
Journal of Machine Learning Research 12 (2011) 2095-2119 Submitted 12/10; Revised 5/11; Published 6/11

Information Rates of Nonparametric Gaussian Process Methods

Aad van der Vaart AAD @FEW.VU .NL

Department of Mathematics
VU University Amsterdam
De Boelelaan 1081
1081 HV Amsterdam
The Netherlands

Harry van Zanten J.H.V.ZANTEN@TUE.NL

Department of Mathematics
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven
The Netherlands

Editor: Manfred Opper

Abstract

We consider the quality of learning a response function by a nonparametric Bayesian approach
using a Gaussian process (GP) prior on the response function. We upper bound the quadratic risk
of the learning procedure, which in turn is an upper bound on the Kullback-Leibler information
between the predictive and true data distribution. The upper bound is expressed in small ball prob-
abilities and concentration measures of the GP prior. We illustrate the computation of the upper
bound for the Mat́ern and squared exponential kernels. For these priors the risk, and hence the
information criterion, tends to zero for all continuous response functions. However, the rate at
which this happens depends on the combination of true response function and Gaussian prior, and
is expressible in a certain concentration function. In particular, the results show that for good
performance, the regularity of the GP prior should match theregularity of the unknown response
function.

Keywords: Bayesian learning, Gaussian prior, information rate, risk, Matérn kernel, squared
exponential kernel

1. Introduction

In this introductory section we first recall some important concepts from Gaussian process regres-
sion and then outline our main contributions.

1.1 Gaussian Process Regression

Gaussian processes (GP’s) have become popular tools for making inference about unknown func-
tions. They are widely used as prior distributions in nonparametric Bayesianlearning to predict a
responseY ∈ Y from a covariateX ∈ X . In this approach (cf. Rasmussen and Williams, 2006) a
response functionf :X → Y is “a-priori” modelled by the sample path of a Gaussian process. This
means that for every finite set of pointsx j in X , the prior distribution of the vector( f (x1), . . . , f (xn))
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is multivariate Gaussian. As Gaussian distributions are completely parameterized by their mean and
covariance matrix, a GP is completely determined by itsmean function m:X → R andcovariance
kernel K:X ×X → R, defined as

m(x) = E f (x), K(x1,x2) = cov
(

f (x1), f (x2)
)

.

The mean function can be any function; the covariance function can be any symmetric, positive
semi-definite function. Popular choices are the squared-exponential and Mat́ern kernels (see Ras-
mussen and Williams, 2006), or (multiply) integrated Brownian motions (e.g., Wahba, 1978; Van der
Vaart and Van Zanten, 2008a). The first two choices are examples ofstationaryGP: the correspond-
ing covariance function has the formK(x1,x2) = K0(x1−x2), for some functionK0 of one argument
and hence the distribution of the random functionx 7→ f (x) remains the same under shifting its argu-
ment. By Bochner’s theorem the stationary covariance functions onX =R

d correspond one-to-one
to spectral distributions(see below for the examples of the squared-exponential and Matérn kernels,
or see Rasmussen and Williams, 2006).

In Gaussian process learning the regression functionf is modeled as a GP and conditionally
on f , observed training data(X1,Y1), . . . ,(Xn,Yn) are viewed as independent pairs that satisfyYi =
f (Xi)+εi , for noise variablesεi . If g denotes the marginal density of the covariatesXi and forµ∈R,
pµ denotes the density ofµ+ εi , then conditional on the GPf the pairs(Xi ,Yi) are independently
generated according to the probability density(x,y) 7→ pf (x)(y)g(x). If the errors are normal with
mean 0 and varianceσ2 for instance, we havepµ(y) = (2πσ2)−1/2exp(−(y−µ)2/(2σ2)). By Bayes’
rule, the posterior distribution forf given the training data is then given by

dΠn( f |X1:n,Y1:n) ∝
n

∏
i=1

pf (Xi)(Yi)dΠ( f ),

wheredΠ( f ) refers to the prior distribution, andZ1:n is short for the sequenceZ1, . . . ,Zn. After
computation (see for instance Rasmussen and Williams, 2006 for methodology), the posterior dis-
tribution may be used to predict new responses from covariate values.

1.2 Quantifying Performance

A common approach to assessing the performance of nonparametric Bayes methods is to assume
that the data are in actual fact generated according to a fixed, “true” regression functionf0 and to
study how well the posterior distribution, which is a distribution over functions, approximates the
target f0 as the number of training datan tends to infinity.

The distance of the posterior to the truth can be measured in various ways. Seeger et al. (2008)
discussed the performance of this method in terms of an information criterion due to Barron (1999).
They consider the quantity

Ef0
1
n

n

∑
i=1

KL
(

pf0(Xi),
∫

pf (Xi)dΠi−1( f |X1:i−1,Y1:i−1)
)

. (1)

HereKL(p,q) =
∫

log(p/q)dP denotes the Kullback-Leibler divergence between two probability
densitiesp andq, so that the terms of the sum are the Kullback-Leibler divergences between the
densityy 7→ pf0(Xi)(y) and theBayesian predictive density y7→ ∫

pf (Xi)(y)dΠi−1( f |X1:(i−1),Y1:i−1)
based on the first(i −1) observations, both evaluated for fixed covariateXi . The expectation Ef0
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on the far left is relative to the distribution of(X1,Y1), . . . ,(Xn,Yn). Seeger et al. (2008) obtain a
bound on the information criterion (1), which allows them to show for several combinations of true
regression functionsf0 and GP priorsΠ that this tends to zero at a certain rate in the number of
observationsn.

The information criterion (1) is the Cesàro average of the sequence ofprediction errors, for
n= 1,2, . . .,

Ef0KL
(

pf0(Xn+1),
∫

pf (Xn+1)dΠn( f |X1:n,Y1:n)
)

.

By concavity of the logarithm and Jensen’s inequality (or the convexity of KL in its second argu-
ment), these are bounded above by therisks

Ef0

∫
KL

(

pf0(Xn+1), pf (Xn+1)

)

dΠn( f |X1:n,Y1:n). (2)

The KL divergence between two normal densities with meansµ1 andµ2 and common varianceσ2 is
equal to(µ1−µ2)

2/(2σ2). Therefore, in the case of normal errors, withpf the density of the normal
distribution with meanf and varianceσ2, the risks reduce to

1
2σ2Ef0

∫
‖ f0− f‖2

2dΠn( f |X1:n,Y1:n), (3)

where ‖ · ‖2 is the L2-norm relative to the distribution of the covariateXn+1, that is,
‖ f‖2

2 =
∫

f 2(x)g(x)dx, andσ2 is the error variance.
Barron (1999) suggested to use the information criterion (1) as a discrepancy measure, because

the risks (2) sometimes behave erratically. However, the risks measure the concentration of the
full posterior (both location and spread) near the truth, whereas the prediction errors concern the
location of the posterior only. Furthermore, taking Cesàro averages may blur discrepancies in the
individual prediction errors. We will show that the present situation is in fact notone where the risk
(2) behaves badly, and this bigger quantity can be bounded instead of theinformation criterion (1).

If the risk (3) is bounded byε2
n for some sequenceεn → 0, then by another application of Jensen’s

inequality the posterior mean E( f |X1:n,Y1:n) =
∫

f dΠn( f |X1:n,Y1:n) satisfies

Ef0

∥

∥E( f |X1:n,Y1:n)− f0
∥

∥

2
2 ≤ ε2

n. (4)

Thus the posterior distribution induces a “point estimator” that approximatesf0 at the rate sameεn.
It follows that a boundε2

n on the posterior risk (3) must satisfy the same fundamental lower bound as
the (quadratic) risk of general nonparametric estimators for the regression function f0. Such bounds
are usually formulated asminimaxresults: for a given point estimator (for example the posterior
mean) one takes the maximum (quadratic) risk over allf0 in a given “a-priori class” of response
functions, and shows that this cannot be smaller than some lower bound (see, e.g., Tsybakov, 2009
for a general introduction to this approach). Typical a-priori classesin nonparametric learning are
spaces of “smooth” functions. Several variations exist in the precise definition of such spaces,
but they have in common a positive parameterβ, which measures the extent of the smoothness or
“regularity”; this is roughly the number of times that the functionsf0 are differentiable. It is known
that if f0 is defined on a compact subset ofR

d and has regularityβ > 0, then the optimal, minimax
rateεn is given by (see, e.g., Tsybakov, 2009)

εn = n−β/(2β+d). (5)
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It follows that this is also the best possible bound for the risk (3) iff0 is aβ-regular function ofd
variables. Recent findings in the statistics literature show that for GP priors, it is typically true that
this optimal rate can only be attained if the regularity of the GP that is used matchesthe regularity
of f0 (see Van der Vaart and Van Zanten, 2008a). Using a GP prior that is toorough or too smooth
deteriorates the performance of the procedure. Plain consistency however, that is, the existence of
somesequenceεn for which (4) holds, typically obtains forany f0 in the support in the prior.

Seeger et al. (2008) considered the asymptotic performance for the Matérn and squared expo-
nential GP priors, but we will argue in the next subsection that using their approach it is not possible
to exhibit the interesting facts that optimal rates are obtained by matching regularities and that con-
sistency holds for anyf0 in the support of the prior. In this paper we will derive these results by
following a different approach, along the lines of Ghosal et al. (2000)and Van der Vaart and Van
Zanten (2008a).

1.3 Role of the RKHS

A key issue is the fact that Seeger et al. (2008) require the true response functionf0 to be in the
reproducing kernel Hilbert space (RKHS) of the GP prior. The RKHS of a GP prior with zero mean
function and with covariance kernelK can be constructed by first defining the spaceH0 consisting
of all functions of the formx 7→ ∑k

j=1ciK(x,yi). Next, the inner product between two functions in
H0 is defined by

〈

∑ciK(·,yi),∑c′jK(·,y′j)
〉

H
= ∑∑cic

′
jK(yi ,y

′
j),

and the associated RKHS-norm by‖h‖2
H
= 〈h,h〉

H
. Finally, the RKHSH is defined as the closure

of H0 relative to this norm. Since for allh∈H0 we have thereproducing formula

h(x) = 〈h,K(x, ·)〉
H
,

the RKHS is (or, more precisely, can be identified with) a space of functionson X and the repro-
ducing formula holds in fact for allh∈H. (For more details, see, e.g., the paper Van der Vaart and
Van Zanten, 2008b, which reviews theory on RKHSs that is relevant forBayesian learning.)

The assumption thatf0 ∈H is very limiting in most cases. The point is that unless the GP prior
is a finite-dimensional Gaussian, the RKHS is very small relative to the support of the prior. In the
infinite-dimensional case that we are considering here the probability that adraw f from the prior
belongs toH is 0. The reason is that typically, the elements ofH are “smoother” than the draws
from the prior. On the other hand, the probability of a drawf falling in a neighbourhood of a given
continuousf0 is typically positive, no matter how small the neighbourhood. (A neighbourhood
of f0 could for instance be defined by all functions with| f (x)− f0(x)| < ε for all x, and a given
ε > 0.) This means that prior draws can approximate any given continuous function arbitrarily
closely, suggesting that the posterior distribution should be able to learn anysuch functionf0, not
just the functions in the RKHS.

Example 1 (Integrated Brownian motion and Matérn kernels) It is well known that the sample
paths x7→ f (x) of Brownian motion f have regularity1/2. More precisely, for allα ∈ (0,1/2)
they are almost surely Ḧolder continuous with exponentα: sup0≤x<y≤1 | f (x)− f (y)|/|x− y|α is
finite or infinite with probability one depending on whetherα < 1/2 or α ≥ 1/2 (see, e.g., Karatzas
and Shreve, 1991). Another classical fact is that the RKHS of Brownianmotion is the so-called
Cameron-Martin space, which consists of functions that have a square integrable derivative (see,
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e.g., Lifshits, 1995). Hence, the functions in the RKHS have regularity1. More generally, it can
be shown that draws from a k times integrated Brownian motion have regularity k+ 1/2, while
elements from its RKHS have regularity k+ 1 (cf., e.g., Van der Vaart and Van Zanten, 2008b).
Analogous statements hold for the Matérn kernel, see Section 3.1 ahead. All these priors can
approximate a continuous function f0 arbitrarily closely on any compact domain: the probability
thatsupx | f (x)− f0(x)|< ε is positive for anyε > 0.

We show in this paper that if the true response functionf0 on a compactX ⊂ R
d has regularity

β, then for the Mat́ern kernel with smoothness parameterα the (square) risk (3) decays at the rate
n−2min(α,β)/(2α+d). This rate is identical to the optimal rate (5) if and only ifα = β. Because the
RKHS of the Mat́ern (α) prior consists of functions of regularityα+1/2, it contains functions of
regularityβ only if β ≥ α+1/2, and this excludes the caseα = β that the Mat́ern prior is optimal.
Thus if it is assumed a-priori thatf0 is contained in the RKHS, then optimality of Bayesian learning
can never be established.

A second drawback of the assumption thatf0 ∈ H is thatconsistency(asymptotically correct
learning atsomerate) can be obtained only for a very small class of functions, relative to the support
of the GP prior. For instance, Bayesian learning with a Matérn(α) prior is consistent for any con-
tinuous true functionf0, not only for f0 of regularityα+1/2 or higher. For the square-exponential
process restricting tof0 ∈H is even more misleading.

Example 2 (Squared exponential kernel)For the squared exponential GP on a compact subset of
R

d, every function h in the RKHS has a Fourier transformĥ that satisfies
∫

|ĥ(λ)|2ec‖λ‖2
dλ < ∞

for some c> 0 (see Van der Vaart and Van Zanten, 2009 and Section 3.2 ahead). In particular, every
h∈H can be extended to an analytic (i.e., infinitely often differentiable) function onC

d.

Hence for the squared exponential kernel, restricting tof0 ∈ H only proves consistency for
certain analytic regression functions. However, the support of the process is equal to the space of
all continuous functions, and consistency pertains for every continuous regression functionf0.

A third drawback of the restriction tof0 ∈ H is that this is the best possible case for the prior,
thus giving an inflated idea of its performance. For instance, the squaredexponential process gives
very fast learning rates for response functions in its RKHS, but as this isa tiny set of analytic
functions, this gives a misleading idea of its performance in genuinely nonparametric situations.

1.4 Contributions

In this paper we present a number of contributions to the study of the performance of GP methods
for regression.

Firstly, our results give bounds for the risk (2) instead of the information criterion (1). As argued
in Section 1.2 the resulting bounds are stronger.

Secondly, our results are not just valid for functionsf0 in the RKHS of the GP prior, but for
all functions in the support of the prior. As explained in the preceding section, this is a crucial
difference. It shows that in GP regression we typically have plain consistency for all f0 in the
support of the prior and it allows us to study how the performance depends on the relation between
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the regularities of the regression functionf0 and typical draws from the prior. We illustrate the
general results for the Matérn and squared exponential priors. We present new rate-optimality results
for these priors.

A third contribution is that although the concrete GP examples that we consider(Matérn and
squared exponential) are stationary, our general results are not limited tostationary processes. The
results of Seeger et al. (2008) do concern stationary process and use eigenvalue expansions of the
covariance kernels. Underlying our approach are the so-called small deviations behaviour of the
Gaussian prior and entropy calculations, following the same basic approach as in our earlier work
(Van der Vaart and Van Zanten, 2008a). This allows more flexibility than eigenvalue expansions,
which are rarely available and dependent on the covariate distribution. Inour approach both sta-
tionary and nonstationary prior processes can be considered and it is not necessary to assume a
particular relationship between the distribution of the covariates and the prior.

Last but not least, the particular cases of the Matérn and squared exponential kernels that we
investigate illustrate that the performance of Bayesian learning methods usingGP priors is very
sensitive to the fine properties of the priors used. In particular, the relation between the regularity
of the response function and the GP used is crucial. Optimal performance isonly guaranteed if the
regularity of the prior matches the regularity of the unknown function of interest. Serious mismatch
leads to (very) slow learning rates. For instance, we show that using the squared-exponential prior,
in a situation where a Matérn prior would be appropriate, slows the learning rate from polynomial
to logarithmic inn.

1.5 Notations and Definitions

In this section we introduce notation that is used throughout the paper.

1.5.1 SPACES OFSMOOTH FUNCTIONS

As noted in Section 1.2 it is typical to quantify the performance of nonparametriclearning proce-
dures relative to a-priori models of smooth functions. The proper definitionof “smoothness” or
“regularity” depends on the specific situation, but roughly speaking, saying that a function has reg-
ularity α means it hasα derivatives. In this paper we use two classical notions of finite smoothness:
Hölder and Sobolev regularity; and also a scale of infinite smoothness.

For α > 0, write α = m+η, for η ∈ (0,1] and m a nonnegative integer. TheHölder space
Cα[0,1]d is the space of all functions whose partial derivatives of orders(k1, . . . ,kd) exist for all
nonnegative integersk1, . . . ,kd such thatk1+ . . .+ kd ≤ m and for which the highest order partial
derivatives are Lipshitz functions of orderη. (A function f is Lipschitzof orderη if | f (x)− f (y)| ≤
C|x−y|η, for everyx,y; see for instance Van der Vaart and Wellner (1996), Section 2.7.1, forfurther
details on Ḧolder classes.)

The Sobolev space Hα[0,1]d is the set of functionsf0: [0,1]d → R that are restrictions of a
function f0:Rd → R with Fourier transformf̂0(λ) = (2π)−d ∫ eiλT t f (t)dt such that

‖ f0‖2
α|2:=

∫
(

1+‖λ‖2)α∣
∣ f̂0(λ)

∣

∣

2
dλ < ∞.

Roughly speaking, for integerα, a function belongs toHα if it has partial derivatives up to orderα
that are all square integrable. This follows, because theαth derivative of a functionf0 has Fourier
transformλ 7→ (iλ)α f̂0(λ),
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Qualitatively both spacesHα[0,1]d andCα[0,1]d describe “α-regular” functions. Technically
their definitions are different, and so are the resulting sets. There are however many functions in the
intersectionHα[0,1]d ∩Cα[0,1]d and these areα-regular in both senses at the same time.

We also consider functions that are “infinitely smooth”. Forr ≥ 1 andλ > 0, we define the
spaceAγ,r(Rd) of functions f0:Rd → R with Fourier transformf̂0 satisfying

‖ f0‖2
A :=

∫
eγ‖λ‖r | f̂0|2(λ)dλ < ∞.

This requires exponential decrease of the Fourier transform, in contrast to polynomial decrease for
Sobolev smooothness. The functions inAγ,r(Rd) are infinitely often differentiable and “increasingly
smooth” asγ or r increase. They extend to functions that are analytic on a strip inC

d containingRd

if r = 1, and to entire functions ifr > 1 (see, e.g., Bauer, 2001, 8.3.5).

1.5.2 GENERAL FUNCTION SPACES ANDNORMS

For a general metric spaceX we denote byCb(X ) the space of bounded, continuous functions onX .
If the spaceX is compact, for example,X = [0,1]d, we simply writeC(X ). The supremum norm of
a bounded functionf onX is denoted by‖ f‖∞ = supx∈X | f (x)|.

Forx1, . . . ,xn ∈ X and a functionf :X → R we define the empirical norm‖ f‖n by

‖ f‖n =
(1

n

n

∑
i=1

f 2(xi)
)1/2

. (6)

Forma (Borel) measure onA⊂ R
d we denote byL2(m) the associatedL2-space, defined by

L2(m) =
{

f :A→ R

∣

∣

∣

∫
A
| f (x)|2dm(x)< ∞

}

.

In a regression setting where the covariates have probability densityg onR
d, we denote the corre-

spondingL2-norm simply by‖ f‖2, that is,

‖ f‖2 =
∫

f 2(x)g(x)dx.

1.5.3 MISCELLANEOUS

The notationa . b means thata ≤ Cb for a universal constantC. We write a∨ b = max{a,b},
a∧b= min{a,b}.

2. General Results

In this section we present general bounds on the posterior risk. The next section treats the special
cases of the Matérn and squared exponential kernels. Proofs are deferred to Section 4.

2.1 Fixed Design

In this section we assume that given the functionf :X → R, the dataY1, . . . ,Yn are independently
generated according toYj = f (x j)+ε j , for fixedx j ∈X and independentε j ∼N(0,σ2). Such a fixed
design setting occurs when the covariate values in the training data have been set by an experimenter.
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For simplicity we assume thatX is a compact metric space, such as a bounded, closed set inR
d,

and assume that the true response functionf0 and the support of the GP prior are included in the
spaceCb(X ) of bounded, continuous functions on the metric spaceX . This enables to formulate the
conditions in terms of thesupremum norm(also called “uniform” norm). Recall that the supremum
norm of f ∈Cb(X ) is given by‖ f‖∞ = supx∈X | f (x)|. (Actually Theorem 1 refers to the functions
on the design points only and is in terms of the norm (6). The conditions could be formulated in
terms of this norm. This would give a stronger result, but its interpretation is hampered by the fact
that the norm (6) changes withn.) The RKHS of the GP prior, as defined in Section 1.3, is denoted
byH and the RKHS-norm by‖ · ‖H.

The following theorem gives an upper bound for the posterior risk. Thebound depends on the
“true” response functionf0 and the GP priorΠ and its RKHSH through the so-calledconcentration
function

φ f0(ε) = inf
h∈H:‖h− f0‖∞<ε

‖h‖2
H− logΠ

(

f :‖ f‖∞ < ε
)

(7)

and the associated function

ψ f0(ε) =
φ f0(ε)

ε2 . (8)

We denote byψ−1
f0

the (generalized) inverse function of the functionψ f0, that is,ψ−1
f0
(l) = sup{ε >

0: ψ f0(ε)≥ l}.
The concentration functionφ f0 for a general response function consists of two parts. The second

is the small ball exponentφ0(ε) =− logΠ( f :‖ f‖∞ < ε), which measures the amount of prior mass
in a ball of radiusε around the zero function. As the interest is in smallε this is (the exponent
of) thesmall ball probabilityof the prior. There is a large literature on small ball probabilities of
Gaussian distributions. (See Kuelbs and Li, 1993 and Li and Shao, 2001and references.) This
contains both general methods (probabilistic and analytic) for its computation and many examples,
stationary and non-stationary. The first part of the definition ofφ f0(ε), the infimum, measures the
decrease in prior mass if the (small) ball is shifted from the origin to the true parameterf0. This is
not immediately clear from the definition (7), but it can be shown that up to constants,φ f0(ε) equals
− logΠ( f :‖ f − f0‖∞ < ε) (see for instance Van der Vaart and Van Zanten, 2008b, Lemma 5.3). The
infimum depends on how wellf0 can be approximated by elementsh of the RKHS of the prior, and
the quality of this approximation is measured by the size of the approximandh in the RKHS-norm.
The infimum is finite for everyε > 0 if and only if f0 is contained in the closure ofH within Cb(X ).
The latter closure is the support of the prior (Van der Vaart and Van Zanten, 2008b, Lemma 5.1) and
in typical examples it is the full spaceCb(X ).

Our general upper bound for the posterior risk in the fixed design casetakes the following form.

Theorem 1 For f0 ∈Cb(X ) it holds that

Ef0

∫
‖ f − f0‖2

ndΠn
(

f |Y1:n
)

. ψ−1
f0
(n)2.

For ψ−1
f0
(n)→ 0 asn→ ∞, which is the typical situation, the theorem shows that the posterior

distribution contracts at the rateψ−1
f0
(n) around the true response functionf0. To connect to Seeger

et al. (2008), we have expressed the contraction using the quadratic risk, but the concentration is
actually exponential. In particular, the power 2 can be replaced by any finitepower.
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From the definitions one can show that (see Lemma 17), wheneverf0 ∈H,

ψ−1
f0
(n).

‖ f0‖H√
n

+ψ−1
0 (n). (9)

This relates the theorem to formula (3) in Seeger et al., whose logdet(I+cK) is replaced byψ−1
0 (n)2.

However, the left sideψ−1
f0
(n) of the preceding display is finite for everyf0 in the support of the

prior, which is typically a much large space than the RKHS (see Section 1.3). For instance, functions
f0 in the RKHS of the squared exponential process are analytic, whereasψ−1

f0
(n) is finite for every

continuous functionf0 in that case. Thus the theorem as stated is much more refined than if its upper
bound would be replaced by the right side of (9). It is true thatψ−1

f0
(n) is smallest if f0 belongs to

the RKHS, but typically the posterior also contracts if this is not the case.
In Sections 3.1 and 3.2 we show how to obtain bounds for the concentration function, and

hence a risk bound, for two classes of specific priors: the Matérn class and the squared exponential.
Other examples, including non-stationary ones like (multiply) integrated Brownian motion, were
considered in Van der Vaart and Van Zanten (2008a), Van der Vaartand Van Zanten (2007) and
Van der Vaart and Van Zanten (2009).

2.2 Random Design

In this section we assume that given the functionf : [0,1]d → R on thed-dimensional unit cube
[0,1]d (or another compact, Lipschitz domain inRd) the data(X1,Y1), . . . ,(Xn,Yn) are independently
generated,Xi having a densityg on [0,1]d that is bounded away from zero and infinity, andYj =
f (Xj)+ ε j , for errorsε j ∼ N(0,σ2) that are independent given theXi ’s.

We assume that under the GP priorΠ the function f is a zero-mean, continuous Gaussian pro-
cess. The concentration functionφ f0 and the derived functionψ f0 are defined as before in (7) and (8).
Recall that‖ f‖2 is theL2-norm relative to the covariate distribution, that is,‖ f‖2

2 =
∫

f 2(x)g(x)dx.
The theorem assumes that for someα > 0, draws from the prior areα-regular in Ḧolder sense. This
roughly means thatα derivatives should exist. See Section 1.5 for the precise definition.

Theorem 2 Suppose that for someα > 0 the prior gives probability one to the Ḧolder space
Cα[0,1]d. For ψ−1

f0
the inverse function ofψ f0 and C a constant that depends on the prior and

the covariate density, ifψ−1
f0
(n)≤ n−d/(4α+2d), then

Ef0

∫
‖ f − f0‖2

2dΠn
(

f |X1:n,Y1:n
)

≤Cψ−1
f0
(n)2.

If, on the other hand,ψ−1
f0
(n) ≥ n−d/(4α+2d), then the assertion is true with the upper bound

Cnψ−1
f0
(n)(4α+4d)/d.

Unlike in the case of fixed design treated in Theorem 1, this theorem makes assumptions on
the regularity of the prior. This seems unavoidable, because the‖ · ‖2-risk extrapolates from the
observed design points to all points in the support of the covariate density.

In the next section we shall see that a typical rate for estimating aβ-smooth response function
f0 is given by

ψ−1
f0
(n)∼ n−(β∧α)/(2α+d).
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(This reduces to the minimax raten−α/(2α+d) if and only if α= β.) In this caseψ−1
f0
(n)≤ n−d/(4α+2d)

if and only if α∧β ≥ d/2. In other words, upper bounds for fixed and random design have exactly
the same form if prior and true response are not too rough.

For very rough priors and true response functions, the rate given bythe preceding theorem is
slower than the rate for deterministic design, and for very rough response functions the theorem
may not give a rate at all. The latter seems partly due to using the second momentof the posterior,
rather than posterior concentration, although perhaps the theorem can be improved.

3. Results for Concrete Priors

In this section we specialize to two concrete classes of Gaussian process priors, the Mat́ern class
and the squared exponential process.

3.1 Matérn Priors

In this section we compute the risk bounds given by Theorems 1 and 2 for thecase of the Mat́ern
kernel. In particular, we show that optimal rates are attained if the smoothness of the prior matches
the smoothness of the unknown response function.

TheMatérn priorscorrespond to the mean-zero Gaussian processesW = (Wt : t ∈ [0,1]d) with
covariance function

EWsWt =
∫
Rd

eiλT (s−t)m(λ)dλ,

defined through thespectral densities m:Rd → R given by, forα > 0,

m(λ) =
1

(

1+‖λ‖2
)α+d/2

. (10)

The integral can be expressed in certain special functions (see, e.g., Rasmussen and Williams, 2006).
This is important for the numerical implementation of the resulting Bayesian procedure, but not
useful for our present purpose.

The sample paths of the Matérn process possess the same smoothness inL2 as the set of func-
tionset(λ) = eiλT t in L2(m). From this it can be seen that the sample paths arek times differentiable
in L2, for k the biggest integer smaller thanα, with kth derivative satisfying

E(W(k)
s −W(k)

t )2 . ‖s− t‖2(α−k).

By Kolmogorov’s continuity criterion it follows that the sample paths of thekth derivative can be
constructed to be Lipshitz of any order strictly smaller thanα− k. Thus the Mat́ern process takes
its values inCα[0,1]d for anyα < α. Hence in this specific sense it isα-regular.

By Lemma 4.1 of Van der Vaart and Van Zanten (2009) the RKHSH of the processW is the
space of all (real parts of) functions of the form

hψ(t) =
∫

eiλT tψ(λ)m(λ)dλ, (11)

for ψ ∈ L2(m), and squared RKHS-norm given by

‖hψ‖2
H = min

φ:hφ=hψ

∫
|φ|2(λ)m(λ)dλ. (12)
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This characterization is generic for stationary Gaussian processes. The minimum is unnecessary if
the spectral density has exponential tails (as in the next section), but is necessary in the present case.

In the following two lemmas we describe the concentration function (7) of the Matérn prior. The
small ball probability can be obtained from the preceding characterization of the RKHS, estimates
of metric entropy, and general results on Gaussian processes. See Section 4.3 for proofs.

Lemma 3 For ‖ · ‖∞ the uniform norm, and C a constant independent ofε,

− logP
(

‖W‖∞ < ε
)

≤C
(1

ε

)d/α
.

To estimate the infimum in the definition of the concentration functionφ f0 for a nonzero response
function f0, we approximatef0 by elements of the RKHS. The idea is to writef0 in terms of its
Fourier inversef̂0 as

f0(x) =
∫

eiλTx f̂0(λ)dλ (13)

=
∫

eiλTx f̂0
m
(λ)m(λ)dλ.

If f̂0/m were contained inL2(m), then f0 would be contained in the RKHS, with RKHS-norm
bounded by theL2(m)-norm of f̂0/m, that is, the square root of

∫
(| f̂0|2/m)(λ)dλ. In general this

integral may be infinite, but we can remedy this by truncating the tails off̂0/m. We then obtain
an approximation off0 by an element of the RKHS, which is enough to compute the concentration
function (8).

A natural a-priori condition on the true response functionf0: [0,1]d → R is that this function is
contained in a Sobolev space of orderβ. This space consists roughly of functions that possessβ
square integrable derivatives. The precise definition is given in Section1.5.

Lemma 4 If f0 ∈Cβ[0,1]d∩Hβ[0,1]d for β ≤ α, then, forε < 1, and a constant C depending on f0

andα,

inf
h:‖h− f0‖∞<ε

‖h‖2
H ≤C

(1
ε

)(2α+d−2β)/β
.

Combination of the two lemmas yields that forf0 ∈Cβ[0,1]d∩Hβ[0,1]d for β ≤ α, the concen-
tration function (7) satisfies

φ f0(ε).
(1

ε

)(2α+d−2β)/β
+
(1

ε

)d/α
.

This implies that

ψ−1
f0
(n).

(1
n

)β/(2α+d)
.

Theorems 1 and 2 imply that the rate of contraction of the posterior distribution isof this order in
the case of fixed design, and of this order ifβ > d/2 in the case of random design. We summarize
these findings in the following theorem.

Theorem 5 Suppose that we use a Matérn prior with parameterα> 0 and f0 ∈Cβ[0,1]d∩Hβ[0,1]d

for β > 0. Then in the fixed design case the posterior contracts at the rate n−(α∧β)/(2α+d). In the
random design case this holds as well, providedα∧β > d/2.
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Observe that the optimal raten−β/(2β+d) is attained if and only ifα = β. Using a prior that is
“rougher” or “smoother” than the truth leads to sub-optimal rates. This is in accordance with the
findings for other GP priors in in Van der Vaart and Van Zanten (2008a). It should be remarked
here that Theorem 5 only gives an upper bound on the rate of contraction. However, the paper by
Castillo (2008) shows that these bounds are typically tight.

3.2 Squared Exponential Kernel

In this section we compute the risk bounds given by Theorems 1 and 2 for thecase of the squared
exponential kernel.

Thesquared exponential processis the zero-mean Gaussian process with covariance function

EWsWt = e−‖s−t‖2
, s, t ∈ [0,1]d.

Like the Mat́ern process the squared exponential process is stationary. Its spectral density is given
by

m(λ) =
1

2dπd/2
e−‖λ‖2/4. (14)

The sample paths of the square exponential process are analytic.
This process was studied already in Van der Vaart and Van Zanten (2007) and Van der Vaart

and Van Zanten (2009). The first of the following lemmas is Lemma 4.5 in Van derVaart and Van
Zanten (2009). It deals with the second term in the concentration function (7). As before, let‖ · ‖∞
be the uniform norm on the functionsf : [0,1]d → R.

Lemma 6 There exists a constant C depending only on d such that

− logP
(

‖W‖∞ ≤ ε
)

≤C
(

log
1
ε

)1+d
.

The following lemma concerns the infimum part of the concentration function in the case that
the functionf0 belongs to a Sobolev space with regularityβ (see Section 1.5).

Lemma 7 If f0 ∈ Hβ[0,1]d for β > d/2, then, for a constant C that depends only on f0,

inf
‖h− f0‖∞≤ε

‖h‖2
H ≤ exp

(

Cε−2/(β−d/2)).

Combination of the preceding two lemmas shows that for aβ-regular response functionf0 (in
Sobolev sense)

φ f0(ε). exp
(

Cε−2/(β−d/2))+
(

log
1
ε

)1+d
.

The first term on the right dominates, for anyβ > 0. The corresponding rate of contraction satisfies

ψ−1
f0
(n). (1/ logn)β/2−d/4.

Thus the extreme smoothness of the prior relative to the smoothness of the response function
leads to very slow contraction rates for such functions. A remedy for this mismatch is to rescale
the sample paths. The length scale of the process can be treated as a hyperparameter and can be
endowed with a prior of its own, or can be selected using an empirical Bayesprocedure. Van der
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Vaart and Van Zanten (2007) and Van der Vaart and Van Zanten (2009) for example show that the
prior x 7→ f (Ax), for f the squared exponential process andAd an independent Gamma distributed
random variable, leads to optimal contraction rates forβ-smooth true response functions, for any
β > 0.

Actually, the preceding discussion permits only the derivation of anupper boundon the con-
traction rate. In the next theorem we show that the logarithmic rate is real however. The theorem
shows that asymptotically, balls aroundf0 of logarithmic radius receive zero posterior mass. The
proof, following an idea of Castillo (2008) and given in Section 4.4, is based on the fact that balls
of this type also receive very littleprior mass, essentially because the inequality of the preceding
lemma can be reversed.

Theorem 8 If f0 is contained in Hβ[0,1]d for someβ > d/2, has support within(0,1)d and pos-
sesses a Fourier transform satisfying| f̂0(λ)|& ‖λ‖−k for some k> 0 and every‖λ‖ ≥ 1, then there
exists a constant l such thatEf0Π

(

f :‖ f − f0‖2 ≤ (logn)−l |X1:n,Y1:n
)

→ 0.

As the prior puts all of its mass on analytic functions, perhaps it is not fair to study its per-
formance only forβ-regular functions, and it makes sense to study the concentration functionalso
for “supersmooth”, analytic response functions as well. The functions inthe RKHS of the squared
exponential process are examples of supersmooth functions, and for those functions we obtain the
rateψ−1

0 (n) determined by the (centered) small ball probability only. In view of Lemma 6 this isa
1/
√

n-rate up to a logarithmic factor.
The following lemma deals with the infimum part of the concentration function in the case that

that the functionf0 is supersmooth. Recall the definition of the spaceAγ,r(Rd) of analytic functions
given in Section 1.5.

Lemma 9 • If f0 is the restriction to[0,1]d of an element ofAγ,r(Rd), for r > 2, or for r ≥ 2
with γ ≥ 4, then f0 ∈H.

• If f0 is the restriction to[0,1]d of an element ofAγ,r(Rd) for r < 2, then there exist a constant
C depending on f0 such that

inf
‖h−w‖∞≤ε

‖h‖2
H ≤Ce

(

log(1/ε)
)2/r

/(4γ2/r ).

Combination of Lemmas 6 and 9 with the general theorems yields the following result.

Theorem 10 Suppose that we use a squared exponential prior and f0 is the restriction to[0,1]d of
an element ofAγ,r(Rd), for r ≥ 1 andγ > 0. Then both in the fixed and the random design cases the
posterior contracts at the rate(logn)1/r/

√
n.

Observe that the rate that we get in the last theorem is up to a logarithmic factorequal to the rate
1/
√

n at which the posterior typically contracts for parametric models (cf., the Bernstein-von Mises
theorem, for example, Van der Vaart, 1998). This “almost parametric rate”is explainable from the
fact that spaces of analytic functions are only slightly bigger than finite-dimensional spaces in terms
of their metric entropy (see Kolmogorov and Tihomirov, 1961).

Together, Theorems 8 and 10 give the same general message for the squared exponential kernel
as Theorem 5 does for the Matérn kernel: fast convergence rates are only attained if the smooth-
ness of the prior matches the smoothness of the response functionf0. However, generally the
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assumption of existence of infinitely many derivatives of a true response function (f0 ∈ Ag,r(Rd))
is considered too strong to define a test case for nonparametric learning.If this assumption holds,
then the response functionf0 can be recovered at a very fast rate, but this is poor evidence of good
performance, as only few functions satisfy the assumption. Under the moretruly “nonparamet-
ric assumption” thatf0 is β-regular, the performance of the squared-exponential prior is disastrous
(unless the length scale is changed appropriately in a data-dependent way).

4. Proofs

This section contains the proofs of the presented results.

4.1 Proof of Theorem 1

The proof of Theorem 1 is based on estimates of the prior mass near the trueparameterf0 and on
the metric entropy of the support of the prior. This is expressed in the following proposition.

We use the notationD(ε,A ,d) for theε-packing number of the metric space(A ,d): the maximal
number of points inA such that every pair has distance at leastε relative tod.

Proposition 11 Suppose that for someε > 0 with
√

nε ≥ 1 and for every r> 1 there exists a setFr

such that

D
(

ε,Fr ,‖ · ‖n
)

≤ enε2r2
, (15)

Π(Fr)≥ 1−e−2nε2r2
.

Furthermore, suppose that
Π
(

f :‖ f − f0‖n ≤ ε
)

≥ e−nε2
. (16)

Then
Pn, f0

∫
‖ f − f0‖l

ndΠn
(

f |Y1:n
)

. εl .

Forθ ∈R
n let Pn,θ be the normal distributionNn(θ, I). In the following three lemmas let‖ ·‖ be

the Euclidean norm onRn.

Lemma 12 For any θ0,θ1 ∈ R
n, there exists a testφ based on Y∼ Nn(θ, I) such that, for every

θ ∈ R
n with ‖θ−θ1‖ ≤ ‖θ0−θ1‖/2,

Pn,θ0φ∨Pn,θ(1−φ)≤ e−‖θ0−θ1‖2/8.

Proof For simplicity of notation we can chooseθ0 = 0. If ‖θ−θ1‖ ≤ ‖θ1‖/2, then‖θ‖ ≥ ‖θ1‖/2
and hence〈θ,θ1〉 =

(

‖θ‖2+ ‖θ1‖2−‖θ−θ1‖2
)

/2≥ ‖θ1‖2/2. Therefore, the testφ = 1θT
1Y>D‖θ1‖

satisfies, withΦ the standard normal cdf,

Pn,θ0φ = 1−Φ(D),

Pn,θ(1−φ) = Φ
(

(D‖θ1‖−〈θ,θ1〉)/‖θ1‖
)

≤ Φ(D−ρ),

for ρ = ‖θ1‖/2. The infimum overD of
(

1−Φ(D)
)

+Φ(D−ρ) is attained forD = ρ/2, for which

D−ρ = −ρ/2. We substitute this in the preceding display and use the bound 1−Φ(x) ≤ e−x2/2,
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valid for x≥ 0.

Let D(ε,Θ) be the maximal number of points that can be placed inside the setΘ ⊂R
n such that

any pair has Euclidean distance at leastε.

Lemma 13 For anyΘ ⊂R
n there exists a testφ based on Y∼Nn(θ, I) with, for any r> 1 and every

integer j≥ 1,

Pn,θ0φ ≤ 9D(r/2,Θ)exp(−r2/8),

sup
θ∈Θ:‖θ−θ0‖≥ jr

Pn,θ(1−φ)≤ exp(− j2r2/8).

Proof The setΘ can be partitioned into the shells

Cj,r =
{

θ ∈ Θ: jr ≤ ‖θ−θ0‖< ( j +1)r
}

.

We place in each of these shells a maximal collectionΘ j of points that arejr/2-separated, and next
construct a testφ j as the maximum of all the tests as in the preceding lemma attached to one of these
points. The number of points is equal toD( jr/2,Cj,r). Everyθ ∈Cj,r is in a ball of radiusjr/2 of
some pointθ1 ∈ Θ j and satisfies‖θ−θ1‖ ≤ jr/2≤ ‖θ0−θ1‖/2, sinceθ1 ∈Cj,r . Hence each test
satisfies the inequalities of the preceding lemma. It follows that

Pn,θ0φ j ≤ D( jr/2,Cj,r)e
− j2r2/8,

sup
θ∈Cj,r

Pn,θ(1−φ j)≤ e− j2r2/8.

Finally, we constructφ as the supremum over all testsφ j , for j ≥ 1. We note that

∑ j≥1D( jr/2,Cj,r)e− j2r2/8 ≤ D(r/2,Θ)e−r2/8/(1−e−r2/8), and 1/(1−e−1/8)≈ 8.510.

Lemma 14 For any probability distributionΠ onRn and x> 0,

Pn,θ0

(

∫
pn,θ

pn,θ0

dΠ(θ)≤ e−σ2
0/2−‖µ0‖x

)

≤ e−x2/2,

for µ0 =
∫
(θ−θ0)dΠ(θ) andσ2

0 =
∫ ‖θ−θ0‖2dΠ(θ). Consequently, for any probability distribu-

tion Π onRn and any r> 0,

Pn,θ0

(

∫
pn,θ

pn,θ0

dΠ(θ)≥ e−r2
Π
(

θ:‖θ−θ0‖< r
)

)

≥ 1−e−r2/8.

Proof Underθ0 the variable
∫

log(pn,θ/pn,θ0)dΠ(θ) = µT
0 (Y−θ0)−σ2

0/2 is normally distributed
with mean−σ2

0/2 and variance‖µ0‖2. Therefore, the eventBn that this variable is smaller than
−σ2

0/2−‖µ0‖x has probability bounded above byΦ(−x)≤ e−x2/2. By Jensen’s inequality applied
to the logarithm, the event in the left side of the lemma is contained inBn.

To prove the second assertion we first restrict the integral
∫

pn,θ/pn,θ0 dΠ(θ) to the ball{θ:‖θ−
θ0‖ ≤ r}, which makes it smaller. Next we divide byΠ

(

θ:‖θ− θ0‖ < r
)

to renormalizeΠ to a
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probability measure on this ball, and apply the first assertion with this renormalized measureΠ.
The relevant characteristics of the renormalized measure satisfy‖µ0‖ ≤ r andσ2

0 ≤ r2. Therefore
the assertion follows upon choosingx= r/2.

Proof [Proof of Proposition 11] For any eventA , any testφ and anyr > 1, the expected value
Pn, f0Π

(

f :‖ f − f0‖n > 4εr|Y1:n
)

is bounded byA+B+C+D, for

A= Pn, f0φ,
B= Pn, f0(A

c)

C= Pn, f0Πn
(

f 6∈ Fr |Y1:n
)

1A ,

D = Pn, f0Πn
(

f ∈ Fr :‖ f − f0‖n > 4εr|Y1:n
)

(1−φ)1A .

For the testφ given by Lemma 13 withΘ the set of all vectors
(

f (x1), . . . , f (xn)
)

as f ranges over
Fr , with θ0 this vector atf = f0, and withr taken equal to 4

√
nεr, we obtain, for 4

√
nεr > 1,

A≤ 9D(2
√

nεr,Θ)e−2nε2r2 ≤ 9e−nε2r2
.

In view of Lemma 14 applied withr equal to
√

nεr, there exists an eventA such that

B≤ e−nε2r2/8,

while on the eventA ,
∫

pn, f

pn, f0
dΠ( f )≥ e−nε2r2

Π
(

f :‖ f − f0‖n < εr
)

≥ e−nε2(r2+1).

It follows that on the eventA , for any setB,

Πn(B|Y1:n)≤ enε2(r2+1)
∫
B

pn, f /pn, f0 dΠ( f ).

Therefore, in view of the fact thatPn, f0(pn, f /pn. f0)≤ 1, we obtain,

C≤ enε2(r2+1)Pn, f0

∫
F c

r

pn, f /pn, f0 dΠ( f )

≤ enε2(r2+1)Π(F c
r )≤ e−nε2(r2−1). (17)

Finally, in view of the fact thatPn, f0(pn, f /pn. f0)(1− φ) ≤ Pn, f (1− φ), which is bounded above
by e−2 j2nε2r2

for f contained inCj,r := { f ∈ Fn,r :4 jεr ≤ ‖ f − f0‖n < 4( j + 1)εr} by the second
inequality in Lemma 13, we obtain, again using Fubini’s theorem,

D ≤ enε2(r2+1) ∑
j≥1

Pn, f0(1−φ)
∫

Cj,r

pn, f /pn, f0 dΠ( f )

≤ enε2(r2+1) ∑
j≥1

e−2 j2nε2r2 ≤ 9e−nε2(r2−1),

for nε2r2 ≥ 1/16, as 1/(1−e−1/8)≈ 8.5.
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Finally we write

Pn, f0

∫
‖ f − f0‖l

ndΠn
(

f |Y1:n
)

= Pn, f0

∫ ∞

0
lr l−1Πn

(

‖ f − f0‖n > 4εr|Y1:n
)

dr (4ε)l

≤ (8ε)l +(4ε)l Pn, f0

∫ ∞

2
lr l−1(A+B+C+D)(r)dr.

Inserting the bound onA+B+C+D obtained previously we see that the integral is bounded by
10

∫ ∞
2 (e−r2/8+e−(r2−1))dr < ∞.

Proof [Proof of Theorem 1] Theorem 1 is a specialization of Proposition 11 to Gaussian priors,
where the conditions of the proposition are reexpressed in terms of the concentration functionφ f0
of the prior. The details are the same as in Van der Vaart and Van Zanten (2008a).

First we note thatε:= 2ψ−1
f0
(n) satisfiesφ f0(ε/2) ≤ nε2/4 ≤ nε2. It is shown in Kuelbs et al.

(1994) (or see Lemma 5.3 in Van der Vaart and Van Zanten, 2008b) that the concentration function
φ f0 determines the small ball probabilities aroundf0, in the sense that, for the givenε,

Π
(

f :‖ f − f0‖∞ < ε
)

≥ e−nε2
. (18)

Because‖ · ‖n ≤ ‖ ·‖∞, it follows that (16) is satisfied.
For H1 andB1 the unit balls of the RKHS andB andMr = −2Φ−1(e−nε2r2

), we define sets
Fr = εB1+MrH1. By Borell’s inequality (see Borell, 2008, or Theorem 5.1 in Van der Vaart and
Van Zanten, 2008b) these sets have prior probabilityΠ(Fr) bounded below by 1−Φ(α+Mr), for
Φ the standard normal distribution function andα the solution to the equationΦ(α) = Π

(

f :‖ f‖∞ <

ε
)

= e−φo(ε). BecauseΦ(α)≥ e−nε2 ≥ e−nε2r2
, we haveα+Mr ≥−Φ−1(e−nε2r2

). We conclude that

Π(Fr)≥ 1−e−nε2r2
.

It is shown in the proof of Theorem 2.1 of Van der Vaart and Van Zanten(2008a) that the sets
Fr also satisfy the entropy bound (15), for the norm‖ · ‖∞, and hence certainly for‖ · ‖n.

4.2 Proof of Theorem 2

For a function f : [0,1]d → R andα > 0 let ‖ f‖α|∞ be the Besov norm of regularityα measured
using theL∞ −L∞-norms (see (19) below). This is bounded by the Hölder norm of orderα (see for
instance Cohen et al., 2001 for details).

Lemma 15 Let X = [0,1]d and suppose that the density of the covariates is bounded below by a

constant c. Then‖ f‖∞ . c−2α/(2α+d)‖ f‖d/(2α+d)
α|∞ ‖ f‖2α/(2α+d)

2 , for any function f: [0,1]d → R.

Proof We can assume without loss of generality that the covariate distribution is the uniform distri-
bution. We can write the function as the Fourier seriesf = ∑∞

j=0 ∑k ∑v β j,k,vej,k,v relative to a basis
(ej,k,v) of orthonormal wavelets inL2(R

d). (Herek runs for each fixedj through an index set for of
the orderO(2 jd) translates, andv runs through{0,1}d when j = 0 and{0,1}d \ {0} when j ≥ 1.)
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For wavelets constructed from suitable scaling functions, the various norms of f can be expressed
in the coefficients through (up to constants, see for instance Cohen et al.,2001, Section 2)

‖ f‖2 =
(

∑
j
∑
k

∑
v

β2
j,k,v

)1/2
,

‖ f‖∞ ≤ ∑
j

max
k

max
v

|β j,k,v|2 jd/2,

‖ f‖α|∞ = sup
j

max
k

max
v

|β j,k,v|2 j(α+d/2). (19)

For givenJ let fJ = ∑ j≤J ∑k ∑v β j,k,vej,k,v be the projection off on the base elements of resolution
level bounded byJ. Then

‖ f − fJ‖∞ ≤ ∑
j>J

max
k

max
v

|β j,k,v|2 jd/2

≤ ∑
j>J

2− j(α+d/2)‖ f‖α|∞2 jd/2 ≤ 2−Jα‖ f‖α|∞.

Furthermore, by the Cauchy-Schwarz inequality,

‖ fJ‖∞ ≤ ∑
j≤J

max
k

max
v

|β j,k,v|2 jd/2

≤
(

∑
j≤J

max
k

max
v

β2
j,k,v

)1/2(

∑
j≤J

2 jd
)1/2

≤ ‖ f‖22Jd/2,

where in the last inequality we have bounded the maximum over(k,v) by the sum.

Combining the two preceding displays we see that‖ f‖∞ ≤ 2−Jα‖ f‖α|∞ +‖ f‖22Jd/2. We finish
the proof by choosingJ to balance the two terms on the right.

Proof [Proof of Theorem 2] Letε= 2ψ−1
f0
(n) so thatφ f0(ε/2)≤ nε2 and (18) holds. By the definition

of φ f0 there exists an elementfε of the RKHS of the prior with‖ fε − f0‖∞ ≤ ε/2 and‖ fε‖2
H
≤

φ f0(ε/2) ≤ nε2. Because‖ fε − f0‖2 ≤ ‖ fε − f0‖∞ ≤ ε, the posterior second moments of‖ f − fε‖2

and‖ f − f0‖2 are within a multiple ofε2, and hence it suffices to bound the former of the two.

For any positive constantsγ,τ, anyη ≥ ε, and any eventsAr we can bound

1
η2Ef0

∫
‖ f − fε‖2

2dΠ( f |X1:n,Y1:n)

= Ef0

∫ ∞

0
rΠ

(

f :‖ f − fε‖2 > ηr|X1:n,Y1:n
)

dr
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by I + II + III + IV , for

I = Ef0

∫ ∞

0
rΠ

(

f :2‖ f − fε‖n > ηr|X1:n,Y1:n
)

dr,

II = Ef0

∫ ∞

0
r1Ac

r
dr,

III = Ef0

∫ ∞

0
r1Ar Π

(

‖ f‖α|∞ > τ
√

nηrγ|X1:n,Y1:n
)

dr,

IV = Ef0

∫ ∞

0
r1Ar Π

(

f :‖ f − fε‖2 > ηr ≥ 2‖ f − fε‖n,

‖ f‖α|∞ ≤ τ
√

nηrγ|X1:n,Y1:n
)

dr.

The termI is the quadratic risk in terms of the empirical norm, centered atfε. Conditioned on the
design points and centered atf0 this was seen to be bounded in the previous section (asη ≥ ε),
uniformly in the design points. Because‖ f0− fε‖∞ ≤ ε, the termI is bounded by a constant.

In view of Lemma 14, withr of the lemma equal to
√

nεrγ, there exist eventsAr such that

II ≤
∫ ∞

0
re−nε2r2γ/8dr . 1,

while on the eventAr ,
∫

pn, f

pn, f0
dΠ( f )≥ e−nε2r2γ

Π
(

f :‖ f − f0‖n < εrγ)

≥ e−nε2(r2γ+1), (20)

by (18) and because‖ · ‖n ≤ ‖ ·‖∞.
Because the priorΠ is concentrated on the functions with‖ f‖α|∞ < ∞ by assumption, it can be

viewed as the distribution of a Gaussian random element with values in the Hölder spaceCα[0,1]d.
It follows thatτ2:= 16

∫ ‖ f‖2
α|∞ dΠ( f ) is finite, andΠ

(

f :‖ f‖α|∞ > τx
)

≤ e−2x2
, for everyx> 0, by

Borell’s inequality (e.g., Van der Vaart and Wellner, 1996, A.2.1.). By the same argument as used
to obtain (17) in the proof of Proposition 11, we see that

III ≤ 1+
∫ ∞

1
renε2(r2γ+1)Π

(

f :‖ f‖α|∞ > τ
√

nηrγ)dr

≤ 1+
∫ ∞

1
renε2(r2γ+1)e−2nη2r2γ

dr . 2.

It remains to prove thatIV is bounded as well.
The squared empirical norm‖ f − fε‖2

n is the average of the independent random variables( f −
fε)

2(Xi), which have expectation‖ f − fε‖2
2, and variance bounded byP( f − fε)

4 ≤ ‖ f − fε‖2
2‖ f −

fε‖2
∞. Therefore, we can apply Bernstein’s inequality (see, e.g., Lemma 2.2.9 in Van der Vaart and

Wellner, 1996) to see that

P
(

‖ f − fε‖2 ≥ 2‖ f − fε‖n
)

≤ e−(n/5)‖ f− fε‖2
2/‖ f− fε‖2

∞ .

The unit ball of the RKHS of a GPf is always contained inc times the unit ball of the Banach space
on which it is supported, forc2 = E‖ f‖2, where‖ · ‖ is the norm of the Banach space (see, e.g.,
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Van der Vaart and Van Zanten, 2008b), formula (2.5)). An equivalent statement is that the Banach
norm‖ f‖ of an element of the RKHS is bounded above byc times its RKHS-norm. BecauseΠ is
concentrated onCα[0,1]d, we can apply this general fact with‖·‖ theα-Hölder norm, and conclude
that theα-Hölder norm of an element of the RKHS is bounded above byτ/4 times its RKHS-norm,
for τ/4 the second moment of the prior norm defined previously. In particular‖ fε‖α|∞ ≤ τ‖ fε‖H ≤
τ
√

nε. Therefore, forf in the setF of functions with‖ f‖α|∞ ≤ τ
√

nεrγ, we have‖ f − fε‖α|∞ ≤
2τ
√

nεrγ, whence by Lemma 15 forf ∈ F we can replace‖ f − fε‖∞ in the preceding display by

c(2τ
√

nεrγ)d/(2α+d)‖ f − fε‖2α/(2α+d)
2 , for a constantc depending on the covariate density. We then

have

Ef0Π
(

f ∈ F :‖ f − fε‖2 > ηr ≥ 2‖ f − fε‖n
)

≤
∫

f∈F :‖ f− fε‖2>ηr
P
(

‖ f − fε‖2 ≥ 2‖ f − fε‖n
)

dΠ( f )

≤
∫
‖ f− fε‖2>ηr

exp
(

− n
5c2

(‖ f − fε‖2

2τ
√

nεrγ

)2d/(2α+d))

dΠ( f )

≤ exp
(

−Cn2α/(2α+d)(ηr1−γ/ε)2d/(2α+d)
)

,

for 1/C= 5c2(2τ)2d/(2α+d). Substitution of this bound and the lower bound (20) in IV yields

IV ≤ 1+
∫ ∞

1
renε2(r2γ+1)e−Cn2α/(2α+d)(ηr1−γ/ε)2d/(2α+d)

dr.

ForCn2α/(2α+d)(η/ε)2d/(2α+d) ≥ nε2 this is finite ifγ > 0 is chosen sufficiently small. Equivalently,
IV is bounded ifη &

√
nε(2α+2d)/d.

We must combine this with the requirement made at the beginning of the proof thatη ≥ ε ≥
2ψ−1

f0
(n). If ε ≤ n−d/(4α+2d), then

√
nε(2α+2d)/d ≤ ε and hence the requirementη &

√
nε(2α+2d)/d is

satisfied forη = ε. Otherwise, we chooseη ∼√
nε(2α+2d)/d ≫ ε. In both cases we have proved that

the posterior second moment has mean bounded by a multiple ofη2.

4.3 Proofs for Section 3

Proof [Proof of Lemma 3] The Fourier transform ofhψ given in (11) is, up to constants, the function
φ = ψm, and forψ the minimal choice as in (12) this function satisfies (cf., (10))

∫
∣

∣φ(λ)
∣

∣

2(
1+‖λ‖2)α+d/2

dλ = ‖hψ‖2
H.

In other words, the unit ballH1 of the RKHS is contained in a Sobolev ball of orderα+d/2. (See
Section 1.5 for the definition of Sobolev spaces.) The metric entropy relativeto the uniform norm
of such a Sobolev ball is bounded by a constant times(1/ε)d/(α+d/2) (see Theorem 3.3.2 on p. 105
in Edmunds and Triebel, 1996). The lemma next follows from the results of Kuelbs and Li (1993)
and Li and Linde (1998) that characterize the small ball probability in terms of the entropy of the
RKHS-unit ball.
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Proof [Proof of Lemma 4] Letκ:R → R be a function with a real, symmetric Fourier trans-
form κ̂, which equals 1/(2π) in a neighborhood of 0 and which has compact support. From
κ̂(λ) = (2π)−1∫ eiλtκ(t)dt it then follows that

∫
κ(t)dt = 1 and

∫
(it )kκ(t)dt = 0 for k ≥ 1. For

t = (t1, . . . , td), defineφ(t) = κ(t1) · · ·κ(td). Thenφ integrates to 1, has finite absolute moments of
all orders, and vanishing moments of all orders bigger than 0.

For σ > 0 setφσ(x) = σ−dφ(x/σ) andh= φσ ∗ f0. Becauseφ is a higher order kernel, standard
arguments from the theory of kernel estimation shows that‖ f0−φσ ∗ f0‖∞ . σβ.

The Fourier transform ofh is the functionλ 7→ ĥ(λ) = φ̂(σλ) f̂0(λ), and therefore (12) and (13)
show that

‖h‖2
H .

∫
∣

∣φ̂(σλ) f̂0(λ)
∣

∣

2 1
m(λ)

dλ

. sup
λ

[

(

1+‖λ‖2)α+d/2−β∣
∣φ̂(σλ)

∣

∣

2
]

‖ f0‖2
β|2

.C(σ)sup
λ

[

(

1+‖λ‖2)α+d/2−β∣
∣φ̂(λ)

∣

∣

2
]

‖ f0‖2
β|2.

for

C(σ) = sup
λ

( 1+‖λ‖2

1+‖σλ‖2

)α+d/2−β
.
(1

σ

)2α+d−2β
,

if σ ≤ 1. The assertion of the lemma follows upon choosingσ ∼ ε1/β.

Proof [Proof of Lemma 7] For givenK > 0 let ψ(λ) = ( f̂0/m)(λ)1‖λ‖≤K . The functionhψ defined
by (11) withmgiven in (14) satisfies

‖hψ − f0‖∞ ≤
∫
‖λ‖>K

| f̂0(λ)|dλ

≤ ‖ f0‖β|2
(

∫
‖λ‖>K

(

1+‖λ‖2)−β
dλ

)1/2

. ‖ f0‖β|2
1

Kβ−d/2
.

Furthermore, the squared RKHS-norm ofhψ is given by

‖hψ‖2
H =

∫
‖λ‖≤K

| f̂0|2
m

(λ)dλ

≤ sup
‖λ‖≤K

m(λ)−1(1+‖λ‖2)−β‖ f0‖2
β|2

. eK2/4‖ f0‖2
β|2.

We conclude the proof by choosingK ∼ ε−1/(β−d/2).

Proof [Proof of 9] The first assertion is proved in Van der Vaart and Van Zanten (2009), Lemma 4.4.
The second assertion is proved in the same way as Lemma 7, where this time, with‖ f0‖A the norm
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of f0 in Aγ,r(Rd),

‖hψ − f0‖2
∞ ≤

∫
‖λ‖>K

e−γ‖λ‖r
dλ‖ f0‖2

A

≤ e−γKr
K−r+1‖ f0‖2

A ,

‖hψ‖2
H ≤ sup

‖λ‖≤K
e‖λ‖2/4−γ‖λ‖r‖ f0‖2

A ≤ eK2/4‖ f0‖2
A .

We finish by choosingK ∼
(

γ−1 log(1/ε)
)1/r

.

4.4 Miscellaneous Results

Proof [Proof of Theorem 8] We start by proving the following lower bound on the concentration
function: there existsb,v> 0 such that forε ↓ 0,

φ f0(ε)≥ inf
ψ:‖hψ− f0‖2<ε

‖hψ‖2
H (21)

& exp
(

bε−v).

For givenε> 0 lethψ be a function in the RKHS of the form (11) such that‖hψ− f0‖2 < ε. Let r be a
function which is equal to 1 on the support off0, has itself support within[0,1] and Fourier transform
with exponentially small tails:|r̂(λ)exp(|λ|u) → 0 as|λ| → ∞, for someu > 0. (Such a function
exists foru< 1.) Thenhψr has support inside[0,1] and f0r = f0, so that‖hψr− f0‖2,R ≤‖hψ− f0‖2,
where‖ · ‖2,R is the norm ofL2(R

d) and‖ · ‖2 the norm ofL2[0,1]d. The functionhψr has Fourier
transform(ψm)∗ r̂, and hence by Parseval’s identity

∥

∥(ψm)∗ r̂ − f̂0
∥

∥

2,R < ε. Therefore, forK > 0

andχK the indicator of the set{λ ∈ R
d:‖λ‖> K},

∥

∥(ψm)∗ r̂ χ2K
∥

∥

2,R ≥ ‖ f̂0χ2K‖2,R− ε ≥ c(1/K)k−d/2− ε,

by the assumption on̂f0, for some constantc. By Lemma 16 withA= K/2 and 2K instead ofK, it
follows that

‖ψmχK‖2,R‖r̂(1−χK)‖1,R ≥ c(1/K)k−d/2− ε−‖ψm‖2,R‖r̂χK‖1.

In view of (12) we have that‖hψ‖H = ‖ψ
√

m‖2,R and hence‖ψmχK‖2,R ≤
√

m(K)‖hψ‖H, and
‖ψm‖2,R ≤ ‖hψ‖H. Combining this with the preceding display we see that

(

‖r̂(1−χK)‖1,R

√

m(K)+‖r̂χK‖1
)

‖hψ‖H ≥ c(1/K)k−d/2− ε = ε,

for K = (c/2ε)1/(k−d/2). Here‖r̂(1−χK)‖1,R
√

m(K) is of the order exp(−K2/4), in view of the
definition (14) ofm and the fact that ˆr is integrable, and‖r̂χK‖1 is of the order exp(−dKu), by
construction. The proof of (21) is complete upon substitutingK = (c/2ε)1/(k−d/2) and rearranging
the preceding display.

The prior mass of a ball of radiusε aroundf0 is bounded below bye−φ f0(ε/2) and bounded above
by e−φ f0(ε), where we can use any norm. In view of (21) and Lemmas 6 and 7 we conclude that
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there exist constants such

exp
(

−eaε−u)≤ Π( f :‖ f − f0‖∞ < ε
)

,

Π( f :‖ f − f0‖2 < ε
)

≤ exp
(

−ebε−v)

.

By choosingηn,εn such thataε−u
n = logns andbη−v

n = lognt , we obtain that

Π
(

f :‖ f − f0‖2 < ηn
)

Π
(

f :‖ f − f0‖∞ < εn
) ≤ exp(−nt +ns)≪ e−2nε2

n,

if t > 1∨ s. It then follows that Ef0Π
(

f :‖ f − f0‖2 < ηn|X1:n,Y1:n
)

→ 0, by the same argument as
given to prove (17).

If the convolution of a functionf with a light-tailed functiong has heavy tails, thenf itself must
have heavy tails. The following quantitative version of this principle underlies the preceding proof.

Lemma 16 For arbitrary functions f,g:R→ R, χK the indicator function of{λ ∈ R
d:‖λ‖ > K},

and0< A< K,

‖ f χK−A‖2‖g(1−χA)‖1 ≥ ‖( f ∗g)χK‖2−‖ f‖2‖gχA‖1.

Proof For ft the functionλ 7→ f (λ− t), we have‖ ftχK‖2 ≤ ‖ f χK−A‖ if ‖t‖ ≤ A, and‖ ftχK‖2 ≤
‖ f‖2 for everyt. Therefore

∥

∥

∥

∫
ftχK g(t)dt

∥

∥

∥

2
≤

∫
‖ ftχK‖2 |g(t)|dt

≤ ‖ f χK−A‖2

∫
‖t‖≤A

|g(t)|dt+‖ f‖2

∫
‖t‖>A

|g(t)|dt.

It suffices to arrange this inequality.

Lemma 17 For ψ f0 defined by (8) and f0 ∈H we have (9).

Proof Because the functionψ f0 is decreasing, the relationψ f0(ε) ≤ n for someε implies that
ψ−1

f0
(n)≤ ε. Consequently, if̃ψ f0 is an upper bound onψ f0, thenψ̃ f0(ε)≤ n for someε implies that

ψ−1
f0
(n)≤ ε. If f0 ∈H, then we can chooseh= f0 in the infimum in the definition ofφ f0, and hence

we obtain

φ f0(ε)≤ ‖ f0‖2
H+φ0(ε).

If both ‖ f0‖2
H
≤ nε2/2 andψ0(ε)≤ nε2/2, thenψ̃ f0(ε)≤ n and henceψ−1

f0
(n)≤ ε.
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Acad. Sci. Paris Śer. I Math., 326(11):1329–1334, 1998.

M. A. Lifshits. Gaussian Random Functions. Kluwer Academic Publishers, Dordrecht, 1995.

C. E. Rasmussen and C. K. I. Williams.Gaussian Processes for Machine learning. MIT Press,
Cambridge, MA, 2006.

M. W. Seeger, S. M. Kakade, and D. P. Foster. Information consistency of nonparametric Gaussian
process methods.IEEE Trans. Inform. Theory, 54(5):2376–2382, 2008.

2118



NONPARAMETRIC GAUSSIAN PROCESSMETHODS

A. B. Tsybakov.,Introduction to Nonparametric Estimation. Springer, New York, 2009.

A. W. van der Vaart.Asymptotic Statistics. Cambridge University Press, Cambridge, 1998.

A. W. van der Vaart and J. H. van Zanten. Bayesian inference with rescaled Gaussian process priors.
Electron. J. Stat., 1:433–448 (electronic), 2007.

A. W. van der Vaart and J. H. van Zanten. Rates of contraction of posterior distributions based on
Gaussian process priors.Ann. Statist., 36(3):1435–1463, 2008a.

A. W. van der Vaart and J. H. van Zanten. Reproducing kernel Hilbert spaces of Gaussian priors.
In Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh,
volume 3 of Inst. Math. Stat. Collect., pages 200–222. Inst. Math. Statist., Beachwood, OH,
2008b.

A. W. van der Vaart and J. H. van Zanten. Adaptive Bayesian estimation using a Gaussian random
field with inverse gamma bandwidth.Ann. Statist., 37(5B):2655–2675, 2009.

A. W. van der Vaart and J. A. Wellner.Weak Convergence and Empirical Processes. Springer Series
in Statistics. Springer-Verlag, New York, 1996.

G. Wahba. Improper priors, spline smoothing and the problem of guardingagainst model errors in
regression.J. Roy. Statist. Soc. Ser. B, 40(3): 364–372, 1978.

2119


