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Abstract

A large set of signals can sometimes be described sparsetyadictionary, that is, every element
can be represented as a linear combination of few elememts thie dictionary. Algorithms for
various signal processing applications, including cfasstion, denoising and signal separation,
learn a dictionary from a given set of signals to be represkntCan we expect that the error
in representing by such a dictionary a previously unseemasifjom the same source will be of
similar magnitude as those for the given examples? We assignals are generated from a fixed
distribution, and study these questions from a statistézahing theory perspective.

We develop generalization bounds on the quality of the ksddictionary for two types of con-
straints on the coefficient selection, as measured by thectaqil, error in representation when
the dictionary is used. For the caselpfregularized coefficient selection we provide a general-
ization bound of the order d (\/npln(rn)\)/m), wheren is the dimensionp is the number of
elements in the dictionary, is a bound on th& norm of the coefficient vector andis the number
of samples, which complements existing results. For the cdsepresenting a new signal as a
combination of at mosk dictionary elements, we provide a bound of the or@¢{/npln(mk) /m)
under an assumption on the closeness to orthogonality afithienary (low Babel function). We
further show that this assumption holds fopstdictionaries in high dimensions in a strong prob-
abilistic sense. Our results also include bounds that agevas ¥m, not previously known for
this problem. We provide similar results in a general sgttising kernels with weak smoothness
requirements.

Keywords: dictionary learning, generalization bound, sparse regetion

1. Introduction

A common technique in processing signals fram= R" is to use sparse representations; that is,
to approximate each signalby a “small” linear combinatiora of elements); from a dictionary

D € XP, so thatx~ Da= S, ad;. This has various uses detailed in Section 1.1. The smallness of
ais often measured using eithga||,, or the number of non zero elementsiroften denotedal|,.

The approximation error is measured here using a Euclidean norm aigpedp the vector space.
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VAINSENCHER, MANNOR AND BRUCKSTEIN

We denote the approximation erronotising dictionaryD and coefficients from a sétby
hap(x) = min|[Da— x|, (1)
acA
whereA is one of the following sets determining the sparsity required of the repedsem
He={a: [[alp <k}
induces a “hard” sparsity constraint, which we also kalparse representation, while
Ry ={a:|lall; <A}

induces a convex constraint that is considered a “relaxation” of théqu® constraint.
The dictionary learning problem is to find a dictiondyminimizing

E ( D) = EXNV hA7D (X) s (2)

wherev is a distribution over signals that is known to us only through samples from é.prfdib-
lem addressed in this paper is the “generalization” (in the statistical learamsg}sof dictionary
learning: to what extent does the performance of a dictionary chossd lman a finite set of sam-
ples indicate its expected error in (2)? This clearly depends on the nurhbamples and other
parameters of the problem such as the dictionary size. In particular,vdousbalgorithm is to
represent each sample using itself, if the dictionary is allowed to be as kathe aample, but the
performance on unseen signals is likely to disappoint.

To state our goal more quantitatively, assume that an algorithm finds a digtiDreuited tok
sparse representation, in the sense that the average representati@y,@D) on them examples
given to the algorithm is low. Our goal is to bound the generalization erswhich is the additional
expected error that might be incurred:

E(D) < (1+n)Em(D) +¢, )

wheren > 0 is sometimes zero, and the bowediepends on the number of samples and problem pa-
rameters. Since efficient algorithms that find the optimal dictionary for angie¢ of samples (also
known as empirical risk minimization, or ERM, algorithms) are not known fotiahary learning,

we prove uniform convergence bounds that apply simultaneously thesimaissible dictionarieB,

thus bounding from above the sample complexity of the dictionary learnirtgepro In particular,
such aresult means that every procedure for approximate minimization ai@h@rror (empirical
dictionary learning) is also a procedure for approximate dictionary leguais defined above) in a
similar sense.

Many analytic and algorithmic methods relying on the properties of finite dimerigtoicidean
geometry can be applied in more general settings by applying kernel metfhibdse consist of
treating objects that are not naturally represente@®'inas having their similarity described by
an inner product in an abstrafgature spacehat is Euclidean. This allows the application of
algorithms depending on the data only through a computation of inner produstech diverse
objects as graphs, DNA sequences and text documents (Shawe-dagl@ristianini, 2004). Is
it possible to extend the usefulness of dictionary learning techniques toettiisg® We address
sample complexity aspects of this question as well.
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1.1 Background and Related Work

Sparse representations are by now standard practice in diversedigldsas signal processing,
natural language processing, etc. Typically, the dictionary is assumeddiodvn. The motivation
for sparse representations is indicated by the following results, in whigssweme the signals come
from X = R" are normalized to have length 1, and the representation coefficientsreteadoed to
A = Hy wherek < n, p and typicallyha p(x) < 1.

e Compression: If a signat has an approximate sparse representation in some commonly
known dictionaryD, it can be stored or transmitted more economically with reasonable pre-
cision. Finding a good sparse representation can be computationally taifdib fulfills
certain geometric conditions, then its sparse representation is unique abd t@md effi-
ciently (see, e.g., Bruckstein et al., 2009).

e Denoising: If a signak has a sparse representation in some known dictiddgayndx= xX+V,
where the random noiseis Gaussian, then the sparse representation fourdviali likely
be very close tx (for example Chen et al., 2001).

e Compressed sensing: Assuming that a sigitals a sparse representation in some known dic-
tionary D that fulfills certain geometric conditions, this representation can be apprtetima
retrieved with high probability from a small number of random linear measurenoéx. The
number of measurements needed depends on the sparsity Df(Candes and Tao, 2006).

The implications of these results are significant when a dictioBas/known that sparsely rep-
resents simultaneously many signals. In some applications the dictionary endbased on prior
knowledge, but in many applications the dictionary is learned based on asiénité examples. To
motivate dictionary learning, consider an image representation usedrfgaression or denoising.
Different types of images may have different properties (MRI imagesateimilar to scenery
images), so that learning a dictionary specific to each type of images may lmaprtived perfor-
mance. The benefits of dictionary learning have been demonstrated in maligations (Protter
and Elad, 2007; Pegr 2009).

Two extensively used techniques related to dictionary learning are Rair@gmponent Anal-
ysis (PCA) andK-means clustering. The former finds a single subspace minimizing the sum of
squared representation errors which is very similar to dictionary learnitigAv= Hx and p = k.
The latter finds a set of locations minimizing the sum of squared distancesdme¢aeh signal and
the location closest to it which is very similar to dictionary learning with- H; wherep is the
number of locations. Thus we could see dictionary learning as PCA with multiplpsices, or as
clustering where multiple locations are used to represent each signalairipdescomplexities of
both algorithms are well studied (Bartlett et al., 1998; Biau et al., 2008; &ffaylor et al., 2005;
Blanchard et al., 2007).

This paper does not address questions of computational cost, thoyghréheery relevant.
Finding optimal coefficients fdk sparse representation (that is, minimizing (1) wAtha: Hy) is NP-
hard in general (Davis et al., 1997). Dictionary learning as the optimizatimviggm of minimizing
(2) is less well understood, even for empirigglconsisting of a finite number of samples), despite
over a decade of work on related algorithms with good empirical resultsg@sim and Field, 1997;
Lewicki et al., 1998; Kreutz-Delgado et al., 2003; Aharon et al., 20@&;et al., 2007; Mairal et al.,
2010).
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The only prior work we are aware of that addresses generalization tiorticy learning, by
Maurer and Pontil (2010), addresses the convex representatistraiotA = R, ; we discuss the
relation of our work to theirs in Section 2.

2. Results

Except where we state otherwise, we assume signals are generated it thghereS" 1. Our
results are:

A new approach to dictionary learning generalizatio@ur first main contribution is an ap-
proach to generalization bounds in dictionary learning that is complementarg spgroach used
by Maurer and Pontil (2010). The previous result, given below in Témo6 has generalization
error bounds (the of inequality (3)) of order

0 (\/pmin(p, n) (H \/W)Z/m>

on the squared representation error. A notable feature of this result igghik dependence on the
signal dimensiom. In Theorem 1 we quantify the complexity of the class of functibgs over
all dictionaries whose columns have unit length, whiere R,. Combined with standard methods

of uniform convergence this results in generalization error bografsorderO («/npln(mA)/m)

whenn = 0. While our bound does depend strongly mrthis is acceptable in the cage< p,
also known in the literature as the “over-complete” case (Olshausen dddF87; Lewicki et al.,
1998). Note that our generalization bound applies with different cotsstaithe representation error
itself and many variants including the squared representation erroraasna Wweak dependence on
A. The dependence dnis significant, for example, whejfa||; is used as a weighted penalty term
by solving miny|[Da— X|| +y-||al|; in this case\ = O (y~!) may be quite large.

Fast rates.For the case > 0 our methods allow bounds of ord@&npIn(Am)/m). The main
significance of this is in that the general statistical behavior they imply odeufigtionary learn-
ing. For example, generalization error has a “proportional” componaithais reduced when the
empirical error is low. Whether fast rates results can be proved in the diarefree regime is an
interesting question we leave open. Note that due to lower bounds by Beri#ti{1998) of order
v'm~1 on thek-means clustering problem, which corresponds to dictionary learning-$pafse
representation, fast rates may be expected only yvithO, as presented here.

We now describe the relevant function class and the bounds on its complexith are proved
in Section 3. The resulting generalization bounds are given explicitly anth@fthis section.

Theorem 1 For everye > 0, the function class
G ={hr p:S" > R:DeR™P |d| <1},

taken as a metric space with the distance induced|tjy, has a subset of cardinality at most
(4)/€)"P, such that every element from the class is at distance at &rfash the subset.

While we give formal definitions in Section 3, such a subset is called @wver, and such a
bound on its cardinality is called a covering number bound.

Extension to k sparse representaticQur second main contribution is to extend both our ap-
proach and that of Maurer and Pontil (2010) to provide generalizatonds for dictionaries fok
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sparse representations, by using a bauod thel; norm of the representation coefficients when the
dictionaries are close to orthogonal. Distance from orthogonality is mehbuyrie Babel function
(which, for example, upper bounds the magnitude of the maximal inner grbeétween distinct
dictionary elements) defined below and discussed in more detail in Section 4.

Definition 2 (Babel function, Tropp 2004) For any ke N, the Babel function gt R™™ — R* is
defined by:
D)= max max di,di)|.
H(D) ie{l,..‘,p}Ac{l,‘..,p}\{i};l/\|:kj;|< j2 0|
The following proposition, which is proved in Section 3, bounds the 1-nairthe dictionary

coefficients for & sparse representation and also follows from analysis previously gddermnho
and Elad (2003) and Tropp (2004).

Proposition 3 Let each columndof D fulfill ||di|| € [1,y] and k-1(D) < & < 1, then a coeffi-
cient vector ac RP minimizing the k-sparse representation errgy, B(x) exists which hagal|; <

¥/ (1-9).

We now consider the class of &llsparse representation error functions. We prove in Section 3
the following bound on the complexity of this class.

Corollary 4 The function class
Fosk={Mup:S"t = R:pw_1(D) < d,d €S" 1},

taken as a metric space with the metric induced|hly,, has a covering number bound of at most
(4k/ (e(1-19)))"™.

The dependence of the last two resultsigni (D) means that the resulting bounds will be
meaningful only for algorithms which explicitly or implicitly prefer near orthogbdictionaries.
Contrast this to Theorem 1 which does not require significant conditiotiseodictionary.

Asymptotically almost all dictionaries are near orthogonalquestion that arises is what values
of uk_1 can be expected for parameterp,k? We shed some light on this question through the
following probabilistic result, which we discuss in Section 4 and prove in AgpeB.

Theorem 5 Suppose that D consists of p vectors chosen uniformly and indepenfientig".
Then we have

P(l>9) < \/jp(p—l)eXp s

Since low values of the Babel function have implications to representationgdimigorithms,
this result is of interest also outside the context of dictionary learningertiisdly it means that
random dictionaries whose cardinality is sub-exponentighin 2) /k?> have low Babel function.

New generalization bounds for tase.The covering number bound of Theorem 1 implies sev-
eral generalization bounds for the problem of dictionary learnindsfoegularized representations
which we give here. These differ from bounds by Maurer and Po2@il@) in depending more
strongly on the dimension of the space, but less strongly on the particgldarzation term. We
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first give the relevant specialization of the result by Maurer and P@&Qil@) for comparison and
for reference as we will later build on it. This result is independent of theedsionn of the un-
derlying space, thus the Euclidean unit lalnay be that of a general Hilbert space, and the errors
measured bya p are in the same norm.

Theorem 6 (Maurer and Pontil 2010) Let AC Ry, and letv be any distribution on the unit sphere
B. Then with probability at least — e * over the m samples injEdrawn according tov, for all
dictionaries DC B with cardinality p:

2 (14 -+ 1/2,/in(16mV2) )’ \F
+1/ 5

EMip < Emhip + m

Using the covering number bound of Theorem 1 and a bounded diffesezoncentration in-
equality (see Lemma 21), we obtain the following result. The details are giv&edtion 3.

Theorem 7 LetA > e/4, with v a distribution onS"~%. Then with probability at least — e over
the m samples ingdrawn according tov, for all D with unit length columns:

/npln (4,/mM\ [ x [4
EhRA,D < EmhR)\,D‘i‘ F)(Zl'nm+ ?n‘i‘ l?]

Using the same covering number bound and the general result CoroBggiven in Section
3), we obtain the following fast rates result. A slightly more general resatsgy derived by using
Proposition 22 instead.

Theorem 8 LetA > e/4, np> 20and m> 5000with v a distribution orS"~*. Then with probability
at leastl — e * over the m samples inj|drawn according tos, for all D with unit length columns:

npin (4Am) +x
Efw o < 11Emhg o+ 9 PIMAAM) X

Note that the absolute losg, p in the new bounds can be replaced with the quadratidié%
used in Theorem 6, at a small cost: an added factor of 2 inside the In, @sdrtie applies to many
other loss functions. This applies also to the cover number based bowadsglow.

Generalization bounds for k sparse representatidroposition 3 and Corollary 4 imply certain
generalization bounds for the problem of dictionary learningkfeparse representations, which we
give here.

A straight forward combination of Theorem 2 of Maurer and Pontil (3@&&en here as The-
orem 6) and Proposition 3 results in the following theorem.

Theorem 9 Letd < 1 with v a distribution onS"~1. Then with probability at least — e~* over the
m samples in f drawn according tov, for all D s.t. k—1(D) < & and with unit length columns:

14k 1 k \? X
ER,p < Emhd, o+ A e In<16m<>> 44/ .

ymi1-5"2 1-3 2m
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In the case of clustering we hake= 1 andd = 0 and this result approaches the rates of Biau
et al. (2008).

The following theorems follow from the covering number bound of Corolé@nd applying
the general results of Section 3 as for theparsity results.

Theorem 10 Let & < 1 with v a distribution onS"~1., Then With probability at least — e * over
the m samples inkdrawn according to, for all D s.t. —1(D) < & and with unit length columns:

ann
Ehy.po < Emhnep+ 2m

Theorem 11 Letd < 1, np> 20and m> 5000with v a distribution ornS"™ 1, Then with probability
at leastl — e * over the m samples injidrawn according tos, for all D s.t. -1(D) < & and with
unit length columns:

npln( ﬁsk) +X

m

Eth,D < 1-1Ethk,D +9

Generalization bounds for dictionary learning in feature spadée. further consider applica-
tions of dictionary learning to signals that are not represented as elemenieator space, or that
have a very high (possibly infinite) dimension.

In addition to providing an approximate reconstruction of signals, spamegentation can also
be considered as a form of analysis, if we treat the choice of non pefficients and their magni-
tude as features of the signal. In the domain of images, this has been usstbtonglassification
(in particular, face recognition) by Wright et al. (2008). Such analyses not require that the data
itself be represented iR" (or in any vector space); it is enough that the similarity between data
elements is induced from an inner product in a feature space. Thiseawiit is fulfilled by using
an appropriate kernel function.

Definition 12 Let ® be a set of data representations, then a kernel funatio®®? — R and a
feature mapping: R — A are such that:

K(XY) = (@(X),0(Y)) 5

where# is some Hilbert space.

As a concrete example, choose a sequencenafrds, and letp map a document to the vector of
counts of appearances of each word in it (also called bag of word=satifigk (a,b) = (@(a), p(b))
as the similarity between documertsndb, is the well known “bag of words” approach, appli-
cable to many document related tasks (Shawe-Taylor and Cristianini,.20b&n the statement
¢@(a) + @(b) ~ ¢(c) does not imply that can be reconstructed froenandb, but we might consider
it indicative of the content of. The dictionary of elements used for representation could be de-
cided via dictionary learning, and it is natural to choose the dictionary $ahbdags of words of
documents are approximated well by small linear combinations of those in thendigtio

As the example above suggests, the kernel dictionary learning problerfirid eodictionaryD
minimizing

Ex-vheap (x),
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where we consider the representation error function
h X) = min||(®PD)a— @(x
eap(X) =min[(®D)a— @)

in which @ acts agpon the elements dd, A € {Ry,H}, and the nornj|-|| ,, is that induced by the
kernel on the feature spagé.

Analogues of all the generalization bounds mentioned so far can be teglitathe kernel
setting. The dimension free results of Maurer and Pontil (2010) apply madstally in this setting,
and may be combined with our results to cover also dictionariek $parse representation, under
reasonable assumptions on the kernel.

Proposition 13 Letv be any distribution o such that x~ v implies thatg(x) is in the unit ball

B, of H with probability 1. Then with probability at leadt— e * over the m samples inEdrawn
according tov, for all D C K with cardinality p such tha®D C B, and pk_1(PD) <d< 1L

2
02 (14k/(1—6)+1/2\/'” (16m<1k6)2>> X
I ES

m 2m’

2
ERgr.o < Emhgn.o +

Note that ing_1(®PD) the Babel function is defined in terms of inner productsnand can
therefore be computed efficiently by applications of the kernel.

In Section 5 we prove the above result and also cover number bouridstlzs linear case
considered before. In the current setting, these bounds depend Bilter smoothness ordarof
the feature mapping. Formal definitions are given in Section 5 but as an example, the well known
Gaussian kernel has= 1. We give now one of the generalization bounds using this method.

Theorem 14 Let R havee covers of order(C/¢)". Letk : ®? — R* be a kernel function s.t.
K(X,Y) = (@X),q(Y)), for @ which is uniformly L-Hblder of ordera > 0 over R, and lety =
maxeg ||@(X) ||, Letd < 1, andv any distribution on®, then with probability at leasl — e~
over the m samples inpEdrawn according tov, for all dictionaries DC R of cardinality p s.t.
Hk—1(PD) < 8 < 1 (whered acts likeg on columns):

npln(\/ﬁcﬂ%) X . 4

Ehy.p <Emhn.p+Y >am om -

The covering humber bounds needed to prove this theorem and anatdfs bther general-
ization bounds are proved in Section 5.

3. Covering Numbers of G, and Fs

The main content of this section is the proof of Theorem 1 and Corollaryela show that in
thek sparse representation setting a finite bound @wes not occur generally thus an additional
restriction, such as the near-orthogonality on the set of dictionaries mhwie rely in this setting,
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is necessary. Lastly, we recall known results from statistical learningrythidat link covering
numbers to generalization bounds.

We recall the definition of the covering numbers we wish to bound. AnthodyBartlett (1999)
give a textbook introduction to covering numbers and their application targkzegion bounds.

Definition 15 (Covering number) Let (M, d) be a metric space and & M. Then thee covering
number of S defined as (8 S,d) = min{|A||AC M and SC (UacaBd (a,€))} is the size of the
minimale cover of S using d.

To prove Theorem 1 and Corollary 4 we first note that the space of sdiilple dictionaries is a
subset of a unit ball in a Banach space of dimensiprfwith a norm specified below). Thus (see
formalization in Proposition 5 of Cucker and Smale, 2002) the space of diciemhas am cover
of size(4/¢)"P. We also note that a uniformly Lipschitz mapping between metric spaces converts
g/L covers intce covers. Then it is enough to show th#y defined ad — hg p andPy defined as
D — hy,p are uniformly Lipschitz (whey is restricted to the dictionaries wiflp_1(D) < c < 1).

The proof of these Lipschitz properties is our next goal, in the form ofibas 18 and 19.

The first step is to be clear about the metrics we consider over the sgatiesanaries and of

error functions.

Definition 16 (Induced matrix norm) Let p,q> 1, then a matrix A= R™™ can be considered as
an operator A (Rm, H‘Hp> — (]R”, H'||q). The pq induced norm iA|, o £ SUBgmx, -1 |AX]

Lemma 17 For any matrix D,||D|| , is equal to the maximal Euclidean norm of any column in D.

Proof That the maximal norm of a column boungi3||, , can be seen geometricallpa/ ||a||, is a
convex combination of column vectors, thgal|, < max, ||di||,||al|; because a norm is convex.
Equality is achieved foa = g, whered; is the column of maximal norm. |

The images oV, anddy are sets of representation error functions—each dictionary induces
a set of precisely representable signals, and a representation wmoioh is simply a map of
distances from this set. Representation error functions are clearly gonsinl-Lipschitz, and into
[0,1]. In this setting, a natural norm over the images is the supremum fidigm

Lemma 18 The functior¥, is A-Lipschitz from(Rnxm, ||'H1,2) to C(S"1).

Proof LetD andD’ be two dictionaries whose corresponding elements are atgnest far from
one another. Let be a unit signal an®a an optimal representation for it. TheiiD —D’)al|, <
ID—-D'||;,]lall; < eX. If D’ais very close toDa in particular it is not a much worse repre-
sentation ofx, and replacing it with the optimal representation unBér we havehg, p(x) <
hr, p(X) +€X. By symmetry we havéW, (D)(x) — W, (D’)(x)| < Ae. This holds for all unit sig-
nals, then|W, (D) — W) (D')||,, < Ae. [ |

oo

This concludes the proof of Theorem 1. We now provide a proof fop&sition 3 which is used
in the corresponding treatment for covering numbers ukdparsity.
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Proof (Of Proposition 3) LeDX be a submatrix ob whosek columns fronD achieve the minimum

on hy, p(X) for x € S"~1. We now consider the Gram mati&= (Dk)T Dk whose diagonal entries
are the norms of the elements B, therefore at least 1. By the Gersgorin theorem (Horn and
Johnson, 1990), each eigenvalue of a square matrix is “close” to ardibgotry of the matrix; the
absolute difference between an eigenvalue and its diagonal entry is luppeded by the sum of
the absolute values of the remaining entries of the same row. Since a Bwadrresponds to the
inner products of an element froBt with every element fronD¥, this sum is upper bounded By

for all rows. Then we conclude the eigenvalues of the Gram matrix are losvanded by 16 > 0.
Then in particulaG has a symmetric inver€g—* whose eigenvalues are positive and bounded from
above by ¥ (1 —8). The maximal magnitude of an eigenvalue of a symmetric matrix coincides with
its induced norni-||, ,, therefore| G~ 1H22 <1/(1-9).

Linear dependence of elements®f would imply a non-trivial nullspace for the invertib@.
Then the elements @ are linearly independent, which implies that the unique optimal represen-
tation ofx as a linear combination of the columnsf is D¥a with

a= (09 0) " ()

Using the above and the definition of induced matrix norms, we have

((Dk Dk> H H ' x (Dk>Tx

The vector(D")Tx is in R and by the Cauchy Schwartz inequality,x) <\, thenH (D")TXH2 <
\/RH (Dk)TxH < Vky. Since onlyk entries ofa are non zerojjal|; < vk|la], <ky/(1-8). N

<(1-5*

all, <
2

Lemma 19 The functior®y is a k/ (1 — 6)-Lipschitz mapping from the set of normalized dictionar-
ies with _1(D) < 8 with the metric induced by- |, , to C(S"1).

The proof of this lemma is the same as that of Lemma 18, excepiatigtaken to be an
optimal representation that fulfillgal|; <A =k/(1—m-1(D)), whose existence is guaranteed by
Proposition 3. As outlined in the beginning of the current section, this cdaslthe proof of
Corollary 4.

The next theorem shows that unfortunateyis not uniformly L-Lipschitz for any constarit,
requiring its restriction to an appropriate subset of the dictionaries.

Theorem 20 For any1 < k < n, p, there exists ¢~ 0 and g, such that for every> 0, there exist
D, D’ such that|D —D'|; , < & but|(hy, p(d) — hw, pr(9))| > C.

Proof First we show that for any dictionafy there exist > 0 andx € S"1 such thaty, p(x) > c.
Letvgn-1 be the uniform probability measure on the sphere,&nithe probability assigned by it to
the set withinc of ak dimensional subspace. A&s\, 0, A. also tends to zero, then there exists 0

s.t. (f)Ac < 1. Then for that and any dictionan there exists a set of positive measure on which
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hu,.p > C, letq be a point in this set. Sind®y, p(X) = hy, p(—X), we may assume without loss of
generality thate;, q) > 0.

We now fix the dictionanD; its firstk— 1 elements are the standard bas, ..., &1}, its
kth element igdy = \/1—€2/4e; + €6 /2, and the remaining elements are chosen arbitrarily. Now
constructD’ to be identical tdD except itskth element isy = /1 —€2/4e; +1q choosingl so that
|vll, = 1. Then there exist,b € R such thay = aD’1 + bD'k and we havéw, o (q) = 0, fulfilling
the second part of the theorem. On the other hand, s&cq) > 0, we havd < €/2, and then we
find D~ D'|l,, = [lea/2—lall, < [lee/2]| + la]| = £/2+1 <E&. u

To conclude the generalization bounds of Theorems 7, 8, 10, 11 antbidvtiie covering
number bounds we have provided, we use the following results. Botlasipeavell known results
to the case o, cover number bounds, thereby improving constants and simplifying thésprboe
first proof is simple enough we include it at the end of this section. Thense@sult (along with
its corollary) gives fast rate bounds as in the more general results hgd¥son (2003) and Bartlett
et al. (2005).

Lemma 21 Let 7 be a class of0, B] functions with covering number boui@/s)? > e/B? under
the supremum norm. Then for every-X), with probability of at leastL — e * over the m samples
in Em, chosen according to, for all f € 7

EngmH—B(\/WnL\/;)%—\/i.

Proposition 22 Let F be a class of0, 1] functions that can be covered for any> 0 by at most
(C/e)? balls of radiuse in the L, metric where C> e andB > 0. Then with probability at least
1—exp(—x), we have for all fe F:

din(Cm) +x

where K m) = [2(5+2) (49) + 1+ (35 +2) (57) +1+

The corollary we use to obtain Theorems 8 and 11 follows bed&aydem, ) is non-increasing
ind,m.

Corollary 23 Let #,x be as above. For & 20, m> 5000and 3 = 0.1 we have with probability at
leastl —exp(—x) forall f € F:

Ef <116, f 4+ 93 (CM +X

Proof (Of Lemma 21) We wish to bound Supy E f — Enf. Take % to be a minimak cover of
F, then for an arbitraryf, denotingf; ane close member offe, Ef — Eqf < Ef; — Enfe+2¢€. In
particular, Sup.s E f—Enf < 25+supfefe Ef — Enf. To bound the supremum on the now finite

1. We thank Andreas Maurer for suggesting this result and a proodeltdal in Appendix A.
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class of functions, note th& f — Enf is an average afnindependent copies of the identical zero
mean bounded variablef — E; f.

Applying Hoeffding’s inequality, we have (E f — Emf > t) < exp(—2mB-2?).

The probability that any of thé.| differences under the supremum is larger thanay be
bounded a® (supc s Ef— Emf >t) < || -exp(—2mB-22) < exp(dIn(C/e) — 2mB2t?).

In order to control the probability witkx as in the statement of the lemma, we take =
dIn(C/e) — 2mB-2t2 or equivalently we chooge= /B2/2m,/dIn (C/g) +x. Then with probabil-
ity 1 —e *we bound sup.  E f —Enf < 2e4-t. Using the covering number bound assumption and

the sublinearity of/-, we have by sup. , Ef —Enf <2e+B <\/dln (C/e) /2m+ \/x/2m). The
proof is completed by taking=1/,/m. [ |

4. On the Babel Function

The Babel function is one of several metrics defined in the sparseseyations literature to quan-
tify an "almost orthogonality” property that dictionaries may enjoy. Such @riigs have been
shown to imply theoretical properties such as uniqueness of the oftispalrse representation. In
the algorithmic context, Donoho and Elad (2003) and Tropp (2004) udeahel function to show
that particular efficient algorithms for finding sparse representatidfitt fertain quality guaran-
tees when applied to such dictionaries. This reinforces the practical impertd the learnability
of this class of dictionary. We proceed to discuss some elementary preprtiee Babel function,
and then state a bound on the proportion of dictionaries having sufficiestly Babel function.

Measures of orthogonality are typically defined in terms of inner prodwtigden the elements
of the dictionary. Perhaps the simplest of these measures of orthogonatigyfislowing special
case of the Babel function.

Definition 24 The coherence of a dictionary D ig(D) = max.j | (d;, d;)|.

The proof of Proposition 3 demonstrates that the Babel function quanki&esfects of non orthog-
onality on the representation of a signal with particular ldwll of sparsity. Is enough to bound
the Babel function using coherence? only at a cost of significantly tigitgeyur requirements on
dictionaries. While the coherence and Babel measures are indeed tsjdhedinequalities

H1 (D) < 1 (D) < ki (D),

the factork gap between the bounds cannot be improved. The tightness of the righhlitg is
witnessed by a dictionary including+ 1 copies of the same element. That of the left inequality
is witnessed by the following example. LBtconsist ofk pairs of elements, so that the subspace
spanned by each pair is orthogonal to all other elements, and such thianéngroduct between
the elements of any single pair is half. In this cagéD) = y1(D) = 1/2. However note that to
ensurey, < 1 only restrictingy requires the constrain (D) < 1/k, which is not fulfilled in our
example.

To better understangy (D), we consider first its extreme values. Whay{D) = 0O, for any
k > 1, this means thdD is an orthogonal set (therefope< n). The maximality ofy (D) = k we
have seen before.
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A well known generic class of dictionaries with more elements than a basis & thames(see
Duffin and Schaeer, 1952), which includes many wavelet systems andofilks. Some frames
can be trivially seen to fulfill our condition on the Babel function.

Proposition 25 Let D € R™P be a frame ofR", so that for every v« S"! we have that
s (v, dh)|? < B, with||di||, = 1 for all i, and B< 1+ 1/k. Then _1(D) < 1.

This may be easily verified by considering the inner products of any diciicglament with
any otherk elements as a vector Ig¥; the frame condition bounds its squared Euclidean norm by
B — 1 (we remove the inner product of the element with itself in the frame expréssidnen use
the equivalence df andl, norms.

4.1 Proportion of Dictionaries with p_1(D) < 0

We return to the question of the prevalence of dictionaries haying< &. Are almost all dictionar-
ies such? If the answer is affirmative, it implies that Theorem 11 is quitegsteamd representation
finding algorithms such as basis pursuit are almost always exact, which hatghprove proper-
ties of dictionary learning algorithms. If the opposite is true and few dictiosdréze low Babel
function, the results of this paper are weak. While there might be bettealpitity measures on the
space of dictionaries, we consider one that seems natural: suppoaeliti@inaryD is constructed
by choosingp unit vectors uniformly fronS"~%; what is the probability thay,_1(D) < 8? how
does this depend om k?

Theorem 5 gives us the following answer to these questions. Asymptotidailyst all dictio-
naries under the uniform measure are learnable v@tm p) examplesas long akIn p = o(y/n).

5. Dictionary Learning in Feature Spaces

We propose in Section 2 a scenario in which dictionary learning is performadeature space
corresponding to a kernel function. Here we show how to adapt thereiift generalization bounds
discussed in this paper for the particular casékbfto more general feature spaces, and the de-
pendence of the sample complexities on the properties of the kernel functiba corresponding
feature mapping. We begin with the relevant specialization of the results afdvland Pontil
(2010) which have the simplest dependence on the kernel, and thesdibeuextensions to
sparse representation and to the cover number techniques presentedurrémt work.

A general feature space, denot&q is a Hilbert space to which Theorem 6 applies as is, under
the simple assumption that the dictionary elements and signals are in its unit balsshmion
is guaranteed by some kernels such as the Gaussian kernel. Then wetattee unit ball of# to
be induced by some distributiarion the domain of the kernel, and the theorem applies to any such
v/ on R. Nothing more is required if the representation is chosen fRynThe corresponding gen-
eralization bound fok sparse representations when the dictionary elements are nearly odhogon
in the feature space is given in Proposition 13.
Proof (Of Proposition 13) Proposition 3 applies with the Euclidean nort pandy = 1. We apply
Theorem 6 withh = k/ (1—9). [ |

The results so far show that generalization in dictionary learning carnr despite the poten-
tially infinite dimension of the feature space, without considering practicaégef representation
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and computation. We now make the domain and applications of the kernel explmitler to
address a basic computational question, and allow the use of cover nbagmsl generalization
bounds to prove Theorem 14. We now consider signals representechétria spacg®.,d), in
which similarity is measured by the kernelcorresponding to the feature mgp X — #. The
elements of a dictionarlp are now from%, and we denoteD their mapping byp to #. The
representation error function usechiga p.

We now show that the approximation error in the feature space is a quafdraticon of the
coefficient vector; the quadratic function for particulaandx may be found by applications of the
kernel.

Proposition 26 Computing the representation error at a givemyD requires O(pz) kernel appli-
cations in general, and only *+ p) when a is k sparse.

The squared error expands to

p

p p
i;ai JZléle(di,dj) + K (X, X) — Z;am(x, di).

We note that th& sparsity constraint oa poses algorithmic difficulties beyond those addressed
here. Some of the common approaches to these, such as orthogonal ghptokint (Chen et al.,
1989), also depend on the data only through their inner products, antherajore be adapted to
the kernel setting.

The cover number bounds depend strongly on the dimension of the dliceéamary elements.
Taking # as the space of dictionary elements is the simplest approach, but may leatitmsa
or weak bounds, for example in the case of the Gaussian kernel weated space is infinite
dimensional. Instead we propose to use the space of data represenkgtishese dimensions are
generally bounded by practical considerations. In addition, we willragsiinat the kernel is not
“too wild” in the following sense.

Definition 27 LetL a > 0, and let(A,d’) and(B,d) be metric spaces. We say a mappingAf— B
is uniformly L Holder of ordera on a set SC A if Yx,y € S, the following bound holds:

d (f(X)7 f(y)) < L'd/(X,y)G.
The relevance of this smoothness condition is as follows.

Lemma 28 A Hblder function maps am cover of S to an £ cover of its image (S). Thus, to
obtain ane cover of the image of S, it is enough to begin witr(a,ﬁ_)l/“ cover of S.

A Holder feature map allows us to bound the cover numbers of the dictionary elememts in
using their cover number bounds 4. Note that not every kernel corresponds to@dér feature
map (the Dirad kernel is a counter example: any two distinct elements are mapped to elenents at
mutual distance of 1), and sometimes analyzing the feature map is harden#grirzg the kernel.

The following lemma bounds the geometry of the feature map using that of thelker

Lemma 29 Letk(x,y) = (@(X),®(y)), and assume further thatfulfills a Holder condition of order
a uniformly in each parameter, that i (x,y) — k(x-+h,y)| < L||h||%. Theng uniformly fulfills a
Holder condition of orden /2 with constant,/2L.
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This result is not sharp. For example, for the Gaussian case, botl leewhthe feature map are
Holder order 1.
Proof Using the Hlder condition, we have thaltp(x) —cp(y)||§[ =K(XX) —K(XY)+K(Y,y) —
K(xy) < 2L|jx—y||®. All that remains is to take the square root of both sides. |

For a given feature mapping set of representation®, we define two families of function
classes so:

Quks = {hgHp D€ DPAp1(PD) <3},

The next proposition completes this section by giving the cover numberdisdon the repre-
sentation error function classes induced by appropriate kernels Wirdom various generalization
bounds easily follow, such as Theorem 14.

Proposition 30 Let R be a set of representations with a cover number boung¢)", and let
either@be uniformly L Hblder condition of orden on &, or k be uniformly L Holder of order2a on

R in each parameter, and lgt= supy4 [|@®(d)||,,. Then the function class@gs/,, and Q5 taken
np
as metric spaces with the supremum norm, reeevers of cardinalities at mos{lC (AyL/s)”“)

and (C (ky?L/ (e(1— 6)))1/°'> np, respectively.

Proof We first consider the case kfconstrained coefficients. Jfa||; <A and maxeop ||@(d)||, <

y then by considerations applied in Section 3, to obtaire @over of the image of dictionaries

{min, [|(®PD)a—@(x)||, : D € D}, it is enough to obtain an/(Ay) cover of {®D :D € D}. If

also the feature mappingis uniformly L Holder of ordera over R then an()\yL/s)’l/“ cover
np

of the set of dictionaries is sufficient, which as we have seen requimmstt(C (AyL/s)”“)

elements.
In the case ofp constrained representation, the boundiatiue to Proposition 3 igk (1 —9),
and the result follows from the above by substitution. |

6. Conclusions

Our work has several implications on the design of dictionary learningiiiges as used in signal,
image, and natural language processing. First, the fact that gengoalimonly logarithmically
dependent on thlg norm of the coefficient vector widens the set of applicable approaches-
nalization. Second, in the particular casekaparse representation, we have shown that the Babel
function is a key property for the generalization of dictionaries. It mighs thel useful to modify
dictionary learning algorithms so that they obtain dictionaries with low Babaedtiomns, possibly
through regularization or through certain convex relaxations. Third, ka@dtaunds (e.g., Mairal

et al. 2010) on the quality of the solution to the coefficient finding optimizatioblpm may lead to
generalization bounds for practical algorithms, by tying such algorithrksparse representation.
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The upper bounds presented here invite complementary lower bounds.exigting lower
bounds fork = 1 (vector quantization) and fdc = p (representation using PCA directions) are
applicable, but do not capture the geometry of genkrgpharse representation, and in particular
do not clarify the effective dimension of the unrestricted class of dictiesdor it. We have not
excluded the possibility that the class of unrestricted dictionaries has thedsaieesion as that of
those with a small Babel function. The best upper bound we know for tgerlalass, being the
trivial one of orderO ((f)n?/m), leaves a significant gap for future exploration.

We view the dependence q@_1 from an “algorithmic luckiness” perspective (Herbrich and
Williamson, 2003): if the data are described by a dictionary with low Babeitfan the general-
ization bounds are encouraging.
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Appendix A. Generalization with Fast Rates

In this appendix we give a proof, essentially due to Andreas Maurénedast rates result Proposi-
tion 22. The assumption &f cover numbers allows a much simpler argument than that in the more
general results by Mendelson (2003) and Bartlett et al. (2005), veisthleads to better constants
for this case.

Proof (Of Proposition 22) We také to be ann% cover of ¥ as guaranteed by the assumption. Then
forany f € F, there existgy € G such that|f —g]|,, < n% and Lemmas 31 and 33 apply. we have
with probability at least + exp(—x), for everyf € ¥

Ef—Enf <Egt - (Emg—rD @)
:%—l—Eg—Emg
. 2+\/2Varg(dln(Cm)+x) Jr2(d|n(Cm)+x) )
m m 3m
<2+< Vaer) \/2(d|n(Cm)+x)+2(d|n(Cm)+x) ©)
m m m 3m

Inequality (4) follows from Lemma 33 and
Ef<E +1andEf>E _1
S Eg m m! 2 Emg m

Inequality (5) follows from Lemma 31:

m 3m

Pr <age G:Eg> Emg+\/zvarg(d'”(cm>+x) + Z(d'”(cm)“)) <e™.
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Inequality (6) follows from Lemma 33 because

\/2Varg(d|n(Cm)+x):\/\?rg\/Z(dln(Cm)—kx)<< Varf+2>\/2(dln(Cm)+x).
= m

m m m

After slight rearrangement, we have

Ef_Ef< \/2Varf(d|n (Cm) +x) +§]\/2 (dIn(Cm) +x) +2(d|n(3Cmm)+x) +%
S\/ZVarf(dIrr:](Cm +X) +<\/9m > d|n(§rr:)+x)+rzn -
S\/ZEf(dIn (Cm) +x) +(\?m >d|n grr:HX*ri @)
S\/ZEf(dInri]Cm)er)Jr(\/SBerz) <d;;3>dln(cmm)+x ©)

Simple algebra, the fact that VB E f for a[0, 1] valued functionf and Lemma 37 respectively
justify inequalities (7), (8) and (9).
For convenience, we dendte= (f +2) (‘”3) We also denot& = E,,f + K"””(C and

B = (dIn(Cm) +x) /m, and note we have shown that with probability at leastekp(—x) we have
Ef - A< /2BEf, which by Lemma 34 implie€ f < A+ B+ +/2AB+ B2. By substitution and
Lemma 36 we conclude that then:

m+x

Ef <A+B+1/2AB+B?

dIn(Cm)erJrB
m

+B?

CE.f4K dIn(Cmm)+x

+ \/ZBEmf +2BK

gEmf+Kd|n(Cmm)+X

4B+ \/2BE +\/ZBK(MNT)+X+BZ

_ Emf+\/2Emfd|n(Cmm P (VKT D k) TRETEX d'“<Cm>+X

using Lemma 36 for the second inequality.
From Lemma 35 witla = E,f andb = 2(dIn(Cm) 4 x) /mwe find that for every\ >0

\/2Emf (dIn(Cm) +x) /m < AEp +%(d|n(Cm)+x)/m

and the proposition follows. |

The following lemma encapsulates the probabilistic part of the analysis.

Lemma 31 Let G be a class of0, 1] functions, of finite cardinalityg| < (Cm). Then

2Varg(din(Cm)+x) 2(dIn(Cm)+x) P
m * 3m =€

Pr (396 G:Eg> Emg+\/
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In proving Lemma 31, we use the following well known fact, which we reaalits notations.

Lemma 32 (Bernstein Inequality) Let X be independent zero mean variables ixh < c almost
surely then P{ 5T, X > ¢) < exp(—%zzcs/s)

Proof (Of Lemma 31) Denot& = Eg—g(s), where{s }{, is a set of IID random variables, we
recall the notatioE,g = (1/m) 512, 9(s), theny ™, X = 51, (Eg—g(s)) =mEg- 31, 9(s) =
M(Eg—Em) = 2 5™, X = Eg— Em.

Using the fact oulX; arellD and the translation invariance of variance, we have

1 m
2 _ .
0° = i:§ Var (%)

= Var(X)
= Var(Eg—g(s))
= Varg.

Since||d||, < 1, we also knoyx;| < 1.
Applying the Bernstein Inequality we gt (Eg—Eng > €) < exp(—ﬁfzw,) for anye >
0. We wish to bound the probability of a large deviation by exp), so it is enough foe to satisfy:

msz 2
= )< _ e
eXp< 2Varg+2£/3)_eXp< V= “Nagrzez = Y
rnEZ

< - -
Y= 2Varg+2¢/3

2
— y<2Varg+ ;) < me?

Q . 2yVarg

— 0<e’—
3m m

This quadratic inequality i has the roots:(Zy/ (3m) £+ \/(Zy/(Sn))2+8yVarg/m) /2 and

a positive coefficient foe?, then we require to not be between the roots. The root closerto

is always negative becaus;é(Zy/ (3m))? 4 8yVarg/m > \/ (2y/ (3m))? = 2y/ (3m), but the other
is always strictly positive, so it is enough to takgreater than both. In particular, by Lemma 36,

we may choose = 2y/(3m) + /2yVarg/m > <2y/ (3m) £ \/(2y/ (3m)) + 8yVarg/m> /2, and

conclude that
2y 2yVarg
— - < —vV).
Pr (Eg Eng > 3m+ - ) < exp(—y)
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Taking a union bound over dli;|, we have:

Pr (396 g:Eg—Emg>y/%+

2yVar
At 9) < exp(in|g|—y) =

e 2y [2yVarg 0
Pr(ﬂgeg.Eg Emg>%+ - )gexp(ln(Cm) y).

Then we take-x = In (Cm)? —y <= y=In(Cm)® +x and have:

Pr(ﬂgeg:Eg—Emg>§ryn+

Pr|{3dge G:Eg—Eng >

2dIn (Cm) +x .\ $ 2Varg (In (Ccm)® +x) < exp(—).

3m m

Lemma 33 Let || f —gJ|,, < €. Then under any distribution we hal{lef — Eg| < €, and/Varg—

VVarf < 2¢

Proof The first part is clear. For the second, we need mostly the triangle inedizalitprms:

JVarf - /Varg= \/E(f ~Ef2— \/E(g- Eg]
=[f-Ef|,—llg—Edl],
<[f-Ef-g+Ed|,
<[f-dl,+IEf-Ed|,
<[f-dle+IE(f-9)lL,
<2|f -9l
< 2¢.

Lemma 34 If A,B>0and Ef- A< /2EfB then E f< A+B-++/2AB+ B2
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Proof First note that ifE f < A, we are done, becaugeB > 0, then we assumie f > A. Squaring
both sides oE f — A < /2E fBwe find

Ef)2—2EfA+A? <2EfB

— (Ef)’—2EfA—2EfB< —A?

— (Ef)2—2EfA—2EfB+ (A+B)? < —A2+ (A+B)?
Ef)2—2Ef(A+B)+ (A+B)> < —A?+ (A+B)?

Ef—(A+B))* < —A%+(A+B)

(v/- of non-negative expressions

(Ef—A?<2EfB <

(
= (
= (
 (Ef
= (

— Ef—(A+B)<+\/(A+B)>—A2
< Ef<(A+B)+2AB+B2

We omit the easy proofs of the next two lemmata.
Lemma 35 For 3 > 0, v/2ab < Ba+ 2%
Lemma 36 Forany ab>0, va+b<a++vb

Lemma 37 Ford,m> 1, x> 0and C> e we have

<\/9m+2> dln(grr:)erJrriS (\/9m+2> (d;:%) dIn(Cmm)+x

Proof By the assumptions\f—m +2> 2 (facta)) andd < dIn(Cm) +x (fact (b)). Then

\/>+

3m m
> din(Cm) +x-+3

<9+2> dIn(Cm)+x+2_< 9 2) dIn(Cm)+x+g
vm 3m

3m
> din(Cm) +x+dd

%\@ 3

n(Cm) +x+ 3 (dIn(Cm) +x)
v/m Sm
9.

> 2> (d+3) dIn(Cmm)

IN

(A
(
(e
-
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Appendix B. Proof of Theorem 5

In the proof we will use an isoperimetric inequality about the sphere in highrdifoes.
Definition 38 Thee expansion of a set S in a metric spdeed) is defined as

S ={xeX|d(x,S) <&},
where dx,A) = infacad(X, a).

Lemma 39 (Lévy’s isoperimetric inequality 1951) Let C be one half of S"!, then

p((E™IG)) < Fexp(— 0.

Proof (Of Theorem 5) For any € N we denotgp| = {1,...,p} and fori € [p|, we defineM =
MaXnc i A=k Saen [{di,dh)|[.  Then it is enough to prove thaP(Jic [p]:W >9) <

2
Varzo(p-Dexp( - (n-2)(2)"/2).
W are identically distributed variables, then by a union boufd3di € [p] :W >9) <
pP(W; > 9).
By definition,P (Wy > &) = P (Mmaxycp)\1,(aj=k ¥ jen |(d1,dj)| > ) and sincey jcn |(d1,dj)| <
kmax;.1 | (d1,d;)| always,

PW >8) <P (kT#alx}<dl,dj>} > 6)

0
—P (max| ()| > 7

Note that may, |(d1,dj)| > 8/k <= 3j € [p]\i : |d1,d;j| > &/k. Noting the random variables
|<d1,dj>| are identically distributed, and using a union bound on the choicg, offe have
P(W, > 8) < (p—1)P(|(d1,d2)| = /K).

Since (dy,dp) is invariant to applying tad; and d, the same orthonogonal transformation,
we may assume without loss of generality that= e;, and with another union bound note that
P([(d1,d2)[ > 8/k) = P(|(e1,d1)| > &/k) < 2P ((ey,d1) > &/K).

The fractiong is positive, then the set af on which(e;,d;) < &/k holds includes the negative
half sphere, and any point withdyk of it. Then by the isoperimetric inequality of Lemma 39,

2P ((e1,c) > 3/K) < /T2exp(— (n—2) (8/k)?/2).

The theorem results by substitution. |
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