Journal of Machine Learning Research 12 (2011) 819-862 Steahii/09; Revised 5/10; Published 3/11

Learning Transformation Models for Ranking and Survival Analysis

Vanya Van Belle VANYA .VANBELLE @ESAT.KULEUVEN.BE
Katholieke Universiteit Leuven, ESAT-SCD

Kasteelpark Arenberg 10

B-3001 Leuven, Belgium

Kristiaan Pelckmans KRISTIAAN .PELCKMANS@IT.UU.SE
Uppsala University

Department of Information Technology

SysCon Polacksbacken

SE-751 05 Uppsala, Sweden

Johan A. K. Suykens JOHAN.SUYKENS@ESAT.KULEUVEN.BE
Sabine Van Huffel SABINE.VANHUFFEL@ESAT.KULEUVEN.BE
Katholieke Universiteit Leuven, ESAT-SCD

Kasteelpark Arenberg 10

B-3001 Leuven, Belgium

Editor: Nicolas Vayatis

Abstract

This paper studies the task of learning transformation isdderanking problems, ordinal regres-
sion and survival analysis. The present contribution deesra machine learning approach termed
MINLIP. The key insight is to relate ranking criteria as the Area &mithe Curve to monotone
transformation functions. Consequently, the notion ofsthitz smoothness constant is found to
be useful for complexity control for learning transforneetimodels, much in a similar vein as the
'margin’ is for Support Vector Machines for classificatiofihe use of this model structure in the
context of high dimensional data, as well as for estimatimg-tinear, and additive models based on
primal-dual kernel machines, and for sparse models is atelit Givem observations, the present
method solves a quadratic program existingdgh) constraints and(n) unknowns, where most
existing risk minimization approaches to ranking probleypsically result in algorithms witD(n?)
constraints or unknowns. We specify thenLiP method for three different cases: the first one con-
cerns the preference learning problem. Secondly it is pddiow to adapt the method to ordinal
regression with a finite set of ordered outcomes. Finallg ghown how the method can be used
in the context of survival analysis where one models faitimes, typically subject to censoring.
The current approach is found to be particularly useful ia tontext as it can handle, in contrast
with the standard statistical model for analyzing survidata, all types of censoring in a straight-
forward way, and because of the explicit relation with theg@rtional Hazard and Accelerated
Failure Time models. The advantage of the current methotusriated on different benchmark
data sets, as well as for estimating a model for cancer aalased on different micro-array and
clinical data sets.

Keywords: support vector machines, preference learning, rankingetspardinal regression,
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1. Introduction

Methods based on ranking continue to challenge researchers in wiftaientific areas, see, for
example, Gd@mencon et al. (2005), Herbrich, Graepel, and Obermayer (20@D)h& references
therein. Learning ranking functions offers a solution to different tygfggoblems including ordinal
regression, bipartite ranking and discounted cumulative gain rankiog,(see Cémencon and
Vayatis, 2007), studied frequently in research on information retrievailesa& cases distinguish
themselves in the definition (of the cardinalifyof the output domain and the chosen loss function.
This paper deals with the general problem where the output domain cahitvarg (with possibly
infinite memberk = ), but possesses a natural ordering relation between the members.|[Examp
in which k = 0 are found in survival analysis and preference learning in caseeviine number of
classes is not known in advance.

Earlier approaches to learning preference functions reduce thengapkoblem to pairwise
classification problems. This reasoning was followed in Ailon and Mohi®d&@nd kirnkranz and
Hullermeier (2003), Herbrich et al. (1998) and references thereimeMer, functions having high
pairwise margins might still be bad approximations to real ranking problemis.i bertainly the
case in the (general) preference learning problem where possiblg: here a nonzero pairwise
margin would need unnecessarily large parameters of the model. In thisvpapedress this issue
by presenting a conceptual different approach: we adopt a smastlwoadition on the ranking
function to structure the space of ranking functions, and claim that thistgteualigns in many
applications better with the learning problems. This reasoning is motivated-&lating a pairwise
ranking criterion to a monotorteansformatiorfunction. Besides empirical validation of this claim,
we present formal relationships to other (statistical) models used for sskch ta

Figure 1 summarizes the ideas exposed in this work. First we describe #seoflransfor-
mation models which contains two different components. The first compaofentransformation
model consists of a function: RY — R mapping the covariate$ € RY to a value inR such that
the natural order ofR induces the ranking (approximately). Different names for such a fumctio
are found in literature depending on the problem setting, including a s¢cornging, utility or
health function. In this paper we will refer to this as to the utility function. Thewad component
of the model maps this utility to an outcomelinby a transformation functioh: R — R. This
is a univariate monotonically increasing function, basically capturing thie s¢ahe output. The
central observation now is that when one knows the ordinal relationsebatinstances, one can
estimate a transformation function mapping the instances to their utility ué}je Depending on
the problem at hand one is interested in the results of the first or secomboent of the transfor-
mation model. For ranking and survival analysis one typically ignores ttenskephase, whereas
in ordinal regression a prediction of the output level is found by combitiiadirst and the second
components.

Transformation models are especially appropriate when consideringriing &rom a survival
study. Survival analysis concerns data which represent a time-tt;&s& for example, a patient
relapsing after surgery, or the time till a part of a mechanical device breg@kn, see Kalbfleisch
and Prentice (2002) for a broad survey of this field. The goal in galr@nalysis is often to relate
time-to-event of an instance to a corresponding set of covariates. Whittige and theoretical
results here continue to have a strong impact in most quantitative scientds; atevival analysis
has been studied only sporadically in a context of machine learning, @hdstudies are mostly
found in the field of artificial neural networks, see, for example, Bighret al. (1998) and Kattan
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Figure 1: Overview: Transformation models consist of two componentatifity function uand
atransformation function h Given a data sepD = {(X(i),Y(i)r)}{‘:l where the instances
are sorted such that;y <Y(;4), a utility functionu(X) = w' ¢(X) is trained such that
the ranking on the evaluations of this function is representative for tHengmon the
outcome. In theealizable casehe ordering in utility will exactly coincide with the
ordering in observed outcomg;) }i. In the agnostic casénowever, the ordering will
only be exact up to appropriate (nonzero) error variabdgls. The modelling procedure
will also be performed in two steps. The first step recoudiisanking’), while the second
step is concerned with learning an explicit representation of the trangiormfanction
(reconstruction’). In practice (depending on the problem at hand)®mostly interested
in implementing the first step only.

et al. (1997). However, we claim that there is a large potential for suches: as (i) the approach
of classical likelihood-based approaches have their intrinsic limitationecesly when a realistic
underlying model cannot be assumed. A distribution-free approach is appropriate here; (ii)
A risk-based approach is often easier as one does not care aboutniag the exact parameters
describing the process of interest, but one is only interested in makingugedidtions, or exploring
structure in the data; (iii) Computational issues for the classical statisticedagppersist, and the
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guestion how to solve the estimation equations numerically is often approachadash hoc way
(if at all, see Kalbfleisch and Prentice, 2002 and references).

We find that the class of transformation models is a powerful tool to modeladitiag from
survival studies for different reasons. The first reason beinglies separate nicely the model for
the time-scale (via the transformation function), and the qualitative chaeatten of an instance
(via the utility function). We will furthermore argue on the close relationship wiisting tech-
niques as Cox’ proportional hazard and accelerated failure thrg) (models, see, for example,
Dabrowska and Doksum, 1988, Koenker and Geling, 2001, Chenig aW Ying, 1997 and cita-
tions. In the following, we will relate the transformation function to ranking catas Kendall'st
or area under the curvaic), hence outlining a unified framework to study survival models as used
in a statistical context and machine learning techniques for learning rafukintions. This relation
indicates how one may apply the method of structural risk minimizatiewm( see Vapnik, 1998)
here. The immediate consequence is the possibility to apply learning theoryheithpabilities to
explain good performances in modelling high-dimensional data sets as vellrm@n-linear mod-
els (see Vapnik, 1998). Thirdly, in studies of failure time datmsorings omnipresent. Censoring
prohibits that one observes the actual event of interest fully, bus giegtial information on the
outcome instead. The prototypical case is 'a patient hasn’t sufferezlém as yet, but may expe-
rience an event in the future’, but many other examples are studied. Wse&ithow the proposed
approach can handle censored observations conveniently.

The computational merit of this paper is then how one can fit such a modzésfly to data.
Therefore, we consider an appropriate class of utility functions, eitheadifunctions, or kernel
based models. Secondly, instead of restricting attention to a parameterigeti@ansforma-
tion functions, we let the transformation function of interest be unspeafeashe does for partial
likelihood approaches, see Kalbfleisch and Prentice (2002). Espewiallgefine the appropriate
transformation function only on the observed samples, by inferring aroppate set of ordinal
relations between them. Then we observe that the Lipschitz smoothnetat@ssociated to such
a transformation function can also be evaluated based on the samples onseq@ently, our fit-
ting strategy calleadninLIP finds the maximally smooth (implicitly defined) transformation function
fitting the data samples. This is thealizable casavhere we can make the assumption of the ex-
istence of such a transformation model. In case we allow for misfit, we extendhtilel using
slack-variables. It is then found that this problem can be solved aswexd@uadratic Program
(@P), for which highly efficient software is readily available. In the casetoityi functions which
are kernel based models, we indicate how one can represent the salkiiosum of positive defi-
nite kernels, and the Lagrange dual problem again solves the condisg@roblem as a convexe.

For the case linear utility functions are considered, we suggest howaonebtain zero parameters
('sparseness’) suggesting structure in the data using an 1-norfaregtion mechanism (see also
Tibshirani, 1996).

Besides the conceptual and computational discussion, this paper gipagal evidence for the
approach. We consider empirical studies of ordinal regression amiyallanalysis. Performance
of MINLIP on ordinal regression is analyzed using the ordinal data compiled by &hieerthi
(2005).MINLIP is applied on two different survival studies. A first study involves miarmy data
sets: two breast cancer data sets (Sarlie et al., 2003; van Houwelihgen2906) and one data
set concerning diffuse large B-cell carcinoma (Rosenwald et al.,)2002 last study, concerning
a clinical breast cancer survival study (Schumacher et al., 19%4)nwvestigate the estimation of
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non-linear covariate effects and compare results obtainedmitiiiP with Cox regression with
penalized smoothing splines.

In Van Belle et al. (2007) we proposed a modification to standands to handle censored data.
A computationally less demanding algorithm was presented in Van Belle et @8).2Btarting from
this latter model, we replaced the maximal margin strategy with the minimal Lipschitz snessth
strategy as presented in Van Belle et al. (2009). This work extendgdeoably the results of this
short paper. Most notably, this paper additionally elaborates on theotasevival analysis and a
number of new case studies. The different application areas in whictrapeged method can be
applied are summarized in Table 1. In addition, it is stated how the model needsusetl and
which equations need to be solved to obtain the solution.

This paper is organized as follows. The following Section discusses in detaé the use of
transformation models and its relation with ranking methods. Section 3 studiestimater in a
context of ranking. Section 4 specifies hewnLIP is to be used in a context of ordinal regression,
where onlyk different output levels are possible. Section 5 discusses the ugenafP in the
presence of censoring. In Section 6 experiments illustrate the use fithee method.

2. Transformation Models and Ranking Methods

In this paper we work in a stochastic context, so we denote random varableapital letters, for
exampleX,Y,..., which follow an appropriate stochastic &, R, ..., abbreviated (generically)
asP. Deterministic quantities as constants and functions are represented irclsedetters (e.g.,
d,h,u,...). Matrices are denoted as boldface capital letters (8.d,...). Ordered sets will be
denoted agS;)}, indicating thatS;) < S;. ). Before the relation between transformation models
and ranking methods can be explored, some terminology needs to be defined.

Definition 1 (Lipschitz smoothness)A univariate function fZ) has a Lipschitz constant® O if
Ih(z)—h(Z)|<L|z-Z|,vZ,Z eR.
A transformation modek then defined as follows:

Definition 2 (Transformation Model) Let h: R — R be astrictly increasing function with Lips-
chitz constant < o, and let u: RY — R be a function of the covariates X RY. Lete be a random
variable ('noise’) independent of X, with cumulative distribution functigfef= P(e < e) for any
e R. Then a Noisy Transformation Model{m) takes the form

Y = h(u(X) +¢). 1)

In the remainder of the paper, we will uB¢o denoteu(X) + € for notational convenience. Now the
problem is reduced to estimating a utility functionR? — R and a transformation functidnfrom a

set of i.i.d. observation§(X,Y;) }i._; without imposing any distributional (parametric) assumptions
on the noise termée; }. Note that without structural assumptions, the utility can not uniquely be
defined. Later on, we will specify similar assumptions as in the maximal margtegyraf Vapnik
when introducing support vector machines, to find a unique solution fartifity function.
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Kalbfleisch and Prentice (2002) considered transformation modelsitioreféime models. The
transformation models discussed in Cheng, Wei, and Ying (1997), Dakeoand Doksum (1988)
and Koenker and Geling (2001) differ from the above definition in thesfaamation functiorh.
They define the model &s (Y) = u(X) + ¢, which is equivalent to (1) i~ (h(Z2)) =h(h=(2)) =Z
for all Z.

To relate transformation models with ranking functions, we reason as folldwgxpress the
performance of a ranking function one can use Kendall&ea under the curvelyc) or a related
measure. In this paper we will work with tlencordancef a functionu : R — R respective to
the outcome. The concordance is defined as the probability that the oroletcmme of two i.i.d.
observationgX,Y) and(X',Y’) is preserved in the utility:

C(u) =P((u(X) —u(X"))(Y =Y') > 0). (2)

Given a set of i.i.d. observationg (X, Y;)}[';, the empirical concordance index is then calculated

as
2

Ga(u) = nin—1)

3 H(u%) —uX))(%i—Y)) >0,

<)

where the indicator functionz) equals 1 ifz > 0, and equals zero otherwise. Equivalently, the risk
is defined as follows.

Definition 3 (Risk of (h,u)) The risk associated with a monotonically increasing function penal-
izes discordant samplegu(X)) and Hu(X")) as

R (u) = P((h(u(X)) — h(u(X)))(Y —Y') < 0).
Or, since h is monotonically increasing, the risk is expressed as
R (u) = P((U(X) ~u(X))(Y ~Y') < 0).
Its empirical counterpart then becomes
Ra(U) =1— Ga(u).
Empirical Risk Minimization ERM) is then performed by solving

0 = arg min®,(u) = argmax,(u), (3)
ueu ueu

where?l c {u:RY — R} is an appropriate subset of ranking functions, see, for examgiéey&icon
et al. (2005) and citations. However, this approach results in combinatptimization problems.
One therefore majorizes the discontinuous indicator function by the Hinge tloat is,/(z) <
max0,1— z) yielding ranksvm (Herbrich, Graepel, and Obermayer, 2000). The disadvantage of
this solution is that it leads t®(n?) number of constraints or unknowns, often making it difficult
to apply to real life problems. A solution to this problem is found in relating t@mnsétion models
with Equation (3): if a functioru : RY — R exists such thath(u) = 1, one describes implicitly
a transformation function (see Figure 2). If two variableandy are perfectly concordant, then
there exists a monotonically increasing functiosuch thath(u) andy are perfectly concordant.
Moreover, there exists such a functibpwith Lipschitz constankt, mappingu to y such thaty =
h(u). Or more formally:
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Lemma 1 (Existence of a Transformation Function) Given a collection of pairg(Z;), i) }L1.,
enumerated such thatY<'(;, if and only if i < j, and considering the conditions on the observa-
tions for L < oo:

OSY(i)—Y(j)§L(Z(i)—Z(J‘)), Vi<j=1,...,n (4)
we state that:

1. If one has for a finite value & 0 that (4) holds, then there exists a monotonically increasing
function h: R — R with Lipschitz constant L interpolating the data points.

2. If for all admissible(Z,Y) € R x R one has that Y= h(Z) for an (unknown) continuous,
(finite) differentiable and monotonically increasing functionth — R, then there is a value
L < o such that (4) holds.

Proof To prove 1, consider the linear interpolation functlgn R — R, defined as

Z—Zy,
M(Z) = == 22 (Yyz) —Vyz)) + Yaz)
n2) =275 (e ~Yaz) + e

where we defing(Z) =arg  min }(Zi :Zi >Z)andz(Z) =arg {rlnax}(Zi :Zi < Z). Direct manip-
le le n

ulation shows that this function is monotonically increasing and continuous.tdk®Z < Z’' € R,
then we have to show thhg(Z') — hy(Z) < L(Z' — Z). For notational convenience defihe- z(Z),
u=22),l"=2z(Z") andu =zZ'), then

£ L S aatt)

Z -2 Z-7
h(Z)=n(Z) = =S =)+ W = = (=) -
< L(Z/—Z|/)—L(Z—Z|)+L(Z|/—Z|)
= L(Z-2),

where we use thaf: — Y < L(Z/—2).
Item 2 is proven as follows. Let such hmxist, then the mean value theorem asserts that for any
two samplegz;,Y;) and(Z;,Y;) for which Z; < Z;, there exists & within the interval(Z;,Z;] C R
such that
(Yj=Y) = (Z; - Z)N(2) < L(Z - Z)),

wherelL = sup, W (2).
Note that Equation (4) implies thah(Z) = 1. [ |

3. MINLIP : A Convex Approach to Learning a Transformation Model

This Section describes how transformation models can be learned by nieaosrvex approach.
The Section starts with a discussion of the realizable case and extends tikfarotulation to-
wards the agnostic case and non-linearities using Mercer kernels.
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Figure 2: Relation between ranking and transformation models: if two vasialdedy are per-
fectly concordant, they describe a monotonically increasing fungtiern(u). The dots
representi and outcomg for training points. In these observations the value of the func-
tion h is known exactly. To predict thg—value of the test observations, the function
needs to be approximated between the training points (grey area). Alidosh which
are monotonically increasing and lie within the grey zones are valid predicties.r

3.1 The Realizable Case

The realizable case refers to the situation where there exists a fung¢kgrsuch that the ranking
of u(X) perfectly reflects the ranking &f. Otherwise stated, there exists a functigX) such that
C(u) = 1. Lemma 1 describes the existencehphbut since this transformation function is only
known at the training points, it is not unique. Figure 2 illustrates that all mocably increasing
functions lying within the grey bounds satisfy the conditions. Therefomre Lipschitz constant

is used to control the complexity of the transformation function. Transformdtioctions with

a smaller Lipschitz constant will be preferred. For notational converiewe will assume no
coinciding outcomes (ties). Létbe a monotonically increasing function with Lipschitz constant
L < o, such that(Z) —h(Z') < L(Z—-2Z') for all Z > Z'. Restricting attention to the observations
{(Xi),Yi)) L1, one has the necessary conditions

h(u(Xi))) —h(u(Xi-1))) <L (u(X4) —u(Xi-1)) ;

foralli=2,...,n. Here, we assume that the data obey a noiseless transformation medeli
(). For now, linear utility functions defined as

are considered. Extensions towards non-linear utility functions usingdfdernels are handled
in Subsection 3.3. Since the functiofiX) = w' X can be arbitrary rescaled such that the corres-
ponding transformation function has an arbitrary Lipschitz constant (eearfya > 0, one has
h(u(X)) = h(t(X)) whereh(Z) £ h(a~!z) andu(X) = au(X)), we fix the normw’w and try to
find u(X) = vI X with vlv = 1. Hence learning a transformation model with minimal Lipschitz
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constant oh can be written as

min L2
v,L

o [IVl2=1
o T T ;
Y(i) _Y(i—l) <L (V X(i) -V X(i—l)) , Vi=2,...,n.
Substitutingw = Lv we get equivalently:
min  Jw'w
w

. ()
S.t. Y(i)_Y(ifl) SWTX(i)—WTX(i,]_), Vi=2...,n,

which goes along similar lines as the hard margirm (see, e.g., Shawe-Taylor and Cristianini,
2004) and rankingvm (Freund et al., 2004), where the threshold value 1 is replac&g)byY/;_y).
Note that an intercept term is not needed since differences in utility ace U3bserve that this
problem has — 1 linear constraints. We will refer to this modelmasvLip.
Problem (5) can be compactly rewritten as
min  iw'w
w

s.t. DXw>DyY,

whereX € R™Y js a matrix with each row containing one observation, thaXjs;= Xy € RY and
Y =[Yq)-- -Y(n)]T, a vector with the corresponding outcomes. The mdrix { —1,0, 1}("-1xn

-1 1 00.. 0 O

0 -110.. 0 0
D— :

0 00 0 -11

gives the first order differences of a vector, thatis, assuming no ttes ioutputD; Y =Y(; 1) — ;)
foralli=1,...,n— 1, with D; thei™ row of D.

In the presence of tie¥;; ) is replaced by, with j the smallest output value with};, >
Y(i)- See Section 4 for more details. Solving this problem as a cogvesan be done efficiently
with standard mathematical solvers as implementesldsek! or R-quadprod. The following
proposition states when thanLiP model is valid.

Proposition 1 (Validity of MINLIP ) Assume thatX,Y) € RY x R would obey the relation
Y = ho(wgX), (6)

where we refer to the (fixed but unknown) vectgranR? as to the 'true’ parameters, and to the
(fixed but unknown) monotonically increasing function: iR — R as the ’true’ transformation
function. Let for each coupleX,Y) and (X',Y’) where Y= Y’ the constant L> 0 be defined as

1 wh(X=X)
L/ Y-Y 7

1. MOSEK can be found dtttp://www.mosek.org

2. R-quadprog can be foundtatp://cran.r-project.org/web/packages/quadprog/ind ex.html .
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where I’ = w if wg (X =X") = 0. By construction we have that K Ly and that the constant exists
everywhere. The result of thaNLIP model then becomes:

wh(X—Xx) wh (X —X")

£= max min— =~ = max mn ——. 7
wz=2Y>Y" Y =Y w2=1Y>Y" L'wg (X — X7) 0

We then state thatiINLIP yields a good approximation of the parameter vectglimthe noiseless
case as long as there are enough observatiohy) such that j (X — X’) ~ Land L ~ L.

Proof Let the unit-length vectofX — X’) € RY be defined aX — X’ = (X — X/) || X — X||», then we
can write (7) as

o wh(X=X")
max mn ———.
wl2=2Y>Y" L'w (X — X/)

Let us now focus attention on the set= {(X —X',Y —=Y’) : (X,Y),(X",Y') € D= {X,Yi}',},
where£ = w' (X — X’)/(Y —Y’) for which this valuef is actually achieved. It is seen that the
estimatew lies in the span of this set as otherwise the maximum value could be increased. When
we assume that the data set contains enough observa¥on3 such thatw] (X — X’) ~ 1 and

L’ ~ Lo, they will end up in the sef, and as a result we have thatwy ~ 1. As the optimal
solution is fully determined by the term\%(x —X") ~ 1 andL’ = Lg (cfr. duality results in convex
optimization), one should also have that: wp. |

Formally, consistency oftiINLIP in the asymptotic case under a sufficient condition of the data
being non-degenerate is derived in Appendix A.

3.2 The Agnostic Case

In case it is impossible to find a utility functian: R — R extracting the ranking perfectly, a noisy
transformation model is considered:

Y =hW'X +¢),

whereu = w' X. The introduction of the error variable asks for an adaptation of the hifzsbased
complexity control. As a loss functioh: R — R we choose the absolute value ld$s) = |¢| for
three reasons: (i) It is known that this loss function is more robust to nagggaion of the model
and outliers than, for example, the squared lgss= €2; (i) The use of the absolute value loss will
result in sparse solutions with many error terms equal to zero; (iii) In biclassification this norm

is well performing insvMs. However, the choice of the loss remains arbitrary. Incorporatioreof th
errors (slack variables) leads to the following model formulation:

. l T
min 3w w+ V]|

(8)
st.  D(Xw-+g) > DY,

wheree = (g1,...,&,)" € R" represents the errorgig||; = S, |&i| andy > 0 is a regularization
constant, making a trade-off between model complexity and error. Thidgmocan again be
solved as a convex quadratic program.
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3.3 A Non-linear Extension using Mercer Kernels

Letd : RY — R% be a feature map mapping the data to a high dimensional feature space (of dimen
siondy, possibly infinite). A non-linear utility function can then be defined as

u(X) =w'¢(X),

with w € R% a vector of unknowns (possibly infinite dimensional). Tdke- [O(X1))s .-, O(Xm)] T €
R™% The realizable learning problem can then be represented as:

min  sw'w
w
st. D®w> DY,

with the matrixD defined as before. The Lagrange dual problem becomes

min  a'DKDTa—aTDY

St a Z On_]_7

where the kernel matriK € R™" contains the kernel evaluations such tgt= ¢ (X;)T¢(X;) for
alli,j =1,...,n. The estimated utility tan be evaluated at any pokit € RY as

G(X*) = " DKx(X"), ©)

whereK ,(X*) = [K(Xg,X*),...,K(Xy, X*)]T € R". The dual (Shawe-Taylor and Cristianini, 2004;
Suykens, Gestel, Brabanter, Moor, and Vandewalle, 2002; Vap888)lof the agnostic learning
machine of Subsection 3.2 is obtained analogously:

min  3a"DKDTa—aTDY

st {_ﬂn <DTa <yl

a> Onflv

with K as above and the resulting estimate can be evaluated as in (9) without compptinige
W nor¢. We refer to Appendix B for a detailed derivation. Typical choices famnkel functions are:

K(X,X) = X'X (linear kerne)
K(X,X) = (1+X'X)¥, 1> 0 (polynomial kernel of degree)d

Y112
KX, X) = exp<_||X02X.||2> (RBF kerne).

In cases where one is interested in the modelling of covariate effectspattbuse an additive
utility function:
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whereXP represents the" covariate of datapoirX. Using Equation (9) this can be written as:

d
0(X) = TDKP(XP
a(x) é;a (XP)
= a'D % KP(XP),

p=1
where the kernel matrik P € R™" contains the kernel evaluations such thdt = ¢ (X")T¢(XP)
foralli, j = 1,...,n. As aresult, componentwise kernels (Pelckmans et al., 2005b):

d
KX, X) =S KP(XP.XP),
(X, %) le (XF,X7)

which can be seen as a special casenodva kernels (Vapnik, 1998), can be used. The use of such
componentwise kernels allows for interpreting the non-linear effects afdbariates.

3.4 Prediction with Transformation Models

Prediction of the outcome using transformation models is a two-step appsmeRi@ure 1). First,
the utility u(X) is estimated, giving an ordering relation between the observations. Whessieie

in an outcome prediction, the transformation functioimas to be estimated. The prediction step is
a univariate regression problem, which can be solved using monotomésségn models. Remark
that in the ranking setting, one is not interested in the estimation of the transimnriumnction since
the goal is to find the ranking. Estimation of the transformation function fanatdegression and
survival analysis will be illustrated later.

3.5 Toward Sparse Solutions usingiw/||;

This subsection describes an extensions to the above model. Specifieallj|lwe interested in
the case wherd is large compared to. Consequently, we will be interested in computational
methods which reveal the relevant input variables of use in the leareditpon rule. We restrict
ourselves to the primal case whergX) = w' X for the linear case and an unknown monotonically
increasing functior : R — R. In this extension aty penalty (Tibshirani, 1996) is used instead of
the termw'w. We shall refer to this model asINLIP | 1:

min - [[wljs +viellx

' (10)
st.  D(Xw-+g) > DY,

where||lw||1 = Z%:l |wp|. This linear programming problerng) can be solved efficiently with stan-
dard mathematical solvers. This formulation does not allow for a straighafdrdual derivation.

Figure 3 illustrates the possible advantage of the sparse alternative eveatidardvinLIP
formulation. We created 100 artificial data sets, each containing 150valiiseis with 200 co-
variates. 100 observations were used for training, the remaining forgegtinarying number of
d =100,110,...,200 covariates were used to build the outcome, all other features beilegame
All covariates were drawn from a normal distribution with zero mean andiatardeviation 1. The
outcome was obtained as a weighted sum of the relevant covariates, ttvbi@reights were drawn
from a standard normal distribution. The test error of thsLIP| 1 model was lower than for the
standard model.
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Figure 3: Performance and feature selection abilityioiLiP (solid) andmiNLIP 1 (dashed) on
an artificial data setn=100 for training,nes=50 for testing). 2000 (0,1) distributed
covariates were generated, a varying number 100 110,...,200 of which were used
to generate the outcom¥ & zgzlwpxp, with w drawn form a standard normal distri-
bution). The results are averaged over 100 data sets. (a) Median mesned error on
the test setsmiNLIP 1 performs better thaminLIP. (b-c) Number of selected (absolute
value of estimated weight10-8) and correctly selected variables versus number of rele-
vant variables. TheiNLIP method selects all variables, a lot of them not being relevant.
The MINLIP 1 model selects very few variables, but those which are selected are also
relevant.
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3.6 Comparison with Other Methods

An approach often seen within preference ranking problems is the refatfaruof the ranking
problem as a classification problem. Examples of this strategy can be foukitbmand Mohri
(2008), Rirnkranz and ldllermeier (2003) and Herbrich et al. (1998). However, transfornémd-

ing to classification deflects attention from the underlying problem within rangioglems. In
contrast with these methods, theNLIP approach concentrates on the ranking problem by use of
the transformation model.

Currently used ranking methods include rarki (Herbrich, Graepel, and Obermayer, 2000)
and ranksoost (Freund et al., 2004). Although the method proposed here akdvarare both
based orsvms, two differences can be noted: (i) firstly, the ramki uses all pairs of data points
for training, which results ir0(n?) comparisons, whergliNLIP has a complexity oD(n). This
reduction in complexity makes the model more applicable to large data sets; (@hd@gcthe
complexity control, being the margin and the Lipschitz constant, is differenttin imethods. In
ranksvM all margins are equal and the model is tuned to maximize this margimiNoiP the
margins differ corresponding to the difference in the output levels.

4. Learning for Ordinal Regression

Consider now the situation where the output takes a finite number of valag& €3N - and where
thek different classes possess a natural ordering relation. In this casattte@meY is an element
of the finite ordered seftY(y), . . ., Yjq }-

4.1 A Modification to MINLIP

In Section 3.1 it is mentioned that comparisons are made between figiatsd (j) whereY;) is
the first ordered value bigger thaf. Applying this methodology in the ordinal setting would lead
to as many comparisons with poifi) from classk; as there are observations in cldss-1. To
cope with this issue, we add dummy observatioNsB) in between two consecutive ordinal classes
with levelsY;) < Y(i;1) such thaB;) = %(Y(m) +Y(i)) (see Figure 4) and leaving their covariates
and utility function unspecified. This implies that one has to compare eachvahiea only twice,
once with the dummy observation in between the previous and the currénalocthss and once
with the dummy observation in between the current and the next class, tiegttlte number of
constraints tad(n). The solution of this problem can be found implicitly by extending Yhe R"
andX € R™9 matrices as follows:

Y
_ B _
Y= B(Z) and X:|:)(§ |k01:|’
Bik-1)

whereX e RMk-Dx(d+k-1) gandy ¢ R*1 andly_; represents the identity matrix of dimension
k—1. The problem is then formulated as in Equation (8) after replaXity X andY by Y and
results in the parameter vector= |w; v|.
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Figure 4: Adaptation of thetINLIP algorithm to ordinal regression: (a) Inclusion of dummy data
points with output values; intermediate to the observed output values and undefined
covariates and utility;. All data points are compared with two dummy data points; (b)
Comparison with the maximal margin strategy used in stanslexdwhere the margin is
equal between all classes; (c-d) Example with 3 linearly separable wabesutcomes
equal to 1 (stars), 2 (circles) and 10 (diamond) respectively. Thedyoidbols represent
the support vectors. In the maximal margin strategy there exists one mayg, ke-
tween every two successive classes, which results in a differentliipsonstant. Using
the MINLIP strategy, the Lipschitz smoothness is optimized, resulting in margins which
are proportional to the difference in the class labels. Support vedtths tatter method
are therefore more likely to be observations of two classes for which ttprilabels
differ the most.
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Using the above formulation, the thresholdas well as the weight& are regularized. Since
the motivation for this regularization scheme is not clear, one can formulaggdbtem explicitly
as:

min w2+ y3L, 1} (e+¢€)

w,ee,v

Xw—Qv+e>Y —-QB
—Xw+Q*v+e* > -Y+Q'B
s.t. e>0
e >0
Mv <0,

(11)

with y a positive regularization consta®,andQ* € R™ -1 matrices with all elements equal to
zero except for position§(i, ki — 1)}};:2 and{(i, ki)}ti‘:ll respectively (wherk; represents the index
of the output level of observatidi, which contain ones. These positions correspond to the dummy
data points with which one wishes to compare data painiectorB € R*~1 contains outcomes

corresponding to the thresholdB:= [B(y), ---, B(k_l)]T. Vectorv contains all unknown utility
function values for the dummy data points= [v(3), -+, Vk_1)]", andM € Rk gives the first
order differences of a vector and is defined as:
1 -1 0 O 0 O
0 1 -1 0 0 O
M =
O .. 0 0 O 1 -1

The Lagrange dual problem becomes

min  faTKa+ BTKB—aTKB—aT (Y -BTQ)+pT(Y —BTQ")

G’B
Oh <a<yvil,
s.t. On < B < ¥ln
O2<v

QTa—Q TB+MTv =01,

where 1, and Q, represent column vectors of simavith all elements equal to 1 and 0 respectively.
Solving this explicit formulation is computationally less demanding and faster thlaing the
implicit problem formulation. We refer to Appendix C for a detailed derivatidhe estimated ~
can be evaluated at any pokit € RY as

0(X") = (@' —BT)Ka(X"),
with K,(X*) defined as before.

4.2 Prediction for Ordinal Regression

A clear advantage of the approach which includes unknown threshollatishe prediction step
becomes very simple. As illustrated in Figure 5, the predictions can be easdlipet from the
value of the utility function in comparison with the different threshold values.
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Figure 5: Prediction for ordinal regressiorMINLIP for ordinal regression, including unknown
thresholds, has the advantage to reduce the prediction step to a simple isombar
tween the utility of a new observation and the utility of the thresholds. If the utilityaha
value between threshold- 1 andj, the predicted outcome equals tfigoutput level.

4.3 Difference with Other Methods

Chu and Keerthi (2005) proposed tvewM based models for ordinal regression. Both methods
introducek — 1 thresholds witkk the number of ordinal levels in the data. As withim classifiers,
the margin between two ordinal levels is set oy - In their first method €xC) a data pointX;
belonging to clas¥; has two slack variables: one relating to the threshold between clgssds
andk; and a second relating to the threshold between cldgsasdk; + 1. To ensure that the
threshold between classks- 1 andk; is smaller than the threshold between classemdk; + 1,

k — 1 additional constraints are explicitly included. The problem can be written as

min w2 +ySii(e+€)

w,e e,V
WX —vi+e>1 Vi=1...,n; j =argmax(Ti > v;)
WX v+ >1 Vi=1...n j=argmin(T <vj)

s.t. >0 Vi=1,...,n
e >0 Vi=1,...,n
Vj <Vjy1 Vi=1,...,k—=2.

In their second approachMc) the constraints on the thresholds are added implicitly by adding
k— 1 slack variables, one for each threshold, for every datapoint. Tdi#em can be formulated as
follows:
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min = [wlz+y3il(e+€)

w,e,ef,v

WX —vi+e>1 Vi=1...mVj:Ti>y
~WIX+vj+e>1 Vi=1...,nVj: Ti<y,
>0 Vi=1,...,n

& >0 Vi=1,..n.

S.t.

In our method, we adopt the approach of e method concerning slack variables, the method

differing in the definition of the margin. Instead of defining an equal margievary border, the
margin between class&sandk; + 1 is defined a@%j“)‘.

Remark the similarity between these models and the starsdaud (Vapnik, 1998) in the binary
classification problem (with two class€s and (,):

. . .
Jmin Wl +y3ita(e+e)
w'X+b+re>1 Viea

ot ~W'X —b+e>1 Viek (12)
N >0 Viea
& >0 VieG.

In casek = 2, botheExc andiMc reduce to the model:

min  [wl2+ySP,(e+€)

w,e e v

wiXi—v+g>1 Viea

ot WX +v+e>1 Vied (13)
N 6>0 Viea
g >0 Vie G,

which equals the model in Equation (12) when the threstditte that there is only one threshold
in this case) is considered as the constant term.MikeIP model reduces to:

W[Q(iegv IWll2+yy (e +€)
WX -vieg>Y-B Vieq

st ~W'X +v+e >B-Y, Vie G (14)
- g>0 Vieq

where only one dummy observatiém B) needs to be introduced. The difference between Equa-
tions (12, 13) and Equation (14) lies in the right hand side of the two firgjialgies, which is a
consequence of the used complexity control. Models (13) and (14 )garea¢ent up to the choice
of the regularization constant.

Chu and Ghahramani (2005) proposed a probabilistic approach t@bregression in Gaussian
processesdPOR). They impose a Gaussian process prior distribution on the utility functidiedca
latent function in their work) and employ an appropriate likelihood functiarofdinal variables.

837



VAN BELLE, PELCKMANS, SUYKENS AND VAN HUFFEL

Experiments will compare our methods with the Bayesian inference techniddacikay (1992),
using the Laplacian approximation to implement model adaptation. GH@R approach differs
from ours since it uses a Bayesian framework.

5. Transformation Models for Failure Time Data

We now turn our attention to the case where the data originate from a dustudy, that is, the
dependent variable is essentially a time-to-failure and typically requiresfispmodels and tools
to capture its behavior. We will adopt a classical statistical setup, and will Blow the techniques
as described in Section 3 provide a powerful alternative to the clastitigtisal (semi-parametric)
toolbox.

5.1 Survival Data

The observations are assumed to fit in the following statistical setup, sexdmple, Kalbfleisch
and Prentice (2002) for a more elaborate introduction.TLetR ™ andX € RY be a random variable
and random vector respectively, jointly following a probability law chandmdel byP as classical.
The former variablél' describes théime to the eventf interest, and the random vectdrtaking
values inRY describesl covariates. Note that in this Sectirhas the same role &sin the previous
Sections. We assume that no ties will occur in the data in order to keep theaptes as simple
as possible. We will consider predictive models where the covariates cotheoungh a linear
combination with weightsv € R? as before, ot/ = {u:RY - R:u(X) =w'X, VX e R9}. A
key quantity in survival analysis is tlenditional survival function @|u(X)) : R* — [0, 1] defined
as

S(tlu(X)) = P (T >t/ ux)).

denoting the probability of the event occurring pagiven the value of the utility function(X) =
w'X. A related quantity to the conditional survival function is thenditional hazard function
A :R — R" defined as

_ P(t=T <t atux). T2t
MHux)) = fim, At

o P(t <7 <t+At’u(X))

At—0 S(t‘ U(X))
If the derivatives: Rt — R with s(t|u(X)) = GS(t]aL:(X)) exists, one can writk(t|u(X)) = 758((2"“5()()2)) .

The conditional hazard function reflects the instantaneous probabilitshénavent will occur given
that the subject already survived beyond titneFinally, one can make the relation between the
hazard\ and the survival functios even more explicit by introducing theonditional cumulative
hazard functiom\(tju(X)) = fgA(rJu(X))dr for t > 0 such that

AtJu(X)) = =In (St | u(X))).

The following Subsection enumerates some commonly used (semi-)parametricdsébin
modelling the survival and hazard functions.
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5.2 Transformation Models for Survival Analysis

The Transformation model (see Definition 1) encompasses a broad €tlasglels, including the
following classical survival models.

1. Cox proportional hazard modeés recovered when one defings- h=1 (if it exists) asg(z) =
In(—In(2)). Under the Cox model, the value of the survival functiob&atT is

S(T.X) = [So(T)|H P

whereSy(t) = exp(—/Ao(t)) is called the baseline survival function. Taking+in(-)) of both
sides in (1) leads to

In(~In(S(T,X)) = In(~In(S(T))) - B'X
(Ao(T)) —BTX

= In
=& = ¢(T)—u(X)
=T = huX)+e).

Remark that the last transition is only possiblg(if) is invertible. The 'noise terms’ are i.i.d.
observations from the extreme value distributig(z) = 1 — exp(—exp(z)).

2. Theproportional odds modes defined as

In <1E(|i‘()t(|)x)> =a(t)+p"X, (15)

with F(t|X) the conditional cumulative distribution function andt) a monotonically in-
creasing function. In general the survival function equ&its = 1 — F(t), leading together
with Equation (15) to

|n<1‘s(§(;’)x>> — a(T)+pTX
= ¢ = a(T)+uX)

=T = h(-uX)+e).
Remark that the last transition is only possible{fT) is invertible.

3. Theaccelerated failure time (AFT¥ given wherh(z) = In(z).

For an extended discussion on the use of the class of transformation modedpexific parame-
terizations of the functionk or g, see, for example, Dabrowska and Doksum (1988), Koenker and
Geling (2001), Cheng, Wei, and Ying (1997) and citations.

5.3 Censoring

A typical property of failure time data is the occurrence of censoring. ilurfatime is called
censored when the exact time of failure is not observed. Despite thispreehtimes do provide
relevant information. Defin€; = (T;, ;) with & the censoring indicator, capturing all censoring

839



VAN BELLE, PELCKMANS, SUYKENS AND VAN HUFFEL

information: & = 0 indicates the occurrence of an event at a known failure time (unczhslata
point); right, left and interval censoring are indicated¥y 1, d = 2 andd = 3 respectively. Without
censoring all possible pairs of datapoifitsfi, 7;) }ij can be used for comparison in Equation (5).
The presence of censoring leads to a lack of comparability between agataipoints. Lef\(7, 7;)

be a comparability indicator, indicating whether the datapaiatel j are comparable:

0 if 7/ and‘Zj are not comparable
1if 7 andZ; are comparable

A(‘Zr,‘f]) - {
This indicator is defined depending on the censoring types present iatdue d

Right censoring occurs when the event of interest did not occur until the last follow-up. tirhes
type of censoring typically occurs at the end of the study period. Althdligtexact failure
time is not known in this case, the failure time is known to be later than the date of last
follow-up. In case of right censoring the comparability indicakdakes the value 1 for two
observation$ and j when the observation with the earliest failure time is observed, and zero
otherwise:

A(Ti’{rj):{ L if (T < Tj and& = 0) or (Tj < Ty and3; = 0)

0 otherwise

Left censoring deals with the case when the failure is known to have happened befortaim ce
time. An example of left censoring arises in case a variable can only be radaghen its
value is above a certain level. For left censoring, two observatiamsl j are comparable
when the observation with the highest failure time is non-censored andthenavise:

A(Tﬂj):{ L if (T <T; andg; = 0) or (T; < T and3; = 0)
0 otherwise
Interval censoring is a combination of the previous two censoring types. In this case the failure
time is not known exactly, instead an interval including the failure time is indicaiéus
type of censoring is often found in medical studies where the patients bjecsto regular
check up times (Finkelstein, 1986). Whether two observations are cobiparanot in case
of interval censoring depends on the censoring tifieand T; defining the failure interval
for each observation T; € [T;, Ti]. For uncensored observations, the failure interval reduces
to one time, namely the failure tinle = T; = T;. The comparability indicator is defined as:

A({E’Tj):{ L fTi<TjorT;<T,

0 otherwise

In case the data consists of data points with different types of censtragomparability indicator

is defined as follows. In the most general case, the failure Tiniee considered to be an element
of the interval[T;, T;]. For right censored data points the right edge of the interval equalgynfin
whereas for left censored observation the left edge of the interval®gero. The comparability
indicator is then defined as:
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1 |fT| <Ij OFTJ' <Ii
0 otherwise

A({ZL{IJ) = {

More information on censoring can be found in Andersen et al. (18a&pdt-Johnson and Johnson
(1980), Harrell (2001), Kalbfleisch and Prentice (2002) and Mill&8(1).

Standard statistical methods for modelling survival data obtain parameter estinyanaximi-
zing a (partial) likelihood with regard to these parameters. This likelihood dispem the ranking
of the failure times. In the presence of right censoring, this ranking ocaqualy be defined and
estimates for the parameters can be obtained. However, in the preseintervdl! censoring, a
unique ranking of the failure of all instances is not always possible. @8#2) and Satten (1996)
among others, suggested extensions of the proportional hazard mieeled eensoring is not re-
stricted to right censoring. However, estimation of the parameters in these i@nain difficult. In
the next section we will illustrate thatiNLIP can be easily adapted for right, left, interval censoring
and combined censoring schemes. However, we first need an appeapeasure of concordance
equivalent to Equation (3). Therefore, we resort to the concomdanuiex as described by Harrell
et al. (1984) and Harrell (2001).

Definition 4 (Concordance Index) The concordance index (c-index) is a measure of association
between the predicted and observed failures in case of censored dega-imdex equals the ratio

of concordant to comparable pairs of data points. Two observationsl ijaare comparable if their
relative order in survival time is known. A pair of observations i and j inamdant if they are
comparable and the observation with the lowest failure time also has the lse@stfor the utility
function UX). Formally, the observation based c-index of a model generating gredgcu(X;) for

data X from a data setD = {(X;,Y;, &) }{., can be expressed as

3 AT HUOG) ~ux)Y ~¥) >0
_ 17

Ga(U) ;A<7;77])
i#]

This index is an estimate probability of concordance between predictedbardved survival, with
c-index= 0.5 for random predictions and c-index1 for a perfectly concordant model. Without
censoring, this definition is exactly equal to the concordance as defigglimtion (2).

5.4 Modifications toMINLIP

This section describes how the standsmdiLiP model can be extended towards failure time data
including the handling of censored data. Therefore, Equation (8) istedldo include censored
data. In particular, the matri needs to be changed in order to allow for pairs of data points not to
be comparable. L& € R("-1*("-1) pe defined as the diagonal matrix wih = A(Z,Z 1),V i =
1,...,n—1. The matrixD, representing the datapoints to be compared, is adapted for censoring
according to:

Dc=RD,

whereA is defined as in Section 5.3, resulting in multiple rows with only zero entries in théxmatr
D.. For computational convenience these rows can be left out. It is seeisghas concerning the
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type(s) of censoring in the data are easily dealt with by using the comparabditator. In the
remainder of this paper we will restrict our attention to right censored data.
The learning objective can now be formalized as

- l T
min - Zwiwylefy

(16)
st.  D¢(®w+e) > DT,

where|lell1 =YL, |&] andT = [T(3), T2), .- ,T(n)]T is a vector containing all failure times, censored
or not. As in Section 3, the dual of this optimization problem becomes

min  ;aTDKKD{a—a'DcT

st J ¥ln<Dea<yl
a> onfla

Given the solutiorii, the predicted utility can be calculated for a new paihtas
u(X*) = @ DcKn(X*),

with Kn(X*) = [K(X*,X1) ... K(X*X,)]T € R". Since the censoring mechanism can be handled
by a proper choice dbq, it is not too difficult to extend the formulations of Subsection 3.5 as well.

5.5 Prediction with Transformation Models

The prediction step in survival analysis, refers to the estimation of salraivd hazard functions
rather than the estimation of the failure time itself. The proportional hazardIrestimates these
functions, by assuming that a baseline hazard function exists; the degaci@anging the hazard
only proportionally. The baseline hazard function is estimated using théoBrestimator of the
cumulative baseline hazard (Breslow, 1974).

In our setting, the cumulative distribution function (cdf), can be estimateel; estimation of
the utility, as follows. The time axis is divided kequidistant time intervalg _1,t],vV 1 =2,... k.
For each observation in the sef;, Ti, &} ;, the outcome in each time interval is defined as:

Vi — Oif Ty >
"Y1 T <t ands = 0.

Remark that censored observations are not considered at times latéret@msoring time. Using
a monotone least squares support vector regression model (Peloknadng2005a) with a Gaussian
kernel, or another monotonic regression model, the utility and the time intergadenl as inputs
andY; as output, the cdf (u;, 1) is estimated. The survival function is found®s;, 1) = 1—F (u;, ).
The hazard function is then found as

N If(ui,l+1)—|f(ui,l)

Au,l) = V=1, k-1.

-t

Remark the analogy with the partial logistic artificial neural network apgréa¢he survival pro-
blem proposed by Biganzoli et al. (1998). However, since the lattenctibe seen as a transforma-
tion model, data replication is necessary even when one is only interestekl gnaigs. Thanks to
the two-step approach of transformation models, data replication can iokeedvo
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6. Application Studies

This final Section describes some experiments to illustrate the use of theteckseethod. In

a first Subsection, 3 artificial examples will illustrate how transformation maatelsised within

the ranking, ordinal regression and survival setting (see also Tabla first real life application
illustrates the use oftiNLIP for ordinal data. We use 6 benchmark data sets and compare the
performance oMINLIP with EXC andIMC as proposed in Chu and Keerthi (2005) ar®oR as
proposed in Chu and Ghahramani (2005). The last two examples oosicetival data, one with
micro-array data (data also used in Bgvelstad et al. 2007) and one withathisita (Schumacher
etal., 1994).

Unless stated otherwise, 10-fold cross-validation was used for mddetisa. For every kernel
and regularization parameter to be tuned a grid of values was searctigtleanombination of
parameter values yielding the lowest cross-validation error or highess-aalidation performance
was selected. In the first example the mean absolute error between pietidtebserved output
levels was used as model selection criterion since prediction is relevant@agi@isFor both survival
examples, the cross-validation concordance index was used as miedgibsecriterion since the
main interest lies in the ranking of the patients.

6.1 Artificial Examples

This section illustrates the different steps needed to obtain the desired fautyariking, regression
and survival problems, using artificial examples. Together with Tableid Stibsection illustrates
the different tasks considered in the paper.

6.1.1 RANKING

In this first example, we consider the ranks of 150 cyclists in 9 differ@ces. Using the ranks of
100 out of these cyclists in a #Gace , we want to predict the rank of the remaining 50. Additional
information includes: age, weight and condition score. The outcome isededgithe ranking given
by a weighted sum of the ranking in the 9 races, age, weight and condibos. $Veights are drawn
from a uniform distribution on the unit interval. The ranking on the previagss are numbers from
1to 100, all other variables are drawn from a standard normal distribution

A first step in all transformation models is to estimate the utility functioblsing Equation (8)
with a linear kernel and 5-fold cross validation with the concordance iG@eking criterion) as a
model selection criterion, a concordance index of 0.98 on the test saibtained. The predicted
ranking corresponds very well with the observed ranking (see F&Juigince one is only interested
in ranking the cyclists, the value of the utility is irrelevant. Additionally, one isintdrested in
estimating the transformation functidn

6.1.2 CRDINAL REGRESSION

In a second artificial example, consider the scenario in which one wisliigide students into 3
groups: bad, average and good student. For this task, the gradé€scourkes for 150 students
are available. The outcome depends on the average grade. A baajeaed good student has an
average grade below 55%, between 55% and 65% and above 65%tnedpeThe results on 100
students will be used for training, the remaining students will be used forgestin
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Figure 6: Artificial example illustrating the use of theNLIP transformation model for the ranking
setting. The estimated utility of the test observations are denoted by the cirbkegalue
of the utility does not correspond to the ranking. However, the rank adstimated utility
(denoted by stars) are a good prediction of the observed rank.
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Figure 7: Artificial example illustrating the use of theNLIP transformation model for ordinal
regression. (a) The estimated utility of the test observations are denotée bircles.
The miNLIP model for ordinal regression results in an estimate of the utility function
and threshold values. Students with the lowest utility (less than the first tidgsire
predicted to be bad students (light grey). Students with a utility between beththlds
(medium grey) are estimated to be average students and students with a utiléythiyin

the second threshold (dark grey) are predicted to be good studentifugtration of the
transformation functiom (dashed line).
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In a first step, all students are ranked according to the available dataj\ntheir grades on 10
courses. Using Equation (11) with the concordance index as modeliseledterion and a linear
kernel, a concordance of 0.99 between the utility and the outcome on thetéstabtained. In
addition to an estimate of the utility, th@NLIP model for ordinal regression gives threshold values
which can be used to predict the outcome of new observations (see Figuf@ince, themiN -

LIP model generates these thresholds, no additional model is heeded to obtaiantformation
function.

6.1.3 SURVIVAL ANALYSIS

In a last artificial example, a randomized trial is simulated. Assume 150 patientswradomly
divided into 2 treatment groups. Additionally, the age (drawn from a stanmatarmal distribution)
of the patients is known. The survival time is known for 100 patients. Fofisietreatment arm,
the survival time has a Weibull distribution with parameters 1 and 0.5. For tunddreatment
arm, the survival time is Weibull distributed with parameters 4 and 5. Using tbeniaition on age,
treatment arm and survival on 100 patients, one would like to predict thesaufor the remaining
50 patients. Assuming that the age is irrelevant for the survival, the treatmikie the only
important factor in predicting the patients’ survival.

As with the two previous examples, thenLiP model is used to estimate the utility of the
patients. Using a linear kernel and 5-fold cross validation in comparisontitconcordance
index as model selection criterion, a c-index of 0.70 is obtained on the tesligare 8 illustrates
that themiNLIP model is able to divide the group of test patients into two groups with a sigrifican
different survival (p=0.03, logrank test). The first part of the $farmation model obtained a nice
result. However, in survival analysis, additional information can beigeal when performing the
second part of the transformation model, namely estimating the transformatictiofu Applying
the method as explained in Section 5.5, the estimated survival curves fatialts are calculated
(Figure 9). One clearly notices two distinct survival groups. The @may black survival curves
correspond to patients in the first and second treatment arm, respeclielirue survival function
for the first and second treatment are illustrated in thick black and grey temsectively.

6.2 Ordinal Regression

At first 6 regression data séta/ere converted to ordinal regression data sets as follows. The data
sets were divided into 20 folds with 10 equal-frequency bins. The owgdué for each bin was set
to the average output within the bin. The performance ofithe 1P model was compared with two
methods described in Chu and Keerthi (2005) (see Table 2). Both a&f thehods optimize mul-
tiple thresholds to define parallel discriminant hyperplanes for the orttinals. The first method
(exc) explicitly imposes the ordering of the thresholds, whereas this is done onligitlygn the
second methodijic). Tuning of the Gaussian kernel parameter and the regularization p@rame
was performed with 10-fold cross-validation on an exponential grid usiagn absolute error as
model selection criterion. After an initial search, a finer search wasimed in the neighborhood
of the initial optimum. Results of thepOrRmMethod are reported for comparison. Téeorhas a
lower mean zero-one error on small data sets. For larger data setsranddo absolute errors, it
performs less. Theuc method has the disadvantage that lapggproblems need to be solved for

3. Data are available attp://www.liacc.up.pu/ ~ ltorgo/Regression/DataSets.html
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Figure 8: Artificial example illustrating the use of tlveNLIP transformation model for survival

analysis. (a) Survival time as a function of the treatment arm. Patientyiregéie first
treatment survive longer in general. The second treatment results indavwéval times.
However, some patients have extremely large survival times. (b) Sutiriva versus
estimated utility. The circles and the stars denote the first and second treament
respectively. The utility is able to group the patients according to the releasiatble
treatment (see the clear separation between circles and stars).
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Figure 9: Artificial example illustrating the use of thenLIP transformation model for survival

analysis: illustration of the reconstruction step. For each patient, thevalipirve is
calculated using the method discussed in Section 5.5. Grey and black cepvesent
patients from the first and second treatment arm, respectively. Theunieas curve for
the first and second treatment, are illustrated in thick black and grey lines cl@arly
notices two distinct survival groups, corresponding to the treatmenpgro
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data set mean zero-one error
minlip exc imc gpor
pyrimidines 0.74£0.07 0.79:0.08 0.75:0.09 0.73£0.09
triazines 0.86-0.05 0.86:0.04  0.87+0.04 0.86+0.03
Wisconsin 0.89+0.02  0.820.03 0.892:0.02 0.85+0.03**
machine CPU| 0.65:0.04 0.65-0.06  0.64+0.04 0.80+0.09**
auto MPG 0.58+0.03  0.58-0.03 / 0.68+0.08**
Boston housing 0.574+0.04  0.570.04 / 0.61+0.03**
data set mean absolute error
minlip exc imc gpor
pyrimidines 0.05+0.01 0.06+£0.01  0.05+0.01 0.06+0.01
triazines 0.12£0.06 0.10+0.0F  0.10+0.00** 0.16+0.02**
Wisconsin | 29.56+2.18 28.86:1.17 28.23t+1.28 34.52+4.27*
machine CPU | 29.41+4.27 30.546.94 30.484.10 157.06-124.67*
auto MPG 2.08+0.16 2.05t0.18 / 4.13+1.13*
Boston housing 2.49+0.27 2.33£0.25 / 2.97+0.29**

Table 2: Test results afiiNLIP, EXC andIMC using a Gaussian kernel amtPOR The targets of
the data sets were discretized by 10 equal-frequency bins. The oatpatfer each bin is
set to the average output within the bin. The results are averaged owgal20 The best
performing model is indicated in bold. Significant differences as calculatétiilcoxon’s
signed rank sum test between thec, IMC, GPORand themINLIP (reference) model are
indicated with * (p < 0.05), ** (p < 0.01) or *** (p < 0.001).

growing training samples, requiring more computational time. WheLiP method makes a nice
trade-off between computational time and performance.

6.3 Failure Time Data: Micro-array Studies

TheMiINLIP technique is derived from machine learning techniquesvass, techniques which are
shown to be especially useful to handle high-dimensional data sets. Veédotteetest the perfor-
mance ofMINLIP on 3 micro-array data sets.

In this example we compare the performance of model (@& 1(iP) and linear extension as in
Equation (10) MINLIP 1) with 5 other methods which are discussed and implemented by Bgvelstad
et al. (2007): principal components regressienK), supervised principal components regression
(SPcR), partial least squares regressien$) and two penalized Cox regression models (Cox, 1972):
ridge regression (C@x) andL1 regularization (Cox ). ThepcrRmethod uses principal component
analysis to seleat, principal components which account for as much variation in the gene ex-
pression profiles as possible. The selected principal components arasbe as covariates in a
Cox regression model (see Hastie, Tibshirani, and Friedman, 200p{e€t®a4.4). ThespcR(Bair
and Tibshirani, 2004; Bair, Hastie, Debashis, and Tibshirani, 2006)additst selects a subset of
genes which are correlated with survival by using univariate selectidrireen applie®CRto this
subset. The standard.s method performs regression of the outcome usingomponents which
are a linear combination of the original covariates (Martens and Nees,.IRB8 application oPLS
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to the Cox model is not straightforward since #es algorithm assumes a linear relation between
outcome and covariates. See Nyd et al. (2008) for a detailed description of the method.
Three different micro-array data sets are used in this experiment:

The Dutch Breast Cancer Data pBcD) from van Houwelingen et al. (2006) is a subset of the
data from van de Vijver et al. (2002) and contains information on 4916 gepression levels
of a consecutive series of 295 women with breast cancer from thie-firezen-tissue bank
of the Netherlands Cancer Institute. All 295 tumors were primary invaseash carcinoma
less than 5 cm in diameter. The women were 52 years or younger. Theogiagvas made
between 1984 and 1995 and there was no previous history of carceptenon-melanoma
skin cancer. In 79 (26.78%) patients distant metastases were noted witlstudlyeperiod.
The median follow-up was 6.7 years (range 0.05-18.3).

The bLBcCL data from Rosenwald et al. (2002) contains data on 240 patients with diffuge-lar
B-cell lymphoma. The data consist of 7399 gene expression measureniérgsmedian
follow-up time was 2.8 years and 58% of the patients died during the studydperio

The Norway/Stanford breast cancer data isBcD) from Sgrlie et al. (2003) contains gene ex-
pression measurements from 115 women with breast cancer. 549 intréms&e mtroduced
in Sgrlie et al. (2003) were used. Missing values were previously impugied 10-nearest
neighbor imputation (Bgvelstad et al., 2007). 38 (33%) patients expedeamcevent.

Figure 10 summarizes performanc€$ on all methods for 100 different randomizations be-
tween training and test sets (2/3 training, 1/3 test). In the right panels ofd-iduthe time de-
pendent receiver operator characteristitsRoC) (Heagerty, Lumley, and Pepe, 2000) are shown.
The left panel illustrates the concordance index. The performance efith.iP model is better or
comparable to the best of the other tested models.

6.4 Failure Time Data: Cancer Study

In this last example, we investigate the ability of thenLiP model to estimate how the different
covariates influence the survival time. We use the German Breast Cainciyr Group data(Schu-
macher et al., 1994), containing information on 686 patients and 8 variafedable variables
are: hormonal treatment, age, menopausal status, tumor size, tumortgeadamber of positive
lymph nodes, the progesterone receptor (fmol) and the estrogen neffepd. 299 (43.6%) pa-
tients had a breast cancer related event within the study period, leavatbellpatients with a right
censored failure time. The data set was randomly divided in training anskete@/3 versus 1/3).
Since medical data are typically not highly non-linear, we use a componenpsignomial

kernel
d

K(X,Z2)=§ (1+XPTZP)? 1> 0,
p=1

with d the number of variables arXP the p" covariate, to model non-linearities. Model selection
is done by 10-fold cross-validation with the concordance index as metiaiteon criterion.

4. Data can be found attp://www.blackwellpublishers.com/rss/Volumes/A162 pl.htm .
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Figure 10: Concordance (left) and time dependent receiver operdtargcteristic curverOROC)
(right) on the test set for three micro-array survival data sets @&D, middle: DL-
BCL, bottom: NsBCD). The MINLIP model obtains a performance which is slightly
higher or comparable to the other tested models.
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We compare our results with Cox’ proportional hazard model. Howewestindard Cox model
(Cox, 1972) assumes linearity in the covariates, implying that for a continvariable as age for
example, the risk ratio between two patients aged 45 and 50 is the same as thtais&tween two
patients aged 75 and 80. To allow for non-linearities in the effects of thariedes on the hazard,
the functional forms of the covariates were estimated using penalized snpathiines (Eilers
and Marx, 1996; Hurvich, Simonoff, and Tsai, 1998). In this methodyraparative small set of
basis functions is fit and a likelihood penalizing the integrated secondatiees (see Therneau and
Grambsch, 2000, Section 5.5) is used to estimate the coefficients. Akaif@sation criterion
(AlIC=log likelihood - degrees of freedom) is used to select the degrfdfesesiom for each term.

Figures 11 and 12 show the estimated covariate effects for Cox regreggiqenalized splines
andMmINLIP, respectively. Remark that in Figure 11 the estimates are inversely reldtethevsur-
vival time, whereas in Figure 12 the estimates are related with the survival tieife €@®x’ model
predicts a decreasing risk for relapse for older patients, up to the atfe wfhereafter the risk in-
creases slowly; for tumors up to 20mm the risk for relapse increases weilvsth a threshold effect
for larger tumors; the number of positive lymph nodes is inversely relatedswithival and larger
values for the progesterone and estrogen receptors are related vgigh samvival. All conclusions
of the covariate effects agree with what is known from literature (Fishat.,€1983; Lamy et al.,
2002; Pichon et al., 1980; Verschraegen et al., 2005).MiRelP model estimates a higher survival
time for older patients, up to the age of 65, whereafter the survival timesdrggin. According to
this model, a larger tumor, a higher number of positive lymph nodes and a joagesterone and
estrogen receptor level result in lower survival times and thus a higheior relapse. Cox’ model
with penalized smoothing splines obtains a concordance on the test sktequéxr 15, while the
MINLIP model obtains a performance of 0.6857.

Figure 13 illustrates the ability of the models to generate prognostic indicebniltat practice
one is interested in groups of patients with low/high risk for the event to oc€herefore the
median value of the model output is used as a threshold to divide the testeséivangroups:
one group including patients with an estimated risk lower than the average sexbad group
with an estimated risk higher than the average. Kaplan-Meier curves &a0bfidence intervals
are plotted in Figure 13. The logrank tegt value is 20.4281 and 29.6984 for Cox ameNLIP
respectively. The latter method results in a better split between low and higbatients.

7. Conclusions

This paper studied a machine learning approach for finding transfornmatdels. Such models are
found useful in a context of ordinal regression and survival aigland relate directly to commonly
used risk measures as the area under the curve and others. Tlatidesigo along the same lines
as used for support vector machines, except for replacing the ndtigraiowise) margin with a
Lipschitz smoothness condition on the transformation function. The presieataer finds a (non-
linear) non-parametric transformation model by solving a convex Quadredigram. Extensions
towards tasks where transformation models provide only a (good) apmaben (agnostic case),
ordinal regression and survival analysis are given. Experimentsdinal regression and survival
analysis, on both clinical and high dimensional data sets, illustrate the use miojposed method.
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Figure 11: Estimation of the covariate effects on the risk of relapse (retmadifference with Fig-
ure 12) with smoothing splines within Cox’ proportional hazard model artddriams
of the variables. The estimated effects are inversely related with the alitimie. The
model estimates a lower chance for relapse for older patients up to the &@evdiere-
after the risk increases again, albeit slowly. The chance for relapssases for larger
tumors until a size of 20mm, whereafter the chance remains fairly constantofo
mon values of the number of positive lymph nodes and receptors, the rigkages for
larger/lower values respectively. Conclusions drawn by the modetagité what is
known from literature.
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Figure 12: Estimation of covariate effects on survival time (remark therdiffee with Figure 11)
with the miNLIP model (G, (u) was used for model selection) and histograms of the
variables. The stars indicate the observed failure times for breastraateted events.
The estimated covariate effects are directly related with the survival timemiapr
model estimates the covariate effects as follows: the estimated survival tineasesr
with age until the age of 65, whereafter the survival time drops slightly. |atger the
tumor, the higher the number of positive lymph nodes, the lower the expnesitbe
receptors, the lower the estimated survival time is. Conclusions drawn byaldel
agree with what is known from literature.
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Figure 13: The use of Cox’ andinLIP model as a prognostic index. The output of both models
is used to divide the test set into two groups, one with high and one with lowatisk
relapse. The threshold between both groups is defined as the mediaofithkienodel’s
output. Kaplan-Meier curves and 95% confidence intervals are shawaath group.
The spread in the survival curves is broader fortheLiP model, which is confirmed
by a larger value of the log rank test statistic.
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Appendix A. Consistency and Identifiability

This first Appendix deals with the issues of consistency and identifiabilityeoptbhposed method.
We study the question under what conditiomsiLIP is consistent, that is, if we have enough data-
points at our disposal, would the estimateohverge to the desired parameter vector?
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Assume that any observatigX,Y) € RY x R would obey the relation
Y = ho(wg X),

where we refer to the (fixed but unknown) vectay € RY as to the 'true’ parameters, and to the
(fixed but unknown) monotonically increasing functibp: R — R as the 'true’ transformation
function. We will focus on estimating the vector of parametggsrecovery ofhg may be done in
a second stage. Note that assuming that a finite \aj@ists, together with an observatig\,Y)
where this Lipschitz constant is met, is sufficient for consistency. We will\iix|» = 1 to avoid
the obvious identifiability issue, namely that for any strictly positive congtat0, the system
Y = hoq(aw X) is not distinguishable from (6) whem o(Z) = ho(g) foranyZ € R.

Let the set of all (possibly an infinite number) observatigtX,Y)} c RY x R obeying the
system (6) be denoted @3 We consider that this set is amon-degenerate set, which is defined
as follows

Definition 5 (An e-non-degenerate Set)Lete > 0 be any (arbitrarily small) constant. We say that
asetD = {(X,Y)} C RY x R is e-non-degenarate if for any observati¢X,Y) € D, and for any
vector ve RY, one has an observatigix’,Y’) € 9D different from(X,Y) such that|X — X’||> < € so
that

v (X =X)>0.

This requirement can be relaxed as it only has to hold for the doinY) where the Lipschitz
condition is met. In addition, we assume thais (Lo, a)-Lipschitz on this setD C R.

Definition 6 (hg is (Lo, a)-Lipschitz on 2’ C R) The monotonically increasing functiog s said
to be(Lo,a)-Lipschitz onD C R if (1) hg is Lipschitz smooth with Lipschitz constanptfbr all pairs
Z, 72", withZ>Z*:

ho(Z) —ho(Z*) < Lo(Z— Z*) ,

and (2) there exists a pair,Z’' € D with Z > Z’ where the Lipschitz constant is met:
ho(Z) —ho(Z') = Lo (2-Z'),
and (3) one has for ang > 0and Z' € 9’ where0 < Z —Z" < g that

Lo
1+ae

(Z2-2") <ho(2) —ho(Z"), (17)

with a> 0.

Hencea denotes how 'smooth’ the constdng decays in a neighborhood &f where the actual
Lipschitz constraint is met (that is, a smalkeindicates higher smoothness) (see Figure 14). In
particular, a value — 0 (arbitrarily small) implies that the functidm is linear with slopd_g. Note

. _— , ho(Z) . . _—
that this definition does not require that the functa ; ) exists for anyZ € R. This definition
implies the inequality

1 -7 z-7" z-7 ac

Lo~ ho(Z) —ho(@) ~ ho(Z) —ho(@") ~ ho(Z) —to(@) ' Lo’ (18)
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Figure 14: lllustration of a function h R — R (solid curved line) which i$Lo, a)-Lipschitz mono-
tone according to Definition 6. The Lipschitz inequality is tight around Z indichied
the dotted line, while in the-neighborhood of Z the actual Lipschitz constant decays as

Lo
slowly as=%;.

The first inequality holds due to the Lipschitz smoothnedg o he second inequality follows from
7).

We now state thafwp, hp) can be recovered successfully ('identified’)Zf andhy were such
that Definition 5 and 6 hold. We consider thenLIP estimator based on aanon-degenerate sél
which is defined as

We = arg max i Wl (X —X)
£ gHWHz:l(X,Y),(X',Y’)GD:Y>Y’ Y=Y

or equivalently (up to a scaling)

1 4
wg [ argmin éww (19)

st (Y=Y)<w (X=X) VXY),X,Y)eD:Y>Y.
Specificallyw; = ﬁ wherew is the optimizer of (19). IfD contains a finite number of elements
this problem can be solved efficiently as a convex Quadratic Prograinu®®y standard solvers.
This estimator would return the desired resslt= wp if enough observations were given. This is
stated more formally as follows.

Lemma 2 (Identifiability) Lete > 0 be any (arbitrarily small) constant. Given a modéb, wo)
governing the observations . Assume that (i) the s&? is (ag)-non-degenerate as in Definition
5; (ii) the function Iy is (Lo, a)-Lipschitz monotone on the s&X = {Z =w X e R: (X,Y) € D},
as in Definition 6. Then one has for all@RY where||w||» = 1 that

9

1 . w' (X=X
— < inf _—
Lo = xY),x Y)epy>y Y=Y’

with equality if w= wp.
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Proof Let (X,Y),(X,Y’) € D be such tha¥ # Y’ and the Lipschitz constant is achieved, or

1 wg (X —X) - Wi (X=X) (20)
Lo ho(WiX)—ho(w)X") Y=Y '

Such an observation exists assuming thais (Lo, a)-Lipschitz on?’. We prove that for a bad
estimationw of wy (W'wp < 1 —€), one can always find an observatiod*,Y*) € D such that

% is strictly lower thanl_—lo. This implies that whenwv deviates a fractior from wp, the
objective in (19) can never achieve the maximum value as would be the tesewe= wg. This
implies consistency of theINLIP estimator.

At first, by the (Lo, a)-Lipschitz condition orhg, one has for allX”,Y") € D where|w] (X —

X")| < g andY # Y” that (as in inequality (18)),

W (X=X) _ wWh(X—X") e
Y-Y T Y=Y Lo

(21)

According to the Cauchy-Schwarz’ inequality, the conditiaf (X — X")| < € is fulfilled for ||X —
X"||2 < €. Secondly, for anyv € RY with ||w|| = 1 andw]w < 1— ag, one has by the orthogonal
decomposition of a vector that

WoWg
[Iwol|2
= Wo(WWo —WQW) +V

Wo — W (Wo — W) +V

= woaet +v,

with v the orthogonal complement of the projectiongf—w onwy ande™ > €. It follows for any
(X".Y") € D whereY #Y" that

(WO _ W)T(X _ X///) B a8+W‘(I)' (X o x///) VT (X o X///)
Y YY" - Y Y Y Y

Hence by assumption of the gBtbeing(ag)-non-degenerate, there exists for ang RY (and thus
for anyv € RY) an observatiofX*,Y*) € D with || X — X*||» < ag, Y # Y* such that

(Wo—wW)T(X=X*) ___ wh(X—X")
= a€ AEa———= > —,
Y-Y* Y-Y* > Y-Y* T Lg

From (21) and (22) it then follows that

(22)

1_wg(xfx’)>wg(xfx*) ag _ w'(X—X¥)

L Y-Y =~ Y-Y Lo Y-Yv

Hence, for allv € RY for which||w]|2 = 1 andwjw < 1—ae, there are two observatiofX,Y), (X*,Y*)

D such that
1 wh(X—X")

L~ Y-y
proving the result. Equality as in (20) is reachedvios wyg. |
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Appendix B. MINLIP for Ranking Problems
The formal derivation of the1iNLIP method is given in this Appendix. We start with the problem
formulation as denoted in Equation (8):

- l T
min - Zww-+ yllel|1

st.  D(®w-+eg) > DY,

with & = [¢(Xy), - ,(X%n)]". Takee = e + e~ and supposet > 0 ande™ > 0. The problem can

than be formulated as
min  Swiw+yll (e +e7)

wet,e”
D(®w+ (e" —e™)) > DY,
s.t. e" >0,
e >0.

The Lagrangian becomes

1

L(W7e+ae_;a78+v B*) = EWTW+V1-I’II-(e+ +e—) - BI—e+ - BIe— - GTD(¢W+e+ —€ — Y) )
with Lagrange multipliersx, B, B~ > 0. The conditions for optimality (Karush-Kuhn-Tucker
(KKT) conditions) become
%TLV =0—-w=(®)"DTa
2L =0—-y=DTa+p"
9L —0—y=-D'a+p~
diagla)D(®w+e"—e —Y)=0

diagBT)e" =0 (23)
diagp)e =0

a>0

>0

B~ =0,

where diaga) indicates a diagonal matrix with the elements of the veaton the main diagonal.
Now from Slater’s condition one could exchange fine- max, with max, minye+ . Solving for
w,e" ande™ gives the dual problem

min  aTDKDTa —aTDY

st —y1, < DTa <yi,
- GZOn—la

and from the first condition of (23) and the model specificatio) = w' ¢ (X) one could write the
solution for a new poinkK* as

a(X*) =K;D'a,
with K € R andK ;= [K(X*,X1) ... K(X*Xy)]T.
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Appendix C. MINLIP for Ordinal Regression

In this appendix the derivation of th&iNLIP method for ordinal regression is exposed. In the ordi-
nal regression case unknown threshal@se introduced corresponding to an outcome intermediate
between two successive outcome levels. The model is built by indicating #haliffarence be-
tween the utility of a certain observatidfand the largest threshold lower than the outcome of that
observationy; should be larger than the difference betwé&eand the outcome corresponding to
the before mentioned threshold. Analogously, the difference betweemtiakest threshold higher
thany; should be larger than the difference between the outcome corresponttiagttareshold and

Yi. As an extra constraint we impose that successive threshold aresimgealues of the utility
function. More formally the problem is formulated as in Equation (11), nawguhe kernel based
version:

Jmin - [wlo+VIF(e+e)
Pw—-Qv+e>Y -QB

—Pbw+Q*v+e" > -Y +Q'B

s.t. e>0

e >0

Mv <O0.

As in Appendix B we build the Lagrangian

L(we',e;a,B,n,n.,v) = sww+yll(e+e)—a’ (Pw—Qv+e—Y +QB)
—BT(—PW+Q*'V+e +Y—-QB)—nTe—n*Te
+vTMyv,

and derive the set of optimality conditions

L _ _&T
o v
PN

ge =0—=2y=B-+n

% —-0-50d"Q-BTQ*+vIMv=0
diaga)D(®w—Qv+e—Y +QB) =0
diagB)(—®w+Q*v+e* +Y -Q*B)=0
diagn)e=0

diagn*)e* =0

diagv)Mv=0

a>0

B>0

n=0

n“>0

v > 0.

The dual problem formulation is than found as
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min  faTKa+ BTKB—aTKB—-aT (Y -BTQ)+pT(Y —-BTQ")

a,B
Oh <a<yvil,
st Oh<B <Vl
Ok2<v

QTa—Q*TB+MTv =0_;.
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