Journal of Machine Learning Research 12 (2011) 2045-2094 bm8ted 3/10; Revised 1/11; Published 6/11

Exploiting Best-Match Equations
for Efficient Reinforcement Learning

Harm van Seijen HARM.VANSEIJEN@TNO.NL
Distributed Sensor Systems Group

TNO Defence, Security and Safety

P.O. Box 96864

2509 JG, The Hague, The Netherlands

Shimon Whiteson S.A.WHITESON@UVA .NL
Informatics Institute

University of Amsterdam

Amsterdam, The Netherlands

Hado van Hasselt H.VAN .HASSELT@CWI.NL
Multi-agent and Adaptive Computation Group

Centrum Wiskunde & Informatica

Amsterdam, The Netherlands

Marco Wiering MWIERING @AI .RUG.NL
Department of Artificial Intelligence

University of Groningen

Groningen, The Netherlands

Editor: Peter Dayan

Abstract

This article presents and evaluabesst-match learninga new approach to reinforcement learning
that trades off the sample efficiency of model-based methgilisthe space efficiency of model-
free methods. Best-match learning works by approximatiegsolution to a set dbest-match
equations which combine a sparse model with a model-free Q-valuetfomaconstructed from
samples not used by the model. We prove that, unlike regpkmse model-based methods, best-
match learning is guaranteed to converge to the optimal I@esan the tabular case. Empirical
results demonstrate that best-match learning can sulzdbamutperform regular sparse model-
based methods, as well as several model-free methods tilvattstimprove the sample efficiency
of temporal-difference methods. In addition, we demonsttiaat best-match learning can be suc-
cessfully combined with function approximation.

Keywords: reinforcement learning, on-line learning, temporal-elifnce methods, function ap-
proximation, data reuse

1. Introduction

In reinforcement learningRL) (Kaelbling et al., 1996; Sutton and Barto, 1998), an agent seeks
an optimal control policy for a sequential decision problem in an unknawirenment. Unlike

in supervised learning, the agent never sees examples of correatooreict behavior. Instead,

it receives only positive and negative rewards for the actions it trissgdal is to maximize the

(©2011 Harm van Seijen, Shimon Whiteson, Hado van Hasselt anddWslrering.

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

expectedeturn, which is the cumulative discounted reward. When the sequential decisiblem
is modeled as Markov decision proceq#1DP), the agent’s policy can be represented as a mapping
from each state it may encounter to a probability distribution over the availatitas.

There are several approaches for learning the optimal policy of an. WDBel-free or di-
rect, methods find an optimal policy by using sample experience to directlyaifidstate values
which predict the return when following a specified policy, or stete-action valugor Q-values
which predict the return when taking an action in a certain state and followsmeeified policy
thereafter. Once the optimal state or state-action values have been therahtimal policy can
easily be constructed. A popular model-free approadbrigporal-differenc€TD) learning (Sut-
ton, 1988), which bootstraps value estimates from other values usintespmesed on thBellman
equationgBellman, 1957). Temporal-difference methods such as Q-learning {Watk989) and
Sarsa (Rummery and Niranjan, 1994; Sutton, 1996) require O(ly||4|) space and are guaran-
teed to find optimal policies in the limit. However, they often need prohibitively nsamgples in
practice.

Alternatively,model-basedbr indirect, methods (Sutton, 1990; Moore and Atkeson, 1993; Braf-
man and Tennenholtz, 2002; Kearns and Singh, 2002; Strehl and LitB@@h; Diuk et al., 2009)
use sample experience to estimate a model of the MDP and then compute the oplimsiusga
ing this model via off-line planning techniques suchdgmamic programmingBellman, 1957).
Because the sample experience gathered by the agent is incorporatéteimodel, it is reused
throughout learning. As a result, some model-based methods can firukepately optimal poli-
cies with high probability using only a polynomial number of samples (BrafmanTannenholtz,
2002; Kearns and Singh, 2002; Strehl and Littman, 2005). Howeagnesenting the model requires
0(|$1%]4]) space, which can be prohibitive in problems with large state spaces.

To avoid this limitation, methods can learn smaller, approximate models that reglyira foac-
tion of the space used by full model-based methods. Kearns and Sirg) &fbw that, when using
such sparse models, itis still possible to learn probably approximatelyctpokcies. However, the
performance of such methods is bounded by the quality of the model ap@tion. Furthermore,
since the models may remain incorrect regardless of how much sample expdsgathered, such
methods are not guaranteed to find optimal policies even in the limit.

In this article, we present and evaludiest-match learninga new approach for trading off the
strengths of model-based and model-free methods. Best-match learnikg lbyoapproximating
the solution to a set dbest-match equationsvhich combine a sparse model with a model-free
Q-value function constructed from samples not used by the model. We gnat; unlike regular
sparse model-based methods, best-match learning is guaranteed tgedotke optimal policy in
the tabular case. This guarantee holds even when udasg-gisit mode(LVM), which stores only
the last observed reward and transition state for each state-action pair.

In addition, we present an extensive empirical analysis, comparing ti@mpance of best-
match learning to several algorithms with similar space requirements. Thalie desnonstrate that
best-match learning can outperform regular sparse model-based methoddl as several model-
free methods that strive to improve the sample efficiency of traditional TD rdsthichese include
eligibility traces(Sutton, 1988; Watkins, 1989), which update recently visited states irofrop to
a trace parameteexperience replaflin, 1992), which stores experience sequences and uses them
for repeated TD updates; addlayed Q-learningStrehl et al., 2006), which uses optimistic Q-value
estimates to follow an approximately correct policy exceptd0iS||4|log(].5||4])) timesteps.

2046

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

The rest of this article is organized as follows. Section 2 formally defineRthgroblem and
summarizes some basic theoretical results. As a conceptual steppingSstotien 3 presenjsist-
in-time Q-learning which postpones updates until the moment of revisit of the corresponstitey
We prove that, although just-in-time Q-learning performs the same numbedatagas regular
Q-learning, the Q-values used in its update targets generally haveadceire updates. Thus, it
can improve performance without extra computation.

Section 4 extends the idea of using improved update targets to best-matdhdeaith an
LVM, in which updates are continually revised such that the update targetéracted from them
are more accurate. We show that best-match LVM learning is related to eligitalitgdr by proving
that under certain conditions they compute the same values. Howeveronghalg that in arbitrary
MDPs best-match LVM learning, unlike eligibility traces, performs updatesateatinbiased with
respect to initial state values. We demonstrate empirically that, as a result, subatantially
outperform TDA) despite using similar space and computation.

Section 4 also addresses the control case. We propose an efficsembdteh LVM algorithm
that usegprioritized sweepingMoore and Atkeson, 1993), a well-known technique for prioritizing
model-based updates, to trade off extra computation for improved perfoemaiie prove that,
despite the use of a sparse model, this approach converges to the optualale®-under the same
conditions as Q-learning. In addition, we demonstrate empirically that it dastamtially outper-
form competitors with similar space requirements.

Section 5 proposes a best-match learning algorithm that usestramsition model(NTM),
which maintains an estimate of the transition probabilityrforansition states per state action pair.
By tuning n, the space requirements can be controlled. We prove that the algorithvarges to
the optimal Q-values for any value af We demonstrate empirically the resulting performance
improvement over regular sparse model-based methods with equal spagements, whose per-
formance is bounded by the quality of the model approximation.

Section 6 proposebest-match function approximatipmwhich demonstrates that best-match
learning is useful beyond the tabular case. In particular, we combirteriz@sh learning with
gradient-descent function approximation and show empirically that it cgpediorm Sarsa() and
experience replay with linear function approximation while using similar compuatatio

Section 7 discusses the article’s theoretical and empirical results, Sectiglirgs future work,
and Section 9 concludes.

2. Background

Sequential decision problems are often formalizedlaskov decision process¢MDPs), which
can be described as 4-tuplés, 4, P, R) consisting ofS, the set of all states, the set of all
actions; 25, = P(s|s, a), the transition probability from statec S to states when actiora € 4 is
taken; and® ., = E(r|s,a), the reward function giving the expected rewandhen actiore is taken
in states. Actions are selected at discrete timesteps0,1,2, ... andr¢,; is defined as the reward
received after taking actios in states; at timestef. An optimal policytt* is a mapping frony to
A4 that maximizes the expected discounted return

29

2 k
Ri=Tea+ Y2 +Yrust.. =) Viluk,
k=0

wherey is a discount factor with & y < 1.

2047

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

Most solution methods are based on estimating a value fun¢tigs), which gives the expected
return when the agent is in steg@nd follows policyr, or an action-value functio®™(s,a), which
gives the expected return when the agent takes aatiostates and follows policyrtthereafter.

In the control case, TD methods seek to learn the optimal action-value folgt(s, a), which
is the solution to the Bellman optimality equations (Bellman, 1957):

Q'(s,a) = RgatVY Z ‘.Psimng*(s’, a).
g a

By iteratively updating the current estimafi (s,a) each time new experience is obtained, TD
methods seek to approximate this function. A common form for these updates is

Qtr1(st,ar) < (1—0a)Q(st,ar) +a vy,

wherea is the learning rate and; is the update target. Many update targets are possible, such as
the Q-learning (Watkins and Dayan, 1992) update target

Ut = es1+YMaxQi(sti1,a).

Once the optimal action-value function has been learned, an optimal pofidcyeaderived by taking
the greedy action with respect to this function.

Alternatively, the agent can take a model-based approach (Sutton, M@@de and Atkeson,
1993), in which its experience is used to compute maximume-likelihood estimateard R . Using
this model, the agent can comp@€or the value functioVv) using dynamic programming methods
(Bellman, 1957) such as value iteration (Puterman and Shin, 1978). Eachdimexperience is
gathered, the model is updated a@pdecomputed.

In the control case, the agent faces #xploration-exploitation dilemmarhe agent can either
exploit its current knowledge by taking the action that predicts the high@sicéad return given
current estimates, or it can explore by taking a different action in ordienggoove the accuracy of
the Q-value of that action.

Related to the control case is thelicy evaluatiorcase. In this case, the goal is to estimate the
value functionvV™(s) belonging to policyrt. TD methods iteratively improve the current estimate,
Vi(s) each time new experience is obtained using the update rule

Visa(st) ¢ (1 —0)Vi(st) +auy.
An example of an update target for policy evaluation is the TD(0) updatettarg

Ut =M1+ YVe(Ste1) -

3. Just-In-Time Q-Learning

In this section we present just-in-time (JIT) Q-learning, whose underpyimgiples form a stepping
stone towards best-match learning (introduced in Section 4). Like t@hgtearningmethods, for
example, Atkeson et al. (1997), JIT Q-learning postpones updateshaytibre needed. Wiering
and Schmidhuber (1998) showed that by postponing updates a compaitgitefficient version of
Q(A) can be constructed that does not rely on placing a bound on the tragb.l®Ve prove that by
postponing Q-learning updates until a state is revisited, the update targgtethveceive in general

2048

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

more updates, while the total number of updates of the current state stagsitee Empirically, we
demonstrate that this leads to a performance gain under a range of sdtSimgéaat computational
cost.

When a Q-learning update is postponed, the values on which the updateisdygsed are from
a more recent timestep. This is advantageous, since Q-learning updasestita expected error
in the values to decrease over time (Watkins and Dayan, 1992) and tieenefoe recent values
will be on average more accurate. However, postponing the update afia for too long can
negatively affect performance, since a value that has not beenedbddght be used for action
selection or for bootstrapping other values. We start by showing thatepdan be postponed until
their corresponding states are revisited, without negatively affectirigrpeance.

timestep: 0 1 2 3 4

Figure 1: A state transition sequence in which the initial sgatés revisited at timestep 4. The
small black dots in between states represent actions.

Consider the state-action sequence in Figure 1. Siatevisited at timestep 0 and revisited at
timestep 4. With the regular Q-learning update, the Q-value of state-actiofsjais) gets updated
at timestep 1:

Qi(Sa20) = (1 a)Qo(sa, 80) + 0 [r1 +YMaxQo(ss, a)]

while at timesteps 2 4 no update ofsa,ap) occurs, and therefor@,(sa,ap) = Q1(sa,a0). The
update of the Q-value dfa,ap) at timestep 1 can be considered premature, since the earliest use
of its value is in the update target f(p,az), which useQs(sa,ap). Therefore, the update of the
Q-value of(sa, ap) can be postponed until at least timestep 3 without negatively affecting tregeup
target for(sp,az). When the update dfsp, as) is also postponed, the earliest use of the Q-value of
(sa,a0) occurs at timestep 4, where it is used for action selection. Thus, if we@ustpe update
of all state-action pairs, the update of the Q-valu¢sfag) can be postponed until the timestep of
its revisit, without causing dependent state values or the action selecticedpire to use a value of
(sa,ap) that has not been updated. We call this type of updaistan-time updatesince the update
is postponed until just before the updated value is needed.

To denote the Q-values resulting from just-in-time updates weQueoughout this section.
With just-in-time updates, no updates(sf, ap) occur at timesteps 1-3, @(SA,ao) = Qo(sA, ap).
Instead, an update occurs wheis revisited:

Q4(sa,a0) = (1—0)Qa(sa, a0) + 0 [r1 +ym§1xQ3(SB, a)l.

The regular and just-in-time update f@a, ap) can be written in a more similar form by expressing
the value at timestep 4 in terms of the value at timestep 0:

Qa(sa,80) = (1—0)Qo(Sa,80) +a[r1+ymaxQo(ss,a)],

Qa(sa,80) = (1—0)Qo(Sa,80) +ars +ymaxQs(se,a)]. 1)

2049

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

This formulation highlights the difference between the two update types. Attemes under

both update schemes, the Q-valué®f ap) has received one update based on the same experience
sample. However, a just-in-time update uses the most recent value of thki€xwfsz, while a
regular update uses the value at the timestep of the initial visi{.dBy definingt* as the timestep

of the previous visit of stats;, we can write the two update types more generally as

Qi(svar) = (1-0)Qu(st,ar) +alrei1+ymaxQe (se+1,8)], 2)
@t(staat*) = (1—0()Qt*(5t,at*)+G[rt*+1+vm§1x@t71(5t*+1,a)]- (3)

Note that we express the update target using only values from the pastgraakimplementation
easier to interpret. Note also that while= s;- per definition (becaus is revisited) s+ 1 does not
have to be equal te,; 1, since the state transition frogp can be stochastic. Alsay- is in general
not equal ta;.

When comparing the two update targets in more detail, two cases can be distatjuiSee
Figure 2 for an example of each case. In the first case, sfasenot revisited before the revisit of
statesa. In this case, neither update type makes use of an updated Q-vabgearidhe update target
for sa. The regular update does not since it uses the valugsatftimesteg*, and the just-in-time
update does not sinag is not revisited and therefore no update has occurred yet at timestép
In the second case, staghas been revisited before the revisitsaf The regular update still uses
the value ofg from timestef* and therefore does not use an updated value. The just-in-time update
on the other hand does use an updated value, since this update o&iuiredevisit ofss. Note
that for a returning actiort{ =t — 1), both update types have exactly the same form and this can
therefore be treated as an example of case 1. From these two cases) dedace the following
theorem, which is proven in Appendix A.

Theorem 1 Given the same experience sequence, each Q-value from the ctatertias received
the same number of updates using JIT updates (Equation 3) as usingrregdates (Equation
2). However, each Q-value in the update target of a JIT update hasvext an equal or greater
number of updates as in the update target of the corresponding regptate.

vt @@ Q
e @@ @ Q
t-1

timestep: t* t*+1 t

Figure 2: Two cases in which stadg is revisited. In the first case, neither a regular update nor a
just-in-time update make use of an updated valuesgan the update target af, while
in the second case a just-in-time update does.

Algorithm 1 shows pseudocode for the implementation of just-in-time (JIT) @ileg. The
agent stores the reward and transition state received upon the lastfésitatte, that is, thkast-
visit samplein R (s) andS (s) respectively, while the action taken at the last visit of a state is stored

2050

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

Algorithm 1 JIT Q-Learning
1: initialize Q(s,a) arbitrarily for alls,a
2: initialize S(s) =0for all s
3: loop {over episodes

4: initialize s

5. repeat{for each step in the episofle
6: if S(s) # 0then

7: Q(s,a) «+ (1—a%)-Q(s,a) +aR[R(s)+ymaxy Q(S(s),d)] //a=A(s)
8: end if

9: select actiora, based orQ)(s, -)

10: take actiomn, observa ands

11: S(s) «+ S;R(s) «+r; A(s) +a

12: s« ¢

13: until sisterminal

14: end loop

in A(s). If S(s) = 0, states has not been visited yet and no update can be performed. Note that the
last-visit sample is not reset at the end of an episode, but maintained apissdes.

Because JIT Q-learning uses more recent values in its update targetsgbkm Q-learning, we
expect a performance improvement over regular Q-learning. We testyibaghesis by comparing
the performance of JIT Q-learning with regular Q-learning on the DynaeMask (Sutton, 1990).
In this navigation task, depicted in Figure 3, the agent has to find its way dtarhto goal. The
agent can choose between four movement actions: up, down, lefiggmid All actions result in O
reward, except for when the goal is reached, which results in a degfaxl. The discount factor
yis set to 0.95. We use a deterministic as well as a stochastic environment to tgshénality of
the hypothesis. In the stochastic version, we employ a probabilistic transitietidn: with a 20%
probability, the agent moves in an arbitrary direction instead of the directimesponding to the
action.

To compare performance, we measure the average return each methaesdoom the start
state during the first 100 episodes in the deterministic case, averagef0®@mdependent runs
per method. For the stochastic version, we measure the return duringsttizdfirepisodes. Each
method uses-greedy action selection with= 0.1. In the deterministic case, we use a constant
learning rate of 1, while in the stochastic case we use an initial learninggatel that is decayed
in the following mannet:

sa 0o

a ~d-[n(sa)—1+1’ @
wheren(s, a) is the total number of times acti@has been selected in stateNote that ford = 0,
as2= ap, while ford = 1, 0% = 0p/n(s,a). We optimize the learning rate decdyetween 0 and
1 by taking the decay rate with the maximum average return over the measmnéemnof episodes.
We use two different initialization schemes for the Q-values to determine whbthperformance
difference depends on initialization. We use optimistic initialization, by initializing thealQes to
20, and pessimistic initialization, by setting the Q-values to 0.

1.TMsdamyBSMMwWOmemomcommonmgﬁ%gs,mnwnhmeﬂeepmamaemreanmmed

2051

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

Figure 3: The Dyna Maze task, in which the agent must travel f&aanG. The reward is +1 when
the goal state is reached and 0 otherwise.

0.45¢

return
o
N
(92}
return
o
N

—a— JIT Q-learning, Q = 20 |
—o— Q-leaming, Q, = 20 0.1k
-v- - JIT Q-learning, Q=0
-v-- Q-learning, Q =0

—a— JIT Q-learning, QO =20 |

—p— Q-learning, Qo =20

-v--JIT Q-learning, Q, = 0
-v-- Q-learning, Q =0

50 100 150
episodes

20 40 60 80
episodes

100 200

Figure 4: Comparison of the performance of JIT Q-learning and regdbrarning on the de-
terministic (left) and stochastic (right) Dyna Maze task for two different initélom
schemes.

deterministic - 100 eps. stochastic - 200 eps.
d | average| standard d | average| standard
return error return error
Q-learningQy=0 | 0| 0.3506| 0.0004| 1.0| 0.3039| 0.0003
JIT Q-learningQo=0 | 0| 0.3628| 0.0004| 1.0| 0.3083| 0.0003
Q-learningQo=20| 0 | 0.3438| 0.0002| 0.005| 0.2562| 0.0002
JIT Q-learningQy =20 | 0 | 0.3714| 0.0002| 0.010| 0.2674| 0.0002

Table 1: The performance of JIT Q-learning and regular Q-learnirntg®@Dyna Maze task and the
optimal learning rate decay.

Figure 4 plots the return as a function of the number of episodes, while Tadflews the av-
erage return and optimal learning rate. The computation time for both methadsimiar. JIT
Q-learning outperforms regular Q-learning in the deterministic as well asttlcbastic environ-

2052

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

ment and for both types of initialization, although not always by a large mafdiis confirms our

intuition that, since JIT Q-learning uses values from a later time which are grglenore accurate,
a performance benefit is gained over regular Q-learning in a broag @insettings. The perfor-
mance benefit in the deterministic case can be explained by exploration, eghishs the order in
which states are visited to change despite the deterministic state transitions.

4. Best-Match Last-Visit Model

In this section, we demonstrate that updates can be postponed much thatheés done by JIT
Q-learning, without negatively affecting other updates, whest-match updatesre performed.
Best-match updates are updates that can correct previous updatesnate recent information
becomes available. This insight leads to the derivation ob#st-match last-visit model equations
which combine dast-visit modelLVM), consisting of the last experienced reward and transition
state for each state-action pair, witltodel-free Q-valuesonstructed from model-free updates of
all observed samples, except the ones stored in the LVM. We preseviahration as well as a
control algorithm based on solving these equations and empirically demoriktrtatieese methods
can outperform competitors with similar space requirements.

4.1 Best-Match LVM Equations

In the example presented in Section 3, the upda@(sf, ap) is postponed until stat, is revisited.

In this section, we demonstrate that the update can be postponed evem farthe case that a
different action is selected upon revisit. Since we will consider multiple upgeaetimestep in this
section, we denote the Q-value function using two iteration indicestdi. Each time an update
occurs, is increased, while each time an action is takeés jncreased antis reset to 0. Therefore,

if 1 denotes the total number of updates that occurs atttjrbg definitionQ;; = Q¢110. Action
selection at time is based orQ; ;. Using this convention, the regular Q-learning update can be
written as

Qur1a(St,a0) = (1- 0)Qura0(St,) +A[Ne1 +MaXQer10(St+1,d)]

Now consider the example shown in Figure 5, which extends Figure 1 to maladcond revisit
of g at timestef = 7. Suppose that a different action is selected on the first revisit, thaatisag.
Using just-in-time updates, the Q-value of state-action (®ailag) gets updated at tinte= 4. Using
the two indices convention we can rewrite Equation? as

Qa,1(Sa,80) = (1~ a)Q10(Sa, 80) +a[r1 +YMaxQao(ss, a)] - ()

To perform this update, the experience @etsg) resulting from taking actiomg in sa is tem-
porarily stored. With JIT Q-learning, this experience is stored per staiee Etate is revisited and
a new action is taken, the previous experience is overwritten and lost. udgvilethe experience
is stored per state-action pair, then the previous experience is notrittemwntil the same action
is selected again. If the same action is not selected upon revisit, the exjgecem be used again

2. We useQ now instead of), since the only purpose of the tilde was to distinguish it from the Q-valuesgpfiar
Q-learning.

2053

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

Figure 5: A state transition sequence in which best-match updates can am#ide postponing.
Timesteps are shown below each state.

to redo the update at a later time, using more recent values for the nextisttte.example from
Figure 5, the update @6a,ap) can be redone at timestep 7:

Q7.1(sa @) = (1—0)Q1.0(Sa, a0) +G[r1+vm§XQ7,o(sB,a)] . (6)

Since stateg is revisited at timestep s, a;) has received an extra update and theref@rg(ss, a1)
is likely to be more accurate th&py o(ss, a1).

Equation 6 is not equivalent to a (postponed) Q-learning update, inasbbdrEquation 5, since
Q10(sa,a0) is not equal toQ70(sa, 8) due to the update at timestep 4. Equation 6 corrects the
update from timestep 4, by redoing it using the most recent Q-values fopthete target. We call
this update @&est-match updatéhis name will be explained later in the section), while we call
Q1.0(sa, &) themodel-free Q-valuef (sa,ag).

Before formally defining a best-match update, we define the last-visitiexperand the model-
free Q-values.

Definition 2 The last-visit experience of state-action p@ra) denotes the last-visit reward; ®, a),
that is, the reward received upon the last visit(sfa), and the last-visit transition state; S, a),
that is, the state transitioned to upon the last visi{®8). For a state-action pair that has not yet
been visited, we defing ®,a) = 0 and $(s,a) = 0.

The LVM consists of the last-visit experience from all state-action pairs.

Definition 3 The model-free Q-value of a state-action pgra), Q{"f(s, a), is a Q-value that has
received updates from all observed samples except those stored iNthethat is, R(s,a) and
S (s,a). For a state-action pair that has not yet been visited, we defi{ﬂé(@a) = Qoo(s).

While Q can be updated multiple times per timest®p}’ is updated only once per timestep. There-
fore, it is uses a single time indéxWe define a best-match update as:

Definition 4 A best-match update combines the model-free Q-value of a state-actiowigaits
last-visit experience from the same timestep according to

Qui+1(s.2) = (1-a)Qf" (s.) + a[R(s.a) +YmaxQui(S(s.a).)].

Using best-match updates to extend the postponing period of a sample upgisites addi-
tional computation, as the agent typically performs multiple best-match updatéishpstep. In
the example, at timestep 7 the agent redoes the upd&ésgpfag), but also performs an update of

Q(sa, a4).

2054

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

The model-free Q-value function is updated only once per timestep. Spdygjfiat timestep
t+1 Q™" is updated according to

QM (st,a0) = Qurr0(St,). (7)

Assuming(st,at) has received a best-match update at timesté&muation 7 is equivalent to the
update

QUa(st.a) = (1-) Q" (s, a) +a[Ry(st.a0) +YmaxQui(S (si,ar).a)

where the value of depends on the order of best-match updates at times#ser Q™' has been
updated, the last-visit experience {af, a;) is overwritten with the new experience

Rii(sna) = rega,
SH(St,at) = St+1-

In the approach described above, best-match updates are used wnpastp update from a
sample without negatively affecting other updates or the action selecticegxoHowever, best-
match updates can be exploited far beyond simply avoiding these negdétiees eAs an example,
consider the state-action sequence in Figurgsts not revisited before the revisit gi. With the
update strategy described above, best-match updates occur only wtea & revisited. Conse-
quently, the experience froiisg, a;) is not used in the update target(sh,ap). However, it is not
necessary to wait for a revisit g§ to perform a best-match update. Instead, it can be performed at
the momentitis needed: wheris revisited. Thus, if at timestep 3 the agent performs a best-match
update ofQ(ss,a1), before updatindd(sa,), the latter update will exploit more recent Q-values
for sg, just as ifsg had been revisited.

Figure 6: A state transition sequence in whsghis not revisited. Timesteps are shown below each
state.

Taking this idea further, the agent can first update the Q-valuss béfore updating the Q-
values ofsg. In other words, the agent uses the Q-valuesadb perform a best-match update of
s, then performs a best-match updatesgfand finally updatess. However, once the Q-values
of sa have changed, it is possible to further improve the Q-values bfy performing a new best-
match update. The new Q-valuessgfcan then be used to redo the updatsgyfwhich in turn can
be used to re-updat. This process can repeat until the Q-values reach a fixed point, which is
the solution to a system ¢F||4| best-match LVM equationdVe call this solution théest-match
Q-value functionQB, which forms the best match between the LVM and the model-free Q-values.

Definition 5 The best-match LVM equations at timestep t are defined as

QB(S a)* (1—O(tsa)thf(s,a)—I—olfa[th(s,a)+ymachtB($(S,a)7C)} IfS’t(s,a);é(l)
AN if S(s,a) = 0.

2055

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

There are different ways to look at these equations. One way is to seeaththe limit case of
redoing updates using (in general) increasingly more accurate updgaestaknother way is to see
them as Bellman optimality equations based on an induced model. For state-aitima this
induced model can be described as a transition with probability stateS (s, a) with a reward of
R (s,a) and a transition with probability 4 a to a terminal stater (with a value of 0) and a reward
of Q™f(s,a) (see Figure 7.

£
Qs

Figure 7: lllustration of the induced model for state-action gsia) corresponding with the best-
match LVM equations. The small black dot represents the stochastic acteating
with probabilitya to stateS(s,a) and with probability 1e to statesr.

The advantage of solving the Bellman optimality equations for this induced maepared
to solving it using only the LVM, is that the bias towards the samples in the LVMoeazontrolled
using the learning rates. With annealing learning rates, the transition fiifgbtb S (s, a) is de-
creased over time in favor of transition to the terminal state. On the other héued, using only
the LVM, the solution of the Bellman equations depends only on the samples lbfhand does
not take into account any previous samples. Clearly, in a stochastic emérd, this will lead to a
sub-optimal policy. Also when the solution is not computed exactly, but appeded by only per-
forming a finite number of updates at each timestep (which is the case foraticpl algorithm),
using the induced model leads to a better performance, because of tigelsitte towards the most
recent samples that occurs when using only the LVM.

Section 4.3 discusses how to solve the best-match equations. Howeverstwdistuss the
policy evaluation case, for which analogous equations can be defined.

Definition 6 The best-match LVM equations for state values at time t are

vi(g = | Ao (9 +ai RS +WES(S)] iFSi(s) #0
t ARES) if S;(s) = 0

The model-free state values are updated accordik@zthst) =Vii10(St).

While in general the value functiovi can be seen as a special case of the action-value function
Q (with all states only having a single actiol) has a linear set of best-match equations, in contrast
to Q, a property we exploit in best-match LVM evaluation.

3. We assum&(s,a) # 0 for (s,a) in this case.

2056

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

4.2 Best-Match LVM Evaluation

In the evaluation case, the best-match LVM equations form a linear setahdtecsolved exactly.
This section proposes an algorithm that does so in a computationally efficggnusing updates
that are unbiased with respect to the initial state values.

The algorithm is based on two observations. First, notslbest-match equations necessarily
depend on each other. The subset of equations needed to computsttheabzh value fos; can
be found by iterating through the sequence of last-visit transition statengtaith S(s;). The
correspondingN best-match equations form the linear set of equations to solve. For ikigdale
write sy assg and use the notatiosy, = S’(s[n_l]) andry = R/(S[n_l]) for the subsequent transition
state and reward. In addition, we us# for a 1. The equations can now be written as

VE(s) = (1—a™MV™(sy) + o [rjnyg +yVB(spyq)] . forallne [0,N—1].

Second, the last state of this sequersgg, is always either a terminal state or the current state.
Furthermore, none of the intermediate states can appear twice, mak@th&tions independent.
This can be proven by contradiction. First, assume that the sequeneedeasl-end, that is, ends
with a state for whicl8 = 0. This is impossible because it would cause the agent to get stuck in this
state, preventing it from reaching the current state. Since last-visitmafiton is maintained across
episodessy; is a terminal state if the path followed after the previous visis:ded to a terminal
state. Next, assume the sequence contains the same intermediate state twidhe Afteond visit
of this intermediate state, the subsequent sequence would be the same the diftst visit, since
there is only a single last-visit next state defined per state. This would emre&iénite sequence of
next states, also preventing the agent from reaching the current state.

The set of equations can be solved by backwards substituting the e #tianis, substituting
the equation folv (s, 1)) in the one forv B(syy) and so on until a single equation fat®(sq)
remains of the form

\% B(S[o}) =ca+cgV B(S[N]) ,

with ca andcg defined as

N-1 _ _ i1

A = %((1—G[']>me(5m)+0(“]f[i+1]) FLVG“‘], 8)
1= k=
N1

G = rLVO(i 9)

If s is a terminal state, its value is 0 amP(s;) = ca. On the other hand, i§n) = st then
VB St) = CA/(l—CB).

Algorithm 2 shows pseudocode of the on-line policy evaluation algorithm,iwtoenputes the
best-match value of the current state at each timestep. Lines 7-12 compuwtdues ofca and
cg in a forward, incremental way by going from one next state to the othete Nt it is not
necessary to storé™" and R separately, since they are always used in the same combination,
(1—a)V™i(s)+aR/(s), which is stored in a single variabl™", saving space and computation.
Line 20 combines the assignmeM$'f(s;) = V(s;), R(st) = r¢;1 and the computation of,™"
in a single update. Note that the algorithm makes use of the just-in-time learnnupfe, that
is, updating states at the moment of their revisit. In JIT Q-learning, it is usepgoove the

2057

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

Algorithm 2 Best-Match LVM Evaluation
1: initialize V(s) arbitrarily for all s
2: initialize S(s) =0forall s
3: loop {over episodes

4: initialize s
5. repeat{for each step in the episople
6: if S(s) # 0then
7 ca Vi (s); ca <~ yas § <« S(s); n«0
8 while s’ # sA S is not terminaldo
9: CA<—CA—|—CB'Vrmf(S')

10: Cg < Cg-ya®

11: s+ S(9)

12: end while

13: if § =sthen

14: V(s) < ca/(1—cg)

15: else

16: V(s) < ca

17: end if

18: end if

19: take actionr(s), observe ands

20: Vi™f(s) « (1—aS)V(s) +as-r

21: S(s)+5;s+ ¢

22: until sisterminal

23: end loop

performance without increasing the computation cost, while in the best-mathtagon algorithm
it is used to efficiently compute the best-match values.

Algorithm 2 is an on-line algorithm that computes at each timestep the best-matehofdhe
current state. We define the off-line version as one that computes atdlod each episode the best-
match values of the states that were visited during that episode. This offljosthm is related to
off-line TD(A), as demonstrated by the following theorem. We prove this theorem in AppBnd

Theorem 7 For an episodic, acyclic, evaluation task, off-line best-match LVM evalouatonputes
the same values as off-line TDWith A; = a(st).

For acyclic tasks, that is, episodic tasks with no revisits of states within andepiED(A) with
At = 0¢(st) can perform TD updates that are unbiased with respect to the initial Buésn and
Singh, 1994). Because of Theorem 7, this also holds for best-matchdwaliation. However, in
contrast tol D(A), best-match LVM evaluation can perform unbiased updates for any s Re
demonstrate with the following theorem, also proven in Appendix B.

Theorem 8 The state values computed by the on-line best-match LVM evaluation alg¢#itho
rithm 2) are unbiased with respect to the initial state values, when the initiahiegrratesag(s)
are setto 1 for all s.

Because best-match LVM evaluation can perform unbiased updatesyfdd@P, it can often
substantially outperform T while requiring similar space and computation. We demonstrate

2058

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

this empirically using the two tasks shown in Figure 8. Besides comparing ag&s), we also
compare against experience replay (Lin, 1992), which stores ldmt experience samples and uses
them for repeated TD updates.

Task A features a small circular network consisting of four identical statesh having a de-
terministic transition to a neighbor. The reward received after each trangtiel. Task B is a
stochastic variation on the first task, with stochastic transitions and a relrsasch from a normal
distribution with mean 1 and standard deviation 0.5. The discount factor is @88lting in a
state value of 20 on both tasks for all states. We compare the RMS erra ofitrent state value
Vi(st) for all three methods. For experience replay, we performed a TD ufmtagdach of the last 4
samples at every timestep, resulting in a computation time similar to best-match LVMZHAYL T
In addition, we implemented a version where all observed samples are atutagdated at each
timestep. The learning rate is initialized to 1 and decayed according to

s_ Qo
T a e -1+

wheren(s) is the total number of times staddnas been visited. We optimizkas well as\ between
0 and 1. Results are averaged over 5000 runs.

()
(5) (5)
T
(39) (52) O (50
o £

A B

Figure 8: Two tasks for policy evaluation. Task A has deterministic stateiticamsand a deter-
ministic reward of +1, while task B has stochastic transitions and a rewandhdram a
normal distribution with mean +1 and standard deviation 0.5.

Figure 9 shows the experimental results in these tasks. In task A, at timetbiestért state is
revisited and the RMS error for best-match LVM drops to 0. The reasorisrtlthe deterministic
case the last-visit model is equal to the full model once every state haviséed. Furthermore,
with learning rates of 1, the best-match LVM equations reduce to the Bellman diptietuations.
Therefore best-match LVM effectively performs model-based learnliz(A), on the other hand,
has to incrementally improve upon the initial values of 0. The spiky behavi®DgA) is caused
by the combination of & of 1, with zero learning rate decay (which were the optimal settings in
this case). Experience replay has a performance in between best-rivficarid TDQ\). In task
B, the RMS error drops more smoothly. Best-match LVM again substantiallyedotms TDQ)
and experience replay, even when all samples are stored and updih&etbtal computation time
for the 5000 runs was marginally higher for experience replay with N3i¢hvhas to maintain a
gueue of recent samples, than for best-match LVM and\T:Didn task A, around 90 ms compared

2059

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

22 T T T T 22 T T T
ZOJ?—\ —v— TD() | 208 —v— TD(\)
—v— exp. replay, N = 4 —v— exp. replay, N =4
181 —&— exp. replay, N =all | 4 18 —=— exp. replay, N=all |
16t —0O— best-match LVM | | 16 —0— best-match LVM
& 14t &1
> >
‘é 121 § 12r
o 10t o 10t
(%) n
= 8t = 8f
@ 0
6 N 6 L
41 4+
2 B 2 L
0 % 0 —a e %4
0 20 40 60 80 100 0 20 40 60 80 100
timesteps timesteps

Figure 9: Comparison of the performance of best-match LVM, N)Ixnd experience replay on
tasks A (left) and task B (right) of Figure 8.

to 80 ms for both best-match LVM and TB(Experience replay with all samples updated had a
computation time of 280 ms. On task B, all methods were about 10 ms slower.

4.3 Best-Match LVM Control

The best-match LVM equations for the control case form a nonlinear betefore, it is in general

not possible to compute the exact best-match Q-values at each timestepvefaivey can be

approximated to arbitrary accuracy via update sweeps through the stae-space, in a manner
similar to value iteration, as we prove in the following lemma.

Lemma 9 For the best-match Q-values the following equation holds for all (s,a):
Qf(s.a) =lim Qui(sa),
where Q; is initialized arbitrarily for i = 0 and is defined for i> 0 as

(1-a)Q" (s a) + a[R,(s.a) +ymaxy Quii(S(s.a),&)] if Si(s,a)#0

Qii(s,a) :{ QMf(s.a) if Si(s,a) = 0.

Proof For state-action pairs, a) with S;(s,a) = 0 the proof follows directly from the definition of
QB andQ; ;. For (s a) with S(s,a) # 0, the absolute difference betweh;(s,a) andQE(s,a) can
be written as

IQui(s,a)—QP(sa) = ay| mgXQt,i—i(S(s, a),c) — mgXQtB<$(s, a),c)|
ay max| Qi (Si(s,a),c) — QF(Si(s,a),c)|
ay||Quii — QFl.

IA

IN

2060

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

From this it follows that

1Qui — QPIl < ay||Qui—i — QI
Foray < 1, it follows that fori — e, Q¢ — QE. [

Lemma 9 shows tha®P can be approximated to arbitrary accuracy with a finite number of best-
match updates.

Algorithm 3 shows the pseudocode for a general class of algorithmspgheiamate the best-
match Q-values by performing best-match updétesnes 9 to 12 perform a series of best-match
updates. Note that while only a sinde"f value is updated per timestep, mayalues can be up-
dated at the same timestep. By varying the way state-action pairs are setectpddting (line 10)
and changing the stopping criterion (line 12), a whole range of algorithméeaonstructed that
trade off computation cost per timestep for better approximations of the bési-@avalues. Note
that JIT Q-learning and even regular Q-learning are members of thisajetesss of algorithms. If
the state-action pair selection criterion is the state-action pair visited at thieysdimestep and
the stopping criterion allows only a single update, the algorithm reduces tegh&ar Q-learning
algorithm. Thus, Q-learning is a form of best-match control with a simplisticaqimation of the
best-match Q-values. However, we reserve the term ‘best-match I€dianirmdgorithms that use
the same sample multiple times to redo updates.

Algorithm 3 General Best-Match LVM Control
1: initialize Q(s,a) arbitrarily for alls,a
2: initialize S(s,a) = 0 for all sa
3: loop {over episodes

4: initialize s

5. repeat{for each step in the episofle

6: select actiora, based orQ(s,)

7 take actiorg, observe ands

8: QMf(s,a) «+ Q(s,a);S(s,a) + s;R(s,a) «r

o: repeat
10: select somés, a) pair with S(s/a) #0 {each pair is selected at least once before its

revisit}

1. Q(5a) « (1-a®)Q™(5a) +0F [R(5a) +ymaxQ(S(5a),0)]
12: until some stopping criterion has been met
13: s« ¢
14: until sis terminal
15: end loop

The following theorem states that, for any member of the best-match LVM dartérss, the
Q-values converge to the optimal Q-values.

Theorem 10 The Q-values of a member of the best-match LVM control class, sholganthm
3, converge to Qif the following conditions are satisfied:

1. S and A are finite.

4. Similar to the variabléa’rmf of Algorithm 2, a variabIeQrmf can be defined that combines the varialﬁDé“%f andR,
saving space and computation. For readability we do not show this forifkigo3.

2061

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

2. Olt(s,a) € [07 l]) Ztat(sva) =, zt(at(saa))z <cow.p.l
andai(s,a) = Ounless(s,a) = (st,at).

3. Var{R(s,a,5)} < oo.

4. y< 1

We prove this theorem in Appendix D.

4.4 Best-Match LVM Prioritized Sweeping

A wide range of methods can be constructed within the general classtefniagsh LVM control
algorithms that trade off increased computation time for better approximatioredfest-match
Q-values in different ways. This section proposes one method thairperthis trade-off with a
strategy based oprioritized sweepindgPS) (Moore and Atkeson, 1993).

PS makes the planning step of model-based RL more efficient by focusitigearpdates ex-
pected to have the largest effect on the Q-value function. The algorithirmaimes a priority queue
of state-action pairs in consideration for updating. When a state-actiorispajris updated, all
predecessors (i.e., those state-action pairs whose estimated transitiahilires tos are greater
than 0) are added to the queue according to a heuristic estimating the impaetgidate. At
each timestep, the tod state-action pairs from this queue are updated, Wittlepending on the
available computation time. Because PS maintains a full model, it reqiig$’|4|) space.

This same idea can be applied to the best-match equations for efficienkiapgtion of the
best-match values. A priority queue of state-action pairs is maintained whossponding best-
match updates have the largest expected effect on the best-match @statugtes. When a state-
action pair has received an update, all state-action pairs whose lagtavisittion state equals the
state from the updated state-action pair are placed into the priority queue pitbridy equal to
the absolute change an update would cause in its Q-value. Since this@ppsas only an LVM,
it requires onlyO(|5||4]) space.

Algorithm 4 shows the pseudocode of this algorithm, which welmedk-match LVM prioritized
sweepingd BM-LVM). By always putting the state-action pair from the previous timestepop of
the priority queue (line 10), the requirement that each visited state-actiorepaives at least one
best-match update is fulfilled, guaranteeing convergence in the limit.

On the surface, this algorithm resembtigerministic prioritized sweepind@PS) (Sutton and
Barto, 1998), a simpler variation that learns only a deterministic model, udaghtysdifferent
priority heuristic, and performs Q-learning updates to its Q-values. Whikrlglelesigned for
deterministic tasks, it can also be applied to stochastic tasks, in which cestesipde based on an
LVM.

However, there is a crucial difference between DPS and BM-LVM. &§gming updates with
respect toQ™' instead ofQ, BM-LVM corrects previous updates instead of performing multiple
updates based on the same sample. This ensures proper averagipgraree and enables con-
vergence to the optimal Q-values using only an LVM, even in stochasticoemaints. This is not
guaranteed for DPS since if some samples are used more often than obiasstewards these
samples is created, which can prevent convergence to the optimal G-value

We compare the performance of PS, DPS, and BM-LVM on the deterministict@thastic
variation of the Dyna Maze task shown in Figure 3. In addition, we also cemwaQQ) as

2062

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

Algorithm 4 Best-Match LVM Prioritized Sweeping (BM-LVM)
1: initialize Q(s,a) arbitrarily for alls,a
2: initialize S(s,a) = 0 for all s,a
3: initialize PQueue as an empty queue
4: loop {over episodes

5. initialize s
6: repeat{for each step in the episofle
7: select actiora, based orQ)(s,)
8 Take actiors, observa ands
9: S(s,a) «+ g;R(s,a) « r;Q™(s a) + Q(s,a)
10: promote(s,a) to top of priority queue
11: n+o0
12: while (n < N) A (PQueuds not empty)do
13: s, a1 « first(PQueue
14: Q(s1,a1) + (1— %) Q™ (s, a1) + 0™ [R (s1,a1) + Y max Q(S(s1,a1),0)]
15: Vs, < Mmaxy Q(sy,d)
16: for all (s,a) with S(s,a) = s; do.
17: P+ [(1-a®)QM(5a) +aB[R(58) +yVs] ~ Q5|
18: if p> 6then
19: insert(s,a) into PQueuewith priority p
20: end if
21: end for
22: n«—n+1
23: end while
24: s« ¢
25: until sis terminal
26: end loop

described by Watkins (1989). This is an off-policy control version ldfilglity traces. We also
tried Sars&), the on-policy version, since it can sometimes outperforix) @onsiderably, but saw
no significant difference for these experiments and present only ther€xults. Note that when a
greedy behavior policy is used, as in the deterministic experimen),@mputes exactly the same
values as Sarsk). As in Section 4.2, we also compare to experience replay.

Finally, we compare to delayed Q-learning (Strehl et al., 2006), a modehisthod that, like
some model-based methods (Brafman and Tennenholtz, 2002; KearBgnaind 2002; Strehl and
Littman, 2005), is proven to berobably approximately corre¢PAC), that is, its sample complex-
ity is polynomial with high probability. Delayed Q-learning initializes its Q-valuesmistically
and ensures that value estimates are not reduced until the corregpstad@action pairs have been
sufficiently explored. Because it does not maintain a model, it has the@d®4|) space require-
ments as best-match prioritized sweeping. However, to our knowledge, iisi@ahperformance
has never been evaluated before.

For each method, the free parameters are optimized within a certain rartge.deterministic
case, for Q) we optimized the\ value in the range from 0 to 1, and the learning rate deldaing
Equation 4) in the range from 0 to 1, whilg was set to 1. We also optimized the (unbounded) trace

2063

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

type (replacing versus accumulating). For delayed Q-learning we optimiiedhe range from 1
to 5 with steps of 1 ané,; in the range 0 to 0.020 with steps of 0.001. For DPS and BM-LVM, we
did not optimize any parameters in the deterministic case, but simply used arg@nefal. In the
stochastic case, we also optimized the learning rate diéayDPS and BM-LVM.

For all methods, we used optimistic initialization wifly = 20 in order to get a fair comparison
with delayed Q-learning, for which initialization Rmax/(1 —Y) is part of the algorithn.

In the deterministic case we used a greedy behavior policy, while we usedraedy policy
with € = 0.1 in the stochastic variant. For all prioritized-sweeping algorithms we pagdra
maximum of 20 updates per timestep (i.e., N = 20). For experience replay edethis last 20
samples, which also results in 20 updates per timestep. Results are averagd00 independent
runs.

0.4

0.5
0.351

0.4} 037

0.25¢

0.3
0.2r

return
return

0.2} —=—QM) 1 0.15} —=—Q(M) 1
—O— exp. replay —— exp. replay
—w— delayed Q 0.1t —w—delayed Q | -

01l —v—BM-LVM | | —v— BM-LVM
—e—DPS 0.05H —e—DPS
—0—PS —Oo—PS

Oncry v - . - L=, v I L .
0 10 20 30 40 50 0 20 40 60 80 100
episodes episodes

Figure 10: Comparison of the performance of BM-LVM and several aitgrs on the determin-
istic (left) and stochastic (right) Dyna Maze task.

Figure 10 shows the return as a function of the number of episodes, vefilesi2 and 3 show
the average return over the measured episodes and the optimal paraahetsr in the determinis-
tic experiment, we see that the performance of PS, DPS, and BM-LVM @&lgxayual, as expected
whena = 1, since the last-visit experience is equal to the model of the environmextp@forms
considerably worse than the prioritized sweeping methods and doeswetge to the optimal pol-
icy. In contrast, the combination of a greedy behavior policy with optimistic initinbneenables
the prioritized sweeping methods to converge to the optimal policy in a determimstioement.
Experience replay performs similarly to Q(though it does converge to the optimal policy. De-
layed Q-learning also converges to the optimal policy, as predicted by tbeytheit does so much
more slowly.

In the stochastic experiment, PS has a clear performance advantagevetgatlve goal of BM-
LVM is not to match or even come close to the performance of PS. It canriobrtias performance
in general, since PS takes advantage of its higher space complexity.dintstegoal of BM-LVM

5. For this task = Rnaxonly when the exit is reached and 0 otherwise. Thus, the Q-values eanbrehigher than 1
andQp = 20 is overly optimistic. However, since realizing that an initialization of 1 is jpbssvould require extra
prior knowledge, we initialize to 20.

2064

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

deterministic - 50 eps.

optimal parameters average| standard| time per step

return error (-1075s)

QM) A:0.8,d: 0| 0.3606| 0.0007 0.68

exp. replay d: 0 0.3602| 0.0004 0.37
delayed Q m:1,e1=0 0.1878| 0.0004 0.11
BM-LVM d: 0 0.4769| 0.0002 0.88
DPS d:0 0.4774| 0.0002 0.85

PS - 0.4772| 0.0002 0.95

Table 2: Average return and optimal parameters ¢ddecay rate) of best-match prioritized sweep-
ing and several competitors on the deterministic Dyna Maze task.

stochastic - 100 eps.

optimal parameters average| standard| time per step

return error (-1075s)

QM) A:0.9,d: 0.03] 0.2417| 0.0007 0.59

exp. replay d: 0.18| 0.2272| 0.0006 0.43
delayed Q m: 2,6:0.015| 0.0668| 0.0004 0.12
BM-LVM d: 0.02| 0.2911| 0.0006 3.2
DPS d: 0.30| 0.2683| 0.0008 3.7

PS - | 0.3603| 0.0004 4.7

Table 3: Average return and optimal parameters ¢(ddecay rate) of best-match prioritized sweep-
ing and several competitors on the stochastic Dyna Maze task.

is to optimally perform at a space complexity 0f|5||4|). The results confirm that BM-LVM
is considerably better than the other methods with this space complexity, IRea@d DPS. DPS
initially performs well, but cannot keep up with BM-LVM after about 10 epiies, even though BM-
LVM has similar space and computation costs per timestep. Experience repfaynms slightly
worse than Q). We tested whether doubling the size of the stored experience seqogroees
the performance of experience replay, but this led to no significanbymeaince increase. Delayed
Q-learning also performs poorly in the stochastic case, despite its PAG&oun

The computation time of BM-LVM, DPS and PS is in the deterministic experimeniademdly
lower than in the stochastic case. The reason for this is that while in botk ttesenaximum
number of updates per timestep is 20, in the deterministic case the priority gitendnas fewer
than 20 samples, so fewer updates occur. The computation time\pi<Xlightly better than that
of BM-LVM, while experience replay is about twice as fast as BM-LVM.

In the stochastic experiment, the computation time of)@¢ much better than that of any of
the prioritized sweeping algorithms, which could suggest tha) @(a better choice than BM-LVM
when computation power is scarce. To test this hypothesis, we perfortaéibnal experiments
with smaller values oN. The computation time for BM-LVM foN = 4 (0.61- 10~ s) was similar
to that of QQ). The average return of BM-LVM dropped to 0.2598 in this case, whicstiis

2065

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

considerably better than the average return of)Q{This demonstrates that BM-LVM is a better
choice than Q) even under severe computational constraints.

Together, these results clearly demonstrate the strength of best-matechgeaimmce BM-LVM
outperforms several competitors with similar space complexity. Howeveretiuts also show that
the performance gap with full model-based learning can be consideri#eefore, if more space
is available, a better approximate model would be preferred. We addigasdu in the next section
by applying best-match learning to afiransition model, which estimates the transition function for
n next states per state-action pair, allowing increased space requirembatsaded for improved
performance.

5. Best-Matchn-Transition Model

The best-match LVM equations described above combine model-free @swvaith the last-visit
model. When state-action pairs have only a small humber of possible nex4, stedast-visit
model can effectively approximate the full model. In other cases, haw#we last-visit model
captures only a fraction of the full model and the effect of the best-matdatas will be small.
In this section, we combine best-match learning with ifteansition model, which estimates the
transition probability fom possible next states of each state-action pair. By tuningcreased
space requirements can be traded for improved performance.

5.1 Generalized Best-Match Equations

Best-match LVM learning takes the idea of using more accurate update teoghts extreme by
continuously revising update targets with best-match updates. For a specifide, the update
target is revised until the moment of revisit of the corresponding stateraptio, since at that
moment the sample is overwritten with the newly collected sample. However, ié sfiagvs, the

new sample can be stored along with the old sample instead of overwriting it, ailogrupdate

target from the new as well as the old sample to be further improved. Weirxyta an example

how this changes the best-match equations.

Figure 11: A state transition sequence in which best-match updates cda n#ier postponing.
Timesteps are shown below each state.

Consider the state-action sequence from Figure 11 and assume the besiQnaalues are
computed at each timestep. At the revisisgfactionag is retaken. Therefore, when using the LVM,
at timestep 5 the old experience sample is overwritten with the new experiegicee Bhis occurs,
the old experience is used in a final updat€8¥. Let uJ indicate the update target from the sample
collected at timestep based on the best-match Q-value of timestepy = ry +yma>§aQ)?(s(,a).
Using this convention the update @ at timestep 5 becomes

Qé"f(sA,ao) = (l—a)QS”(sA,ao) +auvl.

2066

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

At timestep 7, the best-match LVM equation sk, ag) can be written as

Q¥(spa0) = (1—a)QM(sa,a0) + LS
= (1—0‘)Q?f(SA730) +aus
= (1-0)2Q"(sa,a0) +a (1—a)ui+avs.

Thus, the best-match Q-value (s, ap) at timestep 7 is equal to a weighted averag@@‘f, vl
andu?. On the other hand, if both the old and the new sample are stored, Q-valuetrestep 7
could also be used for the update target of the old sample, yielding

Q¥ (sa,a0) = (1—a)2Q) (s, 20) + @ (1— a)u 4 avs. (10)

For the state-sequence from Figure 11 this means that the experienlt@gesom (sg, ag) is also
taken into account in the update target fex, ao).

The above example shows how the best-match LVM equations can be nagxtethgled to two
samples per state-action pair. Following the same pattern, we can defimediebtequations given
an arbitrary set of samples. Consider the set of samplefssizeNy, where a samplg € X has the
form {s,a,r,s }. These samples can be grouped according to their state-action pairefinéexgd,
as the subset of containing all samples belonging to state-action pa®) andNg, as the size of
Xsa. Without loss of generality, we index the samples fridgaasx? for 1 < k < NZ,. In addition,
we defineWs, as a set consisting &, + 1 weightsw? € IR such that KW <1for0< k< Ng

andinxaowlfa: 1. We defineV as the union of the weight sets from all state-action pairs.
Definition 11 The generalized best-match equations with respecfi& ® and W are

QB(s,a) = w2Q"(s,a) + WS+ WS 52+ ... -+ WRE Ung, » forall s,a, (11)
wherev®=r +ymaxQE(s,c) |r,s € X2

Note that Equation 11 reduces@§(s,a) = Q{"f(s, a) for state-action pairs with no samplesin
Within this contextQ™" is defined as a model-free Q-value constructed from all observed sam-
ples except those M. Consequently, when a sample is removed fdonit is used for a model-free
update ofQ™.
Using Definition 11, a range of algorithms can be constructed based erediffsets of samples
X and weightsW. When the samples are combined by incremental Q-learning updates, like in
Equation 10, the weights have the values

Nga
Wt = []-am), (12)
=

NSy
wed = aﬁlj (1—af®), for 1 <k < NZ,. (13)
i=k-+1

With this weight distribution, the update targets from older samples have logights than more
recent samples. In Q-learning, more recent samples in general hageaouorrate update targets so
giving them higher weight makes sense. However, in best-match learm@ngthate targets from

2067

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

all stored samples have the same time index so there is no reason to usatdiEghts for them.
A better weight distribution gives all samples the same weights:
Wt = (1—wg%) /Ng,, for 1 <k < NZ,,
for some value ofg2.
The last-visit model, storing one sample for each state-action pair, is osilgosample set.
A straightforward extension is to storesamples per state-action pair. In the following section,

however, we propose a different sample set, calledittiansition model, which can be stored more
compactly.

5.2 Best-Match Learning based on the-transition Model

While BM-LVM outperforms model-free methods with the same space complexiggeis not per-
form as well as PS, which stores a full model. This is symptomatic of an impditaitation
of BM-LVM: it offers only a single trade-off between space and parfance. When there is not
enough space available to store the full model, but more than enough tarstot®M, a more
sophisticated method is needed to make maximal use of the available spacethégsiegeralized
best-match equations, we can construct such a method.

An obvious approach is to storesamples per state-action pair. However, obtaining an accurate
model often requires a large even when the number of next states per state-action pair is small.
A more space-efficient solution is to group together samples that havertteersxt state. If we
store the size of such a group Nf,, and give each sample a weight 9fNs; whereNs; is the
total number of times state-action pé&ra) is visited, then we can rewrite the contribution from all
samples ois; to the best-match equations as

N;a 1

Wik = — | S rsa+yS NX .maxQB(s.a) | ,
kzl KOk = Nea [Z sa Vg sag !¢ Q~()]

wherey x I'sais the sum of the rewards from all samples in the sample set belongisgjo Using
WE2=1—N%/Nsa, PS5, = NZ.«/N2zaandR ¢, = ¥ x sa/ N&,, the generalized best-match equations can
now be rewritten as

Q%(s,a) = wgQ™'(s,a) + (1 - wg?)

Rsat Yy fi’famaxQB(s’,a’)] , foralls,a.
g &

In these equationstiJ andi{ constitute a sparse, approximate model, whose size can be controlled
by limiting the number of next states per state-action pair for witicis estimated.wg? is the
fraction of all samples belonging {s,a) not used by the sparse model. We definearansition
model(NTM) to be one that estimates the transition probabiftfor n next states per state action
pair. Once a sample enters the model, that is, is used to u@ddatstays in the model. Each sample
not used to update the model is used for a model-free upda@"éf Different strategies can be
used to determine which samples enter the model. A simple approach is to ussttheifique
next states that are encountered for a specific state-action pair.

Algorithm 5 shows general pseudocode for best-match NTM learning.aldorithm presents
two trade-offs. First, the space complexity can be traded off with perfocedy selectingn.

2068

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

Algorithm 5 General Best-Match NTM Control
initialize Q(s,a) = QM(s, a) arbitrarily for alls,a

=

2: initialize Nsa, N3, R33™to O for alls,a

3: initialize NX, to O for allsaands € NTM(s,a)

4: initialize w32 to 1 for alls,a

5: loop {over episodes

6: initialize s

7. repeat{for each step in the episofle

8: select actiora, based orQ(s,)

o: take actiorg, observe ands
10: if € NTM(s,a) then
1L N, = N&+ 1 N;(aé = Ng(aé +1 an= R+ r
12: fPSSIa: Neas/Nsaw Rsa= R/ Nea
13: else

14: Q™f(s,a) + (1—as)QMf(s a) + as[r +ymax.Q(s,c)]
15: end if

16: Nsa= Nsa+1

17: w52 =1—N2;/Nsa

18: repeat

19: select somgs,a) pair with Ng > 0 {each pair is selected at least once before its

revisit}

200 QEA)«WEQM (S +(1-wE) [Rat v PEmaxQ(s, o)
21: until some stopping criterion has been met
22: s« ¢
23: until sis terminal
24: end loop

Second, the computation time per simulation step can be traded off with perimgrgicontrolling
the number of best-match updates performed per timestep.

Based on this general control algorithm, various specific algorithms caormstructed using
different stopping criteria and strategies for selecting state-action paieséove best-match up-
dates. The following theorem states that, for any member of this class, thk€s\converge to the
optimal Q-values. We prove this theorem in Appendix E.

Theorem 12 The Q-values of a member of the best-match NTM control class, shodwgarithm
5, converge to Qif the following conditions are satisfied:

1. S and A are finite.

2. ai(s,@) €[0,1], Sai(s,a) =, 5 (a(s,a))? < o w.p.1
andai(s,a) = 0unless(s,a) = (st,ar) and §4+1 ¢ NTM(st, a).

3. Var{R(s,a,5)} < 0.

4. y< 1

2069

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

5.3 Experimental Results

As in BM-LVM, prioritized sweeping can be used to trade off computation tinte@arformance

in Algorithm 5, yielding a method we call BM-NTM. We compare its performancBXdLVM,
Q-learning, and a sparse model-based method that combines prioritizegiswevith an NTM
without best-match updates, which we call PS-NTM. While BM-NTM usesdhgpdes that are not
part of the NTM to updat®™f, PS-NTM ignores these samples. The priority of a state-action pair
(s,a) for BM-NTM is defined as

p=(1-W§BL- AV (s1)],

whereAV (s;) is the difference in the state valuesfbefore and after the best-match update of one
of the Q-values 0§;. For PS-NTM, the priority is defined similarly:

p= B |AV(s1)|.

The NTM we use for BM-NTM and PS-NTM is defined by the firstinique next states that
are encountered for a specific state-action pair. Although more soptesticendels could be used
(e.g., by estimating the most likely transition states), this model is sufficient for our experimental
setting since most transition states have similar transition probabilities.

We consider the large maze task shown at the left in Figure 12. For this itinezegward
received by the agent is0.1 at each timestep, while reaching the goal state results in a reward
of +100. The discount factor is 0.99. The agent can take four actinogh’,'south’,'east’ and
‘west’. The action outcomes are made very stochastic, in order to comjfi@rent model sizes.
The right side of Figure 12 shows the relative action outcome for a ‘naxttion. In free space,
there are 15 possible next states, each with equal transition probabilittheQther hand, walls
prevent not only the transition to the square the wall is located on, but mysscaares behind the
wall. Therefore, close to a wall the number of possible next states is lasdFhaVhen transition
to a square is blocked by a wall, the transition probability of that square mdatidthe transition
probability of the square in front of the wall. In order to make reaching ta fpasible despite the
stochastic actions, we use a goal area consisting of four goal states.

To compare performance, we measure the average return for eachdnoetirothe first 500
episodes. For all methods, we usegagreedy policy withe = 0.05 and initialize Q-values to 0.
BM-NTM, PS-NTM and BM-LVM perform a maximum of 5 updates per timestegr all learning
rate based methods, we use an initial learning rate of 1 and decay the desatdraccording to
Equation 4, while optimizing the decay rateResults are averaged over 200 independent runs. An
episode is stopped prematurely if the goal is not reached within 500 steps.

Table 4 presents the results, including the average return, optimal parsnagig computation
time per simulation step. The model sizes usedMrel, 3, 5, and 15. FoN = 15, all samples
enter the model. Therefore, BM-NTM has no decay rate in this case. ThHelmeight indicates
the fraction of samples that entered the model. BM-NTM has in general dlglltigher weight
than PS-NTM, indicating the agent spends less time in open spaces and morktent® a wall.

For model sizetN = 1 andN = 3, the average return of BM-NTM is much better than that of
PS-NTM, despite the fact that fof = 3 more than a third of the samples are stored in the model.
ForN =1, the average return of PS-NTM is even worse than that of Q-learRiggre 13 shows the
return as a function of the number of episodes for BM-NTM and PS-NTiti W = 1 andN = 3.
Unlike BM-NTM, the asymptotic performance for PS-NTM is clearly bountgdhe size of the

2070

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

=R ===
[y e L

N || =

o
O@»—*»—A»—A

O N -

cmcml

Figure 12: Left, the large maze task, in which the agent must travel 8dmone of theG's.
Right, transition probabilities %) of a ‘north’ action for different positions of the agent
(indicated by the circle) with respect to the walls (black squares). Whetrahsition
to a square is blocked by a wall, its transition probability is added to that of thereq
in front of the wall.

model. Thus, PS-NTM can match the performance of BM-NTM only when piaees reduction
over the full model is quite small (i.e., less than a factor of 2).

Interestingly, wherN = 1, BM-LVM outperforms BM-NTM despite having the same space
complexity. Thus, when space is scarce, BM-LVM is a good option. Irirast) BM-NTM can
exploit larger models to further improve performance. The computation timsimedation step
for BM-NTM is comparable to that of PS-NTM, with the exceptionMf= 1, for which it is four
times larger. The reason is that the priority queue of PS-NTM is often closepdy in this case
and thus the 5 updates per timestep are often not reached.

Overall, these results clearly demonstrate the strength of best-match NTivhtgaiWhen a
significant space reduction over storing the full model is required, BMANberforms dramatically
better than PS-NTM at similar computational cost.

6. Best-Match Function Approximation

The BM-NTM method described in the previous section has a space comméxity|.S||-4|) com-
pared toO(|$5]?|4|) for full model-based methods. However, in problems with large state spaces
this space complexity may be prohibitive even wheal. In addition, BM-NTM cannot be applied

in problems with continuous state spaces. To address these limitations, this sktionstrates
that the principles behind best-match learning can also be applied to funppooxamation. We
show that the resulting algorithm, which combines thenost recent samples with the model-free
Q-value function, outperforms both linear SaMadnd linear experience replay on the mountain
car task. We start by describing best-match learning based dd thest recent samples for the
tabular case, and then we show how this can be extended to the functroxiapgtion case.

2071

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

model | model optimal | average| standard| time per step

size | weight | parameters return error (11076 s)

PS-NTM 1 0.12 - -16.9 0.4 0.21
3 0.36 - 9.8 0.3 15

5 0.57 - 22.6 0.2 2.1

15 1.00 - 28.9 0.2 3.1

BM-NTM 1 0.14 d=0.04 15.4 0.3 0.85
3 0.40 d=0.09 19.6 0.2 1.7

5 0.60 d=0.06 22.3 0.2 2.2

15 1.00 - 29.3 0.2 3.1

BM-LVM - - d=0.09 17.4 0.3 1.5
Q-learning - - d=0.03 2.4 0.2 0.09

Table 4: Average return over the first 500 episodes, optimal paranfdterslecay rate) and com-
putation time per simulation step on the Large Maze task.

40 T T T T
301 N
201 1
101 1
c
2 0 i
o
_10 - a
-20f —0— PS-NTM, N =117
—v—BM-NTM,N=1
30} —¥— PS-NTM, N = 3|
—=— BM- NTM N=3
40 ‘ ‘
100 200 300 400 500
episodes

Figure 13: Performance of BM-NTM and PS-NTM on the large maze task.

2072

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

6.1 Tabular Sequence Based Best-Match Learning

The generalized best-match equations are defined for an arbitrafyssetples (see Definition 11),
which can be stored in a model or as an explicit set. To combine best-matctpfdwith function
approximation, we employ an explicit set consisting of the Mstbserved samples, an approach
we callsequence based best-match learniimghis section we describe sequence based best-match
learning for the tabular case and its advantage over experience napialy, also exploits a set of
recent samples. In the next section, we extend the tabular version udrsegbased best-match
learning to function approximation.

Assume that a queue of the lddétsamples is maintained. When the queue is full and a new
sample is added to the back of the queue, the sample at the front of theigueomved and used
to perform a model-free update @™ (s,a). The queue may contain multiple samples that belong
to the same state-action pair. If there &g samples belonging to state-action p@ra), then the
best-match update based on these samples is

f
Quisa(5:2) = WEQP"(5.8) + WEDF WS .+ Wi o a4)

whereug?=r +ymax Qi (s,c) |r,s € 2 When the weights are defined according to Equations
12 and 13, this update can be implemented incrementally by perfoliy@-learning updates:

Q«k>(s,8) = (1-a)Qk-1-(S,2) + [rk‘f‘yma?XQt,i(iya/)] , for1<k<NE,

with Q<o (S, a) = thf(s’ a) anth,iJrl(Sv a) = Q<N§a> (S, a)-

By stepping through the queue from front to back and using each sampéeftom an incre-
mental Q-learning update, all state-action pairs with samples in the queluecrece full best-
match update, according to Equation 14. By storing the interme@ate values at the same
location as the final Q-valu€_ny . automatically become®; 1 after all incremental updates
have been performed. This implementation requires that the Q-values feostate-action pairs
with samples in the queue are set equata-, that is, toQ{“f, before the update sweep begins.
Before resetting these Q-values, the update targets of the samples mesbimputed.

Despite a superficial resemblance, sequence based best-match |eafaimamentally differ-
ent from experience replay. Best-match learning uses the stored sampbesect previous updates
based on those samples, whereas experience replay performs adidjpideis with the same sam-
ple. To illustrate the effect of this difference, suppose that safigpder, ') is observed at timestep
t = 1 and used for an updatetimesteps in a row. For simplicity, assume there are no other sam-
ples belonging tds,a) in the sample queue and that the learning raie constant. We indicate
the update target of the sample with wherei corresponds to the timestep at which the update is
performed. Thereforay;, 1 is likely to be more accurate than since it uses more recent Q-values
for §. Since experience replay performs additional updates we can expsEss), the Q-value
of (s,a) at timestem, in terms ofQp(s,a) and the update targets from the different timesteps as
follows:

Qn(s,a) =WoQo(S,a) +W101 +WoU2 + ... +WnUn,

withwp =L, (1—a) andwg = a L, . (1—a) fork> 0. If a <« 1, the weights can be accurately
described with first-order approximationsdn yieldingwg ~ 1 — na andwy =~ a for k > 0. Using
these approximations, we can write fQx(s, a):

Qn(s.a) ~ (1— B)Qo(s,a) + B % (15)

2073

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

with B = na. On the other hand, best-match learning uses the sample for best-mattbsyplukzt
is,Qn(s,a) = (1— (x)Q,Tf(s, a) +au,. However, sinceQimf(s a) gets updated only when a sample
is removed from the queu@r',“f(s, a) = Qo(s,a) in this case. Therefore, the following holds for
best-match learning:

Qn(s,a) = (1—a)Qo(s,a) +aup. (16)

The difference between Equation 15 and Equation 16 illustrates the funt@Emdvantage of se-
quence based best-match learning, for whizhcan be seen as an update with samgle,r,s)
using the most recent update target. In contrast, experience repdayiveffy performs an update
using an update target that is an average of the update targets fromfénerdifimesteps. There-
fore, the older, less accurate update targets still have an eff>.on

6.2 Best-Match Gradient Descent Learning

Since tabular sequence based best-match learning can be implementeceheimet Q-learning
updates, it can be easily extended to function approximation by combining ithvatgeneral gra-
dient descent update for Q-values (Sutton and Barto, 1998)

Bty1 =6t +auy — Qt(st,ar)] Lo, Qt(st, &), (17)

whereb; is a weight vector corresponding to the basis functions of the approximation

Algorithm 6 shows pseudocode for general gradient descent besh-foaction approximation.
Note that a learning rate and the most recent update target are stosshp@e. The updates 6f
and®™' are based on Equation 17.

We evaluate a linear version of the best-match gradient descent algonttwonparing its
performance with linear Sar3g(as well as a linear version of experience replay on the mountain car
task (Boyan and Moore, 1995; Sutton, 1996; Sutton and Barto, 1898) the settings as described
in Sutton and Barto (1998). This involves tile coding with ten 9x9 tilings, a disttactor of 1,
an exploration parameter= 0, and Q-values optimistically initialized to 0. Additionally, to bound
the run-time of an experiment, an episode is stopped prematurely if the gamlnsathed within
1000 steps. Linear Sar3a(is known for its good performance on this task (Sutton and Barto,
1998) and is therefore a good benchmark test. For Sgrsaé use the settings that showed the
best performance over the first 20 episodes: 0.14 andA = 0.9 with replacing traces. We tested
whether decaying the learning rate improves the performance for a nwhdédferenta values
around 014 but did not find a significant improvement. To make Sa)sa(ore computationally
efficient, traces are cut-off for state-action pairs that were visited fathga 20 timesteps ago. For
best-match and experience replay, a queue of the 20 most recent segked and a single update
sweep through this sample set is performed at every timestep. We optimize tHddaitieng rate
0p and the learning rate decdy(see Equation 4). Results are averaged over 5000 independent runs

Table 5 shows the average return over the first 20 episodes, the optnaahgters, and the
computation time per simulation step for the 5000 runs. Figure 14 shows the estar function
of the number of episodes. For trace length/N = 20, the performance af list-match is about
27% better than that of linear Sarsaf On the other hand, Sar3a(s about twice as fast.

Surprisingly, while experience replay performed comparably to Sgrgathe tabular case, in
the mountain car task it performs 16% better than linear Sgrsdpwever, as expected, it performs

6. The linear Sarsaj performance is in accordance with the performance found by alestiter researcherst(p:
/lwebdocs.cs.ualberta.ca/ ~ sutton/book/errata.html).

2074

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

Algorithm 6 General Gradient-Descent Best-Match

1. setN,y

2: initialize 8, a and sep™f =0

3: initialize SampleQueut empty
4: loop {over episodes

5. initialize s
6: while s= terminal statelo
7 select actiora, based or®
8 take actiomn, observes'r
9 if sizeSampleQueue N then
10: pop samplex from front of theSampleQueue
11: update9™F usingx
12: end if
13: decaya; v=0
14: push new samplés, a,r,s,a,v} to back ofSampleQueue
15: for all samplesc updatevy < ry +Y-Vg using®
16: for all samples<do
17: for all features fromx: 6 « 0™f
18: end for
19: for all samples (from front to back ofSampleQueyelo
20: updated usinguy
21: end for
22: s« ¢
23: end while
24: end loop
optimal parameters average| standard time per step
return error (-1075s)
best-match, N=20 0g=0.10,d=0.09| -170.1 0.4 3.0
exp. replay, N=20 0p=0.10,d=0.16] -195.1 0.4 2.5
Sarsa}), trace=20| A =0.9,09=0.14,d =0.0| -231.9 0.4 15
best-match, N=15 0g=0.10,d=0.03| -176.3 0.4 2.5
best-match, N=5 00=0.10,d=0.03| -215.1 0.4 15
Sarsal), trace= | A=0.9,09=0.14,d=0.0| -228.2 0.4 6.7

Table 5: Average performance over the first 20 episodes and the tatiopuime per simulation

worse than linear best-match. Thus, a substantial portion of the perfoem@provement linear
best-match offers over Saraa(s due to the use of best-match principles, not simply the reuse of
data.

Besides a comparison with equal number of samples/updates, it is interestinge@ compar-
ison with equal computation time. To achieve this, we can either increase théessehpize used
by experience replay and Sarsg(or decrease the sample set size used by linear best-match, in such

step on the Mountain Car task (‘trace’ indicates trace length)

2075

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

=100

=200

=300

~400¢

return

=500

—w— linear best—-match, N = 20
—uo— linear exp. replay, N = 20
—v— linear Sarsa()), trace length = 20

2 4 6 8 10 12 14 16 18 20
episodes

Figure 14: Performance of linear best-match, experience replay arzd Bagsa() on the Moun-
tain Car task using the 20 most recent samples.

a way that the computation times approximately match. We chose to decreasatie sat size of
linear best-match. Usinly = 15 andN = 5 resulted in a computation time matching that of expe-
rience replay and Sar3g(respectively. Table 5 shows that the performance of linear best-match is
also better with equal amount of computation time. In addition, we performedpatiment with
Sarsak) without bound on the trace length. This resulted in an average retur2282, demon-
strating that the performance of Sasgagannot be improved significantly by increasing the trace
length.

Overall, these results show that best-match learning can be successghlilgdato function
approximation. Furthermore, they demonstrate that using samples to queeicius updates can
lead to better performance that using them to perform additional updates.

7. Discussion

The methods presented in this article approximate solutions to different insitargiaf the gen-
eralized best-match equations (Definition 11). These best-match equattMidepa theoretical
foundation for combining model-free learning (through update®®f) with model-based learn-
ing (through updates of Q). The resulting methods offer two trade-dfisst, the selection of a
sparse, approximate model provides a trade-off between space dmaace. Second, the num-
ber of best-match updates performed per timestep provides a tradavedidmecomputation cost per
timestep and performance. The performance gain offered by best-matoimigcan be explained
from the perspective of the update targets. By performing best-matciteagydhe update targets
from the samples stored in the model are continually recomputed and the €3 akiupdated to
incorporate any resulting changes.

2076

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

In the case of best-match LVM, this produces an evaluation method thattethdssame values
as TDQ) with A; = a¢(st) for acyclic tasks, as proven in Theorem 7. This equivalence ariges fr
the fact that both best-match LVM learning and eligibility traces outperforstep- methods by
correcting previous updates with newly obtained samples. However, eoretical and empirical
results suggest that the best-match LVM equations provide a much sthmgiefor exploiting this
principle.

Theorem 8 proves that best-match LVM evaluation can perform updatearthunbiased with
respect to the initial values for an arbitrary MDP, while for Np¢his can only be achieved for
acyclic tasks. In the control case, Theorem 10 proves convergeribe limit to the optimal Q-
values for a general class of best-match LVM control algorithms. Similarezge guarantees do
not exist for eligibility traces. In addition, best-match LVM learning avoidsrieed to choose be-
tween different trace types (accumulating or replacing) and does quireean extra\ parameter.
Furthermore, in deterministic problems, best-match LVM learning, reduces delrbased learn-
ing, as one would expect for an algorithm that makes optimal use al(t#|4|) space complexity.

Our empirical results show that best-match LVM evaluation substantially datpes TDQ)
and experience replay (Figure 9), despite having similar computationsl ¢as the control case,
we show that BM-LVM, which uses prioritized sweeping to trade-off cotapon cost with perfor-
mance, substantially outperforms not onlyAQ(but also other methods with a space complexity of
0(|S|4]) (Figure 10). These results illustrate how best-match LVM learning efficieniioits its
stored samples.

Alternatively, best-match learning can be combined withdransition model, yielding space
complexity betwee(|5||4]) andO(|5|?|4]). Without using best-match learning, the performance
of an NTM is bounded by the quality of the model approximation. In contrdstpiiem 12 proves
that BM-NTM converges in the limit to the optimal Q-values. Empirically, we dertratesthat, for
any significant space reduction compared to the full model, BM-NTM persanuch better than
using only the NTM (Figure 13).

Finally, our results demonstrate that the ideas behind best-match learnifhg caiccessfully
extended to function approximation by combining sequence based bestleztihg with gradient
descent updates (Algorithm 6). In particular, a linear implementation ootpesf Sarsa() and
experience replay on a benchmark task (Figure 14).

8. Future Work

Several avenues of future research are suggested by the wedaped in this article. For example,
in Section 4.2 we proved that the best-match LVM evaluation algorithm can elimbedewith
respect to the initial values. It may be possible to extend this result to thetoase. One approach
would be to define a state value as the maximum of the Q-values over previaksly actions
instead of the maximum over all available actions. However, a potential pndbléhat the control
algorithms compute an approximation of the best-match Q-values, instead abittevalues. It is
an open question whether efficient approximations exist that are alsasedb A second potential
problem is that many exploration schemes, such as optimistic initialization, depehd Q-values
and might not work as well when updates are unbiased.

The convergence results for the tabular best-match methods are similareéamti@dearning:
convergence in the limit to the optimal policy. It may be possible, however,ristnact best-match

2077

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

methods that are probably approximately correct (PAC). Since Strahl(@006) showed that a full
model is not required for a method to be PAC, we are optimistic that such methists

Finally, it may be possible to develop novel combinations of best-match funagiproxima-
tion with other sample-based approaches such as fitted Q-iteration (Eraist 2005) or LSPI
(Lagoudakis and Parr, 2003). By combining the strengths of eacloagiprsuch methods could
yield even better on-line performance. Fitted Q-iteration, for example, isfdim® algorithm that
computes a policy based on a large set of samples, by performing iterptie¢eusweeps through
the sample set. For a good approximation, the number of samples should béangechihan the
number of parameters of the approximation. By using a combination betweeded-free Q-value
function and a sample set, a smaller sample set might be possible, reducieguirements with
respect to space and computation, and potentially producing an efficidimeoversion of fitted
Q-iteration.

9. Conclusion

This article introduced best-match learning, a reinforcement learningagipthat combines model-
free and model-based learning by using some samples to update a spagbamddte rest to update
a model-free Q-value. The final Q-values are computed from best-mptidtas that combine the
model-free Q-values with the sparse model. By controlling which samplestaetarodel, the size
of the model, and hence the space requirements, can be controlled. Ibule taase, the combi-
nation with the model-free Q-values ensures convergence to the optimali€svior a variety of
model approximations.

Our empirical results demonstrate that in the tabular case, when there sonigihespace avail-
able to store the full model, methods that exploit the best-match equationsmperdbstantially
better than methods based on only model-free learning or sparse moddlrhathods. This sug-
gests that best-match learning should be the strategy of choice when limitsdispaailable.

In addition, we demonstrated that best-match learning can be successfatiged to the func-
tion approximation domain, where the sparse model is replaced by an exgtiot samples. An
interesting result in this domain is that best-match learning, which uses the ssahptecorrect
previous updates, outperforms experience replay, which uses thesaampée set but performs ad-
ditional updates.

Overall, we believe that best-match learning provides an important missingginkebn model-
free and model-based learning and that the methods introduced in this aditdgtate a new
benchmark for reinforcement learning algorithms that are efficient wipeet to both space and
computation.

Acknowledgments

The research reported here is part of the Interactive Collaboratfeemation Systems (ICIS)
project, supported by the Dutch Ministry of Economic Affairs, grant n811803024.

Appendix A. Proof of Theorem 1

Theorem 1 Given the same experience sequence, each Q-value from the cuatertias received
the same number of updates using JIT updates (Equation 3) as usingrregdates (Equation

2078

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

2). However, each Q-value in the update target of a JIT update hasvext an equal or greater
number of updates as in the update target of the corresponding regptiate.

Proof To prove the theorem, we need to prove

U[Qi(s.a)] = U[Qi(st,a)], foralla, (18)
U[Qi_1(St-+1,8)] > U[Qu(St-11,a)], for all a, (19)

whereU [Qy] is the total number of updates a Q-value has received atkirfeom Equation 2 and

3 it follows that for both update typdgs;, a;-) is updated once between timestémnd timestep,
while the Q-values of the other actionssfare not updated during this period. Since this applies
to all visits andU [Qo(s,a)] = U[Qo(s,a)] = O for all s anda, the total number of updates for a
state-action pair is always equal for just-in-time updates and regulatagyaghen the state is the
current state, proving (18).

To prove (19), first assume thag is a returning action, that is,— 1 = t*. In this case clearly
(19) is true. Now, assuneg- is not a returning action, that is;- 1 > t*. From (18) it follows that
U [@t*+1(st*+1,)] =U[Qt+1(St++1,8)]. Sincet —1>t*+1andU [(3] increases monotonically over
time, it follows that (19) is true. When statg , ; is revisited beforé, an extra update is performed
and there is at least one actianfor whichU [Qt_l(sml, a)] > U[Qt(St-+1,8)]. []

Appendix B. Relationship between Best-Match LVM and TDQ)

Sutton and Singh (1994) showed that it is possible to perform TD updaeari unbiased with
respect to the initial values, by using TDhereA is made time-dependent and set equal i).
However, TDQ) can be made unbiased only for acyclic tasks, that is, episodic tasks widvisits
of states within an episode. In this appendix, we prove that best-match MéMagion and TDX)
can lead to the same values for acyclic tasks and that best-match LVM evalgatioperform
unbiased updates for all MDPs.

B.1 Background on TDQ\)

The forward view of TDX) relates it to the\-return (Watkins, 1989; Jaakkola et al., 1994), defined
by
Ri=(1-A) 3 AR,
n=1

)

whereRﬁ” indicates then-step returndefined by

R = Feoa Y2+ Y2rea+ o V" in+y"Vi(Stin) -

The\-return algorithmupdates stats, with R}. It can only be implemented off-line, since it makes
use of values from timesteps larger thafor the update of stats,. While the off-line version of
TD(A) computes the same state values ashteturn algorithm (Sutton and Barto, 1998), T)(
can also be implemented on-line, since it does not rely on values from thre.fu@un-line TD})
can lead to more accurate updates than off-lineAPglthough the interpretation as an incremental

2079

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

implementation of tha-return holds only by approximation for the on-line case (Sutton and Barto,
1998).

The backward view of TDX) interpretsA as the trace decay parameter of an eligibility trace.
Each sample is used to update, not just the current state, but all statesttigpmal to theirtrace
parameter. At each timestep the trace of the current state is increasedthehdther traces are
decreased byA. Accumulating tracefncrease the trace parameter of a visited state by 1, while
replacing tracesset it equal to 1.

Sutton and Singh (1994) proposed several ways for settiagdA that eliminate bias towards
initial state values, normally inherent to temporal-difference methods. Othesé is to use TR
whereA; = a¢(st) andag(s) = 1 for all s. This produces the same values as processing a state
backwards with TD(0). All the proposed methods eliminate the bias only faliadasks.

The equation for tha-return with time-dependeftis (Sutton and Barto, 1998)

Y n—-1
R = Y RY(@Aen) [T
Zl gL
—t-1) n-1 T-t-1
= R™(1—A Aai+ Rt Asis (20)
2

whereT is the last timestep of the episode drds the complete return. Note thf = R%T*t).

B.2 Forward View Best-Match LVM Values

TheA-return is based on the experience sequence encountered by thevagarinteracting with
the environment. We can define for each visited stdéstvisit experience sequenbased on the
LVM by going through the transition states defined in the LVM. Using this secgieve define a
last-visit version of ther-step return and of a special version of Mxeeturn.

Definition 13 The last-visit experience sequence for state s is

Sio)s Fia)» S1)5 12525 -+ F[N)s SN »

where g =s, 5 = S(sp-y) forn>0and 1y = R/(s[n,l]). The sequence ends when a state is
encountered that is terminal, equal tg r that has no transition state. We caljsthe last-visit
sequence end state.

Using this definition, we define a last-visit version of the n-step return.

Definition 14 The last-visit n-step return of s is the n-step return applied to the last-vigitreence
sequence of s:

RY = Y1 + V2T Y i YV ™ (s) (21)

We can now define a special version of Meeturn, which we call thé&ast-visita-return: a last-visit
version of the time dependekireturn (Equation 20) with; = a(st).

Definition 15 The last-visito-return of s is

n-1 N-1

j V1) [a+ /Y ol (22)
n=1 i= i=

2080

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

wherea ¥ is shorthand foro(sy), sy is the K" state from the last-visit experience sequence of s
and N is the index of the last-visit sequence end state.

The following lemma relates the last-visitreturn ofs to the best-match value ef The lemma
is proven in Appendix C.

Lemma 16 If the last-visit sequence end state of s is a terminal state, the following equnatios
for the best-match value of s:

VB(s) = (1—a)V™(s) +aRe.

This lemma forms the basis for the proof of the following theorem.

Theorem 7 For an episodic, acyclic, evaluation task, off-line best-match LVM evalnatonputes
the same values as off-line THWwith A = a(st).

Proof LetVk be the state value function after the off-line updates at the end of episdet® all
states that are visited during an episoddas updated according to Lemma 16, since the last-visit
sequence end state is a terminal state for all these visited states. For lihe afgorithm, before
Vk(s) is computed, the updat(;mf(s) = Wk-1(9) is performed for all visited states. Therefore, the
value updates of the visited states can be written as

Vi(s) = (1—0%) Vi_1(s) + a°RY..

If the task is acyclic, the last-visit experience sequence of a visitedsstagzjual to the experience
sequence followed by the agent from this state to the terminal state. Treefo= R} ~**). Fi-
nally, since the values computed by off-line W) are equal to the values computed by A_esturn
algorithm, off-line TDQ) with A; = a¢(st) performs the same updates as off-line best-match LVM

evaluation. [|

It follows from Theorem 7 that best-match evaluation can also eliminate thefdriasyclic
tasks. The next theorem extends this property to a general MDP.
Theorem 8 The state values computed by the on-line best-match LVM evaluation alggAthm
gorithm 2) are unbiased with respect to the initial state values, when the initialileg rateso(s)
are setto 1 for all s.
Proof Algorithm 2 computes at each timestep the best-match value of the current\&&aisill
prove that if the best-match values of visited states computed at timesteps snaallerthunbiased
with respect to the initial state values, then so is the best-match value comptitedstet. Since
fort = 0 there are no visited states, it follows by induction that the values computell fimesteps
t are unbiased.

The best-match values are computed uSIr‘?Qs[o]) =cCa+ cBVB(s[N]) with ca andcg defined
as in (8) and (9) respectively. In Section 4.2 we showed that for themustate sy, is either
a terminal state or equal &y. If sy is a terminal statevB(s[o}) = Ca, While if s = sy, then
VB(sg) =ca/(1—cg). In either case, the computed best-match value depends only on the &riable
in ca andcg, which consists of the learning ratesr,”f(sm), Sii andrm for 0 <i < N. Clearly, only
me(sm) can be affected by the initial state valusg. has been visited at least once, else it would
not appear in the last-visit experience sequence; Has been visited onc\a!,mf(s[i]) is equal to the

2081

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

initial valueVo(s;)). However, since we assumed initial learning rates of 1, this valtr’éfﬁts[i]) is
removed fromca. If s; has been visited more than once, it is equal to the best-match vasije of
computed at a timestep smaller thtarFrom this it follows that if the best-match values computed
at timesteps smaller thdarare unbiased with respect to the initial values, then so is the best-match
value computed at timestep [|

Appendix C. Proof of Lemma 16

For the sake of brevity, we present only the proof of Lemma 16 for cahataThe proof for state
dependentr follows the same pattern.

Lemma 16 If the last-visit sequence end state of s is a terminal state, the following equnatids
for the best-match value of s:

VEB(s) = (1—a®)V™(s) +aRE.

Proof The best-match values in case of an LVM are defined as the solution oftthiebeest-match
LVM equations (Definition 6). In Section 4.2 we showed that by backwatibttution of best-
match equations we can express the best-match vakyg iof terms of the best-match value)

If s is a terminal state/B(s[N]) =0 andVB(s[o]) is equal toca defined as in (8). This yields

N-1

VE(sq) = ZO((l—a)me) +ari) rLya

= a z ay) g+)k;(ay) VM (s) (23)

On the other hand, by substituting the definitions of the last-digieturn (22) and the last-visit
n-step return (21) into the lemma, the following equation\l@l(s[o}) appears:

N-1 k
VE(s0) = (1-a)V™(sg)+a|(-a) T a (3P v isy))

k=1 p=1
N
oqN-1 p-1; (24)
Zlv ol | -
p:

The rest of this proof shows that (23) is equal to (24).
We start by separating (24) into its state value compon®f)sand its reward component&9).
We then simplify these components separately:

N-1
Ve = (1-a)V™(sg)+a(l-a) 5 ak Tty vM(gy)
k=1

N—-1
- <1—a>(vmf<s[op+kzlwv)kvmf(qkp)

N-1

= (1-a) Y (@y*V™(sy),

k=0

2082

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

N-1 k
1, 1
R = (1-a) zlza yP~]+or zyp
N—1N—1
= 1aZZayp1]+a ZV”l |+ aNyN Ty
=1k=p
N—1r N-T
= Y |Q-a)>a Vplf[pﬁGNVle]*“NVN iy
p=1L K=p
N-1r/N-1 o Nl p
_ l (kza _kz +1+GN>yp1 []]+GNVN 1, N
p= —
N-1r / N N— »
N 1 (kZO(kZ “)yp 1rp}]+aNyN T N
p=1 L \Kk=p =
"N 1 k+1 1, NyN-1,
= 1<Zla1+ ZO(+>Vp []}4-0(\/ N
p=1 L\ j=p
N—1r
=) (xpyp 1 H:|+(XNVN 1 [I

o
Il

N
ay (ay)Pt

p=1

Adding these simplified components back together yields Equation 23. |

Appendix D. Proof of Theorem 10

Theorem 10 The Q-values of a member of the best-match LVM control class, shoftgarithm
3, converge to Qif the following conditions are satisfied:

1. S and A are finite.

2. ai(s,@) €[0,1], Ta¢(s,a) = w0, 5 (a(s,a))? < o with probability 1 (w.p.1)
andai(s,a) = Ounless(s,a) = (st,at).

3. Var{R(s,a,9)} < oo.

4. y< 1.

Proof We prove that the Q-values of an arbitrary instantiation of Algorithm 3 cgavir the limit
w.p.1 to those of the regular Q-learning algorithm. Because the algorithrireedat each visited
state action pair is updated at least once before its revisit, the followingdiequmlds

Q(st.a) = (1—ay(s,a) Q' (s, a) + (s, a) (rt*+1+ mangT,i(stul,a’)) ,

2083

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

wheret* is the timestep of the previous visit ¢§;,a:) and Q; is the Q-value ofsi-1 that is
used in the update target of the last best-match update; @f;), at timestept. Note thatt* +
1 <1 <t. Assume that Q-learning is applied to the same state-action sequencegquduthe
given instantiation of Algorithm 3. We denote the Q-values from Q-learnin@bgubtracting the
update equation for Q-learning at tirtie+ 1 using learning ratei; (s, a;) and definingA(s,a) =

QM (s,a) — v (s a) yields
Arta(s,ar) = (1—ai(st,ar))Ai(st,ar) + e (St, an)Fe(Se,a) (25)

whereF(st,a;) =y (max Qr,i(St++1,¢) — Max Qr: (S+1,0)) -
We now prove thaQtmf andQ converge in the limit to each other using the same lemma used
to prove the convergence of Sarsa (Singh et al., 2000):

Lemma 17 Consider a stochastic process:,At,Ft), t > 0, wherea,At,F : X — IR satisfy the
equations:
Arra(X) = (1= 0 (x)Ac(X) +ar(X)Fe(x)

where xe X and t=0,1,2,.... Let R be a sequence of increasimgfields such thatig and Ag
are R-measurable and;,A; and F_1 are R-measurable, & 1,2,.... Assume that the following
conditions hold:

1. The set Xis finite.
2. ar(x) €[0,1], Jrar(x) =, F(ar(x))? <o wp.l.
3. [[E{Ft|P:}|| < K| At]| +ct, wherek € [0,1) and G converges to zero w.p.1, and
4. Var{F(x;)|P:} < K(1+k|A¢]])?, where K is some constant,
where|| - || denotes a maximum norm. Th&nconverges to zero with probability one.

The correspondence of (25) to Lemma 17 follows from associatinith the set of state-action
pairs(s,a) anda(x) with ai(s,a). We now prove that the 4 conditions hold.

The first two conditions follow from the first two conditions of Theorem Me defineP;
as the se{Qo, 0o, a0, %, ---,Mt—1,0t,at,St ;. With this definition, VafF:(st,a:)|Pt} = 0, satisfying
condition 4, andE{F(st,ar)|P: } = F(st,at). For|F(st,ar)| the following holds:

Fe(st.a)l = yImaxQui(st1,b) —maxQe: (st 1,)|
y| ‘QT,i (U, b) - Qt* (U, b) H
= VlIAc(u,b) + Qui(u,b) — Q" (u,b) |
< ¥l +11Qri(ub) — QT (u b
We further defind~ (s,a) = 0 if (s,a) # (st,at). Therefore||Fi(s,a)|| = |Fi(st,at)| < VY||At|| +Ct,

whereC; = ||Q,i(u,b) — thf(u,b)||. We now show tha€; converges to zero w.p.1. F@%, the
following holds:

IN

Ct < [1Qr,i(u.b) — QM (u, b || +[|Q (u,b) — QM (u, b,

2084

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

wheret* is the timestep of the last visit ¢ti, b) before timestep. Q;(u,b) is the result of a best-
match update oQTTf(u, b) or is equal to it if no best-match update has been performed yet. In the
latter case, the first term is zero; in the former case it is

Qui(u,b) = (1— o (u,b))QM (U, b) + a(u, b)u¥®.

Because of condition 2 of Theorem 1d;(u,b) converges to 0 w.p.1 an@; ;(u,b) converges to
Q{?f(u, b) w.p.1. Therefore, the first term converges to O w.p.1. For the sameneifigosecond
term converges to zero.

Thus, the third condition of the lemma also holds &(s,a) converges tcﬁ(s, a), the Q-
values from Q-learning. Because of the convergence guarantedeafr@ng,Q™ (s, a) also con-
verges toQ*(s,a). Finally, since the Q-values of the given instantiation are a best-match update
of QMf(s,a) and becausa(s,a) converges to zero w.p.1, this also proves that the Q-values of the
instantiation converge tQ*. |

Appendix E. Proof of Theorem 12

Theorem 12 The Q-values of a member of the best-match NTM control class, shoMgdrithm
5, converge to Qif the following conditions are satisfied:

1. S and A are finite.

2. a2 [0,1], Tafd=o0, ¥ (a$¥? < oo with probability 1 (w.p.1),
anda?=0unless(s,a) = (st,a;) and §4+1 ¢ NTM(st, at).

3. Var{R(s,a,5)} < co.

4. y<1.

E.1 Preliminaries

In this proof, we indicate the NTM by//. Also, we indicate the model-free Q-valu@™', by Q.
In addition, we use a single iteration indgfor Q as well asQ. This global index is increased each
time an update (of eith@ or Q) occurs. Thusj is equal to the total number of model-free updates
plus best-match updates that have occurred since the start of an epiSledey,t — o« implies
j = oo.

By denoting the state-action pair that gets updated byj#theupdate ags;,a;), we can write
the model-free (mf) update as

Qjra(s),aj) = (1—a¥)Qj(sj,a)) +a¥ [rj 1 + ymaxQ;(sj1,8)] (26)

wherer;j1 ands'jJrl are the reward and transition state from the saniglg,ri,1,St+1) corre-
sponding ta(sj, ;). We uses;, ; instead ofsj, 1, sinces; , ;, the transition state fag;, is in general
not equal tcsj 1, the state that receives an update at iteration jstep. The best-match (bm) update
is

sj aj < SEY
Qj+1(sj,a5) =Wy ' Qj(sj,a5) + (L —wy ™)

fisjaj + yg i’fjaj mangj (s, a’)] :

2085

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

Note that there is no specific sample corresponding to a best-match upoegahs update is based
on the model estimate and can occur multiple times per timestep.

Let P = Fycar P If P2 =0, w§? will always be 1 and the best-match update reduces to
Qj+1(sj,aj) = Qj(sj,aj). We make this explicit by the following equation:

Qj(sj, ay) if P2 =0

27
Yj(sj,aj) if TS%;[>O, (27)

Qj+a(sj,aj) = {

with
Yi(si ai) = w0 (s +(1— SJaJ " ps (d.d
j(sj,a)) =Wy ' Qj(sj,a)) + () staj‘f‘yg sjajmat?‘XQJ(a)| -

Each time a sample is observed by the algoritgets updated. In addition, when the sample
is part of M, R and P get updated. Therefore, the values of these variables can chaivggehe
iteration steps. However, for readability, we omit thesubscript for these variables. From the
definition of wp, ‘J{ and?, and the law of large numbers, it follows that in the limit the following
holds?

limws® = 1—2, (28)

j—reo

j”_rgoﬂsa = z aR-sa/ sa » (29)
geM

im 25, = P5%/P (30)

j—oo

In general, the model-free Q-value®, will not converge toQ*, since they do not receive
updates from samples corresponding to the next states stored by theHiolidyver, as part of the
proof, we show that the model-free Q-values converge to an alternative, which we indicate by
Q*. This value is defined &s

Q(sa) = Y PH[RL+YmaxQ'(s,a)]/(1-). (31)
SEM a
Using this equation, we can expré3sas

Q(sa) = 3 PYHRGTYMaQ(S.&)]+ Y PRI +ymaxQ(s.a)]

SEM sem

= (-2 (s + 5 BHRZ+ymaxQ'(s,d)]. (32)
seM a

Note that it follows from (32), that
Q*(sa)=0Q"(s.a), if PX =0. (33)

Convergence oQ; to Q* requires convergence 63,- to Q* and vice versa. To deal with this
mutual dependence relation, we simultaneously prove their convergemeehieve this, we define

7. Note thatf{sa andﬁ’sa do not converge t& ¢, and®S,, but to normalized values of these variables.

8. For?M — 1, that is, when all samples are stored by the NT¥I(s, a) is not defined. However, in this cas{@(s a)
does not receive any updates nor is it used by any other updateefditee we can safely ignore the val@eés a),
and consequenti* (s a), if P2 =1.

2086

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

a functionU : S x 4 x B — IR that encompasses both functic@andQ. B is a set consisting of
only two elements: ‘mf’ and ‘bm’, which indicate th@-value type We definel; as

Qj(sa) ifb = ‘mf’

Qj(s,a) if b="bm’. (34)

Uj(s,a,b) = {
Both updates (26) and (27) can now be interpreted as updatggsfa;,b;). It follows from (34)

that when the model-free update is performgd; ‘mf’, while for the best-match updatg = ‘bm’.
We will prove convergence d&f; to U, defined as

Q*(s,a) if b = ‘mf’

U*(s,a,b) = {Q*(S,a) ifb="‘bm’.

The difficulty with this proof is that we cannot simply apply Lemma 17 (or similartsistic
approximation lemmas), used to prove convergence of BM-LVM, sinc& the;(x;))? < « con-
dition of Lemma 17 is not met for b = ‘bm’. On the other hand, a related lemma caledeced
(see Appendix F), that does not requife(a(x;))? < =, however, it requires that the contraction
condition holds for the value d¥;, instead of its expected value. Hence, also this lemma cannot be
directly applied.

To deal with this, we define a related functidh, that does comply with thg (¢ (x¢))2 < o
condition, hence we can prove convergence of itousing Lemma 17. On the other hand, the
difference betweehlj/ andU; complies with all the conditions of Lemma 20, hence we can prove
thatU; converges td)Jj’ using Lemma 20. Adding these two results together, proves the theorem.

We defineJ; as
Y if b = ‘mf’
Ui(s,a,b) = Qs !b m
Q(sa) ifb="bm’.

Q andQ are updated using the same sample sequence as us@dnaiQ. The update fof) is
Q1a(s),a)) = (1—a¥)Qj(sj,a)) + a5 [ri+a+ymaxQj(sj.1,a)],

while the update fof) is

[

Qi(sj,aj) if P2 =0

35
(1- staj)Q'j(Sj,aj) +stanj,(Sj7aj) if fPS%/[>0, (35)

QljJrl(Sj) aJ) = {
with

s;.aj X sa;
Yj’(sj,aj) =Wy 'Q/J-(Sj,aj)-i-(l—WOJ D)

j\(.sjaj +y§ fi)ssjlaj ma,aXQlj (SI7 a/)] .

Note that the only difference with the updates@fndQ is the wayQ is updated forr2! > 0.
Instead of setting}’jﬂ(sj,gj) equal toYj(sj, q;), it is set equal to a weighted averag_eY(p(sj,aj) _
andQ’j (sj,aj). The weighting is controlled b;, which is an arbitrary learning rate with properties
Bre (0,1, yjBr=w, zj(Bjsa)z <o w.p.l., and3y®=0 unless(s,a) = (sj,a;j) andb; = ‘bm’.9
Because of this learning rate, Lemma 17 can be used to prove convelcg‘&ﬂdo u*.

9. Note that such g always exists.

2087

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

E.2 Convergence olj to U~

Lemma 18 Uj(s,a,b) converges in the limit to Us,a, b) w.p.1.

Proof We defined'(s,a,b) = Uj(s,a,b) —U;(s,a,b) and will prove that\'(s,a,b) converges to 0
using Lemma 17. Fdp; = ‘bm’, we use the contraction facter®? defined as

k2= (1— P2 4+ ypd (36)

To ensure that$2 < 1, P2 has to be larger than 0. Therefore, we excl(gla, b) triples for which

b= ‘bm’ A 2 = 0 from the domain of\. This can be done, because Algorithm 5 states that at
least one best-match update occurs in between two model-free update®fors, ifTsf’g[=0,
Qj(s,a) is either equal th’J (s,a) or one (model-free) update apart. Sirecg converges to 0, it
follows thatQ) (s, a) converges in the limit t@’l (s,a). Alternatively, we can say

Qi(sa)=Qj(sa+cj(sa), if 2y =0, (37)
with ¢/ (s,a) converging to 0 w.p.1? Combining this with (33), the following holds:

im Qj(sa) =Q'(sa) = lmQj(sa)=Q'(sa), if & =0. (38)

jow

Note,||Q; — Q*|| < /4] ||. However, because of the exclusion(fa,'bm’) triples with#3! =0,
1Q; — Q|| < [|A;j]| does not hold in general. Instead, the following holds:

||Q/J_Q*|| maX(HQ/J_Q*HPSV‘E"[>O7||Q/J_Q*HP££[:0)

< max(|Q} ~ Q llparoo 19} — & lparo + 16§11
< max(|u] — U], U] —U*] + 1)

— U} U+

= Xl+1g)-

Because of the exclusion of tig a, b) triples mentioned above, for i, a,‘bm’) triples in the
domain of2;, P > 0.
Aj is updated according to

Ij+l(s7 a, b) = (1 - Z/J (37 a, b))Alj (Sa a, b) + Z/J (Sv a, b) Fj/(s7 a, b) :

For (s,a,b) # (sj,aj,bj), {j(s,ab) = 0 andF|(s,a,b) = 0. For(sj,aj, b;) the following holds:

Sja;j . . ,
a; if b; = ‘mf
K :{ Sa it b, = bm

J)
F(sj.ay,bj) = rivatymaxy Q(s),1.2) — Q'(s).a)) if by = 'mf’
| Yi(si.ay) —Q(s;,3) if bj =bm’.

10. We use the notational convention to indicate variables that convergeith @robability 1 with lowercase, Latin
letters: c, d, e,

2088

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

We now prove thaA’j converges to zero, by showing the conditions for Lemma 17 hold, using
the o-field P;, defined a%

P = {Qb Qb 20,Wo0, Po, Ro,%,0}
Pi = Pi_1in{r;,s;,{j,woj, P, RS, a5}
Conditions 1, 2 and 4 of the Lemma 17 follow from conditions 1,2, and 3 of l@md.2 and the

conditions that hold fijsa. Condition 3 of the lemma, we prove below.
Forb; = ‘'mf’, using (31), the following holds:

‘E{Fj,(siaaj"mf’ﬂpj}l = ’ z fPSSj/aj [K-gjaj'i‘yma‘:’lelj(S,va,)]/(l TS?/C{IJ) Q*(Sjaai)
&N

VY 7,
SEM
ylIlQ; — Q7|

IR (39)

/'(Slva/) —mang*(s',a’) /(1 EPsg‘/élj)

<
<

Forbj = ‘bm’, using (32), we can write
F{(sj,aj,'om’)| = [Y{(sj,aj) - Q"(sj, &)
< J(L-255)(Qi(s)a) —Q(s),a))

+y Y S, [maxQ)(s,d) —maxQ(s,d)]
seM ¥ ¥

Sja, M <
| [wE - - 23] Gitsa)|
sa < g
+ (J J)staj z (—sta,-g(.sjaj
seM
sa g <
+ V‘ z [(1 JJ)fps,aJ (staj]'ma,aXQ/j(Slaa/) :
seMm

The sum of the last three terms we adl(s;, a;). By substituting (28), (29) and (30) in these three
terms, it follows that lin),« dj(sj, aj) = 0. We can further bouni; (s;, a;,'bm’)| as follows:

IFj(sj,a,'om’)] < (1- sjaj)llQJ Q|+ Y25, Q) — Q' +dj(si,)

< (@R8I +y R (121 + e) + dj (s ay)
< (1 fs?é, VRIS) I+ v R3S 11+ o (51, ay)
S 1% | +y 225 (165 | +lj(5p.). (40)

Note|[c]|, as well agj(sj,a;), converge to 0. Note also thati® < 1, since?? > 0 andy < 1.
From (39) and (40) it follows that the third condition of Lemma 17 is also satisfldence, all
conditions hold antztx’j converges to 0 w.p.1. Combining this with (38), proves Lemma 18.

[|

11. There is no explicit sample related to a best-match update. For coogjste define; =0 ands’j =0if bj_y ="bn.

2089

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

E.3 Convergence otJj to Uj
Lemma 19 Uj(s, a,b) converges in the limit to pgs, a,b) w.p.1.
Proof We defineA(s,a,b) = UJ-’(S, a,b) —Uj(s,a,b) and will prove thatA(s,a,b) converges to 0

using Lemma 20. We excluds, a,‘bm’) triples for which?3 = 0 from the domain of\. Similar
to the reasoning behind (38) and (37), we can deduce

Qj(S,a):éj(S,a)—FCj(S,a), if Lpsﬂe/l[zoa

with c;(s,a) converging to 0 in the limit, as well as

lim (Q’j(s,a)—(jj(s,a)) =0 = jIi_r)rgo (Q’j(s,a) —Q,-(s,a)) =0, ife¥=0. (41

jroo

Note, ||Q; — Qjl| < [|Aj]|. However,|Q; — Qj|| < ||Aj|| does not hold in general, because of the
exclusion of (s,a,'bm’) triples witl?g = 0 from the domain of\;. Instead, the following holds:

19~ Qi = max(|Q; — Qillpar-o: 19} — Qi llpar o)

max{(|Q} - Qillpar-o0 19, — Syllparo + llci | + 161
max U] — Uj |, [Juf —U* [+ lics | + 1§)

= U] Uil lleil + I

—)l +¢,

IA A

with ¢f = [|cj|| +[c]|| converging to O w.p.1.
For LPS% > 0 we can rewrite (35) as

Qa(sha) = (1-B)Q(s.a)) +BY/(s),a)
= Y{(sj,a)) + (1—B3%)[Qj (s}, a)) — Y| (s}, a)].

In Section E.2 we proved tha¥j(s,a,'bm’) = Q'(s,a) — Q*(s,a)j converges to 0 w.p.1. On the
other hand, it follows from (40), thd(s;,a;,'bm’), which is equal tor (s}, aj) — Q*(sj, &), also
converges to O w.p.1. Therefore, baifi(s;,aj) andYj(sj,a;) converge to the same value, so we
can write
Qi.a(sia) =Y](s;,8) +ej(s;,), if B >0,
with e;(s;j,a;) converging to 0 w.p.1.
Aj is updated according to

Ajr1(s,a,b) = (1-i(s,a,b))Aj(s,a,b) +{j(s,a,b)Fj(s,a,b).

For (s,a,b) # (sj,aj,bj), {j(s,a,b) =0 andF(s,a,b) = 0. While for (s;j,a;j,bj) the following
holds:

Sjq;j . . ,
o if bj = ‘'mf
Ci(sj,aj,bj) {1 it by = ‘b,
and
Fi(sj,aj,bj) = {ym%lQ/j(ng’a/) Ym0, 8 by = "mf
Yj’(sj,aj) —Y/(sj,aj,bj) +e€j(sj,a;) if bj =‘bm’.

2090

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

We now check the three conditions of Lemma 20. Conditions 1 and 2 from the |éofiowa
from conditions 1 and 2 of Theorem 12. Condition 3, we prove below.
Forb; = ‘'mf’, the following holds:

‘Fj (Sj’ajv‘mf’ =y ma,aXQ/j (S/jJrl’a/) - ma,aXQj (Slj+l7a/)

v —Ql
ylla; [+ve (42)

IN A

while for bj = ‘bm’, we can write
IFi(sj,ay,'om’)[= [Y{(sj,aj) —Yj(sj, &) +€j(sj,aj,bj)]
< W |Qj(s,a)) — Qj(sj)|+ lej(sj,ay)| +
y(1-wg™) ;i’sﬁ-aj
< wWo 1A+ Y (L —wg 1A]|+ lej (s, a)) |+ V(L —wg ™)
= (@ 285)+y225) 18] + ley(s;,)|+ V(L - wg™) & +

maxQ; (s, &) — maxQj(s,a’)
a a

(Wg™ +y(L—w§™) — (1238) — 22t) Iy
We define
filsa) = (Wg™¥+y(@—wg™) — (1—230) - vedl) Iy
+lej(sj,a))| +y(L—wg™¥)c].
Note that lim_. f; = 0, sinceej andc] converge to 0 andiy® converges to @ggj. Using this
definition and (36), we can write
IFi(sj,aj, 'bm")| <k [Aj]|+ fj (s}, ay). (43)

Note thatksi% < 1. From (42) and (43) it follows that the third condition of Lemma 20 is also
satisfied. Hence, all conditions hold afigiconverges to 0 w.p.1.Combining this with (41), proves
Lemma 19. |

E.4 Proof of Theorem 12

BecauseUJf converges td&J* (Lemma 18) andJ; converges tduj’ (Lemma 19), it follows that also
Uj converges tdJ*. From this it follows thaQ converges t®*, proving Theorem 12.

Appendix F. Lemma 20

Lemma 20 Consider a stochastic process:,At,Ft), t > 0, wherea,At,F : X — IR satisfy the
equations:
Ar1(X) = (1— 0 (X)At(X) + ot (X)Fe(X)

where xe X andt=0,1,2,.... Assume that the following conditions hold:

2091

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

1. The set X is finite.
2. 0¢(x) =1[0,1], S a(x) = oo.
3. ||Ft|| < K||At]| + ct, wherek € [0,1) and G converges to zero w.p. 1,

where|| - || denotes a maximum norm. Th&nconverges to zero with probability one.

Note that this lemma is similar to Lemma 17, but the conditions for the learning ratéssare
strict (3 (at(xt))? < o is missing), while the condition fdF; is more strict (condition 3 uses the
value ofF; instead of its expected value).

Proof The outline of this proof is that we define a related prodgsthat converges to 0 and show
that||A¢|| < ||At]| for allt. We will ignorec; in this proof. This can be safely done, sirgeonverges
to zero,k < 1 andy ;a¢(x) = o for all x. Therefore, this term is asymptotically unimportant.

We definedy(x) = ||Ao|| for all x. Fort > 0, A{(x) is defined as

(%) = (1= Be()Ae(X) + Be(X)K[[AL, (44)
with Br(x) < a¢(x) andBi(x) € [0,1], TBt(X) =, T{(Bt(X))? < oo w.p.1. It follows from (44)
that ||A}, 4[| < [|At]]. It also follows that ifA}(x) > K||A¢]| thenAf, ;(X) > K||At]| > K[|A¢4]|. And
sincely(x) > K||Ap]| it follows that

A (X) > k[Agl, forallt, (45)

Using Lemma 17, it can easily be shown thatonverges in the limitto O w.p.1.
We now prove thaflA¢|| < ||At]| for all t. We start by proving

At(X)] <AL(x) forallx = [Aga(X)| <AL (x) forall x. (46)
Assuming the left part of (46), fdA;,1(x)| the following holds:

[Be1(X)] (1o (x)[Ae(x¥)]+ar () k][Ad]

< t
< (I—ar(x)AL(X) + o () K[AL -
Since (45) ang8;(x) < a¢(x), we can continue as

(1= Be(x)A¢(X) + B (X) K]|AL]|

(%) -

Brra(X)] <
<

This proves (46). And sincio(x)| < Aj(X), it follows that |A¢(x)| < Aj(x) holds for allt, and
hence||A¢|| < ||AL|| proving the lemma. [|

2092

EXPLOITING BEST-MATCH EQUATIONS FOREFFICIENT REINFORCEMENTLEARNING

References

C.G. Atkeson, A.W. Moore, and S. Schaal. Locally weighted learniugificial Intelligence Re-
view, 11(1):11-73, 1997.

R.E. Bellman.Dynamic ProgrammingPrinceton University Press, Princeton, NJ., 1957.

J. Boyan and A.W. Moore. Generalization in reinforcement learningel$approximating the
value function. InAdvances in Neural Information Processing Systeni®995.

R.l. Brafman and M. Tennenholtz. R-max: A general polynomial time algorfdmnear-optimal
reinforcement learningJournal of Machine Learning Resear$1213-231, 2002.

C. Diuk, L. Li, and B.R. Leffler. The adaptive k-meteorologists problem &@s application to
structure learning and feature selection in reinforcement learning®rdoeedings of the 26th
Annual International Conference on Machine Learni@g09.

D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode @nient learning.Journal of
Machine Learning Research(1):503-556, 2005.

T. Jaakkola, M.I. Jordan, and S. Singh. On the convergence ofastticliterative dynamic pro-
gramming algorithmsNeural Computation6:1185—-1201, 1994.

L.P. Kaelbling, M.L. Littman, and A.P. Moore. Reinforcement learning: Avewyr Journal of
Artificial Intelligence Researcht:237-285, 1996.

M. Kearns and S. Singh. Finite-sample convergence rates for Q-lgaainth indirect algorithms.
Advances in Neural Information Processing Systeris996—1002, 1999. ISSN 1049-5258.

M. Kearns and S. Singh. Near-optimal reinforcement learning in polyrdimia. Machine Learn-
ing, 49(2):209-232, 2002.

M.G. Lagoudakis and R. Parr. Least-squares policy iteratimurnal of Machine Learning Re-
search 4:1149, 2003.

L.J. Lin. Self-improving reactive agents based on reinforcement legrpianning and teaching.
Machine Learning8(3):293-321, 1992.

A. Moore and C. Atkeson. Prioritized sweeping: Reinforcement learwitiy less data and less
real time.Machine Learning13:103-130, 1993.

M. L. Puterman and M. C. Shin. Modified policy iteration algorithms for dis¢edmMarkov deci-
sion problemsManagement Scienc4:1127-1137, 1978.

G.A. Rummery and M. Niranjan. On-line Q-learning using connectionist syst&echnical report,
Tech. rep. CUED/F-INENG/TR166, Cambridge University, 1994.

S. Singh, T. Jaakkola, M.L. Littman, and C. Szepesvari. Convergesstdts for single-step on-
policy reinforecement-learning algorithmglachine Learning38:287-308, 2000.

A.L. Strehl and M.L. Littman. A theoretical analysis of model-based intersaimtion. InPro-
ceedings of the 22th International Conference on Machine Leaypages 856—863, 2005.

2093

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

A.L. Strehl, L. Li, E. Wiewiora, J. Langford, and M.L. Littman. PAC modekdrreinforcement
learning. InProceedings of the 23rd International Conference on Machine Legrpiages 881—
888, 2006.

R.S. Sutton. Learning to predict by the methods of temporal differerddashine Learning3(1):
9-44, 1988.

R.S. Sutton. Integrated architectures for learning, planning, and rgdmsed on approximating
dynamic programming. IRroceedings of the 7th International Conference on Machine Leayning
pages 216—224, 1990.

R.S. Sutton. Generalization in reinforcement learning: Successful égamping sparse coarse
coding. InAdvances in Neural Information Processing Systenmages 1038—-1045, 1996.

R.S. Sutton and A.G. BartoReinforcement Learning: An IntroductiorMIT Press, Cambridge,
Massachussets, 1998.

R.S. Sutton and S.P. Singh. On step-size and bias in temporal-differenc@dedn Proceedings
of the 8th Yale Workshop on Adaptive and Learning Systt@®s!.

C. Watkins. Learning from Delayed Reward$?hD thesis, King's College, Cambridge, England,
1989.

C. Watkins and P. Dayan. Q-learniniglachine Learning8(3-4):9—44, 1992.
M. Wiering and J. Schmidhuber. Fast online\Q(Machine Learning33:105-115, 1998.

2094

