
Journal of Machine Learning Research 12 (2011) 2721-2748 Submitted 8/09; Revised 4/11; Published 9/11

Large Margin Hierarchical Classification with Mutually Exclusive
Class Membership

Huixin Wang HXWANG@STAT.UMN .EDU

Xiaotong Shen XSHEN@STAT.UMN .EDU

School of Statistics
University of Minnesota
Minneapolis, MN 55455

Wei Pan WEIP@BIOSTAT.UMN .EDU

Division of Biostatistics
University of Minnesota
Minneapolis, MN 55455

Editor: Nicolo-Cesa Bianchi

Abstract
In hierarchical classification, class labels are structured, that is each label value corresponds to
one non-root node in a tree, where the inter-class relationship for classification is specified by
directed paths of the tree. In such a situation, the focus hasbeen on how to leverage the inter-
class relationship to enhance the performance of flat classification, which ignores such dependency.
This is critical when the number of classes becomes large relative to the sample size. This paper
considers single-path or partial-path hierarchical classification, where only one path is permitted
from the root to a leaf node. A large margin method is introduced based on a new concept of
generalized margins with respect to hierarchy. For implementation, we consider support vector
machines andψ-learning. Numerical and theoretical analyses suggest that the proposed method
achieves the desired objective and compares favorably against strong competitors in the literature,
including its flat counterparts. Finally, an application togene function prediction is discussed.
Keywords: difference convex programming, gene function annotation,margins, multi-class clas-
sification, structured learning

1. Introduction

In many applications, knowledge is organized and explored in a hierarchical fashion. For instance,
in one of the central problems in modern biomedical research—gene function prediction, biological
functions of genes are often organized by a hierarchical annotation system such as MIPS (the Mu-
nich Information Center for Protein Sequences, Mewes et al., 2002)foryeast S.cerevisiae. MIPS
is structured hierarchically, with upper-level functional categories describing more general infor-
mation concerning biological functions of genes, while low-level ones refer to more specific and
detailed functional categories. A hierarchy of this sort presents the current available knowledge. To
predict unknown gene functions, a gene is classified, through some predictors, into one or more gene
functional categories in the hierarchy of MIPS, forming novel hypotheses for confirmatory biolog-
ical experiments (Hughes et al., 2000). Classification like this is called hierarchical classification,
which has been widely used in webpage classification and document categorization. Hierarchical
classification involves inter-class dependencies specified by a prespecified hierarchy, which is unlike
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multiclass classification where class membership is mutually exclusive for all classes. The primary
objective of hierarchical classification is leveraging inter-class relationships to enhance multiclass
classification ignoring such dependencies, known as flat classification.This is particularly critical in
high-dimensional problems with a large number of classes in classification. To achieve the desired
objective, this paper develops a large margin approach for single-path or partial-path hierarchical
classification with hierarchy defined by a tree.

Hierarchical classification, an important subject which has not yet received much attention, can
be thought of as nested classification within the framework of multiclass classification. One major
challenge is how to formulate a loosely defined hierarchical structure into classification to achieve
higher generalization performance, which, otherwise, is impossible for flat classification, especially
in a high-dimensional situation. Three major approaches have been proposed in the literature. The
first is the so called “flat approach”, which ignores the hierarchical structure. Recent studies suggest
that higher classification accuracy results can be realized by incorporating the hierarchical structure
(Dekel et al., 2004). Relevant references can be found in Yang andLiu (1999) for nearest neighbor,
Lewis (1998) for naive Bayes, Joachims (1998) for support vectormachines (SVM, Boser et al.,
1992; Vapnik, 1998), among others. The second is the sequential approach, where a multiclass clas-
sifier is trained locally at each parent node of the hierarchy. As a result,the classifier may be not
well trained due to a small training sample locally and lack of global comparisons. Further investi-
gations are necessary with regard to how to use the given hierarchy in classification to improve the
predictive performance, as noted in Dekel et al. (2004) and Cesa-Bianchi et al. (2006). The third is
the promising structured approach, which recognizes the importance of a hierarchical structure in
classification. Shahbaba and Neal (2007) proposed a Bayesian methodthrough a constrained hierar-
chical prior and a Markov Chain Monte Carlo implementation. Cai and Hofmann(2004) and Rousu
et al. (2006) employed structured linear and kernel representations and loss functions defined by a
tree, together with loss-weighted multiclass SVM, whereas Dekel et al. (2004) developed a batch
and on-line version of loss-weighted hierarchical SVM, and Cesa-Bianchi et al. (2006) developed
sequential training based SVM with certain hierarchical loss functions. The structured approach
uses a weighted loss defined by a hierarchy, such as the symmetric difference loss and a sub-tree
H-loss, see, for instance, Cesa-Bianchi et al. (2006), as opposedto the conventional 0-1 loss, then
maximizes the loss-weighted margins for a multiclass SVM, as described in Lin et al. (2002). En-
sembles of nested dichotomies in Dong et al. (2005) and Zimek et al. (2008) have achieved good
performance. Despite progress, issues remain with respect to how to fullytake into account a hier-
archical structure and to what role the hierarchy plays.

To meet the challenge, this article develops a large margin method for hierarchical classification,
based on a new concept of structured functional and geometric margins defined for each node of
the hierarchy, which differs from the concept of the loss-weighted margins in structured prediction.
This concept of margins with respect to hierarchy is designed to accountfor inter-class dependen-
cies in classification. As a result, the complexity of the classification problem reduces, translating
into higher generalization accuracy of classification. Our theory describes when this will occur,
depending on the structure of a tree hierarchy. In contrast to existing approaches, the proposed
method trains a classifier globally while making sequential nested partitions of classification re-
gions. The proposed method is implemented for support vector machines (SVM, Boser et al., 1992)
andψ-learning (Shen et al., 2003) through quadratic and difference convex (DC) programming.

To examine the proposed method’s generalization performance, we perform simulation studies.
They indicate that the proposed method achieves higher performance thanthree strong competitors.
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A theoretical investigation confirms that the empirical performance is indeed attributed to a reduced
size of the function space for classification, as measured by the metric entropy, through effective use
of a hierarchical structure. In fact, stronger inter-class relations tendto lead to better performance
over its flat counterpart. In conclusion, both the numerical and theoretical results suggest that a tree
hierarchical structure has been incorporated into classification for generalization.

This article is organized as follows. Section 2 formulates the problem of hierarchical classi-
fication. Section 3 introduces the proposed method and develops computational tools. Section 4
performs simulation studies and presents an application of the proposed method in gene function
prediction. Section 5 is devoted to theoretical investigation of the proposed method and to the study
of the role of a hierarchical structure in classification. Section 6 discusses the method, followed by
technical details in the Appendix.

2. Single-path and Partial-path Hierarchical Classification

In single-path or partial-path hierarchical classification, inputX = (X1, · · · ,Xq)∈S⊂R
q is a vector

of q covariates, and we code outputY ∈ {1, · · · ,K}, corresponding to non-root nodes{1, · · · ,K} in
a rooted treeH , a graph with nodes connected by directed paths from the root 0, wheredirected
edgei → j specifies a parent-child relationship fromi to j. HereY is structured in thati → j in
H induces a subset relation between the corresponding classesi and j in classification, that is, the
classification region of classj is a subset of that of classi. As a result, direct and indirect relations
among nodes overH impose an inter-class relationship amongK classes in classification.

Before proceeding, we introduce some notations for a treeH with k leaves and(K−k) non-leaf-
nodes, where a non-leaf node is an ancestor of a leaf one. Denote by|H | the size ofH . For each
t ∈ {1, · · · ,K}, definepar(t), chi(t) sib(t), anc(t) andsub(t) to be sets of its parent(s) (immediate
ancestor), its children (immediate offsprings), its siblings (nodes sharing the same parent with node
t), its ancestors (immediate or remote), and the subtree rooted fromt, respectively. Throughout
this paper,par(t), chi(t) andsib(t) are allowed to be empty. Assume, without loss of generality,
that |par(t)|= 1 for non-root nodet because multiple parents are not permitted for a tree. Also we
defineL to be the set of leaves ofH .

To classifyx, a decision function vectorf = ( f1, · · · , fK) ∈ F = ∏K
j=1F j is introduced, where

f j(x); j = 1, · · · ,K, mapping fromR
q ontoR

1, represents classj and mimicsP(Y = j|X = x).
Thenf is estimated through a training sampleZi = (Xi ,Yi)

n
i=1, independent and identically dis-

tributed according to an unknown probabilityP(x,y). To assignx, we introduce a top-down deci-
sion ruledH(f(x)) with respect toH throughf . From the top to the bottom, we go through each
node j and assignx to one of its childrenl = argmaxt∈chi( j) ft(x) having the highest value among
ft ’s for t ∈ chi( j) when j /∈ L , and assignx to j otherwise.

This top-down rule is sequential, and yields mutually exclusive membership for sibling classes.
In particular, for each parentj, chi( j) gives a partition of the classification region of parent class
j. This permits an observation staying at a parent when one child of the parent is defined as itself,
see, for example, the node labeled 03.01 in Figure 3, which is a case of partial-path hierarchical
classification.

Finally, a classifier is constructed throughdH(·) to have small generalization error
El0−1(Y,dH(f(X)), with l0−1(Y,dH(f(X)) = I(Y 6= dH(f(X)) the 0-1 hierarchical loss.
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3. Proposed Method

In the existing literature on hierarchical classification, the margins are defined by the conventional
unstructured margins for multiclass classification, for instance, the loss-weighted hierarchical SVM
of Cai and Hofmann (2004), denoted as HSVMc. For unstructured margins in classification, a
certain number of pairwise comparisons is required, which is the same as conventional multiclass
classification. In what follows, we propose a new framework using a given hierarchy to define
margins, leading to a reduced number of pairwise comparisons for hierarchical classification.

3.1 Margins with Respect toH

We first explore a connection between classification and function comparisons, based on the concept
of generalized functional margins with respect to a hierarchy is introduced. Over a hierarchyH , the
top-down ruledH(f(x)) is employed for classification. To classify, comparing some components
of f at certain relevant nodes inH is necessary, which is in a parallel fashion as in multiclass
classification. Consider leaf node 4 in the treeH described in Figure 2 (c). Theref4− f3 and f6− f5
need to be compared against 0 to classify at node 4 through the top-down rule, that is, min( f4−
f3, f6− f5) is less than 0 or not, which leads to our margin definition for(x,y = 4) U(f(x),y =
4) = min( f4 − f3, f6 − f5). More generally, we define setU(f(x),y), for y ∈ {1, · · · ,K} to be
{ ft − f j : j ∈ sib(t), t ∈ anc(y)∪{y}} = {uy,1,uy,2, · · · ,uy,ky} with ky elements. This set compares
any classt against sibling classes defined bysib(t) for y and any of its ancestorst, permitting
hierarchical classification at any location ofH and generating a single-path or partial-path from the
root to the node corresponding to classy.

For classification evaluation, we define the generalized functional margin with respect toH for
(x,y) asumin(f(x),y) = min{uy, j : uy, j ∈U(f(x),y)}. In light of the result of Lemma 1, this quan-
tity is directly related to the generalization error, which summarizes the overall error in hierarchical
classification as the 0-1 loss in binary classification. That is, a classification error occurs if and only
if umin(f(x),y) < 0. Moreover,this definition reduces to that of multiclass margin classification
of Liu and Shen (2006) when no hierarchical structure is imposed.In contrast to the definition
of multiclass classification, the number of comparisons required for classification over a treeH is
usually smaller, owing to the fact that only siblings need to be compared through the top-down rule,
as opposed to comparisons of all pairs of classes in multiclass classification.

Lemma 1 establishes a key connection between the generalization error and our definition of
umin( f (X),Y).

Lemma 1 With I(·) denoting the indicator function,

GE(d) = El0−1(Y,d(X))≡ EI(Y 6= d(X)) = EI(umin( f (X),Y)< 0),

where l0−1 is the 0-1 loss in hierarchical classification, and I(·) is the indicator function.

This lemma says that a classification error occurs for decision functionf and an observation
(x,y), if and only if the functional marginumin(f(x),y) is negative.

3.2 Cost Function and Geometric Margin

To achieve our objective of constructing classifierdH(f̂(x)) having small generalization error, we
construct a cost function to yield an estimatef̂ for dH(f̂(x)). Ideally, one may minimize the

2724



LARGE MARGIN HIERARCHICAL CLASSIFICATION WITH MUTUALLY EXCLUSIVE CLASS MEMBERSHIP

empirical generalization errorn−1 ∑n
i=1 I(umin( f (Xi),Yi) < 0) based on(Xi ,Yi)

n
i=1. However, it is

computationally infeasible because of discontinuity ofI(·). For this reason, we replaceI(·) by
a surrogate lossv(·) to use the existing two-class surrogate losses in hierarchical classification. In
addition to computational benefits, certain loss functionsv(·) may also lead to desirable large margin
properties (Zhu and Hastie, 2005). Given functional marginu = umin(f(x),y), we say that a loss
v(·) is a margin loss if it can be written as a function ofu. Moreover, it is a large margin ifv(u)
is nonincreasing inu. Most importantly,v(umin(f(x),y)) yields Fisher-consistency in hierarchical
classification, which constitutes a basis of studying the generalization errorin Section 5. Note that
in the two-class case a number of margin losses have been proposed. Convex margin losses are the
hinge lossv(u) = (1−u)+ for SVM and the logistic lossv(u) = log(1+e−u) for logistic regression
(Zhu and Hastie, 2005). Nonconvex large margin losses include, for exampleψ-lossv(u) =ψ(u) for
ψ-learning, withψ(u) = 1−sign(u) and sign(u) = I(u> 0), if u≥ 1 or u< 0, and 1−u otherwise
(Shen et al., 2003).

Placing a margin lossv(·) in the framework of penalization, we propose our cost function for
hierarchical classification:

s(f) =C
n

∑
i=1

v(umin(f(xi),yi))+J(f), (1)

subject to sum to zero constraints∑{t∈sib( j)∪{ j}} ft(x) = 0; ∀ j = 1· · · ,K,sib( j) 6= ∅,x ∈ S, the
domain ofX1, for removing redundancy among the components off . For example, for the treeH
in Figure 2 (c), three constraints are imposed:f1+ f2 = 0, f3+ f4 = 0 and f5+ f6 = 0, for three
pairs of siblings. In (1), penaltyJ(f) is the inverse geometric margin to be introduced, andC > 0
is a tuning parameter regularizing the trade-off between minimizingJ(f) and minimizing training
error. Minimizing (1) with respect tof ∈ F , a candidate function space, yields an estimatef̂ , thus
classifierdH(f̂(x)). Note that(1) reduces to that of multiclass margin classification of Liu and
Shen (2006) when no hierarchical structure is specified.

To introduce the geometric margin with respect toH in theL2-norm, (with other norms applied
similarly), consider a generic vector of functionsf : f j(x) =wT

j x̃+b j ; j = 1, · · · ,K, with x̃ = x

andx̃ = (K (x1, ·), · · · ,K (xn, ·))
T for linear and kernel learning. The geometric margin is defined

as min{(t, j):t∈sib( j)} γ j,t , whereγ j,t =
2

‖w j−wt‖2
K

is the usual separation margin defined for classesj

versust ∈ sib( j), representing the vertical distance between two parallel hyperplanesf j − ft = ±1
(Shen and Wang, 2007). Here‖w j‖

2
K is ‖w j‖

2 in the linear case and iswT
j Kw j in the kernel case

withK being ann×n kernel matrix. Note that the other form of the margin in theLp-norm (with 1≤

p≤ ∞) can be defined similarly. Ideally,J(f) is max{(t, j):t∈sib( j)} γ−1
j,t = max{(t, j):t∈sib( j)}

‖w j−wt‖
2

2 ,
the inverse of the geometric margin. However, it is less tractable numerically. Practically, we work
with its upper boundJ(f) = 1

2 ∑K
j=1‖w j‖

2
K instead.

For hierarchical classification, (1) yields different classifiers with different choices of margin
lossv(·). Specifically, (1) covers multiclass SVM andψ-learning of Liu and Shen (2006), with
equal cost when all the leaf nodes share the same parent—the root, whichare called SVM and
ψ-learning in what follows.

3.3 Classification and HierarchyH

The hierarchical structure specified byH is summarized as the direct parent-child relation and the
associated indirect relations, for classification. They are integrated into our framework. Whereas
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Figure 1: Plot of generalized geometric margin with respect toH in (b), defined by a tree in (a).
Classification processes sequentially with a partition of classes 7 and 8 at thetop level,
and a further partition of class 7 into classes 1,3 and 4, and that of class 8 into classes 3,5
and 6, where classification boundaries are displayed by dotted lines. Geometric margin
is defined as the minimal vertical distances between seven pairs of solid parallel lines,
representing separations between classes 7 and 8, 2 and 5, 2 and 6, 5 and 6, 1 and 3, 1
and 4, and 3 and 4.

the top-down rule is specified byH , umin(f(x),y) captures the relations through (1). As a re-
sult, a problem’s complexity is reduced when classification is restricted toH , leading to higher
generalization accuracy. This aspect will be confirmed by the numerical results in Section 4, and
by a comparison of the generalization errors between hierarchical SVM (HSVM) and hierarchical
ψ-learning (HPSI) against their flat counterparts—SVM andψ-learning in Section 5.

3.4 Minimization

We implement (1) in a generic form:f j(x) = wT
j x̃+b j ; j = 1, · · · ,K. Note that the sum-to-zero

constraints may be infinite, which occurs when the domain ofx has infinitely many values. To
overcome this difficulty, we derive Theorem 1, which says that reinforcement of the sum-to-zero
constraints for (1) suffices at the observed data instead of all possiblex-values.

Theorem 1 Assume that{x̃1, x̃2, · · · , x̃n} spansRq. Then, for j= 1, · · · ,K, minimizing (1) subject
to ∑{t:t∈sib( j)∪{ j}} f j(x) = 0; ∀ j = 1· · · ,K,sib( j) 6=∅,x∈S, is equivalent to minimizing (1) subject
to ∑{t:t∈sib( j)∪{ j}} f j(xi) = 0; ∀ j = 1· · · ,K,sib( j) 6=∅, i = 1, · · · ,n.
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Based on Theorem 1, minimizing (1) is equivalent to

minimizings(f) =
1
2

K

∑
j=1

‖w j‖
2+C

n

∑
i=1

v(umin(f(xi),yi)), (2)

subject to∑{t:t∈sib( j)∪{ j}} ft(xi) = 0; i = 1, · · · ,n, j = 1, · · · ,K, sib( j) 6=∅.
Subsequently, we work with (2), where the proposed classifiers are denoted by HSVM and

HPSI whenv(u) = (1−u)+ andv(u) = ψ(u), respectively. In the first case, HSVM is solved by
quadratic programming (QP), see Appendix B. In the second case, (2) for HPSI is solved by DC
programming, to be described next.

For HPSI, we decomposes(f) in (2) with v(u) = ψ(u) into a difference of two convex func-
tions:s(f) = s1(f)−s2(f), wheres1(f) =

1
2 ∑K

j=1‖w j‖
2+C∑n

i=1 ψ1(umin(f(xi),yi)) ands2(f) =
C∑n

i=1 ψ2(umin(f(xi),yi)), derived from a DC decomposition ofψ = ψ1−ψ2, with ψ1(u) = (1−
u)+ and ψ2(u) = (−u)+. Through our DC decomposition, a sequence of upper approximations
of s(f) s1(f)− 〈f − f̂ (m−1),∇s2(f̂

(m−1))〉K is constructed iteratively, where〈·, ·〉K is the inner
product with respect to kernelK and ∇s2(f̂

(m−1)) is a gradient vector ofs2(f) at the solution
f̂ (m−1) at iterationm−1, defined as a sum of partial derivatives ofs2 over each observation, with
∇ψ2(u) = 0 whenu > 0 and∇ψ2(u) = −1 otherwise. Note thats1(f)−〈f − f̂ (m),∇s2(f̂

(m))〉K
is a convex upper bound ofs(f) by convexity ofs2. Then the upper approximations1(f)−〈f −
f̂ (m−1),∇s2(f̂

(m−1))〉K is minimized to yieldf̂ (m). This is called a DC method for non-convex
minimization in the global optimization literature (An and Tao, 1997).

To design our DC algorithm, starting from an initial valuêf (0), the solution of HSVM, we solve
primal problems iteratively. At themth iteration, we compute

f̂ (m) = argmin
f

(s1(f)−〈f ,∇s2(f̂
(m−1))〉K ), (3)

subject to∑{t:t∈sib( j)∪{ j}} ft(xi) = 0; i = 1, · · · ,n, j = 1, · · · ,K, sib( j) 6= ∅, through QP and its
dual form in Appendix B. The above iterative process continues until a termination criterion is met:
|s(f̂ (m))−s(f̂ (m−1))| ≤ ε, where isε > 0 is a prespecified tolerance precision. The final estimatef̂

is the best solution amonĝf (m) overm.
The above algorithm terminates, and its speed of convergence is superlinear, by Theorem 3 of

Liu et al. (2005) forψ-learning. A DC algorithm usually leads to a good local solution even when
it is not global (An and Tao, 1997). In our DC decomposition,s2 can be thought of correcting the
bias due to convexity imposed bys1 that is the cost function of HSVM, which assures that a good
local solution or a global solution can be realized. More importantly, anε-global minimizer can
be obtained when the algorithm is combined with the branch-and-bound method, as in Liu et al.
(2005). Due to computational consideration, we shall not seek the exactglobal minimizer.

3.5 Evaluation Losses and Test Errors with Respect to Hierarchy

In hierarchical classification, three types of losses have been proposed for measuring a classifier’s
performance with respect toH , as a generalization of the 0-1 loss in two-class classification. In ad-
dition to l0−1(Y,d(X)), there are the symmetric difference lossl∆(Y,d(X)) (Tsochantaridis et al.,
2004) and the H-losslH(Y,d(X)) (Rousu et al., 2006; Cesa-Bianchi et al., 2004). As in Tsochan-
taridis et al. (2004); Rousu et al. (2006); Cesa-Bianchi et al. (2004, 2006), we use the 0-1 loss,
symmetric difference loss and H-losses as performance measurements forour examples. Given a
classifierd(x), l∆(Y,d(X)) is |anc(Y)△anc(d(X))|, where△ denotes the symmetric difference
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of two sets. HerelH(Y,d(X)) = c j , with j the highest node yielding the disagreement betweenY
andd(X) in a tree, ignoring any errors occurring at lower levels. In other words, it penalizes the
disagreement at a parent while tolerating subsequent errors at offsprings. Two common choices of
c j ’s have been suggested, leading to the subtree based H-losslsub and the siblings based H-losslsib:

c j = |sub( j)|/K; j = 1, . . . ,K, (4)

c0 = 1, c j = cpar( j)/|sib( j)∪{ j}|; j = 1, . . . ,K. (5)

A classifier’s generalization performance is measured by the test error,defined as

TE(f) = n−1
test

ntest

∑
i=1

l(Yi ,d
H(f(Xi))), (6)

wherentest is the size of a test sample, andl is one of the four evaluation losses:l0−1, l∆, lsib with
c j ’s defined by (4) andlsub with c j ’s defined by (5). The corresponding test errors are denoted as
TE0−1, TE∆, TEsib andTEsub.

4. Numerical Examples

The following discusses the numerical results from three simulated examples together with an ap-
plication to gene functions classification.

4.1 Simulated Examples

This section applies HSVM and HPSI to three simulated examples, where they are compared
against their flat counterparts—k-class SVM andk-classψ-learning of Liu and Shen (2006), and
two strong competitors—HSVMc and the sequential hierarchical SVM (SHSVM). For SHSVM, we
train SVMs separately for each parent node, and use the top-down scheme to label the estimated
classes. See Davies et al. (2007) for more details.

All numerical analyses are conducted in R version 2.1.1 for SVM,ψ-learning, HSVM, HPSI,
HSVMc and SHSVM. In linear learning,K (x,y) = 〈x,y〉. In Gaussian kernel learning,K (x1,x2) =
exp(−‖x1− x2‖

2/σ2) is used, whereσ is the median of the inter-class distances between any two
classes, see Jaakkola et al. (1999) for the binary case.

For comparison, we define the amount of improvement based on the test error. In simulated
examples, the amount of improvement of a classifier is the percentage of improvement over SVM,
in terms of the Bayesian regret:

(TE(SVM)−Bayes)− (TE(·)−Bayes)
(TE(SVM)−Bayes)

,

whereTE(·) denotes the test error of a classifier, andBayesdenotes the Bayes error, which is the
ideal optimal performance and serves as a benchmark for comparison. In a real data example where
the Bayes rule is unavailable, the amount of improvement is

TE(SVM)−TE(·)
TE(SVM)

,

which may underestimate the actual percentage of improvement over SVM.
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Figure 2: Hierarchies used in Examples 1, 2 and 3 of Section 4.1, described by four leave-nodes
asymmetric tree in (a), and complete binary trees with depthp= 3 andk = 2p = 8 leaf
nodes in (b) and with depthp= 2 andk= 4 leaf nodes in (c), respectively.

In addition to test errors, F1-scores are computed for each classifier,which are between 0 and
1 and measure a classification (test)’s accuracy. A F1-score is definedas 2ρ·r

ρ+r , where the precision
ρ is the number of correct results over the number of all results classified to aclass by the trained
classifier, and the recallr is the number of correct results divided by the number of instances with
true label of a class. Specifically, for a given classifier, a F1-score isdefined as a weighted average
of F1-scores over all classes, weighted by the sample distribution.

For each classifier, we use one independent tuning sample of sizen and one independent testing
sample of 5×104, for tuning and testing. For tuning, the optimalC is obtained by minimizing the
tuning error defined in (6) on 61 grid points:C= 10l/10; l =−30,−29, · · · ,30. Given the estimated
optimalC, the test error in (6) is computed over the test sample.

Example 1. A random sample(Yi ,Xi = {Xi1,Xi2})
n
i=1 is generated as follows. First,Xi ∼

U2(0,1) is sampled from the two-dimensional uniform distribution. Second,Yi ∈ {1,2,3,4} is
sampled through conditional distributions:P(Yi = 1|X) = 0.17,P(Yi = 2|X) = 0.17,P(Yi = 3|X) =
0.17, P(Yi = 4|X) = 0.49. This generates a simple asymmetric distribution over a tree hierarchy
with a four leaf-nodes as displayed in Figure 2(a).

Clearly, HSVM and HPSI outperform their competitors - HSVMc, SHSVM and SVM under
each the four evaluation losses in both linear and Gaussian kernel situations. Specifically, the im-
provement amount of HSVM over SVM varies from 1.5% to 3.1% in the linear case and 1.6% to
1.9% in the Gaussian kernel case, whereas that of HPSI ranges from 94.5% to 94.7% and 100.0%,
respectively. By comparison, the amount of improvement of HSVMc is from 0.7% to 1.0% in
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Linear
Training Test error

Method l0−1 l∆ lsib lsub F1-score
SVM 0.545 (0.048) 0.527 (0.023) 0.521 (0.014) 0.521 (0.014) 0.328 (0.012)

ψ-learning 0.515 (0.032) 0.512 (0.015) 0.511 (0.009) 0.511 (0.009) 0.321 (0.011)
% of impro. 86.9% 86.9% 86.9% 86.8%

HSVMc 0.545 (0.044) 0.527 (0.022) 0.521 (0.012) 0.520 (0.012) 0.328 (0.015)
% of impro. 1.0% 1.0% 0.7% 0.9%

SHSVM 0.659 (0.130) 0.580 (0.061) 0.554 (0.038) 0.554 (0.038) 0.248 (0.013)
% of impro. -321.8% -315.8% -311.9% -312.7%

HSVM 0.545 (0.043) 0.526 (0.021) 0.520 (0.013) 0.520 (0.013) 0.327 (0.005)
% of impro. 1.5% 2.6% 3.0% 3.1%

HPSI 0.512(0.019) 0.511(0.009) 0.511(0.006) 0.511(0.006) 0.322 (0.102)
% of impro. 94.7% 94.6% 94.5% 94.5%
Bayes Rule 0.51 0.51 0.51 0.51 0.322

Gaussian
Training Test error

Method l0−1 l∆ lsib lsub F1-score
SVM 0.547 (0.055) 0.528 (0.026) 0.521 (0.017) 0.521 (0.017) 0.326 (0.012)

ψ-learning 0.510(0.000) 0.510(0.000) 0.510(0.000) 0.510(0.000) 0.322 (0.000)
% of impro. 100% 100% 100% 100%

HSVMc 0.547 (0.054) 0.527 (0.022) 0.521 (0.015) 0.521 (0.015) 0.325 (0.011)
% of impro. 1.0% 1.0% 1.1% 1.1%

SHSVM 0.626 (0.115) 0.565 (0.054) 0.544 (0.034) 0.544 (0.034) 0.280 (0.078)
% of impro. -214.6% -212.3% -209.8% -209.8%

HSVM 0.546 (0.050) 0.527 (0.024) 0.521 (0.015) 0.521 (0.015) 0.324 (0.010)
% of impro. 1.6% 1.6% 1.9% 1.9%

HPSI 0.510(0.000) 0.510(0.000) 0.510(0.000) 0.510(0.000) 0.322 (0.000)
% of impro. 100% 100% 100% 100%
Bayes Rule 0.51 0.51 0.51 0.51 0.322

Table 1: Averaged test errors as well as estimated standard deviations (inparenthesis) of SVM,ψ-
learning, SHSVM, HSVM, HPSI and HSVMc over 100 simulation replications in Example
1 of Section 4.1. The testing errors are computed under thel0−1, l∆, lsib and lsub. The
bold face represents the best performance among four competitors for any given loss. For
reference, F1-scores, as defined in Section 4.1, for these classifiers are given as well.

the linear case and from 1.0% to 1.1% in the Gaussian kernel case, and that of SHSVM is from
−321.8% to−311.9% and−214.6% to−209.8%, which means it is actually much worse than
SVM. From hypothesis testing view, the differences of the means for HPSIand SVM are more than
three times of the standard error of the differenced means, indicating that these means are statisti-
cally different at level ofα = 5%. Moreover, HPSI get F1-scores very close to that of the Bayes
rule.

In summary, HSVM, especially HPSI indeed yield significant improvements over its competi-
tors.
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Example 2.A complete binary tree of depth 3 is considered, which is displayed in Figure 2(b).
There are eight leaf and six non-leaf nodes, coded as{1, · · · ,8} and{9, · · · ,14}, respectively. A
random sample of 100 instances(Yi ,Xi = (Xi1,Xi2))

100
i=1 is generated as follows:Xi ∼ U2(−1,1),

whereU2(−1,1) is the uniform distribution on unit square,Yi |Xi = ⌈8×Xi1⌉ ∈ {1, · · · ,8}. Then
5% of the samples are randomly chosen with the label values redefined asYi =Yi +1 if Yi 6= 8 and
Yi =Yi if Yi = 8. Another 5% of the samples are randomly chosen with the label values redefined as
Yi =Yi −1 if Yi 6= 1 andYi =Yi if Yi = 1. For non-leaf nodej, P(Yi = j|Xi) = ∑{t∈sub( j)∩L}P(Yi =
t|Xi). This generates a non-separable case.

Linear
Training Test error

Method l0−1 l∆ lsib lsub F1-score
SVM 0.326(0.004) 0.179(0.003) 0.148(0.002) 0.122(0.002) 0.671(0.004)

ψ-learning 0.21(0.004) 0.107(0.003) 0.091(0.002) 0.072(0.002) 0.787(0.004)
% of impro. 47.7% 55.4% 50.9% 53.8%

HSVMc 0.323(0.006) 0.169(0.002) 0.148(0.003) 0.120(0.002) 0.677(0.006)
% of impro. 1.2% 7.7% 0% 2.2%

SHSVM 0.201(0.003) 0.106(0.002) 0.086(0.001) 0.070(0.001) 0.798(0.003)
% of impro. 51.4% 56.1% 55.4% 55.9%

HSVM 0.199(0.003) 0.105(0.002) 0.086(0.001) 0.070(0.001) 0.800(0.003)
% of impro. 52.3% 56.9% 55.4% 55.9%

HPSI 0.195(0.003) 0.102(0.001) 0.086(0.002) 0.068(0.002) 0.804(0.003)
% of impro. 53.9% 59.2% 55.4% 58.1%
Bayes Rule 0.083 0.049 0.036 0.029 0.916

Gaussian
Training Test error

Methods l0−1 l∆ lsib lsub F1-score
SVM 0.305(0.015) 0.209(0.001) 0.135(0.008) 0.110(0.007) 0.696(0.015)

ψ-learning 0.206(0.005) 0.113(0.003) 0.087(0.004) 0.069(0.003) 0.798(0.005)
% of impro. 44.6% 60.0% 48.5% 50.6%

HSVMc 0.313(0.005) 0.166(0.003) 0.128(0.006) 0.109(0.005) 0.685(0.005)
% of impro. −3.6% 26.9% 7.1% 1.2%

SHSVM 0.202(0.003) 0.110(0.002) 0.086(0.001) 0.068(0.001) 0.792(0.003)
% of impro. 46.4% 61.9% 49.5% 51.9%

HSVM 0.205(0.003) 0.112(0.002) 0.087(0.001) 0.069(0.001) 0.795(0.003)
% of impro. 45.0% 60.6% 48.5% 50.6%

HPSI 0.190(0.002) 0.102(0.002) 0.085(0.002) 0.063(0.002) 0.815(0.002)
% of impro. 51.8% 66.9% 50.5% 58.0%
Bayes Rule 0.083 0.049 0.036 0.029 0.916

Table 2: Averaged test errors as well as estimated standard deviations (inparenthesis) of SVM,ψ-
learning, SHSVM, HSVM, HPSI and HSVMc over 100 simulation replications in Example
2 of Section 4.1. The testing errors are computed under thel0−1, l∆, lsib and lsub. The
bold face represents the best performance among four competitors for any given loss. For
reference, F1-scores, as defined in Section 4.1, for these classifiers are given as well.

As suggested in Table 2, HSVM and HPSI outperform the three competitors underl0−1, l∆, lsib

and lsub in the linear case, whereas HSVM performs slightly worse than SHSVM in the Gaussian
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case. In both cases, the amount of improvement of HSVM and HPSI over their flat counterpart
varies. Clearly, HPSI is the winner and outperforms its competitors in all the situations.

With regard to the test errors in Table 2, we also observe the following aspects. First, the five
classifiers perform similarly underl∆, lsib andlsub. This is because all the eight leaf node classes are
at level 3 of the hierarchy, resulting a similar structure under these evaluation losses. Second, the
classifiers perform similarly for linear learning and Gaussian kernel learning. This is mainly due to
the fact that the ideal optimal decision rule—Bayes rule is linear in this case. Moreover, HPSI and
HSVM always have better F1-scores, which are the two most close to that of the Bayes rule.

In summary, HSVM and HPSI indeed yield improvements over their flat counterparts because
of the built-in hierarchical structure, and HPSI outperforms its competitors.Here, the hierarchy—a
tree of depth 3 is useful in reducing a classification problem’s complexity which can be explained
by the concept of the margins with respect to hierarchy, as discussed in Section 3.1.

Example 3. A random sample(Yi ,Xi = {Xi1,Xi2})
n
i=1 is generated as follows. First,Xi ∼

U2(−1,1) is sampled. Second,Yi = 1 if Xi1 < 0 andXi2 < 0; Yi = 2 if Xi1 < 0 andXi2 ≥ 0; Yi = 3
if Xi1 ≥ 0 andXi2 < 0; Yi = 4 if Xi1 ≥ 0 andXi2 ≥ 0. Third, 20% of the sample are chosen at
random and their labels are randomly assigned to the other three classes. For non-leaf nodes 5 and
6, P(Yi = 5|Xi) = P(Yi = 1|Xi)+P(Yi = 2|Xi), andP(Yi = 6|Xi) = P(Yi = 3|Xi)+P(Yi = 4|Xi).
This generates a complete binary tree of depth 2, where nodes 1 and 2 aresiblings of node 5, and
nodes 3 and 4 are siblings of node 6, see Figure 2 (c). Experiments are performed with different
training sample sizes of 50, 150, 500 and 1500.

Again, HSVM and HPSI outperform their competitors- HSVMc, SHSVM and SVM under the
four evaluation losses in all the situations. The amount improvement of HSVM over SVM varies
from 22.4% to 52.6% in the linear case and 8.9% to 42.5% in the Gaussian kernel case, whereas that
of HPSI ranges from 39.5% to 89.5% and 20.6% to 80.6%, respectively. By comparison, the amount
of improvement of HSVMc is from 6.4% to 23.8% in the linear case and from 2.4% to 18.8% in the
Gaussian kernel case, and that of SHSVM is from 21.1% to 47.4% and 9.5% to 45.2%. With regard
to F1-scores, HPSI and HSVM remain to be the best, and are much more closeto that of the Bayes
rule.

In summary, the improvement of HPSI over HSVM becomes more significant when the training
size increases. As expected, HPSI is the winner and nearly achieves theoptimal performance of the
Bayes rule when the sample size gets large.

4.2 Classification of Gene Functions

Biological functions of many known genes remain largely unknown. For yeastS. cerevisiae, only
68.5% of the genes were annotated in MIPS, as of May, 2005, for which manyof them have only
general functions annotated in some top-level categories. Discovery ofbiological functions there-
fore becomes very important in biomedical research. As effective means, gene function prediction is
performed through known gene functions and gene expression profiles of both annotated and unan-
notated genes. Biologically, it is generally believed that genes having the same or similar functions
tend to be coexpressed (Hughes et al., 2000). By learning the patterns of expression profiles, a gene
with unknown functions can be classified into existing functional categories, as well as newly cre-
ated functional categories. In the process of prediction, classification isessential, as to be discussed
next.
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Linear
l & Sample TE and % of impro.

Bayes Rule Size SVM ψ-learning HSVMc SHSVM HSVM HPSI
l0−1 n=50 0.347(0.070) 0.315(0.058) 0.337(0.047) 0.316(0.047) 0.314(0.058) 0.289(0.045)

21.8% 6.8% 21.1% 22.4% 39.5%
n=150 0.284(0.043) 0.261(0.030) 0.275(0.023) 0.263(0.023) 0.260(0.030) 0.237(0.016)

0.200 27.4% 10.7% 25.0% 28.6% 56.0%
n=500 0.247(0.014) 0.234(0.013) 0.241(0.014) 0.235(0.014) 0.233(0.013) 0.213(0.007)

27.7% 12.8% 25.5% 29.8% 72.3%
n=1500 0.230(0.010) 0.217(0.005) 0.223(0.009) 0.218(0.009) 0.217(0.005) 0.205(0.003)

43.3% 23.3% 40.0% 43.3% 83.3%
lsib n=50 0.276(0.056) 0.249(0.046) 0.269(0.037) 0.250(0.037) 0.248(0.046) 0.229(0.035)

24.8% 6.4% 23.9% 25.7% 43.1%
n=150 0.230(0.032) 0.211(0.022) 0.222(0.018) 0.213(0.018) 0.210(0.022) 0.191(0.012)

0.167 30.2% 12.7% 27.0% 31.7% 61.9%
n=500 0.203(0.012) 0.193(0.011) 0.198(0.012) 0.194(0.012) 0.192(0.011) 0.175(0.005)

27.8% 13.9% 25.0% 30.6% 77.8%
n=1500 0.188(0.007) 0.178(0.004) 0.183(0.007) 0.179(0.007) 0.178(0.004) 0.170(0.002)

47.6% 23.8% 42.9% 47.6% 85.7%
lsub n=50 0.252(0.051) 0.227(0.042) 0.244(0.041) 0.228(0.041) 0.226(0.042) 0.210(0.033)

26.0% 8.3% 25.0% 27.1% 43.8%
n=150 0.212(0.029) 0.194(0.020) 0.203(0.020) 0.196(0.020) 0.193(0.020) 0.176(0.010)

0.156 32.1% 16.1% 28.6% 33.9% 64.3%
n=500 0.188(0.011) 0.179(0.010) 0.184(0.011) 0.180(0.011) 0.178(0.010) 0.162(0.005)

28.1% 12.5% 25.0% 31.3% 81.3%
n=1500 0.175(0.007) 0.165(0.004) 0.172(0.007) 0.166(0.007) 0.165(0.004) 0.158(0.002)

52.6% 15.8% 47.4% 52.6% 89.5%
l∆ n=50 0.184(0.037) 0.166(0.031) 0.179(0.025) 0.167(0.025) 0.165(0.031) 0.153(0.023)

24.7% 6.4% 23.7% 25.6% 42.9%
n=150 0.153(0.021) 0.141(0.015) 0.148(0.012) 0.142(0.012) 0.140(0.015) 0.127(0.008)

0.111 28.6% 12.6% 26.8% 31.5% 61.4%
n=500 0.135(0.008) 0.128(0.007) 0.132(0.008) 0.129(0.008) 0.128(0.007) 0.117(0.003)

29.2% 13.7% 24.7% 30.1% 76.7%
n=1500 0.125(0.005) 0.119(0.003) 0.122(0.005) 0.119(0.005) 0.119(0.003) 0.113(0.002)

42.9% 23.3% 41.9% 46.5% 83.7%
F1-score n=50 0.557(0.106) 0.588(0.107) 0.571(0.075) 0.588(0.076) 0.589(0.106) 0.597(0.110)

12.8% 5.8% 12.8% 13.2% 16.5%
n=150 0.672(0.063) 0.701(0.055) 0.683(0.026) 0.710(0.026) 0.691(0.054) 0.719(0.034)

0.800 22.7% 8.6% 29.7% 14.8% 36.7%
n=500 0.721(0.016) 0.741(0.017) 0.729(0.015) 0.749(0.014) 0.737(0.017) 0.754(0.012)

25.3% 10.1% 35.4% 20.3% 41.8%
n=1500 0.746(0.017) 0.763(0.015) 0.755(0.010) 0.763(0.010) 0.764(0.015) 0.779(0.004)

31.5% 16.7% 31.5% 33.3% 61.1%

Table 3: Averaged test errors as well as estimated standard deviations (inparenthesis) of SVM,ψ-
learning, HSVMc, SHSVM, HSVM and HPSI over 100 simulation replications of linear
learning in Example 3 of Section 4.1, withn = 50,150,500,1500. The test errors are
computed under thel0−1, l∆, lsib and lsub. For reference, F1-scores, as defined in Section
4.1, for these classifiers are given as well.

Hughes et al. (2000) demonstrated the effectiveness of gene functionprediction through genome-
wide expression profiles, and identified and experimentally confirmed eightuncharacterized open
reading frames as protein-coding genes. Specifically, three hundred expressions were profiled for
the genome of yeastS. cerevisiae, in which transcript levels of a mutant or a compound-treated
culture were compared against that of a wild-type or a mock-treated culture.Three hundred experi-
ments, consisting of 276 deletion mutants, 11 tetracycline-regulatable alleles ofessential genes, and
13 well-characterized compounds. Deletion mutants were selected such thata variety of functional

2733



WANG, SHEN AND PAN

Gaussian
l & Sample TE and % of impro.

Bayes Rule Size SVM ψ-learning HSVMc SHSVM HSVM HPSI
l0−1 n=50 0.326(0.060) 0.313(0.047) 0.323(0.047) 0.314(0.047) 0.313(0.047) 0.300(0.045)

10.3% 2.4% 9.5% 8.9% 20.6%
n=150 0.280(0.036) 0.27 (0.027) 0.276(0.030) 0.270(0.030) 0.270(0.027) 0.261(0.016)

0.200 12.5% 5.0% 12.5% 12.5% 23.8%
n=500 0.257(0.022) 0.24 (0.014) 0.252(0.013) 0.239(0.013) 0.240(0.014) 0.224(0.007)

29.8% 8.8% 31.6% 29.8% 57.9%
n=1500 0.247(0.013) 0.227(0.010) 0.240(0.011) 0.226(0.011) 0.227(0.010) 0.215(0.003)

42.6% 14.9% 44.7% 42.5% 68.1%
lsib n=50 0.263(0.048) 0.250(0.037) 0.257(0.037) 0.251(0.037) 0.250(0.037) 0.243(0.035)

13.5% 6.3% 12.5% 9.8% 20.8%
n=150 0.229(0.029) 0.218(0.022) 0.225(0.022) 0.219(0.022) 0.218(0.022) 0.211(0.012)

0.167 17.7% 6.5% 16.1% 13.1% 29.0%
n=500 0.208(0.016) 0.195(0.010) 0.202(0.011) 0.194(0.011) 0.195(0.010) 0.181(0.005)

31.7% 14.6% 34.1% 31.7% 65.9%
n=1500 0.198(0.008) 0.185(0.006) 0.193(0.005) 0.184(0.005) 0.185(0.006) 0.173(0.003)

41.9% 16.1% 45.2% 40.9% 80.6%
lsub n=50 0.241(0.044) 0.227(0.034) 0.237(0.041) 0.230(0.041) 0.228(0.034) 0.222(0.033)

16.5% 4.7% 12.9% 11.1% 22.4%
n=150 0.211(0.027) 0.2 (0.020) 0.207(0.020) 0.202(0.020) 0.201(0.020) 0.192(0.010)

0.156 20.0% 7.3% 16.4% 13.5% 34.5%
n=500 0.192(0.015) 0.179(0.009) 0.187(0.010) 0.179(0.010) 0.180(0.009) 0.169(0.005)

36.1% 13.9% 36.1% 33.3% 63.9%
n=1500 0.188(0.009) 0.175(0.006) 0.182(0.005) 0.175(0.005) 0.176(0.006) 0.163(0.003)

40.6% 18.8% 40.6% 35.4% 78.1%
l∆ n=50 0.175(0.032) 0.167(0.025) 0.171(0.025) 0.167(0.025) 0.166(0.025) 0.162(0.023)

12.5% 6.2% 12.4% 9.8% 20.7%
n=150 0.153(0.019) 0.145(0.015) 0.150(0.014) 0.146(0.014) 0.145(0.015) 0.141(0.008)

0.111 19.0% 6.4% 16.0% 13.1% 28.8%
n=500 0.139(0.011) 0.13 (0.007) 0.135(0.007) 0.129(0.007) 0.130(0.007) 0.121(0.003)

32.1% 14.5% 33.7% 31.7% 65.1%
n=1500 0.132(0.005) 0.123(0.004) 0.129(0.004) 0.123(0.004) 0.123(0.004) 0.115(0.002)

42.9% 15.9% 44.4% 41.3% 79.4%
F1-score n=50 0.559(0.105) 0.589(0.107) 0.573(0.076) 0.590(0.076) 0.591(0.105) 0.595(0.109)

12.4% 5.8% 12.9% 13.3% 14.9%
n=150 0.674(0.062) 0.703(0.053) 0.686(0.024) 0.713(0.025) 0.695(0.051) 0.717(0.033)

0.800 23.0% 9.5% 31.0% 16.7% 34.1%
n=500 0.723(0.016) 0.744(0.017) 0.732(0.014) 0.752(0.014) 0.740(0.016) 0.753(0.012)

27.3% 11.7% 37.7% 22.1% 39.0%
n=1500 0.747(0.017) 0.765(0.015) 0.757(0.011) 0.766(0.010) 0.767(0.015) 0.776(0.004)

34.0% 18.9% 35.8% 37.7% 54.7%

Table 4: Averaged test errors as well as estimated standard deviations (inparenthesis) of SVM,ψ-
learning, HSVMc, SHSVM, HSVM and HPSI over 100 simulation replications of kernel
learning in Example 3 of Section 4.1, withn = 50,150,500,1500. The test errors are
computed under thel0−1, l∆, lsib and lsub. For reference, F1-scores, as defined in Section
4.1, for these classifiers are given as well.

classifications were represented. Experiments were performed under acommon condition to allow
direct comparison of the behavior of all genes in response to all mutations and treatments. Expres-
sions of the three hundred experiments were profiled through a two-channel cDNA chip technology
(or hybridization assay). As suggested in Hughes et al. (2000), the expression profiles were indeed
informative to gene function prediction.

In gene function prediction, one major difficulty is the presence of a large number of function
categories with relatively small-sample size, which is known as the situation of large number of cate-
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gories in classification. To battle the curse of dimensionality, a structured approach needs to be used
with built-in biological knowledge presented in a form of annotation system such as MIPS, where
a flat approach does not perform better than a classifier that uses a correct hierarchical structure.
Comparisons can be found in Shahbaba and Neal (2007), and Cesa-Bianchi and Valentini (2009).
The problem of gene function prediction is an ideal test case for hierarchical classification, where
accuracy of prediction is key. In the literature, recalibration and combination of different large
margin methods, including sequential HSVM and loss scaled SVM, were usedin gene function pre-
diction, see, for example, Obozinski et al. (2008), Guan et al. (2008), and Valentini and Re (2009).
Astikainen et al. (2008) used a different representation with a loss-scaled SVM. Cesa-Bianchi et al.
(2006), and Cesa-Bianchi and Valentini (2009) employed a Bayesian ensemble method.

Through gene expression data in Hughes et al. (2000), we apply HSVMand HPSI to predict
gene functions. Of particular consideration is prediction of functional categories of unknown genes
within two major branches of MIPS, composed of two functional categories at the highest level:
“cell cycle and DNA processing” and “transcription” and their corresponding offsprings. Within
these two major branches, we haven= 1103 annotated genes together withp= 300 expressions for
each gene and a tree hierarchy ofK = 23 functional categories, see Figure 3 for a display of the tree
hierarchy. In this case, the predictorx represents the expression levels of a gene, consisting of the
log-ratios (base 10) of the mRNA abundance in the test samples relative to thereference samples,
and labelY indicates the location within the MIPS hierarchy. For this MIPS data, some genes
belong to two or more functional categories. To place the problem of gene function prediction into
our framework of hierarchical classification, we may create a new separate category for all genes
that are annotated with a common set of categories. For an example, in Figure2 (b), if we observed
cases of common members for Categories 2 and 3, we will create a category,say Category 15, which
is the sibling of Categories 9 and 10. Those common members will be assigned to Category 15.

Notice that, although we have nearly balanced situation in this example, in general we may see
unbalanced situations.

We now perform some simulations to gain insight into HSVM and HPSI for gene function
prediction before applying to predict new gene functions with respect to MIPS. For this purpose,
we use the 2005 version of MIPS and proceed 100 randomly partition the entire set of data of 1103
genes into training, tuning and testing sets, with 303, 300, and 500 genes, respectively. Then HSVM
and HPSI are trained with training samples, tuned and tested as in Section 4.1, over 100 different
random partitions to avoid homologous gene clusters. Their performance ismeasured by the test
errors is averaged over 100 random partitions.

As suggested by Table 5, besides similar results in F1-score, HSVM and HPSI outperform SVM
and HSVMc underl0−1, l∆, lsib and l∆, in both the linear and Gaussian kernel cases. With respect
to these four losses, the amount of improvement of HSVM over SVM rangesfrom 0.1% to 31.8%,
whereas that of HPSI over SVM is from 0.1% to 32.3%. Among these four losses,l∆ andlsub yield
the largest amount of improvement. This suggests that HPSI and HSVM classify more precisely
at the top levels than at the bottom levels of the hierarchy, where the inter-class dependencies are
weak. Note thatl∆ andlsub penalize misclassification more at relevant nodes at lower levels in deep
branches, whereaslsib only does so at upper levels. Interestingly, small and large branches have the
same parents, leading to large differences in penalties under different losses. It is also noted that the
F1-scores are not significantly above 0 for all the large margin methods weare comparing here.

We are now ready to apply our method to real challenge of predicting unknown gene functional
categories that had not been annotated in the 2005 version of MIPS. Thepredicted gene functions
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Figure 3: Two major branches of MIPS, with two functional categories at the highest level: “Cell
cycle and DNA processing” and “Transcription”. For each node, the corresponding func-
tional category is defined by a combination of numbers of itself and all of its ancestors.
For instance, the middle node 01 at level 4 indicates functional category 04.05.01.01 in
MIPS, which corresponds to “General transcription activities”. Notes that a blank node
represents its parent itself, for instance, the left blank node at level 3 indicates functional
category 03.01.

will be cross-validated by a newer version of MIPS, dated in March 2008, where about 600 addi-
tional genes have been added into functional categories, representingthe latest biological advance.
We proceed in three steps. First, we use the tuned HSVM and HPSI trained through the training
samples in the 2005 version of MIPS, which are the best performer over the 100 random partitions.
Second, the trained HPSI and HSVM are applied to ten most confident genes for prediction, which
are chosen among unannotated genes in the 2005 version but annotated inthe 2008 version. Here the
confidence is measured by the value of the functional margin. Third, ten predictions from HSVM
and HPSI are cross-validated by the 2008 version of MIPS.

As indicated in Table 6, seven out of the ten genes are predicted correctlyfor both HSVM and
HPSI. For an example, gene “YGR054w” is not annotated in the 2005 version of MIPS, and is pre-
dicted to belong to functional categories along a path “Protein synthesis”→ “Ribosome biogenesis”
→ “Ribosomal proteins” by HPSI. This prediction is confirmed to be exactly correct by the newer
version of MIPS.

5. Statistical Learning Theory

In the literature, the generalization accuracy for hierarchical classification and the role ofH have
not been widely studied. This section develops an asymptotic theory to quantify the generalization
accuracy of the proposed hierarchical large margin classifierdH(f̂) defined by (2) for a general loss
v. In particular, the rate of convergence ofdH(f̂) is derived. Moreover, we apply the theory to one
illustrative example to study when and howH improves the performance over flat classification.
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Linear
Training Test error

Methods l0−1 l∆ lsib lsub F1-score
SVM 0.972(0.006) 0.651(0.024) 0.926(0.008) 0.593(0.029) 0.007(0.002)

ψ-learning 0.961(0.009) 0.633(0.023) 0.92(0.022) 0.581(0.041) 0.007(0.002)
% of impro. 1.13% 2.8% 0.7% 2.0%

SHSVM 0.962(0.007) 0.552(0.031) 0.927(0.008) 0.442(0.036) 0.015(0.002)
% of impro. 1.0% 15.2% 0.1% 25.5%

HSVM 0.960(0.009) 0.520(0.023) 0.918(0.022) 0.433(0.041) 0.008(0.002)
% of impro. 1.2% 20.0% 0.8% 27.0%

HPSI 0.958(0.008) 0.517(0.020) 0.917(0.020) 0.430(0.038) 0.009(0.002)
% of impro. 1.4% 20.6% 1.0% 27.5%

Gaussian
Training Test error

Methods l0−1 l∆ lsib lsub F1-score
SVM 0.976(0.002) 0.669(0.005) 0.921(0.003) 0.617(0.007) 0.007(0.002)

ψ-learning 0.961(0.008) 0.660(0.020) 0.92(0.019) 0.601(0.030) 0.007(0.002)
% of impro. 1.5% 1.3% 0.1% 2.6%

SHSVM 0.963(0.006) 0.558(0.033) 0.920(0.009) 0.430(0.029) 0.016(0.002)
% of impro. 1.3% 16.6% 0.1% 30.3%

HSVM 0.961(0.008) 0.515(0.020) 0.920(0.019) 0.421(0.030) 0.008(0.002)
% of impro. 1.5% 23.0% 0.1% 31.8%

HPSI 0.960(0.008) 0.512(0.021) 0.920(0.020) 0.418(0.030) 0.009(0.002)
% of impro. 1.6% 23.5% 0.1% 32.3%

Table 5: Averaged test errors as well as estimated standard deviations (inparenthesis) of SVM,ψ-
learning, SHSVM, HSVM and HPSI, in the gene function example in Section 4.2, over 100
simulation replications. The testing errors are computed underl0−1, l∆, lH−sib andlH−sub.
The bold face represents the best performance among four competitors for any given loss.
For reference, F1-scores, as defined in Section 4.1, for these classifiers are given as well.

5.1 Theory

In classification, the performance of our classifierdH(f̂) is measured by the difference between the
actual performance of̂f and the ideal optimal performance off̄ , defined ase(f̂ , f̄) =GE(dH(f̂))−
GE(dH(f̄)) = E(l0−1(Y,dH(f̂(X)))− l0−1(Y,dH(f̄(X)))) ≥ 0. HereGE(dH(f̄)) is the optimal
performance for any classifier provided that the unknown true distribution P(x,y) would have been
available. In hierarchical classification withk leaf and(K−k) non-leaf node classes, the Bayes de-
cision function vectorf̄ is a decision function vector yielding the Bayes classifier underdH , that is,
dH(f̄(x)) = d̄(x). In our context, we definēf as follows: for eachj, f̄ j(x) =maxt:t∈sub( j)∩L P(Y =
t|X = x) if j /∈ L and f̄ j(x) = P(Y = j|X = x) if j ∈ L .

Let eV(f , f̄) = E(V(f ,Z)−V(f̄ ,Z))≥ 0 andλ = (nC)−1, whereV(f ,Z) is defined asv(umin

(f(X),Y)), Z = (X,Y), andv(·) is any large margin surrogate loss used in (2).
The following theorem quantifies Bayesian regrete(f̂ , f̄) in terms of the tuning parameterC

throughλ = 1
nC, the sample sizen, the smoothness parameters(α,β) of a surrogate lossV-based

classification model, and the complexity of the class of candidate function vectors F . Note that
the assumptions below are parallel to those of Theorem 3 in Liu and Shen (2006) for a statistical
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Prediction verified
Gene Function category HSVM HPSI HSVMc SHSVM

YGR054w translation initiation Yes Yes Yes Yes
YCR072c ribosome biogenesis Yes Yes Yes Yes
YFL044c transcriptional control Yes Yes Yes Yes
YNL156c binding / dissociation No No No No
YPL201c C-compound and carbohydrate utilization Yes Yes Yes Yes

YML069W mRNA synthesis Yes Yes Yes Yes
YOR039W mitotic cell cycle and cell cycle control Yes Yes No Yes
YNL023C mRNA synthesis No Yes No No
YPL007C mRNA synthesis No No No No
YDR279W DNA synthesis and replication Yes No No No

Table 6: Verification of 10 gene predictions using an updated MIPS systemand their functional
categories.

learning theory for multiclass SVM andψ-learning. In particular, Assumptions A-C described in
Appendix are used to quantity the error rate of the classifier, in addition to a complexity measure
the metric entropy with bracketingHB for function spaceF defined before Assumption C.

Theorem 2 Under Assumptions A-C in Appendix A, for any large margin hierarchicalclassifier
dH(f̂) defined by (1), there exists a constant c6 > 0 such that for any x≥ 1,

P
(

e(f̂ , f̄)≥ c1xδ2α
n

)

≤ 3.5exp(−c6x2−min(β,1)n(λJ0)
2−min(β,1)),

provided thatλ−1 ≥ 2δ−2
n J0, whereδ2

n = min(ε2
n+2eV(f

∗, f̄),1), f ∗ ∈ F is an approximation inF
to f̄ , J0 = max(J(f ∗),1) with J(f) = 1

2 ∑K
j=1‖ f j‖

2
K , andα,β, εn are defined in Assumptions A-C in

Appendix A.

Corollary 1 Under the assumptions in Theorem 2,|e(f̂ , f̄)|= Op
(

δ2α
n

)

and E|e(f̂ , f̄)|= O
(

δ2α
n

)

,
provided that n(λJ0)

2−min(β,1) is bounded away from0 n→ ∞.

The convergence rate fore(f̂ , f̄) is determined byδ2
n, α > 0 andβ > 0, whereδn captures the

trade-off between the approximation erroreV(f
∗, f̄) due to use the surrogate lossV and estimation

error ε2
n, whereεn is defined by the bracketingL2 entropy of candidate function spaceF V(t) =

{VT(f ,z)−V(f̄ ,z) : f ∈ F ,J(f) ≤ J0t}, and the last two quantify the first and second moments
of EV(f ,Z), wherez = (x,y) andZ = (x,Y).

By comparison, withV induced by a margin lossv, F V(t) in multiclass classification is usually
larger than its counterpart in hierarchical classification. This is becauseV is structured in that
functional marginumin(f(X),Y) involves a smaller number of pairwise comparisons in hierarchical
classification. In fact, only siblings forY or one ofY’s ancestors are compared. In contrast, any two
classes need to be compared in multiclass classification without such a hierarchy (Liu and Shen,
2006). A theoretical description regarding the reduced size of the effective parameter spaceF V(t)
is given in the following lemma.
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With regard to tightness of the bounds derived in Theorem 1, note that it reduces to multiclass
margin classification, where the linear example in Shen and Wang (2007) indicates that then−1 rate
obtained from the upper bound theory agrees with the optimal rate of convergence.

Lemma 2 LetH be a tree hierarchy with K non-root nodes including k leaf nodes. IfF1 = · · · =
FK , then HB(ε,F V(t)) ≤ 2c(H )HB(ε/(2c(H )),F1(t)) with v being the hinge andψ losses, where

c(H ) = ∑K
j=0

|chi( j)|(|chi( j)|−1)
2 ≤ k(k−1)

2 is the total number of comparisons required for hierarchical

classification, andF j(t) = { f j : 1
2‖ f j‖K ≤ J0t}; j = 1, · · · ,K.

5.2 Bayes Classifier and Fisher-consistency

To compare different losses for the purpose of hierarchical classification, we introduce a new con-
cept called “Fisher-consistency” with respect toH . Before proceeding, we define the Bayes rule in
Lemma 3 forK-class classification with non-exclusive membership, where onlyk< K classes have
mutually exclusive membership, determining the class membership of the otherK−k non-exclusive
classes.

Lemma 3 In K-class classification with non-exclusive membership, assume that thek mutually ex-
clusive membership classes uniquely determine the membership of the other K − k non-exclusive
classes. That is, for any t∈ E and t̃ /∈ E, either {Y = t̃} ⊇ {Y = t}, or {Y = t̃} ⊆ {Y 6= t},
where E is the set of k mutually exclusive membership classes. Then the Bayes classifierd̄(x) =
argmaxj∈E P(Y = j|X = x).

Based on Lemma 3, we define Fisher-consistency with respect toH in hierarchical classifica-
tion, which can be regarded as a generalization of Fisher-consistency inmulti classification cases.

Definition 1 In hierarchical classification, denote byL the set of classes corresponding to the leaf
nodes in a tree. WithL being a set of mutually exclusive membership classes, a loss l(·, ·) is said to
be Fisher-consistent with respect toH if a global minimizer El(Y,f(X)) over all possiblef(x) is
f̄ .

Lemma 4 Loss l0−1 is Fisher-consistent with respect toH ; so is l∆ in the presence of a dominating
leaf node class, that is, a class such that for anyx ∈ S there exists a leaf node class j such that
P(Y = j|X = x)> 1/2.

As shown in Lemma 4,l0−1 andl∆ are Fisher-consistent with respect toH .

Lemma 5 Surrogate loss v(umin(f(x),y)) is Fisher-consistent with respect toH when v(·) is either
the hinge loss or theψ loss.

5.3 Theoretical Examples

Consider hierarchical classification withH defined by a complete binary tree with depthp. For this
tree, there arek = 2p leaf nodes andK = 2p+1−2 = 2k−2 non-root nodes, see Figure 2 (b) for
an example ofp= 3. Without loss of generality, denote by{ j1, · · · , jk} thek leaf nodes. In what
follows, we focus on the 0-1 loss withl = l0−1.

A random sample is generated:X = (X(1),X(2)) sampled from the uniform distribution over
S= [0,1]2. For any leaf nodej i ; i = 1, · · · ,k, whenX(1) ∈ [(i−1)/k, i/k), P(Y = j i |X) = (k−1)/k,

2739



WANG, SHEN AND PAN

and P(Y = j|X) = 1/[k(k− 1)] for j 6= j i . For any non-leaf nodej i ; i = k+ 1, · · · ,K, P(Y =
j i |X) =∑t∈sub( j i)∩L P(Y = t|X). Then the Bayes rulēd is defined from the Bayes decision function
f̄ = { f̄1, · · · , f̄K} through the top-down rule, wherēf is defined as follows: For leaf nodes,f̄ j i (x) =

∑i
t=1(x(1) − t/k); i = 1, · · · ,k, so that whenx(1) ∈ [(i0 − 1)/k, i0/k), f̄ j i0

(x) = maxi=1,··· ,k f̄ j i (x).
For non-leaf nodes, let it be the maximum over the leaf nodes in the subtree,that is, f̄ j i (x) =
max{t∈sub( j i)∩L} f̄t ; i = k+1, · · · ,K.

Linear learning: LetF = {( f1, · · · , fK) : f j =wT
j x+b j} andJ(f) = ∑K

j=1‖w j‖
2, where‖ · ‖

is the EuclideanL2-norm. We now verify Assumptions A-C for Corollary 1. It follows from Lemma
3 of Shen and Wang (2007) withf ∗ = arg inff∈F El0−1(f ,Z) for HSVM and f ∗j = ∑ j

t=1n(x(1)−
t/k) for HPSI; j = 1, · · · ,k, and f ∗j = max{t∈sub( j)∩L} f ∗t otherwise. Assumptions A and B there

are met withα = 1
2 and β = 1 for HSVM, and withα = β = 1 for HPSI. For Assumption C,

note thatHB(ε,F1(t)) ≤ O(log(1/ε)), by Lemma 2 withc(H ) = ∑K
j=0 |chi( j)|(|chi( j)| − 1)/2 =

∑K
j=0 I{ j /∈ L}= k−1, we have, for HSVM and HPSI,HB(ε,F V(t))≤ O(k log(k/ε)) (Kolmogorov

and Tihomirov, 1959). Consequently,L≤O(ε2
n) in Assumption C, whereφ(εn,s) =

∫ c1/2
4 Lβ/2

c3L H1/2
B (u,

F V(s))du/L and supt≥2 φ(εn, t) ≤ O((k log(k/εn))
1/2/εn). Solving (7) in Assumption C leads to

εn = ( k logn
n )1/2 for HSVM and HPSI whenC/J0 ∼ δ−2

n /n∼ 1
nε2

n
, provided thatk logn

n → 0, with δn as

defined in Theorem 2. Similarly, for multiclass SVM andψ-learning,εn = ( k(k−1)/2logn
n )1/2 (Shen

and Wang, 2007).

By Corollary 1,|e(f̂ , f̄)|=Op

(

(k logn/n)1/2
)

andE |e(f̂ , f̄)|=O
(

(k logn/n)1/2
)

for HSVM,

and|e(f̂ , f̄)|= Op

(

k logn/n
)

andE |e(f̂ , f̄)|= O
(

k logn/n
)

for HPSI, whenk logn
n → 0 asn→ ∞.

By comparison, the rates of convergence for SVM andψ-learning areO
(

( k(k−1)
2 logn/n)1/2

)

and

O
(

k(k−1)
2 logn/n

)

. In this case, the hierarchy enables to reduce the order fromk(k−1)
2 down tok.

Note thatH is a flat tree with only one layer, that is, all the leaf nodes are the direct offsprings
of the root node 0, which means that|chi(0)| = k. Thenc(H ) = |chi(0)|(|chi(0)|−1)

2 = k(k−1)
2 . This

would lead to the same rates of convergence for HSVM and HPSI as their counterparts.

Gaussian kernel learning:Consider the same setting with candidate function class defined by
the Gaussian kernel. By the Aronszajn representation theorem of the reproducing kernel Hilbert
spaces (Gu, 2000), it is convenient to embed a finite-dimensional Gaussian kernel representation
into an infinite-dimensional spaceF = {x ∈ R 2 : f(x) = ( f1(x), . . . , fK(x)) with f j(x) = b j +

wT
j φ(x) = b j +∑∞

l=0w j,l φl (x) : w j ∈ l2}, and〈φ(x),φ(z)〉= K (x,z) = exp(− ‖x−z‖2

2σ2
n

), whereσn

is a scaling tuning parameter for the Gaussian kernel, which may depend onn. In what follows, we
verify Assumptions A-C for HSVM and HPSI separately, and calculateδn in Corollary 1.

For HSVM, letting f ∗j = 1− (1+exp(∑ j
t=1 τ(x(1)− t/k)))−1; for j = 1, · · · ,k, and lettingf ∗j =

max{t∈sub( j)∩L} f ∗t otherwise,e(f ∗, f̄) = O(k/τ) and J(f ∗) = O(keτ2σ2
n). Assumptions A and B

are met withα = β = 1 by Lemmas 6 and 7 of Shen and Wang (2007). For Assumption C, fol-
lowing from Section 5.3 of Shen and Wang (2007), we haveHB(ε,F1(t))≤ O((log((J0t)1/2/ε))3).
By Lemma 2, withc(H ) = k− 1 as calculated in the linear cases, we have thatHB(ε,F V(t)) ≤
O(k(log((J0t)1/2k/ε))3), whereJ0 = max(J(f ∗),1). Note thatL ≤ O(ε2

n). Then supt≥2 φ(εn, t) ≤
O((k(log((J0t)1/2k/εn))

3)1/2/εn). Solving (7) in Assumption C leads toε2
n = kn−1(log((J0n)1/2))3

whenλJ0 ∼ ε2
n. By Corollary 1,e(f̂ , f̄) =Op(δ2

n) andEe(f̂ , f̄) =O(δ2
n), with δ2

n =max(kn−1(τ2σ2
n
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+σ−2
n + logn)3, k/τ) =Op(kn−1/7) with τ∼ n1/7 whenσ2

n is fixed, andOp(kn−1/4) whenτ∼ σ−2
n ∼

n1/4.
For HPSI, letf ∗j =∑ j

j̃=1
τ(x(1)− j̃/k); j = 1, · · · ,k, and f ∗j =max{t∈sub( j)∩L} f ∗t otherwise. Then

it can be verified thateL(f
∗, f̄) = O(k/τ) andJ(f ∗) = O(kτ2σ2

n). Assumptions A and B are met
with α= β= 1 by Theorem 3.1 of Liu and Shen (2006). AlsoHB(ε,F1(t))≤O((log((J0t)1/2/ε))3),
thus supt≥2 φ(εn, t) ≤ O((k(log((J0t)1/2k/εn))

3)1/2/εn). Similarly as in HSVM, solving (7) in As-
sumption C leads toε2

n = kn−1(log((J0n)1/2))3 whenλJ0 ∼ ε2
n. By Corollary 1,e(f̂ , f̄) = Op(δ2

n)

and Ee(f̂ , f̄) = O(δ2
n), with δ2

n = max(kn−1(log(nτ2σ2
n) + σ−2

n )3, k/τ) = O
(

kn−1(logn)3
)

with

τ ∼ n(logn)−3 and fixedσ2
n, or σ2

n ∼ 1/ logn.
An application of Theorem 1 in Shen and Wang (2007) yields the convergence rates of SVM and

ψ-learning to beO
(

k(k−1)
2 n−1/7

)

andO
(

k(k−1)
2 n−1(logn)3

)

, respectively. Again, the hierarchical

structure reduces the order fromk(k−1)/2 tok as in the linear case.

6. Discussion

This paper proposed a novel large margin method for single-path or partial-path hierarchical classi-
fication with mutually exclusive membership at the same level of a hierarchy. Incontrast to existing
hierarchical classification methods, the proposed method uses inter-classdependencies in a hierar-
chy. This is achieved through a new concept of generalized functionalmargins with respect to the
hierarchy. By integrating the hierarchical structure into classification, theclassification accuracy, or
the generalization error defined by hierarchical losses, has been improved over its flat counterpart, as
suggested by our theoretical and numerical analyses. Most importantly, the proposed method com-
pares favorably against strong competitors in the large margin classificationliterature, especially
from different settings of our synthetic simulations.

At present, the hierarchical structure is assumed to be correct. However, in applications, some
classes may be mislabeled or unlabeled. In such a situation, a further investigation is necessary to
generalize the proposed method, and also to allow for novel class detection.
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Appendix A.

The following assumptions are made for Theorem 2.
For a given lossV, we define a truncatedVT(f ,Z) = T ∧V(f ,Z) for anyf ∈ F and some

truncation constantT, andeVT (f , f̄) = E(VT(f ,Z)−V(f̄ ,Z)).
Assumption A:There exist constants 0< α ≤ ∞ andc1 > 0 such that for any smallε > 0,

sup
{f∈F : eVT (f ,f ∗)≤ε}

|e(f , f̄)| ≤ c1εα.
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Assumption B:There exist constantsβ ≥ 0 andc2 > 0 such that for any smallε > 0,

sup
{f∈F : eVT (f ,f̄)≤ε}

Var(VT(f ,Z)−V(f̄ ,Z))≤ c2εβ.

These assumptions describe local smoothness of|e(f , f̄)| andVar(VT(f ,Z)−V(f̄ ,Z)). In
particular, Assumption A describes a first moment relationship between the Bayes regret|e(f , f̄)|
andeVT (f ,f ∗). Assumption B is a second moment condition over the neighborhood off̄ . The
exponentsα andβ depend on the joint distribution of(X,Y).

We now define a complexity measure of a function spaceF . Given anyε > 0, denote{( f l
j ,

f u
j )}

m
j=1 as anε-bracketing function set ofF if for any f ∈ F , there exists anj such thatf l

j ≤

f ≤ f u
j and‖ f l

j − f u
j ‖2 ≤ ε; j = 1, · · · ,m, where‖ f‖2 = (E f2)

1
2 is theL2-norm. Then the metric

entropy with bracketingHB(ε,F ) is the logarithm of the cardinality of the smallestε-bracketing set
for F . Let F V(t) = {VT(f ,z)−V(f ∗,z) : f ∈ F ,J(f) ≤ J0t}, whereJ(f) = 1

2 ∑K
j=1‖ f j‖

2 and
J0 = max(J(f ∗),1).

Assumption C:For some constantsci > 0;i = 3, . . . ,5 andεn > 0,

sup
t≥2

φ(εn,s)≤ c5n1/2, φ(εn,s) =
∫ c1/2

4 Lβ/2

c3L
H1/2

B (u,F V(s))du/L, (7)

whereL = L(εn,λ,s) = min(ε2
n+λJ0(s/2−1),1).

Appendix B.

Proof of Theorem 1: The proof is the same as that of Liu and Shen (2006), and is omitted.
Proof of Lemma 1: When 0-1 loss is used,l0−1(Y,d(X)) = I{Y 6= d(X)}. From the sequential
decision rule described in Section 2, we know thaty= d(x) is equivalent to for everyt ∈ anc(y)∪
{y}}, ft(x)≥ f j(x) : j ∈ sib(t). Furthermore, it is also equivalent to min{uy, j : uy, j ∈U(f(x),y) =
{uy,1,uy,2, · · · ,uy,ky}} ≥ 0. Therefore,GE(d) = El0−1(Y,d(X)) = EI(umin( f (X),Y)< 0) follows.
Proof of Lemma 2: To construct bracket covering forF V(t), note thatJ(f)≤ J0t implies 1

2‖ f j‖
2 ≤

J0t; j = 1, · · · ,K. Furthermore, consider a pairwise differencef j − f j ′ with f j ∈ F j(t) and f j ′ ∈

F j ′(t). Let {( f i,l
j , f i,u

j )i} be a set of anε-bracket functions forF j(t) in that for anyf j ∈ F j(t), there

exists ani such thatf i,l
j ≤ f j ≤ f i,u

j with ‖ f i,u
j − f i,l

j ‖2≤ ε; j = 1, · · · ,K. Now construct a set of brack-

ets forF V(t). Definegu = max{ j ′∈sib( j), j∈anc(y)∪{y}} v
(

f i,l
j − f i′,u

j ′
)

andgl = max{ j ′∈sib( j), j∈anc(y)∪{y}}

v
(

f i,u
j − f i′,l

j ′
)

, wherev(t) is (1− t)+ for HSVM andψ(t) for HPSI. By construction,

T ∧gl ≤VT(f ,z) = T ∧max{v( f j − f j ′) : j ′ ∈ sib( j), j ∈ anc(y)∪{y}} ≤ T ∧gu

sincehT(t) = T ∧ t is non-decreasing int, wherez = (x,y). By Lipschitz continuity ofhT(t) in t,
0≤ (T ∧gu−T ∧gl )≤ gu−gl , implying

‖T ∧gu−T ∧gl‖2 ≤ ‖gu−gl‖2 ≤ ∑
{ j ′∈sib( j), j∈anc(y)∪{y}}

‖( f i,u
j − f i′,l

j ′ )− ( f i,l
j − f i′,u

j ′ )‖2 ≤ 2c(H )ε,

with c(H ) = ∑K
j=0

|chi( j)|(|chi( j)|−1)
2 be the total number of sibling pairs( j, j ′) in H . It follows that

HB(2c(H )ε,F V(t))≤ HB(2c(H )ε,F1(t)). The desired result then follows.
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To prove thatc(H )≤ k(k−1)/2, we count the total number of different paths from the root to a
leaf node. On one hand, given each non-leaf nodej, there is only one path from the root to the node
j but when there are additional|chi( j)|−1 paths from the root to its children. An application of this
recursively yields that there are 1+∑ j /∈L(|chi( j)|−1) paths from the root of thek leaf nodes. On the
other hand, by definition, there arek different paths corresponding tok leaf nodes. Consequently,
k= 1+∑ j /∈L(|chi( j)|−1). For j /∈ L , |chi( j)|−1≥ 0. Then

∑
j /∈L

(|chi( j)|−1)2 ≤
(

∑
j /∈L

(|chi( j)|−1)
)2

= (k−1)2.

This implies

2c(H ) = ∑
j /∈L

(|chi( j)|−1)2+ ∑
j /∈L

(|chi( j)|−1)≤ (k−1)2+k−1= k(k−1).

This completes the proof.
Proof of Lemma 3: Without loss of generality, assume that the membership is mutually exclusive
for the firstk classes. The 0-1 loss overK non-exclusive membership classes can be expressed as
maxK

t=1(I(Y = t,d(X) 6= t)+ I(Y 6= t,d(X) = t)), which is the disagreement between the value of
Y and that ofd(X) in H . By assumption, if

k
max
t=1

(I(Y = t,d(X) 6= t)+ I(Y 6= t,d(X) = t)) = 0,

then maxKt=k+1(I(Y = t,d(X) 6= t)+ I(Y 6= t,d(X) = t)) = 0. On the other hand,

K
max
t=1

(I(Y = t,d(X) 6= t)+ I(Y 6= t,d(X) = t))≥
k

max
t=1

(I(Y = t,d(X) 6= t)+ I(Y 6= t,d(X) = t)),

which implies that maxKt=1(I(Y = t,d(X) 6= t)+ I(Y 6= t,d(X) = t)) = 1 when
maxk

t=1(I(Y = t,d(X) 6= t)+ I(Y 6= t,d(X) = t)) = 1. Consequently

l0−1(Y,d(X)) =
k

max
t=1

(I(Y = t,d(X) 6= t)+ I(Y 6= t,d(X) = t)) =
k

∑
t=1

I(d(X) 6= t)I(Y = t)

by exclusiveness of the membership. Finally

d̄(x) =
k

argmin
j=1

El0−1(Y,d(X) = j)|X = x)

=
k

argmin
j=1

k

∑
t=1

P(Y = t|X = x)I(t 6= j) =
k

argmin
j=1

k

∑
t 6= j,t=1

P(Y = t|X = x)

=
k

argmin
j=1

(

1−P(Y = j|X = x)
)

=
k

argmax
j=1

P(Y = j|X = x).

This completes the proof.
Proof of Lemma 4: The decision functiond̄(x), which minimizesE(l0−1(Y,d(X))|X = x) for
anyx, thus minimizing its expectationEl0−1(Y,d(X)).
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For l∆(Y,d(X)) = |anc(Y)△anc(d(X))|, let m( j1, j2) to be|anc( j1)△anc( j2)|. First note that
we have a a lengthK(size of the tree) vector of bits for each class after introducing the binary0-1
coding for each node including the ancestor nodes. Thereforem(·, ·) satisfies the triangle inequality
since it is equivalent to the Hamming distance.

In what follows, we prove thatE(l∆(Y, d̄(X))|X = x)≤ E(l∆(Y,d(X))|X = x) for anyx and
classifierd(x). Let ŷ = d̄(x). By the triangle inequality,m(y,d(x))−m(y, ŷ) ≥ −m(d(x), ŷ) for
anyy. Note thatm(ŷ, ŷ) = 0 andm(ŷ,d(x)) = m(d(x), ŷ)≥ 0. Then

E
(

l∆
(

Y,d(X)
)

− l∆
(

Y, d̄(X)
)∣

∣X = x
)

= E
(

m
(

Y,d(x)
)

−m(Y, ŷ)
∣

∣X = x
)

= E

(

(

m
(

Y,d(x)
)

−m(Y, ŷ)
)

(

I(Y = ŷ)+ I(Y 6= ŷ)
)

∣

∣

∣
X = x

)

= E

(

(

m
(

ŷ,d(x)
)

−m(ŷ, ŷ)
)

I(Y = ŷ)+
(

m
(

Y,d(x)
)

−m(Y, ŷ)
)

I(Y 6= ŷ)
∣

∣

∣
X = x

)

≥ E
(

m
(

ŷ,d(x)
)

I(Y = ŷ)|X = x
)

−E
(

m
(

d(x), ŷ
)

I(Y 6= ŷ)
∣

∣X = x
)

= m
(

ŷ,d(x)
)(

P(Y = ŷ|X = x)−P(Y 6= ŷ|X = x)
)

≥ 0.

The last inequality follows from the fact that ˆy= argmaxj∈L P(Y= j|X = x) andP(Y= ŷ|X =x)≥
1/2≥ P(Y 6= ŷ|X = x) by the assumption of dominating class. The desired result then follows.
Proof of Lemma 5: We prove the case ofv(z)= (1−z)+ for HSVM. Denote byf̂(x) a minimizer of
E(v(umin(f(X),Y))|X =x) for anyx. At a givenx, without loss of generality, assumep j(x)> 0;
∀1 ≤ j ≤ k. Let ĵ = dH(f̂(x)) and û = umin(f̂(x), ĵ). By definition, f̂ j ′(x)− f̂ j ′′(x) ≥ û ≥ 0,
∀ j ′ ∈ anc( ĵ) and j ′′ ∈ sib( j ′). First consider the case of ˆu > 0. For all other leaf nodej 6= ĵ,
there existsja ∈ anc( j) and ĵa ∈ anc( ĵ) such that ja ∈ sib( ĵa). Thenumin(f̂(x), j) ≤ f̂ ja(x)−
f̂ ĵa(x)≤−umin(f̂(x), ĵ) =−û, by the fact thatumin(f̂(x), ĵ)≤−( f̂ ja(x)− f̂ ĵa(x)). Now we prove

the equality ofumin(f̂(x), j) ≤ −û holds through construction off ′: f ′j ′(x)− f ′j ′′(x) = û, and

f ′j(x) = 0,∀ j /∈ sib◦ anc( ĵ). By construction,umin(f
′(x), j) = −û, for 1 ≤ j ≤ k, j 6= ĵ, and

umin(f
′(x), ĵ) = û. Note that

E(v(umin(f̂(X),Y))|X = x)−E(v(umin(f
′(X),Y))|X = x)

= ∑
1≤ j≤k; j 6= ĵ

p j(x)(v(umin(f̂(x), j))−v(−û))≥ 0.

By the fact thatf̂(x) is the minimizer, for 1≤ j ≤ k, j 6= ĵ, v(umin(f̂(x), j))− v(−û) = 0, then
umin(f̂(x), j) = −û. Moreover, for the Bayes rulēd(x), if ĵ 6= d̄(x), we constructf ∗ such that
umin(f

∗(x), d̄(x)) = û, andumin(f
∗(x), j) =−û, for any leaf nodej 6= d̄(x), similar as above. This

implies that

E(v(umin(f̂(X),Y))|X = x)−E(v(umin(f
∗(X),Y))|X = x)

= (p ĵ(x)v(û)+ pd̄(x)(x)v(−û))− (p ĵ(x)v(−û)+ pd̄(x)(x)v(û))

= (p ĵ(x)− pd̄(x)(x))(v(û)−v(−û))> 0,

becausep ĵ(x) < pd̄(x)(x) andû> 0. This contradicts the fact that̂f(x) is the minimizer. Conse-

quently, ĵ = d̄(x). For the case of ˆu= 0, it can be shown thatumin(f̂(x), j) = 0, ∀ j = 1, · · · ,k, and
f̂ j(x) = 0, ∀ j = 1, · · · ,K, which reduces to the trivial casêf(x) = 0.
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For HPSI, the proof is the same as that of Theorem 2 in Liu and Shen (2006), and is omitted.
Proof of Theorem 2: The proof is similar to that in Shen and Wang (2007) and is omitted.
Proof of Corollary 1 : TheOp(·) result follows from the exponential bound in Theorem 2. To see
the risk result, note that

δ−2α
n Ee(f̂ , f̄) =

∫ ∞

0
P(e(f̂ , f̄)> (δ2α

n t)1/2α)dt.

The result then follows.
The primal and the dual of (2) for HSVM: The primal and the dual for HSVM can be obtained

from those of HPSI below, with∇ŵ
(m−1)
j = 0 and∇b̂(m−1)

j = 0; j = 1, · · · ,K.
The primal and the dual of (3) for HPSI: The primal of (3) is

argmin
f

1
2

K

∑
j=1

‖w j‖
2+C

n

∑
i=1

ξi −
K

∑
j=1

〈∇ŵ
(m−1)
j ,w j〉−

K

∑
j=1

〈∇b̂(m−1)
j ,b j〉, (8)

subject toξi > 0, ( f j(xi)− ft(xi))+ ξi ≥ 1, ( j, t) ∈ Q(yi) = {( j, t) : t ∈ sib( j), j ∈ {yi}∪anc(yi)},
and∑{ j∈chi(s),s/∈L} f j(xi) = 0; i = 1, · · · ,n, s= 1, · · · ,K.

To solve (8), we employ the Lagrange multipliers:αi ≥ 0, βi, j,t ≥ 0 andδi,s ≥ 0 for each con-
straint of (8). Then (8) is equivalent to:

max
αi ,βi, j,t ,δi,s

L =
1
2

K

∑
j=1

‖w j‖
2+C

n

∑
i=1

ξi −
K

∑
j=1

〈∇ŵ
(m−1)
j ,w j〉−

K

∑
j=1

〈∇b̂(m−1)
j ,b j〉+

∑
( j,t)∈Q(yi):i=1,··· ,n

βi, j,t

(

1−
(

(〈w j ,xi〉+b j)− (〈wt ,xi〉+bt)
)

−ξi

)

−
n

∑
i=1

αiξi + ∑
(i,s):i=1,··· ,n;s/∈L

δi,s ∑
j∈chi(s)

(〈w j ,xi〉+b j). (9)

By letting the partial derivatives be zero, we have that

∂L
∂w j

= 0,
∂L
∂ξi

= 0,
∂L
∂b j

= 0;i = 1, · · · ,n, j = 1, · · · ,K. (10)

implying thatαi ≥ 0;i = 1, · · · ,n, and

∑
( j,t)∈Q(yi)

βi, j,t ≤C; i = 1, · · · ,n. (11)

After substituting (10) in (9), we obtain a quadratic form ofL in terms of{αi ,βi, j,t ,δi,s} Maximizing
L subject toβi, j,t ≥ 0; i = 1, · · · ,n;( j, t) ∈ Q(yi), (10) and (11) yields the solution of{αi ,βi, j,t ,δi,s}.
The solution ofw j andξi ’s can be derived from (10). The solution ofb j is derived from Karush-

Kuhn-Tucker’s condition:βi, j,t

(

1−
(

(〈w j ,xi〉+ b j)− (〈wt ,xi〉+ bt)
)

−ξi

)

= 0, αiξi = 0, and

δi,s∑ j∈chi(s)(〈w j ,xi〉+b j) = 0, for all suitablei, j, t ands. In case of these conditions are not appli-
cable tob j ’s, we substitute the solution ofw j ’s in (8), and solveb j ’s through linear programming.
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