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Abstract

We consider the quality of learning a response function by@parametric Bayesian approach
using a Gaussian process (GP) prior on the response funterupper bound the quadratic risk
of the learning procedure, which in turn is an upper boundhenKullback-Leibler information
between the predictive and true data distribution. The uppand is expressed in small ball prob-
abilities and concentration measures of the GP prior. Wistithte the computation of the upper
bound for the Matrn and squared exponential kernels. For these priors skeand hence the
information criterion, tends to zero for all continuousgesse functions. However, the rate at
which this happens depends on the combination of true regpimmction and Gaussian prior, and
is expressible in a certain concentration function. Inipatar, the results show that for good
performance, the regularity of the GP prior should matchrégrilarity of the unknown response
function.

Keywords: Bayesian learning, Gaussian prior, information rate,,ridatern kernel, squared
exponential kernel

1. Introduction

In this introductory section we first recall some important concepts frooms&an process regres-
sion and then outline our main contributions.

1.1 Gaussian Process Regression

Gaussian processes (GP’s) have become popular tools for makingnioéeabout unknown func-
tions. They are widely used as prior distributions in nonparametric Bayksaaming to predict a
responsé& € 9 from a covariateX € X. In this approach (cf. Rasmussen and Williams, 2006) a
response functiori: X — 9 is “a-priori” modelled by the sample path of a Gaussian process. This
means that for every finite set of poingsin X, the prior distribution of the vectdf (x1), ..., f(Xn))
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is multivariate Gaussian. As Gaussian distributions are completely parameteyideeir mean and
covariance matrix, a GP is completely determined byn&san function mX — R andcovariance
kernel K X x X — R, defined as

m(x) = Ef(x), K (x1,X2) = cov(f(xa), f(x2)).

The mean function can be any function; the covariance function canyosyammetric, positive
semi-definite function. Popular choices are the squared-exponertdidfla®rn kernels (see Ras-
mussen and Williams, 2006), or (multiply) integrated Brownian motions (e.g., ®yal¥y8; Van der
Vaart and Van Zanten, 2008a). The first two choices are exampsatafnaryGP: the correspond-
ing covariance function has the fod(xa, x2) = Ko(x1 — X2), for some functiorkKo of one argument
and hence the distribution of the random function f(x) remains the same under shifting its argu-
ment. By Bochner’s theorem the stationary covariance functioms eriRY correspond one-to-one
to spectral distributiongsee below for the examples of the squared-exponential anerivVieernels,
or see Rasmussen and Williams, 2006).

In Gaussian process learning the regression fundti@modeled as a GP and conditionally
on f, observed training datg;, Y1), ..., (X, Yn) are viewed as independent pairs that sati$fy
f(X)+¢i, for noise variables;. If g denotes the marginal density of the covariatesnd forp € R,
pu denotes the density @f+ €;, then conditional on the G the pairs(X;,Y;) are independently
generated according to the probability dengityy) — py(x) (Y)9(X). If the errors are normal with
mean 0 and varianc® for instance, we havpy(y) = (21mo?) Y2 exp(—(y—u)?/(202)). By Bayes’
rule, the posterior distribution foir given the training data is then given by

n
dMn(f| Xy, Yin) O rlpf(xi)(Yi)dn(f),
i

wheredl(f) refers to the prior distribution, angd;., is short for the sequenca,...,Z,. After
computation (see for instance Rasmussen and Williams, 2006 for methoddlugppsterior dis-
tribution may be used to predict new responses from covariate values.

1.2 Quantifying Performance

A common approach to assessing the performance of nonparametric Bayeglsis to assume
that the data are in actual fact generated according to a fixed, “trgegssion functiorfy and to
study how well the posterior distribution, which is a distribution over functi@pproximates the
targetfp as the number of training datetends to infinity.

The distance of the posterior to the truth can be measured in various wesgert al. (2008)
discussed the performance of this method in terms of an information critereotodéarron (1999).
They consider the quantity

1 n
EfoniZlKL<pfo(xi)7/pf(mdni—l(flxlzi—l,lei—l))- (1)
HereKL(p,q) = [log(p/q)dP denotes the Kullback-Leibler divergence between two probability
densitiesp andq, so that the terms of the sum are the Kullback-Leibler divergences betiiee
densityy — py,(x)(y) and theBayesian predictive density vy [ pr(x) (Y) dMi—1(f| Xyi-1), Yri-1)

based on the firsti — 1) observations, both evaluated for fixed covari¥te The expectation f
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on the far left is relative to the distribution ¢K1,VY1),...,(Xn,Ya). Seeger et al. (2008) obtain a
bound on the information criterion (1), which allows them to show for séwerabinations of true
regression functiongy and GP priord1 that this tends to zero at a certain rate in the number of
observations..

The information criterion (1) is the Cas average of the sequencepédiction errors for
n=122...,

EfoKL(pfo(Xn+1)’ / pf<xn+1>d”n(f\xlranlrn))-

By concavity of the logarithm and Jensen’s inequality (or the convexitylofrKits second argu-
ment), these are bounded above byrikks

Et, / KL (Pt (%;1) Pt (%g:2)) AN f [ Xen, Yiin)- (2)

The KL divergence between two normal densities with mearsndp, and common variance? is
equal to(y — W2)?/(20%). Therefore, in the case of normal errors, withthe density of the normal
distribution with mearf and variance?, the risks reduce to

1
57 / Ifo— F[13dMn( | Xen, Yam), (3)

where || - ||2 is the Lz-norm relative to the distribution of the covariat%, 1, that is,
11113 = [ f2(x)g(x) dx, anda? is the error variance.

Barron (1999) suggested to use the information criterion (1) as a déswgpneasure, because
the risks (2) sometimes behave erratically. However, the risks measurernhbentration of the
full posterior (both location and spread) near the truth, whereas thiékcpom errors concern the
location of the posterior only. Furthermore, taking &esaverages may blur discrepancies in the
individual prediction errors. We will show that the present situation iséhriat one where the risk
(2) behaves badly, and this bigger quantity can be bounded insteadinfdhmation criterion (1).

If the risk (3) is bounded bg? for some sequenag — 0, then by another application of Jensen’s
inequality the posterior mean(E| Xi.n, Y1) = [ fdMn(f| X0, Y1) satisfies

EfoHE<f|Xl:n,Yl:n) — fOH; < 8% (4)

Thus the posterior distribution induces a “point estimator” that approxinfatasthe rate sams,.

It follows that a bound? on the posterior risk (3) must satisfy the same fundamental lower bound as
the (quadratic) risk of general nonparametric estimators for the régndssiction fo. Such bounds
are usually formulated aminimaxresults: for a given point estimator (for example the posterior
mean) one takes the maximum (quadratic) risk overf@lh a given “a-priori class” of response
functions, and shows that this cannot be smaller than some lower boune (g Tsybakov, 2009
for a general introduction to this approach). Typical a-priori clags@e®nparametric learning are
spaces of “smooth” functions. Several variations exist in the precifipitéin of such spaces,
but they have in common a positive paramgewhich measures the extent of the smoothness or
“regularity”; this is roughly the number of times that the functidgsre differentiable. It is known
that if fo is defined on a compact subsetRff and has regularitp > 0, then the optimal, minimax
rategy is given by (see, e.g., Tsybakov, 2009)

g, = n P/ (2B+d) (5)
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It follows that this is also the best possible bound for the risk (3) i aB-regular function ofd
variables. Recent findings in the statistics literature show that for GP pitissgypically true that
this optimal rate can only be attained if the regularity of the GP that is used makehesgularity
of fo (see Van der Vaart and Van Zanten, 2008a). Using a GP prior that retig or too smooth
deteriorates the performance of the procedure. Plain consistencydmwet is, the existence of
somesequence, for which (4) holds, typically obtains fany t in the support in the prior.

Seeger et al. (2008) considered the asymptotic performance for tleriviaid squared expo-
nential GP priors, but we will argue in the next subsection that using thpioach it is not possible
to exhibit the interesting facts that optimal rates are obtained by matching riéigaland that con-
sistency holds for anyyp in the support of the prior. In this paper we will derive these results by
following a different approach, along the lines of Ghosal et al. (2@0@) Van der Vaart and Van
Zanten (2008a).

1.3 Role of the RKHS

A key issue is the fact that Seeger et al. (2008) require the true resfonctionfy to be in the
reproducing kernel Hilbert space (RKHS) of the GP prior. The RKIH& @GP prior with zero mean
function and with covariance kernklcan be constructed by first defining the sp&econsisting
of all functions of the formx — z'le ciK(x,yi). Next, the inner product between two functions in

Hp is defined by
(> Gk, Y SREY D) g =S S aciKv,Yj),

and the associated RKHS-norm piy||4 = (h,h);. Finally, the RKHSH is defined as the closure
of Hl relative to this norm. Since for all € Hp we have theeproducing formula

h(x) = (h,K(X,")) g,

the RKHS is (or, more precisely, can be identified with) a space of functoms and the repro-
ducing formula holds in fact for alh € H. (For more details, see, e.g., the paper Van der Vaart and
Van Zanten, 2008b, which reviews theory on RKHSs that is releva@dgesian learning.)

The assumption tha € H is very limiting in most cases. The point is that unless the GP prior
is a finite-dimensional Gaussian, the RKHS is very small relative to the sugipibre prior. In the
infinite-dimensional case that we are considering here the probability thataf from the prior
belongs toH is 0. The reason is that typically, the elementdibére “smoother” than the draws
from the prior. On the other hand, the probability of a driafalling in a neighbourhood of a given
continuousfy is typically positive, no matter how small the neighbourhood. (A neighbagdho
of fo could for instance be defined by all functions wjth{x) — fo(X)| < € for all x, and a given
€ > 0.) This means that prior draws can approximate any given continuousdurarbitrarily
closely, suggesting that the posterior distribution should be able to learsuahyfunctionfy, not
just the functions in the RKHS.

Example 1 (Integrated Brownian motion and Matérn kernels) It is well known that the sample
paths x— f(x) of Brownian motion f have regularity/2. More precisely, for alla € (0,1/2)
they are almost surely &ider continuous with exponent sup,.y<1|f(x) — f(y)|/[x—y|® is
finite or infinite with probability one depending on whetliex: 1/2 or a > 1/2 (see, e.g., Karatzas
and Shreve, 1991). Another classical fact is that the RKHS of Browniation is the so-called
Cameron-Martin space, which consists of functions that have a squeagrable derivative (see,
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e.g., Lifshits, 1995). Hence, the functions in the RKHS have reguthritlore generally, it can

be shown that draws from a k times integrated Brownian motion have régulat 1/2, while
elements from its RKHS have regularity-K. (cf., e.g., Van der Vaart and Van Zanten, 2008b).
Analogous statements hold for the Mat kernel, see Section 3.1 ahead. All these priors can
approximate a continuous functiog drbitrarily closely on any compact domain: the probability
thatsup, | f(x) — fo(X)| < € is positive for any > 0.

We show in this paper that if the true response funcfigon a compack c RY has regularity
B, then for the Ma&rn kernel with smoothness parametethe (square) risk (3) decays at the rate
n—2min(@.p)/(2a+d) - This rate is identical to the optimal rate (5) if and onlyif= B. Because the
RKHS of the Maérn (a) prior consists of functions of regularity+1/2, it contains functions of
regularity only if B > a4 1/2, and this excludes the cage= 3 that the Maérn prior is optimal.
Thus if it is assumed a-priori thdg is contained in the RKHS, then optimality of Bayesian learning
can never be established.

A second drawback of the assumption tligie H is thatconsistencyasymptotically correct
learning asomerate) can be obtained only for a very small class of functions, relativetsupport
of the GP prior. For instance, Bayesian learning with aéviata) prior is consistent for any con-
tinuous true functiorfp, not only for fo of regularitya 4+ 1/2 or higher. For the square-exponential
process restricting téy € H is even more misleading.

Example 2 (Squared exponential kernel)For the squared exponential GP on a compact subset of
RY, every function h in the RKHS has a Fourier transfdrthat satisfies

/ AN 2677 g < oo

for some ¢ 0 (see Van der Vaart and Van Zanten, 2009 and Section 3.2 aheadjrtloyar, every
h € H can be extended to an analytic (i.e., infinitely often differentiable) functiofi%n

Hence for the squared exponential kernel, restrictindote H only proves consistency for
certain analytic regression functions. However, the support of theepsois equal to the space of
all continuous functions, and consistency pertains for every contgwegression functioff.

A third drawback of the restriction téy € H is that this is the best possible case for the prior,
thus giving an inflated idea of its performance. For instance, the sqaapemential process gives
very fast learning rates for response functions in its RKHS, but as thastiilsy set of analytic
functions, this gives a misleading idea of its performance in genuinely namgdric situations.

1.4 Contributions

In this paper we present a number of contributions to the study of therpenfice of GP methods
for regression.

Firstly, our results give bounds for the risk (2) instead of the informatitieren (1). As argued
in Section 1.2 the resulting bounds are stronger.

Secondly, our results are not just valid for functioigsin the RKHS of the GP prior, but for
all functions in the support of the prior. As explained in the precedingi@ecthis is a crucial
difference. It shows that in GP regression we typically have plain ciemsig for all fo in the
support of the prior and it allows us to study how the performance depmmthe relation between
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the regularities of the regression functidgand typical draws from the prior. We illustrate the
general results for the Maitn and squared exponential priors. We present new rate-optimalifisres
for these priors.

A third contribution is that although the concrete GP examples that we cor{dMaézrn and
squared exponential) are stationary, our general results are not limiséatitmary processes. The
results of Seeger et al. (2008) do concern stationary process arggesvalue expansions of the
covariance kernels. Underlying our approach are the so-called sewaditidns behaviour of the
Gaussian prior and entropy calculations, following the same basic appagaao our earlier work
(Van der Vaart and Van Zanten, 2008a). This allows more flexibility thaanegue expansions,
which are rarely available and dependent on the covariate distributioourlapproach both sta-
tionary and nonstationary prior processes can be considered andoit iecessary to assume a
particular relationship between the distribution of the covariates and the prior

Last but not least, the particular cases of the &atand squared exponential kernels that we
investigate illustrate that the performance of Bayesian learning methods @Bingriors is very
sensitive to the fine properties of the priors used. In particular, the nelb&tween the regularity
of the response function and the GP used is crucial. Optimal performaantyiguaranteed if the
regularity of the prior matches the regularity of the unknown function of @stierSerious mismatch
leads to (very) slow learning rates. For instance, we show that usingtiaeesi-exponential prior,
in a situation where a Matn prior would be appropriate, slows the learning rate from polynomial
to logarithmic inn.

1.5 Notations and Definitions

In this section we introduce notation that is used throughout the paper.

1.5.1 $ACES OFSMOOTH FUNCTIONS

As noted in Section 1.2 it is typical to quantify the performance of nonparaniesiining proce-
dures relative to a-priori models of smooth functions. The proper definitidsmoothness” or
“regularity” depends on the specific situation, but roughly speakingngdhat a function has reg-
ularity o means it hast derivatives. In this paper we use two classical notions of finite smoahnes
Holder and Sobolev regularity; and also a scale of infinite smoothness.

Fora > 0, writea = m+n, for n € (0,1] andm a nonnegative integer. THddlder space
C%[0,1]¢ is the space of all functions whose partial derivatives of ordeys .. ,kq) exist for all
nonnegative integets, ..., kg such thatk; + ...+ kg < mand for which the highest order partial
derivatives are Lipshitz functions of order (A function f is Lipschitzof ordern if |f(x) — f(y)| <
C|x—y|", for everyx,y; see for instance Van der Vaart and Wellner (1996), Section 2.7 .furtber
details on Hblder classes.)

The Sobolev space H0,1]¢ is the set of functionsfo: [0,1]9 — R that are restrictions of a
function fo: RY — R with Fourier transformfo(A) = (2rm)~9 [ € t£(t) dt such that

fol2= [ (2+IA1)° o0 Feh < eo.

Roughly speaking, for integer, a function belongs téi? if it has partial derivatives up to order
that are all square integrable. This follows, becauserthederivative of a functiorfo has Fourier
transformA — (iA)* fo(A),
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Qualitatively both spaceld®[0,1]9 andC®[0,1] describe ti-regular” functions. Technically
their definitions are different, and so are the resulting sets. There wevbpmany functions in the
intersectiorH[0,1]9 N C%[0, 1]¢ and these ara-regular in both senses at the same time.

We also consider functions that are “infinitely smooth”. Foe 1 andA > 0, we define the
spaceq¥' (RY) of functionsfy: RY — R with Fourier transforn satisfying

Ifoll3:= [ ™| o) dh < o

This requires exponential decrease of the Fourier transform, in sbtdrpolynomial decrease for
Sobolev smooothness. The functiongg¥ (RY) are infinitely often differentiable and “increasingly
smooth” asyor r increase. They extend to functions that are analytic on a stfi§ icontainingR¢

if r =1, and to entire functions if > 1 (see, e.g., Bauer, 2001, 8.3.5).

1.5.2 (ENERAL FUNCTION SPACES ANDNORMS

For a general metric spacgéwe denote by, (.X) the space of bounded, continuous functionston
If the spaceX is compact, for exampley = [0,1]9, we simply writeC(X). The supremum norm of
a bounded functiorf on X is denoted byf| || = supcx | f(X)].

Forxy,...,Xn € X and a functionf: X — R we define the empirical norff ||, by

11 = (53, 1700) " ©

Forma (Borel) measure oA  RY we denote by »(m) the associateti>-space, defined by
Lo(m) = { 1:A— E| / [F(9[2dm(x) < oo}
A

In a regression setting where the covariates have probability densityR?, we denote the corre-
spondingL,-norm simply by|| f |2, that is,

If]l2= [ 120090 dx

1.5.3 MISCELLANEOUS

The notationa < b means thaa < Cb for a universal constar€. We writeaVv b = max{a, b},
aAb=min{a,b}.

2. General Results

In this section we present general bounds on the posterior risk. Kiseetion treats the special
cases of the Ma&trn and squared exponential kernels. Proofs are deferred torséctio

2.1 Fixed Design

In this section we assume that given the functiol — R, the datays,...,Y, are independently
generated according ¥ = f(x;) +¢;j, for fixedx; € X and independers ~ N(0,02). Such a fixed
design setting occurs when the covariate values in the training data hawvedids an experimenter.
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For simplicity we assume that is a compact metric space, such as a bounded, closed&&t in
and assume that the true response funcfipand the support of the GP prior are included in the
spaceC,(X) of bounded, continuous functions on the metric sp&c&his enables to formulate the
conditions in terms of theupremum nornfalso called “uniform” norm). Recall that the supremum
norm of f € Cy(X) is given by|| f|| = supcy | T(X)|. (Actually Theorem 1 refers to the functions
on the design points only and is in terms of the norm (6). The conditions ceufdrinulated in
terms of this norm. This would give a stronger result, but its interpretatiommpbeed by the fact
that the norm (6) changes with) The RKHS of the GP prior, as defined in Section 1.3, is denoted
by H and the RKHS-norm by} - ||.

The following theorem gives an upper bound for the posterior risk. biduad depends on the
“true” response functiorp and the GP prioFl and its RKHSH through the so-calledoncentration

function
Pr,(E) = inf h 2 —logM(f:||flle <€ /
fo( ) heH:\|I!\—fo|\w<s” HH g ( H H < ) ( )

and the associated function
. (pfo(s)
=

W, (€) : (8

We denote bquf‘o1 the (generalized) inverse function of the functipg, that is,tp;ol(l) = sup(e >
0: Wi, (e) > 1.

The concentration functiogy, for a general response function consists of two parts. The second
is the small ball exponeny(g) = —logMn(f: | f|l» < €), which measures the amount of prior mass
in a ball of radiuse around the zero function. As the interest is in sngathis is (the exponent
of) the small ball probabilityof the prior. There is a large literature on small ball probabilities of
Gaussian distributions. (See Kuelbs and Li, 1993 and Li and Shao, @@ 1eferences.) This
contains both general methods (probabilistic and analytic) for its computattbmany examples,
stationary and non-stationary. The first part of the definitiopsfe), the infimum, measures the
decrease in prior mass if the (small) ball is shifted from the origin to the truepterfy. This is
not immediately clear from the definition (7), but it can be shown that up teteats @r, (€) equals
—logM(f:||f — folle <€) (see for instance Van der Vaart and Van Zanten, 2008b, Lemma 5.8). Th
infimum depends on how wef}, can be approximated by elemehtsf the RKHS of the prior, and
the quality of this approximation is measured by the size of the approximanthe RKHS-norm.
The infimum is finite for everg > 0 if and only if fy is contained in the closure & within Cy(X).

The latter closure is the support of the prior (Van der Vaart and Vatena@008b, Lemma 5.1) and
in typical examples it is the full spa (X).
Our general upper bound for the posterior risk in the fixed designta&es the following form.

Theorem 1 For fg € Cy(X) it holds that
Ery [ 11f = ol 3 (f[Yin) S Wik(n)?

For qu‘ol(n) — 0 asn — o, which is the typical situation, the theorem shows that the posterior

distribution contracts at the raqe;ol(n) around the true response functiéy To connect to Seeger
et al. (2008), we have expressed the contraction using the quadratibuisthe concentration is
actually exponential. In particular, the power 2 can be replaced by anygimiter.
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From the definitions one can show that (see Lemma 17), wherigweH,

_ Ifolls

Ptn) < 7

This relates the theorem to formula (3) in Seeger et al., whose I0gdek) is replaced by, (n)2.
However, the left sidep;(}(n) of the preceding display is finite for everfy in the support of the

prior, which is typically a much large space than the RKHS (see Section b8hdtance, functions

fo in the RKHS of the squared exponential process are analytic, whq;l?oéaa) is finite for every
continuous functiorfp in that case. Thus the theorem as stated is much more refined than if its upper
bound would be replaced by the right side of (9). It is true tlm;(ﬁ(n) is smallest iffyg belongs to

the RKHS, but typically the posterior also contracts if this is not the case.

In Sections 3.1 and 3.2 we show how to obtain bounds for the concentratatidn, and
hence a risk bound, for two classes of specific priors: theehMatlass and the squared exponential.
Other examples, including non-stationary ones like (multiply) integrated Bemwmotion, were
considered in Van der Vaart and Van Zanten (2008a), Van der aartVan Zanten (2007) and
Van der Vaart and Van Zanten (2009).

+gt(n). @)

2.2 Random Design

In this section we assume that given the functiof0, 1] — R on thed-dimensional unit cube
[0,1]¢ (or another compact, Lipschitz domaini9) the dataXy, Y1), ..., (Xn, Ya) are independently
generatedX; having a density on [0,1]¢ that is bounded away from zero and infinity, a¥jd=
f(Xj) + €, for errorse; ~ N(0,02) that are independent given tKgs.

We assume that under the GP pribthe functionf is a zero-mean, continuous Gaussian pro-
cess. The concentration functigg and the derived functiogy, are defined as before in (7) and (8).
Recall that| f ||z is theL,-norm relative to the covariate distribution, that|j$,|3 = [ f2(x)g(x) dx.
The theorem assumes that for somg 0, draws from the prior are-regular in Hlder sense. This
roughly means that derivatives should exist. See Section 1.5 for the precise definition.

Theorem 2 Suppose that for some > 0 the prior gives probability one to the dfder space
C®[0,1]9. For l]Jf_ol the inverse function ob¢, and C a constant that depends on the prior and

the covariate density, ifi; ' (n) < n~9/(4+29) then
Ery [ IIf — foll3dMa(f]Xun, Vo) < CH()2

If, on the other hand;'(n) > n~9/(4a+29), then the assertion is true with the upper bound
Cryp ()40

Unlike in the case of fixed design treated in Theorem 1, this theorem makespsons on
the regularity of the prior. This seems unavoidable, becausg thgrisk extrapolates from the
observed design points to all points in the support of the covariate density.

In the next section we shall see that a typical rate for estimatfigmooth response function
fo is given by

Lp?()l(n) ~ nf(B/\G)/(ZGer)'
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(This reduces to the minimax rate®/ (2+% if and only ifa = B.) In this casep;'(n) < n-¢/(4a+2d)
if and only ifa A >d/2. In other words, upper bounds for fixed and random design heactlg
the same form if prior and true response are not too rough.

For very rough priors and true response functions, the rate givehebgreceding theorem is
slower than the rate for deterministic design, and for very rough respongtions the theorem
may not give a rate at all. The latter seems partly due to using the second mafrttenposterior,
rather than posterior concentration, although perhaps the theorene daptoved.

3. Results for Concrete Priors

In this section we specialize to two concrete classes of Gaussian proaess fhe Maérn class
and the squared exponential process.

3.1 Matérn Priors

In this section we compute the risk bounds given by Theorems 1 and 2 foasigeof the Marn
kernel. In particular, we show that optimal rates are attained if the smoatbhé&se prior matches
the smoothness of the unknown response function.
The Matérn priors correspond to the mean-zero Gaussian proceésses\W:t < [0,1]9) with
covariance function
EVGW = /R @ Um)dA,

defined through thepectral densities rikY — R given by, fora > 0,
m(\) = ! (10)
(l+ H)\HZ)ChLd/Z

The integral can be expressed in certain special functions (see, &sgiuRsen and Williams, 2006).
This is important for the numerical implementation of the resulting Bayesian puogebut not
useful for our present purpose.

The sample paths of the Mah process possess the same smoothndssan the set of func-
tionse (A) = €At in Ly(m). From this it can be seen that the sample pathi irees differentiable
in Ly, for k the biggest integer smaller than with kth derivative satisfying

EW ~WH)2 < [|s— 2@k,

By Kolmogorov’s continuity criterion it follows that the sample paths of kkie derivative can be
constructed to be Lipshitz of any order strictly smaller than k. Thus the Maérn process takes
its values inC%[0,1]9 for anya < a. Hence in this specific sense itdsregular.

By Lemma 4.1 of Van der Vaart and Van Zanten (2009) the RKHHSf the processV is the
space of all (real parts of) functions of the form

ho(t) = [ € mn) dh. (11)
for g € Lo(m), and squared RKHS-norm given by

gl = min_ [ 10PA)m() o 12)
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This characterization is generic for stationary Gaussian processesninfimum is unnecessary if
the spectral density has exponential tails (as in the next section), buessay in the present case.

In the following two lemmas we describe the concentration function (7) of théiarior. The
small ball probability can be obtained from the preceding characterizatithre RKHS, estimates
of metric entropy, and general results on Gaussian processes. Gea €3 for proofs.

Lemma 3 For || - ||» the uniform norm, and C a constant independers, of
1\ d/a
— o <C(= .
log P(||W|| < €) < c(e)

To estimate the infimum in the definition of the concentration funapgiior a nonzero response
function fo, we approximatefo by elements of the RKHS. The idea is to wrif¢in terms of its
Fourier inversefg as

fo(X) = / () d (13)

- / o mayan.
m
If fo/m were contained irLo(m), then fo would be contained in the RKHS, with RKHS-norm
bounded by thé.,(m)-norm of f,/m, that is, the square root gf(| fo|2/m)(A) dA. In general this
integral may be infinite, but we can remedy this by truncating the tailf%/trh. We then obtain
an approximation ofy by an element of the RKHS, which is enough to compute the concentration
function (8).

A natural a-priori condition on the true response functigri0, 1]¢ — R is that this function is
contained in a Sobolev space of order This space consists roughly of functions that posfess
square integrable derivatives. The precise definition is given in Settton

Lemma 4 If fo € CP[0,1]9NHP[0,1]9 for B < a, then, fore < 1, and a constant C depending og f
anda,

inf[Ihiz <c(

1) (20+d—2B)/B
he[|h—folle <€ '

€
Combination of the two lemmas yields that figre CP[0, 1] NHP[0, 1) for B < a, the concen-
tration function (7) satisfies

1) (2a+d-2B)/B N <i_> d/a‘

90(6) 5 (5

This implies that
1\ B/(2a+d)
-1 < -
Theorems 1 and 2 imply that the rate of contraction of the posterior distributiofitiigs order in
the case of fixed design, and of this ordefif- d/2 in the case of random design. We summarize
these findings in the following theorem.

Theorem 5 Suppose that we use a Nan prior with parametent > 0and § € CP[0, 1] "HP|[0, 1]
for B > 0. Then in the fixed design case the posterior contracts at the rafé®/(29+d)  |n the
random design case this holds as well, providet > d/2.
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Observe that the optimal rate®/(?+9) js attained if and only itx = B. Using a prior that is
“rougher” or “smoother” than the truth leads to sub-optimal rates. This is@r@ance with the
findings for other GP priors in in Van der Vaart and Van Zanten (2Q08ahould be remarked
here that Theorem 5 only gives an upper bound on the rate of contra¢tmwvever, the paper by
Castillo (2008) shows that these bounds are typically tight.

3.2 Squared Exponential Kernel

In this section we compute the risk bounds given by Theorems 1 and 2 foasieeof the squared
exponential kernel.
Thesquared exponential proceissthe zero-mean Gaussian process with covariance function

BWW =e st stefo,19.

Like the Magern process the squared exponential process is stationary. ltsasplectsity is given
by

1 2

The sample paths of the square exponential process are analytic.

This process was studied already in Van der Vaart and Van Zantef@)(20@d Van der Vaart
and Van Zanten (2009). The first of the following lemmas is Lemma 4.5 in VaVatt and Van
Zanten (2009). It deals with the second term in the concentration funatjoré before, lef| - ||
be the uniform norm on the functiorfs[0,1]¢ — R.

Lemma 6 There exists a constant C depending only on d such that
1\ 1+d
- w<Eg)< - .
log P(HWH < s) < C(Iog s)

The following lemma concerns the infimum part of the concentration functioreircdise that
the functionfp belongs to a Sobolev space with regulaftfsee Section 1.5).

Lemma 7 If fo € HP[0,1]9 for B > d/2, then, for a constant C that depends only @n f

inf  ||h]|% < exp(Ce=%/®-9/2),
it IInE < expl )
Combination of the preceding two lemmas shows that ffragular response functiofy (in

Sobolev sense) .
1+
@1 (€) S exp(Ce2/(B-9/2)) (Iog%)

The first term on the right dominates, for giy- 0. The corresponding rate of contraction satisfies
Wih(n) S (1/logn)P/2-9/%,

Thus the extreme smoothness of the prior relative to the smoothness of phasedunction
leads to very slow contraction rates for such functions. A remedy for thimaiah is to rescale
the sample paths. The length scale of the process can be treated aspmbameter and can be
endowed with a prior of its own, or can be selected using an empirical Bapesdure. Van der
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Vaart and Van Zanten (2007) and Van der Vaart and Van Zanter9{Z60example show that the
prior x — f(AX), for f the squared exponential process @ddan independent Gamma distributed
random variable, leads to optimal contraction ratesf@mooth true response functions, for any
>0.

Actually, the preceding discussion permits only the derivation ofigper boundon the con-
traction rate. In the next theorem we show that the logarithmic rate is reaveowThe theorem
shows that asymptotically, balls arouriglof logarithmic radius receive zero posterior mass. The
proof, following an idea of Castillo (2008) and given in Section 4.4, is thasethe fact that balls
of this type also receive very littlprior mass, essentially because the inequality of the preceding
lemma can be reversed.

Theorem 8 If o is contained in H[0, 1]¢ for someB > d/2, has support withir(0, 1) and pos-
sesses a Fourier transform satisfyiffg(A)| > ||A|| ¥ for some k> 0 and every||A|| > 1, then there
exists a constant | such thBg,M(f:||f — fol2 < (logn)~"| Xy, Y1) — O.

As the prior puts all of its mass on analytic functions, perhaps it is not faituysts per-
formance only fof3-regular functions, and it makes sense to study the concentration fulatsion
for “supersmooth”, analytic response functions as well. The functiotlsaiRKHS of the squared
exponential process are examples of supersmooth functions, anas$er fimctions we obtain the
ratewal(n) determined by the (centered) small ball probability only. In view of Lemma 6 thas is
1/4/n-rate up to a logarithmic factor.

The following lemma deals with the infimum part of the concentration function indke that
that the functionfo is supersmooth. Recall the definition of the spa¥&(RY) of analytic functions
given in Section 1.5.

Lemma9 o If fqis the restriction tg0, 1}d of an element oﬂy=r(Rd), forr > 2, orforr>2
withy > 4, then § € H.

e If fqis the restriction tq0, 1]9 of an element af?¥' (RY) for r < 2, then there exist a constant
C depending ongfsuch that

inf Hh”%ﬂ < Ce(|09(1/8))2/r/(4v2/r)_

[[h—w|e<g
Combination of Lemmas 6 and 9 with the general theorems yields the followinlg. resu

Theorem 10 Suppose that we use a squared exponential prior arid the restriction td0, 1]9 of
an element of2¥' (RY), for r > 1 andy > 0. Then both in the fixed and the random design cases the
posterior contracts at the ratdogn)*/" /,/n.

Observe that the rate that we get in the last theorem is up to a logarithmicdgctairto the rate
1/+/nat which the posterior typically contracts for parametric models (cf., thedBaimvon Mises
theorem, for example, Van der Vaart, 1998). This “almost parametric imexXplainable from the
fact that spaces of analytic functions are only slightly bigger than finite1tinaal spaces in terms
of their metric entropy (see Kolmogorov and Tihomirov, 1961).

Together, Theorems 8 and 10 give the same general message fordhedsexponential kernel
as Theorem 5 does for the Mah kernel: fast convergence rates are only attained if the smooth-
ness of the prior matches the smoothness of the response furigtioHowever, generally the
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assumption of existence of infinitely many derivatives of a true respamsgién (fo € 49" (RY))

is considered too strong to define a test case for nonparametric leatiihig. assumption holds,
then the response functid can be recovered at a very fast rate, but this is poor evidence df goo
performance, as only few functions satisfy the assumption. Under the tnutye'nonparamet-

ric assumption” thafy is B-regular, the performance of the squared-exponential prior is disestr
(unless the length scale is changed appropriately in a data-depenggnt wa

4. Proofs

This section contains the proofs of the presented results.

4.1 Proof of Theorem 1

The proof of Theorem 1 is based on estimates of the prior mass near thgatameterfo and on
the metric entropy of the support of the prior. This is expressed in the fltpproposition.

We use the notatioD (¢, 4, d) for thee-packing number of the metric spac®,d): the maximal
number of points i such that every pair has distance at leastiative tod.

Proposition 11 Suppose that for songe> 0 with \/ne > 1 and for every r> 1 there exists a sef;
such that

D(e, %, | - [In) < €7, (15)
I_I(_(]:r) > 1_672n£2r2‘

Furthermore, suppose that
N(f:||f—foln<e) >e™. (16)

Then
Pn’f0/||f — follhdMn(f|Yan) <€

For6 € R" let B, g be the normal distributio, (6, 1). In the following three lemmas Idit: || be
the Euclidean norm oR".

Lemma 12 For any 6p,601 € R", there exists a tegp based on Y~ N,(6,1) such that, for every
8 c R" with |8 — 84| < /80— 61]|/2,

Pro,@V Pro(1— @) < e 10-01l/8,

Proof For simplicity of notation we can choo$g = 0. If |6 —01]| < [|01]|/2, then||8|| > ||61]| /2
and hence8,0;) = (||6]|2+(|61]> — |8 — 81]|2) /2 > [|61]|?/2. Therefore, the tegp= LoTv-Dle]
satisfies, withd the standard normal cdf,

Prao®=1—®(D),
Poe(1—@) = ®((D]|81]| — (8,61))/[161]]) < P(D—p),

for p=1/61]|/2. The infimum oveD of (1— ®(D)) + ®(D — p) is attained folD = p/2, for which
D — p = —p/2. We substitute this in the preceding display and use the bounth(k) < e X/2
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valid forx > 0. |

LetD(g,©) be the maximal number of points that can be placed inside th@ seR" such that
any pair has Euclidean distance at least

Lemma 13 For any® C R" there exists a tegibased on Y~ Ny(6, ) with, for any r> 1 and every
integer j> 1,
Phe,® < 9D(r/2,0)exp(—r?/8),

sup  Pne(1—) <exp—j%r?/8).
0€0:||0—6p||>jr

Proof The set® can be partitioned into the shells
Cjr={8€0:jr <660 < (j+1)r}.

We place in each of these shells a maximal collec@®ymf points that argr /2-separated, and next
construct a tesp; as the maximum of all the tests as in the preceding lemma attached to one of these
points. The number of points is equal@gjr /2,Cj ). Every® € C;, is in a ball of radiusjr /2 of

some poin®; € O; and satisfie0 — B81|| < jr/2 < ||8p — 61| /2, sinced; € Cj ;. Hence each test
satisfies the inequalities of the preceding lemma. It follows that

Pn6o®j < D(jf/Z,Cj,r)e*jzrz/g,

sup Pro(1—@)) < e 17r°/8,
8cCjr

Finally, we constructgp as the supremum over all testg, for j > 1. We note that
3 >1D(jr/2,Cj,)e 17°/8 < D(r/2,0)e "*/8/(1— e "/8), and ¥(1 e /8) ~ 8.510. |

Lemma 14 For any probability distributiod1 onR" and x> 0,

Paoo ([ P12 dn(6) < e /2ol < 12
’ n790

for o = /(8 —89) dr(6) andag = [ |8 — 6o||*dr(6). Consequently, for any probability distribu-
tion M onRR" and any r> 0,

Paso ([ £5-dN(6) > e "N (6: |0~ 6ol <1)) = 1—e ",

n,eo
Proof Under6g the variable[ log(pne/png,) dM(0) = 1 (Y — B80) — 63/2 is normally distributed
with mean—a3/2 and variance|jo||2. Therefore, the everB, that this variable is smaller than
—0%/2— ||Hol|x has probability bounded above By—x) < e¥/2, By Jensen’s inequality applied
to the logarithm, the event in the left side of the lemma is contain®&j.in
To prove the second assertion we first restrict the integpale / pn,g, dM(0) to the ball{6: |6 —
Bo|| <r}, which makes it smaller. Next we divide B§Y(6: |6 — 8| < r) to renormalizel to a
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probability measure on this ball, and apply the first assertion with this renoedatieasurél.
The relevant characteristics of the renormalized measure satigfy< r andc% < r2. Therefore
the assertion follows upon choosirg-r/2. [ |

Proof [Proof of Proposition 11] For any ever#t, any testg and anyr > 1, the expected value
P oM (f:[|f — folln > 4er|Y1n) is bounded byA+B+C+ D, for

A:Pn,fo(pv

B:Pnﬂfo(lec)

C= Pn,fol_ln(f € .'Tr’Yl:n)lﬂlv

D =Py t,Mn(f € F:||f — fol[n > 4er|Yin) (1— @) 14.

For the testp given by Lemma 13 witt® the set of all vectoréf(xl), el f(xn)) asf ranges over
F¢, with 6 this vector atf = fy, and withr taken equal to ¢'ner, we obtain, for 4/ner > 1,

AL 9D(2\/ﬁgr’ e)e—aner < 9e_n£2r2.
In view of Lemma 14 applied with equal to,/ner, there exists an everit such that
B< e—n52r2/8

while on the even#i,

S”” dn(f) > e ™A (f:]|f - foll < &r) > e D),
n, fo

It follows that on the evend, for any setB,
Mn(B|Yin) < €0+ /73 Prt/ Pr. o A (F).
Therefore, in view of the fact th&, t,(pn.f/Pn.1,) < 1, we obtain,
<& MRy [ pni/pipdn(h)
< ﬂc)rg g (-1 (17)

Finally, in view of the fact thaP, t,(pn,t/Pn.f,) (1 — @) < Pnt(1— @), which is bounded above
by e2I®*” for f contained inCjr:={f € Far:djer <||f —fo|ln < 4(j +1)er} by the second
inequality in Lemma 13, we obtain, again using Fubini’s theorem,

D< ge’(r*+1) Z Pn,fo(l_(p)/c Pn.f/Pn.f, dM(f)
=1 I

< ensz(r2+l) Zle—ijnszr2 < 9e—n82(r2—1)
— —_— )
i=

for ne?r2 >1/16, as ¥(1—e /%) ~ 85.
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Finally we write

Paso [ 111~ follydM(f Vi)
:%%AIH4HMH—hW>4M%@dN&y
< (85)|+(45)|Pn7f0/ Ir' "1 (A+B+C+D)(r)dr.

2

Inserting the bound oA+ B+ C + D obtained previously we see that the integral is bounded by
105’ (e"*/8 + e ("~ 1) dr < oo, n

Proof [Proof of Theorem 1] Theorem 1 is a specialization of Proposition 11 tes&an priors,
where the conditions of the proposition are reexpressed in terms of ticerdoation functiorps,
of the prior. The details are the same as in Van der Vaart and Van Zarfi@eda2

First we note that: = ngl(n) satisfiespr, (€/2) < ne?/4 < ne2. It is shown in Kuelbs et al.
(1994) (or see Lemma 5.3 in Van der Vaart and Van Zanten, 2008b) thabticentration function
¢r, determines the small ball probabilities aroufadlin the sense that, for the given

M(f:[|f—follo <€) >e™. (18)

Becausé| - ||n < || - ||, it follows that (16) is satisfied.

For H; andB; the unit balls of the RKHS an& andM, = —2<D*1(e*”82r2), we define sets
F = €B1+ M;H;. By Borell's inequality (see Borell, 2008, or Theorem 5.1 in Van der Vaad
Van Zanten, 2008b) these sets have prior probability; ) bounded below by + ®(a + M), for
@ the standard normal distribution function amthe solution to the equatioh(a) = M (f: || f||e <
s) — e %), Becauseb(a) > g e’ > e‘”ﬁzrz, we havea + M, > —d)‘l(e‘”szrz). We conclude that
N(%) > 1—e ",

It is shown in the proof of Theorem 2.1 of Van der Vaart and Van Za(2608a) that the sets
F: also satisfy the entropy bound (15), for the ndfm|., and hence certainly fdf- ||n. [

4.2 Proof of Theorem 2

For a functionf:[0,1] — R anda > 0 let || f ol D€ the Besov norm of regularity measured
using thel., — Lo-norms (see (19) below). This is bounded by th#dér norm of orden (see for
instance Cohen et al., 2001 for details).

Lemma 15 Let X = [0,1]9 and suppose that the density of the covariates is bounded below by a
constant c. Thefjf ||, < ¢-20/(2atd)| |9/ (20Fd)) £ 2/(290+4) o any function £[0, 1] — R.

oo

Proof We can assume without loss of generality that the covariate distribution is ifleermimalistri-
bution. We can write the function as the Fourier sefies 37 Y« 3 Bj kv€j kv relative to a basis
(ej xv) of orthonormal wavelets ihp(RY). (Herek runs for each fixed through an index set for of
the orderO(2/9) translates, and runs through{0,1}% whenj = 0 and{0,1}9\ {0} whenj > 1.)
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For wavelets constructed from suitable scaling functions, the variousshoff can be expressed
in the coefficients through (up to constants, see for instance Cohenz2@il.,, Section 2)

Ifl2= (33 3 Be)

jd/2
Il < 3 mavemaBy 2

[ Fllajeo = Sl_meI:axm\?x\Bj’k’V\Zj(o‘*d/Z). (19)
j

For givenJ let f; = 3 <3 Yk > vBjkv€j kv be the projection of on the base elements of resolution
level bounded byl. Then

If = folo < 5 maxmax|B; 2/
>

< 3 2109 o2 <2 o
>

Furthermore, by the Cauchy-Schwarz inequality,

1 fallo < Zmaxmax|[3j~k_v|21d/2
=k v

< (3 mpmet,) (324"
< || f[|229/2,

where in the last inequality we have bounded the maximum @vey by the sum.

Combining the two preceding displays we see thidf.. < 2799/ [|400 + || f[|2279/2. We finish
the proof by choosing to balance the two terms on the right. |

Proof [Proof of Theorem 2] Let = 2L|Jf_01(n) so thatpy, (g/2) < ne? and (18) holds. By the definition
of @, there exists an elemerit of the RKHS of the prior with|| fe — fo|j < €/2 and ||f¢|3 <
0, (g/2) < ne?. Because| fe — fo2 < || fe — follo < €, the posterior second moments|df— fe||»
and||f — fo||» are within a multiple o&?, and hence it suffices to bound the former of the two.

For any positive constan{st, anyn > €, and any eventgl, we can bound

1
2 [ 1= fe3aN(1 Xan Vi)

B [ (01 = fll2 > nr X, Vi) o
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byl +I11 +11 +1V, for
| =gy [ T1(F:2f = fell > Xan, Ya) o,

I :Efo/ r1aedr,
0
1l :Efo/o (14,1 (|[[lae > Tv/ANEY| Xy, Vo) d,
W :EfO/O (1 ([ = fell2 > nr > 2] — fe|n
| f Haloo < Tﬁnry\ X1:n7Y1:n> dr.

The terml is the quadratic risk in terms of the empirical norm, centeref}.aConditioned on the
design points and centered &tthis was seen to be bounded in the previous sectiom (a<),
uniformly in the design points. Becaubé — f¢||» < €, the terml is bounded by a constant.

In view of Lemma 14, withr of the lemma equal tg/nerY, there exist eventd, such that

*© 2,2
I g/ re T8 dr < 1,
0

while on the events;,

Pn,

dn(f) > e ™M (f: ]| — folln < &rY)
Pn, fo

> g NP+ (20)

by (18) and because: ||n < || - [|e-

Because the pridrl is concentrated on the functions witffi ||, < o by assumption, it can be
viewed as the distribution of a Gaussian random element with values indldet-spac&® [0, 1)9.
It follows thatt?: = 16 [ || f Hg‘mdl'l(f) is finite, and (|| f | g > TX) < e 2¢ for everyx > 0, by
Borell's inequality (e.g., Van der Vaart and Wellner, 1996, A.2.1.). By taesargument as used
to obtain (17) in the proof of Proposition 11, we see that

n < 1+/ re" U (£ g0 > TV/ANTY) dr
1

00
< 1+/ re € (r+1) g=2mr? <2
1

It remains to prove thdy is bounded as well.

The squared empirical norfif — f¢|| is the average of the independent random varialdies
fe)?(X;), which have expectatioff — f¢||3, and variance bounded B(f — f¢)* < ||f — f¢||3]| f —
f¢||2. Therefore, we can apply Bernstein’s inequality (see, e.g., Lemma 2.2 &ninl&f Vaart and
Wellner, 1996) to see that

P(||f — fell2> 2|/ f — felln) < e (/)| f—TelI3/|Iffel&

The unit ball of the RKHS of a GR is always contained intimes the unit ball of the Banach space
on which it is supported, foc? = E||f||?, where|| - || is the norm of the Banach space (see, e.g.,
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Van der Vaart and Van Zanten, 2008b), formula (2.5)). An equitadtatement is that the Banach
norm || f|| of an element of the RKHS is bounded abovecttimes its RKHS-norm. Becaude is
concentrated 06°[0,1]9, we can apply this general fact with || thea-Holder norm, and conclude
that thea-Holder norm of an element of the RKHS is bounded above/ytimes its RKHS-norm,
for 1/4 the second moment of the prior norm defined previously. In partiguldip. < T||fellm <
1y/ne. Therefore, forf in the set¥ of functions with|| f||g < Ty/nerY, we havel|f — fel[gje <
2ty/ner¥, whence by Lemma 15 fof € ¥ we can replacd f — f¢|| in the preceding display by
c(2ty/nerY)d/(2a+d)| £ — £||20/(22+9) for 4 constant depending on the covariate density. We then
have

<[ P(If = fall2 > 2]~ felln) aN(1)
feF:|| f—fell2>nr

no/||f — felloy 20/ (a+d)
< (ML Tel2
- /|f—fa|2>r]r exp( 5¢2 ( 2t /nerY ) ) d

< exp(_anG/ (20d) (1Y /S)Zd/(2u+d)> 7

n(f)

for 1/C = 5¢?(21)24/(20+d)  gybstitution of this bound and the lower bound (20) in IV yields

[ee]
IV < 1+/ ren£2(r2y+1)e_CnZ(x/(Za+d)(nrl—y/E)Zd/(Za+d)dr'
1

ForCr?a/(20+0d)(p /g)2d/(20+d) > ne? this is finite ify > 0 is chosen sufficiently small. Equivalently,
IV is bounded ify > |/ng(20+2d)/d,

We must combine this with the requirement made at the beginning of the proof that>
20 H(n). If € < =%/ then,/ng(2a+20)/d < ¢ and hence the requiremeang> /ng®*+20/d is
satisfied fom = €. Otherwise, we choosg~ /ne(22+29)/d 5 ¢ |In both cases we have proved that
the posterior second moment has mean bounded by a multipfe of |

4.3 Proofs for Section 3

Proof [Proof of Lemma 3] The Fourier transform laf, given in (11) is, up to constants, the function
@= Ym, and fory the minimal choice as in (12) this function satisfies (cf., (10))

J 100 (@4 AR/ ah = g 2.

In other words, the unit balil; of the RKHS is contained in a Sobolev ball of orde# d/2. (See
Section 1.5 for the definition of Sobolev spaces.) The metric entropy retative uniform norm
of such a Sobolev ball is bounded by a constant tifdgs)9/(@+9/2) (see Theorem 3.3.2 on p. 105
in Edmunds and Triebel, 1996). The lemma next follows from the results efdsuand Li (1993)
and Li and Linde (1998) that characterize the small ball probability in teriniseoentropy of the
RKHS-unit ball. [ |
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Proof [Proof of Lemma 4] Letk:R — R be a function with a real, symmetric Fourier trans-
form K, which equals 1(2m) in a neighborhood of 0 and which has compact support. From
K(A) = (2r)~1 [ &Mk (t)dt it then follows that[ k(t)dt = 1 and [(it)*k(t)dt = O for k > 1. For
t = (ta,...,tq), define@(t) = k(t1)---K(tq). Then@integrates to 1, has finite absolute moments of
all orders, and vanishing moments of all orders bigger than O.

Foro > 0 setgy(x) = 0-%(x/0) andh = @ * fo. Becausepis a higher order kernel, standard
arguments from the theory of kernel estimation shows [tfigt- @ * fol|e < oP.

The Fourier transform di is the function\ — h(A) = (o)) fo(A), and therefore (12) and (13)
show that

Il < [ faon) foh) —dx
< sup| (1-+ AP )“*"/2 *la(on) ] ol

< Closup| (L+ A P1o00) ] ol

for
Sup( 1+A)2 )a+¢@ B <1>2a+d—28
1+ ||oA|2 ~\o ’
if 0 < 1. The assertion of the lemma follows upon choosing £/, |

Proof [Proof of Lemma 7] For givelk > 0 let p(A) = (fo/m)()\)lng. The functionhy, defined
by (11) withmgiven in (14) satisfies

Iy —Tollo < [ [fo(0)| A
[Al>K

_ 1/2
<lfollg2( [, (@+IN?) o)

1
S"hHmzRﬁng-

Furthermore, the squared RKHS-normigfis given by

(e
Iyl = | Ifol” 3y an

A<k M

< sup m(A)1(1+|]A)2) P foll3,
IAlI<K
< &4 5|13,

We conclude the proof by choositg~ =1/ (B-d/2), [ |

Proof [Proof of 9] The first assertion is proved in Van der Vaart and Vamt&@a (2009), Lemma 4.4.
The second assertion is proved in the same way as Lemma 7, where this timgfgyitithe norm
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of fgin 4¥"(RY),

hy — fo g,g/ e VINI g | o 12
= fol2< [ e anpl

VKM, —
L S

Il < sup eIF/AYIN | £0)2 < &/ £o 3.
S

We finish by choosingk ~ (y~log(1/¢))™". [

4.4 Miscellaneous Results

Proof [Proof of Theorem 8] We start by proving the following lower bound oa tioncentration
function: there existb,v > 0 such that foe | 0,

g) > inf hyl|2 21
P ( )_w:HthO”NH wllf (21)

> exp(be™).

For givene > 0 lethy, be a function in the RKHS of the form (11) such thag — fo||2 < €. Letr be a
function which is equal to 1 on the supportfgf has itself support withifD, 1] and Fourier transform
with exponentially small tailsif(A) exp(|]A|Y) — 0 as|A| — o, for someu > 0. (Such a function
exists foru < 1.) Thenhyr has support insid@®, 1] and for = fg, so that|hyr — fo||2r < ||hy — fol|2,
where|| - |2 is the norm ofL,(RY) and|| - |2 the norm ofL[0,1]. The functionhyr has Fourier
transform(ym) « 7, and hence by Parseval's identjtyym) « f — fAOHZ,R < €. Therefore, folK > 0

andxk the indicator of the sefA € R%:||A|| > K},
(W)« FXax ||, 5 > || foXaxlze — € > c(1/K)K92 —¢,

by the assumption ofy, for some constart. By Lemma 16 withA = K/2 and X instead oK, it
follows that

[wmXicll2.21F(L = X) [l > ¢(1/K)Y2 — & — [|yml]2 z]|FX 1

In view of (12) we have thathy|lm = ||P/M|2r and hencd|ymxk ||2r < /M(K)| hy|/m, and
|wml2r < |lhy|/m. Combining this with the preceding display we see that

(IF(L =Xl Lr v/M(K) + 1Pk [|1) 1|1 > c(1/K)K2 —g =,

for K = (c/2e)Y~9/2) Here|f(1—Xk)|lLr/M(K) is of the order exp-K?/4), in view of the
definition (14) ofm and the fact that s integrable, and/fxk|/1 is of the order exp-dK"), by
construction. The proof of (21) is complete upon substituling (c/2¢)Y(-9/2) and rearranging
the preceding display.

The prior mass of a ball of radigsaroundfy is bounded below bg ®0(¢/2) and bounded above
by e ®(®) where we can use any norm. In view of (21) and Lemmas 6 and 7 we clanthat
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there exist constants such

exp(—€% ") <M (f:[|f — fol| <€),
M(f:||f —foll2 <€) <exp(—€*).

By choosingnn, €, such thaie, Y = logn® andbn,,¥ = logn', we obtain that

N(f:]|f— foll2 <nn)
N(f:]f— folle < &n)

< exp(—nt ) < eonsﬁ’

if t > 1vs. It then follows that B,M(f:[|f — fol|2 < Nn|X1n, Y1) — O, by the same argument as
given to prove (17). |

If the convolution of a functiorf with a light-tailed functiorg has heavy tails, thefitself must
have heavy tails. The following quantitative version of this principle undethie preceding proof.

Lemma 16 For arbitrary functions fg:R — R, Xk the indicator function of A € R%: ||A|| > K},
and0 <A <K,

IfXk-all2ll9(L = Xa)lls = [[(f + @)Xk l[2 = [ Tll2llgXAl[1-

Proof For f; the functionA — f(A —t), we have|| fixk |2 < || fxk-all if [[t]] <A, and||fixk|2 <
|| |2 for everyt. Therefore

|/ oot < [ lfoxclzlg et
<ltxeale [ lo®ldt+[flz [ gt

[t <A I1tl>A

It suffices to arrange this inequality. [ |

Lemma 17 For ¢, defined by (8) andofe H we have (9).

Proof Because the functions, is decreasing, the relatiof,(€) < n for somee implies that
qJ;()l(n) < &. Consequently, )¢, is an upper bound o¢,, then{¢,(€) < nfor somee implies that

w;()l(n) <e. If fg € H, then we can choose= f, in the infimum in the definition of¢,, and hence
we obtain

Pro(€) < [l follf +@o(e).

If both || fo|| < ne?/2 andyio(€) < ne?/2, theniy,(€) < nand hencey; *(n) <e. [ |
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