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Abstract

This paper studies the task of learning transformation models for ranking problems, ordinal regres-
sion and survival analysis. The present contribution describes a machine learning approach termed
MINLIP . The key insight is to relate ranking criteria as the Area Under the Curve to monotone
transformation functions. Consequently, the notion of a Lipschitz smoothness constant is found to
be useful for complexity control for learning transformation models, much in a similar vein as the
’margin’ is for Support Vector Machines for classification.The use of this model structure in the
context of high dimensional data, as well as for estimating non-linear, and additive models based on
primal-dual kernel machines, and for sparse models is indicated. Givenn observations, the present
method solves a quadratic program existing ofO(n) constraints andO(n) unknowns, where most
existing risk minimization approaches to ranking problemstypically result in algorithms withO(n2)
constraints or unknowns. We specify theMINLIP method for three different cases: the first one con-
cerns the preference learning problem. Secondly it is specified how to adapt the method to ordinal
regression with a finite set of ordered outcomes. Finally, itis shown how the method can be used
in the context of survival analysis where one models failuretimes, typically subject to censoring.
The current approach is found to be particularly useful in this context as it can handle, in contrast
with the standard statistical model for analyzing survivaldata, all types of censoring in a straight-
forward way, and because of the explicit relation with the Proportional Hazard and Accelerated
Failure Time models. The advantage of the current method is illustrated on different benchmark
data sets, as well as for estimating a model for cancer survival based on different micro-array and
clinical data sets.
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1. Introduction

Methods based on ranking continue to challenge researchers in different scientific areas, see, for
example, Cĺemençon et al. (2005), Herbrich, Graepel, and Obermayer (2000) and the references
therein. Learning ranking functions offers a solution to different typesof problems including ordinal
regression, bipartite ranking and discounted cumulative gain ranking (DCG, see Cĺemençon and
Vayatis, 2007), studied frequently in research on information retrieval. These cases distinguish
themselves in the definition (of the cardinalityk) of the output domain and the chosen loss function.
This paper deals with the general problem where the output domain can be arbitrary (with possibly
infinite membersk= ∞), but possesses a natural ordering relation between the members. Examples
in whichk= ∞ are found in survival analysis and preference learning in cases where the number of
classes is not known in advance.

Earlier approaches to learning preference functions reduce the ranking problem to pairwise
classification problems. This reasoning was followed in Ailon and Mohri (2008) and F̈urnkranz and
Hüllermeier (2003), Herbrich et al. (1998) and references therein. However, functions having high
pairwise margins might still be bad approximations to real ranking problems. This is certainly the
case in the (general) preference learning problem where possiblyk = ∞: here a nonzero pairwise
margin would need unnecessarily large parameters of the model. In this paper we address this issue
by presenting a conceptual different approach: we adopt a smoothness condition on the ranking
function to structure the space of ranking functions, and claim that this structure aligns in many
applications better with the learning problems. This reasoning is motivated fromrelating a pairwise
ranking criterion to a monotonetransformationfunction. Besides empirical validation of this claim,
we present formal relationships to other (statistical) models used for such tasks.

Figure 1 summarizes the ideas exposed in this work. First we describe the class of transfor-
mation models which contains two different components. The first componentof a transformation
model consists of a functionu : Rd → R mapping the covariatesX ∈ R

d to a value inR such that
the natural order onR induces the ranking (approximately). Different names for such a function
are found in literature depending on the problem setting, including a scoring, ranking, utility or
health function. In this paper we will refer to this as to the utility function. The second component
of the model maps this utility to an outcome inR by a transformation functionh : R → R. This
is a univariate monotonically increasing function, basically capturing the scale of the output. The
central observation now is that when one knows the ordinal relations between instances, one can
estimate a transformation function mapping the instances to their utility value ˆu(X). Depending on
the problem at hand one is interested in the results of the first or second component of the transfor-
mation model. For ranking and survival analysis one typically ignores the second phase, whereas
in ordinal regression a prediction of the output level is found by combiningthe first and the second
components.

Transformation models are especially appropriate when considering data arising from a survival
study. Survival analysis concerns data which represent a time-to-event, as, for example, a patient
relapsing after surgery, or the time till a part of a mechanical device breaks down, see Kalbfleisch
and Prentice (2002) for a broad survey of this field. The goal in survival analysis is often to relate
time-to-event of an instance to a corresponding set of covariates. While practice and theoretical
results here continue to have a strong impact in most quantitative scientific areas, survival analysis
has been studied only sporadically in a context of machine learning, and such studies are mostly
found in the field of artificial neural networks, see, for example, Biganzoli et al. (1998) and Kattan
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Figure 1: Overview: Transformation models consist of two components, theutility function uand
a transformation function h. Given a data setD = {(X(i),Y(i))}

n
i=1 where the instances

are sorted such thatY(i) ≤ Y(i+1), a utility functionu(X) = wTϕ(X) is trained such that
the ranking on the evaluations of this function is representative for the ranking on the
outcome. In therealizable casethe ordering in utility will exactly coincide with the
ordering in observed outcome{Y(i)}i . In the agnostic casehowever, the ordering will
only be exact up to appropriate (nonzero) error variables{εi}i . The modelling procedure
will also be performed in two steps. The first step recoversu (’ranking’), while the second
step is concerned with learning an explicit representation of the transformation function
(’reconstruction’). In practice (depending on the problem at hand) one is mostly interested
in implementing the first step only.

et al. (1997). However, we claim that there is a large potential for such studies: as (i) the approach
of classical likelihood-based approaches have their intrinsic limitations, especially when a realistic
underlying model cannot be assumed. A distribution-free approach is more appropriate here; (ii)
A risk-based approach is often easier as one does not care about recovering the exact parameters
describing the process of interest, but one is only interested in making goodpredictions, or exploring
structure in the data; (iii) Computational issues for the classical statistical approach persist, and the
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question how to solve the estimation equations numerically is often approached inan ad hoc way
(if at all, see Kalbfleisch and Prentice, 2002 and references).

We find that the class of transformation models is a powerful tool to model dataarising from
survival studies for different reasons. The first reason being that they separate nicely the model for
the time-scale (via the transformation function), and the qualitative characterization of an instance
(via the utility function). We will furthermore argue on the close relationship withexisting tech-
niques as Cox’ proportional hazard and accelerated failure time (AFT) models, see, for example,
Dabrowska and Doksum, 1988, Koenker and Geling, 2001, Cheng, Wei, and Ying, 1997 and cita-
tions. In the following, we will relate the transformation function to ranking criteria as Kendall’sτ
or area under the curve (AUC), hence outlining a unified framework to study survival models as used
in a statistical context and machine learning techniques for learning rankingfunctions. This relation
indicates how one may apply the method of structural risk minimization (SRM, see Vapnik, 1998)
here. The immediate consequence is the possibility to apply learning theory, withthe capabilities to
explain good performances in modelling high-dimensional data sets as well asfor non-linear mod-
els (see Vapnik, 1998). Thirdly, in studies of failure time data,censoringis omnipresent. Censoring
prohibits that one observes the actual event of interest fully, but gives partial information on the
outcome instead. The prototypical case is ’a patient hasn’t suffered theevent as yet, but may expe-
rience an event in the future’, but many other examples are studied. We willsee how the proposed
approach can handle censored observations conveniently.

The computational merit of this paper is then how one can fit such a model efficiently to data.
Therefore, we consider an appropriate class of utility functions, either linear functions, or kernel
based models. Secondly, instead of restricting attention to a parameterized class of transforma-
tion functions, we let the transformation function of interest be unspecifiedas one does for partial
likelihood approaches, see Kalbfleisch and Prentice (2002). Especially, we define the appropriate
transformation function only on the observed samples, by inferring an appropriate set of ordinal
relations between them. Then we observe that the Lipschitz smoothness constant associated to such
a transformation function can also be evaluated based on the samples only. Consequently, our fit-
ting strategy calledMINLIP finds the maximally smooth (implicitly defined) transformation function
fitting the data samples. This is therealizable casewhere we can make the assumption of the ex-
istence of such a transformation model. In case we allow for misfit, we extend the model using
slack-variables. It is then found that this problem can be solved as a convex Quadratic Program
(QP), for which highly efficient software is readily available. In the case of utility functions which
are kernel based models, we indicate how one can represent the solutionas a sum of positive defi-
nite kernels, and the Lagrange dual problem again solves the corresponding problem as a convexQP.
For the case linear utility functions are considered, we suggest how one can obtain zero parameters
(’sparseness’) suggesting structure in the data using an 1-norm regularization mechanism (see also
Tibshirani, 1996).

Besides the conceptual and computational discussion, this paper gives empirical evidence for the
approach. We consider empirical studies of ordinal regression and survival analysis. Performance
of MINLIP on ordinal regression is analyzed using the ordinal data compiled by Chu and Keerthi
(2005).MINLIP is applied on two different survival studies. A first study involves micro-array data
sets: two breast cancer data sets (Sørlie et al., 2003; van Houwelingen et al., 2006) and one data
set concerning diffuse large B-cell carcinoma (Rosenwald et al., 2002). In a last study, concerning
a clinical breast cancer survival study (Schumacher et al., 1994), we investigate the estimation of
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non-linear covariate effects and compare results obtained withMINLIP with Cox regression with
penalized smoothing splines.

In Van Belle et al. (2007) we proposed a modification to standardSVMs to handle censored data.
A computationally less demanding algorithm was presented in Van Belle et al. (2008). Starting from
this latter model, we replaced the maximal margin strategy with the minimal Lipschitz smoothness
strategy as presented in Van Belle et al. (2009). This work extends considerably the results of this
short paper. Most notably, this paper additionally elaborates on the caseof survival analysis and a
number of new case studies. The different application areas in which the proposed method can be
applied are summarized in Table 1. In addition, it is stated how the model needs to be used and
which equations need to be solved to obtain the solution.

This paper is organized as follows. The following Section discusses in somedetail the use of
transformation models and its relation with ranking methods. Section 3 studies the estimator in a
context of ranking. Section 4 specifies howMINLIP is to be used in a context of ordinal regression,
where onlyk different output levels are possible. Section 5 discusses the use ofMINLIP in the
presence of censoring. In Section 6 experiments illustrate the use of theMINLIP method.

2. Transformation Models and Ranking Methods

In this paper we work in a stochastic context, so we denote random variables as capital letters, for
example,X,Y, . . . , which follow an appropriate stochastic lawPX,PY, . . . , abbreviated (generically)
asP. Deterministic quantities as constants and functions are represented in lowercase letters (e.g.,
d,h,u, . . . ). Matrices are denoted as boldface capital letters (e.g.,X,D, . . . ). Ordered sets will be
denoted as{S(i)}, indicating thatS(i) ≤ S(i+1). Before the relation between transformation models
and ranking methods can be explored, some terminology needs to be defined.

Definition 1 (Lipschitz smoothness)A univariate function h(Z) has a Lipschitz constant L≥ 0 if

|h(Z)−h(Z′)| ≤ L|Z−Z′|, ∀ Z,Z′ ∈ R .

A transformation modelis then defined as follows:

Definition 2 (Transformation Model) Let h : R → R be astrictly increasing function with Lips-
chitz constant L< ∞, and let u: Rd →R be a function of the covariates X∈R

d. Letε be a random
variable (’noise’) independent of X, with cumulative distribution function Fε(e) = P(ε ≤ e) for any
e∈ R. Then a Noisy Transformation Model (NTM) takes the form

Y = h(u(X)+ ε). (1)

In the remainder of the paper, we will useZ to denoteu(X)+ε for notational convenience. Now the
problem is reduced to estimating a utility functionu :Rd →R and a transformation functionh from a
set of i.i.d. observations{(Xi ,Yi)}

n
i=1 without imposing any distributional (parametric) assumptions

on the noise terms{εi}. Note that without structural assumptions, the utility can not uniquely be
defined. Later on, we will specify similar assumptions as in the maximal margin strategy of Vapnik
when introducing support vector machines, to find a unique solution for theutility function.
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û(
X
),

v̂
(1

1)
U

se
in

co
m

bi
na

tio
n

w
ith

(1
0)∗

to
ob

ta
in

sp
ar

se
m

od
el

s
re

co
ns

tr
uc

tio
n

co
m

pa
ris

on
w

ith
{û
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{Ŷ
il
}

T
he

go
al

is
to

pr
ed

ic
th

az
ar

d
re

pl
ic

at
io

n
in

co
ns

ec
ut

iv
e

an
d/

or
su

rv
iv

al
fu

nc
tio

n
tim

e
in

te
rv

al
s

∗
E

qu
at

io
n

(1
0)

ca
n

on
ly

be
us

ed
in

co
m

bi
na

tio
n

w
ith

a
lin

ea
r

ke
rn

el

Ta
bl

e
1:

O
ve

rv
ie

w
of

m
et

ho
ds

an
d

ap
pl

ic
at

io
ns

pr
op

os
ed

in
th

e
pa

pe
r.

D
ep

en
di

ng
on

th
e

pr
ob

le
m

at
ha

nd
,a

di
ffe

re
nt

ve
rs

io
n

of
th

e
pr

op
os

ed
m

od
el

ne
ed

s
to

be
ap

pl
ie

d.
D

ep
en

di
ng

on
th

e
su

bt
as

ks
,

di
ffe

re
nt

tr
ai

ni
ng

da
ta

(v
ar

ia
bl

es
X

i,
ta

rg
et

va
lu

eY
i,

ut
ili

ty
u(

X
i)

,
du

m
m

y
re

sp
on

se
sB

,
..

.)
ne

ed
to

be
gi

ve
n

to
th

e
al

go
rit

hm
to

ob
ta

in
th

e
de

si
re

d
re

sp
on

se
(u

til
ity

u(
X

i)
,

tr
an

sf
or

m
at

io
n

fu
nc

tio
nh
(u
(X

))
,

pr
ed

ic
tio

nŶ
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Kalbfleisch and Prentice (2002) considered transformation models for failure time models. The
transformation models discussed in Cheng, Wei, and Ying (1997), Dabrowska and Doksum (1988)
and Koenker and Geling (2001) differ from the above definition in the transformation functionh.
They define the model ash−(Y) = u(X)+ε, which is equivalent to (1) ifh−(h(Z)) = h(h−(Z)) = Z
for all Z.

To relate transformation models with ranking functions, we reason as follows. To express the
performance of a ranking function one can use Kendall’sτ, area under the curve (AUC) or a related
measure. In this paper we will work with theconcordanceof a functionu : Rd → R respective to
the outcome. The concordance is defined as the probability that the order inoutcome of two i.i.d.
observations(X,Y) and(X′,Y′) is preserved in the utilityu:

C (u) = P((u(X)−u(X′))(Y−Y′)> 0). (2)

Given a set ofn i.i.d. observations{(Xi ,Yi)}
n
i=1, the empirical concordance index is then calculated

as

Cn(u) =
2

n(n−1) ∑
i< j

I [(u(Xi)−u(Xj))(Yi −Yj)> 0],

where the indicator functionI(z) equals 1 ifz> 0, and equals zero otherwise. Equivalently, the risk
is defined as follows.

Definition 3 (Risk of (h,u)) The risk associated with a monotonically increasing function penal-
izes discordant samples h(u(X)) and h(u(X′)) as

R (u) = P((h(u(X))−h(u(X′)))(Y−Y′)< 0).

Or, since h is monotonically increasing, the risk is expressed as

R (u) = P((u(X)−u(X′))(Y−Y′)< 0).

Its empirical counterpart then becomes

Rn(u) = 1−Cn(u) .

Empirical Risk Minimization (ERM) is then performed by solving

û= argmin
u∈U

Rn(u) = argmax
u∈U

Cn(u), (3)

whereU⊂{u :Rd →R} is an appropriate subset of ranking functions, see, for example, Clémençon
et al. (2005) and citations. However, this approach results in combinatorial optimization problems.
One therefore majorizes the discontinuous indicator function by the Hinge loss, that is,ℓ(z) ≤
max(0,1− z) yielding rankSVM (Herbrich, Graepel, and Obermayer, 2000). The disadvantage of
this solution is that it leads toO(n2) number of constraints or unknowns, often making it difficult
to apply to real life problems. A solution to this problem is found in relating transformation models
with Equation (3): if a functionu : Rd → R exists such thatCn(u) = 1, one describes implicitly
a transformation function (see Figure 2). If two variablesu andy are perfectly concordant, then
there exists a monotonically increasing functionh such thath(u) andy are perfectly concordant.
Moreover, there exists such a functionh, with Lipschitz constantL, mappingu to y such thaty =
h(u). Or more formally:
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Lemma 1 (Existence of a Transformation Function) Given a collection of pairs{(Z(i),Y(i))}
n
i=1,

enumerated such that Y(i) ≤Y( j) if and only if i≤ j, and considering the conditions on the observa-
tions for L< ∞:

0≤Y(i)−Y( j) ≤ L
(

Z(i)−Z( j)

)

, ∀ i < j = 1, . . . ,n, (4)

we state that:

1. If one has for a finite value L≥ 0 that (4) holds, then there exists a monotonically increasing
function h: R→ R with Lipschitz constant L interpolating the data points.

2. If for all admissible(Z,Y) ∈ R×R one has that Y= h(Z) for an (unknown) continuous,
(finite) differentiable and monotonically increasing function h: R→ R, then there is a value
L < ∞ such that (4) holds.

Proof To prove 1, consider the linear interpolation functionhn : R→ R, defined as

hn(Z) =
Z−Zz(Z)

Zz(Z)−Zz(Z)

(

Yz(Z)−Yz(Z)

)

+Yz(Z) ,

where we definez(Z) = arg min
i∈{1,...,n}

(Zi : Zi > Z) andz(Z) = arg max
i∈{1,...,n}

(Zi : Zi ≤ Z). Direct manip-

ulation shows that this function is monotonically increasing and continuous. Now takeZ < Z′ ∈ R,
then we have to show thathn(Z′)−hn(Z)≤ L(Z′−Z). For notational convenience definel = z(Z),
u= z(Z), l ′ = z(Z′) andu′ = z(Z′), then

hn(Z
′)−hn(Z) =

Z′−Zl ′

Zu′ −Zl ′
(Yu′ −Yl ′)+Yl ′ −

Z−Zl

Zu−Zl
(Yu−Yl )−Yl

≤ L(Z′−Zl ′)−L(Z−Zl )+L(Zl ′ −Zl )

= L(Z′−Z),

where we use thatYl ′ −Yl ≤ L(Zl ′ −Zl ).
Item 2 is proven as follows. Let such anh exist, then the mean value theorem asserts that for any

two samples(Zi ,Yi) and(Z j ,Yj) for which Zi ≤ Z j , there exists aZ within the interval[Zi ,Z j ] ⊂ R

such that

(Yj −Yi) = (Z j −Zi)h
′(Z)≤ L(Zi −Z j) ,

whereL = supZ h′(Z).
Note that Equation (4) implies thatCn(Z) = 1.

3. MINLIP : A Convex Approach to Learning a Transformation Model

This Section describes how transformation models can be learned by means of a convex approach.
The Section starts with a discussion of the realizable case and extends this model formulation to-
wards the agnostic case and non-linearities using Mercer kernels.
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Figure 2: Relation between ranking and transformation models: if two variables u andy are per-
fectly concordant, they describe a monotonically increasing functiony= h(u). The dots
representu and outcomey for training points. In these observations the value of the func-
tion h is known exactly. To predict they−value of the test observations, the functionh
needs to be approximated between the training points (grey area). All functions ĥ which
are monotonically increasing and lie within the grey zones are valid prediction rules.

3.1 The Realizable Case

The realizable case refers to the situation where there exists a functionu(X) such that the ranking
of u(X) perfectly reflects the ranking ofY. Otherwise stated, there exists a functionu(X) such that
C (u) = 1. Lemma 1 describes the existence ofh, but since this transformation function is only
known at the training points, it is not unique. Figure 2 illustrates that all monotonically increasing
functions lying within the grey bounds satisfy the conditions. Therefore, the Lipschitz constant
is used to control the complexity of the transformation function. Transformation functions with
a smaller Lipschitz constant will be preferred. For notational convenience, we will assume no
coinciding outcomes (ties). Leth be a monotonically increasing function with Lipschitz constant
L < ∞, such thath(Z)−h(Z′) ≤ L(Z−Z′) for all Z ≥ Z′. Restricting attention to the observations
{(X(i),Y(i))}

n
i=1, one has the necessary conditions

h
(

u(X(i))
)

−h
(

u(X(i−1))
)

≤ L
(

u(X(i))−u(X(i−1))
)

,

for all i = 2, . . . ,n. Here, we assume that the data obey a noiseless transformation model (ε = 0 in
(1)). For now, linear utility functions defined as

u(X) = wTX ,

are considered. Extensions towards non-linear utility functions using Mercer kernels are handled
in Subsection 3.3. Since the functionu(X) = wTX can be arbitrary rescaled such that the corres-
ponding transformation function has an arbitrary Lipschitz constant (i.e., for anyα > 0, one has
h(u(X)) = h̃(ũ(X)) whereh̃(Z) , h(α−1Z) and ũ(X) = αu(X)), we fix the normwTw and try to
find u(X) = vTX with vTv = 1. Hence learning a transformation model with minimal Lipschitz
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constant ofh can be written as

min
v,L

1
2L2

s.t.

{

‖v‖2 = 1

Y(i)−Y(i−1) ≤ L
(

vTX(i)−vTX(i−1)
)

, ∀ i = 2, . . . ,n.

Substitutingw= Lv we get equivalently:

min
w

1
2wTw

s.t. Y(i)−Y(i−1) ≤ wTX(i)−wTX(i−1), ∀ i = 2, . . . ,n,
(5)

which goes along similar lines as the hard marginSVM (see, e.g., Shawe-Taylor and Cristianini,
2004) and rankingSVM (Freund et al., 2004), where the threshold value 1 is replaced byY(i)−Y(i−1).
Note that an intercept term is not needed since differences in utility are used. Observe that this
problem hasn−1 linear constraints. We will refer to this model asMINLIP .

Problem (5) can be compactly rewritten as

min
w

1
2wTw

s.t. DXw≥ DY,

whereX ∈ R
n×d is a matrix with each row containing one observation, that is,X i = X(i) ∈ R

d and
Y = [Y(1) · · ·Y(n)]

T , a vector with the corresponding outcomes. The matrixD ∈ {−1,0,1}(n−1)×n

D =











−1 1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
...

...
0 . . . 0 0 0 −1 1











,

gives the first order differences of a vector, that is, assuming no ties inthe output,DiY =Y(i+1)−Y(i)
for all i = 1, . . . ,n−1, with Di the ith row of D.

In the presence of ties,Y(i+1) is replaced byY( j), with j the smallest output value withY( j) >
Y(i). See Section 4 for more details. Solving this problem as a convexQP can be done efficiently
with standard mathematical solvers as implemented inMOSEK1 or R-quadprog.2 The following
proposition states when theMINLIP model is valid.

Proposition 1 (Validity of MINLIP ) Assume that(X,Y) ∈ R
d ×R would obey the relation

Y = h0(w
T
0 X), (6)

where we refer to the (fixed but unknown) vector w0 ∈ R
d as to the ’true’ parameters, and to the

(fixed but unknown) monotonically increasing function h0 : R → R as the ’true’ transformation
function. Let for each couple(X,Y) and(X′,Y′) where Y6=Y′ the constant L′ > 0 be defined as

1
L′

=
wT

0 (X−X′)

Y−Y′
,

1. MOSEK can be found athttp://www.mosek.org .
2. R-quadprog can be found athttp://cran.r-project.org/web/packages/quadprog/ind ex.html .
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where L′ = ∞ if wT
0 (X−X′) = 0. By construction we have that L′ ≤ L0 and that the constant exists

everywhere. The result of theMINLIP model then becomes:

£= max
‖w‖2=1

min
Y>Y′

wT(X−X′)

Y−Y′
= max

‖w‖2=1
min
Y>Y′

wT(X−X′)

L′wT
0 (X−X′)

. (7)

We then state thatMINLIP yields a good approximation of the parameter vector w0 in the noiseless
case as long as there are enough observations(X,Y) such that wT0 (X−X′)≈ 1 and L′ ≈ L0.

Proof Let the unit-length vector(X−X′) ∈R
d be defined asX−X′ = (X−X′)‖X−X′‖2, then we

can write (7) as

max
‖w‖2=1

min
Y>Y′

wT(X−X′)

L′wT
0 (X−X′)

.

Let us now focus attention on the setS = {(X −X′,Y−Y′) : (X,Y),(X′,Y′) ∈ D = {Xi ,Yi}
n
i=1},

where£ = wT(X −X′)/(Y −Y′) for which this value£ is actually achieved. It is seen that the
estimatew lies in the span of this setS as otherwise the maximum value could be increased. When
we assume that the data set contains enough observations(X,Y) such thatwT

0 (X −X′) ≈ 1 and
L′ ≈ L0, they will end up in the setS , and as a result we have thatwTw0 ≈ 1. As the optimal
solution is fully determined by the termswT

0 (X−X′)≈ 1 andL′ ≈ L0 (cfr. duality results in convex
optimization), one should also have thatw≈ w0.

Formally, consistency ofMINLIP in the asymptotic case under a sufficient condition of the data
being non-degenerate is derived in Appendix A.

3.2 The Agnostic Case

In case it is impossible to find a utility functionu : Rd →R extracting the ranking perfectly, a noisy
transformation model is considered:

Y = h(wTX+ ε) ,

whereu= wTX. The introduction of the error variable asks for an adaptation of the Lipschitz-based
complexity control. As a loss functionℓ : R→ R we choose the absolute value lossℓ(ε) = |ε| for
three reasons: (i) It is known that this loss function is more robust to misspecification of the model
and outliers than, for example, the squared lossℓ(ε) = ε2; (ii) The use of the absolute value loss will
result in sparse solutions with many error terms equal to zero; (iii) In binaryclassification this norm
is well performing inSVMs. However, the choice of the loss remains arbitrary. Incorporation of the
errors (slack variables) leads to the following model formulation:

min
w,ε

1
2wTw+ γ‖ε‖1

s.t. D(Xw+ ε)≥ DY,
(8)

whereε = (ε1, . . . ,εn)
T ∈ R

n represents the errors,‖ε‖1 = ∑n
i=1 |εi | andγ > 0 is a regularization

constant, making a trade-off between model complexity and error. This problem can again be
solved as a convex quadratic program.
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3.3 A Non-linear Extension using Mercer Kernels

Let ϕ : Rd →R
dϕ be a feature map mapping the data to a high dimensional feature space (of dimen-

siondϕ, possibly infinite). A non-linear utility function can then be defined as

u(X) = wTϕ(X),

with w∈R
dϕ a vector of unknowns (possibly infinite dimensional). TakeΦ= [ϕ(X(1)), . . . , ϕ(X(n))]

T ∈

R
n×dϕ . The realizable learning problem can then be represented as:

min
w

1
2wTw

s.t. DΦw≥ DY,

with the matrixD defined as before. The Lagrange dual problem becomes

min
α

1
2αTDKDTα−αTDY

s.t. α ≥ 0n−1 ,

where the kernel matrixK ∈ R
n×n contains the kernel evaluations such thatK i j = ϕ(Xi)

Tϕ(Xj) for
all i, j = 1, . . . ,n. The estimated utility ˆu can be evaluated at any pointX∗ ∈ R

d as

û(X∗) = α̂TDKn(X
∗), (9)

whereKn(X∗) = [K(X1,X∗), . . . ,K(Xn,X∗)]T ∈ R
n. The dual (Shawe-Taylor and Cristianini, 2004;

Suykens, Gestel, Brabanter, Moor, and Vandewalle, 2002; Vapnik, 1998) of the agnostic learning
machine of Subsection 3.2 is obtained analogously:

min
α

1
2αTDKDTα−αTDY

s.t.

{

−γ1n ≤ DTα ≤ γ1n

α ≥ 0n−1 ,

with K as above and the resulting estimate can be evaluated as in (9) without computing explicitly
ŵ nor ϕ. We refer to Appendix B for a detailed derivation. Typical choices for kernel functions are:

K(X,Xi) = XT
i X (linear kernel)

K(X,Xi) = (τ+XT
i X)d , τ ≥ 0 (polynomial kernel of degree d)

K(X,Xi) = exp

(

−
||X−Xi ||

2
2

σ2

)

(RBF kernel) .

In cases where one is interested in the modelling of covariate effects, one could use an additive
utility function:

u(X) =
d

∑
p=1

up(Xp) ,
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whereXp represents thepth covariate of datapointX. Using Equation (9) this can be written as:

û(X) =
d

∑
p=1

αTDK p(Xp)

= αTD
d

∑
p=1

K p(Xp) ,

where the kernel matrixK p ∈ R
n×n contains the kernel evaluations such thatK p

i j = ϕ(Xp
i )

Tϕ(Xp
j )

for all i, j = 1, . . . ,n. As a result, componentwise kernels (Pelckmans et al., 2005b):

K(X,Xi) =
d

∑
p=1

Kp(Xp,Xp
i ) ,

which can be seen as a special case ofANOVA kernels (Vapnik, 1998), can be used. The use of such
componentwise kernels allows for interpreting the non-linear effects of thecovariates.

3.4 Prediction with Transformation Models

Prediction of the outcome using transformation models is a two-step approach (see Figure 1). First,
the utility u(X) is estimated, giving an ordering relation between the observations. When interested
in an outcome prediction, the transformation functionh has to be estimated. The prediction step is
a univariate regression problem, which can be solved using monotonic regression models. Remark
that in the ranking setting, one is not interested in the estimation of the transformation function since
the goal is to find the ranking. Estimation of the transformation function for ordinal regression and
survival analysis will be illustrated later.

3.5 Toward Sparse Solutions using‖w‖1

This subsection describes an extensions to the above model. Specifically, we will be interested in
the case whered is large compared ton. Consequently, we will be interested in computational
methods which reveal the relevant input variables of use in the learned prediction rule. We restrict
ourselves to the primal case whereu(X) = wTX for the linear case and an unknown monotonically
increasing functionh : R→ R. In this extension anl1 penalty (Tibshirani, 1996) is used instead of
the termwTw. We shall refer to this model asMINLIP L1:

min
w,ε

‖w‖1+ γ‖ε‖1

s.t. D(Xw+ ε)≥ DY,
(10)

where‖w‖1 =∑d
p=1 |wp|. This linear programming problem (LP) can be solved efficiently with stan-

dard mathematical solvers. This formulation does not allow for a straightforward dual derivation.
Figure 3 illustrates the possible advantage of the sparse alternative over the standardMINLIP

formulation. We created 100 artificial data sets, each containing 150 observations with 200 co-
variates. 100 observations were used for training, the remaining for testing. A varying number of
d = 100,110, . . . ,200 covariates were used to build the outcome, all other features being irrelevant.
All covariates were drawn from a normal distribution with zero mean and standard deviation 1. The
outcome was obtained as a weighted sum of the relevant covariates, wherethe weights were drawn
from a standard normal distribution. The test error of theMINLIP L1 model was lower than for the
standard model.
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Figure 3: Performance and feature selection ability ofMINLIP (solid) andMINLIP L1 (dashed) on
an artificial data set (n=100 for training,ntest=50 for testing). 200N (0,1) distributed
covariates were generated, a varying numberd = 100,110, . . . ,200 of which were used
to generate the outcome (Y = ∑d

p=1wpXp, with w drawn form a standard normal distri-
bution). The results are averaged over 100 data sets. (a) Median mean squared error on
the test sets:MINLIP L1 performs better thanMINLIP . (b-c) Number of selected (absolute
value of estimated weight> 10−8) and correctly selected variables versus number of rele-
vant variables. TheMINLIP method selects all variables, a lot of them not being relevant.
The MINLIP L1 model selects very few variables, but those which are selected are also
relevant.
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3.6 Comparison with Other Methods

An approach often seen within preference ranking problems is the reformulation of the ranking
problem as a classification problem. Examples of this strategy can be found inAilon and Mohri
(2008), F̈urnkranz and Ḧullermeier (2003) and Herbrich et al. (1998). However, transforming rank-
ing to classification deflects attention from the underlying problem within rankingproblems. In
contrast with these methods, theMINLIP approach concentrates on the ranking problem by use of
the transformation model.

Currently used ranking methods include rankSVM (Herbrich, Graepel, and Obermayer, 2000)
andRankBoost (Freund et al., 2004). Although the method proposed here and rankSVM are both
based onSVMs, two differences can be noted: (i) firstly, the rankSVM uses all pairs of data points
for training, which results inO(n2) comparisons, whereMINLIP has a complexity ofO(n). This
reduction in complexity makes the model more applicable to large data sets; (ii) Secondly, the
complexity control, being the margin and the Lipschitz constant, is different in both methods. In
rankSVM all margins are equal and the model is tuned to maximize this margin. InMINLIP the
margins differ corresponding to the difference in the output levels.

4. Learning for Ordinal Regression

Consider now the situation where the output takes a finite number of values - sayk∈N - and where
thek different classes possess a natural ordering relation. In this case theoutcomeY is an element
of the finite ordered set{Y(1), . . . ,Y(k)}.

4.1 A Modification to MINLIP

In Section 3.1 it is mentioned that comparisons are made between points(i) and( j) whereY( j) is
the first ordered value bigger thanY(i). Applying this methodology in the ordinal setting would lead
to as many comparisons with point(i) from classki as there are observations in classki + 1. To
cope with this issue, we add dummy observations(X,B) in between two consecutive ordinal classes
with levelsY(i) < Y(i+1) such thatB(i) =

1
2(Y(i+1)+Y(i)) (see Figure 4) and leaving their covariates

and utility function unspecified. This implies that one has to compare each observation only twice,
once with the dummy observation in between the previous and the current ordinal class and once
with the dummy observation in between the current and the next class, restricting the number of
constraints toO(n). The solution of this problem can be found implicitly by extending theY ∈ R

n

andX ∈ R
n×d matrices as follows:

Ȳ =













Y
B(1)

B(2)

· · ·
B(k−1)













and X̄ =

[

X 0
0 Ik−1

]

,

whereX̄ ∈ R(n+k−1)×(d+k−1) andȲ ∈ R
n+k−1 andIk−1 represents the identity matrix of dimension

k−1. The problem is then formulated as in Equation (8) after replacingX by X̄ andY by Ȳ and
results in the parameter vector ¯w= [w;v].
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Figure 4: Adaptation of theMINLIP algorithm to ordinal regression: (a) Inclusion of dummy data
points with output valuesBi intermediate to the observed output values and undefined
covariates and utilityvi . All data points are compared with two dummy data points; (b)
Comparison with the maximal margin strategy used in standardSVM where the margin is
equal between all classes; (c-d) Example with 3 linearly separable caseswith outcomes
equal to 1 (stars), 2 (circles) and 10 (diamond) respectively. The boldsymbols represent
the support vectors. In the maximal margin strategy there exists one margin, equal be-
tween every two successive classes, which results in a different Lipschitz constant. Using
the MINLIP strategy, the Lipschitz smoothness is optimized, resulting in margins which
are proportional to the difference in the class labels. Support vectors of the latter method
are therefore more likely to be observations of two classes for which the output labels
differ the most.
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Using the above formulation, the thresholdsv as well as the weightsw are regularized. Since
the motivation for this regularization scheme is not clear, one can formulate theproblem explicitly
as:

min
w,e,e∗,v

‖w‖2+ γ∑n
i=11T

n (e+e∗)

s.t.































Xw−Qv+e≥ Y−QB

−Xw+Q∗v+e∗ ≥−Y+Q∗B

e≥ 0

e∗ ≥ 0

Mv≤ 0,

(11)

with γ a positive regularization constant,Q andQ∗ ∈ R
n×(k−1) matrices with all elements equal to

zero except for positions{(i,ki −1)}k
ki=2 and{(i,ki)}

k−1
ki=1 respectively (whereki represents the index

of the output level of observationi), which contain ones. These positions correspond to the dummy
data points with which one wishes to compare data pointsi. VectorB ∈ R

k−1 contains outcomes
corresponding to the thresholds:B = [B(1), · · · , B(k−1)]

T . Vector v contains all unknown utility
function values for the dummy data pointsv= [v(1), · · · , v(k−1)]

T , andM ∈ R
(k−1)×k gives the first

order differences of a vector and is defined as:

M =











1 −1 0 0 . . . 0 0
0 1 −1 0 . . . 0 0
...

...
0 . . . 0 0 0 1 −1











.

The Lagrange dual problem becomes

min
α,β

1
2αTKα+ 1

2βTKβ−αTKβ−αT(Y−BTQ)+βT(Y−BTQ∗)

s.t.























0n ≤ α ≤ γ1n

0n ≤ β ≤ γ1n

0k−2 ≤ ν
QTα−Q∗Tβ+MTν = 0k−1 ,

where 1n and 0n represent column vectors of sizen with all elements equal to 1 and 0 respectively.
Solving this explicit formulation is computationally less demanding and faster than solving the
implicit problem formulation. We refer to Appendix C for a detailed derivation.The estimated ˆu
can be evaluated at any pointX∗ ∈ R

d as

û(X∗) = (α̂T − β̂T)Kn(X
∗) ,

with Kn(X∗) defined as before.

4.2 Prediction for Ordinal Regression

A clear advantage of the approach which includes unknown thresholds isthat the prediction step
becomes very simple. As illustrated in Figure 5, the predictions can be easily obtained from the
value of the utility function in comparison with the different threshold values.
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Figure 5: Prediction for ordinal regression.MINLIP for ordinal regression, including unknown
thresholds, has the advantage to reduce the prediction step to a simple comparison be-
tween the utility of a new observation and the utility of the thresholds. If the utility has a
value between thresholdj −1 and j, the predicted outcome equals thej th output level.

4.3 Difference with Other Methods

Chu and Keerthi (2005) proposed twoSVM based models for ordinal regression. Both methods
introducek−1 thresholds withk the number of ordinal levels in the data. As withSVM classifiers,
the margin between two ordinal levels is set to2||w||2

. In their first method (EXC) a data pointXi

belonging to classYi has two slack variables: one relating to the threshold between classeski −1
and ki and a second relating to the threshold between classeski and ki + 1. To ensure that the
threshold between classeski −1 andki is smaller than the threshold between classeski andki +1,
k−1 additional constraints are explicitly included. The problem can be written as:

min
w,e,e∗,v

‖w‖2+ γ∑n
i=1(ei +e∗i )

s.t.































wTXi −v j +ei ≥ 1 ∀ i = 1, . . . ,n; j = argmaxj(Ti > v j)

−wTXi +v j +e∗i ≥ 1 ∀ i = 1, . . . ,n; j = argminj(Ti < v j)

ei ≥ 0 ∀ i = 1, . . . ,n

e∗i ≥ 0 ∀ i = 1, . . . ,n

v j ≤ v j+1 ∀ j = 1, . . . ,k−2.

In their second approach (IMC) the constraints on the thresholds are added implicitly by adding
k−1 slack variables, one for each threshold, for every datapoint. The problem can be formulated as
follows:
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min
w,e,e∗,v

‖w‖2+ γ∑n
i=1(ei +e∗i )

s.t.























wTXi −v j +ei ≥ 1 ∀ i = 1, . . . ,n; ∀ j : Ti > v j

−wTXi +v j +e∗i ≥ 1 ∀ i = 1, . . . ,n; ∀ j : Ti < v j

ei ≥ 0 ∀ i = 1, . . . ,n

e∗i ≥ 0 ∀ i = 1, . . . ,n.

In our method, we adopt the approach of theEXC method concerning slack variables, the method
differing in the definition of the margin. Instead of defining an equal margin at every border, the

margin between classeski andki +1 is defined as
|Y(i+1)−Y(i)|

||w||2
.

Remark the similarity between these models and the standardSVMs (Vapnik, 1998) in the binary
classification problem (with two classesC1 andC2):

min
w,e,e∗,b

‖w‖2+ γ∑n
i=1(ei +e∗i )

s.t.























wTXi +b+ei ≥ 1 ∀ i ∈ C1

−wTXi −b+e∗i ≥ 1 ∀ i ∈ C2

ei ≥ 0 ∀ i ∈ C1

e∗i ≥ 0 ∀ i ∈ C2 .

(12)

In casek= 2, bothEXC andIMC reduce to the model:

min
w,e,e∗,v

‖w‖2+ γ∑n
i=1(ei +e∗i )

s.t.























wTXi −v+ei ≥ 1 ∀ i ∈ C1

−wTXi +v+e∗i ≥ 1 ∀ i ∈ C2

ei ≥ 0 ∀ i ∈ C1

e∗i ≥ 0 ∀ i ∈ C2 ,

(13)

which equals the model in Equation (12) when the thresholdv (note that there is only one threshold
in this case) is considered as the constant term. TheMINLIP model reduces to:

min
w,e,e∗,v

‖w‖2+ γ∑n
i=1(ei +e∗i )

s.t.























wTXi −v+ei ≥Yi −B ∀ i ∈ C1

−wTXi +v+e∗i ≥ B−Yi ∀ i ∈ C2

ei ≥ 0 ∀ i ∈ C1

e∗i ≥ 0 ∀ i ∈ C2 ,

(14)

where only one dummy observation(v,B) needs to be introduced. The difference between Equa-
tions (12, 13) and Equation (14) lies in the right hand side of the two first inequalities, which is a
consequence of the used complexity control. Models (13) and (14) are equivalent up to the choice
of the regularization constant.

Chu and Ghahramani (2005) proposed a probabilistic approach to ordinal regression in Gaussian
processes (GPOR). They impose a Gaussian process prior distribution on the utility function (called
latent function in their work) and employ an appropriate likelihood function for ordinal variables.
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Experiments will compare our methods with the Bayesian inference technique of MacKay (1992),
using the Laplacian approximation to implement model adaptation. TheGPOR approach differs
from ours since it uses a Bayesian framework.

5. Transformation Models for Failure Time Data

We now turn our attention to the case where the data originate from a survival study, that is, the
dependent variable is essentially a time-to-failure and typically requires specific models and tools
to capture its behavior. We will adopt a classical statistical setup, and will show how the techniques
as described in Section 3 provide a powerful alternative to the classical statistical (semi-parametric)
toolbox.

5.1 Survival Data

The observations are assumed to fit in the following statistical setup, see, for example, Kalbfleisch
and Prentice (2002) for a more elaborate introduction. LetT ∈R

+ andX ∈R
d be a random variable

and random vector respectively, jointly following a probability law characterized byP as classical.
The former variableT describes thetime to the eventof interest, and the random vectorX taking
values inRd describesd covariates. Note that in this SectionT has the same role asY in the previous
Sections. We assume that no ties will occur in the data in order to keep the explanations as simple
as possible. We will consider predictive models where the covariates come inthrough a linear
combination with weightsw ∈ R

d as before, orU =
{

u : Rd → R : u(X) = wTX, ∀ X ∈ R
d
}

. A
key quantity in survival analysis is theconditional survival function S(t|u(X)) : R+ → [0,1] defined
as

S(t|u(X)) = P
(

T > t
∣

∣

∣
u(X)

)

,

denoting the probability of the event occurring pastt given the value of the utility functionu(X) =
wTX. A related quantity to the conditional survival function is theconditional hazard function
λ : R→ R

+ defined as

λ(t|u(X)) = lim
∆t→0

P
(

t ≤ T < t +∆t
∣

∣

∣
u(X),T ≥ t

)

∆t

= lim
∆t→0

P
(

t ≤ T < t +∆t
∣

∣

∣
u(X)

)

S
(

t
∣

∣

∣
u(X)

) .

If the derivatives : R+ →R with s(t|u(X)) =
∂S(t|u(X))

∂t
exists, one can writeλ(t|u(X)) = s(t|u(X))

S(t|u(X) .

The conditional hazard function reflects the instantaneous probability thatthe event will occur given
that the subject already survived beyond timet. Finally, one can make the relation between the
hazardλ and the survival functionSeven more explicit by introducing theconditional cumulative
hazard functionΛ(t|u(X)) =

∫ t
0 λ(r|u(X))dr for t ≥ 0 such that

Λ(t|u(X)) =− ln
(

S(t | u(X))
)

.

The following Subsection enumerates some commonly used (semi-)parametric methods for
modelling the survival and hazard functions.
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5.2 Transformation Models for Survival Analysis

The Transformation model (see Definition 1) encompasses a broad class of models, including the
following classical survival models.

1. Cox’proportional hazard modelis recovered when one definesg= h−1 (if it exists) asg(z) =
ln(− ln(z)). Under the Cox model, the value of the survival function att = T is

S(T,X) = [S0(T)]
exp(−βTX) ,

whereS0(t) = exp(−Λ0(t)) is called the baseline survival function. Taking ln(− ln(·)) of both
sides in (1) leads to

ln(− ln(S(T,X)) = ln(− ln(S0(T)))−βTX

= ln(Λ0(T))−βTX

⇒ ε = g(T)−u(X)

⇒ T = h(u(X)+ ε) .

Remark that the last transition is only possible ifg(t) is invertible. The ’noise terms’ are i.i.d.
observations from the extreme value distributionFε(z) = 1−exp(−exp(z)).

2. Theproportional odds modelis defined as

ln

(

F(t|X)

1−F(t|X)

)

= α(t)+βTX , (15)

with F(t|X) the conditional cumulative distribution function andα(t) a monotonically in-
creasing function. In general the survival function equalsS(t) = 1−F(t), leading together
with Equation (15) to

ln

(

1−S(T|X)

S(T|X)

)

= α(T)+βTX

⇒ ε = α(T)+u(X)

⇒ T = h(−u(X)+ ε) .

Remark that the last transition is only possible ifα(T) is invertible.

3. Theaccelerated failure time (AFT)is given whenh(z) = ln(z).

For an extended discussion on the use of the class of transformation models and specific parame-
terizations of the functionsh or g, see, for example, Dabrowska and Doksum (1988), Koenker and
Geling (2001), Cheng, Wei, and Ying (1997) and citations.

5.3 Censoring

A typical property of failure time data is the occurrence of censoring. A failure time is called
censored when the exact time of failure is not observed. Despite this, censored times do provide
relevant information. DefineTi = (Ti ,δi) with δi the censoring indicator, capturing all censoring
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information: δ = 0 indicates the occurrence of an event at a known failure time (uncensored data
point); right, left and interval censoring are indicated byδ= 1,δ= 2 andδ= 3 respectively. Without
censoring all possible pairs of datapoints{(Ti ,T j)}i 6= j can be used for comparison in Equation (5).
The presence of censoring leads to a lack of comparability between certaindata points. Let∆(Ti ,T j)
be a comparability indicator, indicating whether the datapointsi and j are comparable:

∆(Ti ,T j) =

{

0 if Ti andT j are not comparable

1 if Ti andT j are comparable.

This indicator is defined depending on the censoring types present in the data:

Right censoring occurs when the event of interest did not occur until the last follow-up time. This
type of censoring typically occurs at the end of the study period. Althoughthe exact failure
time is not known in this case, the failure time is known to be later than the date of last
follow-up. In case of right censoring the comparability indicator∆ takes the value 1 for two
observationsi and j when the observation with the earliest failure time is observed, and zero
otherwise:

∆(Ti ,T j) =

{

1 if (Ti < Tj andδi = 0) or (Tj < Ti andδ j = 0)

0 otherwise.

Left censoring deals with the case when the failure is known to have happened before a certain
time. An example of left censoring arises in case a variable can only be measured when its
value is above a certain level. For left censoring, two observationsi and j are comparable
when the observation with the highest failure time is non-censored and zerootherwise:

∆(Ti ,T j) =

{

1 if (Ti < Tj andδ j = 0) or (Tj < Ti andδi = 0)

0 otherwise.

Interval censoring is a combination of the previous two censoring types. In this case the failure
time is not known exactly, instead an interval including the failure time is indicated.This
type of censoring is often found in medical studies where the patients are subject to regular
check up times (Finkelstein, 1986). Whether two observations are comparable or not in case
of interval censoring depends on the censoring timesT i andT i defining the failure interval
for each observationi: Ti ∈ [T i ,T i ]. For uncensored observations, the failure interval reduces
to one time, namely the failure timeTi = T i = T i . The comparability indicator is defined as:

∆(Ti ,T j) =

{

1 if T i < T j or T j < T i

0 otherwise.

In case the data consists of data points with different types of censoring,the comparability indicator
is defined as follows. In the most general case, the failure timeTi is considered to be an element
of the interval[T i ,T i ]. For right censored data points the right edge of the interval equals infinity,
whereas for left censored observation the left edge of the interval equals zero. The comparability
indicator is then defined as:
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∆(Ti ,T j) =

{

1 if T i < T j or T j < T i

0 otherwise.

More information on censoring can be found in Andersen et al. (1993),Elandt-Johnson and Johnson
(1980), Harrell (2001), Kalbfleisch and Prentice (2002) and Miller (1981).

Standard statistical methods for modelling survival data obtain parameter estimates by maximi-
zing a (partial) likelihood with regard to these parameters. This likelihood depends on the ranking
of the failure times. In the presence of right censoring, this ranking can uniquely be defined and
estimates for the parameters can be obtained. However, in the presence ofinterval censoring, a
unique ranking of the failure of all instances is not always possible. Peto(1972) and Satten (1996)
among others, suggested extensions of the proportional hazard model where censoring is not re-
stricted to right censoring. However, estimation of the parameters in these cases remain difficult. In
the next section we will illustrate thatMINLIP can be easily adapted for right, left, interval censoring
and combined censoring schemes. However, we first need an appropriate measure of concordance
equivalent to Equation (3). Therefore, we resort to the concordance index as described by Harrell
et al. (1984) and Harrell (2001).

Definition 4 (Concordance Index) The concordance index (c-index) is a measure of association
between the predicted and observed failures in case of censored data. The c-index equals the ratio
of concordant to comparable pairs of data points. Two observations i and j are comparable if their
relative order in survival time is known. A pair of observations i and j is concordant if they are
comparable and the observation with the lowest failure time also has the lowestscore for the utility
function u(X). Formally, the observation based c-index of a model generating predictions u(Xi) for
data Xi from a data setD = {(Xi ,Yi ,δi)}

n
i=1 can be expressed as

Cn(u) =

∑
i 6= j

∆(Ti ,T j)I [(u(Xj)−u(Xi))(Yj −Yi)> 0]

∑
i 6= j

∆(Ti ,T j)
.

This index is an estimate probability of concordance between predicted and observed survival, with
c-index= 0.5 for random predictions and c-index= 1 for a perfectly concordant model. Without
censoring, this definition is exactly equal to the concordance as defined inEquation (2).

5.4 Modifications to MINLIP

This section describes how the standardMINLIP model can be extended towards failure time data
including the handling of censored data. Therefore, Equation (8) is adapted to include censored
data. In particular, the matrixD needs to be changed in order to allow for pairs of data points not to
be comparable. LetR ∈R

(n−1)×(n−1) be defined as the diagonal matrix withRii = ∆(Zi ,Zi+1),∀ i =
1, . . . ,n− 1. The matrixD, representing the datapoints to be compared, is adapted for censoring
according to:

Dc = RD ,

where∆ is defined as in Section 5.3, resulting in multiple rows with only zero entries in the matrix
Dc. For computational convenience these rows can be left out. It is seen that issues concerning the
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type(s) of censoring in the data are easily dealt with by using the comparabilityindicator. In the
remainder of this paper we will restrict our attention to right censored data.

The learning objective can now be formalized as

min
w,e

1
2wTw+ γ‖e‖1

s.t. Dc(Φw+e)≥ DcT,
(16)

where‖e‖1 = ∑n
i=1 |ei | andT = [T(1),T(2), . . . ,T(n)]

T is a vector containing all failure times, censored
or not. As in Section 3, the dual of this optimization problem becomes

min
α

1
2αTDcKDT

c α−αTDcT

s.t.

{

−γ1n ≤ DT
c α ≤ γ1n

α ≥ 0n−1 ,

Given the solution̂α, the predicted utility can be calculated for a new pointX∗ as

u(X∗) = α̂TDcKn(X
∗),

with Kn(X∗) = [K(X∗,X1) . . . K(X∗,Xn)]
T ∈ R

n. Since the censoring mechanism can be handled
by a proper choice ofDc, it is not too difficult to extend the formulations of Subsection 3.5 as well.

5.5 Prediction with Transformation Models

The prediction step in survival analysis, refers to the estimation of survival and hazard functions
rather than the estimation of the failure time itself. The proportional hazard model estimates these
functions, by assuming that a baseline hazard function exists; the covariates changing the hazard
only proportionally. The baseline hazard function is estimated using the Breslow estimator of the
cumulative baseline hazard (Breslow, 1974).

In our setting, the cumulative distribution function (cdf), can be estimated, after estimation of
the utility, as follows. The time axis is divided ink equidistant time intervals[tl−1, tl ],∀ l = 2, . . . ,k.
For each observation in the set{ui ,Ti ,δi}

n
i=1, the outcome in each time interval is defined as:

Yil =

{

0 if Ti > tl
1 if Ti ≤ tl andδi = 0.

Remark that censored observations are not considered at times later thanthe censoring time. Using
a monotone least squares support vector regression model (Pelckmanset al., 2005a) with a Gaussian
kernel, or another monotonic regression model, the utility and the time interval numberl as inputs
andYil as output, the cdf̂F(ui , l) is estimated. The survival function is found asŜ(ui , l)= 1−F̂(ui , l).
The hazard function is then found as

λ̂(ui , l) =
F̂(ui , l +1)− F̂(ui , l)

tl+1− tl
,∀ l = 1, . . . ,k−1.

Remark the analogy with the partial logistic artificial neural network approach to the survival pro-
blem proposed by Biganzoli et al. (1998). However, since the latter cannot be seen as a transforma-
tion model, data replication is necessary even when one is only interested in risk groups. Thanks to
the two-step approach of transformation models, data replication can be avoided.
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6. Application Studies

This final Section describes some experiments to illustrate the use of the presented method. In
a first Subsection, 3 artificial examples will illustrate how transformation modelsare used within
the ranking, ordinal regression and survival setting (see also Table 1). A first real life application
illustrates the use ofMINLIP for ordinal data. We use 6 benchmark data sets and compare the
performance ofMINLIP with EXC and IMC as proposed in Chu and Keerthi (2005) andGPOR as
proposed in Chu and Ghahramani (2005). The last two examples concern survival data, one with
micro-array data (data also used in Bøvelstad et al. 2007) and one with clinical data (Schumacher
et al., 1994).

Unless stated otherwise, 10-fold cross-validation was used for model selection. For every kernel
and regularization parameter to be tuned a grid of values was searched and the combination of
parameter values yielding the lowest cross-validation error or highest cross-validation performance
was selected. In the first example the mean absolute error between predicted and observed output
levels was used as model selection criterion since prediction is relevant in thiscase. For both survival
examples, the cross-validation concordance index was used as model selection criterion since the
main interest lies in the ranking of the patients.

6.1 Artificial Examples

This section illustrates the different steps needed to obtain the desired outputfor ranking, regression
and survival problems, using artificial examples. Together with Table 1, this Subsection illustrates
the different tasks considered in the paper.

6.1.1 RANKING

In this first example, we consider the ranks of 150 cyclists in 9 different races. Using the ranks of
100 out of these cyclists in a 10th race , we want to predict the rank of the remaining 50. Additional
information includes: age, weight and condition score. The outcome is defined as the ranking given
by a weighted sum of the ranking in the 9 races, age, weight and condition score. Weights are drawn
from a uniform distribution on the unit interval. The ranking on the previous races are numbers from
1 to 100, all other variables are drawn from a standard normal distribution.

A first step in all transformation models is to estimate the utility functionu. Using Equation (8)
with a linear kernel and 5-fold cross validation with the concordance index(ranking criterion) as a
model selection criterion, a concordance index of 0.98 on the test set wasobtained. The predicted
ranking corresponds very well with the observed ranking (see Figure6). Since one is only interested
in ranking the cyclists, the value of the utility is irrelevant. Additionally, one is notinterested in
estimating the transformation functionh.

6.1.2 ORDINAL REGRESSION

In a second artificial example, consider the scenario in which one wishes todivide students into 3
groups: bad, average and good student. For this task, the grades on 10 courses for 150 students
are available. The outcome depends on the average grade. A bad, average and good student has an
average grade below 55%, between 55% and 65% and above 65% respectively. The results on 100
students will be used for training, the remaining students will be used for testing.
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Figure 6: Artificial example illustrating the use of theMINLIP transformation model for the ranking
setting. The estimated utility of the test observations are denoted by the circles.The value
of the utility does not correspond to the ranking. However, the rank of theestimated utility
(denoted by stars) are a good prediction of the observed rank.
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Figure 7: Artificial example illustrating the use of theMINLIP transformation model for ordinal
regression. (a) The estimated utility of the test observations are denoted bythe circles.
The MINLIP model for ordinal regression results in an estimate of the utility function
and threshold values. Students with the lowest utility (less than the first threshold) are
predicted to be bad students (light grey). Students with a utility between both thresholds
(medium grey) are estimated to be average students and students with a utility higher than
the second threshold (dark grey) are predicted to be good students. (b) Illustration of the
transformation functionh (dashed line).
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In a first step, all students are ranked according to the available data, namely their grades on 10
courses. Using Equation (11) with the concordance index as model selection criterion and a linear
kernel, a concordance of 0.99 between the utility and the outcome on the test set is obtained. In
addition to an estimate of the utility, theMINLIP model for ordinal regression gives threshold values
which can be used to predict the outcome of new observations (see Figure7). Since, theMIN -
LIP model generates these thresholds, no additional model is needed to obtain the transformation
function.

6.1.3 SURVIVAL ANALYSIS

In a last artificial example, a randomized trial is simulated. Assume 150 patients are randomly
divided into 2 treatment groups. Additionally, the age (drawn from a standard normal distribution)
of the patients is known. The survival time is known for 100 patients. For thefirst treatment arm,
the survival time has a Weibull distribution with parameters 1 and 0.5. For the second treatment
arm, the survival time is Weibull distributed with parameters 4 and 5. Using the information on age,
treatment arm and survival on 100 patients, one would like to predict the survival for the remaining
50 patients. Assuming that the age is irrelevant for the survival, the treatment will be the only
important factor in predicting the patients’ survival.

As with the two previous examples, theMINLIP model is used to estimate the utility of the
patients. Using a linear kernel and 5-fold cross validation in comparison withthe concordance
index as model selection criterion, a c-index of 0.70 is obtained on the test set. Figure 8 illustrates
that theMINLIP model is able to divide the group of test patients into two groups with a significant
different survival (p=0.03, logrank test). The first part of the transformation model obtained a nice
result. However, in survival analysis, additional information can be provided when performing the
second part of the transformation model, namely estimating the transformation function. Applying
the method as explained in Section 5.5, the estimated survival curves for all patients are calculated
(Figure 9). One clearly notices two distinct survival groups. The greyand black survival curves
correspond to patients in the first and second treatment arm, respectively. The true survival function
for the first and second treatment are illustrated in thick black and grey lines,respectively.

6.2 Ordinal Regression

At first 6 regression data sets3 were converted to ordinal regression data sets as follows. The data
sets were divided into 20 folds with 10 equal-frequency bins. The outputvalue for each bin was set
to the average output within the bin. The performance of theMINLIP model was compared with two
methods described in Chu and Keerthi (2005) (see Table 2). Both of these methods optimize mul-
tiple thresholds to define parallel discriminant hyperplanes for the ordinallevels. The first method
(EXC) explicitly imposes the ordering of the thresholds, whereas this is done only implicitly in the
second method (IMC). Tuning of the Gaussian kernel parameter and the regularization parameter
was performed with 10-fold cross-validation on an exponential grid usingmean absolute error as
model selection criterion. After an initial search, a finer search was performed in the neighborhood
of the initial optimum. Results of theGPORmethod are reported for comparison. TheGPORhas a
lower mean zero-one error on small data sets. For larger data sets and for mean absolute errors, it
performs less. TheIMC method has the disadvantage that largeQP problems need to be solved for

3. Data are available athttp://www.liacc.up.pu/ ˜ ltorgo/Regression/DataSets.html .
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Figure 8: Artificial example illustrating the use of theMINLIP transformation model for survival
analysis. (a) Survival time as a function of the treatment arm. Patients receiving the first
treatment survive longer in general. The second treatment results in lowersurvival times.
However, some patients have extremely large survival times. (b) Survival time versus
estimated utility. The circles and the stars denote the first and second treatmentarm,
respectively. The utility is able to group the patients according to the relevantvariable
treatment (see the clear separation between circles and stars).

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time t

P
re

di
ct

ed
S

ur
vi

va
l̂S(

t|
u(

X
))

Figure 9: Artificial example illustrating the use of theMINLIP transformation model for survival
analysis: illustration of the reconstruction step. For each patient, the survival curve is
calculated using the method discussed in Section 5.5. Grey and black curvesrepresent
patients from the first and second treatment arm, respectively. The true survival curve for
the first and second treatment, are illustrated in thick black and grey lines. One clearly
notices two distinct survival groups, corresponding to the treatment groups.
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data set mean zero-one error
minlip exc imc gpor

pyrimidines 0.74±0.07 0.79±0.08 0.75±0.09 0.73±0.09
triazines 0.86±0.05 0.86±0.04 0.87±0.04 0.86±0.03

Wisconsin 0.89±0.02 0.89±0.03 0.89±0.02 0.85±0.03∗∗∗

machine CPU 0.65±0.04 0.65±0.06 0.64±0.04 0.80±0.09∗∗∗

auto MPG 0.58±0.03 0.58±0.03 / 0.68±0.08∗∗∗

Boston housing 0.57±0.04 0.57±0.04 / 0.61±0.03∗∗∗

data set mean absolute error
minlip exc imc gpor

pyrimidines 0.05±0.01 0.06±0.01 0.05±0.01 0.06±0.01
triazines 0.12±0.06 0.10±0.01∗ 0.10±0.00∗∗∗ 0.16±0.02∗∗∗

Wisconsin 29.56±2.18 28.80±1.17 28.23±1.28 34.52±4.27∗∗∗

machine CPU 29.41±4.27 30.57±6.94 30.48±4.10 157.00±124.67∗∗∗

auto MPG 2.08±0.16 2.05±0.18 / 4.13±1.13∗∗∗

Boston housing 2.49±0.27 2.33±0.25∗ / 2.97±0.29∗∗∗

Table 2: Test results ofMINLIP , EXC and IMC using a Gaussian kernel andGPOR. The targets of
the data sets were discretized by 10 equal-frequency bins. The output value for each bin is
set to the average output within the bin. The results are averaged over 20trials. The best
performing model is indicated in bold. Significant differences as calculatedby Wilcoxon’s
signed rank sum test between theEXC, IMC, GPORand theMINLIP (reference) model are
indicated with ∗ (p< 0.05), ∗∗ (p< 0.01) or ∗∗∗ (p< 0.001).

growing training samples, requiring more computational time. TheMINLIP method makes a nice
trade-off between computational time and performance.

6.3 Failure Time Data: Micro-array Studies

TheMINLIP technique is derived from machine learning techniques asSVMs, techniques which are
shown to be especially useful to handle high-dimensional data sets. We therefore test the perfor-
mance ofMINLIP on 3 micro-array data sets.

In this example we compare the performance of model (16) (MINLIP ) and linear extension as in
Equation (10) (MINLIP L1) with 5 other methods which are discussed and implemented by Bøvelstad
et al. (2007): principal components regression (PCR), supervised principal components regression
(SPCR), partial least squares regression (PLS) and two penalized Cox regression models (Cox, 1972):
ridge regression (CoxL2) andL1 regularization (CoxL1). ThePCRmethod uses principal component
analysis to selectnλ principal components which account for as much variation in the gene ex-
pression profiles as possible. The selected principal components are then used as covariates in a
Cox regression model (see Hastie, Tibshirani, and Friedman, 2001, Chapter 3.4.4). TheSPCR(Bair
and Tibshirani, 2004; Bair, Hastie, Debashis, and Tibshirani, 2006) method first selects a subset of
genes which are correlated with survival by using univariate selection and then appliesPCR to this
subset. The standardPLS method performs regression of the outcome usingnλ components which
are a linear combination of the original covariates (Martens and Næs, 1989). The application ofPLS
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to the Cox model is not straightforward since thePLS algorithm assumes a linear relation between
outcome and covariates. See Nygård et al. (2008) for a detailed description of the method.

Three different micro-array data sets are used in this experiment:

The Dutch Breast Cancer Data (DBCD) from van Houwelingen et al. (2006) is a subset of the
data from van de Vijver et al. (2002) and contains information on 4919 gene expression levels
of a consecutive series of 295 women with breast cancer from the fresh-frozen-tissue bank
of the Netherlands Cancer Institute. All 295 tumors were primary invasive breast carcinoma
less than 5 cm in diameter. The women were 52 years or younger. The diagnosis was made
between 1984 and 1995 and there was no previous history of cancer, except non-melanoma
skin cancer. In 79 (26.78%) patients distant metastases were noted within thestudy period.
The median follow-up was 6.7 years (range 0.05-18.3).

The DLBCL data from Rosenwald et al. (2002) contains data on 240 patients with diffuse large-
B-cell lymphoma. The data consist of 7399 gene expression measurements. The median
follow-up time was 2.8 years and 58% of the patients died during the study period.

The Norway/Stanford breast cancer data (NSBCD) from Sørlie et al. (2003) contains gene ex-
pression measurements from 115 women with breast cancer. 549 intrinsic genes introduced
in Sørlie et al. (2003) were used. Missing values were previously imputed using 10-nearest
neighbor imputation (Bøvelstad et al., 2007). 38 (33%) patients experienced an event.

Figure 10 summarizes performancesC u
n on all methods for 100 different randomizations be-

tween training and test sets (2/3 training, 1/3 test). In the right panels of Figure 10 the time de-
pendent receiver operator characteristics (TDROC) (Heagerty, Lumley, and Pepe, 2000) are shown.
The left panel illustrates the concordance index. The performance of the MINLIP model is better or
comparable to the best of the other tested models.

6.4 Failure Time Data: Cancer Study

In this last example, we investigate the ability of theMINLIP model to estimate how the different
covariates influence the survival time. We use the German Breast CancerStudy Group data4 (Schu-
macher et al., 1994), containing information on 686 patients and 8 variables.Available variables
are: hormonal treatment, age, menopausal status, tumor size, tumor grade,the number of positive
lymph nodes, the progesterone receptor (fmol) and the estrogen receptor (fmol). 299 (43.6%) pa-
tients had a breast cancer related event within the study period, leaving allother patients with a right
censored failure time. The data set was randomly divided in training and testset (2/3 versus 1/3).

Since medical data are typically not highly non-linear, we use a componentwise polynomial
kernel

K(X,Z) =
d

∑
p=1

(τ+XpTZp)2, τ ≥ 0,

with d the number of variables andXp the pth covariate, to model non-linearities. Model selection
is done by 10-fold cross-validation with the concordance index as model selection criterion.

4. Data can be found athttp://www.blackwellpublishers.com/rss/Volumes/A162 p1.htm .
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Figure 10: Concordance (left) and time dependent receiver operatingcharacteristic curve (TDROC)
(right) on the test set for three micro-array survival data sets (top:DBCD, middle: DL-
BCL, bottom: NSBCD). The MINLIP model obtains a performance which is slightly
higher or comparable to the other tested models.
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We compare our results with Cox’ proportional hazard model. However, the standard Cox model
(Cox, 1972) assumes linearity in the covariates, implying that for a continuous variable as age for
example, the risk ratio between two patients aged 45 and 50 is the same as the riskratio between two
patients aged 75 and 80. To allow for non-linearities in the effects of the covariates on the hazard,
the functional forms of the covariates were estimated using penalized smoothing splines (Eilers
and Marx, 1996; Hurvich, Simonoff, and Tsai, 1998). In this method, a comparative small set of
basis functions is fit and a likelihood penalizing the integrated second derivatives (see Therneau and
Grambsch, 2000, Section 5.5) is used to estimate the coefficients. Akaike’s information criterion
(AIC=log likelihood - degrees of freedom) is used to select the degrees of freedom for each term.

Figures 11 and 12 show the estimated covariate effects for Cox regression with penalized splines
andMINLIP , respectively. Remark that in Figure 11 the estimates are inversely related with the sur-
vival time, whereas in Figure 12 the estimates are related with the survival time itself. Cox’ model
predicts a decreasing risk for relapse for older patients, up to the age of40, whereafter the risk in-
creases slowly; for tumors up to 20mm the risk for relapse increases with size, with a threshold effect
for larger tumors; the number of positive lymph nodes is inversely related withsurvival and larger
values for the progesterone and estrogen receptors are related with longer survival. All conclusions
of the covariate effects agree with what is known from literature (Fisher et al., 1983; Lamy et al.,
2002; Pichon et al., 1980; Verschraegen et al., 2005). TheMINLIP model estimates a higher survival
time for older patients, up to the age of 65, whereafter the survival time drops again. According to
this model, a larger tumor, a higher number of positive lymph nodes and a lowerprogesterone and
estrogen receptor level result in lower survival times and thus a higher risk for relapse. Cox’ model
with penalized smoothing splines obtains a concordance on the test set equal to 0.6715, while the
MINLIP model obtains a performance of 0.6857.

Figure 13 illustrates the ability of the models to generate prognostic indices. In clinical practice
one is interested in groups of patients with low/high risk for the event to occur. Therefore the
median value of the model output is used as a threshold to divide the test set into two groups:
one group including patients with an estimated risk lower than the average and asecond group
with an estimated risk higher than the average. Kaplan-Meier curves and 95%-confidence intervals
are plotted in Figure 13. The logrank testχ2 value is 20.4281 and 29.6984 for Cox andMINLIP

respectively. The latter method results in a better split between low and high risk patients.

7. Conclusions

This paper studied a machine learning approach for finding transformationmodels. Such models are
found useful in a context of ordinal regression and survival analysis, and relate directly to commonly
used risk measures as the area under the curve and others. The derivations go along the same lines
as used for support vector machines, except for replacing the notion of (pairwise) margin with a
Lipschitz smoothness condition on the transformation function. The presented learner finds a (non-
linear) non-parametric transformation model by solving a convex QuadraticProgram. Extensions
towards tasks where transformation models provide only a (good) approximation (agnostic case),
ordinal regression and survival analysis are given. Experiments onordinal regression and survival
analysis, on both clinical and high dimensional data sets, illustrate the use of the proposed method.
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Figure 11: Estimation of the covariate effects on the risk of relapse (remarkthe difference with Fig-
ure 12) with smoothing splines within Cox’ proportional hazard model and histograms
of the variables. The estimated effects are inversely related with the survival time. The
model estimates a lower chance for relapse for older patients up to the age of40, where-
after the risk increases again, albeit slowly. The chance for relapse increases for larger
tumors until a size of 20mm, whereafter the chance remains fairly constant. For com-
mon values of the number of positive lymph nodes and receptors, the risk increases for
larger/lower values respectively. Conclusions drawn by the model agree with what is
known from literature.
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Figure 12: Estimation of covariate effects on survival time (remark the difference with Figure 11)
with the MINLIP model (Cn(u) was used for model selection) and histograms of the
variables. The stars indicate the observed failure times for breast cancer related events.
The estimated covariate effects are directly related with the survival time. TheMINLIP

model estimates the covariate effects as follows: the estimated survival time increases
with age until the age of 65, whereafter the survival time drops slightly. Thelarger the
tumor, the higher the number of positive lymph nodes, the lower the expression of the
receptors, the lower the estimated survival time is. Conclusions drawn by themodel
agree with what is known from literature.
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Figure 13: The use of Cox’ andMINLIP model as a prognostic index. The output of both models
is used to divide the test set into two groups, one with high and one with low riskfor
relapse. The threshold between both groups is defined as the median valueof the model’s
output. Kaplan-Meier curves and 95% confidence intervals are shown for each group.
The spread in the survival curves is broader for theMINLIP model, which is confirmed
by a larger value of the log rank test statistic.
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Appendix A. Consistency and Identifiability

This first Appendix deals with the issues of consistency and identifiability of the proposed method.
We study the question under what conditionsMINLIP is consistent, that is, if we have enough data-
points at our disposal, would the estimate ˆw converge to the desired parameter vector?
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Assume that any observation(X,Y) ∈ R
d ×R would obey the relation

Y = h0(w
T
0 X),

where we refer to the (fixed but unknown) vectorw0 ∈ R
d as to the ’true’ parameters, and to the

(fixed but unknown) monotonically increasing functionh0 : R → R as the ’true’ transformation
function. We will focus on estimating the vector of parametersw0, recovery ofh0 may be done in
a second stage. Note that assuming that a finite valueL0 exists, together with an observation(X,Y)
where this Lipschitz constant is met, is sufficient for consistency. We will fix‖w0‖2 = 1 to avoid
the obvious identifiability issue, namely that for any strictly positive constantα > 0, the system
Y = h0,α(αwT

0 X) is not distinguishable from (6) whenh0,α(Z), h0(
Z
α) for anyZ ∈ R.

Let the set of all (possibly an infinite number) observations{(X,Y)} ⊂ R
d ×R obeying the

system (6) be denoted asD. We consider that this set is anε-non-degenerate set, which is defined
as follows

Definition 5 (An ε-non-degenerate Set)Letε > 0 be any (arbitrarily small) constant. We say that
a setD = {(X,Y)} ⊆ R

d ×R is ε-non-degenarate if for any observation(X,Y) ∈ D, and for any
vector v∈R

d, one has an observation(X′,Y′) ∈D different from(X,Y) such that‖X−X′‖2 ≤ ε so
that

vT(X−X′)≥ 0.

This requirement can be relaxed as it only has to hold for the point(X,Y) where the Lipschitz
condition is met. In addition, we assume thath0 is (L0,a)-Lipschitz on this setD ⊆ R.

Definition 6 (h0 is (L0,a)-Lipschitz on D ′ ⊆ R) The monotonically increasing function h0 is said
to be(L0,a)-Lipschitz onD ⊆R if (1) h0 is Lipschitz smooth with Lipschitz constant L0 for all pairs
Z,Z∗, with Z≥ Z∗:

h0(Z)−h0(Z
∗)≤ L0(Z−Z∗) ,

and (2) there exists a pair Z,Z′ ∈D with Z> Z′ where the Lipschitz constant is met:

h0(Z)−h0(Z
′) = L0

(

Z−Z′
)

,

and (3) one has for anyε > 0 and Z′′ ∈D ′ where0≤ Z−Z′′ ≤ ε that

L0

1+aε
(Z−Z′′)≤ h0(Z)−h0(Z

′′), (17)

with a≥ 0.

Hencea denotes how ’smooth’ the constantL0 decays in a neighborhood ofZ where the actual
Lipschitz constraint is met (that is, a smallera indicates higher smoothness) (see Figure 14). In
particular, a valuea→ 0 (arbitrarily small) implies that the functionh0 is linear with slopeL0. Note

that this definition does not require that the function
∂h0(Z)

∂Z
exists for anyZ ∈ R. This definition

implies the inequality

1
L0

=
Z−Z′

h0(Z)−h0(Z′)
≤

Z−Z′′

h0(Z)−h0(Z′′)
≤

Z−Z′

h0(Z)−h0(Z′)
+

aε
L0

. (18)
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Figure 14: Illustration of a function h: R→ R (solid curved line) which is(L0,a)-Lipschitz mono-
tone according to Definition 6. The Lipschitz inequality is tight around Z indicatedby
the dotted line, while in theε-neighborhood of Z the actual Lipschitz constant decays as
slowly as L0

1+aε .

The first inequality holds due to the Lipschitz smoothness ofh0. The second inequality follows from
(17).

We now state that(w0,h0) can be recovered successfully (’identified’) ifD andh0 were such
that Definition 5 and 6 hold. We consider theMINLIP estimator based on anε-non-degenerate setD
which is defined as

wε = arg max
‖w‖2=1

inf
(X,Y),(X′,Y′)∈D:Y>Y′

wT(X−X′)

Y−Y′
,

or equivalently (up to a scaling)

wε ∝ argmin
w

1
2

wTw (19)

s.t. (Y−Y′)≤ wT(X−X′) ∀ (X,Y),(X′,Y′) ∈D : Y >Y′.

Specificallywε =
ŵ

‖ŵ‖2
whereŵ is the optimizer of (19). IfD contains a finite number of elements

this problem can be solved efficiently as a convex Quadratic Program (QP) using standard solvers.
This estimator would return the desired resultwε = w0 if enough observations were given. This is
stated more formally as follows.

Lemma 2 (Identifiability) Let ε > 0 be any (arbitrarily small) constant. Given a model(h0,w0)
governing the observations inD. Assume that (i) the setD is (aε)-non-degenerate as in Definition
5; (ii) the function h0 is (L0,a)-Lipschitz monotone on the setD ′ = {Z = wT

0 X ∈ R : (X,Y) ∈ D},
as in Definition 6. Then one has for all w∈ R

d where‖w‖2 = 1 that

1
L0

≤ inf
(X,Y),(X′,Y′)∈D:Y>Y′

wT(X−X′)

Y−Y′
,

with equality if w= w0.
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Proof Let (X,Y),(X′,Y′) ∈D be such thatY 6=Y′ and the Lipschitz constant is achieved, or

1
L0

=
wT

0 (X−X′)

h0(wT
0 X)−h0(wT

0 X′)
=

wT
0 (X−X′)

Y−Y′
. (20)

Such an observation exists assuming thath0 is (L0,a)-Lipschitz onD ′. We prove that for a bad
estimationw of w0 (wTw0 < 1− ε), one can always find an observation(X∗,Y∗) ∈ D such that
wT(X−X∗)

Y−Y∗ is strictly lower than 1
L0

. This implies that whenw deviates a fractionε from w0, the
objective in (19) can never achieve the maximum value as would be the case whenw = w0. This
implies consistency of theMINLIP estimator.

At first, by the(L0,a)-Lipschitz condition onh0, one has for all(X′′,Y′′) ∈ D where|wT
0 (X−

X′′)| ≤ ε andY 6=Y′′ that (as in inequality (18)),

wT
0 (X−X′)

Y−Y′
≥

wT
0 (X−X′′)

Y−Y′′
−

aε
L0

. (21)

According to the Cauchy-Schwarz’ inequality, the condition|wT
0 (X−X′′)| ≤ ε is fulfilled for ||X−

X′′||2 ≤ ε. Secondly, for anyw∈ R
d with ‖w‖2 = 1 andwT

0 w< 1−aε, one has by the orthogonal
decomposition of a vector that

w0−w =
w0wT

0

||w0||2
(w0−w)+v

= w0(w
T
0 w0−wT

0 w)+v

= w0aε++v,

with v the orthogonal complement of the projection ofw0−w on w0 andε+ > ε. It follows for any
(X′′′,Y′′′) ∈D whereY 6=Y′′′ that

(w0−w)T(X−X′′′)

Y−Y′′′
=

aε+wT
0 (X−X′′′)

Y−Y′′′
+

vT(X−X′′′)

Y−Y′′′
.

Hence by assumption of the setD being(aε)-non-degenerate, there exists for anyw∈R
d (and thus

for anyv∈ R
d) an observation(X∗,Y∗) ∈D with ‖X−X∗‖2 ≤ aε, Y 6=Y∗ such that

(w0−w)T(X−X∗)

Y−Y∗
= aε+

wT
0 (X−X∗)

Y−Y∗
> aε

wT
0 (X−X∗)

Y−Y∗
≥

aε
L0

. (22)

From (21) and (22) it then follows that

1
L0

=
wT

0 (X−X′)

Y−Y′
≥

wT
0 (X−X∗)

Y−Y∗
−

aε
L0

>
wT(X−X∗)

Y−Y∗
.

Hence, for allw∈R
d for which‖w‖2= 1 andwT

0 w< 1−aε, there are two observations(X,Y),(X∗,Y∗)∈
D such that

1
L0

>
wT(X−X∗)

Y−Y∗
,

proving the result. Equality as in (20) is reached forw= w0.
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Appendix B. MINLIP for Ranking Problems

The formal derivation of theMINLIP method is given in this Appendix. We start with the problem
formulation as denoted in Equation (8):

min
w,ε

1
2wTw+ γ‖ε‖1

s.t. D(Φw+ ε)≥ DY ,

with Φ= [ϕ(X1), · · · ,ϕ(Xn)]
T . Takeε = e++e− and supposee+ > 0 ande− > 0. The problem can

than be formulated as
min

w,e+,e−
1
2wTw+ γ1T

n (e
++e−)

s.t.











D(Φw+(e+−e−))≥ DY,

e+ > 0,

e− > 0.

The Lagrangian becomes

L(w,e+,e−;α,β+,β−) =
1
2

wTw+ γ1T
n (e

++e−)−βT
+e+−βT

−e−−αTD(Φw+e+−e−−Y) ,

with Lagrange multipliersα, β+, β− > 0. The conditions for optimality (Karush-Kuhn-Tucker
(KKT) conditions) become



























































∂L
∂w = 0→ w= (Φ)TDTα
∂L
∂e+ = 0→ γ = DTα+β+

∂L
∂e− = 0→ γ =−DTα+β−

diag(α)D(Φw+e+−e−−Y) = 0
diag(β+)e+ = 0
diag(β−)e− = 0
α > 0
β+ > 0
β− > 0,

(23)

where diag(a) indicates a diagonal matrix with the elements of the vectora on the main diagonal.
Now from Slater’s condition one could exchange minw,e+,e− maxα with maxα minw,e+,e− . Solving for
w,e+ ande− gives the dual problem

min
α

1
2αTDKDTα−αTDY

s.t.

{

−γ1n ≤ DTα ≤ γ1n

α ≥ 0n−1 ,

and from the first condition of (23) and the model specificationu(X) = wTϕ(X) one could write the
solution for a new pointX∗ as

û(X∗) = K ∗
nDT α̂ ,

with K ∗
n ∈ R

n andK ∗
n = [K(X∗,X1) . . . K(X∗,Xn)]

T .
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Appendix C. MINLIP for Ordinal Regression

In this appendix the derivation of theMINLIP method for ordinal regression is exposed. In the ordi-
nal regression case unknown thresholdsv are introduced corresponding to an outcome intermediate
between two successive outcome levels. The model is built by indicating that the difference be-
tween the utility of a certain observationXi and the largest threshold lower than the outcome of that
observationYi should be larger than the difference betweenYi and the outcome corresponding to
the before mentioned threshold. Analogously, the difference between thesmallest threshold higher
thanYi should be larger than the difference between the outcome corresponding tothat threshold and
Yi . As an extra constraint we impose that successive threshold are increasing values of the utility
function. More formally the problem is formulated as in Equation (11), now using the kernel based
version:

min
w,e,e∗,v

‖w‖2+ γ1T
n (e+e∗)

s.t.































Φw−Qv+e≥ Y−QB

−Φw+Q∗v+e∗ ≥−Y+Q∗B

e≥ 0

e∗ ≥ 0

Mv≤ 0.

As in Appendix B we build the Lagrangian

L(w,e+,e−;α,β,η,η∗,ν) = 1
2wTw+ γ1T

n (e+e∗)−αT(Φw−Qv+e−Y+QB)
−βT(−Φw+Q∗v+e∗+Y−Q∗B)−ηTe−η∗Te∗

+νTMv,

and derive the set of optimality conditions



































































































∂L
∂w = 0→ w=Φ

T(α−β)
∂L
∂e = 0→ γ1n = α+η
∂L
∂e∗ = 0→ γ = β+η∗

∂L
∂v = 0→ αTQ−βTQ∗+νTMv= 0
diag(α)D(Φw−Qv+e−Y+QB) = 0
diag(β)(−Φw+Q∗v+e∗+Y−Q∗B) = 0
diag(η)e= 0
diag(η∗)e∗ = 0
diag(ν)Mv= 0
α > 0
β > 0
η > 0
η∗ > 0
ν > 0.

The dual problem formulation is than found as
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min
α,β

1
2αTKα+ 1

2βTKβ−αTKβ−αT(Y−BTQ)+βT(Y−BTQ∗)

s.t.























0n ≤ α ≤ γ1n

0n ≤ β ≤ γ1n

0k−2 ≤ ν
QTα−Q∗Tβ+MTν = 0k−1 .
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