVM testing methods. We will first present the algorithm for HIK, and then étsegalization to
arbitrary additive kernels.
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4.2 Efficient Computation of HIK

Maiji et al. (2008) proposed fast methods to compute Equation 4 for theghastantersection kernel
to improve the testing speed of HIK SVM classifiers, which achieved art exagver of Equation 4
in O(dlog, |1) steps and an approximate answefifd) steps. In this paper we propose a variant
that finds the exact answer for Equation 50¢d) steps when the feature values are non-negative
integers.

A histogram of visual code word indexes has the property that everygniéan component is
a non-negative integer, that is, it is a vectorNA. Similarly, a visual descriptor histogram can
usually be transformed into the spas@. For example, the SIFT descriptors are stored as vectors
in N128_ In general, a vector ii®4 can be transformed inti9 by a linear transformation followed
by quantization.

In the rest of this paper, we assume that any histogean(xy,...,Xq) satisfies thax, € N and
0 < x < vforalli. Then the quantityf (x.) can be computed as follows:

f(x) = cikni (X, i)
iem
= G min(x. j, ;)
iem1<j<d

_ 1 Z d (Z G min(X*,j,Xi,j)>
SJS 1ETT

= > ( > oaXjtxe Y Ci)- (6)
1<7<d \iXe j=X%i 12X <X j

Note that the two summands in Equation 6 can both be pre-computed. It is ghieii et al.
(2008) that Equation 6 is a piece-wise linear functionxof. Thus using a binary search fay ;,
Equation 6 can be computed®@(dlog|1) steps in Maji et al. (2008).

However, since we assume that; is an integer in the rangl® v|, we have an even faster
method. Different dimensions &f make independent contributionsttx. ) in Equation 6, because
of the additive property. Thus it is sufficient to solve the problem for gingle feature dimension
at a time. And because there are omly 1 possibilities forx, j given a fixedj, we just need to
pre-compute the solutions for these 1 values. Lefl be a table of sizev, with

T(j,k) z CiXi7j+k z Ci

itk>Xi j itk<Xi,j

forall1< j<dand 1< k<v. Thenitis clear that
d .
() =3 T(ix) - ()
=1

This method is summarized in Algorithm 2. Note that sifi¢¢, 0) = O for all j, there is no need to
store it.

It is obvious thatf (x,) can be evaluated i®(d) steps after the tabl€ is pre-computed. And
because Algorithm 2 only involves table lookup and summation, it is fasterigthlads less over-
head) than the approximation scheme in Maji et al. (2008), which is@(dp. Depending on the

3105



Wu, TAN AND REHG

Algorithm 2 Fast Computation of HIK Sums
1. Input: nhistograms,...,Xn in N9, with 0 < X j<vforl<i<nand1l<j<d.
2: {The output is a fast method to compute

f(xi) = iCiKHl(X»mXi) ;

wherex, € N9 and 0< x,; <v,¥V1<j<d.}
3: CreateT, ad x vtable.
4: Forl< j<d,1<k<y,

T(j,k)% z CiXi7j+k z G .

i:(k>X j i:k<X j

5. Output:

T(j,%j)

HMQ

relative size ofv'and the number of approximation bins used in Maji et al. (2008), Algoritren 2’
storage requiremen@(vd), could be larger or smaller than that of Maji et al. (2008). It is also

worth noting that under our assumptions, Algorithm 2’s result is prectbersan approximate.
Both the complexity of the pre-computation and the storage requirement aaeiting which
is a parameter specified by usér®ur experiments show that while too smail asually produces
inferior results, a large does not necessarily improve performance. In this paper, we choese
128, which seems to give the best results in our experiments.
Our algorithm has the same computational complexity as the standard k-meamgevterating
a visual codebook or mapping histograms to visual code word indexdstEauation 2 or Equa-
tion 3). In practice, the proposed method takes about twice the time of k-miassmmary, the
proposed method generates a visual codebook that can not only rurt abrfast as the k-means
method, but also can use the non-linear similarity measyré¢hat is most suitable for comparing
histograms.

4.3 Generalization to Additive Kernels

Algorithm 2 can be generalized from HIK to arbitrary additive kernelse Tdilowing two condi-
tions are also satisfied by all additive kernels: different dimensions ofake independent contri-
butions tof (x,); and there are only+ 1 possibilities forx, ; whenj is fixed. We just need to find

an appropriate value far(j,k), and Equation 7 is then valid for all additive kernels. Of course, we

assume that the feature values are natural numbers bounded froetghov
For an additive kernel

K(X1,X2) = X11,X21

HM::L

4. A simple implementation to pre-compute the tableakesO(ndv) steps. We will present @(d(n+v)) implemen-
tation of Algorithm 2 in Section 4.3.
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we propose Algorithm 3 to efficiently assign values to the tdhl€Considering a fixed dimension
j, by the independence property, we have

n

T = 3 o4 ®)

In general, it take©(ndv) steps to fill the tabld for an additive kernel if we literally translate
Equation 8. However, for additive kernels, Algorithm 3 uses a sequergdate strategy whose
complexity is onlyO(d(n+v?)).

Algorithm 3 Assign values td@ for an arbitrary additive kernel
1. Input: n histogramsy, ..., X, in N9, with 0 < Xij < v,forall 1<i<nand 1< j<d;andan
additive kernek (x1,x2) = 391 K(x,j, X))

: {The output is a tabl& RY for fast computation of Equation 5, whexee N9 and 0< X j <
v,Wil<j<d.}

3 for j=1,...,ddo

4:  Create a vecton € RY, andh « 0.

5. fori=1,...,ndo

6: hxi.j — hXi,j +Ci.

7.

8

9

N

end for

T(j,0) = 3iL1K(xi},0).
fork=1,...,vdo

100 T(j.K) < T(,k-1)+ ih\,(k(v,k) “R(uk—1)) .

11:  end for
12: end for
13: Output: A tableT such that

f(x) =S T(j,%j) -

For a fixed feature dimension

T(,k)=T(j,k=1)

G (R(X@J,k) — R(Xi,j,k— 1))

=}

= Z) (( > ci> (K(v,k) —R(v,k—l))) .
= i j=Vv

In Algorithm 3, we make a weighted histogranfor the j-th dimension such that, = 3. ,_Ci.
This is the first inner-loop, and its complexity &n). It then takesO(V?) steps to sequentially
update thej-th row of the tableT . In total, Algorithm 3 take€(d(n+V?)) steps. Since in general
n > v, Algorithm 3 is more efficient than @(ndv) method.

( > Gi(R(vK) —K(v,k— 1)))
i j=V

I
< —
<| ‘OM < |
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k-means| Kernel k-means (naive) Kernel k-means (proposed)
Storage md nd mav
Running time| O(nmd) O(n?d) O(nmd)

Table 1. Space and running time requirements of the standard k-mearige &maementation of
kernel k-means, and the proposed method. The space requiremematdaclude the
memory required to store the input histograms. The running time requiremms she
complexity of one kernel k-means iteration.

One difference between Algorithms 2 and 3 is thé},0) may not be equal to 0 in Algorithm 3.
A more important difference is that Algorithm 2 can be further improve@@d(n+ v)). Note that
in Algorithm 2, K(x,y) = min(x,y). We then have(v,k) — K(v,k— 1) equals 1 ifv > k—1 and
0 if otherwise. In consequencé&(j,k) — T(j,k—1) = Sv_, hy, which can in turn be sequentially
updated and takes on{y(1) steps to compute for evekyvalue. The complexity of Algorithm 2 is
thenO(d(n+V)).

In practice, we generally haves> m, n>> d, andn > v. Typical values in our experiments are
n=300000,d = 128 ord = 256,m= 200, andv'= 128. The complexity of kernel k-means is then
dominated by the line 6 of Algorithm 1. Space and running time requirementsiotigaalgorithms
are summarized in Table 1. The naive implementation does not need additmnagiesduring the
visual codebook generation step. However, it needs to keep all imgioghams §d numbers) for
the quantization step. The other two methods do not need to keep input amwfpr quantization.

The theoretical complexities in Table 1 match the empirical running time in our iexpets.
For example, in one experiment using the Caltech 101 data set (refertiorS8g) the naive imple-
mentation and the proposed method took 2403 and 1.2 seconds, respethieeempirical speedup
ratio is 2000. In this experiment, the theoretical speedup rat@{igm), andn/m~ 1200. Since
the naive implementation is impractical for large-scale problems, we will notiggroempirical
results of this method in our experimefts.

4.4 One Class SVM Codebook Representation

A codebook generated by the k-means algorithm first divides the &fhiteo m regions, and then
represents each code word (or, region) by the centroid of the exathfdesgram, feature vectors,
etc.) that fall into this region. This approach is optimal if we assume that wetall regions
follow Gaussian distributions with the same spherical covariance matrix (thatlisdiffer in their
means).

This assumption rarely holds. Different regions usually have veryrdiftedensities and co-
variance structures. Simply dividing the spa&®into a Voronoi diagram from the set of region
centers is, in many cases, misleading. However, further refinements@atlyucomputationally
prohibitive. For example, if we model regions as Gaussian distributions watimct covariance
matrices, the generation of codebooks and mapping from visual feabucede words will require
much more storage and computational resources than we can afford.

5. Since one kernel k-means iteration takes more than 2400 secowdktake months to finish running all the exper-
iments in Section 5
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We propose to use one-class SVM (8itopf et al., 2001) to represent the divided regions in an
effective and computationally-efficient way. Given a set of histograrag@gionx; = {X1,...,Xn},
we construct a one-class SVM with parametet (0, 1],

sign(_z (xiK(x,xi)er) , 9)

leTt

whereaq;’s are non-negative, sparse, ap; = 1. Intuitively, a one-class SVM classifier seeks a
“simple” (compact) subset of; (or the divided region) that retains a large portion of the histograms
(or densities). It is proved thatis the upper bound on the fraction of outliers (that is, on which
Equation 9 are less than 0), and at the same time a lower bound on the frddiguport vectors
(that is,a; # 0) (Scrolkopf et al., 2001).

The one-class SVM summarizes the distribution of histograms inside a visualveord. It
takes into consideration the shape and density of the histogram distributiseeks to include
most of the histograms (at leat — v)|11) in a compact hypersphere in the feature space, while
paying less attention to those borderline cases (at mosexamples). We believe that this compact
hypersphere better summarizes a visual code word.

At the same time, these new code words can be computed very efficientlgti@@ is evalu-
ated inO(d) steps because it is again a special case of Algorithm 2. We proposetAigerto use
one-class SVM to generate visual code words. Note that we use theRphecause Algorithm 4
is not restricted tNY. In this paper, we set the parametet 0.2.

Algorithm 4 One-class SVM Code Word Generation
1: Input: Same as that of Algorithm 1.
2: Use Algorithm 1 to generate the divisions(i = 1, ..., m) from the input histogramsg, ..., Xn
in RY.
3: For each division K i < m, train a one-class SVM from its daxa with a parametey,

Wy(x.) = 3 0K (X, X)) +Pi (10)

jem
: : i d
4: Output: For any histogranx, € RY,

Wa (X, ) = argmas (X, ) .
1<i<m

In many applications, a histogram= (x1, ..., Xq) satisfies the condition thak||; = z‘lexj =N
is a constant. Under this condition, Equation 10 is equivalent to

Wh(x,) = rf — [lo(x.) — mi||?,

wherem; = 3 ajxj andr? = N+ ||mj[|2 — 2p;. In other words, a histogram is considered as
belonging to thé-th visual word if it is inside the sphere (in the feature sp@Yeentered at; with
radiusr;. A sphere in® is different from a usual k-means sphere because it respects the gymilar
measure, and its radiusg; automatically adapts to the distribution of histograms in a visual word.
Note that different kernels such as the dot-product kernejpcan be used in Algorithm 4.
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5. Experiments

We validate the proposed methods using four benchmark data sets in conipiater the Caltech
101 object recognition data set (Fei-Fei et al., 2004), the 15 class seeognition data set (Lazeb-
nik et al., 2006), the 8 class sports events data set (Li and Fei-Fei),20@¥the 67 class indoor
data set (Quattoni and Torralba, 2009).

5.1 Setup

In each data set, the available data is randomly split into a training set and g testibased on
published protocols on these data sets. The random splitting is repeated Sanmtig¢ke average
accuracy is reported. In each train/test splitting, a visual codebooknergied using the training
images, and both training and testing images are transformed into histograoteofiords. Accu-
racy is computed as the mean accuracy of all categories (that is, thgawfrdiagonal entries in
the confusion matrix).

The proposed algorithms can efficiently process a huge number of lastdgatures, for ex-
ample, approximately 200k to 320k histograms are clustered across thbristdata sets in less
than 6 minute. In the 67 class indoor data set, more than 1 million histograms dezexus

In the BOV model, we use 2616 image patches and densely sample features over a grid with
a spacing of 2, 4, or 8 pixels. We use two types of visual descriptoBT &r Caltech 101,
CENTRIST (CENsus TRansform hiSTogram, refer to Wu and Rehgyl(Pfor more details) for the
scene, event, and indoor data sefsll feature vectors are scaled and rounded such that a histogram
only contains non-negative integers that approximately sum to 128\{tauk?8 is always valid.)

The first step is to use visual descriptors from the training images to forisualcodebook,
in which we usem = 200 to generate 200 visual code words. Next, every feature is mapged to
integer (code word index) between 1 andThus an image or image sub-window is represented by
a histogram of code words in the specified image region. In order to iocagspatial information,
we use the spatial hierarchy in Wu and Rehg (2008). An image is repeeseythe concatenation
of histograms from all the 31 sub-windows, which is a 6200 dimensionaldreto. To capture
the edge information, we sometimes use Sobel gradients of an input imageadditonal input,
and concatenate histograms from the original input and the Sobel gradsge (which is 12400
dimensional). Following Boiman et al. (2008), we also sample features aféssc

SVM is used for classification. LIBSVM (Chang and Lin, 2001) is usedtf® scene and
sports data set. Since LIBSVM uses the 1-vs-1 strategy, it will producenemy classifiers for the
Caltech 101 and indoor data set (more than 5000 and 2200 respectiMetykefore we instead use
the Crammer & Singer formulation in BSVM (Hsu and Lin, 2006) for these twa dats. Since
we are classifying histograms, we modified both LIBSVM and BSVM so that &éne able to use
the histogram intersection kernellt is observed that HIK is robust to t@ parameter in SVM.
For example, using the LIBSVM solver, classification accuracy remainssalomechanged after
C > 0.001, as empirically showed in Wu (2010). Thus we do not use crossatialidto choose a
differentC value for every different training set. Instead, we use cross-valid&idindC = 2 and

6. We will also evaluate the effect when these two feature types are sitthigese data sets.

7. The methods proposed in this paper are publicly available in the libHIKgogc which can be downloaded from
http://c2inet.sce.ntu.edu.sg/Jianxin/projects/libHI K/NibHIK.htm . The modified version of LIBSVM
and BSVM are also included in libHIK.
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C = 0.03125 for LIBSVM and BSVM respectively on a sample training set. Tli&salues are
then used on all data sets for LIBSVM and BSVM, respectively.

5.2 Main Results

We conducted several sets of experiments to validate the proposed afgoriERperimental results
are organized using the following rule: texts in the italic type summarize findnogs éne set of
experiments and details are described after the italic texts. Mean / starelaatiah values and
paired t-tests are used to show the benefit of histogram kernel cddepdigorithm 1), while the
Wilcoxon test is used for evaluating the one-class SVM code word gimreraethod (Algorithm 4).
We first present the main results, which are based on the experimenitd seBnmarized in Table 2.

In Table 2, sub-tables (a), (b), (c), and (d) are results for the Caltéd, 15 class scene, 8
class sports, and the 67 class indoor data sets, respectiyglandk;y means that a histogram
intersection or a linear kernel visual codebook is used, respectigaly,, and -0Csym indicate
whether one-class SVM is used in generating code wd@dsnd—B indicate whether Sobel images
are concatenated or not. Ase- 4 ors= 8 is the grid step size when densely sampling features. The
number of training/testing images in each category are indicated in the suleggtiens, which
follows the protocol of previously published results on these data sets.

Histogram Intersection Kernel Visual Codebook (Algorithm 1) greatlyrowgs classification
accuracy.We compare the classification accuracies of systems that use Algorithm kyyjtthne
standard k-means algorithm (that is, usiigy), and k-median. From the experimental results in
Table 2, it is obvious that in all four data sets, the classification accurgleyawy -based codebook
is consistently higher than that with a k-means codebook. Using a paiestl with significance
level 0.05, the differences are statistically significant in 21 out of the 8ésca Table 2, when
comparingky andkyy based codebooks. The three exceptions all come from the 8 class sports
event data set, when one-class SVM is not used (that is, comparingcthedsew to the fifth row
in Table 2¢). HIK codebooks also have advantages over k-mediafbgokiein most cases.

HIK codebook can be computed efficiently (Algorithm 2)e have shown that Algorithm 2
evaluates irO(d) steps, in the same order as k-means. Empiricallykihebased method spent
less than 2 times CPU cycles than that of k-means. For example, the prapesieat took 105
seconds to generate a codebook for the Caltech 101 data set, while k-useab6 seconds in our
experiments.

One-class SVM improves histogram intersection kernel code wordsr{thig 4). The t-test
is not powerful enough here, because we have only 5 paired sanmuldbey are not necessarily
normally distributed. The Wilcoxon signed-rank test is more appropriate$ag 2006) to show
the effect of Algorithm 4. Algorithm 4 improved the classification accurddpek,-based method
in 11 out of 12 cases in Table 2. The Wilcoxon test shows that the differensignificant at
significance level 0.01.

In summary, using HIK codebooks and one-class SVM together gedetstebest results in
almost all cases (best results are shown in boldface within each colunaiblef 7).

One-Class SVM degrades the standard k-means code wordsnteresting to observe a com-
pletely reversed trend wheq,y is used with one-class SVM. Applying Algorithm 4 in the standard
k-means method reduced accuracy in all cases. Since a vedidrisnot an appropriate under-
standing of a histogram witl bins, we conjecture that Algorithm 4 with ;y produced a better
division of the spac®¢, but probably a worse one in the space of histograms.
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Figure 1: Effects of one-class SVM.

Figure 1 shows the effect of applying Algorithm 4 to example code worde. distribution of
squared distance to cluster center becomes more compact in cagevdth a minor increase in
the average error. However, in the k-means case, the distanced apla@er values.

K-median is a compromise between k-means and HIK codebdakshown in Table 2, HIK
codebooks outperformed k-median codebooks in most Castsvever, k-median generally out-
performed the popular k-means codebooks. Furthermore, k-mediainegtess memory than the
proposed method. Qualitative comparisons of these methods are summaiiabtei3.

5.3 Experimental Results for Additive Kernels

Experiments with codebooks generated using the other two additive k¢giedsid exponential
HIK) are shown in Table 4. For ease of comparison, results of HIK (witteme-class SVM)
codebooks are also shown in Table 4.

HIK and x? based codebooks have very similar accuracies, and both outpererghnential
HIK codebooks. However, all three additive kernel based codebgenerally have higher accura-
cies than the standard k-means codebook generation method. Since thertiptextty of additive
kernel based codebooks is the same as that of the k-means method, &nsaadwous to apply such
kernels in generating visual codebooks. For examplextriernel in some cases leads to higher
accuracies than the histogram intersection kernel.

5.4 Effects of Information Content

Next we study the effects of using different types and amounts of infiemdor example, different
types of base features and step sizes in dense feature sampling.

8. There is not an obvious kernel for tlige distance, so we did not use one-class SVM for codebooks genemated b
k-median.
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B,s=4

B,s=8

| -B,s=8

|

KHI, OCsym 67.44+0.95% | 65.20:0.91% | 61.0G+0.90%
KHi, 70Csym | 66.54£0.58% | 64.110.84% | 60.33t0.95%
k-median 66.38+0.79% | 63.65+0.94% | 59.64+1.03%
KLIN ; OCsym 62.6%4-0.80% | 60.09t0.92% | 56.31-1.13%
KLIN, "0Csym | 64.39£0.92% | 61.2G+0.95% | 57.74+0.70%
(a) Caltech 101, 15 train, 20 test

] B,s=4 Bs=8 | -Bs=8 |
KHI, 0Csym 84.12+0.52% | 84.00£0.46% | 82.02+0.54%
KHI, "0Cym | 83.59+0.45% | 83.74+0.42% | 81.7A0.49%
k-median 83.04+0.61% | 82.70+0.42% | 80.98+0.50%
KLIN , OCsvm 79.84+0.78% | 79.88:0.41% | 77.0G+0.80%
KLIN, "OCsym | 82.410.59% | 82.31H-0.60% | 80.02£0.58%

(b) 15 class scene, 100 train, rest test

] B,s=4 Bs=8 | -Bs=8 |
KHI, OCsym 84.21+0.99% | 83.54£1.13% | 81.33t1.56%
KHi, 70Csym 83.1A1.01% | 83.13:t0.85% | 81.8A1.14%
k-median 82.13+1.30% | 81.7HH1.30% | 80.25+1.12%
KLIN , OCsym 80.42+1.44% | 79.42£1.51% | 77.46:0.83%
KLIN, 70Csym | 82.54+0.86% | 82.29+1.38% | 81.42+0.76%

(c) 8 class sports, 70 train, 60 test
B,s=4 B,s=8 -B,s=8

KHI, OCsym 43.01+0.81% | 41.75+0.94% | 35.09+1.04%
Kui, "0Cym | 41.73£0.80% | 40.040.27% | 33.55+0.26%
k-median 41.8H-1.11% | 40.22:1.07% | 34.04+1.56%
KLIN ; OCsvm 35.94+1.14% | 34.63t1.24% | 28.69£1.04%
KLIN, 70Csym | 39.790.47% | 38.28t0.39% | 32.49+0.72%

Table 2: Results of HIK, k-median and k-means codebooks and one$8\4% code words. The

(d) 67 class indoor, 80 train, 20 test

best result in each column is shownholdface

HIK | k-median| k-means
Computation time 2 2 1
Codebook storage size v’ 1 1

Table 3: Comparison of three codebook generation methods. k-mearsliasia baseline, that is,

a value ‘2’ means approximately 200% of that of k-means.
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] | Bs=4 | Bs=8 | -Bs=8 |
KHi 66.54+0.58% | 64.1140.84% | 60.33+0.95%
Ky2 67.35-0.77% | 64.311.28% | 60.63+-0.85%
KeHl | 66.18:0.72% | 63.710.58% | 57.13+:0.89%

(a) Caltech 101, 15 train, 20 test

] | Bs=4 | Bs=8 | -Bs=8 |
KHI 83.59+0.45% | 83.74+0.42% | 81.7A0.49%
Ky2 83.6H40.42% | 83.56+0.51% | 81.60+0.46%
KeHi | 83.140.52% | 82.78:0.51% | 80.79+:0.71%

(b) 15 class scene, 100 train, rest test

] | Bs=4 | Bs=8 | -Bs=8 |
KHi 83.1A1.01% | 83.13:t0.85% | 81.8A-1.14%
Ky2 83.54+1.01% | 83.21+1.31% | 81.75+:0.65%
KeHl | 80.711.60% | 80.6A4-1.81% | 78.46+:1.05%

(c) 8 class sports, 70 train, 60 test

] | Bs=4 | Bs=8 | -Bs=8 |
Kui | 41.73:0.80% | 40.0A4-0.27% | 33.55+0.26%
Ky2 41.85+1.03% | 40.22+1.01% | 33.514+-0.99%
KeHi | 38.9740.93% | 37.04+1.12% | 31.72:0.84%

(d) 67 class indoor, 80 train, 20 test

Table 4: Results of HIKx? and exponential HIK codebooks. One-class SVM code word generatio
is notused. The best result in each column is showndhiface

] Caltech 101 \

15 scene \

8 sports |

67 indoor \

53.25+0.80%

78.54£0.22%

81.140.65%

33.48£0.59%

61.00+0.90%

82.02£0.54%

81.33t1.56%

35.09£1.04%

Table 5: Results when features are sampled in only 1 image scale and 5 sespestively. HIK
codebooks are used, witltsy,, —B ands = 8.

Sampling features at 5 scales improves accurdtys advantageous to sample features from
multiple scaled versions of the input image. Also, Table 5 reinforces thdusdons from Sec-
tion 5.2.

Smaller step size is bettegimilarly, a smaller step size means that more features are sampled.
Table 2 shows that when other conditions were the same} outperformed = 8 in general. We
observed differences between object and scene recognition. heaayg difference in Caltech 101
is significant. In the sports and indoor data set 4 slightly outperformed = 8 and they are
indistinguishable in the 15 class scene data set. Thus it is not necessamyyotes = 2 results for

3114



VISUAL CODEBOOK GENERATION USING ADDITIVE KERNELS

Caltech 101 15 scene 8 sports 67 indoor
60.99+0.67% | 79.86+0.30% | 82.33+0.74% | 38.04+1.24%
65.20+0.91% | 84.00+0.46% | 83.54+1.13% | 41.75+-0.94%

Table 6: Results when feature type is switched. We Bise= 8, andocsyy. The second row
contains numbers extracted from Table 2, and the first row are resudts f@hture type is
switched.

the two scene recognition data sets. In Caltech 101, howsveg, further improved recognition
accuracy to 682+ 0.59% (usingky;, 0Csym, andB.)

Use the right feature for different taskSIFT is widely used in object recognition for its per-
formance. And CENTRIST has been shown as a suitable feature far @hacscene recognition in
Wu and Rehg (2011). As shown in Table 6, if we use SIFT for scermgreéton and CENTRIST
for object recognition, the recognition accuracies are reduced.

More code words are (sometimes) beti&e also experimented with different numbers of code
words. In the scene recognition tasks, we did not observe signifibanges in recognition accu-
racies. In the Caltech 101 data set, however, a higher accurac§#0.69% was achieved using
1000 code words (witky;, 0csym, B, ands= 2). In comparison, using standard k-means with 1000
code words (together witB, s= 2, and—ocsyy Which is the better choice fe |y ), the accuracy is
67.894+1.11%. The proposed method is significantly better than standard k-meagisomde with
more visual code words.

In summary, we need to choose the appropriate feature for a specif{f&asK RIST for scene
recognition and SIFT for object recognition), and to incorporate as rmfichmation as possible.

What's more interesting is the different behaviors of object and scesugmnéion problems
exhibited in our experiments. Scene recognition requires different tiypeatures (CENTRIST
instead of SIFT) and less information (performance almost stabilized whprsize is 8 and code-
book size is 200). We strongly recommend the CENTRIST descriptor, oaiitant likePACT (Wu
and Rehg, 2008), and the proposed algorithms for recognizing placgcane categories.

6. Conclusion

In this article, we show that when the histogram intersection kernel is e gimilarity measure

in clustering visual descriptors that are histograms, the generated w@igthooks produce better
code words and as a consequence, improve the bag of visual woreés$ mMédpropose a HIK based
codebook generation method which runs almost as fast as k-means sscdrisastently higher
accuracies than k-means codebooks by 2—4% in several benchnjeck abd scene recognition
data sets. As an alternative to k-means, in which cluster centroids aréousgulesent code words,
we proposed a one-class SVM formulation to generate better visual ards WW\e also generalize
the proposed visual codebook generation method to arbitrary additimelke In particular, this
extends our speedup results to the popyfakernel. The proposed algorithms achieve state-of-the-
art accuracies on four benchmark object and scene recognitionadata s

Although k-median is rarely used to generate codebooks, we empiricallyaded k-median
codebooks and recommend it as a compromise between the proposed nrethodhaans. K-
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median codebooks have lower accuracies than HIK codebooks ballyukave higher accuracy
than k-means codebooks. They also require less memory than HIK addebo

We provide a software package, named libHIK, which contains implementdtibie onethods
proposed in this paper. The software is availablittat/c2inet.sce.ntu.edu.sg/Jianxin/
projects/libHIK/libHIK.htm
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