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Abstract

In hierarchical classification, class labels are structutbat is each label value corresponds to
one non-root node in a tree, where the inter-class reldtiprfor classification is specified by
directed paths of the tree. In such a situation, the focusbkas on how to leverage the inter-
class relationship to enhance the performance of flat €ileatson, which ignores such dependency.
This is critical when the number of classes becomes largdivelto the sample size. This paper
considers single-path or partial-path hierarchical diassgion, where only one path is permitted
from the root to a leaf node. A large margin method is intratlbased on a new concept of
generalized margins with respect to hierarchy. For implaatéon, we consider support vector
machines andab-learning. Numerical and theoretical analyses suggesttlitieaproposed method
achieves the desired objective and compares favorablystggirong competitors in the literature,
including its flat counterparts. Finally, an applicatiorgine function prediction is discussed.

Keywords: difference convex programming, gene function annotatioargins, multi-class clas-
sification, structured learning

1. Introduction

In many applications, knowledge is organized and explored in a hieratdaghion. For instance,
in one of the central problems in modern biomedical research—gene fapeédiction, biological
functions of genes are often organized by a hierarchical annotatsersysuch as MIPS (the Mu-
nich Information Center for Protein Sequences, Mewes et al., 200fmt Scerevisiae MIPS
is structured hierarchically, with upper-level functional categoriesritdag more general infor-
mation concerning biological functions of genes, while low-level onesrreef more specific and
detailed functional categories. A hierarchy of this sort presents thertuavailable knowledge. To
predict unknown gene functions, a gene is classified, through soriefors, into one or more gene
functional categories in the hierarchy of MIPS, forming novel hypahdsr confirmatory biolog-
ical experiments (Hughes et al., 2000). Classification like this is called hiecat classification,
which has been widely used in webpage classification and document iza¢igo. Hierarchical
classification involves inter-class dependencies specified by a piigsgpécerarchy, which is unlike
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multiclass classification where class membership is mutually exclusive for akeslashe primary
objective of hierarchical classification is leveraging inter-class reldtippdo enhance multiclass
classification ignoring such dependencies, known as flat classificatidsis particularly critical in
high-dimensional problems with a large number of classes in classificatiorchieva the desired
objective, this paper develops a large margin approach for single-pgtrial-path hierarchical
classification with hierarchy defined by a tree.

Hierarchical classification, an important subject which has not yeivegtenuch attention, can
be thought of as nested classification within the framework of multiclass ctaggifi. One major
challenge is how to formulate a loosely defined hierarchical structure ingsifitation to achieve
higher generalization performance, which, otherwise, is impossible faldissification, especially
in a high-dimensional situation. Three major approaches have beersprbpothe literature. The
firstis the so called “flat approach”, which ignores the hierarchicataire. Recent studies suggest
that higher classification accuracy results can be realized by incoinmpthe hierarchical structure
(Dekel et al., 2004). Relevant references can be found in Yandliand999) for nearest neighbor,
Lewis (1998) for naive Bayes, Joachims (1998) for support vetiachines (SVM, Boser et al.,
1992; Vapnik, 1998), among others. The second is the sequentialaabpmhere a multiclass clas-
sifier is trained locally at each parent node of the hierarchy. As a reékaltlassifier may be not
well trained due to a small training sample locally and lack of global comparisamther investi-
gations are necessary with regard to how to use the given hierarchyssification to improve the
predictive performance, as noted in Dekel et al. (2004) and Ceseidiat al. (2006). The third is
the promising structured approach, which recognizes the importanceiefaadhical structure in
classification. Shahbaba and Neal (2007) proposed a Bayesian ni@thiogh a constrained hierar-
chical prior and a Markov Chain Monte Carlo implementation. Cai and Hofn2004) and Rousu
et al. (2006) employed structured linear and kernel representatidnessifunctions defined by a
tree, together with loss-weighted multiclass SVM, whereas Dekel et al4)2@%eloped a batch
and on-line version of loss-weighted hierarchical SVM, and CesaecBiaat al. (2006) developed
sequential training based SVM with certain hierarchical loss functiong sfituctured approach
uses a weighted loss defined by a hierarchy, such as the symmetricriiffidoss and a sub-tree
H-loss, see, for instance, Cesa-Bianchi et al. (2006), as opposbd conventional 0-1 loss, then
maximizes the loss-weighted margins for a multiclass SVM, as described in Lin(20@2). En-
sembles of nested dichotomies in Dong et al. (2005) and Zimek et al. (2@98)dthieved good
performance. Despite progress, issues remain with respect to how teaksiynto account a hier-
archical structure and to what role the hierarchy plays.

To meet the challenge, this article develops a large margin method for hiegdihssification,
based on a new concept of structured functional and geometric margfingdi for each node of
the hierarchy, which differs from the concept of the loss-weighted msig structured prediction.
This concept of margins with respect to hierarchy is designed to actminter-class dependen-
cies in classification. As a result, the complexity of the classification probldoces, translating
into higher generalization accuracy of classification. Our theory descmhen this will occur,
depending on the structure of a tree hierarchy. In contrast to existingaghes, the proposed
method trains a classifier globally while making sequential nested partitions ssifatation re-
gions. The proposed method is implemented for support vector machink gser et al., 1992)
andy-learning (Shen et al., 2003) through quadratic and difference gqi@) programming.

To examine the proposed method’s generalization performance, wemesifoulation studies.
They indicate that the proposed method achieves higher performandatearstrong competitors.
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A theoretical investigation confirms that the empirical performance is indéd#aliged to a reduced
size of the function space for classification, as measured by the metripgnimough effective use
of a hierarchical structure. In fact, stronger inter-class relationsteetehd to better performance
over its flat counterpart. In conclusion, both the numerical and thedretmalts suggest that a tree
hierarchical structure has been incorporated into classification fargkzation.

This article is organized as follows. Section 2 formulates the problem ofrbiécal classi-
fication. Section 3 introduces the proposed method and develops computtimaa Section 4
performs simulation studies and presents an application of the proposeddnietipene function
prediction. Section 5 is devoted to theoretical investigation of the propostmbdiand to the study
of the role of a hierarchical structure in classification. Section 6 dissuhsamethod, followed by
technical details in the Appendix.

2. Single-path and Partial-path Hierarchical Classificaton

In single-path or partial-path hierarchical classification, infut (Xq,---,Xq) € SC R%is a vector
of g covariates, and we code outptt {1,--- ,K}, corresponding to non-root nodés, - -- ,K} in

a rooted tree#, a graph with nodes connected by directed paths from the root 0, wiverted
edgei — | specifies a parent-child relationship franto j. HereY is structured in that — j in
H induces a subset relation between the corresponding cliaasdg in classification, that is, the
classification region of clasgis a subset of that of classAs a result, direct and indirect relations
among nodes ovel impose an inter-class relationship amdfglasses in classification.

Before proceeding, we introduce some notations for atfesth k leaves andK — k) non-leaf-
nodes, where a non-leaf node is an ancestor of a leaf one. Dengté| ltige size of#. For each
t e {1,---,K}, definepar(t), chi(t) sib(t), andt) andsult) to be sets of its parent(s) (immediate
ancestor), its children (immediate offsprings), its siblings (nodes sharmngpitme parent with node
t), its ancestors (immediate or remote), and the subtree rootedtfroespectively. Throughout
this paper,par(t), chi(t) andsib(t) are allowed to be empty. Assume, without loss of generality,
that|par(t)| = 1 for non-root nodé because multiple parents are not permitted for a tree. Also we
defineL to be the set of leaves of .

To classifyx, a decision function vectof = (f1,---,fk) € F = Hlf:l}]' is introduced, where
fi(x); j =1,---,K, mapping fromR% onto R?, represents claspand mimicsP(Y = j| X = x).
Then f is estimated through a training samg@e= (X;,Y;)";, independent and identically dis-
tributed according to an unknown probabilfyx,y). To assigne, we introduce a top-down deci-
sion ruled" (f(x)) with respect ta# throughf. From the top to the bottom, we go through each
nodej and assigr to one of its children = argmax.cn fi(x) having the highest value among
fi’s for t € chi(j) whenj ¢ L, and assigm to j otherwise.

This top-down rule is sequential, and yields mutually exclusive membershifbforgsclasses.
In particular, for each parerjt chi(j) gives a partition of the classification region of parent class
j. This permits an observation staying at a parent when one child of thetpaidefined as itself,
see, for example, the node labeled@3in Figure 3, which is a case of partial-path hierarchical
classification.

Finally, a classifier is constructed throudfi(-) to have small generalization error
Elo_1(Y,d" (£(X)), with lo_1(Y,d" (£ (X)) = I (Y # d" (£(X)) the 0-1 hierarchical loss.
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3. Proposed Method

In the existing literature on hierarchical classification, the margins areedkfin the conventional
unstructured margins for multiclass classification, for instance, the loggwed hierarchical SVM
of Cai and Hofmann (2004), denoted as HSyYMFor unstructured margins in classification, a
certain number of pairwise comparisons is required, which is the same asntiomal multiclass
classification. In what follows, we propose a new framework using arghierarchy to define
margins, leading to a reduced number of pairwise comparisons for Hieralrclassification.

3.1 Margins with Respect toH

We first explore a connection between classification and function coroparisased on the concept
of generalized functional margins with respect to a hierarchy is intratu@eer a hierarchy, the
top-down ruled™ (f(z)) is employed for classification. To classify, comparing some components
of f at certain relevant nodes i is necessary, which is in a parallel fashion as in multiclass
classification. Consider leaf node 4 in the tséalescribed in Figure 2 (c). Thefg — f3 andfg — f5
need to be compared against 0 to classify at node 4 through the top-d@yrhat is, mirif, —
f3, fs — f5) is less than O or not, which leads to our margin definition(fery = 4) U(f(x),y =
4) = min(fs — f3, fs — f5). More generally, we define sét(f(x),y), fory € {1,--- ,K} to be
{fi—fj:j esibt),t € andy) U{y}} = {Uy1,Uy2,--- Uy } With ky elements. This set compares
any clasgt against sibling classes defined bio(t) for y and any of its ancestots permitting
hierarchical classification at any location®fand generating a single-path or partial-path from the
root to the node corresponding to clgss

For classification evaluation, we define the generalized functional maithinespect ta# for
(2,Y) asumin(f(x),y) =min{uyj :uyj € U(f(x),y)}. Inlight of the result of Lemma 1, this quan-
tity is directly related to the generalization error, which summarizes the overatlia hierarchical
classification as the 0-1 loss in binary classification. That is, a classificatimnoecurs if and only
if umin(f(x),y) < 0. Moreover,this definition reduces to that of multiclass margin classification
of Liu and Shen (2006) when no hierarchical structure is impodedcontrast to the definition
of multiclass classification, the number of comparisons required for clag#ificover a tree/{ is
usually smaller, owing to the fact that only siblings need to be compared thtbadop-down rule,
as opposed to comparisons of all pairs of classes in multiclass classification.

Lemma 1 establishes a key connection between the generalization errouradefinition of

Umin( f(X),Y).
Lemma 1 With I(-) denoting the indicator function,

GE(d) = Elo_1(Y,d(X)) = EI(Y # d(X)) = El (Umin((X),Y) < 0),
where p_; is the 0-1 loss in hierarchical classification, and)lis the indicator function.

This lemma says that a classification error occurs for decision fungtiand an observation
(zx,y), if and only if the functional marginmin(f(x),y) is negative.

3.2 Cost Function and Geometric Margin

To achieve our objective of constructing clas§iﬁér(f(a:)) having small generalization error, we
construct a cost function to yield an estimatefor d™(f(x)). Ideally, one may minimize the
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empirical generalization errar 1S I (Umin(f(X),Yi) < 0) based on X, ;)" ;. However, it is
computationally infeasible because of discontinuityl 0f. For this reason, we replad¢-) by
a surrogate lossg(-) to use the existing two-class surrogate losses in hierarchical classification
addition to computational benefits, certain loss functidnsmay also lead to desirable large margin
properties (Zhu and Hastie, 2005). Given functional matgia umin(f(x),y), we say that a loss
v(+) is a margin loss if it can be written as a functionwfMoreover, it is a large margin if(u)
is nonincreasing im. Most importantly,v(umin(f(x),y)) yields Fisher-consistency in hierarchical
classification, which constitutes a basis of studying the generalizationiei®action 5. Note that
in the two-class case a number of margin losses have been proposedx@urgin losses are the
hinge loss/(u) = (1—u); for SVM and the logistic loss(u) = log(1+ e™") for logistic regression
(Zhu and Hastie, 2005). Nonconvex large margin losses include, éongbe-lossv(u) = W(u) for
Y-learning, with(u) = 1 —sign(u) and sigriu) =1 (u> 0), if u> 1 oru < 0, and 1— u otherwise
(Shen et al., 2003).

Placing a margin loss(-) in the framework of penalization, we propose our cost function for
hierarchical classification:

1) = C 3 Wt ).+ (). @

subject to sum to zero constrairfScsinjjugj)) fr(z) = 0; Vj =1--- K;sib(j) # g,z € § the
domain ofXy, for removing redundancy among the componentg.ofFor example, for the tre@

in Figure 2 (c), three constraints are imposég: f = 0, f3+ f4 = 0 and fs + fg = 0O, for three
pairs of siblings. In (1), penalty( f) is the inverse geometric margin to be introduced, @nd 0

is a tuning parameter regularizing the trade-off between minimi{fg and minimizing training
error. Minimizing (1) with respect t¢f € 7, a candidate function space, yields an estinj%tthus
classifierd” (f(z)). Note that(1) reduces to that of multiclass margin classification of Liu and
Shen (2006) when no hierarchical structure is specified.

To introduce the geometric margin with respec#dn theL,-norm, (with other norms applied
similarly), consider a generic vector of functioffis fj(x) = ij5: +bj; j=1,--- K,withZ ==z
and# = (X(x1,-), -+, K(xn,-))" for linear and kernel learning. The geometric margin is defined
as min, jytesin(j)} Vit Whereyj ¢ = my{ is the usual separation margin defined for clagses

versus € sib(j), representing the vertical distance between two parallel hyperplare§ = +1
(Shen and Wang, 2007). Helfev;|% is [|wj||* in the linear case and is] Kwj in the kernel case
with & being am x nkernel matrix. Note that the other form of the margin inthenorm (with 1<

[ wj —un|?

p < «) can be defined similarly. Ideallyy f) is max{m);tesib(j)}y;tl = maXt,j)tesin(j)}
the inverse of the geometric margin. However, it is less tractable numericedlgtiéally, we work
with its upper bound( f) = %z*j(:l |w; H%C instead.

For hierarchical classification, (1) yields different classifiers witheddht choices of margin
lossv(-). Specifically, (1) covers multiclass SVM anjgHlearning of Liu and Shen (2006), with
equal cost when all the leaf nodes share the same parent—the root, avhidalled SVM and
W-learning in what follows.

3.3 Classification and Hierarchy #H

The hierarchical structure specified 13§ is summarized as the direct parent-child relation and the
associated indirect relations, for classification. They are integrated umtbramework. Whereas
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(a) Hierarchical structure (b) Geometric margin

Figure 1: Plot of generalized geometric margin with respect/tin (b), defined by a tree in (a).
Classification processes sequentially with a partition of classes 7 and 8tapthevel,
and a further partition of class 7 into classes 1,3 and 4, and that of class@&sses 3,5
and 6, where classification boundaries are displayed by dotted linesnéh&o margin
is defined as the minimal vertical distances between seven pairs of soliteplmas,
representing separations between classes 7 and 8, 2 and 5, 2 anddé6,5laand 3, 1
and 4, and 3 and 4.

the top-down rule is specified ¥/, umin(f(x),y) captures the relations through (1). As a re-
sult, a problem’s complexity is reduced when classification is restricted ,tteading to higher
generalization accuracy. This aspect will be confirmed by the numegsalts in Section 4, and
by a comparison of the generalization errors between hierarchical FI8¥ ) and hierarchical
Y-learning (HPSI) against their flat counterparts—SVM gnkkarning in Section 5.

3.4 Minimization

We implement (1) in a generic fornt;(x) = ij:i +Dbj; j=1,---,K. Note that the sum-to-zero
constraints may be infinite, which occurs when the domain bés infinitely many values. To
overcome this difficulty, we derive Theorem 1, which says that reiefoent of the sum-to-zero
constraints for (1) suffices at the observed data instead of all pogsiilees.

Theorem 1 Assume thafZi, &2, - ,&n} spansRY. Then, for j=1,--- K, minimizing (1) subject
to Y rresingugiy fi(x) =0, Vj=1--- ,K;sib(j) # @,z € S, is equivalent to minimizing (1) subject
to 3 (ttesin(jugjyy fi(zi) =0, Vi =1---  K;sib(j) # @,i=1,--- ,n.
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Based on Theorem 1, minimizing (1) is equivalent to

minimizings(f) = !

N

K n
Jlele Hz+Ci;V(Umin(f($i),Yi)), )

subject tOZ{t:tesib(j)u{j}} ft(:lri) =0;i=1---,n, j =1-.--,K, Slb(j) #+ J.

Subsequently, we work with (2), where the proposed classifiers aretatt by HSVM and
HPSI whenv(u) = (1—u); andv(u) = Y(u), respectively. In the first case, HSVM is solved by
guadratic programming (QP), see Appendix B. In the second caseyr(B)HSI is solved by DC
programming, to be described next.

For HPSI, we decompos# f) in (2) with v(u) = Y(u) into a difference of two convex func-
tions: s(f) = s1(f) —s2(f), wheresy () = 3 5 w2+ C 31 1 (Umin( £ (i), yi)) andsz(f) =
CY L1 W2(Umin(f(xi),yi)), derived from a DC decomposition gf = Y1 — Y, with g1 (u) = (1—
u);+ andy,(u) = (—u),. Through our DC decomposition, a sequence of upper approximations
of s(f) si(f) — (f — F™ D, Osp(F™ D)) & is constructed iteratively, wherg, -) « is the inner
product with respect to kernek and Os,(f(™ 1) is a gradient vector of,(f) at the solution
f(mfl) at iterationm— 1, defined as a sum of partial derivativesspfover each observation, with
Ow(u) = 0 whenu > 0 andOy(u) = —1 otherwise. Note thak (f) — (f — F™, Os(F™)) &
is a convex upper bound sf f) by convexity ofs,. Then the upper approximatiea(f) — (f —
f(m-1 Osy(f(™1)) & is minimized to yieldf(™. This is called a DC method for non-convex
minimization in the global optimization literature (An and Tao, 1997).

To design our DC algorithm, starting from an initial valfi€’, the solution of HSVM, we solve
primal problems iteratively. At thetth iteration, we compute

fm = argfmir(sl(f) —(f,O0s(F ™)) &), 3)

subject toy gesin(jyugjyy fr(xi) =0, 1 =1,---,n, j=1,--- K, sib(j) # @, through QP and its
dual form in Appendix B. The above iterative process continues untihaim@tion criterion is met:
Is(f™) —s(f(M1))| <, where isc > 0 is a prespecified tolerance precision. The final estinfiate
is the best solution amonff™ overm.

The above algorithm terminates, and its speed of convergence is sugetind heorem 3 of
Liu et al. (2005) forny-learning. A DC algorithm usually leads to a good local solution even when
it is not global (An and Tao, 1997). In our DC decompositisngan be thought of correcting the
bias due to convexity imposed lsy that is the cost function of HSVM, which assures that a good
local solution or a global solution can be realized. More importantlyg-giobal minimizer can
be obtained when the algorithm is combined with the branch-and-bound methad Liu et al.
(2005). Due to computational consideration, we shall not seek the ghodoat! minimizer.

3.5 Evaluation Losses and Test Errors with Respect to Hierarchy

In hierarchical classification, three types of losses have been moposmeasuring a classifier’s
performance with respect t&, as a generalization of the 0-1 loss in two-class classification. In ad-
dition tolp_1(Y,d(X)), there are the symmetric difference ldgéy,d(X)) (Tsochantaridis et al.,
2004) and the H-losky(Y,d(X)) (Rousu et al., 2006; Cesa-Bianchi et al., 2004). As in Tsochan-
taridis et al. (2004); Rousu et al. (2006); Cesa-Bianchi et al. (20086), we use the 0-1 loss,
symmetric difference loss and H-losses as performance measuremeots tamples. Given a
classifierd(x), Ia(Y,d(X)) is |anqY)Aandd(X))|, whereA denotes the symmetric difference
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of two sets. Heréy(Y,d(X)) = cj, with j the highest node yielding the disagreement betweéen
andd(X) in a tree, ignoring any errors occurring at lower levels. In other watgsenalizes the
disagreement at a parent while tolerating subsequent errors atingfspTwo common choices of
cj’s have been suggested, leading to the subtree based Hggand the siblings based H-loks,

cj =|[sul(j)|/K; j=1,...,K, 4)
Co=1, ¢j = Cpar(j)/Isib()) U{j}|; j=1,....K. (5)

A classifier's generalization performance is measured by the test@efored as

Ntest

TE(f) = m;ét_;uvi,dH(f(Xi))), (6)

whereneq is the size of a test sample, ahis one of the four evaluation lossds: 1, Ia, Isip With
cj's defined by (4) andisyp with c;’s defined by (5). The corresponding test errors are denoted as
TEo-1, TEa, TEsip andT Esup

4. Numerical Examples

The following discusses the numerical results from three simulated exampktheo with an ap-
plication to gene functions classification.

4.1 Simulated Examples

This section applies HSVM and HPSI to three simulated examples, where thegoamared
against their flat counterpartd€lass SVM andk-classy-learning of Liu and Shen (2006), and
two strong competitors—HSVMand the sequential hierarchical SVM (SHSVM). For SHSVM, we
train SVMs separately for each parent node, and use the top-dowmecdio label the estimated
classes. See Davies et al. (2007) for more details.

All numerical analyses are conducted in R version 2.1.1 for SWYNgarning, HSVM, HPSI,
HSVM, and SHSVM. In linear learningk (x,y) = (X,y). In Gaussian kernel learning;(x1, z2) =
exp(—||x1 — x2||2/0?) is used, where is the median of the inter-class distances between any two
classes, see Jaakkola et al. (1999) for the binary case.

For comparison, we define the amount of improvement based on the tast kerisimulated
examples, the amount of improvement of a classifier is the percentage olvenpeat over SVM,
in terms of the Bayesian regret:

(TE(SVM) — Bayeg — (TE(-) — Bayes
(TE(SVM) — Bayes ’

whereT E(-) denotes the test error of a classifier, 8ayesdenotes the Bayes error, which is the
ideal optimal performance and serves as a benchmark for comparnisane4l data example where
the Bayes rule is unavailable, the amount of improvement is

TE(SVM) — TE(")
TE(SVM)

which may underestimate the actual percentage of improvement over SVM.

2728



LARGEMARGIN HIERARCHICAL CLASSIFICATION WITH MUTUALLY EXCLUSIVE CLASSMEMBERSHIP

(a) Example 1

(b) Example 2 (c) Example 3

Figure 2: Hierarchies used in Examples 1, 2 and 3 of Section 4.1, daddnjbiour leave-nodes
asymmetric tree in (a), and complete binary trees with depth3 andk = 2P = 8 leaf
nodes in (b) and with depth= 2 andk = 4 leaf nodes in (c), respectively.

In addition to test errors, F1-scores are computed for each classifieh are between 0 and
1 and measure a classification (test)'s accuracy. A F1-score is defrigg., where the precision
p is the number of correct results over the number of all results classifiedlssa by the trained
classifier, and the recallis the number of correct results divided by the number of instances with
true label of a class. Specifically, for a given classifier, a F1-scatefined as a weighted average
of F1-scores over all classes, weighted by the sample distribution.

For each classifier, we use one independent tuning sample of asimbone independent testing
sample of 5< 10%, for tuning and testing. For tuning, the optin@is obtained by minimizing the
tuning error defined in (6) on 61 grid poin8:= 10/1%1 = —30,—29,---,30. Given the estimated
optimalC, the test error in (6) is computed over the test sample.

Example 1. A random sampl€Y;, X; = {Xi1,Xi2})L_, is generated as follows. FirsK; ~
U2(0,1) is sampled from the two-dimensional uniform distribution. Secofid; {1,2,3,4} is
sampled through conditional distributior3(Y; = 1|X) = 0.17,P(Y; = 2|X) = 0.17,P(Y; = 3|X) =
0.17, P(Y; = 4|X) = 0.49. This generates a simple asymmetric distribution over a tree hierarchy
with a four leaf-nodes as displayed in Figure 2(a).

Clearly, HSVM and HPSI outperform their competitors - HSYMSHSVM and SVM under
each the four evaluation losses in both linear and Gaussian kernel situa8pacifically, the im-
provement amount of HSVM over SVM varies fronb% to 31% in the linear case and6Bs6 to
1.9% in the Gaussian kernel case, whereas that of HPSI ranges fréfb 3 947% and 100%,
respectively. By comparison, the amount of improvement of HgW¥from 0.7% to 10% in
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Linear
Training Test error
Method lo_1 N Isib lsub F1-score
SVM 0.545 (0.048) | 0.527 (0.023) | 0.521(0.014) | 0.521 (0.014) | 0.328 (0.012)
Y-learning 0.515(0.032) | 0.512(0.015) | 0.511(0.009) | 0.511(0.009) | 0.321 (0.011)
% of impro. 86.9% 86.9% 86.9% 86.8%
HSVM, 0.545 (0.044) | 0.527 (0.022) | 0.521(0.012) | 0.520 (0.012) | 0.328 (0.015)
% of impro. 1.0% 1.0% 0.7% 0.9%
SHSVM 0.659 (0.130) | 0.580 (0.061) | 0.554 (0.038) | 0.554 (0.038) | 0.248 (0.013)
% of impro. -321.8% -315.8% -311.9% -312.7%
HSVM 0.545 (0.043) | 0.526 (0.021) | 0.520(0.013) | 0.520 (0.013) | 0.327 (0.005)
% of impro. 1.5% 2.6% 3.0% 3.1%
HPSI 0.512(0.019) | 0.511(0.009) | 0.511(0.006) | 0.511(0.006) | 0.322 (0.102)
% of impro. 94.7% 94.6% 94.5% 94.5%
Bayes Rule 0.51 0.51 0.51 0.51 0.322
Gaussian
Training Test error
Method lo_1 N Isib lsub F1-score
SVM 0.547 (0.055) | 0.528 (0.026) | 0.521(0.017) | 0.521 (0.017) | 0.326 (0.012)
W-learning 0.510(0.000) | 0.510(0.000) | 0.510(0.000) | 0.510(0.000) | 0.322 (0.000)
% of impro. 100% 100% 100% 100%
HSVM¢ 0.547 (0.054) | 0.527 (0.022) | 0.521 (0.015) | 0.521 (0.015) | 0.325 (0.011)
% of impro. 1.0% 1.0% 1.1% 1.1%
SHSVM 0.626 (0.115) | 0.565 (0.054) | 0.544 (0.034) | 0.544 (0.034) | 0.280 (0.078)
% of impro. -214.6% -212.3% -209.8% -209.8%
HSVM 0.546 (0.050) | 0.527 (0.024) | 0.521 (0.015) | 0.521 (0.015) | 0.324 (0.010)
% of impro. 1.6% 1.6% 1.9% 1.9%
HPSI 0.510(0.000) | 0.510(0.000) | 0.510(0.000) | 0.510(0.000) | 0.322 (0.000)
% of impro. 100% 100% 100% 100%
Bayes Rule 0.51 0.51 0.51 0.51 0.322

Table 1: Averaged test errors as well as estimated standard deviatigpgas€imthesis) of SVM-

learning, SHSVM, HSVM, HPSI and HSVMbver 100 simulation replications in Example

1 of Section 4.1. The testing errors are computed undelgthe I, Isip andlgy, The
bold face represents the best performance among four competitors/fgiven loss. For
reference, F1-scores, as defined in Section 4.1, for these clasaiiegiven as well.

the linear case and from@% to 11% in the Gaussian kernel case, and that of SHSVM is from
—3218% to —3119% and—2146% to —209.8%, which means it is actually much worse than
SVM. From hypothesis testing view, the differences of the means for HREEVM are more than
three times of the standard error of the differenced means, indicating #s&t theans are statisti-
cally different at level ofa = 5%. Moreover, HPSI get F1-scores very close to that of the Bayes

rule.

In summary, HSVM, especially HPSI indeed yield significant improvementsitszeompeti-

tors.
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Example 2A complete binary tree of depth 3 is considered, which is displayed in Fig(bk 2
There are eight leaf and six non-leaf nodes, codefilas - ,8} and{9,---,14}, respectively. A
random sample of 100 instance$, Xi = (Xi1,Xi2))% is generated as followsX; ~ U?(—1,1),
whereU?(—1,1) is the uniform distribution on unit squarg)X; = [8 x X1] € {1,---,8}. Then
5% of the samples are randomly chosen with the label values redefingeag+ 1 if Y; £ 8 and
Y; =Y if Y; = 8. Another 5% of the samples are randomly chosen with the label valudseztias
Yi=Yi—1ifYi #1andyY, =Y, if Y = 1. For non-leaf nod¢, P(Y; = j| Xj) = Y {tesutfj)nc} P =
t| Xi). This generates a non-separable case.

Linear
Training Test error
Method lo_1 Ia Isib lsub F1-score
SVM 0.326(0.004) | 0.179(0.003) | 0.148(0.002) | 0.122(0.002) | 0.671(0.004)
Y-learning 0.21(0.004) 0.107(0.003) | 0.091(0.002) | 0.072(0.002) | 0.787(0.004)
% of impro. 47.7% 55.4% 50.9% 53.8%
HSVM, 0.323(0.006) | 0.169(0.002) | 0.148(0.003) | 0.120(0.002) | 0.677(0.006)
% of impro. 1.2% 7.7% 0% 2.2%
SHSVM 0.201(0.003) | 0.106(0.002) | 0.086(0.001) | 0.070(0.001) | 0.798(0.003)
% of impro. 51.4% 56.1% 55.4% 55.9%
HSVM 0.199(0.003) | 0.105(0.002) | 0.086(0.001) | 0.070(0.001) | 0.800(0.003)
% of impro. 52.3% 56.9% 55.4% 55.9%
HPSI 0.195(0.003) | 0.102(0.001) | 0.086(0.002) | 0.068(0.002) | 0.804(0.003)
% of impro. 53.9% 59.2% 55.4% 58.1%
Bayes Rule 0.083 0.049 0.036 0.029 0.916
Gaussian
Training Test error
Methods lo_1 Ia lsib lsub F1-score
SVM 0.305(0.015) | 0.209(0.001) | 0.135(0.008) | 0.110(0.007) | 0.696(0.015)
Y-learning 0.206(0.005) | 0.113(0.003) | 0.087(0.004) | 0.069(0.003) | 0.798(0.005)
% of impro. 44.6% 60.0% 48.5% 50.6%
HSVM, 0.313(0.005) | 0.166(0.003) | 0.128(0.006) | 0.109(0.005) | 0.685(0.005)
% of impro. —3.6% 26.9% 7.1% 1.2%
SHSVM 0.202(0.003) | 0.110(0.002) | 0.086(0.001) | 0.068(0.001) | 0.792(0.003)
% of impro. 46.4% 61.9% 49.5% 51.9%
HSVM 0.205(0.003) | 0.112(0.002) | 0.087(0.001) | 0.069(0.001) | 0.795(0.003)
% of impro. 45.0% 60.6% 48.5% 50.6%
HPSI 0.190(0.002) | 0.102(0.002) | 0.085(0.002) | 0.063(0.002) | 0.815(0.002)
% of impro. 51.8% 66.9% 50.5% 58.0%
Bayes Rule 0.083 0.049 0.036 0.029 0.916

Table 2: Averaged test errors as well as estimated standard deviatiggas€imhesis) of SVMp-
learning, SHSVM, HSVM, HPSI and HSVMbver 100 simulation replications in Example
2 of Section 4.1. The testing errors are computed undefgthe Ia, Isip andlgyy The
bold face represents the best performance among four competitorsyfgiven loss. For
reference, F1-scores, as defined in Section 4.1, for these clasaikegiven as well.

As suggested in Table 2, HSVM and HPSI outperform the three competitdiesig_1, Ia, lsip
andlsyp in the linear case, whereas HSVM performs slightly worse than SHSVM in thesstan
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case. In both cases, the amount of improvement of HSVM and HPSI oseerfldit counterpart
varies. Clearly, HPSI is the winner and outperforms its competitors in all thetisitis.

With regard to the test errors in Table 2, we also observe the followingctspeEirst, the five
classifiers perform similarly undéx, Isip andlgy, This is because all the eight leaf node classes are
at level 3 of the hierarchy, resulting a similar structure under these ¢vailasses. Second, the
classifiers perform similarly for linear learning and Gaussian kernetilegr This is mainly due to
the fact that the ideal optimal decision rule—Bayes rule is linear in this casesdver, HPSI and
HSVM always have better F1-scores, which are the two most close tofttiet Bayes rule.

In summary, HSVM and HPSI indeed yield improvements over their flat copetisr because
of the built-in hierarchical structure, and HPSI outperforms its competikbese, the hierarchy—a
tree of depth 3 is useful in reducing a classification problem’s complexityhwdan be explained
by the concept of the margins with respect to hierarchy, as discussedtiois3.1.

Example 3. A random sampl€Y;, X; = {Xi1,Xi2}){L, is generated as follows. Firsi; ~
UZ(—l, 1) is sampled. Second; = 1if Xj1 <0 andXj2 < 0;Y; =2if Xy <0 andX2>0;Y, =3
if Xiz>0andXj2<0;Y=4if X1 >0 andXj > 0. Third, 20% of the sample are chosen at
random and their labels are randomly assigned to the other three classesnHeaf nodes 5 and
6,P(Y = 5/X;) = P(Y, = 1| X)) + P(Y; = 2| Xj), andP(¥; = 6|X;) = P(Y, = 3| X;) + P(Y; = 4| X).
This generates a complete binary tree of depth 2, where nodes 1 andiBlengs of node 5, and
nodes 3 and 4 are siblings of node 6, see Figure 2 (c). Experimentgdioenped with different
training sample sizes of 50, 150, 500 and 1500.

Again, HSVM and HPSI outperform their competitors- HSY,MSHSVM and SVM under the
four evaluation losses in all the situations. The amount improvement of HS¥EvV1®VM varies
from 224% to 526% in the linear case and®6 to 425% in the Gaussian kernel case, whereas that
of HPSI ranges from 39% to 895% and 206% to 806%, respectively. By comparison, the amount
of improvement of HSVM is from 6.4% to 238% in the linear case and from4®6 to 188% in the
Gaussian kernel case, and that of SHSVM is fron12d.to 474% and 95% to 452%. With regard
to F1-scores, HPSI and HSVM remain to be the best, and are much moréctbse of the Bayes
rule.

In summary, the improvement of HPSI over HSVM becomes more significagn tte training
size increases. As expected, HPSI is the winner and nearly achievgsitin@l performance of the
Bayes rule when the sample size gets large.

4.2 Classification of Gene Functions

Biological functions of many known genes remain largely unknown. Fast®. cerevisiagonly
68.5% of the genes were annotated in MIPS, as of May, 2005, for which miatinem have only
general functions annotated in some top-level categories. Discovdxiplofjical functions there-
fore becomes very important in biomedical research. As effective mgane function prediction is
performed through known gene functions and gene expression profiteth annotated and unan-
notated genes. Biologically, it is generally believed that genes having e siasimilar functions
tend to be coexpressed (Hughes et al., 2000). By learning the patfexmression profiles, a gene
with unknown functions can be classified into existing functional categagewell as newly cre-
ated functional categories. In the process of prediction, classificatessential, as to be discussed
next.
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Linear
| & Sample TE and % of impro.
Bayes Rule Size SVM W-learning HSVM¢ SHSVM HSVM HPSI
lo—1 n=50 0.347(0.070)| 0.315(0.058)| 0.337(0.047)| 0.316(0.047)| 0.314(0.058)| 0.289(0.045)
21.8% 6.8% 21.1% 22.4% 39.5%
n=150 | 0.284(0.043)| 0.261(0.030)| 0.275(0.023)| 0.263(0.023)| 0.260(0.030)| 0.237(0.016)
0.200 27.4% 10.7% 25.0% 28.6% 56.0%
n=500 | 0.247(0.014)| 0.234(0.013)| 0.241(0.014)| 0.235(0.014)| 0.233(0.013)| 0.213(0.007)
27.7% 12.8% 25.5% 29.8% 72.3%
n=1500 | 0.230(0.010)| 0.217(0.005)| 0.223(0.009)| 0.218(0.009)| 0.217(0.005)| 0.205(0.003)
43.3% 23.3% 40.0% 43.3% 83.3%
Isib n=50 0.276(0.056) | 0.249(0.046)| 0.269(0.037)| 0.250(0.037)| 0.248(0.046)| 0.229(0.035)
24.8% 6.4% 23.9% 25.7% 43.1%
n=150 | 0.230(0.032)| 0.211(0.022)| 0.222(0.018)| 0.213(0.018)| 0.210(0.022)| 0.191(0.012)
0.167 30.2% 12.7% 27.0% 31.7% 61.9%
n=500 | 0.203(0.012)| 0.193(0.011)| 0.198(0.012)| 0.194(0.012)| 0.192(0.011)| 0.175(0.005)
27.8% 13.9% 25.0% 30.6% 77.8%
n=1500 | 0.188(0.007)| 0.178(0.004)| 0.183(0.007)| 0.179(0.007)| 0.178(0.004)| 0.170(0.002)
47.6% 23.8% 42.9% 47.6% 85.7%
Isub n=50 0.252(0.051)| 0.227(0.042)| 0.244(0.041)| 0.228(0.041)| 0.226(0.042)| 0.210(0.033)
26.0% 8.3% 25.0% 27.1% 43.8%
n=150 | 0.212(0.029)| 0.194(0.020)| 0.203(0.020)| 0.196(0.020)| 0.193(0.020)| 0.176(0.010)
0.156 32.1% 16.1% 28.6% 33.9% 64.3%
n=500 | 0.188(0.011)| 0.179(0.010)| 0.184(0.011)| 0.180(0.011)| 0.178(0.010)| 0.162(0.005)
28.1% 12.5% 25.0% 31.3% 81.3%
n=1500 | 0.175(0.007)| 0.165(0.004)| 0.172(0.007)| 0.166(0.007)| 0.165(0.004)| 0.158(0.002)
52.6% 15.8% 47.4% 52.6% 89.5%
Ia n=50 0.184(0.037)| 0.166(0.031)| 0.179(0.025)| 0.167(0.025)| 0.165(0.031)| 0.153(0.023)
24.7% 6.4% 23.7% 25.6% 42.9%
n=150 | 0.153(0.021)| 0.141(0.015)| 0.148(0.012)| 0.142(0.012)| 0.140(0.015)| 0.127(0.008)
0.111 28.6% 12.6% 26.8% 31.5% 61.4%
n=500 | 0.135(0.008)| 0.128(0.007)| 0.132(0.008)| 0.129(0.008)| 0.128(0.007)| 0.117(0.003)
29.2% 13.7% 24.7% 30.1% 76.7%
n=1500 | 0.125(0.005)| 0.119(0.003)| 0.122(0.005)| 0.119(0.005)| 0.119(0.003)| 0.113(0.002)
42.9% 23.3% 41.9% 46.5% 83.7%
F1-score n=50 0.557(0.106)| 0.588(0.107)| 0.571(0.075)| 0.588(0.076)| 0.589(0.106)| 0.597(0.110)
12.8% 5.8% 12.8% 13.2% 16.5%
n=150 | 0.672(0.063)| 0.701(0.055)| 0.683(0.026)| 0.710(0.026)| 0.691(0.054)| 0.719(0.034)
0.800 22.7% 8.6% 29.7% 14.8% 36.7%
n=500 | 0.721(0.016)| 0.741(0.017)| 0.729(0.015)| 0.749(0.014)| 0.737(0.017)| 0.754(0.012)
25.3% 10.1% 35.4% 20.3% 41.8%
n=1500 | 0.746(0.017)| 0.763(0.015)| 0.755(0.010)| 0.763(0.010)| 0.764(0.015)| 0.779(0.004)
31.5% 16.7% 31.5% 33.3% 61.1%

Table 3: Averaged test errors as well as estimated standard deviatigpas€imhesis) of SVMp-
learning, HSVM, SHSVM, HSVM and HPSI over 100 simulation replications of linear
learning in Example 3 of Section 4.1, with= 50,150 500 1500. The test errors are
computed under thi_1, Ia, Isip andlsyn. For reference, F1-scores, as defined in Section
4.1, for these classifiers are given as well.

Hughes et al. (2000) demonstrated the effectiveness of gene fupotidiction through genome-
wide expression profiles, and identified and experimentally confirmed eigititaracterized open
reading frames as protein-coding genes. Specifically, three hungipeelssions were profiled for
the genome of yeas$. cerevisiagin which transcript levels of a mutant or a compound-treated
culture were compared against that of a wild-type or a mock-treated cultiaree hundred experi-
ments, consisting of 276 deletion mutants, 11 tetracycline-regulatable allelssasftial genes, and
13 well-characterized compounds. Deletion mutants were selected suehviragty of functional
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Gaussian
| & Sample TE and % of impro.
Bayes Rule Size SVM W-learning HSVM¢ SHSVM HSVM HPSI
lo—1 n=50 0.326(0.060) | 0.313(0.047)| 0.323(0.047)| 0.314(0.047)| 0.313(0.047)| 0.300(0.045)
10.3% 2.4% 9.5% 8.9% 20.6%
n=150 | 0.280(0.036)| 0.27 (0.027) | 0.276(0.030)| 0.270(0.030)| 0.270(0.027)| 0.261(0.016)
0.200 12.5% 5.0% 12.5% 12.5% 23.8%
n=500 | 0.257(0.022)| 0.24 (0.014)| 0.252(0.013)| 0.239(0.013)| 0.240(0.014)| 0.224(0.007)
29.8% 8.8% 31.6% 29.8% 57.9%
n=1500 | 0.247(0.013)| 0.227(0.010)| 0.240(0.011)| 0.226(0.011)| 0.227(0.010)| 0.215(0.003)
42.6% 14.9% 44.7% 42.5% 68.1%
Isib n=50 0.263(0.048)| 0.250(0.037)| 0.257(0.037)| 0.251(0.037)| 0.250(0.037)| 0.243(0.035)
13.5% 6.3% 12.5% 9.8% 20.8%
n=150 | 0.229(0.029)| 0.218(0.022)| 0.225(0.022)| 0.219(0.022)| 0.218(0.022)| 0.211(0.012)
0.167 17.7% 6.5% 16.1% 13.1% 29.0%
n=500 | 0.208(0.016)| 0.195(0.010)| 0.202(0.011)| 0.194(0.011)| 0.195(0.010)| 0.181(0.005)
31.7% 14.6% 34.1% 31.7% 65.9%
n=1500 | 0.198(0.008)| 0.185(0.006)| 0.193(0.005)| 0.184(0.005)| 0.185(0.006)| 0.173(0.003)
41.9% 16.1% 45.2% 40.9% 80.6%
Isub n=50 0.241(0.044)| 0.227(0.034)| 0.237(0.041)| 0.230(0.041)| 0.228(0.034)| 0.222(0.033)
16.5% 4.7% 12.9% 11.1% 22.4%
n=150 | 0.211(0.027)| 0.2(0.020) | 0.207(0.020)| 0.202(0.020)| 0.201(0.020)| 0.192(0.010)
0.156 20.0% 7.3% 16.4% 13.5% 34.5%
n=500 | 0.192(0.015)| 0.179(0.009)| 0.187(0.010)| 0.179(0.010)| 0.180(0.009)| 0.169(0.005)
36.1% 13.9% 36.1% 33.3% 63.9%
n=1500 | 0.188(0.009)| 0.175(0.006)| 0.182(0.005)| 0.175(0.005)| 0.176(0.006)| 0.163(0.003)
40.6% 18.8% 40.6% 35.4% 78.1%
Ia n=50 0.175(0.032)| 0.167(0.025)| 0.171(0.025)| 0.167(0.025)| 0.166(0.025)| 0.162(0.023)
12.5% 6.2% 12.4% 9.8% 20.7%
n=150 | 0.153(0.019)| 0.145(0.015)| 0.150(0.014)| 0.146(0.014)| 0.145(0.015)| 0.141(0.008)
0.111 19.0% 6.4% 16.0% 13.1% 28.8%
n=500 | 0.139(0.011)| 0.13(0.007)| 0.135(0.007)| 0.129(0.007)| 0.130(0.007)| 0.121(0.003)
32.1% 14.5% 33.7% 31.7% 65.1%
n=1500 | 0.132(0.005)| 0.123(0.004)| 0.129(0.004)| 0.123(0.004)| 0.123(0.004)| 0.115(0.002)
42.9% 15.9% 44.4% 41.3% 79.4%
F1-score n=50 0.559(0.105)| 0.589(0.107)| 0.573(0.076)| 0.590(0.076)| 0.591(0.105)| 0.595(0.109)
12.4% 5.8% 12.9% 13.3% 14.9%
n=150 | 0.674(0.062)| 0.703(0.053)| 0.686(0.024)| 0.713(0.025)| 0.695(0.051)| 0.717(0.033)
0.800 23.0% 9.5% 31.0% 16.7% 34.1%
n=500 | 0.723(0.016)| 0.744(0.017)| 0.732(0.014)| 0.752(0.014)| 0.740(0.016)| 0.753(0.012)
27.3% 11.7% 37.7% 22.1% 39.0%
n=1500 | 0.747(0.017)| 0.765(0.015)| 0.757(0.011)| 0.766(0.010)| 0.767(0.015)| 0.776(0.004)
34.0% 18.9% 35.8% 37.7% 54.7%

Table 4: Averaged test errors as well as estimated standard deviatigpas€imhesis) of SVMp-
learning, HSVM, SHSVM, HSVM and HPSI over 100 simulation replications of kernel
learning in Example 3 of Section 4.1, with= 50,150 500 1500. The test errors are
computed under thi_1, Ia, Isip andlsyn. For reference, F1-scores, as defined in Section
4.1, for these classifiers are given as well.

classifications were represented. Experiments were performed underaon condition to allow
direct comparison of the behavior of all genes in response to all mutatimhseatments. Expres-
sions of the three hundred experiments were profiled through a twarehaNA chip technology
(or hybridization assay). As suggested in Hughes et al. (2000), firession profiles were indeed
informative to gene function prediction.

In gene function prediction, one major difficulty is the presence of a langeber of function
categories with relatively small-sample size, which is known as the situatiorgefi@amber of cate-
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gories in classification. To battle the curse of dimensionality, a structuregdagpneeds to be used
with built-in biological knowledge presented in a form of annotation systech ag MIPS, where
a flat approach does not perform better than a classifier that useseatdaerarchical structure.
Comparisons can be found in Shahbaba and Neal (2007), and GasaiBand Valentini (2009).
The problem of gene function prediction is an ideal test case for hlécataclassification, where
accuracy of prediction is key. In the literature, recalibration and combimaticdifferent large
margin methods, including sequential HSVM and loss scaled SVM, werdmgede function pre-
diction, see, for example, Obozinski et al. (2008), Guan et al. (2@08) Valentini and Re (2009).
Astikainen et al. (2008) used a different representation with a lodees88%M. Cesa-Bianchi et al.
(2006), and Cesa-Bianchi and Valentini (2009) employed a Bayenimamele method.

Through gene expression data in Hughes et al. (2000), we apply H&®YWHPSI to predict
gene functions. Of particular consideration is prediction of function@gmies of unknown genes
within two major branches of MIPS, composed of two functional categotiéiseahighest level:
“cell cycle and DNA processing” and “transcription” and their corasging offsprings. Within
these two major branches, we hawve 1103 annotated genes together with 300 expressions for
each gene and a tree hierarchyko# 23 functional categories, see Figure 3 for a display of the tree
hierarchy. In this case, the predicterrepresents the expression levels of a gene, consisting of the
log-ratios (base 10) of the mRNA abundance in the test samples relative nef¢inence samples,
and labelY indicates the location within the MIPS hierarchy. For this MIPS data, somesgene
belong to two or more functional categories. To place the problem of gemtidén prediction into
our framework of hierarchical classification, we may create a new atpeategory for all genes
that are annotated with a common set of categories. For an example, in Eigp)reéf we observed
cases of common members for Categories 2 and 3, we will create a casayoBategory 15, which
is the sibling of Categories 9 and 10. Those common members will be assignatego€y 15.

Notice that, although we have nearly balanced situation in this example, inafjareemay see
unbalanced situations.

We now perform some simulations to gain insight into HSVM and HPSI for ganetibn
prediction before applying to predict new gene functions with respectiRSMFor this purpose,
we use the 2005 version of MIPS and proceed 100 randomly partition tine set of data of 1103
genes into training, tuning and testing sets, with 303, 300, and 500 geapsctively. Then HSVM
and HPSI are trained with training samples, tuned and tested as in Sectionet.100wifferent
random partitions to avoid homologous gene clusters. Their performameeasured by the test
errors is averaged over 100 random partitions.

As suggested by Table 5, besides similar results in F1-score, HSVM a8tddiperform SVM
and HSVM, underlg_1, Ia, Isip andla, in both the linear and Gaussian kernel cases. With respect
to these four losses, the amount of improvement of HSVM over SVM rainges0.1% to 31.8%,
whereas that of HPSI over SVM is from 0.1% to 32.3%. Among these foaefis andlgyy yield
the largest amount of improvement. This suggests that HPSI and HSVMfglagse precisely
at the top levels than at the bottom levels of the hierarchy, where the inssr-a#goendencies are
weak. Note thaty andlg,, penalize misclassification more at relevant nodes at lower levels in deep
branches, wheredg, only does so at upper levels. Interestingly, small and large branckieshe
same parents, leading to large differences in penalties under diffessesldt is also noted that the
F1-scores are not significantly above 0 for all the large margin methodsexemparing here.

We are now ready to apply our method to real challenge of predicting wikgene functional
categories that had not been annotated in the 2005 version of MIPSirétiieted gene functions
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Figure 3: Two major branches of MIPS, with two functional categoriesahtghest level: “Cell
cycle and DNA processing” and “Transcription”. For each node, thieesponding func-
tional category is defined by a combination of numbers of itself and all of #estars.
For instance, the middle node 01 at level 4 indicates functional categad$.04.01 in
MIPS, which corresponds to “General transcription activities”. Notas dhblank node
represents its parent itself, for instance, the left blank node at levei&aies functional
category 03.01.

will be cross-validated by a newer version of MIPS, dated in March 200&re about 600 addi-
tional genes have been added into functional categories, represtitagest biological advance.
We proceed in three steps. First, we use the tuned HSVM and HPSI tramedlththe training
samples in the 2005 version of MIPS, which are the best performer avdOhrandom partitions.
Second, the trained HPSI and HSVM are applied to ten most confiders g@nerediction, which
are chosen among unannotated genes in the 2005 version but annothés2(a8 version. Here the
confidence is measured by the value of the functional margin. Third, &sfigbions from HSVM
and HPSI are cross-validated by the 2008 version of MIPS.

As indicated in Table 6, seven out of the ten genes are predicted cor@chigth HSVM and
HPSI. For an example, gene “YGR054w” is not annotated in the 200%oweo$§ MIPS, and is pre-
dicted to belong to functional categories along a path “Protein synthesi®Ribosome biogenesis”
— “Ribosomal proteins” by HPSI. This prediction is confirmed to be exactlysmbiby the newer
version of MIPS.

5. Statistical Learning Theory

In the literature, the generalization accuracy for hierarchical classificand the role of# have
not been widely studied. This section develops an asymptotic theory to quinrgtieneralization
accuracy of the proposed hierarchical large margin classlfﬁ(ef) defined by (2) for a general loss
v. In particular, the rate of convergencedt( ) is derived. Moreover, we apply the theory to one
illustrative example to study when and hawimproves the performance over flat classification.
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Linear

Training Test error

Methods lo_1 Ia lsib lsub F1-score
SVM 0.972(0.006) | 0.651(0.024) | 0.926(0.008) | 0.593(0.029) | 0.007(0.002)
Y-learning 0.961(0.009) | 0.633(0.023) 0.92(0.022) 0.581(0.041) | 0.007(0.002)
% of impro. 1.13% 2.8% 0.7% 2.0%

SHSVM 0.962(0.007) | 0.552(0.031) | 0.927(0.008) | 0.442(0.036) | 0.015(0.002)
% of impro. 1.0% 15.2% 0.1% 25.5%
HSVM 0.960(0.009) | 0.520(0.023) | 0.918(0.022) | 0.433(0.041) | 0.008(0.002)
% of impro. 1.2% 20.0% 0.8% 27.0%
HPSI 0.958(0.008) | 0.517(0.020) | 0.917(0.020) | 0.430(0.038) | 0.009(0.002)
% of impro. 1.4% 20.6% 1.0% 27.5%
Gaussian

Training Test error

Methods lo_1 Ia lsib lsub F1-score
SVM 0.976(0.002) | 0.669(0.005) | 0.921(0.003) | 0.617(0.007) | 0.007(0.002)
Y-learning 0.961(0.008) | 0.660(0.020) 0.92(0.019) 0.601(0.030) | 0.007(0.002)
% of impro. 1.5% 1.3% 0.1% 2.6%

SHSVM 0.963(0.006) | 0.558(0.033) | 0.920(0.009) | 0.430(0.029) | 0.016(0.002)
% of impro. 1.3% 16.6% 0.1% 30.3%

HSVM 0.961(0.008) | 0.515(0.020) | 0.920(0.019) | 0.421(0.030) | 0.008(0.002)
% of impro. 1.5% 23.0% 0.1% 31.8%

HPSI 0.960(0.008) | 0.512(0.021) | 0.920(0.020) | 0.418(0.030) | 0.009(0.002)
% of impro. 1.6% 23.5% 0.1% 32.3%

Table 5: Averaged test errors as well as estimated standard deviatiggas€imthesis) of SVM-
learning, SHSVM, HSVM and HPSI, in the gene function example in Sectiqroge? 100
simulation replications. The testing errors are computed uiderla, Iy _sip andly _sup
The bold face represents the best performance among four compaetditars/fgiven loss.
For reference, F1-scores, as defined in Section 4.1, for thesdielasare given as well.

5.1 Theory

In classification, the performance of our classiﬁér(f) is measured by the difference between the
actual performance of and the ideal optimal performance Bfdefined ag( f, f) = GE(d" (f)) —
GE(d"(f)) = E(Io_l(Y,dH(f(X))) —lo_1(Y,d"(F(X)))) > 0. HereGE(d"(f)) is the optimal
performance for any classifier provided that the unknown true distrib&e,y) would have been
available. In hierarchical classification wikHeaf and(K — k) non-leaf node classes, the Bayes de-
cision function vectotf is a decision function vector yielding the Bayes classifier uadfethat is,
d"(f(z)) =d(z). In our context, we defing as follows: for eaclj, fj(z) = MaX tesunjyne P(Y =

t| X =x)if j¢ Landfj(x)=P(Y=j|X =x)if je L.

Letey(f,f) =E(V(f,Z)—-V(f,Z))>0andA = (nC)~%, whereV(f, Z) is defined as(Unin
(f(X),Y)), Z=(X,Y), andv(-) is any large margin surrogate loss used in (2).

The following theorem quantifies Bayesian reggéf, f) in terms of the tuning parametér
throughA = % the sample size, the smoothness parametées 3) of a surrogate los¥-based
classification model, and the complexity of the class of candidate functionrgeEtoNote that
the assumptions below are parallel to those of Theorem 3 in Liu and She®) (20 statistical
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Prediction verified
Gene Function category HSVM | HPSI | HSVM; | SHSVM
YGRO054w translation initiation Yes Yes Yes Yes
YCRO72c ribosome biogenesis Yes Yes Yes Yes
YFLO44c transcriptional control Yes Yes Yes Yes
YNL156¢ binding / dissociation No No No No
YPL201c | C-compound and carbohydrate utilization Yes Yes Yes Yes
YMLO69W MRNA synthesis Yes Yes Yes Yes
YORO039W | mitotic cell cycle and cell cycle control| Yes Yes No Yes
YNLO23C MRNA synthesis No Yes No No
YPLOO7C MRNA synthesis No No No No
YDR279W DNA synthesis and replication Yes No No No

Table 6: Verification of 10 gene predictions using an updated MIPS syateirtheir functional
categories.

learning theory for multiclass SVM andi-learning. In particular, Assumptions A-C described in
Appendix are used to quantity the error rate of the classifier, in addition tonglexity measure
the metric entropy with bracketiridg for function spacef defined before Assumption C.

Theorem 2 Under Assumptions A-C in Appendix A, for any large margin hierarchatadsifier
d" (f) defined by (1), there exists a constagitcO such that for any % 1,

P(e(f, F) > cixd®) < 3.5exg —cex® MNBLn(AJp)2-minB.1)),

provided that 1 > 25,2Jo, whered2 = min(e2 + 2ey (£*, f), 1), £* € ¥ is an approximation irnf
to f, o =maxJ(f*),1) with J(f) = 331 || ;|5 andar, B, €, are defined in Assumptions A-C in
Appendix A.

Corollary 1 Under the assumptions in Theoremé.f, f)| = Op (52%) and Ele(f, f)| = O (52%),
provided that iAJo)2~™"(B.1) is bounded away frori n — oo.

The convergence rate fe(f, f) is determined by, a > 0 andB > 0, whered, captures the
trade-off between the approximation ereg( £*, f) due to use the surrogate l0gsand estimation
error €2, whereg, is defined by the bracketing, entropy of candidate function spage’ (t) =
VT (f,2)=V(f,z): f € F,I(f) < It}, and the last two quantify the first and second moments
of EV(f,Z), wherez = (x,y) andZ = (z,Y).

By comparison, with induced by a margin losg 7V (t) in multiclass classification is usually
larger than its counterpart in hierarchical classification. This is becdusestructured in that
functional margirumin(f(X),Y) involves a smaller number of pairwise comparisons in hierarchical
classification. In fact, only siblings fof or one ofY’s ancestors are compared. In contrast, any two
classes need to be compared in multiclass classification without such a yefaic and Shen,

2006). A theoretical description regarding the reduced size of thetistigparameter spacg" (t)
is given in the following lemma.
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With regard to tightness of the bounds derived in Theorem 1, note thalites to multiclass
margin classification, where the linear example in Shen and Wang (200 7tieslihat the ! rate
obtained from the upper bound theory agrees with the optimal rate of igamee.

Lemma 2 Let # be a tree hierarchy with K non-root nodes including k leaf node%; I --- =
Fx, then Ks(g, FV (1)) < 2¢(H)Hp(g/(2¢(H)), F1(t)) with v being the hinge and losses, where
c(H) =55, hIINID < KkD) s the total number of comparisons required for hierarchical
classification, andfj(t) = {f; : %|| fillg <Jot}; j=1,--- K.

5.2 Bayes Classifier and Fisher-consistency

To compare different losses for the purpose of hierarchical claasific we introduce a new con-
cept called “Fisher-consistency” with respect#o Before proceeding, we define the Bayes rule in
Lemma 3 forK-class classification with non-exclusive membership, where lorlK classes have
mutually exclusive membership, determining the class membership of thekothlenon-exclusive
classes.

Lemma 3 In K-class classification with non-exclusive membership, assume thiainlgually ex-
clusive membership classes uniquely determine the membership of th& etHenon-exclusive
classes. That is, for anyd E andf ¢ E, either{Y ={} D {Y =t}, or {Y =} C {Y #1t},
where E is the set of k mutually exclusive membership classes. Thenytae Bassified(x) =
argmaxe P(Y = j| X = z).

Based on Lemma 3, we define Fisher-consistency with respeftitohierarchical classifica-
tion, which can be regarded as a generalization of Fisher-consistenuyltirclassification cases.

Definition 1 In hierarchical classification, denote by the set of classes corresponding to the leaf
nodes in a tree. WitlL being a set of mutually exclusive membership classes, a(logsi$ said to
be Fisher-consistent with respectf if a global minimizer E(Y, f (X)) over all possiblef (x) is

f.

Lemma 4 Loss b_; is Fisher-consistent with respect #; so is |x in the presence of a dominating
leaf node class, that is, a class such that for ang S there exists a leaf node class j such that
P(Y=]j|X =x)>1/2

As shown in Lemma 4,_; andl, are Fisher-consistent with respectio

Lemma 5 Surrogate loss (min(f(x),Y)) is Fisher-consistent with respectf when \(-) is either
the hinge loss or tha loss.

5.3 Theoretical Examples

Consider hierarchical classification witi defined by a complete binary tree with depthFor this
tree, there aré = 2P leaf nodes andk = 2P+1 — 2 = 2k — 2 non-root nodes, see Figure 2 (b) for
an example op = 3. Without loss of generality, denote Ky1,---, jx} thek leaf nodes. In what
follows, we focus on the 0-1 loss with=lg_1.

A random sample is generateX = (X1), X)) sampled from the uniform distribution over
S=10,1] For any leaf nodg;; i =1,--- ,k, whenX € [(i—1)/k,i/k), P(Y = ji| X) = (k—1) /K,
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andP(Y = j|X) = 1/[k(k—1)] for j # ji. For any non-leaf nodg;; i = k+1,--- ,K, P(Y =
Ji| X) = Ztesuk(J.)ﬂL P(Y =t|X). Then the Bayes rule is defined from the Bayes decision function
f= {fl, , Tk} through the top-down rule, wheis defined as follows: For leaf nodefs, )=
Yi—1(X) t/k) i=1,--,k so that wherx € [(io — 1)/k,io/k), f,,o( x) = maX=y,.. k fj(z).
For non-leaf nodes, let it be the maximum over the leaf nodes in the subtedes, fj () =
MaXtesubji)nc fi;i=k+1,--- K.

Linear learning: Let 7 = {(fy,---,fk): fj =w] x+bj} andI(f) = 3%, lw;||%, where| - |
is the Euclideaby-norm. We now verify Assumptions A-C for Corollary 1. It follows fromiena
3 of Shen and Wang (2007) with* = arginfse# Elo-1(f, Z) for HSVM and f; = zt‘:ln(x(l) —
t/k) for HPSI; j = 1,--- .k, and f]" = maxcsutyj)ne) T otherwise. Assumptions A and B there
are met witha = % and = 1 for HSVM, and witha = 3 = 1 for HPSI. For Assumption C,
note thatHg(¢, 71(t)) < O(log(1/€)), by Lemma 2 withc(#H ) = ZJ olchi(j)|(Jchi(j)]—1)/2=
Z'fzol{j ¢ L}=k—1, we have, for HSVM and HPSHg (g, FV (1)) < O(klog (k/€)) (Kolmogorov

and Tihomirov, 1959). Consequently< O(g2) in Assumption C, where(gp, s) = fC3L e 1/2( u,
FV(s))du/L and sup., (en,t) < O((klog(k/€n))Y/2/en). Solving (7) in Assumption C leads to
en = (K%9")1/2 for HSVM and HPSI whei€/Jo ~ 5,2/n~ L, provided that!%" — 0, with 3, as

defined in Theorem 2. Similarly, for multiclass SVM aweearning,&, = (wn/z'ogn)l/2 (Shen
and Wang, 2007).

By Corollary 1,|e(f, f)| = Op((klog n/n)l/z) andE|e(f,f)| = O((klogn/n)1/2> for HSVM,
andle(f, f)| = Op<klogn/n> andE |e(f, f)| = (klogn/n) for HPSI, whenk'%9" _, 0 asn — oo,
By comparison, the rates of convergence for SVM gnlgarning areO((k<k Y Iogn/n)l/z) and
O(&g1> log n/n). In this case, the hierarchy enables to reduce the order%ﬁi down tok.

Note that# is a flat tree with only one layer, that is, all the leaf nodes are the diresprrifys
of the root node 0, which means thahi(0)| = k. Thenc(#) = [SMOIINOIL) _ kil = Thjg
would lead to the same rates of convergence for HSVM and HPSI as theiterparts.

Gaussian kernel learning: Consider the same setting with candidate function class defined by
the Gaussian kernel. By the Aronszajn representation theorem of tredueing kernel Hilbert
spaces (Gu, 2000), it is convenient to embed a finite-dimensional Gaussiael representation
into an infinite-dimensional spacg = {z € R?: f(z) = (fi(x),..., fk(z)) with fj(x) = bj +
w] Q@) = bj + 57 oW @ (@) : wj € 12}, and(@(@), §(=)) = K (@, z) = exp(— M) wherea,
is a scaling tuning parameter for the Gaussian kernel, which may depemdrowhat follows, we
verify Assumptions A-C for HSVM and HPSI separately, and calcugie Corollary 1.

For HSVM, letting f = 1— (1+exp(zt 1 T(X1) —t/K))) % for j=1,--- k, and lettingf; =
MaXiesuj)ncy T otherwise,e( f*, f) = O(k/1) and J(f*) = O(ke” o). Assumptions A and B
are met witha = 3 =1 by Lemmas 6 and 7 of Shen and Wang (2007). For Assumption C, fol-
lowing from Section 5.3 of Shen and Wang (2007), we hagée, F1(t)) < O((log((Jot)¥/2/€))3).

By Lemma 2, withc(#) = k— 1 as calculated in the linear cases, we have ke, 7V (t)) <
O(k(log((Jot)Y/%k/€))?), wheredy = max(J(f*),1). Note thatL < O(g2). Then sup.,®(en,t) <
O((k(log((Jot)*/?k/€n))3)Y/2/€n). Solving (7) in Assumption Cleadsaﬁ kn~ (Iog((Jon)l/z))
whenAJo ~ €2. By Corollary 1.e(f, f) = Op(82) andE€( f, f) = O(82), with 82 = max(kn1 (1202
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+0524logn)3, k/1) = Op(kn¥/7) with T ~ n'/7 whena? is fixed, andOp(kn~/4) whent ~ a2 ~
nl/4,

For HPSI, letf] = Z}“:lt()i(l) — /K =1,k andf;" = maXtcsunj)ncy i otherwise. Then
it can be verified thae_(f*, f) = O(k/1) andJ(f*) = O(kt?a?). Assumptions A and B are met
with a = B = 1 by Theorem 3.1 of Liu and Shen (2006). Aldg(&, F1(t)) < O((log((Jt)*?/€))3),
thus sup.., @(en,t) < O((k(log((Jot)*/?k/€n))®)>/2/€n). Similarly as in HSVM, solving (7) in As-
sumption C leads te? = kn—*(log((Jon)?))3 whenAJo ~ €2. By Corollary 1,&(f, f) = Op(&)
andEe(f, f) = O(82), with 3 = maxkn-(log(nt202) + 6,2)3, k/1) = O(kn‘l(logn)3) with
T~ n(logn)~2 and fixedo?, or 62 ~ 1/ logn.

An application of Theorem 1 in Shen and Wang (2007) yields the comreggates of SVM and
P-learning to beD <k(k—2_1)n*1/7> andO (@nfl(logn)s), respectively. Again, the hierarchical

structure reduces the order frditk — 1) /2 tok as in the linear case.

6. Discussion

This paper proposed a novel large margin method for single-path orlgzattahierarchical classi-
fication with mutually exclusive membership at the same level of a hierarclopnimast to existing
hierarchical classification methods, the proposed method uses intedefzssdencies in a hierar-
chy. This is achieved through a new concept of generalized functinaadins with respect to the
hierarchy. By integrating the hierarchical structure into classificatiorglssification accuracy, or
the generalization error defined by hierarchical losses, has beenedaeer its flat counterpart, as
suggested by our theoretical and numerical analyses. Most importastlytaposed method com-
pares favorably against strong competitors in the large margin classifidédiature, especially
from different settings of our synthetic simulations.

At present, the hierarchical structure is assumed to be correct. Hovirregplications, some
classes may be mislabeled or unlabeled. In such a situation, a further iatiestig necessary to
generalize the proposed method, and also to allow for novel class detection
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Appendix A.

The following assumptions are made for Theorem 2.

For a given losy/, we define a truncated' (f,Z) = T AV(F, Z) for any f € F and some
truncation constari, ande,r (£, f) =E(VT(f,Z) -V (f,Z)).

Assumption AThere exist constants€Q a < c andc; > 0 such that for any smadl > 0,

sup le(f, F)I < cie®.
{feF:qr(f.f*)<¢}
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Assumption BThere exist constanfs> 0 andc, > 0 such that for any smadl > 0,

sup  Var(V'(£.2)-V(f.2)) < coe.

{feg e (f.F)<e}

These assumptions describe local smoothness(¢t f)| andVar(VT(£,Z) —V(f,Z)). In
particular, Assumption A describes a first moment relationship between tresBegrete( f, f)|
andeyt(f, f*). Assumption B is a second moment condition over the neighborhogd dafhe
exponents andp depend on the joint distribution ¢K,Y).

We now define a complexity measure of a function spaceGiven anye > 0, denote{(fj',
fi)}]L, as ane-bracketing function set of if for any f € ¥, there exists arj such thatf} <

f<fland|f—f2<ej=1,--,m where|/f|2= (E f2)2 is theLp-norm. Then the metric
entropy with bracketindfg (g, ¥) is the logarithm of the cardinality of the smallesbracketing set
for 7. Let 7V (t) = {VT(f,2) =V(f*,2z): f € F,I(f) < Jt}, whereJ(f) = 3 3, | fj||> and
Jo = max(J(f*),1).

Assumption CFor some constants > 0;i = 3,...,5 andg, > 0,

czll/zLB/2

supp(en, s) < csn'’2,  @(en,9) :/C Ha/2(u, 7Y (s))du/L, 7)

t>2 3L

whereL = L(gn, A, s) = min(e2 +AJo(s/2—1),1).

Appendix B.

Proof of Theorem 1. The proof is the same as that of Liu and Shen (2006), and is omitted.
Proof of Lemma 1: When 0-1 loss is usedg_1(Y,d(X)) = I{Y # d(X)}. From the sequential
decision rule described in Section 2, we know that d(x) is equivalent to for every € andy) U
{y}}, fi(x) > fj(x) : j € sib(t). Furthermore, itis also equivalent to nfig,j : uyj € U(f(x),y) =
{Uy1,Uy2,- -, Uy, }} > 0. ThereforeGE(d) = Elo-1(Y,d(X)) = El(umin(f(X),Y) < 0) follows.
Proof of Lemma 2 To construct bracket covering fgfV (t), note that)( f) < Jot implies% | ;112 <
Jot; j =1,---,K. Furthermore, consider a pairwise differenige- f;; with f; € #;(t) and fj €
Fir(1). Let{(fj'", f.")i} be a set of as-bracket functions forFj(t) in that for anyf; € #j(t), there
exists an such than‘}‘I <f;j< fji’u with || fji’”— f}"
ets for " (t). Defineg” = maxjcsinj) jeandy/uyh V(T — ) andg' = max;jesis(j).jeancy)uiy))
v(fit - fj',') wherev(t) is (1—t), for HSVM and(t) for HPSI. By construction,

|2<¢€; j=1,---,K. Now construct a set of brack-

TAG <VT(f,z) =T Amax{v(f;— f;)): | €sib(j),j € anqy)U{y}} < T Ag"

sinceh' (t) = T At is non-decreasing ity wherez = (z,y). By Lipschitz continuity ofh' (t) in't,
0<(TAQ'-TAd) <g'—d, implying

ITAG"=TAd 2 < llg"—dl|2 < > IR = £ = (£ = £ ]12 < 2c(#H)e,
{i’esib(j),jcandy)U{y}}

with c(#) = 3 o IINDIZD pe the total number of sibling paifs, j') in #4. It follows that
He(2¢c(H)e, FV (1)) < He(2c(H)e, F1(t)). The desired result then follows.
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To prove that(#) < k(k—1)/2, we count the total number of different paths from the root to a
leaf node. On one hand, given each non-leaf npdieere is only one path from the root to the node
j but when there are additionghi( j)| — 1 paths from the root to its children. An application of this
recursively yields that there arety j¢  (|chi(j)| — 1) paths from the root of thieleaf nodes. On the
other hand, by definition, there akedifferent paths corresponding kdeaf nodes. Consequently,
k=143 ¢ (|chi(j)|—1). Forj ¢ L, |chi(j)| —1>0. Then

3 lehi] - 12 < (3 (lehi(j)] 1) = (k172
j¢L

7L
This implies
(|chi(j) 2+ 5 (lehi(j)| 1) < (k=1)* +k—1=k(k—1).
J¢L j¢L

This completes the proof.

Proof of Lemma 3: Without loss of generality, assume that the membership is mutually exclusive
for the firstk classes. The 0-1 loss ovKrnon-exclusive membership classes can be expressed as
max’ ; (1(Y =t,d(X) #1t) +1(Y #t,d(X) =t)), which is the disagreement between the value of
Y and that ofd(X ) in . By assumption, if

rtri(alx(l (Y =t,d(X) £t) +1(Y £t,d(X) =t)) =0,

then maf ., (1(Y =t,d(X) #t)+1(Y #t,d(X) =t)) = 0. On the other hand,

rpzalx(l (Y =t,d(X) £t)+1(Y £t,d(X) =1)) > max(| (Y =t,d(X) £t) + (Y £t,d(X) =t)),

which |mpI|es that ma& , (1(Y =t,d(X) #t) +

#1,d(X)=t)) =1when
max_, (I1(Y =t,d(X) #t) +1(Y #t,d(X) =t)) = 1.

Consequently

—_ —
Il

lo-1(Y,d(X)) = max(| (Y =t,d(X) £ 1) +1(Y £,d(X) =1) = > 1(@(X) £ 1Y =1
by exclusiveness of the membership. Finally

d(z) = argmlnEIo 1Y, d(X) =))|X ==x)
j=1
k
= argmln PYY=t| X =x)I(t # ] )_argmln Z P(YY =t|X =x)
=1 {= =1 t£71=1

= argmln(l P(Y :j|X:m)> —argma>P( =j|X ==x).
=1 j=1

This completes the proof. _
Proof of Lemma 4. The decision functior(x), which minimizesE(lo_1(Y,d(X))|X = «) for
anyz, thus minimizing its expectatioBlo_1(Y,d(X)).
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Forla(Y,d(X)) = JandY)Aandd(X))[, letm(j1, j2) to be|andj1)Aandj2)|. First note that
we have a a lengtK (size of the tree) vector of bits for each class after introducing the bibvdry
coding for each node including the ancestor nodes. Therefpre) satisfies the triangle inequality
since it is equivalent to the Hamming distance.

In what follows, we prove theaE (Ia(Y,d(X))| X =) < E(la(Y,d(X))| X = z) for anyx and
classifierd(x). Lety = d(x). By the triangle inequalityn(y,d(x)) — m(y,y) > —m(d(x),y) for
anyy. Note thatm(y,y) = 0 andm(y,d(x)) = m(d(x),y) > 0. Then

E (1a(Y,d(X)) ~1a(Y,d(X))| X = ) =E(m(Y,d(2)) —m(Y,9)| X =)
- E((m(Y,d(w))—m(Y,)“/)>(I(Y:9)+I(Y#9))‘X:a:)
— & ( (mi5.9() - m9)1(v =)+ (m(v.dw) - m¥9) Y £ 9] x =)

> E(m(y,d(a:))l (Y=9)|X = ac) - E(m(d(m),y)l (Y £9)|X = :c)
= m(y,d(z))(PY=Y|X =x)-P(Y#¥| X =x)) >0.

The lastinequality follows from the fact that="argmax. , P(Y = j| X =x) andP(Y =y| X =z) >
1/2 > P(Y #y| X = x) by the assumption of dominating class. The desired result then follows.
Proof of Lemma 5. We prove the case ofz) = (1—z),. for HSVM. Denote byf (x) a minimizer of
E(V(umin(f(X),Y))|X = z) foranyz. Ata givenz, without loss of generality, assunpg(x) > 0;
¥1<j<k Let]=d"(f(z)) andu= umin(f(z),]). By definition, f} (z)— fj(x) >G>0,
Vj’ € andj) and j” € sib(j’). First consider the case of > 0. For all other leaf nodg # i,

~

there existsja € and(j) and ja € anq(|) such thatja € Slb(ja) Then um.n(f( ),J) < fJa( x)—
fJ () < —Umin(f () AJ) — —0, by the fact thatimin( £ (z), ) < (fja( x)— ffa( x)). Now we prove
the equality ofumin(f(z), j) < —0 holds through construction of”: fj(z) — fj,(z) = G, and
fi(z) = 0,vj ¢ siboand|). By construction,umin(f'(z),j) = —G, for 1< j <k, j # |, and
Umin(f'(x), ]) = 4. Note that

E(v(Umin(£(X),Y))|X =) — E(V(Umin(f'(X),Y))| X = )
= Y Pi@)Munin(f(2),])) —v(-0)) > 0.
1<j<kij#)
By the fact thatf (z) is the minimizer, for 1< j <k, j # |, V(umin(f(), j)) — v(~0) = 0, then
Umin(f (), j) = —0. Moreover, for the Bayes rulé(x), if j # d(x), we constructf* such that
Umin(f*(x),d(x)) = G, andumin( f*(x), j) = —Q, for any leaf nodg # d(x), similar as above. This
implies that

E(v(umin(f(X),Y))|X = z) — E(v(umin(f*(X),Y))| X = z)
Pj()V(0) + Pz (2)V(—0)) — (P(@)V(—0) + Py(s) (2)V(0))
(@) = Pd(e) (@) (V(0) — v(=0)) > 0,

becausep;( ) i(z)(x) @andu™> 0. This contradicts the fact thgft(xx) is the minimizer. Conse-

quently, j =d(x ) orthe case af = 0, it can be shown thatmm(f( ),])=0,Vj=1,--- k, and
f,-( x) =0,Vj=1,--- K, which reduces to the trivial cagt{z) =
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For HPSI, the proof is the same as that of Theorem 2 in Liu and Shen)20tibis omitted.
Proof of Theorem 2 The proof is similar to that in Shen and Wang (2007) and is omitted.
Proof of Corollary 1: The Op(-) result follows from the exponential bound in Theorem 2. To see
the risk result, note that

00

& 2Eef, )= | Ple(f.f)> (@0t

The result then follows.

The primal and the dual of (2) for HSVMhe primal and the dual for HSVM can be obtained
from those of HPSI below, witmzbj(m_l) =0 andDB%m_l) =0;j=1,--- K.

The primal and the dual of (3) for HPSThe primal of (3) is

argmin= i w2 +C g imw(m” wi) imﬁ“‘““ b;) (8)
a 11— i 9 - i ) )
f 2]:1 J izl =1 . J =1 . :

subject tog; > 0, (f;(x) — fi(x)) +& > 1, (j,t) € Q(yi) = {(J,t) : t e sib(j), | € {yi} Uandyi)},
andz{jechi(s)ﬁsﬂ} fj(a:i) =0;i= 1,---,n,s=1--- K.

To solve (8), we employ the Lagrange multipliecg:> 0, 3j j: > 0 andg; s > O for each con-
straint of (8). Then (8) is equivalent to:

K

1K 1 ~(m=1) K A(m-1)
max L = > 5 [lw|?+CY &— Y (Ow;" 7, wj)— $ (O6™ 7 by) +
ai,Bi jt,0is 2 ;1 iZl le J le J

Bria (1= (((wj @) +by) = ((w, ) + b)) &)

(j’t)EQ(yi)3i:17"'7n

n
—ZlGiEiJr > Bis Yy ((wj,@i)+hy). ©)
i= (i,9):i=1, ,n;s¢ L jechi(s)

By letting the partial derivatives be zero, we have that

oL oL oL . .
a—wjf ,a—EifO,a—bijJfl,---,n,Jfl,m,K. (20)

implying thata; > 0;i=1,---,n, and

z Bi’j,tgc;izl,---,n. (11)
(J,1)€Q)

After substituting (10) in (9), we obtain a quadratic forriah terms of{a, B j, 8 s} Maximizing

L subjecttdfi jt > 0;i=1,---,n;(j,t) € Q(yi), (10) and (11) yields the solution @&, B; jt,di s}
The solution ofw; and¢;’s can be derived from (10). The solution lof is derived from Karush-
Kuhn-Tucker's condition:si,j,t(l— (((wj, )+ bj) — ((wr, @) + by)) —ai) — 0, a;§ = 0, and

3i s jechi(s) ((wj, i) +bj) = 0, for all suitabld, j,t ands. In case of these conditions are not appli-
cable tob;’s, we substitute the solution ab;’s in (8), and solvéb;’s through linear programming.

2745



WANG, SHEN AND PAN

References

L. An and P. Tao. Solving a class of linearly constrained indefinite qtiadpeoblems by d.c.
algorithms.J. Global Optimization11:253—-285, 1997.

K. Astikainen, L. Holm, S. Szedmak E. Pitknen, and J. Rousu. Towangststed output prediction
of enzyme functionBMC Proceedings2(S4):S2, 2008.

B. Boser, I. Guyon, and V. N. Vapnik. A training algorithm for optimal niarglassifiers.Proc.
Fifth Ann. Conf on Computat. Learning Theory Pittsburgh, pdges 144-152, 1992.

L. Cai and T. Hofmann. Hierarchical document categorization with stupecotor machinesCIKM-
04, Washington, DC2004.

N. Cesa-Bianchi and G. Valentini. Hierarchical cost-sensitive algoritttmgenome-wide gene
function prediction MLSB 09: The 3rd International Workshop on Machine Learning in 8yste
Biology 2009 2009.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. Regret bounds for fuigiGal classification with
linear-threshold functionsProc. the 17th Ann. Conf. on Computat. Learning Thepgges 93—
108, 2004.

N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Hierarchical classificat@mmbining bayes with
svm.Proc. of the 23rd Int. Conf. on Machine Learning, ACM Press (20p&yes 177-184, 2006.

M. N. Davies, A. Secker, A. A. Freitas, M. Mendao, J. Timmis, and D.|BwEr. On the hierarchical
classification of g protein-coupled receptoBsoinformatics 23(23):3113-3118, 2007.

O. Dekel, J. Keshet, and Y. Singer. An efficient online algorithm fordriehical phoneme clas-
sification. Proc. the 1st Int. Workshop on Machine Learning for Multimodal Intdécax; pages
146-158, 2004.

L. Dong, E. Frank, and S. Kramer. Ensembles of balanced nestedtalicies for multi-class
problems.Lecture Notes in Computer Scien8&21/2005:84-95, 2005.

C. Gu. Multidimension smoothing with splineSmoothing and Regression: Approaches, Compu-
tation and Application2000.

Y. Guan, C. Myers, D. Hess, Z. Barutcuoglu, A. Caudy, and O. dngkaya. Predicting gene
function in a hierarchical context with an ensemble of classifiéenome Biology9(S2), 2008.

T. Hughes, M. Marton, A. Jones, C. Roberts, R. Stoughton, C. AmtduBennett, E. Coffey,
H. Dai, Y. He, M. Kidd, A. King, M. Meyer, D. Slade, P. Lum, S. StepangrD. Shoemaker,
D. Gachotte, K. Chakraburtty, J. Simon, M. Bard, and S. Friend. Furadtidiscovery via a
compendium of expression profileSell, 102:109-126, 2000.

T. Jaakkola, M. Diekhans, and D. Haussler. Using the fisher kerniblodid¢o detect remote protein
homologizesIn Proc. the Seventh Int. Conf. on Intelligent Systems for Molecular Bipfrages
149-158, 1999.

2746



LARGEMARGIN HIERARCHICAL CLASSIFICATION WITH MUTUALLY EXCLUSIVE CLASSMEMBERSHIP

T. Joachims. Text categorization with support vector machines: learrnthgwany relevant fea-
tures. Proc. of the 10th European Conf. on Machine Learning (ECML199898:117-142,
1998.

A. N. Kolmogorov and V. M. Tihomirov.e-entropy anc-capacity of sets in function spaceds-
pekhi Mat. Nauk.14:3-86, 1959. In Russian. English translatid@meri. Math. Soc. transk ,
17, 277-364. (1961).

D. Lewis. Naive (bayes) at forty: The independence assumption inniation retrieval.Proc. of
the 10th European Conf. on Machine Learning (ECML1998pes 4-15, 1998.

Y. Lin, Y. Lee, and G. Wahba. Support vector machines for classificatimonstandard situations.
Machine Learning46:191-202, 2002.

S. Liu, X. Shen, and W. Wong. Computational developmenp-déarning. Proc. SIAM 2005 Int.
Data Mining Conf, pages 1-12, 2005.

Y. Liu and X. Shen. Multicategory-learning.J. Amer. Statist. AssqQcl01:500-509, 2006.

H. W. Mewes, D. Frishman, U. G’ldener, G. Mannhaupt, K. Mayer, Mikk&js, B. Morgenstern,
M. M’nsterkoetter, S. Rudd, and B. Weil. Mips: a database for genomegetein sequences.
Nuclerc Acids Res30:31-34, 2002.

G. Obozinski, G. Lanckriet, C. Grant, M. Jordan, and W. Noble. Coasigrobabilistic output for
protein function predictionGenome Biology9(S6), 2008.

J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor. Kased-learning of hierarchical
multilabel classification modeldl. Mach. Leaning Res7:1601-1626, 2006.

B. Shahbaba and R. Neal. Improving classification when a class higrar@vailable using a
hierarchy-based prioBayesian Analysj:221-238, 2007.

X. Shen and L. Wang. Generalization error for multi-class margin clagsificaElectronic J. of
Statist, 1:307-330, 2007.

X. Shen, G. Tseng, X. Zhang, and W. Wong. Q+earning.J. Amer. Statist. AssQ®©8:724-734,
2003.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Supportovenachine learning for
interdependent and structured output spaBesc. the 2% Int. Conf. on Machine Leanin@004.

G. Valentini and M. Re. Weighted true path rule: a multilabel hierarchicalréigo for gene
function prediction. The 1st International Workshop on learning from Multi-Label Data,
ECML/PKDD 2009 2009.

V. Vapnik. Statistical Learning TheoryWiley, New York, NY, 1998.

Y. Yang and X. Liu. A reexamination of text categorization methoBsoc. the 22nd Annual Int.
ACM SIGIR Conf. on Research and Development in Information Reltrigages 42—-49, 1999.

2747



WANG, SHEN AND PAN

J. Zhu and T. Hastie. Kernel logistic regression and the import vectorimeach. Comput. and
Graph. Statist.14:185-205, 2005.

A. Zimek, F. Buchwald, E. Frank, and S. Kramer. A study of hierardltaod flat classification of
proteins.IEEE/ACM Transactions on Computational Biology and Bioinformatics 20088.

2748



