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Abstract

This article presents and evaluatesbest-match learning, a new approach to reinforcement learning
that trades off the sample efficiency of model-based methodswith the space efficiency of model-
free methods. Best-match learning works by approximating the solution to a set ofbest-match
equations, which combine a sparse model with a model-free Q-value function constructed from
samples not used by the model. We prove that, unlike regular sparse model-based methods, best-
match learning is guaranteed to converge to the optimal Q-values in the tabular case. Empirical
results demonstrate that best-match learning can substantially outperform regular sparse model-
based methods, as well as several model-free methods that strive to improve the sample efficiency
of temporal-difference methods. In addition, we demonstrate that best-match learning can be suc-
cessfully combined with function approximation.

Keywords: reinforcement learning, on-line learning, temporal-difference methods, function ap-
proximation, data reuse

1. Introduction

In reinforcement learning(RL) (Kaelbling et al., 1996; Sutton and Barto, 1998), an agent seeks
an optimal control policy for a sequential decision problem in an unknown environment. Unlike
in supervised learning, the agent never sees examples of correct or incorrect behavior. Instead,
it receives only positive and negative rewards for the actions it tries. Its goal is to maximize the
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expectedreturn, which is the cumulative discounted reward. When the sequential decision problem
is modeled as aMarkov decision process(MDP), the agent’s policy can be represented as a mapping
from each state it may encounter to a probability distribution over the available actions.

There are several approaches for learning the optimal policy of an MDP. Model-free, or di-
rect, methods find an optimal policy by using sample experience to directly update thestate values,
which predict the return when following a specified policy, or thestate-action values, or Q-values,
which predict the return when taking an action in a certain state and following aspecified policy
thereafter. Once the optimal state or state-action values have been found,the optimal policy can
easily be constructed. A popular model-free approach istemporal-difference(TD) learning (Sut-
ton, 1988), which bootstraps value estimates from other values using updates based on theBellman
equations(Bellman, 1957). Temporal-difference methods such as Q-learning (Watkins, 1989) and
Sarsa (Rummery and Niranjan, 1994; Sutton, 1996) require onlyO(|S ||A |) space and are guaran-
teed to find optimal policies in the limit. However, they often need prohibitively manysamples in
practice.

Alternatively,model-based, or indirect, methods (Sutton, 1990; Moore and Atkeson, 1993; Braf-
man and Tennenholtz, 2002; Kearns and Singh, 2002; Strehl and Littman,2005; Diuk et al., 2009)
use sample experience to estimate a model of the MDP and then compute the optimal values us-
ing this model via off-line planning techniques such asdynamic programming(Bellman, 1957).
Because the sample experience gathered by the agent is incorporated intothe model, it is reused
throughout learning. As a result, some model-based methods can find approximately optimal poli-
cies with high probability using only a polynomial number of samples (Brafman and Tennenholtz,
2002; Kearns and Singh, 2002; Strehl and Littman, 2005). However, representing the model requires
O(|S |2|A |) space, which can be prohibitive in problems with large state spaces.

To avoid this limitation, methods can learn smaller, approximate models that require only a frac-
tion of the space used by full model-based methods. Kearns and Singh (1999) show that, when using
such sparse models, it is still possible to learn probably approximately correct policies. However, the
performance of such methods is bounded by the quality of the model approximation. Furthermore,
since the models may remain incorrect regardless of how much sample experience is gathered, such
methods are not guaranteed to find optimal policies even in the limit.

In this article, we present and evaluatebest-match learning, a new approach for trading off the
strengths of model-based and model-free methods. Best-match learning works by approximating
the solution to a set ofbest-match equations, which combine a sparse model with a model-free
Q-value function constructed from samples not used by the model. We prove that, unlike regular
sparse model-based methods, best-match learning is guaranteed to converge to the optimal policy in
the tabular case. This guarantee holds even when using alast-visit model(LVM), which stores only
the last observed reward and transition state for each state-action pair.

In addition, we present an extensive empirical analysis, comparing the performance of best-
match learning to several algorithms with similar space requirements. These results demonstrate that
best-match learning can outperform regular sparse model-based methods, as well as several model-
free methods that strive to improve the sample efficiency of traditional TD methods. These include
eligibility traces(Sutton, 1988; Watkins, 1989), which update recently visited states in proportion to
a trace parameter;experience replay(Lin, 1992), which stores experience sequences and uses them
for repeated TD updates; anddelayed Q-learning(Strehl et al., 2006), which uses optimistic Q-value
estimates to follow an approximately correct policy except forO(|S ||A | log(|S ||A |)) timesteps.
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The rest of this article is organized as follows. Section 2 formally defines theRL problem and
summarizes some basic theoretical results. As a conceptual stepping stone,Section 3 presentsjust-
in-time Q-learning, which postpones updates until the moment of revisit of the correspondingstate.
We prove that, although just-in-time Q-learning performs the same number of updates as regular
Q-learning, the Q-values used in its update targets generally have received more updates. Thus, it
can improve performance without extra computation.

Section 4 extends the idea of using improved update targets to best-match learning with an
LVM, in which updates are continually revised such that the update targets constructed from them
are more accurate. We show that best-match LVM learning is related to eligibility traces, by proving
that under certain conditions they compute the same values. However, we also show that in arbitrary
MDPs best-match LVM learning, unlike eligibility traces, performs updates thatare unbiased with
respect to initial state values. We demonstrate empirically that, as a result, it cansubstantially
outperform TD(λ) despite using similar space and computation.

Section 4 also addresses the control case. We propose an efficient best-match LVM algorithm
that usesprioritized sweeping(Moore and Atkeson, 1993), a well-known technique for prioritizing
model-based updates, to trade off extra computation for improved performance. We prove that,
despite the use of a sparse model, this approach converges to the optimal Q-values under the same
conditions as Q-learning. In addition, we demonstrate empirically that it can substantially outper-
form competitors with similar space requirements.

Section 5 proposes a best-match learning algorithm that uses ann-transition model(NTM),
which maintains an estimate of the transition probability forn transition states per state action pair.
By tuning n, the space requirements can be controlled. We prove that the algorithm converges to
the optimal Q-values for any value ofn. We demonstrate empirically the resulting performance
improvement over regular sparse model-based methods with equal space requirements, whose per-
formance is bounded by the quality of the model approximation.

Section 6 proposesbest-match function approximation, which demonstrates that best-match
learning is useful beyond the tabular case. In particular, we combine best-match learning with
gradient-descent function approximation and show empirically that it can outperform Sarsa(λ) and
experience replay with linear function approximation while using similar computation.

Section 7 discusses the article’s theoretical and empirical results, Section 8outlines future work,
and Section 9 concludes.

2. Background

Sequential decision problems are often formalized asMarkov decision processes(MDPs), which
can be described as 4-tuples〈S ,A ,P ,R 〉 consisting ofS , the set of all states;A , the set of all
actions;P s′

sa = P(s′|s,a), the transition probability from states∈ S to states′ when actiona∈ A is
taken; andR sa= E(r|s,a), the reward function giving the expected rewardr when actiona is taken
in states. Actions are selected at discrete timestepst = 0,1,2, ... andr t+1 is defined as the reward
received after taking actionat in statest at timestept. An optimal policyπ∗ is a mapping fromS to
A that maximizes the expected discounted return

Rt = r t+1+ γ r t+2+ γ2 r t+3+ ...=
∞

∑
k=0

γkr t+k+1 ,

whereγ is a discount factor with 0≤ γ≤ 1.
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Most solution methods are based on estimating a value functionVπ(s), which gives the expected
return when the agent is in states and follows policyπ, or an action-value functionQπ(s,a), which
gives the expected return when the agent takes actiona in states and follows policyπ thereafter.

In the control case, TD methods seek to learn the optimal action-value function Q∗(s,a), which
is the solution to the Bellman optimality equations (Bellman, 1957):

Q∗(s,a) = R sa+ γ ∑
s′
P s′

samax
a′

Q∗(s′,a′) .

By iteratively updating the current estimateQt(s,a) each time new experience is obtained, TD
methods seek to approximate this function. A common form for these updates is

Qt+1(st ,at)← (1−α)Qt(st ,at)+αυ t ,

whereα is the learning rate andυ t is the update target. Many update targets are possible, such as
the Q-learning (Watkins and Dayan, 1992) update target

υ t = r t+1+ γ max
a

Qt(st+1,a) .

Once the optimal action-value function has been learned, an optimal policy can be derived by taking
the greedy action with respect to this function.

Alternatively, the agent can take a model-based approach (Sutton, 1990; Moore and Atkeson,
1993), in which its experience is used to compute maximum-likelihood estimates ofP andR . Using
this model, the agent can computeQ (or the value functionV) using dynamic programming methods
(Bellman, 1957) such as value iteration (Puterman and Shin, 1978). Each timenew experience is
gathered, the model is updated andQ recomputed.

In the control case, the agent faces theexploration-exploitation dilemma. The agent can either
exploit its current knowledge by taking the action that predicts the highest expected return given
current estimates, or it can explore by taking a different action in order toimprove the accuracy of
the Q-value of that action.

Related to the control case is thepolicy evaluationcase. In this case, the goal is to estimate the
value functionVπ(s) belonging to policyπ. TD methods iteratively improve the current estimate,
Vt(s) each time new experience is obtained using the update rule

Vt+1(st)← (1−α)Vt(st)+αυ t .

An example of an update target for policy evaluation is the TD(0) update target

υ t = r t+1+ γVt(st+1) .

3. Just-In-Time Q-Learning

In this section we present just-in-time (JIT) Q-learning, whose underlyingprinciples form a stepping
stone towards best-match learning (introduced in Section 4). Like otherlazy learningmethods, for
example, Atkeson et al. (1997), JIT Q-learning postpones updates untilthey are needed. Wiering
and Schmidhuber (1998) showed that by postponing updates a computationally efficient version of
Q(λ) can be constructed that does not rely on placing a bound on the trace length. We prove that by
postponing Q-learning updates until a state is revisited, the update targets involved receive in general
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more updates, while the total number of updates of the current state stays thesame. Empirically, we
demonstrate that this leads to a performance gain under a range of settings at similar computational
cost.

When a Q-learning update is postponed, the values on which the update target is based are from
a more recent timestep. This is advantageous, since Q-learning updates cause the expected error
in the values to decrease over time (Watkins and Dayan, 1992) and therefore more recent values
will be on average more accurate. However, postponing the update of a value for too long can
negatively affect performance, since a value that has not been updated might be used for action
selection or for bootstrapping other values. We start by showing that updates can be postponed until
their corresponding states are revisited, without negatively affecting performance.

Figure 1: A state transition sequence in which the initial statesA is revisited at timestep 4. The
small black dots in between states represent actions.

Consider the state-action sequence in Figure 1. StatesA is visited at timestep 0 and revisited at
timestep 4. With the regular Q-learning update, the Q-value of state-action pair(sA,a0) gets updated
at timestep 1:

Q1(sA,a0) = (1−α)Q0(sA,a0)+α [r1+ γ max
a

Q0(sB,a)] ,

while at timesteps 2− 4 no update of(sA,a0) occurs, and thereforeQ4(sA,a0) = Q1(sA,a0). The
update of the Q-value of(sA,a0) at timestep 1 can be considered premature, since the earliest use
of its value is in the update target for(sD,a3), which usesQ3(sA,a0). Therefore, the update of the
Q-value of(sA,a0) can be postponed until at least timestep 3 without negatively affecting the update
target for(sD,a3). When the update of(sD,a3) is also postponed, the earliest use of the Q-value of
(sA,a0) occurs at timestep 4, where it is used for action selection. Thus, if we postpone the update
of all state-action pairs, the update of the Q-value of(sA,a0) can be postponed until the timestep of
its revisit, without causing dependent state values or the action selection procedure to use a value of
(sA,a0) that has not been updated. We call this type of update ajust-in-time update, since the update
is postponed until just before the updated value is needed.

To denote the Q-values resulting from just-in-time updates we useQ̃ throughout this section.
With just-in-time updates, no updates of(sA,a0) occur at timesteps 1-3, sõQ3(sA,a0) = Q̃0(sA,a0).
Instead, an update occurs whensA is revisited:

Q̃4(sA,a0) = (1−α)Q̃3(sA,a0)+α [r1+ γ max
a

Q̃3(sB,a)] .

The regular and just-in-time update for(sA,a0) can be written in a more similar form by expressing
the value at timestep 4 in terms of the value at timestep 0:

Q4(sA,a0) = (1−α)Q0(sA,a0)+α[r1+ γ max
a

Q0(sB,a)] ,

Q̃4(sA,a0) = (1−α)Q̃0(sA,a0)+α[r1+ γ max
a

Q̃3(sB,a)] . (1)
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This formulation highlights the difference between the two update types. At timestep 4, under
both update schemes, the Q-value of(sA,a0) has received one update based on the same experience
sample. However, a just-in-time update uses the most recent value of the Q-values ofsB, while a
regular update uses the value at the timestep of the initial visit ofsA. By definingt∗ as the timestep
of the previous visit of statest , we can write the two update types more generally as

Qt(st ,at∗) = (1−α)Qt∗(st ,at∗)+α[r t∗+1+ γ max
a

Qt∗(st∗+1,a)] , (2)

Q̃t(st ,at∗) = (1−α)Q̃t∗(st ,at∗)+α[r t∗+1+ γ max
a

Q̃t−1(st∗+1,a)] . (3)

Note that we express the update target using only values from the past, making an implementation
easier to interpret. Note also that whilest = st∗ per definition (becausest is revisited),st∗+1 does not
have to be equal tost+1, since the state transition fromst can be stochastic. Also,at∗ is in general
not equal toat .

When comparing the two update targets in more detail, two cases can be distinguished. See
Figure 2 for an example of each case. In the first case, statesB is not revisited before the revisit of
statesA. In this case, neither update type makes use of an updated Q-value forsB in the update target
for sA. The regular update does not since it uses the values ofsB at timestept∗, and the just-in-time
update does not sincesB is not revisited and therefore no update has occurred yet at timestept−1.
In the second case, statesB has been revisited before the revisit ofsA. The regular update still uses
the value ofsB from timestept∗ and therefore does not use an updated value. The just-in-time update
on the other hand does use an updated value, since this update occurredat the revisit ofsB. Note
that for a returning action (t∗ = t−1), both update types have exactly the same form and this can
therefore be treated as an example of case 1. From these two cases, we can deduce the following
theorem, which is proven in Appendix A.

Theorem 1 Given the same experience sequence, each Q-value from the current state has received
the same number of updates using JIT updates (Equation 3) as using regular updates (Equation
2). However, each Q-value in the update target of a JIT update has received an equal or greater
number of updates as in the update target of the corresponding regularupdate.

Figure 2: Two cases in which statesA is revisited. In the first case, neither a regular update nor a
just-in-time update make use of an updated value forsB in the update target ofsA, while
in the second case a just-in-time update does.

Algorithm 1 shows pseudocode for the implementation of just-in-time (JIT) Q-learning. The
agent stores the reward and transition state received upon the last visit of a state, that is, thelast-
visit sample, in R′(s) andS′(s) respectively, while the action taken at the last visit of a state is stored
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Algorithm 1 JIT Q-Learning
1: initialize Q(s,a) arbitrarily for alls,a
2: initialize S′(s) = /0 for all s
3: loop {over episodes}
4: initialize s
5: repeat{for each step in the episode}
6: if S′(s) 6= /0 then
7: Q(s, ā)← (1−αsā) ·Q(s, ā)+αsā [R′(s)+ γ maxa′ Q(S′(s),a′)] // ā= A(s)
8: end if
9: select actiona, based onQ(s, ·)

10: take actiona, observer ands′

11: S′(s)← s′; R′(s)← r; A(s)← a
12: s← s′

13: until s is terminal
14: end loop

in A(s). If S′(s) = /0, states has not been visited yet and no update can be performed. Note that the
last-visit sample is not reset at the end of an episode, but maintained across episodes.

Because JIT Q-learning uses more recent values in its update targets thanregular Q-learning, we
expect a performance improvement over regular Q-learning. We test thishypothesis by comparing
the performance of JIT Q-learning with regular Q-learning on the Dyna Maze task (Sutton, 1990).
In this navigation task, depicted in Figure 3, the agent has to find its way fromstart to goal. The
agent can choose between four movement actions: up, down, left and right. All actions result in 0
reward, except for when the goal is reached, which results in a reward of +1. The discount factor
γ is set to 0.95. We use a deterministic as well as a stochastic environment to test thegenerality of
the hypothesis. In the stochastic version, we employ a probabilistic transition function: with a 20%
probability, the agent moves in an arbitrary direction instead of the direction corresponding to the
action.

To compare performance, we measure the average return each method accrues from the start
state during the first 100 episodes in the deterministic case, averaged over5000 independent runs
per method. For the stochastic version, we measure the return during the first 200 episodes. Each
method usesε-greedy action selection withε = 0.1. In the deterministic case, we use a constant
learning rate of 1, while in the stochastic case we use an initial learning rateα0 of 1 that is decayed
in the following manner:1

αsa=
α0

d · [n(s,a)−1]+1
, (4)

wheren(s,a) is the total number of times actiona has been selected in states. Note that ford = 0,
αsa= α0, while for d = 1, αsa= α0/n(s,a). We optimize the learning rate decayd between 0 and
1 by taking the decay rate with the maximum average return over the measured number of episodes.
We use two different initialization schemes for the Q-values to determine whether the performance
difference depends on initialization. We use optimistic initialization, by initializing the Q-values to
20, and pessimistic initialization, by setting the Q-values to 0.

1. This decay is similar to the more common formc1
c2+n(s,a) , but with the free parameters re-arranged.
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S

G

Figure 3: The Dyna Maze task, in which the agent must travel fromS to G. The reward is +1 when
the goal state is reached and 0 otherwise.
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Figure 4: Comparison of the performance of JIT Q-learning and regularQ-learning on the de-
terministic (left) and stochastic (right) Dyna Maze task for two different initialization
schemes.

deterministic - 100 eps. stochastic - 200 eps.
d average standard d average standard

return error return error
Q-learning,Q0 = 0 0 0.3506 0.0004 1.0 0.3039 0.0003

JIT Q-learning,Q0 = 0 0 0.3628 0.0004 1.0 0.3083 0.0003
Q-learning,Q0 = 20 0 0.3438 0.0002 0.005 0.2562 0.0002

JIT Q-learning,Q0 = 20 0 0.3714 0.0002 0.010 0.2674 0.0002

Table 1: The performance of JIT Q-learning and regular Q-learning onthe Dyna Maze task and the
optimal learning rate decayd.

Figure 4 plots the return as a function of the number of episodes, while Table1 shows the av-
erage return and optimal learning rate. The computation time for both methods was similar. JIT
Q-learning outperforms regular Q-learning in the deterministic as well as the stochastic environ-
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ment and for both types of initialization, although not always by a large margin. This confirms our
intuition that, since JIT Q-learning uses values from a later time which are in general more accurate,
a performance benefit is gained over regular Q-learning in a broad range of settings. The perfor-
mance benefit in the deterministic case can be explained by exploration, whichcauses the order in
which states are visited to change despite the deterministic state transitions.

4. Best-Match Last-Visit Model

In this section, we demonstrate that updates can be postponed much furtherthan is done by JIT
Q-learning, without negatively affecting other updates, whenbest-match updatesare performed.
Best-match updates are updates that can correct previous updates when more recent information
becomes available. This insight leads to the derivation of thebest-match last-visit model equations,
which combine alast-visit model(LVM), consisting of the last experienced reward and transition
state for each state-action pair, withmodel-free Q-values, constructed from model-free updates of
all observed samples, except the ones stored in the LVM. We present anevaluation as well as a
control algorithm based on solving these equations and empirically demonstratethat these methods
can outperform competitors with similar space requirements.

4.1 Best-Match LVM Equations

In the example presented in Section 3, the update ofQ(sA,a0) is postponed until statesA is revisited.
In this section, we demonstrate that the update can be postponed even further in the case that a
different action is selected upon revisit. Since we will consider multiple updates per timestep in this
section, we denote the Q-value function using two iteration indices:t and i. Each time an update
occurs,i is increased, while each time an action is taken,t is increased andi is reset to 0. Therefore,
if I denotes the total number of updates that occurs at timet, by definitionQt,I = Qt+1,0. Action
selection at timet is based onQt,I . Using this convention, the regular Q-learning update can be
written as

Qt+1,1(st ,at) = (1−α)Qt+1,0(st ,at)+α[r t+1+max
a′

Qt+1,0(st+1,a
′)] .

Now consider the example shown in Figure 5, which extends Figure 1 to include a second revisit
of s0 at timestept = 7. Suppose that a different action is selected on the first revisit, that is,a4 6= a0.
Using just-in-time updates, the Q-value of state-action pair(sA,a0) gets updated at timet = 4. Using
the two indices convention we can rewrite Equation 1 as2

Q4,1(sA,a0) = (1−α)Q1,0(sA,a0)+α[r1+ γ max
a

Q4,0(sB,a)] . (5)

To perform this update, the experience set(r1,sB) resulting from taking actiona0 in sA is tem-
porarily stored. With JIT Q-learning, this experience is stored per state. If the state is revisited and
a new action is taken, the previous experience is overwritten and lost. However, if the experience
is stored per state-action pair, then the previous experience is not overwritten until the same action
is selected again. If the same action is not selected upon revisit, the experience can be used again

2. We useQ now instead ofQ̃, since the only purpose of the tilde was to distinguish it from the Q-values of regular
Q-learning.
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Figure 5: A state transition sequence in which best-match updates can enablefurther postponing.
Timesteps are shown below each state.

to redo the update at a later time, using more recent values for the next state.In the example from
Figure 5, the update of(sA,a0) can be redone at timestep 7:

Q7,1(sA,a0) = (1−α)Q1,0(sA,a0)+α[r1+ γ max
a

Q7,0(sB,a)] . (6)

Since statesB is revisited at timestep 6,(sB,a1) has received an extra update and thereforeQ7,0(sB,a1)
is likely to be more accurate thanQ4,0(sB,a1).

Equation 6 is not equivalent to a (postponed) Q-learning update, in contrast to Equation 5, since
Q1,0(sA,a0) is not equal toQ7,0(sA,a0) due to the update at timestep 4. Equation 6 corrects the
update from timestep 4, by redoing it using the most recent Q-values for theupdate target. We call
this update abest-match update(this name will be explained later in the section), while we call
Q1,0(sA,a0) themodel-free Q-valueof (sA,a0).

Before formally defining a best-match update, we define the last-visit experience and the model-
free Q-values.

Definition 2 The last-visit experience of state-action pair(s,a) denotes the last-visit reward, R′t(s,a),
that is, the reward received upon the last visit of(s,a), and the last-visit transition state, S′t(s,a),
that is, the state transitioned to upon the last visit of(s,a). For a state-action pair that has not yet
been visited, we define R′t(s,a) = /0 and S′t(s,a) = /0.

The LVM consists of the last-visit experience from all state-action pairs.

Definition 3 The model-free Q-value of a state-action pair(s,a), Qm f
t (s,a), is a Q-value that has

received updates from all observed samples except those stored in the LVM, that is, R′t(s,a) and
S′t(s,a). For a state-action pair that has not yet been visited, we define Qm f

t (s,a) = Q0,0(s,a).

While Q can be updated multiple times per timestep,Qm f is updated only once per timestep. There-
fore, it is uses a single time indext. We define a best-match update as:

Definition 4 A best-match update combines the model-free Q-value of a state-action pairwith its
last-visit experience from the same timestep according to

Qt,i+1(s,a) = (1−α)Qm f
t (s,a)+α[R′t(s,a)+ γ max

a′
Qt,i(S

′
t(s,a),a

′)] .

Using best-match updates to extend the postponing period of a sample update requires addi-
tional computation, as the agent typically performs multiple best-match updates per timestep. In
the example, at timestep 7 the agent redoes the update ofQ(sA,a0), but also performs an update of
Q(sA,a4).
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The model-free Q-value function is updated only once per timestep. Specifically, at timestep
t +1 Qm f is updated according to

Qm f
t+1(st ,at) = Qt+1,0(st ,at) . (7)

Assuming(st ,at) has received a best-match update at timestept, Equation 7 is equivalent to the
update

Qm f
t+1(st ,at) = (1−α)Qm f

t (st ,at)+α[R′t(st ,at)+ γ max
a′

Qt,i(S
′
t(st ,at),a

′)] ,

where the value ofi depends on the order of best-match updates at timestept. After Qm f has been
updated, the last-visit experience for(st ,at) is overwritten with the new experience

R′t+1(st ,at) = r t+1 ,

S′t+1(st ,at) = st+1 .

In the approach described above, best-match updates are used to postpone the update from a
sample without negatively affecting other updates or the action selection process. However, best-
match updates can be exploited far beyond simply avoiding these negative effects. As an example,
consider the state-action sequence in Figure 6.sB is not revisited before the revisit ofsA. With the
update strategy described above, best-match updates occur only when astate is revisited. Conse-
quently, the experience from(sB,a1) is not used in the update target of(sA,a0). However, it is not
necessary to wait for a revisit ofsB to perform a best-match update. Instead, it can be performed at
the moment it is needed: whensA is revisited. Thus, if at timestep 3 the agent performs a best-match
update ofQ(sB,a1), before updatingQ(sA,s0), the latter update will exploit more recent Q-values
for sB, just as ifsB had been revisited.

Figure 6: A state transition sequence in whichsB is not revisited. Timesteps are shown below each
state.

Taking this idea further, the agent can first update the Q-values ofsC before updating the Q-
values ofsB. In other words, the agent uses the Q-values ofsA to perform a best-match update of
sC, then performs a best-match update ofsB and finally updatessA. However, once the Q-values
of sA have changed, it is possible to further improve the Q-values ofsC by performing a new best-
match update. The new Q-values ofsC can then be used to redo the update ofsB, which in turn can
be used to re-updatesA. This process can repeat until the Q-values reach a fixed point, which is
the solution to a system of|S ||A | best-match LVM equations. We call this solution thebest-match
Q-value function, QB, which forms the best match between the LVM and the model-free Q-values.

Definition 5 The best-match LVM equations at timestep t are defined as

QB
t (s,a) =

{

(1−αsa
t )Qm f

t (s,a)+αsa
t [R′t(s,a)+ γ maxcQB

t (S
′
t(s,a),c)] if S′t(s,a) 6= /0

Qm f
t (s,a) if S′t(s,a) = /0 .
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There are different ways to look at these equations. One way is to see them as the limit case of
redoing updates using (in general) increasingly more accurate update targets. Another way is to see
them as Bellman optimality equations based on an induced model. For state-action pair (s,a) this
induced model can be described as a transition with probabilityα to stateS′(s,a) with a reward of
R′(s,a) and a transition with probability 1−α to a terminal statesT (with a value of 0) and a reward
of Qm f(s,a) (see Figure 7).3

S´
R´

s
a

sT

sa
sa

Qsa
mf

p = α

p = 1- α

Figure 7: Illustration of the induced model for state-action pair(s,a) corresponding with the best-
match LVM equations. The small black dot represents the stochastic actiona leading
with probabilityα to stateS′(s,a) and with probability 1-α to statesT .

The advantage of solving the Bellman optimality equations for this induced model, compared
to solving it using only the LVM, is that the bias towards the samples in the LVM canbe controlled
using the learning rates. With annealing learning rates, the transition probability to S′t(s,a) is de-
creased over time in favor of transition to the terminal state. On the other hand,when using only
the LVM, the solution of the Bellman equations depends only on the samples of theLVM and does
not take into account any previous samples. Clearly, in a stochastic environment, this will lead to a
sub-optimal policy. Also when the solution is not computed exactly, but approximated by only per-
forming a finite number of updates at each timestep (which is the case for any practical algorithm),
using the induced model leads to a better performance, because of the strong bias towards the most
recent samples that occurs when using only the LVM.

Section 4.3 discusses how to solve the best-match equations. However, we first discuss the
policy evaluation case, for which analogous equations can be defined.

Definition 6 The best-match LVM equations for state values at time t are

V B
t (s) =

{

(1−αs
t)V

m f
t (s)+αs

t [R
′
t(s)+ γV B

t (S′t(s))] if S′t(s) 6= /0
V m f

t (s) if S′t(s) = /0 .

The model-free state values are updated according toV m f
t+1(st) =Vt+1,0(st).

While in general the value functionV can be seen as a special case of the action-value function
Q (with all states only having a single action),V has a linear set of best-match equations, in contrast
to Q, a property we exploit in best-match LVM evaluation.

3. We assumeS′t(s,a) 6= /0 for (s,a) in this case.
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4.2 Best-Match LVM Evaluation

In the evaluation case, the best-match LVM equations form a linear set that can be solved exactly.
This section proposes an algorithm that does so in a computationally efficientway, using updates
that are unbiased with respect to the initial state values.

The algorithm is based on two observations. First, not all|S | best-match equations necessarily
depend on each other. The subset of equations needed to compute the best-match value forst can
be found by iterating through the sequence of last-visit transition states, starting with S′(st). The
correspondingN best-match equations form the linear set of equations to solve. For readability, we
write st ass[0] and use the notations[n] = S′(s[n−1]) andr[n] = R′(s[n−1]) for the subsequent transition
state and reward. In addition, we useα [n] for αs[n] . The equations can now be written as

V B(s[n]) = (1−α [n])V m f(s[n])+α [n] [r[n+1]+ γV B(s[n+1])
]

, for all n∈ [0,N−1] .

Second, the last state of this sequence,s[N], is always either a terminal state or the current state.
Furthermore, none of the intermediate states can appear twice, making theN equations independent.
This can be proven by contradiction. First, assume that the sequence hasa dead-end, that is, ends
with a state for whichS′ = /0. This is impossible because it would cause the agent to get stuck in this
state, preventing it from reaching the current state. Since last-visit information is maintained across
episodes,s[N] is a terminal state if the path followed after the previous visit ofst led to a terminal
state. Next, assume the sequence contains the same intermediate state twice. After the second visit
of this intermediate state, the subsequent sequence would be the same as after the first visit, since
there is only a single last-visit next state defined per state. This would createan infinite sequence of
next states, also preventing the agent from reaching the current state.

The set of equations can be solved by backwards substituting the equations, that is, substituting
the equation forV B(s[n+1]) in the one forV B(s[n]) and so on until a single equation forV B(s[0])
remains of the form

V B(s[0]) = cA+cBV B(s[N]) ,

with cA andcB defined as

cA =
N−1

∑
i=0

(

(1−α [i])V m f(s[i])+α [i]r[i+1]

) i−1

∏
k=0

γα [k] , (8)

cB =
N−1

∏
i=0

γα [i] . (9)

If s[N] is a terminal state, its value is 0 andV B(st) = cA. On the other hand, ifs[N] = st then
V B(st) = cA/(1−cB).

Algorithm 2 shows pseudocode of the on-line policy evaluation algorithm, which computes the
best-match value of the current state at each timestep. Lines 7-12 compute thevalues ofcA and
cB in a forward, incremental way by going from one next state to the other. Note that it is not
necessary to storeV m f and R′ separately, since they are always used in the same combination,
(1−α)V m f(s)+αR′(s), which is stored in a single variable,V m f

r , saving space and computation.
Line 20 combines the assignmentsV m f(st) = V(st), R′(st) = r t+1 and the computation ofV m f

r

in a single update. Note that the algorithm makes use of the just-in-time learning principle, that
is, updating states at the moment of their revisit. In JIT Q-learning, it is used toimprove the

2057



VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

Algorithm 2 Best-Match LVM Evaluation
1: initialize V(s) arbitrarily for alls
2: initialize S′(s) = /0 for all s
3: loop {over episodes}
4: initialize s
5: repeat{for each step in the episode}
6: if S′(s) 6= /0 then
7: cA←V m f

r (s); cB← γαs; s′← S′(s); n← 0
8: while s′ 6= s∧s′ is not terminaldo
9: cA← cA+cB ·V

m f
r (s′)

10: cB← cB · γαs′

11: s′← S′(s′)
12: end while
13: if s′ = s then
14: V(s)← cA/(1−cB)
15: else
16: V(s)← cA

17: end if
18: end if
19: take actionπ(s), observer ands′

20: V m f
r (s)← (1−αs)V(s)+αs · r

21: S′(s)← s′; s← s′

22: until s is terminal
23: end loop

performance without increasing the computation cost, while in the best-match evaluation algorithm
it is used to efficiently compute the best-match values.

Algorithm 2 is an on-line algorithm that computes at each timestep the best-match value of the
current state. We define the off-line version as one that computes at the end of each episode the best-
match values of the states that were visited during that episode. This off-linealgorithm is related to
off-line TD(λ), as demonstrated by the following theorem. We prove this theorem in Appendix B.

Theorem 7 For an episodic, acyclic, evaluation task, off-line best-match LVM evaluation computes
the same values as off-line TD(λ) with λ t = α t(st).

For acyclic tasks, that is, episodic tasks with no revisits of states within an episode,TD(λ) with
λ t = α t(st) can perform TD updates that are unbiased with respect to the initial values(Sutton and
Singh, 1994). Because of Theorem 7, this also holds for best-match LVMevaluation. However, in
contrast toTD(λ), best-match LVM evaluation can perform unbiased updates for any MDP,as we
demonstrate with the following theorem, also proven in Appendix B.

Theorem 8 The state values computed by the on-line best-match LVM evaluation algorithm(Algo-
rithm 2) are unbiased with respect to the initial state values, when the initial learning ratesα0(s)
are set to 1 for all s.

Because best-match LVM evaluation can perform unbiased updates for any MDP, it can often
substantially outperform TD(λ) while requiring similar space and computation. We demonstrate
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this empirically using the two tasks shown in Figure 8. Besides comparing against TD(λ), we also
compare against experience replay (Lin, 1992), which stores then last experience samples and uses
them for repeated TD updates.

Task A features a small circular network consisting of four identical states, each having a de-
terministic transition to a neighbor. The reward received after each transition is +1. Task B is a
stochastic variation on the first task, with stochastic transitions and a rewarddrawn from a normal
distribution with mean 1 and standard deviation 0.5. The discount factor is 0.95, resulting in a
state value of 20 on both tasks for all states. We compare the RMS error of the current state value
Vt(st) for all three methods. For experience replay, we performed a TD updatefor each of the last 4
samples at every timestep, resulting in a computation time similar to best-match LVM and TD(λ).
In addition, we implemented a version where all observed samples are storedand updated at each
timestep. The learning rate is initialized to 1 and decayed according to

αs =
α0

d · [n(s)−1]+1
.

wheren(s) is the total number of times stateshas been visited. We optimized as well asλ between
0 and 1. Results are averaged over 5000 runs.

Figure 8: Two tasks for policy evaluation. Task A has deterministic state transitions and a deter-
ministic reward of +1, while task B has stochastic transitions and a reward drawn from a
normal distribution with mean +1 and standard deviation 0.5.

Figure 9 shows the experimental results in these tasks. In task A, at timestep 4the start state is
revisited and the RMS error for best-match LVM drops to 0. The reason is that in the deterministic
case the last-visit model is equal to the full model once every state has beenvisited. Furthermore,
with learning rates of 1, the best-match LVM equations reduce to the Bellman optimality equations.
Therefore best-match LVM effectively performs model-based learning.TD(λ), on the other hand,
has to incrementally improve upon the initial values of 0. The spiky behavior ofTD(λ) is caused
by the combination of aλ of 1, with zero learning rate decay (which were the optimal settings in
this case). Experience replay has a performance in between best-match LVM and TD(λ). In task
B, the RMS error drops more smoothly. Best-match LVM again substantially outperforms TD(λ)
and experience replay, even when all samples are stored and updated.The total computation time
for the 5000 runs was marginally higher for experience replay with N=4, which has to maintain a
queue of recent samples, than for best-match LVM and TD(λ): on task A, around 90 ms compared
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Figure 9: Comparison of the performance of best-match LVM, TD(λ) and experience replay on
tasks A (left) and task B (right) of Figure 8.

to 80 ms for both best-match LVM and TD(λ). Experience replay with all samples updated had a
computation time of 280 ms. On task B, all methods were about 10 ms slower.

4.3 Best-Match LVM Control

The best-match LVM equations for the control case form a nonlinear set. Therefore, it is in general
not possible to compute the exact best-match Q-values at each timestep. However, they can be
approximated to arbitrary accuracy via update sweeps through the state-action space, in a manner
similar to value iteration, as we prove in the following lemma.

Lemma 9 For the best-match Q-values the following equation holds for all (s,a):

QB
t (s,a) = lim

i→∞
Qt,i(s,a) ,

where Qt,i is initialized arbitrarily for i = 0 and is defined for i> 0 as

Qt,i(s,a) =

{

(1−α)Qm f
t (s,a)+α [R′t(s,a)+ γ maxa′Qt,i−i(S′t(s,a),a

′)] if S′t(s,a) 6= /0
Qm f

t (s,a) if S′t(s,a) = /0 .

Proof For state-action pairs(s,a) with S′t(s,a) = /0 the proof follows directly from the definition of
QB

t andQt,i . For(s,a) with S′t(s,a) 6= /0, the absolute difference betweenQt,i(s,a) andQB
t (s,a) can

be written as

|Qt,i(s,a)−QB
t (s,a)| = αγ |max

c
Qt,i−i(S

′
t(s,a),c)−max

c
QB

t (S
′
t(s,a),c)|

≤ αγ max
c
|Qt,i−i(S

′
t(s,a),c)−QB

t (S
′
t(s,a),c)|

≤ αγ ||Qt,i−i−QB
t || .
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From this it follows that
||Qt,i−QB

t || ≤ αγ ||Qt,i−i−QB
t || .

For αγ < 1, it follows that fori→ ∞, Qt,i →QB
t .

Lemma 9 shows thatQB
t can be approximated to arbitrary accuracy with a finite number of best-

match updates.
Algorithm 3 shows the pseudocode for a general class of algorithms that approximate the best-

match Q-values by performing best-match updates.4 Lines 9 to 12 perform a series of best-match
updates. Note that while only a singleQm f value is updated per timestep, manyQ-values can be up-
dated at the same timestep. By varying the way state-action pairs are selected for updating (line 10)
and changing the stopping criterion (line 12), a whole range of algorithms can be constructed that
trade off computation cost per timestep for better approximations of the best-match Q-values. Note
that JIT Q-learning and even regular Q-learning are members of this general class of algorithms. If
the state-action pair selection criterion is the state-action pair visited at the previous timestep and
the stopping criterion allows only a single update, the algorithm reduces to the regular Q-learning
algorithm. Thus, Q-learning is a form of best-match control with a simplistic approximation of the
best-match Q-values. However, we reserve the term ‘best-match learning’ for algorithms that use
the same sample multiple times to redo updates.

Algorithm 3 General Best-Match LVM Control
1: initialize Q(s,a) arbitrarily for alls,a
2: initialize S′(s,a) = /0 for all s,a
3: loop {over episodes}
4: initialize s
5: repeat{for each step in the episode}
6: select actiona, based onQ(s, ·)
7: take actiona, observer ands′

8: Qm f(s,a)←Q(s,a);S′(s,a)← s′;R′(s,a)← r
9: repeat

10: select some(s̄, ā) pair with S′(s̄, ā) 6= /0 {each pair is selected at least once before its
revisit}

11: Q(s̄, ā)← (1−α s̄ā)Qm f(s̄, ā)+α s̄ā [R′(s̄, ā)+ γ maxcQ(S′(s̄, ā),c)]
12: until some stopping criterion has been met
13: s← s′

14: until s is terminal
15: end loop

The following theorem states that, for any member of the best-match LVM control class, the
Q-values converge to the optimal Q-values.

Theorem 10 The Q-values of a member of the best-match LVM control class, shown inAlgorithm
3, converge to Q∗ if the following conditions are satisfied:

1. S and A are finite.

4. Similar to the variableV m f
r of Algorithm 2, a variableQm f

r can be defined that combines the variablesQm f andR′,
saving space and computation. For readability we do not show this for Algorithm 3.
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2. α t(s,a) ∈ [0,1] , ∑ t α t(s,a) = ∞ , ∑ t(α t(s,a))2 < ∞ w.p.1
andα t(s,a) = 0 unless(s,a) = (st ,at).

3. Var{R(s,a,s′)}< ∞.

4. γ < 1.

We prove this theorem in Appendix D.

4.4 Best-Match LVM Prioritized Sweeping

A wide range of methods can be constructed within the general class of best-match LVM control
algorithms that trade off increased computation time for better approximation of the best-match
Q-values in different ways. This section proposes one method that performs this trade-off with a
strategy based onprioritized sweeping(PS) (Moore and Atkeson, 1993).

PS makes the planning step of model-based RL more efficient by focusing onthe updates ex-
pected to have the largest effect on the Q-value function. The algorithm maintains a priority queue
of state-action pairs in consideration for updating. When a state-action pair(s,a) is updated, all
predecessors (i.e., those state-action pairs whose estimated transition probabilities tos are greater
than 0) are added to the queue according to a heuristic estimating the impact of the update. At
each timestep, the topN state-action pairs from this queue are updated, withN depending on the
available computation time. Because PS maintains a full model, it requiresO(|S |2|A |) space.

This same idea can be applied to the best-match equations for efficient approximation of the
best-match values. A priority queue of state-action pairs is maintained whose corresponding best-
match updates have the largest expected effect on the best-match Q-valueestimates. When a state-
action pair has received an update, all state-action pairs whose last-visittransition state equals the
state from the updated state-action pair are placed into the priority queue with apriority equal to
the absolute change an update would cause in its Q-value. Since this approach uses only an LVM,
it requires onlyO(|S ||A |) space.

Algorithm 4 shows the pseudocode of this algorithm, which we callbest-match LVM prioritized
sweeping(BM-LVM). By always putting the state-action pair from the previous timestepon top of
the priority queue (line 10), the requirement that each visited state-action pair receives at least one
best-match update is fulfilled, guaranteeing convergence in the limit.

On the surface, this algorithm resemblesdeterministic prioritized sweeping(DPS) (Sutton and
Barto, 1998), a simpler variation that learns only a deterministic model, uses a slightly different
priority heuristic, and performs Q-learning updates to its Q-values. While clearly designed for
deterministic tasks, it can also be applied to stochastic tasks, in which case updates are based on an
LVM.

However, there is a crucial difference between DPS and BM-LVM. By performing updates with
respect toQm f instead ofQ, BM-LVM corrects previous updates instead of performing multiple
updates based on the same sample. This ensures proper averaging of experience and enables con-
vergence to the optimal Q-values using only an LVM, even in stochastic environments. This is not
guaranteed for DPS since if some samples are used more often than others abias towards these
samples is created, which can prevent convergence to the optimal Q-values.

We compare the performance of PS, DPS, and BM-LVM on the deterministic and stochastic
variation of the Dyna Maze task shown in Figure 3. In addition, we also compare to Q(λ) as
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Algorithm 4 Best-Match LVM Prioritized Sweeping (BM-LVM)
1: initialize Q(s,a) arbitrarily for alls,a
2: initialize S′(s,a) = /0 for all s,a
3: initialize PQueue as an empty queue
4: loop {over episodes}
5: initialize s
6: repeat{for each step in the episode}
7: select actiona, based onQ(s, ·)
8: Take actiona, observer ands′

9: S′(s,a)← s′;R′(s,a)← r;Qm f(s,a)←Q(s,a)
10: promote(s,a) to top of priority queue
11: n← 0
12: while (n< N)∧ (PQueueis not empty)do
13: s1,a1← f irst(PQueue)
14: Q(s1,a1)← (1−αs1a1)Qm f(s1,a1)+αs1a1 [R′(s1,a1)+ γ maxc Q(S′(s1,a1),c)]
15: Vs1←maxa′Q(s1,a′)
16: for all (s̄, ā) with S′(s̄, ā) = s1 do
17: p← |(1−α s̄ā)Qm f(s̄, ā)+α s̄ā [R′(s̄, ā)+ γVs1]−Q(s̄, ā)|
18: if p> θ then
19: insert(s̄, ā) into PQueuewith priority p
20: end if
21: end for
22: n← n+1
23: end while
24: s← s′

25: until s is terminal
26: end loop

described by Watkins (1989). This is an off-policy control version of eligibility traces. We also
tried Sarsa(λ), the on-policy version, since it can sometimes outperform Q(λ) considerably, but saw
no significant difference for these experiments and present only the Q(λ) results. Note that when a
greedy behavior policy is used, as in the deterministic experiment, Q(λ) computes exactly the same
values as Sarsa(λ). As in Section 4.2, we also compare to experience replay.

Finally, we compare to delayed Q-learning (Strehl et al., 2006), a model-free method that, like
some model-based methods (Brafman and Tennenholtz, 2002; Kearns andSingh, 2002; Strehl and
Littman, 2005), is proven to beprobably approximately correct(PAC), that is, its sample complex-
ity is polynomial with high probability. Delayed Q-learning initializes its Q-values optimistically
and ensures that value estimates are not reduced until the corresponding state-action pairs have been
sufficiently explored. Because it does not maintain a model, it has the sameO(|S ||A |) space require-
ments as best-match prioritized sweeping. However, to our knowledge, its empirical performance
has never been evaluated before.

For each method, the free parameters are optimized within a certain range. Inthe deterministic
case, for Q(λ) we optimized theλ value in the range from 0 to 1, and the learning rate decayd (using
Equation 4) in the range from 0 to 1, whileα0 was set to 1. We also optimized the (unbounded) trace
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type (replacing versus accumulating). For delayed Q-learning we optimizedm in the range from 1
to 5 with steps of 1 ande1 in the range 0 to 0.020 with steps of 0.001. For DPS and BM-LVM, we
did not optimize any parameters in the deterministic case, but simply used a constant α of 1. In the
stochastic case, we also optimized the learning rate decayd for DPS and BM-LVM.

For all methods, we used optimistic initialization withQ0 = 20 in order to get a fair comparison
with delayed Q-learning, for which initialization toRmax/(1− γ) is part of the algorithm.5

In the deterministic case we used a greedy behavior policy, while we used anε-greedy policy
with ε = 0.1 in the stochastic variant. For all prioritized-sweeping algorithms we performed a
maximum of 20 updates per timestep (i.e., N = 20). For experience replay we used the last 20
samples, which also results in 20 updates per timestep. Results are averagedover 1000 independent
runs.
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Figure 10: Comparison of the performance of BM-LVM and several competitors on the determin-
istic (left) and stochastic (right) Dyna Maze task.

Figure 10 shows the return as a function of the number of episodes, while Tables 2 and 3 show
the average return over the measured episodes and the optimal parameter values. In the determinis-
tic experiment, we see that the performance of PS, DPS, and BM-LVM is exactly equal, as expected
whenα = 1, since the last-visit experience is equal to the model of the environment. Q(λ) performs
considerably worse than the prioritized sweeping methods and does not converge to the optimal pol-
icy. In contrast, the combination of a greedy behavior policy with optimistic initialization enables
the prioritized sweeping methods to converge to the optimal policy in a deterministic environment.
Experience replay performs similarly to Q(λ), though it does converge to the optimal policy. De-
layed Q-learning also converges to the optimal policy, as predicted by the theory, but does so much
more slowly.

In the stochastic experiment, PS has a clear performance advantage. However, the goal of BM-
LVM is not to match or even come close to the performance of PS. It cannot match this performance
in general, since PS takes advantage of its higher space complexity. Instead, the goal of BM-LVM

5. For this taskr = Rmax only when the exit is reached and 0 otherwise. Thus, the Q-values can never be higher than 1
andQ0 = 20 is overly optimistic. However, since realizing that an initialization of 1 is possible would require extra
prior knowledge, we initialize to 20.
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deterministic - 50 eps.
optimal parameters average standard time per step

return error (·10−6s)
Q(λ) λ: 0.8, d: 0 0.3606 0.0007 0.68

exp. replay d: 0 0.3602 0.0004 0.37
delayed Q m: 1,e1 = 0 0.1878 0.0004 0.11
BM-LVM d: 0 0.4769 0.0002 0.88

DPS d: 0 0.4774 0.0002 0.85
PS - 0.4772 0.0002 0.95

Table 2: Average return and optimal parameters (d =α decay rate) of best-match prioritized sweep-
ing and several competitors on the deterministic Dyna Maze task.

stochastic - 100 eps.
optimal parameters average standard time per step

return error (·10−6s)
Q(λ) λ: 0.9, d: 0.03 0.2417 0.0007 0.59

exp. replay d: 0.18 0.2272 0.0006 0.43
delayed Q m: 2,e1:0.015 0.0668 0.0004 0.12
BM-LVM d: 0.02 0.2911 0.0006 3.2

DPS d: 0.30 0.2683 0.0008 3.7
PS - 0.3603 0.0004 4.7

Table 3: Average return and optimal parameters (d =α decay rate) of best-match prioritized sweep-
ing and several competitors on the stochastic Dyna Maze task.

is to optimally perform at a space complexity ofO(|S ||A |). The results confirm that BM-LVM
is considerably better than the other methods with this space complexity, like Q(λ) and DPS. DPS
initially performs well, but cannot keep up with BM-LVM after about 10 episodes, even though BM-
LVM has similar space and computation costs per timestep. Experience replay performs slightly
worse than Q(λ). We tested whether doubling the size of the stored experience sequenceimproves
the performance of experience replay, but this led to no significant performance increase. Delayed
Q-learning also performs poorly in the stochastic case, despite its PAC bounds.

The computation time of BM-LVM, DPS and PS is in the deterministic experiment considerably
lower than in the stochastic case. The reason for this is that while in both cases the maximum
number of updates per timestep is 20, in the deterministic case the priority queue often has fewer
than 20 samples, so fewer updates occur. The computation time of Q(λ) is slightly better than that
of BM-LVM, while experience replay is about twice as fast as BM-LVM.

In the stochastic experiment, the computation time of Q(λ) is much better than that of any of
the prioritized sweeping algorithms, which could suggest that Q(λ) is a better choice than BM-LVM
when computation power is scarce. To test this hypothesis, we performed additional experiments
with smaller values ofN. The computation time for BM-LVM forN = 4 (0.61·10−6 s) was similar
to that of Q(λ). The average return of BM-LVM dropped to 0.2598 in this case, which isstill
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considerably better than the average return of Q(λ). This demonstrates that BM-LVM is a better
choice than Q(λ) even under severe computational constraints.

Together, these results clearly demonstrate the strength of best-match learning, since BM-LVM
outperforms several competitors with similar space complexity. However, the results also show that
the performance gap with full model-based learning can be considerable.Therefore, if more space
is available, a better approximate model would be preferred. We address this need in the next section
by applying best-match learning to ann-transition model, which estimates the transition function for
n next states per state-action pair, allowing increased space requirements tobe traded for improved
performance.

5. Best-Matchn-Transition Model

The best-match LVM equations described above combine model-free Q-values with the last-visit
model. When state-action pairs have only a small number of possible next states, the last-visit
model can effectively approximate the full model. In other cases, however, the last-visit model
captures only a fraction of the full model and the effect of the best-match updates will be small.
In this section, we combine best-match learning with then-transition model, which estimates the
transition probability forn possible next states of each state-action pair. By tuningn, increased
space requirements can be traded for improved performance.

5.1 Generalized Best-Match Equations

Best-match LVM learning takes the idea of using more accurate update targetsto the extreme by
continuously revising update targets with best-match updates. For a specificsample, the update
target is revised until the moment of revisit of the corresponding state-action pair, since at that
moment the sample is overwritten with the newly collected sample. However, if space allows, the
new sample can be stored along with the old sample instead of overwriting it, allowing the update
target from the new as well as the old sample to be further improved. We explain with an example
how this changes the best-match equations.

6

Figure 11: A state transition sequence in which best-match updates can enable further postponing.
Timesteps are shown below each state.

Consider the state-action sequence from Figure 11 and assume the best-match Q-values are
computed at each timestep. At the revisit ofsA, actiona0 is retaken. Therefore, when using the LVM,
at timestep 5 the old experience sample is overwritten with the new experience. Before this occurs,
the old experience is used in a final update ofQm f. Letυx

y indicate the update target from the sample
collected at timestepx based on the best-match Q-value of timestepy: υx

y = rx+ γ maxaQB
y (sx,a).

Using this convention the update ofQm f at timestep 5 becomes

Qm f
5 (sA,a0) = (1−α)Qm f

0 (sA,a0)+αυ1
4 .
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At timestep 7, the best-match LVM equation for(sA,a0) can be written as

QB
7 (sA,a0) = (1−α)Qm f

7 (sA,a0)+αυ5
7

= (1−α)Qm f
5 (sA,a0)+αυ5

7

= (1−α)2Qm f
0 (sA,a0)+α(1−α)υ1

4+αυ5
7 .

Thus, the best-match Q-value of(sA,a0) at timestep 7 is equal to a weighted average ofQm f
0 , υ1

4
andυ5

7. On the other hand, if both the old and the new sample are stored, Q-values from timestep 7
could also be used for the update target of the old sample, yielding

QB
7 (sA,a0) = (1−α)2Qm f

0 (sA,a0)+α(1−α)υ1
7+αυ5

7 . (10)

For the state-sequence from Figure 11 this means that the experience resulting from (sB,a6) is also
taken into account in the update target for(sA,a0).

The above example shows how the best-match LVM equations can be naturallyextended to two
samples per state-action pair. Following the same pattern, we can define best-match equations given
an arbitrary set of samples. Consider the set of samplesX of sizeNX, where a samplex∈ X has the
form {s,a, r,s′ }. These samples can be grouped according to their state-action pairs. We defineXsa

as the subset ofX containing all samples belonging to state-action pair(s,a) andNx
sa as the size of

Xsa. Without loss of generality, we index the samples fromXsa asxsa
k for 1≤ k≤ Nx

sa. In addition,
we defineWsa as a set consisting ofNx

sa+1 weightswsa
k ∈ IR such that 0≤ wsa

k ≤ 1 for 0≤ k≤ Nx
sa

and∑Nx
sa

k=0wsa
k = 1. We defineW as the union of the weight sets from all state-action pairs.

Definition 11 The generalized best-match equations with respect to Qm f
t , X and W are

QB
t (s,a) = wsa

0 Qm f
t (s,a)+wsa

1 υsa
1 +wsa

2 υsa
2 + ...+wsa

Nx
sa

υNx
sa
, for all s,a , (11)

whereυsa
k = r + γ maxcQB

t (s
′,c) |r,s′ ∈ xsa

k .

Note that Equation 11 reduces toQB
t (s,a) = Qm f

t (s,a) for state-action pairs with no samples inX.
Within this context,Qm f is defined as a model-free Q-value constructed from all observed sam-

ples except those inX. Consequently, when a sample is removed fromX, it is used for a model-free
update ofQm f.

Using Definition 11, a range of algorithms can be constructed based on different sets of samples
X and weightsW. When the samples are combined by incremental Q-learning updates, like in
Equation 10, the weights have the values

wsa
0 =

Nx
sa

∏
i=1

(1−αsa
i ) , (12)

wsa
k = αsa

k

Nx
sa

∏
i=k+1

(1−αsa
i ) , for 1≤ k≤ Nx

sa. (13)

With this weight distribution, the update targets from older samples have lower weights than more
recent samples. In Q-learning, more recent samples in general have more accurate update targets so
giving them higher weight makes sense. However, in best-match learning the update targets from
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all stored samples have the same time index so there is no reason to use different weights for them.
A better weight distribution gives all samples the same weights:

wsa
k = (1−wsa

0 )/Nx
sa, for 1≤ k≤ Nx

sa,

for some value ofwsa
0 .

The last-visit model, storing one sample for each state-action pair, is one possible sample set.
A straightforward extension is to storen samples per state-action pair. In the following section,
however, we propose a different sample set, called then-transition model, which can be stored more
compactly.

5.2 Best-Match Learning based on then-transition Model

While BM-LVM outperforms model-free methods with the same space complexity, itdoes not per-
form as well as PS, which stores a full model. This is symptomatic of an importantlimitation
of BM-LVM: it offers only a single trade-off between space and performance. When there is not
enough space available to store the full model, but more than enough to storethe LVM, a more
sophisticated method is needed to make maximal use of the available space. Usingthe generalized
best-match equations, we can construct such a method.

An obvious approach is to storen samples per state-action pair. However, obtaining an accurate
model often requires a largen, even when the number of next states per state-action pair is small.
A more space-efficient solution is to group together samples that have the same next state. If we
store the size of such a group inNx

sas′ and give each sample a weight of 1/Nsa, whereNsa is the
total number of times state-action pair(s,a) is visited, then we can rewrite the contribution from all
samples ofXsa to the best-match equations as

Nx
sa

∑
k=1

wkυk =
1

Nsa

[

∑
X

rsa+ γ∑
s′

Nx
sas′max

a′
QB(s′,a′)

]

,

where∑X rsa is the sum of the rewards from all samples in the sample set belonging to(s,a). Using
wsa

0 = 1−Nx
sa/Nsa, P̂ s′

sa=Nx
sas′/Nx

sa andR̂ sa= ∑X rsa/Nx
sa, the generalized best-match equations can

now be rewritten as

QB(s,a) = wsa
0 Qm f(s,a)+(1−wsa

0 )

[

R̂ sa+ γ∑
s′
P̂ s′

samax
a′

QB(s′,a′)

]

, for all s,a .

In these equations,̂P andR̂ constitute a sparse, approximate model, whose size can be controlled
by limiting the number of next states per state-action pair for whichP̂ is estimated.wsa

0 is the
fraction of all samples belonging to(s,a) not used by the sparse model. We define ann-transition
model(NTM) to be one that estimates the transition probabilityP̂ for n next states per state action
pair. Once a sample enters the model, that is, is used to updateP̂ , it stays in the model. Each sample
not used to update the model is used for a model-free update ofQm f. Different strategies can be
used to determine which samples enter the model. A simple approach is to use the first n unique
next states that are encountered for a specific state-action pair.

Algorithm 5 shows general pseudocode for best-match NTM learning. The algorithm presents
two trade-offs. First, the space complexity can be traded off with performance by selectingn.
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Algorithm 5 General Best-Match NTM Control

1: initialize Q(s,a) = Qm f(s,a) arbitrarily for alls,a
2: initialize Nsa,Nx

sa,R
sum
sa to 0 for alls,a

3: initialize Nx
sas′ to 0 for alls,a ands′ ∈ NTM(s,a)

4: initialize wsa
0 to 1 for alls,a

5: loop {over episodes}
6: initialize s
7: repeat{for each step in the episode}
8: select actiona, based onQ(s, ·)
9: take actiona, observer ands′

10: if s′ ∈ NTM(s,a) then
11: Nx

sa= Nx
sa+1; Nx

sas′ = Nx
sas′+1; Rsum

sa = Rsum
sa + r

12: P̂ s′
sa= Nx

sas′/Nx
sa; R̂ sa= Rsum

sa /Nx
sa

13: else
14: Qm f(s,a)← (1−αsa)Qm f(s,a)+αsa[r + γ maxcQ(s′,c)]
15: end if
16: Nsa= Nsa+1
17: wsa

0 = 1−Nx
sa/Nsa

18: repeat
19: select some(s̄, ā) pair with Ns̄ā > 0 {each pair is selected at least once before its

revisit}

20: Q(s̄, ā)← ws̄ā
0 Qm f(s̄, ā)+(1−ws̄ā

0 )
[

R̂ s̄ā+ γ∑s′ P̂
s′
s̄āmaxcQ(s′,c)

]

21: until some stopping criterion has been met
22: s← s′

23: until s is terminal
24: end loop

Second, the computation time per simulation step can be traded off with performance by controlling
the number of best-match updates performed per timestep.

Based on this general control algorithm, various specific algorithms can beconstructed using
different stopping criteria and strategies for selecting state-action pairs toreceive best-match up-
dates. The following theorem states that, for any member of this class, the Q-values converge to the
optimal Q-values. We prove this theorem in Appendix E.

Theorem 12 The Q-values of a member of the best-match NTM control class, shown inAlgorithm
5, converge to Q∗ if the following conditions are satisfied:

1. S and A are finite.

2. α t(s,a) ∈ [0,1] , ∑ t α t(s,a) = ∞ , ∑ t(α t(s,a))2 < ∞ w.p.1
andα t(s,a) = 0 unless(s,a) = (st ,at) and st+1 /∈ NTM(st ,at).

3. Var{R(s,a,s′)}< ∞.

4. γ < 1.
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5.3 Experimental Results

As in BM-LVM, prioritized sweeping can be used to trade off computation time and performance
in Algorithm 5, yielding a method we call BM-NTM. We compare its performance toBM-LVM,
Q-learning, and a sparse model-based method that combines prioritized sweeping with an NTM
without best-match updates, which we call PS-NTM. While BM-NTM uses the samples that are not
part of the NTM to updateQm f, PS-NTM ignores these samples. The priority of a state-action pair
(s,a) for BM-NTM is defined as

p= (1−wsa
0 )P̂ s1

sa · |∆V(s1)| ,

where∆V(s1) is the difference in the state value ofs1 before and after the best-match update of one
of the Q-values ofs1. For PS-NTM, the priority is defined similarly:

p= P̂ s1
sa · |∆V(s1)| .

The NTM we use for BM-NTM and PS-NTM is defined by the firstn unique next states that
are encountered for a specific state-action pair. Although more sophisticated models could be used
(e.g., by estimating then most likely transition states), this model is sufficient for our experimental
setting since most transition states have similar transition probabilities.

We consider the large maze task shown at the left in Figure 12. For this maze,the reward
received by the agent is−0.1 at each timestep, while reaching the goal state results in a reward
of +100. The discount factor is 0.99. The agent can take four actions,‘north’,‘south’,‘east’ and
‘west’. The action outcomes are made very stochastic, in order to compare different model sizes.
The right side of Figure 12 shows the relative action outcome for a ‘north’action. In free space,
there are 15 possible next states, each with equal transition probability. Onthe other hand, walls
prevent not only the transition to the square the wall is located on, but also any squares behind the
wall. Therefore, close to a wall the number of possible next states is less than 15. When transition
to a square is blocked by a wall, the transition probability of that square is added to the transition
probability of the square in front of the wall. In order to make reaching the goal feasible despite the
stochastic actions, we use a goal area consisting of four goal states.

To compare performance, we measure the average return for each method over the first 500
episodes. For all methods, we use anε-greedy policy withε = 0.05 and initialize Q-values to 0.
BM-NTM, PS-NTM and BM-LVM perform a maximum of 5 updates per timestep.For all learning
rate based methods, we use an initial learning rate of 1 and decay the learning rate according to
Equation 4, while optimizing the decay rated. Results are averaged over 200 independent runs. An
episode is stopped prematurely if the goal is not reached within 500 steps.

Table 4 presents the results, including the average return, optimal parameters, and computation
time per simulation step. The model sizes used areN = 1, 3, 5, and 15. ForN = 15, all samples
enter the model. Therefore, BM-NTM has no decay rate in this case. The model weight indicates
the fraction of samples that entered the model. BM-NTM has in general a slightly higher weight
than PS-NTM, indicating the agent spends less time in open spaces and more timeclose to a wall.

For model sizesN = 1 andN = 3, the average return of BM-NTM is much better than that of
PS-NTM, despite the fact that forN = 3 more than a third of the samples are stored in the model.
ForN= 1, the average return of PS-NTM is even worse than that of Q-learning.Figure 13 shows the
return as a function of the number of episodes for BM-NTM and PS-NTM with N = 1 andN = 3.
Unlike BM-NTM, the asymptotic performance for PS-NTM is clearly boundedby the size of the
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Figure 12: Left, the large maze task, in which the agent must travel fromS to one of theG’s.
Right, transition probabilities (· 1

15) of a ‘north’ action for different positions of the agent
(indicated by the circle) with respect to the walls (black squares). When thetransition
to a square is blocked by a wall, its transition probability is added to that of the square
in front of the wall.

model. Thus, PS-NTM can match the performance of BM-NTM only when the space reduction
over the full model is quite small (i.e., less than a factor of 2).

Interestingly, whenN = 1, BM-LVM outperforms BM-NTM despite having the same space
complexity. Thus, when space is scarce, BM-LVM is a good option. In contrast, BM-NTM can
exploit larger models to further improve performance. The computation time persimulation step
for BM-NTM is comparable to that of PS-NTM, with the exception ofN = 1, for which it is four
times larger. The reason is that the priority queue of PS-NTM is often close toempty in this case
and thus the 5 updates per timestep are often not reached.

Overall, these results clearly demonstrate the strength of best-match NTM learning. When a
significant space reduction over storing the full model is required, BM-NTM performs dramatically
better than PS-NTM at similar computational cost.

6. Best-Match Function Approximation

The BM-NTM method described in the previous section has a space complexityof O(n|S ||A |) com-
pared toO(|S |2|A |) for full model-based methods. However, in problems with large state spaces,
this space complexity may be prohibitive even whenn= 1. In addition, BM-NTM cannot be applied
in problems with continuous state spaces. To address these limitations, this section demonstrates
that the principles behind best-match learning can also be applied to function approximation. We
show that the resulting algorithm, which combines theN most recent samples with the model-free
Q-value function, outperforms both linear Sarsa(λ) and linear experience replay on the mountain
car task. We start by describing best-match learning based on theN most recent samples for the
tabular case, and then we show how this can be extended to the function approximation case.
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model model optimal average standard time per step
size weight parameters return error (·10−6 s)

PS-NTM 1 0.12 - -16.9 0.4 0.21
3 0.36 - 9.8 0.3 1.5
5 0.57 - 22.6 0.2 2.1

15 1.00 - 28.9 0.2 3.1
BM-NTM 1 0.14 d = 0.04 15.4 0.3 0.85

3 0.40 d = 0.09 19.6 0.2 1.7
5 0.60 d = 0.06 22.3 0.2 2.2

15 1.00 - 29.3 0.2 3.1
BM-LVM - - d = 0.09 17.4 0.3 1.5

Q-learning - - d = 0.03 2.4 0.2 0.09

Table 4: Average return over the first 500 episodes, optimal parameters(d: α decay rate) and com-
putation time per simulation step on the Large Maze task.
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Figure 13: Performance of BM-NTM and PS-NTM on the large maze task.

2072



EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

6.1 Tabular Sequence Based Best-Match Learning

The generalized best-match equations are defined for an arbitrary set of samples (see Definition 11),
which can be stored in a model or as an explicit set. To combine best-match principles with function
approximation, we employ an explicit set consisting of the lastN observed samples, an approach
we callsequence based best-match learning. In this section we describe sequence based best-match
learning for the tabular case and its advantage over experience replay,which also exploits a set of
recent samples. In the next section, we extend the tabular version of sequence based best-match
learning to function approximation.

Assume that a queue of the lastN samples is maintained. When the queue is full and a new
sample is added to the back of the queue, the sample at the front of the queueis removed and used
to perform a model-free update ofQm f(s,a). The queue may contain multiple samples that belong
to the same state-action pair. If there areNx

sa samples belonging to state-action pair(s,a), then the
best-match update based on these samples is

Qt,i+1(s,a) = wsa
0 Qm f

t (s,a)+wsa
1 υsa

1 +wsa
2 υsa

2 + ...+wsa
Nx

sa
υNx

sa
, (14)

whereυsa
k = r + γ maxcQt,i(s′,c) |r,s′ ∈ xsa

k . When the weights are defined according to Equations
12 and 13, this update can be implemented incrementally by performingNx

sa Q-learning updates:

Q<k>(s,a) = (1−α)Q<k−1>(s,a)+α [rk+ γ max
a′

Qt,i(s
′
k,a
′)] , for 1≤ k≤ Nx

sa ,

with Q<0>(s,a) = Qm f
t (s,a) andQt,i+1(s,a) = Q<Nx

sa>(s,a).
By stepping through the queue from front to back and using each sample toperform an incre-

mental Q-learning update, all state-action pairs with samples in the queue receive one full best-
match update, according to Equation 14. By storing the intermediateQ<k> values at the same
location as the final Q-value,Q<Nx

sa> automatically becomesQt,i+1 after all incremental updates
have been performed. This implementation requires that the Q-values from the state-action pairs
with samples in the queue are set equal toQ<0>, that is, toQm f

t , before the update sweep begins.
Before resetting these Q-values, the update targets of the samples must be recomputed.

Despite a superficial resemblance, sequence based best-match learningis fundamentally differ-
ent from experience replay. Best-match learning uses the stored samplesto correct previous updates
based on those samples, whereas experience replay performs additional updates with the same sam-
ple. To illustrate the effect of this difference, suppose that sample(s,a, r,s′) is observed at timestep
t = 1 and used for an updaten timesteps in a row. For simplicity, assume there are no other sam-
ples belonging to(s,a) in the sample queue and that the learning rateα is constant. We indicate
the update target of the sample with̄υi , wherei corresponds to the timestep at which the update is
performed. Therefore,̄υi+1 is likely to be more accurate than̄υi since it uses more recent Q-values
for s′. Since experience replay performs additional updates we can expressQn(s,a), the Q-value
of (s,a) at timestepn, in terms ofQ0(s,a) and the update targets from the different timesteps as
follows:

Qn(s,a) = w0Q0(s,a)+w1ῡ1+w2ῡ2+ ...+wnῡn ,

with w0 =∏n
i=1(1−α) andwk =α∏n

i=k+1(1−α) for k> 0. If α≪ 1, the weights can be accurately
described with first-order approximations inα, yieldingw0 ≈ 1−nα andwk ≈ α for k > 0. Using
these approximations, we can write forQn(s,a):

Qn(s,a)≈ (1−β)Q0(s,a)+β ∑n
i=1 ῡi

n
, (15)
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with β = nα. On the other hand, best-match learning uses the sample for best-match updates, that
is, Qn(s,a) = (1−α)Qm f

n (s,a)+αῡn. However, sinceQm f
i (s,a) gets updated only when a sample

is removed from the queue,Qm f
n (s,a) = Q0(s,a) in this case. Therefore, the following holds for

best-match learning:
Qn(s,a) = (1−α)Q0(s,a)+αῡn . (16)

The difference between Equation 15 and Equation 16 illustrates the fundamental advantage of se-
quence based best-match learning, for whichQn can be seen as an update with sample(s,a, r,s′)
using the most recent update target. In contrast, experience replay effectively performs an update
using an update target that is an average of the update targets from the different timesteps. There-
fore, the older, less accurate update targets still have an effect onQn.

6.2 Best-Match Gradient Descent Learning

Since tabular sequence based best-match learning can be implemented by incremental Q-learning
updates, it can be easily extended to function approximation by combining it withthe general gra-
dient descent update for Q-values (Sutton and Barto, 1998)

θ t+1 = θ t +α [υ t −Qt(st ,at)]∇θ t Qt(st ,at) , (17)

whereθ t is a weight vector corresponding to the basis functions of the approximation.
Algorithm 6 shows pseudocode for general gradient descent best-match function approximation.

Note that a learning rate and the most recent update target are stored persample. The updates ofθ
andθm f are based on Equation 17.

We evaluate a linear version of the best-match gradient descent algorithm by comparing its
performance with linear Sarsa(λ) as well as a linear version of experience replay on the mountain car
task (Boyan and Moore, 1995; Sutton, 1996; Sutton and Barto, 1998) using the settings as described
in Sutton and Barto (1998). This involves tile coding with ten 9x9 tilings, a discount factor of 1,
an exploration parameterε = 0, and Q-values optimistically initialized to 0. Additionally, to bound
the run-time of an experiment, an episode is stopped prematurely if the goal is not reached within
1000 steps. Linear Sarsa(λ) is known for its good performance on this task (Sutton and Barto,
1998) and is therefore a good benchmark test. For Sarsa(λ), we use the settings that showed the
best performance over the first 20 episodes:α = 0.14 andλ = 0.9 with replacing traces. We tested
whether decaying the learning rate improves the performance for a numberof different α values
around 0.14 but did not find a significant improvement. To make Sarsa(λ) more computationally
efficient, traces are cut-off for state-action pairs that were visited longer than 20 timesteps ago. For
best-match and experience replay, a queue of the 20 most recent samplesis used and a single update
sweep through this sample set is performed at every timestep. We optimize the initial learning rate
α0 and the learning rate decayd (see Equation 4). Results are averaged over 5000 independent runs.

Table 5 shows the average return over the first 20 episodes, the optimal parameters, and the
computation time per simulation step for the 5000 runs. Figure 14 shows the return as a function
of the number of episodes. For trace length/N = 20, the performance of linear best-match is about
27% better than that of linear Sarsa(λ).6 On the other hand, Sarsa(λ) is about twice as fast.

Surprisingly, while experience replay performed comparably to Sarsa(λ) in the tabular case, in
the mountain car task it performs 16% better than linear Sarsa(λ). However, as expected, it performs

6. The linear Sarsa(λ) performance is in accordance with the performance found by several other researchers (http:
//webdocs.cs.ualberta.ca/ ˜ sutton/book/errata.html ).
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Algorithm 6 General Gradient-Descent Best-Match
1: set N, γ
2: initialize θ, α and setθm f = θ
3: initialize SampleQueueto empty
4: loop {over episodes}
5: initialize s
6: while s 6= terminal statedo
7: select actiona, based onθ
8: take actiona, observes′,r
9: if sizeSampleQueue= N then

10: pop samplex from front of theSampleQueue
11: updateθm f usingx
12: end if
13: decayα; υ = /0
14: push new sample{s,a, r,s′,α,υ} to back ofSampleQueue
15: for all samplesx updateυx← rx+ γ ·Vs′x usingθ
16: for all samplesx do
17: for all features fromx: θ← θm f

18: end for
19: for all samplesx (from front to back ofSampleQueue) do
20: updateθ usingυx

21: end for
22: s← s′

23: end while
24: end loop

optimal parameters average standard time per step
return error (·10−6s)

best-match, N=20 α0 = 0.10, d = 0.09 -170.1 0.4 3.0
exp. replay, N=20 α0 = 0.10, d = 0.16 -195.1 0.4 2.5
Sarsa(λ), trace=20 λ = 0.9, α0 = 0.14, d = 0.0 -231.9 0.4 1.5
best-match, N=15 α0 = 0.10, d = 0.03 -176.3 0.4 2.5
best-match, N= 5 α0 = 0.10, d = 0.03 -215.1 0.4 1.5
Sarsa(λ), trace=∞ λ = 0.9, α0 = 0.14, d = 0.0 -228.2 0.4 6.7

Table 5: Average performance over the first 20 episodes and the computation time per simulation
step on the Mountain Car task (‘trace’ indicates trace length)

worse than linear best-match. Thus, a substantial portion of the performance improvement linear
best-match offers over Sarsa(λ) is due to the use of best-match principles, not simply the reuse of
data.

Besides a comparison with equal number of samples/updates, it is interesting tomake a compar-
ison with equal computation time. To achieve this, we can either increase the sample set size used
by experience replay and Sarsa(λ), or decrease the sample set size used by linear best-match, in such
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Figure 14: Performance of linear best-match, experience replay and linear Sarsa(λ) on the Moun-
tain Car task using the 20 most recent samples.

a way that the computation times approximately match. We chose to decrease the sample set size of
linear best-match. UsingN = 15 andN = 5 resulted in a computation time matching that of expe-
rience replay and Sarsa(λ), respectively. Table 5 shows that the performance of linear best-match is
also better with equal amount of computation time. In addition, we performed an experiment with
Sarsa(λ) without bound on the trace length. This resulted in an average return of−228.2, demon-
strating that the performance of Sarsa(λ) cannot be improved significantly by increasing the trace
length.

Overall, these results show that best-match learning can be successfully applied to function
approximation. Furthermore, they demonstrate that using samples to correctprevious updates can
lead to better performance that using them to perform additional updates.

7. Discussion

The methods presented in this article approximate solutions to different instantiations of the gen-
eralized best-match equations (Definition 11). These best-match equations provide a theoretical
foundation for combining model-free learning (through updates ofQm f) with model-based learn-
ing (through updates of Q). The resulting methods offer two trade-offs.First, the selection of a
sparse, approximate model provides a trade-off between space and performance. Second, the num-
ber of best-match updates performed per timestep provides a trade-off between computation cost per
timestep and performance. The performance gain offered by best-match learning can be explained
from the perspective of the update targets. By performing best-match updates, the update targets
from the samples stored in the model are continually recomputed and the Q-values are updated to
incorporate any resulting changes.
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In the case of best-match LVM, this produces an evaluation method that leadsto the same values
as TD(λ) with λ t = α t(st) for acyclic tasks, as proven in Theorem 7. This equivalence arises from
the fact that both best-match LVM learning and eligibility traces outperform 1-step methods by
correcting previous updates with newly obtained samples. However, our theoretical and empirical
results suggest that the best-match LVM equations provide a much strongerbasis for exploiting this
principle.

Theorem 8 proves that best-match LVM evaluation can perform updates that are unbiased with
respect to the initial values for an arbitrary MDP, while for TD(λ) this can only be achieved for
acyclic tasks. In the control case, Theorem 10 proves convergencein the limit to the optimal Q-
values for a general class of best-match LVM control algorithms. Similar converge guarantees do
not exist for eligibility traces. In addition, best-match LVM learning avoids theneed to choose be-
tween different trace types (accumulating or replacing) and does not require an extraλ parameter.
Furthermore, in deterministic problems, best-match LVM learning, reduces to model-based learn-
ing, as one would expect for an algorithm that makes optimal use of theO(|S ||A |) space complexity.

Our empirical results show that best-match LVM evaluation substantially outperforms TD(λ)
and experience replay (Figure 9), despite having similar computational costs. For the control case,
we show that BM-LVM, which uses prioritized sweeping to trade-off computation cost with perfor-
mance, substantially outperforms not only Q(λ), but also other methods with a space complexity of
O(|S ||A |) (Figure 10). These results illustrate how best-match LVM learning efficientlyexploits its
stored samples.

Alternatively, best-match learning can be combined with ann-transition model, yielding space
complexity betweenO(|S ||A |) andO(|S |2|A |). Without using best-match learning, the performance
of an NTM is bounded by the quality of the model approximation. In contrast, Theorem 12 proves
that BM-NTM converges in the limit to the optimal Q-values. Empirically, we demonstrate that, for
any significant space reduction compared to the full model, BM-NTM performs much better than
using only the NTM (Figure 13).

Finally, our results demonstrate that the ideas behind best-match learning canbe successfully
extended to function approximation by combining sequence based best-matchlearning with gradient
descent updates (Algorithm 6). In particular, a linear implementation outperforms Sarsa(λ) and
experience replay on a benchmark task (Figure 14).

8. Future Work

Several avenues of future research are suggested by the work presented in this article. For example,
in Section 4.2 we proved that the best-match LVM evaluation algorithm can eliminatebias with
respect to the initial values. It may be possible to extend this result to the control case. One approach
would be to define a state value as the maximum of the Q-values over previouslytaken actions
instead of the maximum over all available actions. However, a potential problem is that the control
algorithms compute an approximation of the best-match Q-values, instead of the exact values. It is
an open question whether efficient approximations exist that are also unbiased. A second potential
problem is that many exploration schemes, such as optimistic initialization, dependon the Q-values
and might not work as well when updates are unbiased.

The convergence results for the tabular best-match methods are similar to those of Q-learning:
convergence in the limit to the optimal policy. It may be possible, however, to construct best-match
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methods that are probably approximately correct (PAC). Since Strehl etal. (2006) showed that a full
model is not required for a method to be PAC, we are optimistic that such methodsexist.

Finally, it may be possible to develop novel combinations of best-match functionapproxima-
tion with other sample-based approaches such as fitted Q-iteration (Ernst etal., 2005) or LSPI
(Lagoudakis and Parr, 2003). By combining the strengths of each approach, such methods could
yield even better on-line performance. Fitted Q-iteration, for example, is an off-line algorithm that
computes a policy based on a large set of samples, by performing iterative update sweeps through
the sample set. For a good approximation, the number of samples should be muchlarger than the
number of parameters of the approximation. By using a combination between a model-free Q-value
function and a sample set, a smaller sample set might be possible, reducing the requirements with
respect to space and computation, and potentially producing an efficient on-line version of fitted
Q-iteration.

9. Conclusion

This article introduced best-match learning, a reinforcement learning approach that combines model-
free and model-based learning by using some samples to update a sparse model and the rest to update
a model-free Q-value. The final Q-values are computed from best-match updates that combine the
model-free Q-values with the sparse model. By controlling which samples enterthe model, the size
of the model, and hence the space requirements, can be controlled. In the tabular case, the combi-
nation with the model-free Q-values ensures convergence to the optimal Q-values for a variety of
model approximations.

Our empirical results demonstrate that in the tabular case, when there is not enough space avail-
able to store the full model, methods that exploit the best-match equations perform substantially
better than methods based on only model-free learning or sparse model-based methods. This sug-
gests that best-match learning should be the strategy of choice when limited space is available.

In addition, we demonstrated that best-match learning can be successfully extended to the func-
tion approximation domain, where the sparse model is replaced by an explicit set of samples. An
interesting result in this domain is that best-match learning, which uses the sampleset to correct
previous updates, outperforms experience replay, which uses the samesample set but performs ad-
ditional updates.

Overall, we believe that best-match learning provides an important missing link between model-
free and model-based learning and that the methods introduced in this article constitute a new
benchmark for reinforcement learning algorithms that are efficient with respect to both space and
computation.
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Appendix A. Proof of Theorem 1

Theorem 1 Given the same experience sequence, each Q-value from the current state has received
the same number of updates using JIT updates (Equation 3) as using regular updates (Equation
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2). However, each Q-value in the update target of a JIT update has received an equal or greater
number of updates as in the update target of the corresponding regularupdate.

Proof To prove the theorem, we need to prove

U [Q̃t(st ,a)] = U [Qt(st ,a)] , for all a, (18)

U [Q̃t−1(st∗+1,a)] ≥ U [Qt∗(st∗+1,a)] , for all a, (19)

whereU [Qk] is the total number of updates a Q-value has received at timek. From Equation 2 and
3 it follows that for both update types(st ,at∗) is updated once between timestept∗ and timestept,
while the Q-values of the other actions ofst are not updated during this period. Since this applies
to all visits andU [Q̃0(s,a)] = U [Q0(s,a)] = 0 for all s anda, the total number of updates for a
state-action pair is always equal for just-in-time updates and regular updates, when the state is the
current state, proving (18).

To prove (19), first assume thatat∗ is a returning action, that is,t−1= t∗. In this case clearly
(19) is true. Now, assumeat∗ is not a returning action, that is,t−1> t∗. From (18) it follows that
U [Q̃t∗+1(st∗+1,a)] =U [Qt∗+1(st∗+1,a)]. Sincet−1≥ t∗+1 andU [Q̃] increases monotonically over
time, it follows that (19) is true. When statest∗+1 is revisited beforet, an extra update is performed
and there is at least one actiona, for whichU [Q̃t−1(st∗+1,a)]>U [Qt∗(st∗+1,a)].

Appendix B. Relationship between Best-Match LVM and TD(λ)

Sutton and Singh (1994) showed that it is possible to perform TD updates that are unbiased with
respect to the initial values, by using TD(λ) whereλ is made time-dependent and set equal toα t(st).
However, TD(λ) can be made unbiased only for acyclic tasks, that is, episodic tasks with norevisits
of states within an episode. In this appendix, we prove that best-match LVM evaluation and TD(λ)
can lead to the same values for acyclic tasks and that best-match LVM evaluation can perform
unbiased updates for all MDPs.

B.1 Background on TD(λ)

The forward view of TD(λ) relates it to theλ-return (Watkins, 1989; Jaakkola et al., 1994), defined
by

Rλ
t = (1−λ)

∞

∑
n=1

λn−1R(n)
t ,

whereR(n)
t indicates then-step return, defined by

R(n)
t = r t+1+ γ r t+2+ γ2 r t+3+ ...+ γn−1 r t+n+ γnVt(st+n) .

Theλ-return algorithmupdates statest with Rλ
t . It can only be implemented off-line, since it makes

use of values from timesteps larger thant for the update of statest . While the off-line version of
TD(λ) computes the same state values as theλ-return algorithm (Sutton and Barto, 1998), TD(λ)
can also be implemented on-line, since it does not rely on values from the future. On-line TD(λ)
can lead to more accurate updates than off-line TD(λ), although the interpretation as an incremental
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implementation of theλ-return holds only by approximation for the on-line case (Sutton and Barto,
1998).

The backward view of TD(λ) interpretsλ as the trace decay parameter of an eligibility trace.
Each sample is used to update, not just the current state, but all states, proportional to theirtrace
parameter. At each timestep the trace of the current state is increased, whilethe other traces are
decreased byγλ. Accumulating tracesincrease the trace parameter of a visited state by 1, while
replacing tracesset it equal to 1.

Sutton and Singh (1994) proposed several ways for settingα andλ that eliminate bias towards
initial state values, normally inherent to temporal-difference methods. One ofthese is to use TD(λ)
whereλ t = α t(st) andα0(s) = 1 for all s. This produces the same values as processing a state
backwards with TD(0). All the proposed methods eliminate the bias only for acyclic tasks.

The equation for theλ-return with time-dependentλ is (Sutton and Barto, 1998)

Rλ t
t =

∞

∑
n=1

R(n)
t (1−λ t+n)

n−1

∏
i=1

λ t+i

=
T−t−1

∑
n=1

R(n)
t (1−λ t+n)

n−1

∏
i=1

λ t+i +Rt

T−t−1

∏
i=1

λ t+i , (20)

whereT is the last timestep of the episode andRt is the complete return. Note thatRt = R(T−t)
t .

B.2 Forward View Best-Match LVM Values

Theλ-return is based on the experience sequence encountered by the agent when interacting with
the environment. We can define for each visited state alast-visit experience sequencebased on the
LVM by going through the transition states defined in the LVM. Using this sequence we define a
last-visit version of then-step return and of a special version of theλ-return.

Definition 13 The last-visit experience sequence for state s is

s[0], r[1],s[1], r[2],s[2], ..., r[N],s[N] ,

where s[0] = s, s[n] = S′(s[n−1]) for n > 0 and r[n] = R′(s[n−1]). The sequence ends when a state is
encountered that is terminal, equal to s[0] or that has no transition state. We call s[N] the last-visit
sequence end state.

Using this definition, we define a last-visit version of the n-step return.

Definition 14 The last-visit n-step return of s is the n-step return applied to the last-visit experience
sequence of s:

R̆(n)
s = r[1]+ γ r[2]+ γ2 r[3]+ ...+ γn−1 r[n]+ γnV m f(s[n]) . (21)

We can now define a special version of theλ-return, which we call thelast-visitα-return: a last-visit
version of the time dependentλ-return (Equation 20) withλ t = α t(st).

Definition 15 The last-visitα-return of s is

R̆α
s =

N−1

∑
n=1

R̆(n)
s (1−α [n])

n−1

∏
i=1

α [i]+ R̆(N)
s

N−1

∏
i=1

α [i] , (22)
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whereα [k] is shorthand forα(s[k]), s[k] is the kth state from the last-visit experience sequence of s
and N is the index of the last-visit sequence end state.

The following lemma relates the last-visitα-return ofs to the best-match value ofs. The lemma
is proven in Appendix C.

Lemma 16 If the last-visit sequence end state of s is a terminal state, the following equation holds
for the best-match value of s:

V B(s) = (1−αs)V m f(s)+αsR̆α
s .

This lemma forms the basis for the proof of the following theorem.
Theorem 7 For an episodic, acyclic, evaluation task, off-line best-match LVM evaluation computes
the same values as off-line TD(λ) with λ t = α t(st).
Proof Let Vk be the state value function after the off-line updates at the end of episodek. For all
states that are visited during an episode,V is updated according to Lemma 16, since the last-visit
sequence end state is a terminal state for all these visited states. For the off-line algorithm, before
Vk(s) is computed, the updateV m f

k (s) = Vk−1(s) is performed for all visited states. Therefore, the
value updates of the visited states can be written as

Vk(s) = (1−αs)Vk−1(s)+αsR̆α
s .

If the task is acyclic, the last-visit experience sequence of a visited states is equal to the experience
sequence followed by the agent from this state to the terminal state. Therefore, R̆α

s = Rλ=α t(st)
t . Fi-

nally, since the values computed by off-line TD(λ) are equal to the values computed by theλ-return
algorithm, off-line TD(λ) with λ t = α t(st) performs the same updates as off-line best-match LVM
evaluation.

It follows from Theorem 7 that best-match evaluation can also eliminate the biasfor acyclic
tasks. The next theorem extends this property to a general MDP.
Theorem 8 The state values computed by the on-line best-match LVM evaluation algorithm(Al-
gorithm 2) are unbiased with respect to the initial state values, when the initial learning ratesα0(s)
are set to 1 for all s.
Proof Algorithm 2 computes at each timestep the best-match value of the current state.We will
prove that if the best-match values of visited states computed at timesteps smaller thant are unbiased
with respect to the initial state values, then so is the best-match value computed attimestept. Since
for t = 0 there are no visited states, it follows by induction that the values computed for all timesteps
t are unbiased.

The best-match values are computed usingV B(s[0]) = cA+ cBV B(s[N]) with cA andcB defined
as in (8) and (9) respectively. In Section 4.2 we showed that for the current state,s[N] is either
a terminal state or equal tos[0]. If s[N] is a terminal state,V B(s[0]) = cA, while if s[0] = s[N], then
V B(s[0]) = cA/(1−cB). In either case, the computed best-match value depends only on the variables
in cA andcB, which consists of the learning rates,V m f(s[i]), s[i] andr[i] for 0≤ i ≤ N. Clearly, only
V m f(s[i]) can be affected by the initial state values.s[i] has been visited at least once, else it would
not appear in the last-visit experience sequence. Ifs[i] has been visited once,V m f(s[i]) is equal to the
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initial valueV0(s[i]). However, since we assumed initial learning rates of 1, this value ofV m f(s[i]) is
removed fromcA. If s[i] has been visited more than once, it is equal to the best-match value ofs[i]
computed at a timestep smaller thant. From this it follows that if the best-match values computed
at timesteps smaller thant are unbiased with respect to the initial values, then so is the best-match
value computed at timestept.

Appendix C. Proof of Lemma 16

For the sake of brevity, we present only the proof of Lemma 16 for constant α. The proof for state
dependentα follows the same pattern.
Lemma 16 If the last-visit sequence end state of s is a terminal state, the following equation holds
for the best-match value of s:

V B(s) = (1−αs)V m f(s)+αsR̆α
s .

Proof The best-match values in case of an LVM are defined as the solution of the set of best-match
LVM equations (Definition 6). In Section 4.2 we showed that by backward substitution of best-
match equations we can express the best-match value ofs[0] in terms of the best-match value ofs[N].
If s[N] is a terminal state,V B(s[N]) = 0 andV B(s[0]) is equal tocA defined as in (8). This yields

V B(s[0]) =
N−1

∑
i=0

(

(1−α)V m f(s[i])+α r[i+1]
)

i−1

∏
k=0

γα ,

= α
N

∑
k=1

(αγ)k−1 r[k]+(1−α)
N−1

∑
k=0

(αγ)kV m f(s[k]) . (23)

On the other hand, by substituting the definitions of the last-visitα-return (22) and the last-visit
n-step return (21) into the lemma, the following equation forV B(s[0]) appears:

V B(s[0]) = (1−α)V m f(s[0])+α
[

(1−α)
N−1

∑
k=1

αk−1
( k

∑
p=1

γ p−1r[p]+ γkV m f(s[k])

)

+ αN−1
N

∑
p=1

γ p−1r[p]

]

. (24)

The rest of this proof shows that (23) is equal to (24).
We start by separating (24) into its state value components (Vc) and its reward components (Rc).

We then simplify these components separately:

Vc = (1−α)V m f(s[0])+α(1−α)
N−1

∑
k=1

αk−1 γkV m f(s[k])

= (1−α)
(

V m f(s[0])+
N−1

∑
k=1

(αγ)kV m f(s[k])

)

= (1−α)
N−1

∑
k=0

(αγ)kV m f(s[k]) ,
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Rc = (1−α)
N−1

∑
k=1

k

∑
p=1

αk γ p−1r[p]+αN
N

∑
p=1

γ p−1r[p]

= (1−α)
N−1

∑
p=1

N−1

∑
k=p

αk γ p−1r[p]+αN
N−1

∑
p=1

γ p−1r[p]+αN γN−1 r[N]

=
N−1

∑
p=1

[

(1−α)
N−1

∑
k=p

αk γ p−1r[p]+αN γ p−1r[p]

]

+αN γN−1 r[N]

=
N−1

∑
p=1

[(N−1

∑
k=p

αk−
N−1

∑
k=p

αk+1+αN
)

γ p−1 r[p]

]

+αN γN−1 r[N]

=
N−1

∑
p=1

[( N

∑
k=p

αk−
N−1

∑
k=p

αk+1
)

γ p−1 r[p]

]

+αN γN−1 r[N]

=
N−1

∑
p=1

[( N−1

∑
j=p−1

α j+1−
N−1

∑
k=p

αk+1
)

γ p−1 r[p]

]

+αN γN−1 r[N]

=
N−1

∑
p=1

[

αp γ p−1 r[p]

]

+αN γN−1 r[N]

= α
N

∑
p=1

(αγ)p−1 r[p] .

Adding these simplified components back together yields Equation 23.

Appendix D. Proof of Theorem 10

Theorem 10 The Q-values of a member of the best-match LVM control class, shown inAlgorithm
3, converge to Q∗ if the following conditions are satisfied:

1. S and A are finite.

2. α t(s,a) ∈ [0,1] , ∑ t α t(s,a) = ∞ , ∑ t(α t(s,a))2 < ∞ with probability 1 (w.p.1)
andα t(s,a) = 0 unless(s,a) = (st ,at).

3. Var{R(s,a,s′)}< ∞.

4. γ < 1.

Proof We prove that the Q-values of an arbitrary instantiation of Algorithm 3 converge in the limit
w.p.1 to those of the regular Q-learning algorithm. Because the algorithm requires that each visited
state action pair is updated at least once before its revisit, the following equation holds

Qm f
t+1(st ,at) = (1−α t(st ,at))Qm f

t (st ,at)+α t(st ,at)

(

r t∗+1+max
a′

Qτ,i(st∗+1,a
′)

)

,

2083



VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

wheret∗ is the timestep of the previous visit of(st ,at) and Qτ,i is the Q-value ofst∗+1 that is
used in the update target of the last best-match update of(st ,at), at timestepτ. Note thatt∗+
1≤ τ ≤ t. Assume that Q-learning is applied to the same state-action sequence produced by the
given instantiation of Algorithm 3. We denote the Q-values from Q-learning byQ̃. Subtracting the
update equation for Q-learning at timet∗+1 using learning rateα t(st ,at) and defining∆ t(s,a) =
Qm f

t (s,a)− Q̃t∗(s,a) yields

∆ t+1(st ,at) = (1−α t(st ,at))∆ t(st ,at)+α t(st ,at)Ft(st ,at) , (25)

whereFt(st ,at) = γ
(

maxcQτ,i(st∗+1,c)−maxcQ̃t∗(st∗+1,c)
)

.

We now prove thatQm f
t andQt∗ converge in the limit to each other using the same lemma used

to prove the convergence of Sarsa (Singh et al., 2000):

Lemma 17 Consider a stochastic process(α t ,∆ t ,Ft), t ≥ 0, whereα t ,∆ t ,Ft : X→ IR satisfy the
equations:

∆ t+1(x) = (1−α t(x))∆ t(x)+α t(x)Ft(x) ,

where x∈ X and t= 0,1,2, . . .. Let Pt be a sequence of increasingσ-fields such thatα0 and ∆0

are P0-measurable andζ t ,∆ t and Ft−1 are Pt-measurable, t= 1,2, . . . . Assume that the following
conditions hold:

1. The set X is finite.

2. α t(x) ∈ [0,1] , ∑ t α t(x) = ∞ , ∑ t(α t(x))2 < ∞ w.p.1 .

3. ‖E{Ft |Pt}‖ ≤ κ‖∆ t‖+ct , whereκ ∈ [0,1) and ct converges to zero w.p.1, and

4. Var{Ft(xt)|Pt} ≤ K(1+κ‖∆ t‖)
2, where K is some constant,

where‖ · ‖ denotes a maximum norm. Then∆ t converges to zero with probability one.

The correspondence of (25) to Lemma 17 follows from associatingX with the set of state-action
pairs(s,a) andα t(x) with α t(s,a). We now prove that the 4 conditions hold.

The first two conditions follow from the first two conditions of Theorem 10.We definePt

as the set{Q0,α0,a0,s0, ..., r t−1,α t ,at ,st}. With this definition, Var{Ft(st ,at)|Pt} = 0, satisfying
condition 4, andE{Ft(st ,at)|Pt}= Ft(st ,at). For |Ft(st ,at)| the following holds:

|Ft(st ,at)| = γ |max
b

Qτ,i(st∗+1,b)−max
b

Q̃t∗(st∗+1,b)|

≤ γ||Qτ,i(u,b)− Q̃t∗(u,b)||

= γ||∆ t(u,b)+Qτ,i(u,b)−Qm f
t (u,b)||

≤ γ||∆ t ||+ ||Qτ,i(u,b)−Qm f
t (u,b)|| .

We further defineFt(s,a) = 0 if (s,a) 6= (st ,at). Therefore,||Ft(s,a)||= |Ft(st ,at)| ≤ γ||∆ t ||+Ct ,
whereCt = ||Qτ,i(u,b)−Qm f

t (u,b)||. We now show thatCt converges to zero w.p.1. ForCt , the
following holds:

Ct ≤ ||Qτ,i(u,b)−Qm f
τ∗ (u,b)||+ ||Q

m f
τ∗ (u,b)−Qm f

t (u,b)|| ,
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whereτ∗ is the timestep of the last visit of(u,b) before timestepτ. Qτ,i(u,b) is the result of a best-
match update ofQm f

τ∗ (u,b) or is equal to it if no best-match update has been performed yet. In the
latter case, the first term is zero; in the former case it is

Qτ,i(u,b) = (1−ατ(u,b))Q
m f
τ∗ (u,b)+ατ(u,b)υub

τ .

Because of condition 2 of Theorem 10,ατ(u,b) converges to 0 w.p.1 andQτ,i(u,b) converges to
Qm f

τ∗ (u,b) w.p.1. Therefore, the first term converges to 0 w.p.1. For the same reason, the second
term converges to zero.

Thus, the third condition of the lemma also holds andQm f(s,a) converges toQ̃(s,a), the Q-
values from Q-learning. Because of the convergence guarantee of Q-learning,Qm f(s,a) also con-
verges toQ∗(s,a). Finally, since the Q-values of the given instantiation are a best-match update
of Qm f(s,a) and becauseα t(s,a) converges to zero w.p.1, this also proves that the Q-values of the
instantiation converge toQ∗.

Appendix E. Proof of Theorem 12

Theorem 12 The Q-values of a member of the best-match NTM control class, shown inAlgorithm
5, converge to Q∗ if the following conditions are satisfied:

1. S and A are finite.

2. αsa
t ∈ [0,1] , ∑ t αsa

t = ∞ , ∑ t(αsa
t )2 < ∞ with probability 1 (w.p.1),

andαsa
t = 0 unless(s,a) = (st ,at) and st+1 /∈ NTM(st ,at).

3. Var{R(s,a,s′)}< ∞.

4. γ < 1.

E.1 Preliminaries

In this proof, we indicate the NTM byM . Also, we indicate the model-free Q-value,Qm f, by Q̆.
In addition, we use a single iteration indexj for Q as well asQ̆. This global index is increased each
time an update (of either̆Q or Q) occurs. Thus,j is equal to the total number of model-free updates
plus best-match updates that have occurred since the start of an episode. Clearly, t → ∞ implies
j → ∞.

By denoting the state-action pair that gets updated by thej-th update as(sj ,a j), we can write
the model-free (mf) update as

Q̆ j+1(sj ,a j) = (1−αsja j )Q̆ j(sj ,a j)+αsj a j [r j+1+ γ max
a′

Q j(s
′
j+1,a

′)] , (26)

wherer j+1 ands′j+1 are the reward and transition state from the sample(st ,at , r t+1,st+1) corre-
sponding to(sj ,a j). We uses′j+1 instead ofsj+1, sinces′j+1, the transition state forsj , is in general
not equal tosj+1, the state that receives an update at iteration stepj+1. The best-match (bm) update
is

Q j+1(sj ,a j) = w
sj ,a j

0 Q̆ j(sj ,a j)+(1−w
sja j

0 )

[

R̂ sj a j
+ γ∑

s′
P̂ s′

sja j
max

a′
Q j(s

′,a′)

]

.
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Note that there is no specific sample corresponding to a best-match update, since the update is based
on the model estimate and can occur multiple times per timestep.

Let PM
sa = ∑s′∈M P s′

sa. If PM
sa = 0, wsa

0 will always be 1 and the best-match update reduces to
Q j+1(sj ,a j) = Q̆ j(sj ,a j). We make this explicit by the following equation:

Q j+1(sj ,a j) =

{

Q̆ j(sj ,a j) if PM
sa = 0

Yj(sj ,a j) if PM
sa > 0,

(27)

with

Yj(sj ,a j) = w
sj ,a j

0 Q̆ j(sj ,a j)+(1−w
sja j

0 )

[

R̂ sj a j
+ γ∑

s′
P̂ s′

sj a j
max

a′
Q j(s

′,a′)

]

.

Each time a sample is observed by the algorithm,w0 gets updated. In addition, when the sample
is part ofM , R̂ andP̂ get updated. Therefore, the values of these variables can change between
iteration steps. However, for readability, we omit thej subscript for these variables. From the
definition ofw0, R̂ andP̂ , and the law of large numbers, it follows that in the limit the following
holds:7

lim
j→∞

wsa
0 = 1−PM

sa , (28)

lim
j→∞

R̂ sa = ∑
s′∈M

P s′
saR

s′
sa/P

M
sa , (29)

lim
j→∞

P̂ s′
sa = P s′

sa/P
M
sa . (30)

In general, the model-free Q-values,Q̆, will not converge toQ∗, since they do not receive
updates from samples corresponding to the next states stored by the NTM.However, as part of the
proof, we show that the model-free Q-values converge to an alternativevalue, which we indicate by
Q̆∗. This value is defined as8

Q̆∗(s,a) = ∑
s′ /∈M

P s′
sa[R

s′
sa+ γ max

a′
Q∗(s′,a′)]/(1−PM

sa ) . (31)

Using this equation, we can expressQ∗ as

Q∗(s,a) = ∑
s′ /∈M

P s′
sa[R

s′
sa+ γ max

a′
Q∗(s′,a′)]+ ∑

s′∈M

P s′
sa[R

s′
sa+ γ max

a′
Q∗(s′,a′)]

= (1−PM
sa )Q̆

∗(sa)+ ∑
s′∈M

P s′
sa[R

s′
sa+ γ max

a′
Q∗(s′,a′)] . (32)

Note that it follows from (32), that

Q∗(s,a) = Q̆∗(s,a) , if PM
sa = 0. (33)

Convergence ofQ j to Q∗ requires convergence of̆Q j to Q̆∗, and vice versa. To deal with this
mutual dependence relation, we simultaneously prove their convergence.To achieve this, we define

7. Note thatR̂ sa andP̂ s′
sa do not converge toR sa andP s′

sa, but to normalized values of these variables.
8. ForPM

sa = 1, that is, when all samples are stored by the NTM,Q̆∗(s,a) is not defined. However, in this case,Q̆(s,a)
does not receive any updates, nor is it used by any other update. Therefore, we can safely ignore the valueQ̆(s,a),
and consequently̆Q∗(s,a), if PM

sa = 1.
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a functionU : S ×A ×B → IR that encompasses both functionsQ andQ̆. B is a set consisting of
only two elements: ‘mf’ and ‘bm’, which indicate theQ-value type. We defineU j as

U j(s,a,b) =

{

Q̆ j(s,a) if b = ‘mf’

Q j(s,a) if b = ‘bm’ .
(34)

Both updates (26) and (27) can now be interpreted as updates ofU j(sj ,a j ,b j). It follows from (34)
that when the model-free update is performed,b j = ‘mf’, while for the best-match updateb j = ‘bm’.

We will prove convergence ofU j to U∗j , defined as

U∗(s,a,b) =

{

Q̆∗(s,a) if b = ‘mf’

Q∗(s,a) if b = ‘bm’ .

The difficulty with this proof is that we cannot simply apply Lemma 17 (or similar stochastic
approximation lemmas), used to prove convergence of BM-LVM, since the∑ t(α t(xt))

2 < ∞ con-
dition of Lemma 17 is not met for b = ‘bm’. On the other hand, a related lemma can bededuced
(see Appendix F), that does not require∑ t(α t(xt))

2 < ∞, however, it requires that the contraction
condition holds for the value ofFt , instead of its expected value. Hence, also this lemma cannot be
directly applied.

To deal with this, we define a related functionU ′j , that does comply with the∑ t(α t(xt))
2 < ∞

condition, hence we can prove convergence of it toU∗ using Lemma 17. On the other hand, the
difference betweenU ′j andU j complies with all the conditions of Lemma 20, hence we can prove
thatU j converges toU ′j using Lemma 20. Adding these two results together, proves the theorem.

We defineU ′j as

U ′j(s,a,b) =

{

Q̆′(s,a) if b = ‘mf’

Q′(s,a) if b = ‘bm’ .

Q̆′ andQ′ are updated using the same sample sequence as used forQ̆ andQ. The update forQ̆′ is

Q̆′j+1(sj ,a j) = (1−αsja j )Q̆′j(sj ,a j)+αsj a j [r j+1+ γ max
a′

Q′j(s
′
j+1,a

′)] ,

while the update forQ′ is

Q′j+1(sj ,a j) =

{

Q̆′j(sj ,a j) if PM
sa = 0

(1−βsj a j )Q′j(sj ,a j)+βsj a jY′j (sj ,a j) if PM
sa > 0,

(35)

with

Y′j (sj ,a j) = w
sj ,a j

0 Q̆′j(sj ,a j)+(1−w
sja j

0 )

[

R̂ sj a j
+ γ∑

s′
P̂ s′

sja j
max

a′
Q′j(s

′,a′)

]

.

Note that the only difference with the updates ofQ andQ̆ is the wayQ′ is updated forPM
sa > 0.

Instead of settingQ′j+1(sj ,a j) equal toY′j (sj ,a j), it is set equal to a weighted average ofY′j (sj ,a j)
andQ′j(sj ,a j). The weighting is controlled byβ j , which is an arbitrary learning rate with properties
βsa

j ∈ [0,1], ∑ j βsa
j = ∞ , ∑ j(βsa

j )
2 < ∞ w.p.1., andβsa

j = 0 unless(s,a) = (sj ,a j) andb j = ‘bm’.9

Because of this learning rate, Lemma 17 can be used to prove convergence ofU ′j to U∗.

9. Note that such aβ always exists.
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E.2 Convergence ofU ′j to U∗

Lemma 18 U ′j(s,a,b) converges in the limit to U∗(s,a,b) w.p.1.

Proof We define∆′(s,a,b) =U ′j(s,a,b)−U∗j (s,a,b) and will prove that∆′(s,a,b) converges to 0
using Lemma 17. Forb j = ‘bm’, we use the contraction factorκsa, defined as

κsa= (1−PM
sa )+ γPM

sa . (36)

To ensure thatκsa< 1,PM
sa has to be larger than 0. Therefore, we exclude(s,a,b) triples for which

b = ‘bm’ ∧PM
sa = 0 from the domain of∆′. This can be done, because Algorithm 5 states that at

least one best-match update occurs in between two model-free updates. Therefore, ifPM
sa = 0 ,

Q′j(s,a) is either equal toQ̆′j(s,a) or one (model-free) update apart. Sinceαsa
j converges to 0, it

follows thatQ′j(s,a) converges in the limit tŏQ′j(s,a). Alternatively, we can say

Q′j(s,a) = Q̆′j(s,a)+c′j(s,a) , if PM
sa = 0, (37)

with c′j(s,a) converging to 0 w.p.1.10 Combining this with (33), the following holds:

lim
j→∞

Q̆′j(s,a) = Q̆∗(s,a) ⇒ lim
j→∞

Q′j(s,a) = Q∗(s,a) , if PM
sa = 0. (38)

Note,‖Q̆′j−Q̆∗‖≤ ‖∆′j‖. However, because of the exclusion of(s,a, ‘bm’) triples withPM
sa = 0,

‖Q′j −Q∗‖ ≤ ‖∆ j‖ does not hold in general. Instead, the following holds:

‖Q′j −Q∗‖ = max(‖Q′j −Q∗‖PM
sa >0,‖Q

′
j −Q∗‖PM

sa =0)

≤ max(‖Q′j −Q∗‖PM
sa >0,‖Q̆

′
j − Q̆∗‖PM

sa =0+‖c
′
j‖)

≤ max(‖U ′j −U∗‖,‖U ′j −U∗‖+‖c′j‖)

= ‖U ′j −U∗‖+‖c′j‖

= ‖∆′‖+‖c′j‖ .

Because of the exclusion of the(s,a,b) triples mentioned above, for all(s,a, ‘bm’) triples in the
domain of∆′j , PM

sa > 0.
∆′j is updated according to

∆′j+1(s,a,b) = (1−ζ′j(s,a,b))∆
′
j(s,a,b)+ζ′j(s,a,b)F ′j (s,a,b) .

For (s,a,b) 6= (sj ,a j ,b j), ζ′j(s,a,b) = 0 andF ′j (s,a,b) = 0. For(sj ,a j ,b j) the following holds:

ζ′j(sj ,a j ,b j) =

{

αsj a j
j if b j = ‘mf’

βsj a j
j if b j = ‘bm’ ,

F ′j (sj ,a j ,b j) =

{

r j+1+ γ maxa′Q′j(s
′
j+1,a

′)− Q̆∗(sj ,a j) if b j = ‘mf’

Y′j (sj ,a j)−Q∗(sj ,a j) if b j = ‘bm’ .

10. We use the notational convention to indicate variables that converge to 0with probability 1 with lowercase, Latin
letters: c, d, e, ... .
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We now prove that∆′j converges to zero, by showing the conditions for Lemma 17 hold, using
theσ-field Pj , defined as11

P0 = {Q′0,Q̆
′
0,ζ0,w0,0, P̆0, R̆ 0,s0,a0} ,

Pj = Pj−1∩{r j ,s
′
j ,ζ j ,w0, j , P̆ j , R̆ j ,sj ,a j} .

Conditions 1, 2 and 4 of the Lemma 17 follow from conditions 1,2, and 3 of Theorem 12 and the
conditions that hold forβsa

j . Condition 3 of the lemma, we prove below.
Forb j = ‘mf’, using (31), the following holds:

|E{F ′j (sj ,a j , ‘mf’ )|Pj}| =
∣

∣

∣ ∑
s′ /∈M

P s′
sja j

[R s′
sj a j

+ γ max
a′

Q′j(s
′,a′)]/(1−PM

sja j
)− Q̆∗(sj ,a j)

∣

∣

∣

= γ ∑
s′ /∈M

P s′
sja j

∣

∣

∣
max

a′
Q′j(s

′,a′)−max
a′

Q∗(s′,a′)
∣

∣

∣
/(1−PM

sja j
)

≤ γ‖Q′j −Q∗‖

≤ γ‖∆′j‖+ γ‖c′j‖ . (39)

Forb j = ‘bm’, using (32), we can write

|F ′j (sj ,a j , ‘bm’)| = |Y′j (sj ,a j)−Q∗(sj ,a j)|

≤
∣

∣

∣
(1−PM

sja j
)(Q̆′j(sj ,a j)− Q̆∗(sj ,a j))

+ γ ∑
s′∈M

P s′
sja j

[max
a′

Q′j(s
′,a′)−max

a′
Q∗(s′,a′)]

∣

∣

∣

+
∣

∣

∣

[

w
sj a j

0 − (1−PM
sja j

)
]

· Q̆′j(sj ,a j)
∣

∣

∣

+
∣

∣

∣
(1−w

sj a j

0 )R̂ sj a j − ∑
s′∈M

P s′
sja j

R s′
sj a j

∣

∣

∣

+ γ
∣

∣

∣ ∑
s′∈M

[

(1−w
sj a j

0 )P̂ s′
sja j
−P s′

sja j

]

·max
a′

Q′j(s
′,a′)

∣

∣

∣
.

The sum of the last three terms we calld j(sj ,a j). By substituting (28), (29) and (30) in these three
terms, it follows that limj→∞ d j(sj ,a j) = 0. We can further bound|F ′j (sj ,a j , ‘bm’)| as follows:

|F ′j (sj ,a j , ‘bm’)| ≤ (1−PM
sja j

)‖Q̆ j − Q̆∗‖+ γPM
sja j
‖Q j −Q∗‖+d j(sj ,a j)

≤ (1−PM
sja j

)‖∆′j‖+ γPM
sja j

(

‖∆′j‖+‖c j‖
)

+d j(sj ,a j)

≤
(

(1−PM
sja j

)+ γPM
sja j

)

· ‖∆′j‖+ γPM
sja j
‖c′j‖+d j(sj ,a j)

= κsj a j ‖∆′j‖+ γPM
sja j
‖c′j‖+d j(sj ,a j) . (40)

Note‖c′j‖, as well asd j(sj ,a j), converge to 0. Note also thatκsj a j < 1, sincePM
sja j

> 0 andγ < 1.
From (39) and (40) it follows that the third condition of Lemma 17 is also satisfied. Hence, all
conditions hold and∆′j converges to 0 w.p.1. Combining this with (38), proves Lemma 18.

11. There is no explicit sample related to a best-match update. For consistency, we definer j = /0 ands′j = /0 if b j−1 = ‘bm′.
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E.3 Convergence ofU j to U ′j

Lemma 19 U j(s,a,b) converges in the limit to U′j(s,a,b) w.p.1.

Proof We define∆(s,a,b) = U ′j(s,a,b)−U j(s,a,b) and will prove that∆(s,a,b) converges to 0

using Lemma 20. We exclude(s,a, ‘bm’) triples for whichPM
sa = 0 from the domain of∆. Similar

to the reasoning behind (38) and (37), we can deduce

Q j(s,a) = Q̆ j(s,a)+c j(s,a) , if PM
sa = 0,

with c j(s,a) converging to 0 in the limit, as well as

lim
j→∞

(

Q̆′j(s,a)− Q̆ j(s,a)
)

= 0 ⇒ lim
j→∞

(

Q′j(s,a)−Q j(s,a)
)

= 0, if PM
sa = 0. (41)

Note,‖Q̆′j − Q̆ j‖ ≤ ‖∆ j‖. However,‖Q′j −Q j‖ ≤ ‖∆ j‖ does not hold in general, because of the

exclusion of (s,a,‘bm’) triples withPM
sa = 0 from the domain of∆ j . Instead, the following holds:

‖Q′j −Q j‖ = max(‖Q′j −Q j‖PM
sa >0,‖Q

′
j −Q j‖PM

sa =0)

≤ max(‖Q′j −Q j‖PM
sa >0,‖Q̆

′
j − Q̆ j‖PM

sa =0+‖c j‖+‖c
′
j‖)

≤ max(‖U ′j −U j‖,‖U
′
j −U∗‖+‖c j‖+‖c

′
j‖)

= ‖U ′j −U j‖+‖c j‖+‖c
′
j‖

= ‖∆′j‖+c′′j ,

with c′′j = ‖c j‖+‖c′j‖ converging to 0 w.p.1.

ForPM
sa > 0 we can rewrite (35) as

Q′j+1(sj ,a j) = (1−βsj a j )Q′j(sj ,a j)+βsj a jY′j (sj ,a j)

= Y′j (sj ,a j)+(1−βsja j )[Q′j(sj ,a j)−Y′j (sj ,a j)] .

In Section E.2 we proved that∆′j(s,a, ‘bm’) = Q′(s,a)−Q∗(s,a) j converges to 0 w.p.1. On the
other hand, it follows from (40), thatF ′j (sj ,a j , ‘bm’), which is equal toY′j (sj ,a j)−Q∗(sj ,a j), also
converges to 0 w.p.1. Therefore, bothQ′j(sj ,a j) andY′j (sj ,a j) converge to the same value, so we
can write

Q′j+1(sj ,a j) =Y′j (sj ,a j)+ej(sj ,a j) , if PM
sja j

> 0,

with ej(sj ,a j) converging to 0 w.p.1.
∆ j is updated according to

∆ j+1(s,a,b) = (1−ζ j(s,a,b))∆ j(s,a,b)+ζ j(s,a,b)Fj(s,a,b) .

For (s,a,b) 6= (sj ,a j ,b j), ζ j(s,a,b) = 0 andFj(s,a,b) = 0. While for (sj ,a j ,b j) the following
holds:

ζ j(sj ,a j ,b j) =

{

αsj a j
j if b j = ‘mf’

1 if b j = ‘bm’ ,

and

Fj(sj ,a j ,b j) =

{

γ maxa′Q′j(s
′
j+1,a

′)− γ maxa′Q j(s′j+1,a
′) if b j = ‘mf’

Y′j (sj ,a j)−Yj(sj ,a j ,b j)+ej(sj ,a j) if b j = ‘bm’ .
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We now check the three conditions of Lemma 20. Conditions 1 and 2 from the lemmafollow
from conditions 1 and 2 of Theorem 12. Condition 3, we prove below.

Forb j = ‘mf’, the following holds:

|Fj(sj ,a j , ‘mf’ )| = γ
∣

∣

∣

∣

max
a′

Q′j(s
′
j+1,a

′)−max
a′

Q j(s
′
j+1,a

′)

∣

∣

∣

∣

≤ γ‖Q′j −Q j‖

≤ γ‖∆ j‖+ γc′′j , (42)

while for b j = ‘bm’, we can write

|Fj(sj ,a j , ‘bm’)| = |Y′j (sj ,a j)−Yj(sj ,a j)+ej(sj ,a j ,b j)|

≤ w
sj ,a j

0 |Q̆′j(sj ,a j)− Q̆ j(sj ,a j)|+ |ej(sj ,a j)|+

γ(1−w
sj a j

0 ) ∑
s′
P̂ s′

sja j

∣

∣

∣

∣

max
a′

Q′j(s
′,a′)−max

a′
Q j(s

′,a′)

∣

∣

∣

∣

≤ w
sj ,a j

0 ‖∆ j‖+ γ(1−w
sja j

0 )‖∆ j‖+ |ej(sj ,a j)|+ γ(1−w
sja j

0 )c′′j

=
(

(1−PM
sja j

)+ γPM
sja j

)

‖∆ j‖+ |ej(sj ,a j)|+ γ(1−w
sja j

0 )c′′j +
(

w
sj ,a j

0 + γ(1−w
sja j

0 )− (1−PM
sja j

)− γPM
sja j

)

‖∆ j‖ .

We define

f j(sj ,a j) =
(

w
sj ,a j

0 + γ(1−w
sja j

0 )− (1−PM
sja j

)− γPM
sja j

)

‖∆ j‖

+|ej(sj ,a j)|+ γ(1−w
sja j

0 )c′′j .

Note that limj→∞ f j = 0, sinceej andc′′j converge to 0 andw
sj ,a j

0 converges to 1−PM
sja j

. Using this
definition and (36), we can write

|Fj(sj ,a j , ‘bm’)| ≤ κsj a j‖∆ j‖+ f j(sj ,a j) . (43)

Note thatκsj a j < 1. From (42) and (43) it follows that the third condition of Lemma 20 is also
satisfied. Hence, all conditions hold and∆ j converges to 0 w.p.1.Combining this with (41), proves
Lemma 19.

E.4 Proof of Theorem 12

BecauseU ′j converges toU∗ (Lemma 18) andU j converges toU ′j (Lemma 19), it follows that also
U j converges toU∗. From this it follows thatQ converges toQ∗, proving Theorem 12.

Appendix F. Lemma 20

Lemma 20 Consider a stochastic process(α t ,∆ t ,Ft), t ≥ 0, whereα t ,∆ t ,Ft : X→ IR satisfy the
equations:

∆ t+1(x) = (1−α t(x))∆ t(x)+α t(x)Ft(x) ,

where x∈ X and t= 0,1,2, . . .. Assume that the following conditions hold:
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1. The set X is finite.

2. α t(x) = [0,1], ∑ t α t(x) = ∞.

3. ‖Ft‖ ≤ κ‖∆ t‖+ct , whereκ ∈ [0,1) and ct converges to zero w.p. 1 ,

where‖ · ‖ denotes a maximum norm. Then∆ t converges to zero with probability one.

Note that this lemma is similar to Lemma 17, but the conditions for the learning rates areless
strict (∑ t(α t(xt))

2 < ∞ is missing), while the condition forFt is more strict (condition 3 uses the
value ofFt instead of its expected value).

Proof The outline of this proof is that we define a related process∆′t that converges to 0 and show
that‖∆ t‖≤ ‖∆′t‖ for all t. We will ignorect in this proof. This can be safely done, sincect converges
to zero,κ < 1 and∑ t α t(x) = ∞ for all x. Therefore, this term is asymptotically unimportant.

We define∆′0(x) = ‖∆0‖ for all x. For t > 0, ∆′t(x) is defined as

∆′t+1(x) = (1−β t(x))∆′t(x)+β t(x)κ‖∆′t‖ , (44)

with β t(x) ≤ α t(x) andβ t(x) ∈ [0,1], ∑ t β t(x) = ∞ , ∑ t(β t(x))2 < ∞ w.p.1. It follows from (44)
that‖∆′t+1‖ ≤ ‖∆′t‖. It also follows that if∆′t(x) ≥ κ‖∆′t‖ then∆′t+1(x) ≥ κ‖∆′t‖ ≥ κ‖∆′t+1‖. And
since∆′0(x)≥ κ‖∆′0‖ it follows that

∆′t(x)≥ κ‖∆′t‖ , for all t . (45)

Using Lemma 17, it can easily be shown that∆′ converges in the limit to 0 w.p.1.
We now prove that‖∆ t‖ ≤ ‖∆′t‖ for all t. We start by proving

|∆ t(x)| ≤ ∆′t(x) for all x ⇒ |∆ t+1(x)| ≤ ∆′t+1(x) for all x. (46)

Assuming the left part of (46), for|∆ t+1(x)| the following holds:

|∆ t+1(x)| ≤ (1−α t(x))|∆ t(x)|+α t(x)κ‖∆ t‖

≤ (1−α t(x))∆′t(x)+α t(x)κ‖∆′t‖ .

Since (45) andβ t(x)≤ α t(x), we can continue as

|∆ t+1(x)| ≤ (1−β t(x))∆′t(x)+β t(x)κ‖∆′t‖
≤ ∆′t+1(x) .

This proves (46). And since|∆0(x)| ≤ ∆′0(x), it follows that |∆ t(x)| ≤ ∆′t(x) holds for all t, and
hence,‖∆ t‖ ≤ ‖∆′t‖ proving the lemma.
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