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Abstract
Common visual codebook generation methods used in a bag of visual words model, for example,
k-means or Gaussian Mixture Model, use the Euclidean distance to cluster features into visual code
words. However, most popular visual descriptors are histograms of image measurements. It has
been shown that with histogram features, the Histogram Intersection Kernel (HIK) is more effective
than the Euclidean distance in supervised learning tasks. In this paper, we demonstrate that HIK can
be used in an unsupervised manner to significantly improve the generation of visual codebooks. We
propose a histogram kernel k-means algorithm which is easy to implement and runs almost as fast
as the standard k-means. The HIK codebooks have consistently higher recognition accuracy over
k-means codebooks by 2–4% in several benchmark object and scene recognition data sets. The
algorithm is also generalized to arbitrary additive kernels. Its speed is thousands of times faster
than a naive implementation of the kernel k-means algorithm. In addition, we propose a one-class
SVM formulation to create more effective visual code words.Finally, we show that the standard k-
median clustering method can be used for visual codebook generation and can act as a compromise
between the HIK / additive kernel and the k-means approaches.
Keywords: visual codebook, additive kernel, histogram intersectionkernel

1. Introduction

Bag of visual words(BOV) is currently a popular approach to object and scene recognition incom-
puter vision. Local features are extracted from an image, and the image is then considered as abag
of features, that is, completely ignoring the spatial relationship among features. Probably due to the
lack of an efficient and effective mechanism to encode spatial informationamong features, BOV is
widely adopted in vision tasks. A typical BOV-based method consists of the following stages:

• Extract features. Visual features and their corresponding descriptors are extracted from
local image patches. Two typical visual descriptors are SIFT by Lowe (2004) and HOG by
Dalal and Triggs (2005). Usually two ways are used to determine where to extract local
features. Some methods extract features at certain detected interest points. Other methods
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densely sample local features in a regular grid of pixel locations, for example, in Lazebnik
et al. (2006). Visual descriptors extracted from these local patches are considered as feature
vectors that describe these local regions.

• Generate a codebook and map features to visual code words.A visual codebook is a
method that divides the space of visual descriptors into several regions. Features in one region
correspond to the samevisual code word, which is represented by an integer between 1 and
the size of the codebook. An image is then encoded as a histogram of visualcode words.

• Learn and test. Various machine learning methods can be applied to the histogram represen-
tation of images. For example, SVM is a frequently used learner in BOV models for object
and scene recognition.

The quality of the visual codebook has a significant impact on the successof BOV-based meth-
ods. Popular and successful methods for object and scene categorization typically employ unsu-
pervised learning methods (for example, k-means clustering or Gaussian Mixture Model) to obtain
a visual codebook. When there is a need to compute the dissimilarity of two feature vectors, the
Euclidean distance is the most frequently used metric.

However, in spite of its mathematical simplicity and efficacy in many other applications, we find
that the Euclidean distance is not the most suitable similarity (or dissimilarity) measure for creating
visual codebooks.

Two observations support our argument. First, most of the popular visual descriptors are based
on histograms of various image measurements such as spatial gradients, optical flow, or color. For
example, both SIFT and HOG use histograms of pixel intensity gradients in theirdescriptors. Sec-
ond, for the case of supervised classification, it has been shown that the ℓ2 distance is not the most
effective metric for comparing two histograms, for example, in Maji et al. (2008). In particular,
the Histogram Intersection Kernel (HIK) was demonstrated to give significantly improved results.
Other similarity measures designed for comparing histograms, for example, theχ2 measure, have
also exhibited higher accuracy in SVM classification than the dot-product kernel (which corresponds
to the Euclidean distance). One common characteristic of HIK andχ2 is that they are instances in a
family of kernels called the additive kernel (Maji and Berg, 2009; Vedaldi and Zisserman, 2010).

In this paper we demonstrate that HIK and other additive kernels can be used to generate bet-
ter visual codebooks with unsupervised learning, in comparison to the popular k-means clustering
method. The proposed methods are simple to implement, and our software implementations are
freely available. We show that using roughly twice the computational time of the standard k-means
based method (which uses theℓ2 distance), we can gain consistent accuracy improvements of 2–4%
across a diverse collection of object and scene recognition problems. Specifically, this paper makes
four contributions:

First, we show that HIK generates better codebooks and thus improves recognition accuracy. We
generalize and speedup the method in Maji et al. (2008), such that the generation and application of
HIK codebook has the same theoretical complexity as the standard k-means.Our proposed method
achieves consistent performance improvements over k-means codebooks, and has established state-
of-the-art performance numbers for four benchmark object and scene recognition data sets. We also
show that a one-class SVM formulation can be used to improve the effectiveness of HIK codebooks,
by providing well-separated, compact clusters in the histogram feature space.

Second, we show that all additive kernels can be used to efficiently generate visual codebooks.
The HIK visual codebook creation method is also generalized to be compatiblewith any additive
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kernel, while the learning cost remains unchanged asO(nmd), wheren, m, andd are the number
of features to be clustered, the codebook size, and the feature dimension, respectively. In contrast,
a naive implementation has complexityO(n2d). Sincen≫ m, in practice the speedup is more
than three orders of magnitude. Similar recognition accuracies are observed for different additive
kernels, including HIK andχ2. More generally, we suggest thatHIK (or other additive kernel such
asχ2) should be used whenever two histograms are compared.

Third, we empirically show that k-median is a compromise between k-means and additive kernel
codebooks. K-median’s performance is consistently lower than the proposed HIK codebook, but
better than k-means in most cases. On the other hand, it runs as fast as theproposed method, and
also uses less storage.

Finally, we validate our method through experiments on standard data sets, using both the SIFT
feature and CENTRIST, a recently proposed feature based on CENsus TRansform hISTogram (Wu
and Rehg, 2011), which has been shown to offer performance advantages for scene classification.

The rest of the paper is organized as follows.1 Related methods are discussed in Section 2. Sec-
tion 3 introduces the histogram intersection kernel and various other additive kernels, and presents
a general kernel k-means based method for visual codebook generation. In Section 4 we propose
methods to efficiently generate visual codebooks for HIK and other additive kernels. Experiments
are shown in Section 5, and Section 6 concludes this paper.

2. Related Works

In this section we will briefly review two categories of related works: different kernels for comparing
histograms, and various visual codebook generation methods.

The main point of this paper is that when histogram features are employed, the histogram inter-
section kernel or another additive kernel should be used to compare them. HIK was introduced by
Swain and Ballard (1991) for color-based object recognition. Odone et al. (2005) demonstrated that
HIK forms a positive definite kernel when feature values are non-negative integers, facilitating its
use in SVM classifiers. Simultaneously, works such as Lowe (2004) and Dalal and Triggs (2005)
demonstrated the value of histogram features for a variety of tasks. However, the high computational
cost of HIK at run-time remained a barrier to its use in practice. This barrierwas removed for the
case of SVM classifiers by various recent research works (Maji et al., 2008; Wu, 2010; Vedaldi and
Zisserman, 2010), based on techniques to accelerate the kernel evaluations. Additive kernels, which
include HIK as one of its instances, have also shown excellent performance in SVM classification
of histograms (Vedaldi and Zisserman, 2010).

In this paper, we extend the results of Maji et al. (2008) in two ways: First,we demonstrate
that the speedup of HIK can be extended to codebook generation (and unsupervised learning in
general). Second, our Algorithm 2 provides an exactO(d) method, which makes it possible to
obtain the maximum efficiency without the loss of accuracy.

On the visual codebook side, k-means is the most widely used method for visual codebook gen-
eration (Sivic and Zisserman, 2003). However, several alternative strategies have been explored.
K-means usually positions its clusters almost exclusively around the densest regions. A mean-shift
type clustering method was used to overcome this drawback in Jurie and Triggs (2005). There are
also information theoretic methods that try to capture the “semantic” common visualcomponents
by minimizing information loss (Liu and Shah, 2007; Lazebnik and Raginsky, 2009). An extreme

1. A preliminary version of portions of this work has been published in Wu and Rehg (2009).
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method was presented in Tuytelaars and Schmid (2007), which divided the space of visual descrip-
tors into regular lattice instead of learning a division of the space from training data. There are also
efforts to build hash functions (that is, multiple binary functions / hash bits) inorder to accelerate
distance computations (Weiss et al., 2009). Recently, sparse coding is alsoused to vector quantize
visual descriptors, for example, in Yang et al. (2009) and Gao et al. (2010). In this work, we propose
a new alternative to k-means, based on the histogram intersection kernel and other additive kernels.

In k-means based methods, a visual code word is usually represented bythe cluster center (that
is, the average of all features that belong to this code word), which is simpleand fast to compute.
It was discovered that assigning a feature to multiple code words (which is also termed as soft-
assignment) may improve the codebook quality (Philbin et al., 2008; van Gemertet al., 2008).
Within a probabilistic framework, code words can be represented by the Gaussian Mixture Model
(GMM) (Perronnin, 2008; Winn et al., 2005). GMM has better representation power than a single
cluster center. However, it requires more computational power. Anotherinteresting representation
is the hyperfeature in Agarwal and Triggs (2008), which considers themapped code word indexes
as a type of image feature and repeatedly generates new codebooks andcode words into a hierarchy.

Methods have been proposed to accelerate the space division and codeword mapping. Nist́er
and Steẃenius (2006) used a tree structure to divide the space of visual descriptors hierarchically
and Moosmann et al. (2008) used ensembles of randomly created cluster trees. Both methods map
visual features to code words much faster than k-means.

Some methods do not follow thedivide then representpattern. For example, Yang et al. (2008)
unified the codebook generation step with the classifier learning step seamlessly. In another in-
teresting research work, Vogel and Schiele (2007) manually specified afew code words and used
supervised learning to learn these concepts from manually labeled examples.

It is worth noting that all of these previous methods used theℓ2 distance metric (except Gao
et al., 2010 which followed our previous work Wu and Rehg, 2009, and used HIK). They could
therefore in principle be improved through the use of HIK or other additivekernels.

3. Visual Codebook for Additive Kernels

In this section we will first introduce the Histogram Intersection Kernel (HIK), and then its gener-
alization to the additive kernel case. In order to make our presentation clearer, we will use boldface
characters (for example,x) to represent vectors. The scalarx j is the j-th dimension ofx.

3.1 Histogram Intersection Kernel

Let x = (x1, . . . ,xd) ∈ R
d
+ be a histogram of non-negative real values withd histogram bins, where

R+ is the set of non-negative real numbers.x could represent an image (for example, a histogram of
visual code words in the bag of visual words model) or an image patch (forexample, a SIFT visual
descriptor). The histogram intersection kernelκHI is defined as follows (Swain and Ballard, 1991):

κHI(x1,x2) =
d

∑
j=1

min(x1, j ,x2, j) . (1)

It is proved in Wu (2010) that HIK is a valid positive definite kernel when the datax ∈ R
d
+. Thus

there exists a mappingφ that maps any histogramx to a corresponding vectorφ(x) in a high di-
mensional (possibly infinite dimensional) feature spaceΦ, such thatκHI(x1,x2) = φ(x1)

Tφ(x2).
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Through the nonlinear mappingφ, histogram similarity is equivalent to a dot product in the feature
spaceΦ. Furthermore, when the feature values are non-negative integers, that is, x ∈ N

d, we can
explicitly find the mappingφ(·). If we constrain the feature values to be bounded from above by ¯v,
that is, 0≤ x j ≤ v̄ for all x and 1≤ j ≤ d, the mappingφ(·) for HIK is then the following unary
representationB(·) of an integer (Odone et al., 2005):

B(x) : x 7→



1· · ·1
︸ ︷︷ ︸

x 1′s

0· · ·0
︸ ︷︷ ︸

v̄−x 0′s



 .

It is easy to verify thatκHI(x1,x2) = B(x1)
TB(x2), in which B(x) is the concatenation of

B(x1),B(x2), . . . ,B(xd). Note thatB(x j) ∈ R
v̄ andB(x) ∈ R

dv̄.
This kernel trick makes it possible to use HIK in creating codebooks, while keeping the simplic-

ity of k-means clustering. That is, we may use a kernel k-means algorithm (Schölkopf et al., 1998)
to generate visual codebooks. In Algorithm 1, histograms are compared using HIK instead of the
inappropriate Euclidean distance if we setφ(·) = B(·).2

When the data pointsx ∈ R
d, that is, allowing negative feature values, HIK is not a positive

definite kernel. And it can not be used in Algorithm 1 to generate visual codebooks.3

3.2 Additive Kernels

Algorithm 1 is not restricted to work only with the histogram intersection kernel.It is a general ker-
nel k-means algorithm which can be used together with any positive definite kernel. In particular,
we are interested in a family of kernels called theadditive kernels(Maji and Berg, 2009). Algo-
rithm 1 instantiated with an additive kernel can be greatly accelerated, for which we will present in
Section 4.

An additive kernel is a positive definite kernel that can be expressed inthe following form

κ(x1,x2) =
d

∑
j=1

κ̂(x1, j ,x2, j) .

A positive semidefinite function̂κ(·, ·) is used to compute the similarity of two scalar values. An
additive kernelκ then compares two vectors by comparing and summing up every dimension of
these two vectors usinĝκ.

It is obvious that the histogram intersection kernel is an instance of the additive kernels. In fact,
a family of additive kernels can be derived from HIK. Ifg(·) is a non-negative and non-decreasing
function, then the generalized histogram intersection kernel,

κ(x1,x2) =
d

∑
j=1

g(min(x1, j ,x2, j)) ,

is a valid additive kernel. HIK corresponds tog(x) = x,x≥ 0. The GHI kernel proposed in Boughor-
bel et al. (2005) is also an instance of this family withg(x) = xβ for β > 0 andx≥ 0. In this paper

2. Note that sincek-means++is used in Algorithm 1 and it is a randomized algorithm, two runs of Algorithm 1 with
the same input will possibly generate different results.

3. HIK is a conditionally positive definite kernel whenx ∈ R
d (Maji and Berg, 2009). It can still be used in some SVM

solvers.
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Algorithm 1 Codebook Generation Using Kernel k-means

1: Input : x1, . . . ,xn ∈ R
d
+ (n input histograms),m (size of the codebook), andε (tolerance).

2: {The output is a function that maps a histogram to its visual code word index,w1(x∗) : Rd
+→

{1, . . . ,m}.}
3: t← 0, {Initialize t, the iteration counter, to 0.}

εt ← ∞. {Initialize the current clustering error to∞.}
4: Initialize the visual codebook. First, use thek-means++method (Arthur and Vassilvitskii,

2007) to choosemdistinct examples from the input set{x1, . . . ,xn}. We denote these examples
as x̄1, . . . , x̄m. Second, usemi = φ(x̄i), i = 1,2, . . . ,m, as the initial visual code words.φ(·) is
the mapping associated with a positive definite kernel.

5: repeat
6: For every input histogramxi , find the visual code word thatxi belongs to, and denote the

index of this visual code word asl i :

l i ← argmin
1≤ j≤m

‖φ(xi)−m j‖
2, 1≤ i ≤ n.

7: For every visual code wordmi , find the set of the input histograms that belong to this visual
code word, and denote this set asπi :

πi = { j|l j = i,1≤ j ≤ n}, 1≤ i ≤m.

8: For every visual code wordmi , update it to be the centroid of input histograms that belong to
this visual code word:

mi ←
∑ j∈πi

φ(x j)

|πi |
, 1≤ i ≤m.

9: Update the iteration counter and compute the current clustering error:

t← t +1,

εt =
1
n

n

∑
i=1

‖φ(xi)−ml i‖
2.

10: until εt−1− εt ≤ ε.
11: Output : For any histogramx∗ ∈ R

d
+, its corresponding visual code word index is:

w1(x∗) = argmin
1≤i≤m

‖φ(x∗)−mi‖
2. (2)

we will explore one specific instance from this family, which we call exponential HIK (or eHIK),
defined as

κeHI(x1,x2) =
d

∑
j=1

min(eγx1, j ,eγx2, j ), γ > 0 .

χ2 is another additive kernel that has been used for comparing histograms.The originalχ2

measure is defined asχ2(x1,x2) =
(x1−x2)

2

x1+x2
for x1,x2 ∈ R+. Alternatively, a variant ofχ2 is explored
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in Vedaldi and Zisserman (2010) for SVM classification when the feature values are positive:

κχ2(x1,x2) =
d

∑
j=1

2x1, jx2, j

x1, j +x2, j
.

We will adopt this definition in our experiments.

3.3 K-median Codebook Generation

Although k-means (or equivalently, using theℓ2 distance) is the most popular codebook genera-
tion method, the histogram intersection kernel has a closer connection to theℓ1 distance. For two
numbersa andb, it is easy to show that

2min(a,b)+ |a−b|= a+b .

As a consequence, we have

2κHI(x1,x2)+‖x1−x2‖1 = ‖x1‖1+‖x2‖1 ,

in which ‖x‖1 is theℓ1 norm ofx. In cases when‖x‖1 is constant for any histogramx, κHI and the
ℓ1 distance are linearly correlated.

For an arrayx1, . . . ,xn, it is well known that the value which minimizes theℓ1 error,

x∗ = argmin
x

n

∑
i=1

|x−xi | ,

equals the median value of the array. Thus, k-median is a natural alternative for codebook genera-
tion. The only difference between k-median and k-means is that k-median usesℓ1 instead ofℓ2 as
the distance metric.

K-median has been less popular than k-means for the creation of visual codebooks. An online
k-median algorithm has been used by Larlus and Jurie to create visual codebooks in the Pascal
challenge (Everingham et al., 2006). In Section 5, we empirically compare visual codebooks gener-
ated by the k-median algorithm to those generated by both the k-means algorithmand the proposed
additive kernel k-means method.

4. The Efficient Additive Kernel k-means Clustering Method

As mentioned in Section 3.2, additive kernels are attractive for kernel k-means because very fast
clustering is possible for these kernels. In this section, we first proposean efficient kernel k-means
algorithm for the histogram intersection kernel, and then generalize the algorithm to all additive
kernels.

4.1 Common Computation Bottleneck

Givenn examples inRd, the standard k-means clustering method (that is,φ(x) = x in Algorithm 1)
requiresO(nmd) steps in one iteration (from line 5 to line 10). Similarly, the k-median algorithm
also requiresO(nmd) steps in one iteration.

Whenφ(x) 6= x, the centersmi are vectors in the unrealized, high dimensional spaceΦ. mi might
even be infinite dimensional for some kernels (for example, the RBF kernel). The computations are
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then carried out in the following way (using the usual kernel trickφ(x1)
Tφ(x2) = κ(x1,x2) such that

mi does not need to be explicitly generated):

‖φ(x∗)−mi‖
2

=

∥
∥
∥
∥

φ(x∗)−
∑ j∈πi

φ(x j)

|πi |

∥
∥
∥
∥

2

=‖φ(x∗)‖2+
1
|πi |2

∑
j,k∈πi

κ(x j ,xk)−
2
|πi |

∑
j∈πi

κ(x∗,x j). (3)

The first term in Equation 3 does not affect the result in lines 6 and 11 of Algorithm 1. The
second term does not change within a specific iteration of Algorithm 1. Thus, we need to compute
this term only once for every visual code word in each iteration. Most of the computations are then
spent in computing the last term∑ j∈πi

κ(x∗,x j).
A naive implementation to compute this term will be costly. For example, if we use the his-

togram intersection kernel and compute this term literally using Equation 1, the complexity is
O(|πi |d). The complexity of line 6 in Algorithm 1 will be on the order

n

∑
i=1

m|πl i |d =
m

∑
i=1

(

∑
j:l j=i

m|πi |d

)

=
m

∑
i=1

m|πi |
2d ,

since there are|πi | input histogramsx j satisfyingl j = i. Using the Cauchy-Schwarz inequality, it is
clear that

m

∑
i=1

|πi |
2≥

1
m

(
m

∑
i=1

|πi |

)2

=
n2

m
,

because∑m
i=1 |πi |= n. In practice, the sizes ofπi are usually similar for differenti, and one iteration

of this naive implementation will have complexityO(n2d). We generally haven≫m, thus a kernel
k-means will be much more expensive than the standard k-means. In summary, the last term in
Equation 3 is the bottleneck in the computations.

The form of this term,∑ j∈πi
κ(x∗,x j), is similar to the binary SVM classifier, which has the

following form:

sign

(

∑
i∈π

αiyiκ(x∗,xi)+ρ

)

, (4)

wherexi , αi , andyi are, respectively, the support vectors, and their corresponding weights and
labels.

Based on these observations, we propose a more general objective,

f (x∗) = ∑
i∈π

ciκ(x∗,xi) , (5)

whereπ indexes a set of histograms (data points to be clustered, or support vectors) andci are
constant coefficients. Note that both Equation 4 and the last term in Equation3 are special forms of
Equation 5, withci = αiyi andci = 1, respectively.

Our goal is then to reduce the complexity of Equation 5 toO(d) (the same complexity as that of
standard k-means whenφ(x) = x), which will in turn yield efficient kernel k-means clustering and
SVM testing methods. We will first present the algorithm for HIK, and then its generalization to
arbitrary additive kernels.
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4.2 Efficient Computation of HIK

Maji et al. (2008) proposed fast methods to compute Equation 4 for the histogram intersection kernel
to improve the testing speed of HIK SVM classifiers, which achieved an exact answer of Equation 4
in O(d log2 |π|) steps and an approximate answer inO(d) steps. In this paper we propose a variant
that finds the exact answer for Equation 5 inO(d) steps when the feature values are non-negative
integers.

A histogram of visual code word indexes has the property that every histogram component is
a non-negative integer, that is, it is a vector inNd. Similarly, a visual descriptor histogram can
usually be transformed into the spaceN

d. For example, the SIFT descriptors are stored as vectors
in N

128. In general, a vector inRd
+ can be transformed intoNd by a linear transformation followed

by quantization.
In the rest of this paper, we assume that any histogramx = (x1, . . . ,xd) satisfies thatxi ∈ N and

0≤ xi ≤ v̄ for all i. Then the quantityf (x∗) can be computed as follows:

f (x∗) = ∑
i∈π

ciκHI(x∗,xi)

= ∑
i∈π

∑
1≤ j≤d

ci min(x∗, j ,xi, j)

= ∑
1≤ j≤d

(

∑
i∈π

ci min(x∗, j ,xi, j)

)

= ∑
1≤ j≤d

(

∑
i:x∗, j≥xi, j

cixi, j +x∗, j ∑
i:x∗, j<xi, j

ci

)

. (6)

Note that the two summands in Equation 6 can both be pre-computed. It is shownin Maji et al.
(2008) that Equation 6 is a piece-wise linear function ofx∗, j . Thus using a binary search forx∗, j ,
Equation 6 can be computed inO(d log|π|) steps in Maji et al. (2008).

However, since we assume thatx∗, j is an integer in the range[0 v̄], we have an even faster
method. Different dimensions ofx∗ make independent contributions tof (x∗) in Equation 6, because
of the additive property. Thus it is sufficient to solve the problem for onesingle feature dimension
at a time. And because there are only ¯v+ 1 possibilities forx∗, j given a fixed j, we just need to
pre-compute the solutions for these ¯v+1 values. LetT be a table of sizedv̄, with

T( j,k)← ∑
i:k≥xi, j

cixi, j +k ∑
i:k<xi, j

ci

for all 1≤ j ≤ d and 1≤ k≤ v̄. Then it is clear that

f (x∗) =
d

∑
j=1

T( j,x∗, j) . (7)

This method is summarized in Algorithm 2. Note that sinceT( j,0) = 0 for all j, there is no need to
store it.

It is obvious thatf (x∗) can be evaluated inO(d) steps after the tableT is pre-computed. And
because Algorithm 2 only involves table lookup and summation, it is faster (thatis, has less over-
head) than the approximation scheme in Maji et al. (2008), which is alsoO(d). Depending on the
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Algorithm 2 Fast Computation of HIK Sums

1: Input : n histogramsx1, . . . ,xn in N
d, with 0≤ xi, j ≤ v̄ for 1≤ i ≤ n and 1≤ j ≤ d.

2: {The output is a fast method to compute

f (x∗) =
n

∑
i=1

ciκHI(x∗,xi) ,

wherex∗ ∈ N
d and 0≤ x∗, j ≤ v̄,∀ 1≤ j ≤ d.}

3: CreateT, ad× v̄ table.
4: For 1≤ j ≤ d, 1≤ k≤ v̄,

T( j,k)← ∑
i:k≥xi, j

cixi, j +k ∑
i:k<xi, j

ci .

5: Output :

f (x∗) =
d

∑
j=1

T( j,x∗ j) .

relative size of ¯v and the number of approximation bins used in Maji et al. (2008), Algorithm 2’s
storage requirement,O(v̄d), could be larger or smaller than that of Maji et al. (2008). It is also
worth noting that under our assumptions, Algorithm 2’s result is precise rather than approximate.

Both the complexity of the pre-computation and the storage requirement are linear in v̄, which
is a parameter specified by users.4 Our experiments show that while too small a ¯v usually produces
inferior results, a large ¯v does not necessarily improve performance. In this paper, we choose ¯v=
128, which seems to give the best results in our experiments.

Our algorithm has the same computational complexity as the standard k-means when generating
a visual codebook or mapping histograms to visual code word indexes (that is, Equation 2 or Equa-
tion 3). In practice, the proposed method takes about twice the time of k-means. In summary, the
proposed method generates a visual codebook that can not only run almost as fast as the k-means
method, but also can use the non-linear similarity measureκHI that is most suitable for comparing
histograms.

4.3 Generalization to Additive Kernels

Algorithm 2 can be generalized from HIK to arbitrary additive kernels. The following two condi-
tions are also satisfied by all additive kernels: different dimensions ofx∗ make independent contri-
butions tof (x∗); and there are only ¯v+1 possibilities forx∗, j when j is fixed. We just need to find
an appropriate value forT( j,k), and Equation 7 is then valid for all additive kernels. Of course, we
assume that the feature values are natural numbers bounded from above by v̄.

For an additive kernel

κ(x1,x2) =
d

∑
j=1

κ̂(x1, j ,x2, j) ,

4. A simple implementation to pre-compute the tableT takesO(ndv̄) steps. We will present aO(d(n+ v̄)) implemen-
tation of Algorithm 2 in Section 4.3.
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we propose Algorithm 3 to efficiently assign values to the tableT. Considering a fixed dimension
j, by the independence property, we have

T( j,k) =
n

∑
i=1

ci κ̂(xi, j ,k) . (8)

In general, it takesO(ndv̄) steps to fill the tableT for an additive kernel if we literally translate
Equation 8. However, for additive kernels, Algorithm 3 uses a sequential update strategy whose
complexity is onlyO(d(n+ v̄2)).

Algorithm 3 Assign values toT for an arbitrary additive kernel

1: Input : n histogramsx1, . . . ,xn in N
d, with 0≤ xi, j ≤ v̄, for all 1≤ i ≤ n and 1≤ j ≤ d; and an

additive kernelκ(x1,x2) = ∑d
j=1 κ̂(x1, j ,x2, j).

2: {The output is a tableT ∈Rdv̄ for fast computation of Equation 5, wherex∗ ∈Nd and 0≤ x∗, j ≤
v̄,∀ 1≤ j ≤ d.}

3: for j = 1, . . . ,d do
4: Create a vectorh ∈ R

v̄, andh← 0.
5: for i = 1, . . . ,n do
6: hxi, j ← hxi, j +ci .
7: end for
8: T( j,0) = ∑n

i=1 κ̂(xi, j ,0).
9: for k= 1, . . . , v̄ do

10: T( j,k)← T( j,k−1)+
v̄

∑
v=0

hv(κ̂(v,k)− κ̂(v,k−1)) .

11: end for
12: end for
13: Output : A tableT such that

f (x∗) =
d

∑
j=1

T( j,x∗ j) .

For a fixed feature dimensionj,

T( j,k)−T( j,k−1)

=
n

∑
i=1

ci (κ̂(xi, j ,k)− κ̂(xi, j ,k−1))

=
v̄

∑
v=0

(

∑
i:xi, j=v

ci (κ̂(v,k)− κ̂(v,k−1))

)

=
v̄

∑
v=0

((

∑
i:xi, j=v

ci

)

(κ̂(v,k)− κ̂(v,k−1))

)

.

In Algorithm 3, we make a weighted histogramh for the j-th dimension such thathv = ∑i:xi, j=vci .
This is the first inner-loop, and its complexity isO(n). It then takesO(v̄2) steps to sequentially
update thej-th row of the tableT. In total, Algorithm 3 takesO(d(n+ v̄2)) steps. Since in general
n≫ v̄, Algorithm 3 is more efficient than aO(ndv̄) method.
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k-means Kernel k-means (naive) Kernel k-means (proposed)
Storage md nd mdv̄
Running time O(nmd) O(n2d) O(nmd)

Table 1: Space and running time requirements of the standard k-means, a naive implementation of
kernel k-means, and the proposed method. The space requirement does not include the
memory required to store the input histograms. The running time requirement shows the
complexity of one kernel k-means iteration.

One difference between Algorithms 2 and 3 is thatT( j,0) may not be equal to 0 in Algorithm 3.
A more important difference is that Algorithm 2 can be further improved toO(d(n+ v̄)). Note that
in Algorithm 2, κ̂(x,y) = min(x,y). We then havêκ(v,k)− κ̂(v,k− 1) equals 1 ifv > k− 1 and
0 if otherwise. In consequence,T( j,k)−T( j,k−1) = ∑v̄

v=k hv, which can in turn be sequentially
updated and takes onlyO(1) steps to compute for everyk value. The complexity of Algorithm 2 is
thenO(d(n+ v̄)).

In practice, we generally haven≫m, n≫ d, andn≫ v̄. Typical values in our experiments are
n= 300,000,d = 128 ord = 256,m= 200, and ¯v= 128. The complexity of kernel k-means is then
dominated by the line 6 of Algorithm 1. Space and running time requirements of various algorithms
are summarized in Table 1. The naive implementation does not need additional storage during the
visual codebook generation step. However, it needs to keep all input histograms (nd numbers) for
the quantization step. The other two methods do not need to keep input histograms for quantization.

The theoretical complexities in Table 1 match the empirical running time in our experiments.
For example, in one experiment using the Caltech 101 data set (refer to Section 5), the naive imple-
mentation and the proposed method took 2403 and 1.2 seconds, respectively. The empirical speedup
ratio is 2000. In this experiment, the theoretical speedup ratio isO(n/m), andn/m≈ 1200. Since
the naive implementation is impractical for large-scale problems, we will not provide empirical
results of this method in our experiments.5

4.4 One Class SVM Codebook Representation

A codebook generated by the k-means algorithm first divides the spaceR
d into m regions, and then

represents each code word (or, region) by the centroid of the examples(histogram, feature vectors,
etc.) that fall into this region. This approach is optimal if we assume that vectors in all regions
follow Gaussian distributions with the same spherical covariance matrix (that is, only differ in their
means).

This assumption rarely holds. Different regions usually have very different densities and co-
variance structures. Simply dividing the spaceR

d into a Voronoi diagram from the set of region
centers is, in many cases, misleading. However, further refinements are usually computationally
prohibitive. For example, if we model regions as Gaussian distributions with distinct covariance
matrices, the generation of codebooks and mapping from visual featuresto code words will require
much more storage and computational resources than we can afford.

5. Since one kernel k-means iteration takes more than 2400 seconds, itwill take months to finish running all the exper-
iments in Section 5.
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We propose to use one-class SVM (Schölkopf et al., 2001) to represent the divided regions in an
effective and computationally-efficient way. Given a set of histograms ina regionxπ = {x1, . . . ,xn},
we construct a one-class SVM with parameterν ∈ (0,1],

sign

(

∑
i∈π

αiκ(x,xi)+ρ

)

, (9)

whereαi ’s are non-negative, sparse, and∑i αi = 1. Intuitively, a one-class SVM classifier seeks a
“simple” (compact) subset ofxπ (or the divided region) that retains a large portion of the histograms
(or densities). It is proved thatν is the upper bound on the fraction of outliers (that is, on which
Equation 9 are less than 0), and at the same time a lower bound on the fraction of support vectors
(that is,αi 6= 0) (Scḧolkopf et al., 2001).

The one-class SVM summarizes the distribution of histograms inside a visual code word. It
takes into consideration the shape and density of the histogram distribution. It seeks to include
most of the histograms (at least(1− ν)|π|) in a compact hypersphere in the feature space, while
paying less attention to those borderline cases (at mostν|π| examples). We believe that this compact
hypersphere better summarizes a visual code word.

At the same time, these new code words can be computed very efficiently. Equation 9 is evalu-
ated inO(d) steps because it is again a special case of Algorithm 2. We propose Algorithm 4 to use
one-class SVM to generate visual code words. Note that we use the spaceR

d because Algorithm 4
is not restricted toNd. In this paper, we set the parameterν = 0.2.

Algorithm 4 One-class SVM Code Word Generation
1: Input : Same as that of Algorithm 1.
2: Use Algorithm 1 to generate the divisionsπi (i = 1, . . . ,m) from the input histogramsx1, . . . ,xn

in R
d
+.

3: For each division 1≤ i ≤m, train a one-class SVM from its dataxπi with a parameterν,

wi
2(x∗) = ∑

j∈πi

α jκ(x∗,x j)+ρi . (10)

4: Output : For any histogramx∗ ∈ R
d
+,

w2(x∗) = argmax
1≤i≤m

wi
2(x∗) .

In many applications, a histogramx=(x1, . . . ,xd) satisfies the condition that‖x‖1=∑d
j=1x j =N

is a constant. Under this condition, Equation 10 is equivalent to

wi
2(x∗) = r2

i −‖φ(x∗)−mi‖
2 ,

wheremi = ∑ j∈πi
α jx j and r2

i = N+ ‖mi‖
2− 2ρi . In other words, a histogram is considered as

belonging to thei-th visual word if it is inside the sphere (in the feature spaceΦ) centered atmi with
radiusr i . A sphere inΦ is different from a usual k-means sphere because it respects the similarity
measureκ, and its radiusr i automatically adapts to the distribution of histograms in a visual word.
Note that different kernels such as the dot-product kernel orκHI can be used in Algorithm 4.

3109



WU, TAN AND REHG

5. Experiments

We validate the proposed methods using four benchmark data sets in computervision: the Caltech
101 object recognition data set (Fei-Fei et al., 2004), the 15 class scene recognition data set (Lazeb-
nik et al., 2006), the 8 class sports events data set (Li and Fei-Fei, 2007), and the 67 class indoor
data set (Quattoni and Torralba, 2009).

5.1 Setup

In each data set, the available data is randomly split into a training set and a testing set based on
published protocols on these data sets. The random splitting is repeated 5 times, and the average
accuracy is reported. In each train/test splitting, a visual codebook is generated using the training
images, and both training and testing images are transformed into histograms of code words. Accu-
racy is computed as the mean accuracy of all categories (that is, the average of diagonal entries in
the confusion matrix).

The proposed algorithms can efficiently process a huge number of histogram features, for ex-
ample, approximately 200k to 320k histograms are clustered across the firstthree data sets in less
than 6 minute. In the 67 class indoor data set, more than 1 million histograms are clustered.

In the BOV model, we use 16×16 image patches and densely sample features over a grid with
a spacing of 2, 4, or 8 pixels. We use two types of visual descriptors: SIFT for Caltech 101,
CENTRIST (CENsus TRansform hISTogram, refer to Wu and Rehg (2011) for more details) for the
scene, event, and indoor data sets.6 All feature vectors are scaled and rounded such that a histogram
only contains non-negative integers that approximately sum to 128 (thus ¯v= 128 is always valid.)

The first step is to use visual descriptors from the training images to form a visual codebook,
in which we usem= 200 to generate 200 visual code words. Next, every feature is mapped toan
integer (code word index) between 1 andm. Thus an image or image sub-window is represented by
a histogram of code words in the specified image region. In order to incorporate spatial information,
we use the spatial hierarchy in Wu and Rehg (2008). An image is represented by the concatenation
of histograms from all the 31 sub-windows, which is a 6200 dimensional histogram. To capture
the edge information, we sometimes use Sobel gradients of an input image as anadditional input,
and concatenate histograms from the original input and the Sobel gradient image (which is 12400
dimensional). Following Boiman et al. (2008), we also sample features at 5 scales.

SVM is used for classification. LIBSVM (Chang and Lin, 2001) is used for the scene and
sports data set. Since LIBSVM uses the 1-vs-1 strategy, it will produce too many classifiers for the
Caltech 101 and indoor data set (more than 5000 and 2200 respectively). Therefore we instead use
the Crammer & Singer formulation in BSVM (Hsu and Lin, 2006) for these two data sets. Since
we are classifying histograms, we modified both LIBSVM and BSVM so that they are able to use
the histogram intersection kernel.7 It is observed that HIK is robust to theC parameter in SVM.
For example, using the LIBSVM solver, classification accuracy remains almost unchanged after
C > 0.001, as empirically showed in Wu (2010). Thus we do not use cross-validation to choose a
differentC value for every different training set. Instead, we use cross-validation to findC = 2 and

6. We will also evaluate the effect when these two feature types are switched in these data sets.
7. The methods proposed in this paper are publicly available in the libHIK package, which can be downloaded from

http://c2inet.sce.ntu.edu.sg/Jianxin/projects/libHI K/libHIK.htm . The modified version of LIBSVM
and BSVM are also included in libHIK.
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C = 0.03125 for LIBSVM and BSVM respectively on a sample training set. TheseC values are
then used on all data sets for LIBSVM and BSVM, respectively.

5.2 Main Results

We conducted several sets of experiments to validate the proposed algorithms. Experimental results
are organized using the following rule: texts in the italic type summarize findings from one set of
experiments and details are described after the italic texts. Mean / standard deviation values and
paired t-tests are used to show the benefit of histogram kernel codebooks (Algorithm 1), while the
Wilcoxon test is used for evaluating the one-class SVM code word generation method (Algorithm 4).
We first present the main results, which are based on the experimental results summarized in Table 2.

In Table 2, sub-tables (a), (b), (c), and (d) are results for the Caltech 101, 15 class scene, 8
class sports, and the 67 class indoor data sets, respectively.κHI andκLIN means that a histogram
intersection or a linear kernel visual codebook is used, respectively.ocsvm and¬ocsvm indicate
whether one-class SVM is used in generating code words.B and¬B indicate whether Sobel images
are concatenated or not. Ands= 4 ors= 8 is the grid step size when densely sampling features. The
number of training/testing images in each category are indicated in the sub-tablecaptions, which
follows the protocol of previously published results on these data sets.

Histogram Intersection Kernel Visual Codebook (Algorithm 1) greatly improves classification
accuracy.We compare the classification accuracies of systems that use Algorithm 1 withκHI , the
standard k-means algorithm (that is, usingκLIN ), and k-median. From the experimental results in
Table 2, it is obvious that in all four data sets, the classification accuracy with aκHI-based codebook
is consistently higher than that with a k-means codebook. Using a pairedt-test with significance
level 0.05, the differences are statistically significant in 21 out of the 24 cases in Table 2, when
comparingκHI andκLIN based codebooks. The three exceptions all come from the 8 class sports
event data set, when one-class SVM is not used (that is, comparing the second row to the fifth row
in Table 2c). HIK codebooks also have advantages over k-median codebooks in most cases.

HIK codebook can be computed efficiently (Algorithm 2).We have shown that Algorithm 2
evaluates inO(d) steps, in the same order as k-means. Empirically, theκHI-based method spent
less than 2 times CPU cycles than that of k-means. For example, the proposedmethod took 105
seconds to generate a codebook for the Caltech 101 data set, while k-means used 56 seconds in our
experiments.

One-class SVM improves histogram intersection kernel code words (Algorithm 4). The t-test
is not powerful enough here, because we have only 5 paired samples and they are not necessarily
normally distributed. The Wilcoxon signed-rank test is more appropriate (Demšar, 2006) to show
the effect of Algorithm 4. Algorithm 4 improved the classification accuracy of theκHI-based method
in 11 out of 12 cases in Table 2. The Wilcoxon test shows that the difference is significant at
significance level 0.01.

In summary, using HIK codebooks and one-class SVM together generated the best results in
almost all cases (best results are shown in boldface within each column of Table 2).

One-Class SVM degrades the standard k-means code words.It is interesting to observe a com-
pletely reversed trend whenκLIN is used with one-class SVM. Applying Algorithm 4 in the standard
k-means method reduced accuracy in all cases. Since a vector inR

d is not an appropriate under-
standing of a histogram withd bins, we conjecture that Algorithm 4 withκLIN produced a better
division of the spaceRd, but probably a worse one in the space of histograms.
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Figure 1: Effects of one-class SVM.

Figure 1 shows the effect of applying Algorithm 4 to example code words. The distribution of
squared distance to cluster center becomes more compact in case ofκHI with a minor increase in
the average error. However, in the k-means case, the distances spread to larger values.

K-median is a compromise between k-means and HIK codebooks.As shown in Table 2, HIK
codebooks outperformed k-median codebooks in most cases.8 However, k-median generally out-
performed the popular k-means codebooks. Furthermore, k-median requires less memory than the
proposed method. Qualitative comparisons of these methods are summarized inTable 3.

5.3 Experimental Results for Additive Kernels

Experiments with codebooks generated using the other two additive kernels(χ2 and exponential
HIK) are shown in Table 4. For ease of comparison, results of HIK (without one-class SVM)
codebooks are also shown in Table 4.

HIK andχ2 based codebooks have very similar accuracies, and both outperform the exponential
HIK codebooks. However, all three additive kernel based codebooks generally have higher accura-
cies than the standard k-means codebook generation method. Since the time complexity of additive
kernel based codebooks is the same as that of the k-means method, it is advantageous to apply such
kernels in generating visual codebooks. For example, theχ2 kernel in some cases leads to higher
accuracies than the histogram intersection kernel.

5.4 Effects of Information Content

Next we study the effects of using different types and amounts of information, for example, different
types of base features and step sizes in dense feature sampling.

8. There is not an obvious kernel for theℓ1 distance, so we did not use one-class SVM for codebooks generated by
k-median.
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B,s= 4 B,s= 8 ¬B,s= 8

κHI ,ocsvm 67.44±0.95% 65.20±0.91% 61.00±0.90%
κHI ,¬ocsvm 66.54±0.58% 64.11±0.84% 60.33±0.95%
k-median 66.38±0.79% 63.65±0.94% 59.64±1.03%
κLIN ,ocsvm 62.69±0.80% 60.09±0.92% 56.31±1.13%
κLIN ,¬ocsvm 64.39±0.92% 61.20±0.95% 57.74±0.70%

(a) Caltech 101, 15 train, 20 test

B,s= 4 B,s= 8 ¬B,s= 8

κHI ,ocsvm 84.12±0.52% 84.00±0.46% 82.02±0.54%
κHI ,¬ocsvm 83.59±0.45% 83.74±0.42% 81.77±0.49%
k-median 83.04±0.61% 82.70±0.42% 80.98±0.50%
κLIN ,ocsvm 79.84±0.78% 79.88±0.41% 77.00±0.80%
κLIN ,¬ocsvm 82.41±0.59% 82.31±0.60% 80.02±0.58%

(b) 15 class scene, 100 train, rest test

B,s= 4 B,s= 8 ¬B,s= 8

κHI ,ocsvm 84.21±0.99% 83.54±1.13% 81.33±1.56%
κHI ,¬ocsvm 83.17±1.01% 83.13±0.85% 81.87±1.14%
k-median 82.13±1.30% 81.71±1.30% 80.25±1.12%
κLIN ,ocsvm 80.42±1.44% 79.42±1.51% 77.46±0.83%
κLIN ,¬ocsvm 82.54±0.86% 82.29±1.38% 81.42±0.76%

(c) 8 class sports, 70 train, 60 test

B,s= 4 B,s= 8 ¬B,s= 8

κHI ,ocsvm 43.01±0.81% 41.75±0.94% 35.09±1.04%
κHI ,¬ocsvm 41.73±0.80% 40.07±0.27% 33.55±0.26%
k-median 41.81±1.11% 40.22±1.07% 34.04±1.56%
κLIN ,ocsvm 35.94±1.14% 34.63±1.24% 28.69±1.04%
κLIN ,¬ocsvm 39.79±0.47% 38.28±0.39% 32.49±0.72%

(d) 67 class indoor, 80 train, 20 test

Table 2: Results of HIK, k-median and k-means codebooks and one-class SVM code words. The
best result in each column is shown inboldface.

HIK k-median k-means
Computation time 2 2 1
Codebook storage size v̄ 1 1

Table 3: Comparison of three codebook generation methods. k-means is used as a baseline, that is,
a value ‘2’ means approximately 200% of that of k-means.
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B,s= 4 B,s= 8 ¬B,s= 8

κHI 66.54±0.58% 64.11±0.84% 60.33±0.95%
κχ2 67.35±0.77% 64.31±1.28% 60.63±0.85%
κeHI 66.18±0.72% 63.71±0.58% 57.13±0.89%

(a) Caltech 101, 15 train, 20 test

B,s= 4 B,s= 8 ¬B,s= 8

κHI 83.59±0.45% 83.74±0.42% 81.77±0.49%
κχ2 83.67±0.42% 83.56±0.51% 81.60±0.46%
κeHI 83.17±0.52% 82.78±0.51% 80.79±0.71%

(b) 15 class scene, 100 train, rest test

B,s= 4 B,s= 8 ¬B,s= 8

κHI 83.17±1.01% 83.13±0.85% 81.87±1.14%
κχ2 83.54±1.01% 83.21±1.31% 81.75±0.65%
κeHI 80.71±1.60% 80.67±1.81% 78.46±1.05%

(c) 8 class sports, 70 train, 60 test

B,s= 4 B,s= 8 ¬B,s= 8

κHI 41.73±0.80% 40.07±0.27% 33.55±0.26%
κχ2 41.85±1.03% 40.22±1.01% 33.51±0.99%
κeHI 38.97±0.93% 37.04±1.12% 31.72±0.84%

(d) 67 class indoor, 80 train, 20 test

Table 4: Results of HIK,χ2 and exponential HIK codebooks. One-class SVM code word generation
is not used. The best result in each column is shown inboldface.

Caltech 101 15 scene 8 sports 67 indoor

53.25±0.80% 78.54±0.22% 81.17±0.65% 33.48±0.59%
61.00±0.90% 82.02±0.54% 81.33±1.56% 35.09±1.04%

Table 5: Results when features are sampled in only 1 image scale and 5 scales, respectively. HIK
codebooks are used, withocsvm, ¬B ands= 8.

Sampling features at 5 scales improves accuracy.It is advantageous to sample features from
multiple scaled versions of the input image. Also, Table 5 reinforces the conclusions from Sec-
tion 5.2.

Smaller step size is better.Similarly, a smaller step size means that more features are sampled.
Table 2 shows that when other conditions were the same,s= 4 outperformeds= 8 in general. We
observed differences between object and scene recognition. The accuracy difference in Caltech 101
is significant. In the sports and indoor data set,s= 4 slightly outperformeds= 8 and they are
indistinguishable in the 15 class scene data set. Thus it is not necessary to computes= 2 results for
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Caltech 101 15 scene 8 sports 67 indoor
60.99±0.67% 79.86±0.30% 82.33±0.74% 38.04±1.24%
65.20±0.91% 84.00±0.46% 83.54±1.13% 41.75±0.94%

Table 6: Results when feature type is switched. We useB, s= 8, andocSVM. The second row
contains numbers extracted from Table 2, and the first row are results when feature type is
switched.

the two scene recognition data sets. In Caltech 101, however,s= 2 further improved recognition
accuracy to 67.82±0.59% (usingκHI , ocSVM, andB.)

Use the right feature for different tasks.SIFT is widely used in object recognition for its per-
formance. And CENTRIST has been shown as a suitable feature for place and scene recognition in
Wu and Rehg (2011). As shown in Table 6, if we use SIFT for scene recognition and CENTRIST
for object recognition, the recognition accuracies are reduced.

More code words are (sometimes) better.We also experimented with different numbers of code
words. In the scene recognition tasks, we did not observe significant changes in recognition accu-
racies. In the Caltech 101 data set, however, a higher accuracy 70.74±0.69% was achieved using
1000 code words (withκHI , ocSVM, B, ands= 2). In comparison, using standard k-means with 1000
code words (together withB, s= 2, and¬ocSVM which is the better choice forκLIN ), the accuracy is
67.89±1.11%. The proposed method is significantly better than standard k-means codebooks with
more visual code words.

In summary, we need to choose the appropriate feature for a specific task(CENTRIST for scene
recognition and SIFT for object recognition), and to incorporate as muchinformation as possible.

What’s more interesting is the different behaviors of object and scene recognition problems
exhibited in our experiments. Scene recognition requires different type of features (CENTRIST
instead of SIFT) and less information (performance almost stabilized when step size is 8 and code-
book size is 200). We strongly recommend the CENTRIST descriptor, or its variant likePACT(Wu
and Rehg, 2008), and the proposed algorithms for recognizing place and scene categories.

6. Conclusion

In this article, we show that when the histogram intersection kernel is used as the similarity measure
in clustering visual descriptors that are histograms, the generated visualcodebooks produce better
code words and as a consequence, improve the bag of visual words model. We propose a HIK based
codebook generation method which runs almost as fast as k-means and has consistently higher
accuracies than k-means codebooks by 2–4% in several benchmark object and scene recognition
data sets. As an alternative to k-means, in which cluster centroids are usedto represent code words,
we proposed a one-class SVM formulation to generate better visual code words. We also generalize
the proposed visual codebook generation method to arbitrary additive kernels. In particular, this
extends our speedup results to the popularχ2 kernel. The proposed algorithms achieve state-of-the-
art accuracies on four benchmark object and scene recognition data sets.

Although k-median is rarely used to generate codebooks, we empirically evaluated k-median
codebooks and recommend it as a compromise between the proposed method and k-means. K-
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median codebooks have lower accuracies than HIK codebooks but usually have higher accuracy
than k-means codebooks. They also require less memory than HIK codebooks.

We provide a software package, named libHIK, which contains implementation of the methods
proposed in this paper. The software is available athttp://c2inet.sce.ntu.edu.sg/Jianxin/
projects/libHIK/libHIK.htm .

Acknowledgments

J. Wu is supported by the NTU startup grant and the Singapore MoE AcRF Tier 1 project RG 34/09.
This research was supported in part by a grant from the Google Research Awards Program. We
thank the anonymous reviewers, whose comments have helped improving this paper.

References

Ankur Agarwal and Bill Triggs. Multilevel image coding with hyperfeatures. International Journal
of Computer Vision, 78(1):15–27, 2008.

David Arthur and Sergei Vassilvitskii.k-means++: the advantage of careful seeding. In18th
Symposium on Discrete Algorithms, pages 1027–1035, 2007.

Oren Boiman, Eli Shechtman, and Michal Irani. In defense of nearest-neighbor based image classi-
fication. InProc. IEEE Conf. on Computer Vision and Pattern Recognition, 2008.

Sabri Boughorbel, Jean-Philippe Tarel, and Nozha Boujemaa. Generalized histogram intersection
kernel for image recognition. InProc. Int’l Conf. on Image Processing, 2005.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines, 2001.
Software available athttp://www.csie.ntu.edu.tw/ ˜ cjlin/libsvm .

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for humandetection. InProc.
IEEE Conf. on Computer Vision and Pattern Recognition, volume 1, pages 886–893, 2005.

Janez Dem̌sar. Statistical comparisons of classifiers over multiple data sets.Journal of Machine
Learning Research, 7:1–30, 2006.

Mark Everingham, Andrew Zisserman, Christopher Williams, and Luc Van Gool. The PASCAL
visual object classes challenge 2006 (VOC 2006) results, 2006.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
example: an incremental Bayesian approach tested on 101 object categories. In CVPR 2004,
Workshop on Generative-Model Based Vision, 2004.

Shenghua Gao, Ivor Wai-Hung Tsang, Liang-Tien Chia, and Peilin Zhao. Local features are not
lonely – Laplacian sparse coding for image classification. InProc. IEEE Conf. on Computer
Vision and Pattern Recognition, 2010.

Chih-Wei Hsu and Chih-Jen Lin. BSVM, 2006. Software available athttp://www.csie.ntu.
edu.tw/ ˜ cjlin/bsvm .

3116



V ISUAL CODEBOOK GENERATION USING ADDITIVE KERNELS

Fréd́eric Jurie and Bill Triggs. Creating efficient codebooks for visual recognition. InThe IEEE
Conf. on Computer Vision, volume 1, pages 604–610, 2005.

Svetlana Lazebnik and Maxim Raginsky. Supervised learning of quantizer codebooks by infor-
mation loss minimization.IEEE Trans. on Pattern Analysis and Machine Intelligence, 31(7):
1294–1309, 2009.

Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. InProc. IEEE Conf. on Computer Vision and
Pattern Recognition, volume II, pages 2169–2178, 2006.

Li-Jia Li and Li Fei-Fei. What, where and who? Classifying events by scene and object recognition.
In The IEEE Conf. on Computer Vision, 2007.

Jingen Liu and Mubarak Shah. Scene modeling using Co-Clustering. InThe IEEE Conf. on Com-
puter Vision, 2007.

David G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110, 2004.

Subhransu Maji and Alexander C. Berg. Max-margin additive classifiers for detection. InThe IEEE
Conf. on Computer Vision, 2009.

Subhransu Maji, Alexander C. Berg, and Jitendra Malik. Classification using intersection ker-
nel support vector machines is efficient. InProc. IEEE Conf. on Computer Vision and Pattern
Recognition, 2008.

Frank Moosmann, Eric Nowak, and Frederic Jurie. Randomized clustering forests for image classi-
fication. IEEE Trans. on Pattern Analysis and Machine Intelligence, 30(9):1632–1646, 2008.
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