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Abstract

In this paper the sequential prediction problem with expédstice is considered for the case where
losses of experts suffered at each step cannot be boundeebinae. We present some modification
of Kalai and Vempala algorithm of following the perturbedder where weights depend on past
losses of the experts. New notions of a volume and a scaleddition of a game are introduced.
We present a probabilistic algorithm protected from umietgtdly large one-step losses. This al-
gorithm has the optimal performance in the case when theddlaictuations of one-step losses of
experts of the pool tend to zero.

Keywords: prediction with expert advice, follow the perturbed lead@bounded losses, adaptive
learning rate, expected bounds, Hannan consistencygosdiquential prediction

1. Introduction

Experts algorithms are used for online prediction or repeated decision gnakirepeated game
playing. Starting with the Weighted Majority Algorithm (WM) of Littlestone and Watm(1.994)
and Aggregating Algorithm of Vovk (1990), the theory of Prediction witlpEst Advice has rapidly
developed in the recent times. Also, most authors have concentrateddictimg binary sequences
and have used specific (usually convex) loss functions, like absoligedqaare and logarithmic
loss. A survey can be found in the book of Lugosi and Cesa-Biarfif). Arbitrary losses
are less common, and, as a rule, they are supposed to be boundednoeatsee well known
Hedge Algorithm of Freund and Schapire 1997, Normal Hedge of Ghaudt al. 2009 and other
algorithms).

In this paper we consider a different general approach—"Follow #reufbed Leader — FPL”
algorithm, now called Hannan’s algorithm, see Hannan (1957), Kalai antpsla (2003) and Lu-
gosi and Cesa-Bianchi (2006). Under this approach we only chtbesgecision that has fared the
best in the past—the leader. In order to cope with adversary some raradiomiis implemented
by adding a perturbation to the total loss prior to selecting the leader. Theofythee learner’s
algorithm is to perform almost as well as the best expert in hindsight in tlgerlon The resulting
FPL algorithm has the same performance guarantees as WM-type algorithfixed learning rate
and bounded one-step losses, save for a fa¢®rA major advantage of the FPL algorithm is that
its analysis remains easy for an adaptive learning rate, in contrast to ¥vivatives (see remark
in Hutter and Poland 2004).
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Prediction with Expert Advice considered in this paper proceeds as fllaMe are asked to
perform sequential actions at times- 1,2,...,T. At each time step, experts = 1,...N receive
results of their actions in form of their lossgs—arbitrary real numbers.

At the beginning of the stepLearner, observing cumulating losse$, ; =S, +...+s , of
all experts = 1,...N, makes a decision to follow one of these experts, say Expaitthe end of
stept Learnerreceives the same lossas Experi at stept and sufferd_earner'scumulative loss
S1t =S1t-1+%.

In the traditional framework, we suppose that one-step losses of artsxare bounded, for
example, 0< s < 1 for alli andt.

Well known simple example of a game with two experts shows that Learnerezéorip much
worse than each expert: let the current losses of two experts ortstepd, ..., 6 be%,1_2,3,4,5,e =
(%,0, 1,0,1,0,1) andsf,_lz’aw5 =(0,1,0,1,0,1,0). Evidently, “Follow the Leader” algorithm al-
ways chooses the wrong prediction.

When the experts one-step losses are bounded, this problem haoheehusing randomiza-
tion of the experts cumulative losses. The method of following the perturbéeéilevas discovered
by Hannan (1957). Kalai and Vempala (2003) rediscovered this metgablished a simple
proof of the main result of Hannan. They called an algorithm of this type llowing the
Perturbed Leader).

The FPL algorithm outputs prediction of an expesthich minimizes

. 1.
S|1:t—1 - gzla

where&', i=1,...N,t =1,2,..., is a sequence of i.i.d random variables distributed according to
the exponential distribution with the densityx) = exp{—x}, ande is a learning rate
Kalai and Vempala (2003) show that the expected cumulative loss of thelgBtithm has the

upper bound
L logN
E(s1r) < (1), min §+—o,
i=1..,N €

whereg is a positive real number such that( < 1 is a learning rate\l is the number of experts.

Hutter and Poland (2004, 2005) presented a further developments &Pthalgorithm for
countable class of experts, arbitrary weights and adaptive learning Adge, FPL algorithm is
usually considered for bounded one-step Iosseiss'og 1 for alli andt. Using a variable learning
rate, an optimal upper bound was obtained in Hutter and Poland (2005):

-----

Most papers on prediction with expert advice either consider boundeddmr assume the existence
of a specific loss function (see Lugosi and Cesa-Bianchi 2006). IMis bbsses at any step to be
unbounded. The notion of a specific loss function is not used.

The setting allowing unbounded one-step losses do not have wide gevierditerature; we
can only refer reader to Allenberg et al. (2006), Cesa-Bianchi ¢2@07) and Poland and Hutter
(2005).

Poland and Hutter (2005) have studied the games where one-step lbaflesxperts at each
stept are bounded from above by an increasing sequ&ggven in advance. They presented a
learning algorithm which is asymptotically consistent Bpe= t1/16.
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LEARNING IN CASE OFUNBOUNDED LOSSESUSING FPL ALGORITHM

Allenberg et al. (2006) have considered polynomially bounded onelatsps for a modified
version of the Littlestone and Warmuth (1994) algorithm under partial mongorin full infor-
mation case, their algorithm has the expected regeéiIN(T + 1)2(1+3B) in the case where
one-step losses of all experts 1,2,...N at each stephave the boun(lsf[)2 <t% wherea> 0, and

B > 0 is a parameter of the algorithm. They have proved that this algorithm is Haomsistent if

1 < 2 a
M 2, =T
forall T, wherec > 0and O< a< 1.

Cesa-Bianchi et al. (2007) derived a new forecasting strategy éovikighted Majority algo-
rithm in unbounded setting with regret

v/ OrINnN+MrInN,

whereMr = max<j<n Max<i<7 |S| is the largest absolute value of any Iaf an expert at
T . .

time stepT, andQr = ¥ (3™")? is the sum of squared losses of the best atTirsteps expernit™".
t=1

These bounds were improved using cumulative variances of lossesr (@isttibutions used in the
Weighted Majority algorithm). Cesa-Bianchi et al. (2007) do not studyngsgtic consistency of
their algorithm.

In this paper we present a sufficient condition for the FPL algorithm tcsmptotically con-
sistent in case where losses are unbounded. In particular, this setterg eaccase where loss grows
“faster than polynomial, but slower than exponential”. We present somdioaitbn of Kalai and
Vempala (2003) algorithm of following the perturbed leader (FPL) for theecof unrestrictedly
large one-step expert lossgsot bounded in advance} € (—, 4-). This algorithm uses adap-
tive weights depending on past cumulative losses of the experts.

A motivating example, where losses of the experts cannot be boundeddnca] is given in
Section 5.

The full information case is considered in this paper. We analyze the asgongbosistency
of our algorithms using nonstandard scaling. We introduce new notiotieeofolume of a game

t .
Vi =Vo+ Y max |§j | andthe scaled fluctuatioof the game fluft) = Av; /v, whereAv; = vi — i1
=1

andvp is a nonnegative constant.

We show in Theorem 2 that the algorithm of following the perturbed leader adtiptive
weights constructed in Section 3 is asymptotically consistent in the mean in thevlcae; — o
andAv; = o(v) ast — o with a computable bound. Specifically, if fli¢ < y(t) for all t, where
y(t) is a computable function such thgt) = o(1) ast — o, our algorithm has the expected regret

2,/(8+¢)(1+InN) i(y(t))l/zAvt,

wheree > 0 is a parameter of the algorithm.
In case where all losses are nonnegatiyes [0, ), we obtain the regret

2y/(2+¢)(1+InN) i(y(t))l/zAvt.
t=
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In particular, this algorithm is asymptotically consistent (in the mean) in a mod#iesks

fmsup-=E syt — min shy) <0, ®
Tow VT i=1,..N
wheres; 7 is the total loss of our algorithm on step®l .. T, andE(s;.1) is its expectation.

Proposition 1 of Section 2 shows that if the conditibn = o( ) is violated the cumulative loss
of any probabilistic prediction algorithm can be much more than the loss of dteekpert of the
pool.

In Section 3 we present some sufficient conditions under which ouiitggaigorithm is Hannan
consistent.

In Section 4 we consider some special cases of our algorithm and applgé&tiothe case of
standard time-scaling.

In particular, Corollary 8 of Theorem 2 says that our algorithm is asymjaibticonsistent (in
the modified sense) in the case when one-step losses of all experth ategicare bounded bi?,
wherea is a positive real number. We prove this result under an extra assumpaibtinéhvolume
of the game grows sIowa,tﬂm inf /t2t% > 0, whered > 0 is arbitrary. Corollary 8 shows that our

algorithm is also Hannan consistent when %

In Section 5 we consider an application of our algorithm for constructingrbitrage strategy
in some game of buying and selling shares of some stock on financial markeinadze this game
in the decision theoretic online learning (DTOL) framework (see FreundSmhapire 1997). We
introducel earnerthat computes weighted average of different strategies with unbourdtesiand
losses. To change from the follow leader framework to DTOL we demamoour FPL algorithm.

This paper is an extended version of the ALT 2009 conference pdpegivi (2009).

2. Games of Prediction with Expert Advice with Unbounded Onestep Losses

We consider a game of prediction with expert advice with arbitrary unbedimehe-step losses.
Following Cesa-Bianchi et al. (2007) we call a game with such lossesédigame” and call these
losses “signed losses”.

At each step of the game, alN experts receive one-step lossgs (—,+),i=1,...N, and
the cumulative loss of thigh expert after stepis equal to

g.'l:t = §.l:t—l + #

A probabilistic learning algorithm of choosing an expert outputs at any tstep probabilities
P{l; =i} of following theith expert given the cumulative Iossiggfl of the experts =1,...Nin
hindsight (see Figure 1).

The performance of this probabilistic algorithm is measured iaxfgected regret

E(sut *i:nfinNgl:T),

where the random variabt-t is the cumulative loss of the master algoritrdpr, i=1...N,are
the cumulative losses of the experts algorithms Brslthe mathematical expectation (with respect

1. This means that (1) holds with probability 1, wh& és omitted.
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LEARNING IN CASE OFUNBOUNDED LOSSESUSING FPL ALGORITHM

Probabilistic algorithm of choosing an expert

FORt=1,...T

Given past cumulative losses of the expd'[_tlsL 1, 1=1,...N, choose an expertwith probability
P{li=1i}.

Receive the one-step losses at stepthe experts and suffer one-step loss= g of the master
algorithm.
ENDFOR

Figure 1: Probabilistic algorithm of choosing an expert

to the probability distribution generated by probabilited; =i}, i =1,...N, on the firstT steps
of the game).
In the case of bounded one-step expert losges,[0, 1], and a convex loss function, the well-
known learning algorithms have expected re@ey/TlogN) (see Lugosi and Cesa-Bianchi 2006).
A probabilistic algorithm is calledsymptotically consisteiit the mean if

. 1 C
lim supr(sl;T - i:rr11‘|“r.1’\l§_L:T) <0. (2)

T—o00

A probabilistic learning algorithm is callddannan consistent

imsup. (s - min sir ) <0 ®
almost surely, whers; - is its random cumulative loss.

In this section we study the asymptotical consistency of probabilistic leartgngthms in the
case of unbounded one-step losses.

Notice that when G< § < 1 all expert algorithms have total logsT on firstT steps. This is
not true for the unbounded case, and there are no reasons to dwielepicted regret (2) by. We
change the standard time scaling (2) and (3) on a new scaling basedwmatien of volume of a
game. We modify the definition (2) of the normalized expected regret as fllbefinethe volume
of a game at step

t
Vi =\Vo+ Z max|s;|,
=t
wherevg is a nonnegative constant. Evidently,; < v for all t.

A probabilistic learning algorithm is callemsymptotically consisteim the mean (in the modi-
fied sense) in a game with experts if

1 .
li —E(sp71— mi -) <0.
msupy, Elsur = 1N, sur) <
A probabilistic algorithm is called Hannan consistent (in the modified sense) if
limsup— — min 81 ) <0 (4)
Témva SiT NS ) S

almost surely.
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Notice that the notions of asymptotic consistency in the mean and Hannanteonogisay be
non-equivalent for unbounded one-step losses.

A game is calledhon-degeneraté v; — o ast — co.

DenoteAv; = v — Vt_1. The number

Av _ max s

fluc(t) = " "

is calledscaled fluctuatiomf the game at the stdp

By definition 0< fluc(t) < 1 for allt (put 0/0 = 0).

The following simple proposition shows that each probabilistic learning algoigmot asymp-
totically optimal in some game such that fitic/4 0 ast — o. For simplicity, we consider the case
of two experts and nonnegative losses.

Proposition 1 For any probabilistic algorithm of choosing an expert and for anguch that0 <
€ < 1two experts exist such thatw o ast— o and

fluc(t) > 1—c¢,

JE(su-ming) > 519

NP |

for all t.

Proof. Given a probabilistic algorithm of choosing an expert amslich that O< € < 1, define
recursively one-step losses ands’ of expert 1 and expert 2 at any step- 1,2, ... as follows.
By si, ands?, denote the cumulative losses of these experts incurred at stepket v; be the
corresponding volume, whete=1,2,.. ..

Definevp = 1 andM; = 4v_1 /¢ for all t > 1. Fort > 1, definest = M; ands? = 0 if P{l; =
1} > 3, and defines = 0 ands? = M; otherwise.

Let s be one-step loss of the master algorithm apdbe its cumulative loss at steép> 1. We
have

E(su0) > E(8) = $P{l = 1} + Pl = 2) > JM

forallt > 1. Also, sincexs =Vvi_1+M; = (1+4/¢)v_1 and mirsil.t <V;_1, the normalized expected
A
regret of the master algorithm is bounded from below

2/e-1_1

(Elen—ming) > P50 S0,

for all t. By definition
M;
= >
Vt—l+Mt 1+£/4_

fluc(t) = 1-¢

forallt. A

Proposition 1 shows that we should impose some restrictions of asymptotiddrediafluc(t)
to prove the asymptotic consistency of a probabilistic algorithm.
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LEARNING IN CASE OFUNBOUNDED LOSSESUSING FPL ALGORITHM

3. Follow the Perturbed Leader Algorithm with Adaptive Weights

In this section we construct the FPL algorithm with adaptive weights protdated unbounded
one-step losses.

Let y(t) be a computable non-increasing real function such thaty®) < 1 for all t. In that
follows we usually assumgt) — 0 ast — ; for example,y(t) = 1/(t +¢)%, wherec > 0 and
0 > 0. Let alsoa be a positive real number. Define

L[, Infeny

on:E 1_W and (5)
2a(e?/a—1

= aly) = 2 i) ©

for all t, wheree=2.72. .. is the base of the natural Iogaritl‘ﬁ"n.
Without loss of generality we suppose tiyét) < min{A, A1} for all t, where

_ 2(efa-1)
~a(l+InN)’

We can obtain this choosing an appropriate value of the initial conggafihen 0< o; < 1 for all
t.
We consider an FPL algorithm with a variable learning rate

1
MeVe—1

wherely is defined by (6) and the volunwe_; depends on experts actions on steqs By definition
Vi > Vg andp < 1 fort =1,2,.... Also, by definitiony, — 0 ast — o if y(t) — 0.

Let&l,...&N,t =1,2 ..., be a sequence of i.i.d random variables distributed exponentially with
the densityp(x) = exp{—x}. In what follows we omit the lower indetx

We suppose without loss of generality tls‘@t: Vo = 0 for all i andeg = oo.

The FPL algorithm PROT is defined on Figure 2.

Letst = 2 s{t be the cumulative loss of the FPL algorithm on steps.

& =

(7)

The foIIowmg theorem shows that if the game is non-degeneratedane o(v;) ast — o
with a computable bound then the FPL-algorithm with variable learning rate é8ymmptotically
consistent.

We suppose that the experts are oblivious, that is, they do not use imthr&irandom actions
of the learning algorithm. The inequality (9) of Theorem 2 below is reformulatetiproved for
non-oblivious experts at the end this section.

Theorem 2 Assume that a computable non-increasing real funcgiphexists such thald < y(t) <
land

fluc(t) < y(t) (8)

2. The choice of the optimal value af will be explained later. It will be obtained by minimization of the correspogdin
member of the sum (36).
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FPL algorithm PROT.
FORt=1,...T
Choose an expert with the minimal perturbed cumulated loss on steps

. - 1
lt=argmin_;, N {gl:tl - &EI} .

Receive one-step lossgdor experts = 1,...,N, defineg, 1 by (7), and

Vit = Vt_1+Mmaxs.
|

Receive one-step loss= s{t of the master algorithm.
ENDFOR

Figure 2: FPL algorithm PROT

for all t. Then for anye > 0 the expected cumulated loss of #eL algorithm PROTwith variable
learning rate (7), where a parameter-a0 depends o, is bounded:

T

E(sp7) < miinsfl:T +2v/(8+¢)(1+InN) Z(y(t))l/zAvt 9)
t=

for allt.®
In case of nonnegative unbounded losges [©, +-») we have a bound

T

E(sp7) <minsyr+24/(2+€)(1+InN) Z(v(t))l/ “Dv. (10)
t=

Let also, the game be non-degenerate g(ig — 0 as t — . Then the algorithnPROT is
asymptotically consistent in the mean

IimsupiE(sl;T — min 1) <0. (11)
T VT i=1,...N

Proof. The proof of this theorem follows the proof-scheme of Kalai and Vem{24l@3) and Hutter

and Poland (2004).

Let a; be a sequence of real numbers defined by (5); recall thatiD< 1 for allt.

The analysis of optimality of the FPL algorithm is based on an intermediate pretidtb
(Infeasible FPL) (see Figure 3) with the learning rgtdefined by (12).

The IFPL algorithm predicts under the knowledgeigf i = 1,... N, which may not be available
at beginning of step. Using unknown value of] is the main distinctive feature of our version of
IFPL.

The expected one-step and cumulated losses of the FPL and IFPL algoaitistepd and T
are denoted

i = E(s') andry = E(s),

3. In case of bounded losses whq = 1 we haver =t andy(t) = 1/t. In this case the regret in the bound (9) has a
standard fornO(+/T InNN).
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IFPL algorithm .
FORt=1,...T
Define the learning rate

_— i - Ot
&= o wherep = a(y(t))™, (12)

wherev; is the volume of the game at stepnda; is defined by (5).
Choose an expert with the minimal perturbed cumulated loss on steps

geae

Receive the one step Iosﬂs of the IFPL algorithm.
ENDFOR

Figure 3: IFPL algorithm

T

.
li1 = let andryt = th
t= t=

respectively, Wherét is the one-step loss of the FPL algorithm at Stapdsf‘ is the one-step loss of
the IFPL algorithm, an€& denotes the mathematical expectation. Recalllthatargmin{s,, ; —

£ &'} and) = argmin{s;; — ;&'}.

Lemma 3 The cumulated expected losses of f and IFPL algorithms with learning rates de-
fined by (7) and (12) satisfy the inequality

—

lir <rir+2(6¥2-1) 5 (y(t) *Av (13)
t=

for all T, whereq; is defined by (5).
Proof. Letc,,...cy be arbitrary nonnegative real numbers. For ary L< N define
my = min{sh 1 — ~c}.
i#] &
mh = min(ss; — o)
Assume that these minima are achievetd-atj; andi = j, correspondingly:

m — i1 —EC'
] S1:t71 € J1
t
, 1 i , o1
_al2 L _ ol J2 .
ﬁfj =St — aclz - 81:t71+S[ - gcjz
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for somej; andj,. By definition j; # j andj, # j. Then we have

i =St 1~ ZCiiSSt-1— 26 =

& &
<SS+ AV - —C)y = (14)
t
- 1 1 1
= sy +Av — gl T <€{ - &> Cj, =
1 1

We addAv; to the right-hand side of the inequality (14) since the te[Prrmay be negative in case
of signed losses. In case of nhonnegative losses we need not to do this.
Comparing conditional probabilities

P{lo= j€' =c,i # j} andP{% = j|§' = cii # j}

is the core of the proof of the lemma.
The following chain of equalities and inequalities is valid:

P{l=j' =c,i#]j}=
- P{Si:t—l_gtfj <mj|§ =c,i#j}=

=P{E > ai(sly —my)E =i # ]} =

=PE > g(si M)+ (& &) (s 1~ m[E =i # ) < (16)
<PE > &(sy 1 —m)+

ey 1= 1+ g0 =i 1) = )
= P{&) > (s}, M)+

= ) (Sl a — S y)+ (6~ ) onlEl =i # ]} < (18

j ' j 1 1
< P{EJ EEE(SjJL:t_S[J_n{j—AVt— <£/_s> Cj2)+

t t
+(er—&)(Spy_1 —S3_1) + (& —ﬁi)gtcjzlﬁ' =G,i#j}= (19)
=P{&l > g/(s], —m) +
+(& —5{)(511171_5112171) —&(d 4‘AVt)|Ei =G,i#]j}=
=P{g > W(Sjl:t_”{j)‘F

N D N R P
+<MVt1 IJth>(sl:t_1 Sii-1) Ve €' =ci#j} < (20)
o T (d
SP{E >ptvt(sl:t n{])+
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Avg (S:jl.:tfl_sj.z:tfl) 20Vt C
- - =g, < 21
+HVt Vi-1 LAY E=aiz1) @D
J 2
M Vi Vi-1
<P{J = j[E =i # ). (23)

Here the inequality (16)—(17) follows from (14) aBd> €{. The inequality (18—(19) follows from
(15). We have used in transition from (20) to (21) the equalkity t_1 = Av; and the inequality
|s!| < Av for all j andt. We have used in transition from (21) to (22)—(23) the inequatit§ >
a+b} < ePIP{& > a} for any random variabl& distributed according to the exponential law, where
aandb are arbitrary real numbefs.

We have in (22)

Sltl S'1t1

<2, 24
e (24)

since —‘ < 1forallt andi. Also, Av /v < y(t) andp: = a(y(t))®. Therefore, we obtain

P{le=jJg' =c,i#]} <
< exp{iAvvt} P{h=jlg =c,i#]j} <
< exp{(4/2)(y(t)* “IP{% = &' =i # |} (25)
Since, the inequality (25) holds for all, it also holds unconditionally :

P{l; = j} < exp{(4/a)(y(t)" “}P{% = j}. (26)

forallt=1,2,...andj=1,...N.
Sinces 4+ Av; > 0 for all j andt, we obtain from (26)

le +Ov = E(S¢ +Av) 2% +Avw)P(lt = j) <
=1
N
4 yi-a Av)P j) =
< exp{(4/a)(y }Jle[+ \Y =)
= exp{(4/a) (y(t)) " }(E(s") + Awy) =

) )

= exp{(4/a)(v())" "} (r +Av) <

< (14 (2= 1)) (1)) (re +Lw)

= e+ Ave + (Y2 — 1) (y(t)) X% (ry + Avp) <
<1+ Ave 4 2(6¥2 — 1) (y(t)) % Aw. (27)

4. Fora< 0, we haveP{& > a+ b} < ePlP{¢ > a} for all b, sinceP{ > a} = 1 andP{ > a+b} < 1; fora> 0,
P{& >a+b} < e PP{E>a} forallh.
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In the last line of (27) we have used the inequality < Av for all t and the inequalitye® <
1+ (e—Drforall0<r <1ands> 0.
SubtractingAv; from both sides of the inequality (27) and summing ittby 1,...T, we obtain

.
lir <ri7+2(e¥2-1) Z(V(t))lfthVt
t=

forall T. Lemma 3 is provedA
The following lemma, which is an analogue of the result of Kalai and Vemp@&@3) gives a
bound for the IFPL algorithm.

Lemma 4 The expected cumulative loss of tREL algorithm with the learning rate (12) is bounded :

iy S ming g+ a1 NN () (29

t=
for all T, whereq is defined by (5).

Proof. The proof is along the line of the proof of Hutter and Poland (2004) witexaeption that
now the sequencg is not monotonic.

Let in this proof,s = (s,...9") be a vector of one-step losses a@d = (sl,,...S);) be a
vector of cumulative losses of the experts algorithms. Alscg Iaet(El, . ..EN) be a vector whose
coordinates are random variables.

Recall thate; = 1/(pw), b < x—1 for all t, andvp = 0, g = oo.

Define$;; = syt — S—l{E fort=1,2,.... Consider the vector of one-step los&es s — & (;1{ — Sﬁ)
for the moment.

For any vectos and a unit vectod denote

M(s) = argminycp{d-s},

whereD = {(0,...1),...,(1,...0)} is the set of N unit vectors of dimension N and s the inner
product of two vectors.
We first show that

T
tZiM(gl:t) hs‘t < M(§1T) 'S]:T. (29)

ForT = 1 this is obvious. For the induction step from-1 to T we need to show that

M(ST) -5t <M(SeT) -8t —M(Bpr-1) - SpT-1.
This follows fromS;.1 = $.7_1 + S and

M(8pT) - S17-1 > M(S1:7-1) - S0

We rewrite (29) as follows

iwém)-st < M<§1:T>-§1:T+tim<§m>-z (1 L ) (30)

ol
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LEARNING IN CASE OFUNBOUNDED LOSSESUSING FPL ALGORITHM

By definition ofM we have

M(SeT) - ST < M(seT) - (Sm - j,) =
2
= Bneilg{d “S17} — M(spT) - S,T : (31)

The expectation of the last term in (31) is equa&o: W V7.
The second term of (30) can be rewritten

T 1 1
MG =) =
tZl (Bta) E<5{ 5(1)
;
:t;(wvt—ﬁflvtfl)M(g"lit)'E . (32)

We will use the standard inequality for the mathematical expect&tion
0<E(M(311)-&) <E(maxg’) < 1+InN. (33)
|
The proof of this inequality uses ideas from Kalai and Vempala (2003Haitigr and Poland (2004)

(Lemma 1). _
We have for the exponentially distributed random variaBles=1,...N,

P{miaxEi >al =P{3i(f >a)} < iP{Ei >a} = Nexp{—a}. (34)

Since for any non-negative random variahle€e(n) = [ P{n > y}dy, by (34) we have
0
E(maxg' —InN) =
|

= /P{m_ax«ii —InN>y}dy <
|
0

< /Nexp{—y—InN}dy: 1
0

ThereforeE(max&') < 1+InN.
By (33) the expectation of (32) has the upper bound

T T
t;E(M@mt) &) (Kt — P—1v—1) < (1+1In N)t;uAvt.

Here we have used the inequaliy< |1 for all t,
SinceE(¢') = 1 for all i, the expectation of the last term in (31) is equal to

E (M(S1:T) : eE’T> = ; = MrVr. (35)
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Combining the bounds (30)-(32) and (35), we obtain

rit=E (iM@n)'&) <
T

<mins; 1 — prvr + (1+InN) ZHAW <
|
t=

_ T
<mins;t + (1+InN) ZMAVt'
i &

Lemma is provedA.
We finish now the proof of the theorem.
The inequality (13) of Lemma 3 and the inequality (28) of Lemma 4 imply the inequality

E(sp7) < minsyr +
+ i(Z(e“/ - 1)(y(t) T % a4+ InN)(v(t)“)Av. (36)

forall T.
The optimal value (5) ofi; can be easily obtained by minimization of each member of the sum
(36) bya;. In this casqy is equal to (6) and (36) is equivalent to

E(sur) < minsyr +2y/2a(e/2— 1)(1+InN) i(v(t))l/zAvt, 37)
i =

wherea is a parameter of the algorithm PROT.

Also, for eacte > 0 ana exists such thaté(e“/a— 1) < 8+¢. Therefore, we obtain (9).

We havey[_; Ay = vy for all T, v — o andy(t) — 0 ast — «. Then by Toeplitz lemma (see
Lemma 9 of Section A)

VlT (2\/(8+£)(1+In N)ti(y(t))l/zAvt> -0

asT — o. Therefore, the FPL algorithm PROT is asymptotically consistent in the mestristithe
relation (11) of Theorem 2 is proved. _
In case where all losses are nonnegati/es [0, +), the inequality (24) can be replaced on

<1
Vi-1

j i2
‘ S1t-1—S1t1

for all t andi. We need not to add the terfty; to the right-hand side of the inequality (14). Also,
we need not to addv; to both parts of inequality (27).
In this case an analysis of the proof of Lemma 3 shows that the bounddBBecreplaced on

—

E(sur) < mins 7 +2y/a(2 — 1)(1+InN) 3 (v(t) 20w,
i &
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wherea is a parameter of the algorithm PROT.

For eache > 0 ana exists such thaa(e?/2 — 1) < 2+¢. Using this parametea, we obtain a
version of (9) for nonnegative losses—the inequality (10).

We study now the Hannan consistency of our algorithm.

Theorem 5 Assume that all conditions of Theorem 2 hold and

o0}

(Y(t))? < oo. (38)
2
Then the algorithnPROTis Hannan consistent:
. 1 L
limsup— (sl;T — min 5'1-T> <0 (39)
Too VT i=1..N ™

almost surely.

Proof. So far we assumed that perturbatids...,&N are sampled only once at tinhe= 0. This
choice was favorable for the analysis. As it easily seen, under exjpectiais is equivalent to gen-
erating new perturbatior®g, ..., &N at each time step also, we assume that all these perturbations
arei.idfori=1,...,Nandt=1,2,.... Lemmas 3, 4 and Theorem 2 remain valid for this case.
This method of perturbation is needed to prove the Hannan consistenay aptirithm PROT.

We use some version of the strong law of large numbers to prove the Haansistency of the
algorithm PROT.

Proposition 6 Let g(x) be a positive nondecreasing real function such thai(x), g(x)/x? are
non-increasing for x> 0 and g x) = g(—Xx) for all x.
Let the assumptions of Theorem 2 hold and
o 9(Avt

(&v) _
2 W) < 0o, (40)

Then theFPL algorithm PROTis Hannan consistent, that is, (4) holds as-Tc almost surely.

Proof. The proof is based on the following lemma.

Lemma 7 Let a be a nondecreasing sequence of real numbers such thateaas t— o and X
be a sequence of independent random variables such i E O, fort =1,2,.... Let also, @x)
satisfies assumptions of Proposition 6. Then the inequality

2 EQX) _
& o@) @
implies
1 T
gt: X —0 (42)

as T — o almost surely.
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The proof of this lemma is given in Section A.
PutX = (5 —E(%))/2, wheres is the loss of the FPL algorithm PROT at stepnda; = v; for
all t. By definition|X;| < Av; for all t. Then (41) is valid, and by (42)

1 14
vy (87 —E(sm) = O t;(& E(s)) =0
asT — oo almost surely. This limit and the limit (11) imply (395

By Lemma 6 the algorithm PROT is Hannan consistent, since (38) implies (40)Xpe= x2.
Theorem 5 is provedA

Non-asymptotic version of Theorem 5 can be obtained but this requires neavy technics
from probability theory (see Petrov 1975).

4. Specializations of Theorems 2 and 5

In this section we discuss some special cases of Theorems 2 and 5.

In case of bounded experts loss< [0,1], assume that an auxiliary “bad” expestexists
for which §° = 1 for allt. ThenAy; = 1 and the volume becomes time: =t for all t (we put
Vo = 0). So, we can takg(t) =t~ for all t. In this case the regret (10) of Theorem 2 is equal to
4,/(2+¢€)(1+InN)T that is very close to classical bounds from Hutter and Poland (20043j Ka
and Vempala (2003) and Lugosi and Cesa-Bianchi (2006).

Allenberg et al. (2006) and Poland and Hutter (2005) considered paiially bounded one-
step losses. We consider a specific example of the bound (9) for polylzas@

Corollary 8 Assume thajst| <t® forallt and i= 1,...N, and y > t%*° for all t, wherea and
are positive real numbers. Let also, in the algoritRROT, y(t) =t~ and y is defined by (6). Then

e (i) the algorithmPROTis asymptotically consistent in the mean for any 0 andd > 0;
e (ii) this algorithm is Hannan consistent for ay> 0 andd > %;

e (iii) the expected loss of this algorithm is bounded :

E(siT) < miins"l:T +2\/(8+£)(1+ In N)T1,%5+q 43)

as T — o, wheree > Ois a parameter of the algorithi.

This corollary follows directly from Theorem 2, where condition (38) bEbrem 2 holds fob > %

If & =1 the regret from (43) is asymptotically equivalent to the regret from Akeg et al.
(2006) (see Section 1).

Fora = 0 we have the case of bounded loss functign € 1 for alli andt). The FPL algorithm
PROT is asymptotically consistent in the mearwif> 3(t) for all t, where(t) is an arbitrary
positive unbounded non-decreasing computable function (we cay(tget 1/3(t) in this case).
This algorithm is Hannan consistent if (38) holds, that is,

ZL(B(I))_2 <.

5. Recall that gives we tune the parameterof the algorithm PROT.
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For example, this condition be satisfied fit) = t¥/?Int.

Let us show that the bound (9) of Theorem 2 that holds against oldivéaperts also holds
against non-oblivious (adaptive) ones.

In non-oblivious case, it is natural to generate at each timetstéphe algorithm PROT a
new vector of perturbationg = (Etl, . ,E{\‘), &o is empty set. Also, it is assumed that all these
perturbations are i.i.d according to the exponential distribuBiomherei =1,...,Nandt=1,2,....
Denote€ 1t = (§1,...,6&t)-

Non-oblivious experts can react at each time $tep past decisions, s, ... -1 of the FPL
algorithm and on values @f,...,& 1.

Therefore, losses of experts and regret depend now from rapdduorbations:

8 =9 (&), i= 1,...N,
Avy = A (E1:t-1),

wheret =12 .. ..
In non-oblivious case, condition (8) is a random event. We assume iordime2 that in the
game of prediction with expert advice regulated by the FPL-protocol thetev

fluc(t) <y(t) for all t

holds almost surely.
An analysis of the proof of Theorem 2 shows that in non-oblivious,cebound (9) is an
inequality for the random variable

T .
ZE@) —mins;y —
t=
—2/(8+¢)(1+InN) i(y(t))l/zAvt <0,

t=

which holds almost surely with respect to the product distribuBlort, where the loss of the FPL
algorithms depend on a random perturbati§nat stept and on losses of all experts on steps.
Also, E is the expectation with respectio

Taking expectatiorE;.1_1 with respect to the product distributid¥—! we obtain a version of
(9) for non-oblivious case

Shy <31:T - miin5i1:T —2,/(8+¢)(1+InN) i(V(t))l/ZAVt> <0

t

forall T.

5. An Example: Zero-sum Experts

In this section we present an example of a game, where losses of expents be bounded in
advancé.

6. This example is a modified version of an example from V'yugin (2p09a
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Let S= S(t) be a function representing evolution of a stock price. Two experts witbszmt
two concurrent methods of buying and selling shares of this stock.

Let M andT be positive integer numbers and let the time intef@al’ | be divided on a large
numberM of subintervals. Define a discrete time series of stock prices

$=90),5=9T/(M)),$=S2T/(M))...,S« = T). (44)
In this paper, volatility is an informal notion. We say that the differe(@e— S)? represents the

macro volatility and the sumz (AS) whereAS =S5,1—5,i=1,...T — 1, represents the micro

volatility of the time series (44)

The game between an investor and the market looks as follows: the invastoise the long
and short selling. At beginning of time stefmvestor purchases the numiggrof shares of the stock
by S_1 each. At the end of trading period the market discloses the frigeof the stock, and the
investor incur his current income or logs= G;AS at the period. We have the following equality

T-1 5
R
Tilz A TilA 2 45
—t; (S—-S) S+t;( S (45)

The equality (45) leads to the two strategies for investor which are repiegsby two experts. At
the beginning of stepExperts 1 and 2 hold the number of shares

Cl = 2C(S - %), (46)
G =-G, (47)

whereC is an arbitrary positive constant.
These strategies at steparn the incomes' = 2C(S — $)AS ands’ = —s'. The strategy (46)
earns in firsfl steps of the game the income

T-1

.
St = Zfl = 2C((Sr—S)* - t; (AS)?).

The strategy (47) earns in fir§tsteps the income?.; = —si.;.

The number of share®' in the strategy (46) or number of sha@s= —C{ in the strategy (47)
can be positive or negative. The one-step gatrends’ = —s! are unbounded and can be positive
or negatives € (—oo, 4-).

Informally speaking, the first strategy will show a large return if

T-1
(Sr—%0)*> %(AS)Z
i=
the second one will show a large return when

T-1
(Sr—%0)? < > (8s)?
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Figure 4: Evolution of Gazprom stock price

There is an uncertainty domain for these strategies, that is, a case wher lamd < do not hold.
The idea of these strategies is based on the paper of Cheredito (2003)I¢e Rogers 1997 and
Delbaen and Schachermayer 1994 ) who have constructed arbitraiggsts for a financial market
that consists of money market account and a stock whose price folloastehal Brownian motion
with drift or an exponential fractional Brownian motion with drift. Vovk (Z)thas reformulated
these strategies for discrete time. We use these strategies to define a mitaggy sttgich incur
gain when macro and micro volatilities of time series differ. There is no uncgrtdomain for
continuous time.

We analyze this game in the decision theoretic online learning (DTOL) frankefiroeund and
Schapire, 1997). We introdudeearnerthat can choose between two strategies (46) and (47). To
change from follow the leader framework to DTOL we derandomize the Rgdrithm PROT/

We interpret the expected one-step gRif%) gain as the weighted average of one-step gains of
experts strategies. In more detail, at each stéparnerdivide his investment in proportion to the
probabilities of expert strategies (46) and (47) computed by the FPLithgoand suffers the gain

G =2C(S§ — ) (P{lk =1} —P{l: = 2})AS

at any stef, whereC is an arbitrary positive constarB; 1 = thzth = E(s1.1) is theLearner’s
cumulative gain.

7. To apply Theorem 2 we interpreted gain as a negative loss.
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Figure 5: Fluctuation of the game

Assume thafst| = o(5!_, |st|) ast — . Lety(t) = pfor allt, whereyuis arbitrary small positive
number. Then for ang > 0

Gut >

tisl‘ —2uM%\/(8+€)(1+InN) (tilsll +Vo>

for all sufficiently largeT, and for someyy > 0.
Under condition of Theorem 2 we show that strategy of algorithm PROTeifetwive” in some
weak sense :

Git —

T T
> _ 48
Zfl > o(t;|sl|+w>> (48)
asT — oo,

Some experimental results are shown on Figures 4-6. The strategiean@®7) were applied
to the Russian Gazprom stock (ticker symbol—GAZP) downloaded fronAMISite2 We get
C =600. We have used the stock closing price time series on period from OBJMySeptember
2009 with periodicity 60 minutes between two neighboring time-points; the size ofs@mes is
400 points. The stock price was volatile during the playing period, its valaegdd slightly during
this period from 163.45 Rub to 159.90 Rub (see Figure 4).

8. FINAM is atht t p: // www. fi nam ru/ anal ysi s/ export/defaul t. asp.
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x 10
5

0 50 100 150 200 250 300 350 400

Figure 6: Two symmetric solid lines—gains of two zero sums strategies, dotteddixgected gain
of the algorithm PROT (without transaction costs), dashed line—volume qfatime

Two symmetric solid lines on Figure 6 are gains of two zero sums strategies af@b)47),
dotted line—expected gain of the algorithm PROT, dashed line—volume of the.géhe scaled
fluctuation of the game is presented on Figure 5. Weyjet=t~1/2. The first strategy (46) was
favorite at about 100 first steps, the second strategy (47) wastiasbthe rest of the playing period.
The algorithm PROT suffered sufficiently large income—456970 Rub (wittransaction costs)
(see Figure 6) and 230099 Rub when transaction costs were subtracted

6. Conclusion

In this paper we try to extend methods of the theory of prediction with expeita for the case
when experts one-step gains cannot be bounded in advance. Thiereddneasures of perfor-
mance are invalid for general unbounded case.

To measure the asymptotic performance of our algorithm, we replace the inatiitrne-scale
on a volume-scale. New notion of volume of a game and scaled fluctuatioreofi@gre introduced
in this paper. In case of two zero-sum experts, the volume equals to thefsalintransactions
between experts.

Using the notion of the scaled fluctuation of a game, we can define verg blasses of games
(experts) for which our algorithm PROT is asymptotically consistent in the neoldgense. The
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restrictions imposed on such games are formulated in a relative form: “thetlogec derivative”
of the volume of the game must bé) ast — co.

Our work supplements results of Cesa-Bianchi et al. (2007), wherédbeds for a regret
were obtained under the very general assumptions. Authors of this gapmt study asymptotic
consistency of their algorithm. Our bounds for the regret are definedrrstef a volume of the
game and our learning algorithm is asymptotically consistent in the mean and almelgt

Algorithms for unbounded losses have appeared in the literature, batafche papers deal
with FPL and “fast-growing” losses. Looking closely at the requiremehtisi® paper, the quantity
fluc(t) has to decrease to 0, which to imply that the rate of growth of the losses hasitmer than
exponential. Given the results of Allenberg et al. (2006), who canwlialpolynomial growth of
loss, this paper is more general in the regime “faster than polynomial, bugistban exponential”.

A motivating example of a game with two zero-sum experts from Section 5 sbomwe prac-
tical significance of these problems. The FPL algorithm with variable leamaiteg is simple to
implement and it is bringing satisfactory experimental results when pricesvfbié@tional Brown-
ian motion. The drawback of this playing strategy is that the defense con@&piis too weak—it
has only an asymptotic form. In cases, where regimes of high and low volatijitiekly changing
the algorithm PROT may suffer a large loss. This is an open problems thefuresearch: how
to construct a defensive strategy fazarnerin sense of Shafer and Vovk (2001)? This means that
Learnerstarting with some initial capital never goes to debt and suffer a gain whemraad micro
volatilities differ.

There are other open problems for further research. Can we inedepour results obtained
in fluctuation-volume setting into the framework presented in Cesa-Bianchi @087), where a
powerful technics for the Weighed Majority algorithm based on secoter@uantity—variance of
losses, was developed?

We have used the FPL algorithm, since its analysis remains easy for anvadagthing rate,
in contrast to WM-derivatives. It would be useful to analyze the perémce of the well known
algorithms from DTOL framework (like “Hedge” of Freund and Schap®87 or “Normal Hedge”
of Chaudhuri et al. 2009) for the case of unbounded losses in terrtteeofolume and scaled
fluctuation of a game.

Some improvement of the regret (9) can be achieved using in (27) a motdtighd of the
exponente’ < 1+4r + (e—2)r? (for |r| < 1) in place of the linear bound used in the proof of
Lemma 3.

There is a gap between Proposition 1 and Theorem 2, since we assuméeliedinemn that the
game satisfies flyt) < y(t) — 0, wherey(t) is computable. Also, the functioyit) is a parameter
of our algorithm PROT. Does there exists an asymptotically consistent Igaagorithm in case
where limsugluc(t) = 0 and where the functioy(t) is not a parameter of this algorithm?

t—oo
Can we apply “double trick” method for the sequence (tiuct = 1,2,..., to avoid parameter
y(t) from the learning algorithm is an open question. A problem is thaftflis not monotone
though limsugluc(t) = 0.
t—oo

Letyi(t) be any computable (byandt) sequence of non-increasing (byfunctions such that
for anyi, 0 < yi(t) < 1 for allt andy;(t) — 0 ast — «.° We can construct a version of the algorithm

9. A case sup (t) = 1 for allt is possible for these functions.
I
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PROT which is asymptotically consistent in the mean for any game satisfying

Iimsupﬂuc(t)
toe  Yi(t)

<o (49)

for somei. To solve this problem define a computable non-increasing fungttorsuch that
e O<y(t) <1,
e y(t) — O ast — oo,
e for anyi there exists at) such thay/(t) > vi(t) for allt > t;.

Evidently, the algorithm PROT with the parameyér) is asymptotically consistent in the mean for
any game such that (49) holds for some

We consider in this paper only the full information case. An analysis of thest@lems under
partial monitoring is a subject for a further research.
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Appendix A. Proof of Lemma 7

The proof of Lemma 7 is based on Kolmogorov's theorem on three seriegsacorollaries. For
completeness of presentation we reconstruct the proof from Petr@8){Shapter 1X, Section 2).
For any random variabl¥ and a positive numberdenote

NG Xif [X| <c
1 O otherwise.

The Kolmogorov's theorem on three series says:
For any sequence of independent random variakles= 1,2,..., the following implications
hold

e If the seriesy~ ;X% is convergent almost surely then the serjg%, EXS, 5>, DX’ and
St P{|X| > c} are convergent for eaah> O, whereE is the mathematical expectation
andD is the variation.

e The serieg > 1 X is convergent almost surely if all these series are convergent forsonde

See Shiryaev (1980) for the proof.
Assume conditions of Lemma 7 hold. We will prove that

< Eg(X)
& 9@&)

<o (50)
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implies
A
& &

almost surely. From this, by Kroneker’s lemma 10 (see below), the series

1@
at;Xt (51)

is convergent almost surely.
LetV; be a distribution function of the random varialde Sinceg non-increases,

Eg(X)
g(a&)

9
PUXI > a) < X >a g(at)th(X) =

Then by (50)

- X
2r{fal=)- 2

7, = X if [ X| < &
] O otherwise.

almost surely. Denote

By definitionx?/g(x)) < a/g(a) for |x| < &. Rearranging, we obtaif/a; < g(x)/g(a) for these
X. Therefore,

2 2 af &
ez - | Xth(X)Sg(aox L gAU(X) < —Eg(X).

x| <a

By (50) we obtain

) Zt 2
t;E <at> < oo (53)

g(x)dM(x) < giEg(X[)' (54)

Se(3) <5 (Z)]=-

From (52)—(54) and the theorem on three series we obtain (51).
We have used Toeplitz and Kroneker’s lemmas.

By (50)
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Lemma 9 (Toeplitz) Let xbe a sequence of real numbers andbé a sequence of nonnegative real
t
numbers such thata= y by — o, x — x and|x| < . Then
i=1

1 t
— Y bix; — X (55)
a iZ\

Proof. For anye > 0 antg exists such that — x| < € for allt > te. Then

1 t
22

forallt > t.. Sincea; — o, we obtain (55).

1
<= i —x)|+¢
atigg |

Lemma 10 (Kroneker) Assumé& x < o and a — o Then
t=1

1 t
— ) ax — 0.
a i; I

The proof is the straightforward corollary of Toeplitz lemma.
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