Journal of Machine Learning Research 12 (2011) 2269-2292 bm8ted 6/10; Revised 4/11; Published 7/11

Smoothness, Disagreement Coefficient, and the Label Complexity of
Agnostic Active Learning

Liwei Wang WANGLW @CIS.PKU.EDU.CN
Key Laboratory of Machine Perception, MOE

School of Electronics Engineering and Computer Science

Peking University

Beijing, 100871, P.R.China

Editor: Rocco Servedio

Abstract

We study pool-based active learning in the presence of ndise is, the agnostic setting. It is
known that the effectiveness of agnostic active learningedéds on the learning problem and the
hypothesis space. Although there are many cases on whiike dearning is very useful, it is
also easy to construct examples that no active learningitigpcan have an advantage. Previous
works have shown that the label complexity of active leagmelies on thelisagreement coefficient
which often characterizes the intrinsic difficulty of thateing problem. In this paper, we study the
disagreement coefficient of classification problems foratihe classification boundary is smooth
and the data distribution has a density that can be boundeadshyooth function. We prove upper
and lower bounds for the disagreement coefficients of boitefyrand infinitely smooth problems.
Combining with existing results, it shows that active leéagnis superior to passive supervised
learning for smooth problems.

Keywords: active learning, disagreement coefficient, label compfegmooth function

1. Introduction

Active learning addresses the problem that the algorithm is given a pawllabeled data drawn
i.i.d. from some underlying distribution; the algorithm can then pay for the labahy example
in the pool. The goal is to learn an accurate classifier by requesting dalfelg as possible. This
is in contrast with the standard passive supervised learning, wherébtledaexamples are chosen
randomly.

The simplest example that demonstrates the potential of active learning isndHeawptimal
threshold on an interval. Suppose the instances are uniformly distribut@dlonand there exists
a perfect threshold separating the two classes (i.e., there is no noisehittaey search needs
O(log ) labels to learn ae-accurate classifier, while passive learning requies) labels. Another
encouraging example is to learn homogeneous linear separators. Iftthardaistributed on the
unit sphere oRY, and the distribution has a density function upper and lower boundédamng
1/A respectively, wher@ is some constant, then active learning can still give exponential savings
in the label complexity (Dasgupta, 2005).

However, there are also very simple problems that active learning dbéglpo Suppose again
that the instances are uniformly distributed [Onl]. But this time the positive class could be any
interval on[0,1]. In this case, for any active learning algorithm there exists a distribution &.e

©2011 Liwei Wang.



WANG

target classifier) such that the algorithm nea{%) label requests to learn araccurate classifier
(Dasgupta, 2005). Thus there is no improvement over passive leamihg minimax sense. All
above are realizable problems. Of more interest and more realistic is thetiaggeiting, where the
best classifier in the hypothesis space has a non-zerowerfmr agnostic active learning, there is
no active learning algorithm that can always reduce label request® dulewer bound)(‘s’—;) for
the label complexity (Kariainen, 2006).

Previous results have shown that whether active learning helps rali@altr on thedisagree-
ment coefficiendf the learning problem (Hanneke, 2007). The disagreement coaffibépends on
the distribution of the instance-label pairs and the hypothesis spacetandietcribes the intrinsic
difficulty of the active learning problem. In particular, it has been showntie label complexity
of two important agnostic active learning algorith@s (Balcan et al., 2006) and the one due to
Dasgupta et al. (2007) (will be referred to as DHM) are charactehyetie disagreement coeffi-
cient. If the disagreement coefficient is small, active learning usuallyrhalies label complexity
than passive learning.

In this paper, we study the disagreement coefficient for smooth probepesifically we ana-
lyze the disagreement coefficient for learning problems whose clasisifidé®oundaries are smooth.
Such problems are often referred to as the boundary fragment clEsslév Vaart and Wellner,
1996). Under some mild assumptions on the distribution, we show that the magoittite dis-
agreement coefficient depends on the order of smoothness. For filélestnoothness, it is poly-
nomially smaller than the largest possible value, and exponentially smaller fatérgmoothness.
Combining with known upper bounds on the label complexity in terms of disaggetcoefficient,
we give sufficient condition under which active learning is strictly supéd@assive learning.

1.1 Related Works

Our work is closely related to Castro and Nowak (2008) which proved tdmeplexity bounds for
problems with smooth classification boundary under Tsybakov’s noisgitemm(Tsybakov, 2004).
Please see Section 3.3 for a detailed discussion on this work.

Another related work is due to Friedman (2009). He introduced a differation of smooth-
ness. In particular, he considered smooth problems whose hypothasesisg finite dimensional
parametric space (and therefore has finite VC dimension). He gave cosditialer which the dis-
agreement coefficient is always bounded from above by a congtesuntrast, the hypothesis space
(the boundary fragment class) studied in our work is a nonparametri ahabis more expressive
than VC classes.

2. Background

Let X be an instance spac®) a distribution overtx x {—1,1}. Let # be the hypothesis space, a
set of classifiers fronk to {—1,1}. DenoteDx the marginal ofD over X. In our active learning
model, the algorithm has access to a pool of unlabeled examplegorRor any unlabeled point
X, the algorithm can ask for its labg] which is generated from the conditional distributiorxat
The error of a hypothesisaccording toD is erp(h) = Priyy).o(h(X) # y). The empirical error on
a samples of sizenisers(h) = %z(xy)g]l[h(x) # Y], wherel is the indicator function. We ud&
denote the best classifier if. That is,h* = argmin,c, erp(h). Letv = erp(h*). Our goal is to
learn ah € % with error rate at most + €, wheree is the desired accuracy.
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Input: unlabeled data po¢ki, Xy, ..., Xn) i.i.d. from Dk, hypothesis spac#;
Initially: V < #, R« DIS(V), Q « 0;
fort=12,....mdo
if Pr(DIS(V)) < 3Pr(R) then
R« DIS(V); Q<+ 0;
end
Find a new data; from the data pool with; in R;
Request the labst of x;, and letQ «+— QU { (X, Vi) };
V < {heV :LB(h,Q,5/m) < minyey UB(K,Q,5/m)};
ht <— argminey erg(h);
B (UB(,Q,6/m) ~LB(R, Q. 8/m) PR
en

Returnh = h;, wherej =arg  min By
te{1,2,....m}

Algorithm 1 : The A? algorithm

A? (Balcan et al., 2006) is the first rigorous agnostic active learning algorithcan be viewed
as a robust version of the active learning algorithm due to Cohn et @4]1¥8r the realizable
setting. A description of the algorithm is given in Algorithm 1. It was shown &fds never much
worse than passive learning in terms of the label complexity. The key\atiger thatA? can be
superior to passive learning is that, since our goal is to choobesach thaer,(h) < erp(h*) +¢,
we only need t@womparethe errors of hypotheses. Therefore we can just request labelesexh
on which the hypotheses under consideration have disagreement.

To do this, the algorithm keeps track of two spaces. One is the curresibrespacéd/, con-
sisting of hypotheses that with statistical confidence are not too bad cedodr; the other is the
region of disagreemem|S(V), which is the set of alk € X for which there are hypothesesVh
that disagree or. Formally, for any subsét C #,

DIS(V) = {xe X : 3h,H €V, h(x) #£H(x)}.

To achieve the statistical guarantee that the version sgamentains only good hypotheses, the
algorithm must be provided with a uniform convergence bound over thethgsis space. That is,
with probability at least - & over the draw of samplé according to?» conditioned orDIS(V) for
any version spaces,

LB(S,h,d) < erp, (h) <UB(S,h,9),

hold simultaneously for ath € #, where the lower boundB($, h,5) and upper bound B(S, h, d)
can be computed from the empirical eresg (h). Here D), is the distribution ofD conditioned on

DIS(V). If # has finite VC dimensioW C(#), thener;(h) 10(%)—1/2 are upper and lower
bounds ofery,, (h) respectively.

We will denote the volume dDIS(V) by A(V) = Prx.p, (X € DIS(V)). Requesting labels of
the instances frordIS(V) rather than from the whole spageallows A? require fewer labels than
passive learning. Hence the key issue is howAd¥%t) reduces. This process, and in turn the label
complexity ofA?, are nicely characterized by the disagreement coeffiéi@mtroduced in Hanneke
(2007).
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Input: unlabeled data po¢ki, Xy, ..., Xn) i.i.d. from Dk, hypothesis spac#;
Initially: Go < 0, 7o < 0;
fort=12,....mdo
For eachy’e {—1,1}, hy « LEARN, (Gi-1U{(%,9)}, % _1);
if erg,_,ug . (h-y) —erg_,ug_,(hy) > A1 for somey € {—1,1} then
Gt + G1U{(%, )} %I+ T-1;
end
else
Request the true labgl of x; Gt < Gi—1; T < G-1U{(%, %) };
end
end
Returnh = LEARN 4/( Gm, Tm).
Algorithm 2 : The DHM algorithm

Definition 1 Letp(-,-) be the pseudo-metric on a hypothesis spacmduced byDx. That is, for
h, € #, p(h,h') = Prx..p, (h(X) # N (X)). Let B(h,r) = {i € #: p(h,h") <r}. The disagreement
coefficien®(¢) is

B(e) = supNB(h*’r)) _ supprx~@x(x € DIS(B(h",r)))

r>¢ r r>e r

9

where It = argmin,c s erp(h).

Note thatd depends orH andD, and 1< 6(g) < %.1 The following is an upper bound of the label
complexity ofA? in terms of the disagreement coefficiéit) (Hanneke, 2007).

Theorem 2 Suppose that{ has finite VC dimension V(@&). Then using the definitions given
above, the label complexity of As

O((e(v+s))2 <\;+1> polylog (i) log (al_)) VC(H)). 1)

In addition, Hanneke (2007) showed ttfaﬁtezlog%) is a lower bound for thé\? algorithm of any
problem withv = 0, where inQ we hide the logrithm terms.

Another important agnostic active learning algorithm is DHM. (Algorithm 2egiva formal
description of the algorithm.) DHM reduces active learning to a serie®$trainedsupervised
learning. The key idea of the algorithm is that each time we encounter a rebeled dat, we
test if we can guess the label wiwith high confidence, using the information obtained so far. If
we can, we put the data and the confidently guessed (abglinto theguessedet G; otherwise,
we request the true labglof x and put(x,y) into thetrue setZ. The criterion of whether we can
guess the label of confidently is as follows. For eaghe {—1,+1}, we learn a classifidny € H
such thahg(x) = §, andhy is consistent with al(x,y) € G and has minimal error off. (This is the
subroutine LEARN in Algorithm 2.) If for somg € {—1,+1} the error rate oy is smaller than

1. Here we only consider the nontrivial case tA@B(h*,r)) > r for all r. This condition is satisfied by the smooth
problems studied in this paper.
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that ofh_y by a threshold (t is the number of unlabeled data encountered so far), then we guess
thaty = § confidently.

The algorithm DHM relies crucially on a good choice of the threshold funaionlf # has
finite VC dimensiorV C(# ), Dasgupta et al. (2007) suggested to chdgdemsed on the normalized
uniform convergence bound o (Vapnik, 1998). They also showed that DHM is never much worse
than passive learning and it has label compléxity

0 <e(v +€) <1+ Z;) polylog (i) log (al_)) VC(}[)> . 2)

From (1) and (2) it can be seen thatif> v, the term‘é—z is upper bounded by 1 and the label
complexity of the active learning algorithms crucially depends on the disagmtecoefficien®.
However, the asymptotic label complexitysaends to 0 (assuming> 0) can at best only be upper
bounded byO (‘;—5) In fact, this bound cannot be improved: it is known that given somethgsts

space#, for every active learning algorithi, there is a learning problem (to be concretéy*pn
such that the label complexity éfis at Ieale(‘;—i) (K&ariainen, 2006). Thu@(‘a’—j) is @ minimax
lower bound of the label complexity of agnostic active learning algorithms.

Although no active learning algorithm is superior to passive learning ingalbstic settings, it
turns out that if the disagreement coefficient is small, active learningala@ys help under a finer
parametrization of the noise distribution, known as Tsybakov’s noiseittmmdTsybakov, 2004).

Definition 3 Letn(x) = Pr(Y = 1|X = x). We say that the distribution of the learning problem has
noise exponemnt = %1 (k > 1) if there exists constants 0 such that

d

for all 0 <t <ty for some constanpt

n(X)—;' §t> <ct?, O<a<+ow

Tsybakov’s noise condition characterizes the behavioy(gf whenx crosses the class bound-
ary. Ifk =1,n(x) has a jump from} —tpto % +1to. The larger the, the more “flat’n(x) is.

Under Tsybakov’s noise condition, Hanneke (2009, 2011) prowecbthariant of the DHM al-
gorithm (by choosing the threshofg based on local Rademacher complexity (Koltchinskii, 2006))
has the following asymptotic label complexity.

Theorem 4 Suppose that the learning problem satisfies the Tsybakov’s noise candlitftonoise
exponenk. Assume that the hypothesis spafend the marginal distributiomDy satisfies that the

entropy with bracketing H(g, #,L2(Dx)) = O ((%)Zp) for somed < p < 1. If the Bayes classifier
& € #, then the label complexity of DHM is

O (9(80) <i>2_2Kp <Iogi +Iogels>> , 3

wheregg depends o, K, p,d and the learning problem. In particular, settirg = e« the theorem
holds.

2. Here inO we hide terms like loglog!) and loglog#).
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Inspired by this result, Koltchinskii (2010) further proved that undimilar conditions a variant
of the A algorithm has label complexity

o(e(si) <<1>2“+ <i>22 <Iogé+|oglogi)>>. @)

_2p _2
Note that in the last formulé)* "« dominates ovef1)*  ase — 0 if p > 0.
If the hypothesis spac# has finite VC dimension, the entropy with bracketing is

H (5., L2(Dx0) = O (log )

smaller than(%)2p for any p > 0. In this case, it can be shown that the above label complexity
bounds still hold by just putting = 0 into them.
In contrast, the sample complexity for passive learning under the samgicpsds known to

be (Tsybakov, 2004)
1-p
1\?© 1 1
O((e) <I096+Ioglog€)>, (5)

and it is also a minimax lower bound. Comparing (3), (4) and (5) one cathaeghether active
learning is strictly superior to passive learning entirely depends on how #madisagreement
coefficientd(g) is.

One shortcoming oA? and DHM is that they are computationally expensive. This is partially
because that they need to minimize the 0-1 loss and need to maintain the veasienBgygelzimer
et al. (2009) proposed an importance weighting procedure IWAL wihlighing learning, minimize
a convex surrogate loss and therefore avoid 0-1 minimization. Furthermeygelzimer et al.
(2010) developed an active learning algorithm which does not neectfotke version space and
therefore is computationally efficient. There are also upper bounds daltblecomplexity of these
two algorithms in terms of the disagreement coefficient.

Finally, for a comprehensive survey of the theoretical researchtuedearning, please see the
excellent tutorial (Dasgupta and Langford, 2009).

3. Main Results

As described in the previous section, whether active learning help$ylaigggends on the disagree-
ment coefficient which often characterizes the intrinsic difficulty of thenlieayr problem using a
given hypothesis space. So it is important to understand if the disagreeosficient is small for
learning problems with practical and theoretical interests. In this sectionweebgunds on the
disagreement coefficient for problems that have smooth classificatiordhoes, under additional
assumptions on the distribution. Such smooth problems are often referretoniadary fragment
class and has been extensively studied in passive learning and égpe&mpirical processes.

In Section 3.1 we give formal definitions of the smooth problems. Section &taios the main
results, where we establish upper and lower bounds for the disagreeoedficient of smooth
problems. In Section 3.3 we provide some discussions on some closely retatesd
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3.1 Smoothness

Let f be a function defined o@ ¢ R anda > 0 be a real number. Let be the largest integer
strictly smaller tharo. (Hencea = o — 1 whena is an integer.) For any vectér= (kg,--- ,kg) of
d nonnegative integers, lg| = 5% , k. Let

" okl
~ dkaxl. .. gkaxd’

be the differential operator. Define thienorm as (van der Vaart and Wellner, 1996)

)

DK f(x) — DK (X))
f|lq ;= maxsugDX f (x)| + max su |
e k|<a xIq ol k|=a x.x’p [x—x|a-2

where the suprema are taken ovena¥ overQ with x X'

Definition 5 (Finite Smooth Functiongd A function f is said to beith order smooth with respect
to a constant C, if| f || < C. The set ofith order smooth functions is defined as

R = {f:[|flla <C}.

Thusath order smooth functions have uniformly bounded partial derivatives opdera, and the
ath order partial derivatives aredttier continuous. As a special case, note théthais continuous
partial derivatives upper bounded Byup to ordem, wheremis any positive integer, thehe FX".

Also, if 0 < B < a, thenf € FY implies f € FCB.

Definition 6 (Infinitely Smooth Functiong A function f is said to be infinitely smooth with respect
to a constant C, if f||o < C for all a > 0. The set of infinitely smooth functions is denoted By F

With the definitions of smoothness, we introduce the hypothesis space weactie learning
algorithms.

Definition 7 (Hypotheses with Smooth Classification Boundarje& set of hypothese®? de-
fined onx = [0,1]9"! is said to haventh order smooth classification boundaries, if for every
h e #Z, the classification boundary is ath order smooth function offD, 1}0'. To be precise,
let x = (x},x?,...,x3+1) € [0,1]9+1. The classification boundary is the graph of functiéii’x=
f(xL,...,xd3), where fe FE. Similarly, a hypothesis spac#’ is said to have infinitely smooth
boundaries, if for every & #Z° the classification boundary is the graph an infinitely smooth func-
tion on |0, 1]°.

The first thing we need to guarantee is that smooth problems are learnathigassively and
actively. To be concrete, we must show that the entropy with bracketsmgobdth problems satisfies

Hy) (&, 7,La(Dx)) = O ((i)zp> ,

for somep < 1 (van der Vaart and Wellner, 1996) (see also Theorem 4). For smoaltiiems, the
following proposition is known.
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Proposition 8 (van der Vaart and Wellner, 1996)
Let the instance space 1@, 1]9+1 and the hypothesis space Bg'. Assume that the marginal
distribution Dy has a density upper bounded by a constant. Then

Hi) (6,748, La(Dx)) = O ((i)) |

The problem is learnable d > d.

In the rest of this paper, we only consider smooth problems suclutisad.

3.2 Disagreement Coefficient

The disagreement coefficieitplays an important role for the label complexity of active learning
algorithms. In fact previous negative examples for which active leardoes not work are all
because of larg8. For instance the interval learning probleffs) = % which leads to the same
label complexity as passive learning. (Recall tha) < % so this is the worst case.)

In this section we will show that that the disagreement coeffidégit for smooth problems is
small. Especially, we establish both upper bounds (Theorem 9 and Thd®eand lower bounds
(Theorem 13) for the disagreement coefficient of smooth problemsliyima will combine our
upper bounds on the disagreement coefficient with the label complexitit sTheorem 4 and
show that active learning is strictly superior to passive learning for snothlems.

Theorem 9 Let the instance space be = [0,1]9+1. Let the hypothesis space B, where d<
a < oo, If the marginal distributionDx has a density {x) on [0,1]%+* such that there exists axth
order smooth function () and two constant® < a < b such that agx) < p(x) < bg(x) for all
x € [0,1)9F1, ther?

The key points in the theorem are: the classification boundaries are sraadtthe density is
bounded from above and below by constants times a smooth furfchimte that the density itself
is not necessarily smooth. We merely require the density does not changmidly.

The intuition behind the theorem above is as follows. fietx) and f,(x) be the classification
boundaries oh* andh, and suppose(h,h*) is small, wherep(h,h*) = Pr,p, (h(X) # h*(X)) is
the pseudo metric. If the classification boundaries and the density are aitlgntioen the two
boundaries have to be close to each other everywhere. Thé (i), — f¢-(x)| is small uniformly
for all x. Hence only the points close to the classification boundaty @fn be inDIS(B(h*,)),
which leads to a small disagreement coefficient.

For infinitely smooth problems, we have the following theorem. Note that theéresgent on
the density is stronger than finite smoothness problems.

3. This upper bound was obtained with the help of Yanqi Dai, Kai Fan,l@hnig Zhang and Ziteng Wang. It improves

qd
a previous upper bour@d ((%)17 @ ), which converges to the current bound%s- c.

4. These two conditions include a large class of learning problems. Bor@g, the boundary fragment class equipped
with most elementary distributions (truncatec:[@al]d+1) satisfies these conditions.
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Theorem 10 Let the hypothesis space Béz. If the distributionDx has a density {x) such
that there exist two constan@s< a < b such that a< p(x) < b for all x € [0,1]9*1, then8(g) =

O(log™(3)).
The proofs of Theorem 9 and Theorem 10 rely on the following two lemmas.

Lemma 11 Let® be a function defined of0, 1]¢ and isath order smooth. If

oo P00NOX<

@)l =0 (res) :o<r. @) |

where|[®|[e; = SUR(o1¢ [ P(X)]-

then

Lemma 12 Let® be a function defined di@, 1]¢ and is infinitely smooth. If

/[0 o lo0olaxs

o). —0 <r- (logj>2d> |

Proof of Theorem 9 First of all, since we focus on binary classificatidd,S(B(h*,r)) can be
written equivalently as

then

DIS(B(h*,r)) = {x € X, 3h e B(h*,r), st. h(x) # h*(x)}.

Consider anyh € B(h*,r). Let fy, fr- € FS be the corresponding classification boundarieis afd
h* respectively. Ifr is sufficiently small, we must have

p(h,h*> ( ( )#h* /Xm )éj /f . Lxd) p(xl7 ) d+l) Xd+l

><~@x
[0.1]

Denote
fr(xL,....x%)
Ot ) = [ PO, .. XA,
f

We assert that there isceth order smooth functioﬁ)h(xl, ...,x%) and two constants @ a < b such
thata|®y,| < |®p| < b|®p|. To see this, remember thét and fi,. areath order smooth functions;
and the densityp is upper and lower bounded by constants timeastla order smooth function
g(x},...,x4+1). Also note that if we define

~ fh(le'“de)
Pp(xL, ... xd) :/ g(xt,. .. x4 dxa+t,
f

e (0. x)
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@y, is aath order smooth function, which is easy to check by taking derivatives No

- 1 r
<Dxdx</ Z|Dp(X)dx < —
/[Ql]d\ (9ldxs [ Zienplaxs 2

According to Lemma 11, we haybp||. = O(ra:d ). Thus|®p|lw < b||Pn|l» = O(ra+d). Because
this holds for allh € B(h*,r), we have

sup [|Pnfle =0 (ra%d> :
heB(h*,r)

Now consider the region of disagreemenBgh*,r). Note that

DIS(B(N*,1)) = Unesgh 1y {x: h(x) # h*(x)}.

Hence
x~Pzr>x (x € DIS(B(h*,1))) = x~Pzr>x (X € Unepne n{X: h(x) # h*(x)})
d
a 1) o+
< 2/ sup || ®nledt...dx° :o(rm) —ofr- <> ).
[0,1]9 heB(h* r) r
The theorem follows by the definition éfe). [ ]

Theorem 10 can be proved similarly by using Lemma 12.

In the next theorem, we give lower bounds on the disagreement coeffffolefinite smooth
problems under the condition that the marginal distributignis the uniform distributior?. Note
that in this case the lower bound matches the upper bound in Theorem®inldgeneral Theorem
9 cannot be improved.

Theorem 13 Let the hypothesis space B wherea < «. Assume that the marginal distribution
Dy is uniform on[0, ]9+, Then the disagreement coefficient has the following lower Bound

Proof Without loss of generality, we assume that the classification boundary oftimeal classifier
h* is the graph of functiom®*! = f(x,x?,...,x9) = 1/2. That is, the classification boundarytof
is a hyperplane orthogonal to thie- 1th axis. We will show that for most points?®, x?, ..., x41) ¢

a o
[0,1]9+ that aree - (1) ®*-close to the classification boundarytof that is,|x3*1 — 3| <e- (1),
there is ahy € A< satisfying

he (X403, ... X3 £ he (33, 33D,

5. The condition can be relaxed to thB is bounded from above and below by positive constants.
6. The bound was obtained with the help of Yanqgi Dai, Kai Fan, Chichdrang and Ziteng Wang. It improves a

_d_
previous lower boun@ <(%) 2a+d ) .
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and at the same time
p(hs,h*) = Pr(h¢(X) # h*(X)) <k,

d
and therefordr; € B(h*,€). Thus the volume oDIS(B(h*,€)) is Q (s- (1) ““’); and consequently

o(e) > Pr(DIS(B(h",£))) _ <<1) L) |

€ €

For this purpose, fixingx!,»?, ..., x41) € [0,1]9+! with

_d
0<xd+1—}<cs 1)
—_— 2_ s )

for some constard. We only consider pointx,x?, ...,x3+1) € [0,1]9*1 that are not too close to the
“boundary” of [0, 1]d+1. (e.g.,01< X <0.9forall1<i< d.) We construch; whose classification
boundary is the graph of the following functidn For convenience, we shifi!,x2,...,x9,1) to
the origin. Letf be defined or0, 1] as

f(ug, Uz, ..., ug) = { £ (& 029—1”?) if 9,07 <82

otherwise
/ |fldw=¢,
Q

that is,p(hs,h*) = €, andQ is the region obtained fror@, 1]¢ after shifting(x,x,...,x4, 3) to the
origin.

First, it is not hard to check by calculus thiais ath order smooth. Next, sincg, | f|dw =&, it
is not difficult to calculate thag = c’:»:a*id, for some constard. Thus

whereg is determined by

a 1\ o+d
||f|ym:f(o,o,...,0):c'gm:C/g(s> ‘
So we havét(0,0,...,0) # h*(0,0,...,0) andp(hs,h*) = €. This completes the proof. m

For infinite smoothness, we do not know any lower bound for the disagmecoefficient larger
than the trivialQ(1).
3.2.1 LABEL COMPLEXITY FOR SMOOTH PROBLEMS

Now we combine our results (Theorem 9 and Theorem 10) with the labellegitypbounds for
active learning (Theorem 4 and (4)) and show that active learningitdhstsuperior to passive
learning for smooth problems.

Remember that under Tsybakov’s noise conditions the label complexitytioé dearning is

(see Theorem 4 and (4))
22
o (e(gi) <i> (Iogi+logé>> .
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While for passive learning it is (see (5))

o (2)" (a3 +oson?) ).
e(s%) =0 <<i> i) ,

then active learning requires strictly fewer labels than passive learning.
By Theorem 9 and remember theat> d (see Proposition 8) we obtain

oer-o(2)™ -o((2)7)-+(())

So we have the following conclusion.

We see that if

Theorem 14 Assume that the Tsybakov noise expordstfinite. Then active learning algorithms
A? and DHM have label complexity strictly smaller than passive learningofir order smooth
problems whenever > d.

3.3 Discussion

In this section we discuss and compare our results to a closely related wertodCastro and
Nowak (2008), which also studied the label complexity of smooth problemasrirsybakov’s noise
condition. Castro and Nowak’s work is heavily based on their detailed sisalfy actively learning
a threshold on0, 1] described below.

Consider the learning problem in which the instance spaee|0, 1]; the hypothesis spact
contains all threshold functions, that & = {I(x >t) :t € [0,1]} U{I(x < t) : t € [0,1]}, where
I is indicator function; and the marginal distributidpx is the uniform distribution on0, 1]. Sup-
pose that the Bayes classiftgj € #/. Assume that the learning problem satisfies the “geometric”
Tsybakov’s noise condition

1 K
10 5| > bk ©
for some constanb > 0 and for allx such thatjn(x) — %| < 1o with the constantgy > 0. Here

Xg is the threshold of the Bayes classifier. (One can verity that (6) implies theaoy Tsybakov’s
condition with noise exponertwhen?y is uniform on [0,1].) In addition, assume that the learning
problem satisfies a reverse-sided Tsybakov’'s condition

< Blx—xg|",

‘n(@—i

for some constar® > 0.
Under these assumptions, Castro and Nowak showed that an activendealgorithm they
attributed to Burnashev and Zigangirov (1974) (will be referred to ay BAich is essentially

~ _2
a Bayesian binary search algoritinhas label complexit;ﬁ)((g)2 K>. Moreover, due to the

7. Note that this BZ algorithm can choose any paifitom the instance space, not necessarily from the given pool of
unlabeled data. This model is called membership query, making strasgamptions than the pool-based active
learning model.
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reverse-sided Tsybakov’s condition, one can show that with highapibty that the thresholo ~
returned by the active learning algorithm converges to the Bayes thdeghexponentially fast
with respect to the number of label requésts.

Castro and Nowak then generalized this result to smooth problems similar towgtsitidied
in this paper. Let the hypothesis space/i§¢. Suppose that the Bayes classifigre #>. Assume
that on every vertical line segment j@,1]9+1, (that is, for every{(x',x?,...,xd,xd+1) : xd+1 ¢

5eey

sided geometric Tsybakov’s condition with noise exponenBased on these assumptions, they
proposed the following active learning algorithm: Choosiigertical line segments if0, 1)9+2.
Performing one dimensional threshold learning on each line segment as ameh@imensional
case described above. After obtaining the threshold for each line, dopigcewise polynomial
interpolation on these thresholds and return the interpolation function ass#fication boundary.

. 2§
They showed that this algorithm has label complei)t((:})2 K ) :

In sum, their algorithm makes the following main assumptions:

(Al) On every vertical line, the conditional distribution is two-sided TsybaK hus the distri-
bution Dxy has a uniform “one-dimensional” behavior along tdet- 1)th axis.

(A2) The algorithm can choose any point froth= [0, 1]9"* and ask for its label.

Comparing the label complexity of this algorithm
2—
o (5)
€

and that obtained from Theorem 4 and Proposition 8
. 1\ 2~ 28

O 6(g0) | =

()

one sees that their label complexity is smallefigp). It seems that the disagreement coefficient
of smooth problem does not play a role in their label complexity formula. Tasoreis that the
assumption (A1) in their model assumes that the distribution of the problem tiaifoam one-
dimensional behavior: on each line segment parallel tathé th axis, the conditional distribution
Ny, xd (xd+1) satisfies the two-sided Tsybakov’s condition with equal noise expaneFtierefore
the algorithm can assign equal label budget to each line segment fadimeasional learning.
Recall that the disagreement coefficient of the one-dimensional tHdel#oning problem is at
most 2 for alle > 0, so there seems tfige) term in the final label complexity formula. If, instead of
assumption (Al), we assume the ordinary Tsybakov’s noise conditiom)dbdathm has to assign

d
2-g
K

8. It needs to be pointed out that the BZ algorithm requires that the ngismeri is known and the algorithm takes it
as imput. But by Threorem 4 and (4) we know that bafrand DHM (with slight modifications) have the same label
complexity and the convergence property, since the disagreemdfitiene for this threshold problem i8(g) = 2
forall € > 0.
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label budgets according to the “worst” noise on all the line segments, thheisargesk of the
conditional distributions),a (x4+1) over all (x%,...,x9). But under the ordinary Tsybakov’s
condition, the largest on lines can be arbitrarily large, resulting a label complexity equal to that of
passive learning.

4. Proof of Lemma 11 and 12—Some Generalizations of the Landakielmogorov
Type Inequalities

In this section we give proofs of Lemma 11 and Lemma 12. The two lemmas asdyctetated
to the Landau-Kolmogorov type inequalities (Landau, 1913; Kolmogo@881Schoenberg, 1973)
(see also Mitrino et al., 1991 Chapter | for a comprehensive survey), and speciftbalffpllow-
ing result due to Gorny (1939).

Theorem 15 Let f(x) be a function defined ofd, 1] and has derivatives up to the nth order. Let
Mg = || ¥, k=0,1,...,n. Then

k _k ok
Mk§4<E) MMy,
where M, = max(Mgn!, Mp,).

Roughly, for functionf defined on a finite interval, the above theorem boundsdm®rm of
thekth order derivative off by theco-norm of f and itsnth derivative.

In order to prove Lemma 11, we give the following generalization of Thadkb (in the direc-
tion of dimensionality and non-integer smoothness). Our proof is elememndrisaimpler than
Gorny'’s proof of Theorem 15. But note that the definitiorMjf in Theorem 16 is different to that
of Theorem 15.

Theorem 16 Let f be a function defined d,1]9. Leta > 1 be a real number. Assume that f has
partial derivatives up to ordea. Forall 1 <t < a, define

ID¥f(x) —D*f (X))
M; = maxsu
S A P [

Y

where [¥ is the differential operator defined in Section 3.1 and x [0,1]9. Also define M =
SURcfo,g¢ F(X). Then

l,h /K
Mk <CM, “M¢, (7)
where M, = maxMo,Mq), k=1,2,...,a, and the constant C depends on k andut does not
depend on i and M.

Lemma 11 can be derived from Theorem 16.

Proof of Lemma 11 The proof has two steps. First, we construct a functidoy scaling® and
redefine the domain of the function, so that a) the integrdl ofer the unit hypercube is at most
1; b) theath order derivatives off is Holder continuous with the same constant@sand c)

[ ]l = (%)"%d |P|l. Next, we use Theorem16 to show thidt|. can be bounded from above by
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a constant depending only on d, C (recall that® € FY) but independent af. Combining the two
steps concludes the theorem.
Now, for the first step assume

Let

1
where now the domain df is (x!,...,x9) € [0, 244,
First, it is easy to check that

and theath order derivatives of is Holder continuous with the same const@ras®. That is,

DK f (x) — DK f (X DKd(x) — DXd(X
max  sup ID*f(x) /aiu(X)l —max sup | (X) HH(X)\ <c.
k=gt [x—x[|a-a kl=axxepye  [IX=X[*2

1
xx'€[0, 1 o+dd

In addition, clearly we have
[®ler = tasd|[f]lo < ravd ][ f][e.

Thus in order to prove the lemma, we only need to shéyi is bounded from above by a universal
constant independent of

1
Note that the domain of is [0, 15919, larger than0,1]9. Assumef achieves its maximum at

1
(aq,ay,...,84) € [0, %““‘]d. Now we truncate the domain éfto ad-dimensional hypercubjes, z; +
I®[2,2+1]®...,®[z,zq+1] sothatl(as, a, ..., aqd) € 21,2+ 1] ® [2,2+1]®...,®[z0, 29 +1].
Let f be the function by restricting on this hypercubéz;,z1 + 1| ® (2,2 + 1| ® ..., ®[z4,Zq + 1.
Clearly, we have
[ flleo = 1 fleo,

where||f || is the maximum over the hypercub®,z + 1) ® 2,2+ 1] ®...,®[Z4,Z4+ 1]. Thus
we just need to shoWf|| has a universal upper bound.

Now we begin the second step of the proof, where our goal is to shbas an upper bound
independent of. Assumez, = 0 fori =1,...,d by shifting if necessary.

Let

X
gd(xl,...,xd):/o O, .. ug)dug.

For any fixedx!,...,x3-1, considergy as a function of the single variabi€. Sincef is the first
order derivative ofyq, it is easy to check thajy has derivatives up to order—+ 1 with respect tod
and itsa + 1 order derivative is Elder continuous with consta@t Thus according to Theorem16,
we have

_ o 1
[ flleo < [|Ga|e" Cast. 8
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Similarly, let

Xi . )
gi(xl,...,xd):/ g1, X X xdu, i=1,2,...,d—1.
0

For eachg; use the above argument and observe thatathelth order derivative of eact; is
bounded from above bg, then it is easy to obtain that

P P
9= < Nl allE7C. o

Combining (8) and (9) forall=1,2,...,d we have

a \d
1Tl < gl

whereC' is a constant depending @) a, d. This completes the proof since

xt xd
gl(xl,...,xd):/ / T(ug,...,ug)duy,...,dug < 1.
0 0
|

Proof of Theorem 16The structure of the proof is as follows: we first deal with the casg-6f1
and then generalize th> 1. For the case af = 1, we first show the cased a < 2, and then prove
general by induction.

Now assumel = 1 and 1< a < 2. Our goal is to show

1_1 /l
My < CM, *Mg.
For any fixedx € [0, 1], there must be g [0, 1] such thaty — x| = 1/2. We thus have

fly) —f(x)
y—X

where|u| < 1/2. Since 1< a < 2, we knowa = 1. By the definition oMy we have

= f'(x+u), (10)

[/ (x4 ) — /(3] < Mg|ul® . (11)

Combining (10) and (11) and recéyl— x| = 1/2, we obtain

f(y)— f(x
‘f/(X)] < ‘ (y))/_x() +MG|U‘G71
1 a-1
< 4Mo+<2> Mq
< 4Mp+ Mg. (12)

Letg(x) = f(ax+r), where O<a<1,r € [0,1—a] andx € [0,1]. Let

g(x)—g )|
M3 = suplg(x)|, M$= sup ’—
0 xe[071]’ ’ ‘ x,X'€[0,1] ‘X_X/’a_l

2284



SMOOTHNESS DISAGREEMENTCOEFFICIENT, AND AGNOSTICACTIVE LEARNING

Itis easy to check thalg < Mo andMg < a®Mq. Applying (12) tog(x), which is defined oro, 1],
we obtain that for everg € (0,1]

Taking

we obtain for allx € [r,a+r]
_1 1
/()] <5Mg Mg,

whereM/, = max Mo, Mq). Sincer € [0,1— ] is arbitrary, we have that

_1 1
M; = sup |[f'(x)] <5My M. (13)
xe€[0,1]

Note that this implies that for all nonnegative integeand 1< a < 2, we have
1,; /l
Mmt1 < SMm “Mpyq-

We next prove the general> 1 case. Leh be a positive integer. By induction, assume for all
1< a<nwe already have, fotk=12,...,a

Qlx

1—k
Mic <CM © (max(Mo,Mq))* , (14)

where the constai@ depends ok anda but does not depend dvip andM. (In the following the
constanC my be different from line to line and even in the same line.) We will prove thati€l4
true fora € (n,n—+ 1]. Here we will treat the two cases<lk < n andk = n separately.

For the case X k < n, sincea — k < n, by the assumption of the induction we have

=~

n—

_n-k
Mp < CM; “* (max(Mi, Mq ))& . (15)
Combining (14) and (15), and setting= nin (14). We distinguish three cases.

Case | Mg > M,
We have

SIx

_k
CMy " (max(Mo, Mp))
CMo

_k
< CMy @ (maxMo,Mq))

=
IA

Qlx

Case It Mg < M, andMy > Mq

We have ;
n

1-k Kk 1-k Kk
Mk <CM,; "Mj <CM, "Mp.
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Thus

k

My < CMo < CM, © (max(Mo,Mg))

Case lIt Mg < My andMg < Mg
We have

k
a

1-k kK

M < CMg "Mg
k _nk  nk\n
< cMmp " <|v||f “kM&‘)

k(a—n) k(n—k)

1-% = =
— CMO anz(U k) M&(G k).

We obtain after some simple calculations that
1—k Kk
M <CM, *Mg.

This completes the proof for& k < n.
For the cas& = n, note that

_n-1 n
Mn < CM; ° max(My, Mq)e-1, (16)
and )
M; < CMg " max(Mo, Mp)7. (17)
We need to distinguish four cases.
Case | M1 > Mg andMg > M,
Combining (16) and (17), we have
My < CM; < CMo < CMg @ (max(Mo, Mq))é .
Case It M1 > My andMg < My,
We have L
Mn < CMy < CMg "M,
Thus L ]
Mn S CMO S (:'\/IO_a (maX(MO, Mq))a .
Case lIt M1 < Mg andMg > Mj,
We have
1— n—1 n-1
M, < CM; “*'M§*
1— n-1 n-1
< CM, IMS. (18)

If Mg < Mg, then from (18) we obtain

_n n /M G a-
M CMy T Mg <°>

IN

IN
@)
<

o

£
<

S
<

g

et
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Otherwise Mg > Mg, by (18)
Mp < CMo.

Case IV M1 <My andMg < M,
We have

1-1 1 a— n-1
M, < C<M0 wvm) Ma1

— CMn n(a—1) M&F Mr;](ﬂfl) .
After some simple calculation, this yields
1-nh n
Mp <CM, *Mg.

This completes the proof of tHe= n case, and we finished the discussion ofdhe 1 case.
The above arguments are easy to generalize td the case. Consider the functidix?, . .., x9).
Again we first look at k< a < 2. AssumeM is achieved at théth partial derivative off. That is,

‘af

ox
Fixing xX,...,xI=1 xi*1 .. xd, considerf as a function of a single variabjé. By the argument
for thed = 1 case, we know that

=M.

o)

1
1-3

Mz < 5M;

~1
Ma,
where

af of

~ X Ix — axl
M = max| Mg, sup————
o x,x/p HX_X/”u_l

X/

CIearIy,l\7I < max Mo, Mq) = Mj,. Hence for 1< a < 2, we haveM; < SMéféMf}%. Finally, using
the previous induction argument and noting that it does not depend orintlemglonalityd, we
obtain the desired result for ail > 1. |

To prove Lemma 12 however, Theorem 16 is not a suitable tool. Note thafithie (7) is
maxMo, Mq), while in Theorem 18], = max(n!Mo, My ). Therefore the constant in Theorem 16
grows exponentially regarding . In the following we give another generalization of Gorny’s
inequality which will be used to prove Lemma 12. The price however is thahit@ghandle the
non-integer smoothness.

Theorem 17 Let f(x) be defined ori0, 1]¢ and have uniformly bounded partial derivatives up to
order n. Let

My = sup||D¥f|le, k=0,1,2,....n.
Ik|=k

Then .
My < CrfMg "My,

where M, = max(n'Mp, M), and C is a constant depending on k but does not dependgiviy
and n.
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This theorem is a straightforward generalization of Gorny’s theorem to rimaktission. Now we
can use this theorem to prove Lemma 12.

Proof of Lemma 12 Similar to the proof of Lemma 11, fdi?,...,x%) € [0,1]9, let

Xt X2 xd
f(xl,...,xd):/ / / d(uy,...,uq)duy,. .., dug.
o Jo 0

It is easy to check that is infinitely smooth. LetM; be defined as in Theorem 15 fér Clearly
Mo <r and||®|l» < My. Sincef is infinitely smooth, there is a constabtsuch thatM, < C for
n=d+1d+2,....
1 ,
Now for r sufficiently small, taken = |o|§|%£;l' Let’s first look atn!Mo. Note that

r

1
log Iog%

IO l Ioglog% 1 oglo % 1
n" = grl < |ng loglog —
loglogy r r

log 1
Mon! < rv2mnte " < 21 g r C (r)loglog%
loglog;

VErexp Ioglog%—logloglog%_ Iog%1 |
2 loglog+

We have

IN

which tends to zero as— 0 and therefore
M/, = maxMgn!,Mp)) <C.
Thus we have, by Theorem 17

[®]]eo

IN

Mg
_d d
CrfMy "My

IN

_d
n

IN

dpa gl

Cn'M,

d dloglo

o [ _tou? r(l) ool
loglog? r

2d
Cr (Iog:) .
|

Proof of Theorem 17We know that the theorem is valid whein= 1. Now assume > 2. Using
the same argument in the proof of Theorem 16, we have that for all poBsitegers,

1
r

IN

IN

1,1 /l
M1 < CnM, "My,
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and in general
_1 1
M1 < CMm "ML . (19)

for any nonnegative integen.
Now we prove the theorem by induction knAssume we have already shown

1 1- k=t k=1
M1 <CrIMy™ ™ (max(Mon!,Mp)) 7 . (20)

By (19) we have

_1
My < C(n— K+ DM+ (max((n K+ 1)!Mic1, Mn>) T (21)
We consider the following four cases separately. Note that below we wiuntly use the fact

that form=1,2,...
——(m)me<m< (m)metiz.

Van

To see this, just note that
Vormmle~ (™ i) < mi < v/2mmnde ™,

and

1§(ﬁ)"1‘<\/71

Casel (n—k+1)!Mk_1> M,andn!My <M,
From (21) we have

_1
My < C(n—k-+ 1)|v|k,1((n k4t 1)!) T 2 C(n—k+1)2My_1 < CrPMy_1.

Taking into consideration of (20), we have

nk+lM Tl

,k

CrkMy, "M My

Mg

IN

IN

iy
n'Mo>

anM n|\/|n

IN

/\/‘\Z

< crfvg” M

Caselt (n—k+1)!Mk_1 > Mpandn!Mg > M,
By the similar argument as in Case |, we have

A
o
ZX
s
=
=
g

My

IA
O O
> %
s =
> &

=

5|

I

9]

3}\_

<

e
/:: ~—
<

N
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Case lll (n—k+1)!My_1 <Mpandn!Mg > M,
Combining (20) and (21),

Mc < Cn—k+1) (nkllvlo(n!)knl)l”lk+l L
CrME T (1) (590 ken) (i) ke
CriMo(n!)»
< CrfMETR (M)t
Case IV (n—k+1)!My_1 <M, andn!Mg < M, Combining (20) and (21), we obtain

IN

IN

-+ 1
Mc < C(n—k+1)M [ MFF?
_ k-1 k-1 1- n—bl 1
cn (nklmé " Mp" ) Mg

_k k
CrfMg "M,

IN

IN

This completes the proof. [ |

5. Conclusion

This paper studies the disagreement coefficient of smooth problemstandewur previous results

(Wang, 2009). Comparing to the worst cdse) = % for which active learning has the same label

_d
complexity as passive learning, the disagreement coeffici®itjs= O ((g) “*d> for ath (o < o)

order smooth problems, anddge) = O (log? (1)) for infinite order smooth problems. Combining
with the bounds on the label complexity in terms of disagreement coefficiengjiveesufficient
conditions for which active learning algorithAf and DHM are superior to passive learning under
Tsybakov’'s noise condition.

Although we assume that the classification boundary is the graph of a fapatioresults can be

generalized to the case that the boundaries are a finite number of fundiidme precise, considar
(N is even) functiongy (x) < --- < fy(x), forallx € [0, 1]9. Let fo(x) =0, fn;1(X) = 1. The positive
(or negative) set defined by these functionf(is x31) : fz(x) <x31 < foi1(x), i=0,1,..., 3}
It is easy to show that our main theorems still hold in this case. Moreoveq tlsntechniques in
Dudley (1999, page 259), our results may generalize to the case thdasgsédication boundaries
are intrinsically smooth, and not necessarily graphs of smooth functiohs would include a
substantially richer class of problems which can be benefit from activeihen

There is an open problems worthy of further study. For infinitely smootblpnas we proved
that the disagreement coefficient can be upper and lower boundex{lbg® (1)) andQ(1) re-
spectively. Improving the upper bound and (or) the lower bound woelliciteresting.
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