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Abstract

A large set of signals can sometimes be described sparsely using a dictionary, that is, every element
can be represented as a linear combination of few elements from the dictionary. Algorithms for
various signal processing applications, including classification, denoising and signal separation,
learn a dictionary from a given set of signals to be represented. Can we expect that the error
in representing by such a dictionary a previously unseen signal from the same source will be of
similar magnitude as those for the given examples? We assumesignals are generated from a fixed
distribution, and study these questions from a statisticallearning theory perspective.

We develop generalization bounds on the quality of the learned dictionary for two types of con-
straints on the coefficient selection, as measured by the expectedL2 error in representation when
the dictionary is used. For the case ofl1 regularized coefficient selection we provide a general-

ization bound of the order ofO
(

√

npln(mλ)/m
)

, wheren is the dimension,p is the number of

elements in the dictionary,λ is a bound on thel1 norm of the coefficient vector andm is the number
of samples, which complements existing results. For the case of representing a new signal as a
combination of at mostk dictionary elements, we provide a bound of the orderO(

√

npln(mk)/m)
under an assumption on the closeness to orthogonality of thedictionary (low Babel function). We
further show that this assumption holds formostdictionaries in high dimensions in a strong prob-
abilistic sense. Our results also include bounds that converge as 1/m, not previously known for
this problem. We provide similar results in a general setting using kernels with weak smoothness
requirements.
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1. Introduction

A common technique in processing signals fromX = R
n is to use sparse representations; that is,

to approximate each signalx by a “small” linear combinationa of elementsdi from a dictionary
D ∈ X p, so thatx≈ Da= ∑p

i=1aidi . This has various uses detailed in Section 1.1. The smallness of
a is often measured using either‖a‖1, or the number of non zero elements ina, often denoted‖a‖0.
The approximation error is measured here using a Euclidean norm appropriate to the vector space.
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We denote the approximation error ofx using dictionaryD and coefficients from a setA by

hA,D(x) = min
a∈A

‖Da−x‖ , (1)

whereA is one of the following sets determining the sparsity required of the representation:

Hk = {a : ‖a‖0 ≤ k}

induces a “hard” sparsity constraint, which we also callk sparse representation, while

Rλ = {a : ‖a‖1 ≤ λ}

induces a convex constraint that is considered a “relaxation” of the previous constraint.
The dictionary learning problem is to find a dictionaryD minimizing

E(D) = Ex∼νhA,D(x), (2)

whereν is a distribution over signals that is known to us only through samples from it. The prob-
lem addressed in this paper is the “generalization” (in the statistical learning sense) of dictionary
learning: to what extent does the performance of a dictionary chosen based on a finite set of sam-
ples indicate its expected error in (2)? This clearly depends on the number of samples and other
parameters of the problem such as the dictionary size. In particular, an obvious algorithm is to
represent each sample using itself, if the dictionary is allowed to be as large as the sample, but the
performance on unseen signals is likely to disappoint.

To state our goal more quantitatively, assume that an algorithm finds a dictionary D suited tok
sparse representation, in the sense that the average representation error Em(D) on them examples
given to the algorithm is low. Our goal is to bound the generalization errorε, which is the additional
expected error that might be incurred:

E(D)≤ (1+η)Em(D)+ ε, (3)

whereη ≥ 0 is sometimes zero, and the boundε depends on the number of samples and problem pa-
rameters. Since efficient algorithms that find the optimal dictionary for a given set of samples (also
known as empirical risk minimization, or ERM, algorithms) are not known for dictionary learning,
we prove uniform convergence bounds that apply simultaneously over all admissible dictionariesD,
thus bounding from above the sample complexity of the dictionary learning problem. In particular,
such a result means that every procedure for approximate minimization of empirical error (empirical
dictionary learning) is also a procedure for approximate dictionary learning (as defined above) in a
similar sense.

Many analytic and algorithmic methods relying on the properties of finite dimensional Euclidean
geometry can be applied in more general settings by applying kernel methods. These consist of
treating objects that are not naturally represented inR

n as having their similarity described by
an inner product in an abstractfeature spacethat is Euclidean. This allows the application of
algorithms depending on the data only through a computation of inner productsto such diverse
objects as graphs, DNA sequences and text documents (Shawe-Taylorand Cristianini, 2004). Is
it possible to extend the usefulness of dictionary learning techniques to this setting? We address
sample complexity aspects of this question as well.
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1.1 Background and Related Work

Sparse representations are by now standard practice in diverse fieldssuch as signal processing,
natural language processing, etc. Typically, the dictionary is assumed to be known. The motivation
for sparse representations is indicated by the following results, in which weassume the signals come
fromX =R

n are normalized to have length 1, and the representation coefficients are constrained to
A= Hk wherek< n, p and typicallyhA,D(x)≪ 1.

• Compression: If a signalx has an approximate sparse representation in some commonly
known dictionaryD, it can be stored or transmitted more economically with reasonable pre-
cision. Finding a good sparse representation can be computationally hard but if D fulfills
certain geometric conditions, then its sparse representation is unique and canbe found effi-
ciently (see, e.g., Bruckstein et al., 2009).

• Denoising: If a signalx has a sparse representation in some known dictionaryD, andx̃= x+ν,
where the random noiseν is Gaussian, then the sparse representation found for ˜x will likely
be very close tox (for example Chen et al., 2001).

• Compressed sensing: Assuming that a signalx has a sparse representation in some known dic-
tionaryD that fulfills certain geometric conditions, this representation can be approximately
retrieved with high probability from a small number of random linear measurements ofx. The
number of measurements needed depends on the sparsity ofx in D (Candes and Tao, 2006).

The implications of these results are significant when a dictionaryD is known that sparsely rep-
resents simultaneously many signals. In some applications the dictionary is chosen based on prior
knowledge, but in many applications the dictionary is learned based on a finiteset of examples. To
motivate dictionary learning, consider an image representation used for compression or denoising.
Different types of images may have different properties (MRI images arenot similar to scenery
images), so that learning a dictionary specific to each type of images may lead toimproved perfor-
mance. The benefits of dictionary learning have been demonstrated in many applications (Protter
and Elad, 2007; Peyré, 2009).

Two extensively used techniques related to dictionary learning are Principal Component Anal-
ysis (PCA) andK-means clustering. The former finds a single subspace minimizing the sum of
squared representation errors which is very similar to dictionary learning with A = Hk and p = k.
The latter finds a set of locations minimizing the sum of squared distances between each signal and
the location closest to it which is very similar to dictionary learning withA = H1 wherep is the
number of locations. Thus we could see dictionary learning as PCA with multiple subspaces, or as
clustering where multiple locations are used to represent each signal. The sample complexities of
both algorithms are well studied (Bartlett et al., 1998; Biau et al., 2008; Shawe-Taylor et al., 2005;
Blanchard et al., 2007).

This paper does not address questions of computational cost, though they are very relevant.
Finding optimal coefficients fork sparse representation (that is, minimizing (1) withA= Hk) is NP-
hard in general (Davis et al., 1997). Dictionary learning as the optimization problem of minimizing
(2) is less well understood, even for empiricalν (consisting of a finite number of samples), despite
over a decade of work on related algorithms with good empirical results (Olshausen and Field, 1997;
Lewicki et al., 1998; Kreutz-Delgado et al., 2003; Aharon et al., 2006;Lee et al., 2007; Mairal et al.,
2010).
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The only prior work we are aware of that addresses generalization in dictionary learning, by
Maurer and Pontil (2010), addresses the convex representation constraintA = Rλ; we discuss the
relation of our work to theirs in Section 2.

2. Results

Except where we state otherwise, we assume signals are generated in the unit sphereSn−1. Our
results are:

A new approach to dictionary learning generalization.Our first main contribution is an ap-
proach to generalization bounds in dictionary learning that is complementary to the approach used
by Maurer and Pontil (2010). The previous result, given below in Theorem 6 has generalization
error bounds (theε of inequality (3)) of order

O

(
√

pmin(p,n)
(

λ+
√

ln(mλ)
)2

/m

)

on the squared representation error. A notable feature of this result is the weak dependence on the
signal dimensionn. In Theorem 1 we quantify the complexity of the class of functionshA,D over
all dictionaries whose columns have unit length, whereA⊂ Rλ. Combined with standard methods

of uniform convergence this results in generalization error boundsε of orderO
(

√

npln(mλ)/m
)

whenη = 0. While our bound does depend strongly onn, this is acceptable in the casen < p,
also known in the literature as the “over-complete” case (Olshausen and Field, 1997; Lewicki et al.,
1998). Note that our generalization bound applies with different constants to the representation error
itself and many variants including the squared representation error, and has a weak dependence on
λ. The dependence onλ is significant, for example, when‖a‖1 is used as a weighted penalty term
by solving mina‖Da−X‖+ γ · ‖a‖1; in this caseλ = O

(

γ−1
)

may be quite large.
Fast rates.For the caseη > 0 our methods allow bounds of orderO(npln(λm)/m). The main

significance of this is in that the general statistical behavior they imply occursin dictionary learn-
ing. For example, generalization error has a “proportional” component which is reduced when the
empirical error is low. Whether fast rates results can be proved in the dimension free regime is an
interesting question we leave open. Note that due to lower bounds by Bartlettet al. (1998) of order√

m−1 on thek-means clustering problem, which corresponds to dictionary learning for 1-sparse
representation, fast rates may be expected only withη > 0, as presented here.

We now describe the relevant function class and the bounds on its complexity, which are proved
in Section 3. The resulting generalization bounds are given explicitly at the end of this section.

Theorem 1 For everyε > 0, the function class

Gλ =
{

hRλ,D : Sn−1 → R : D ∈ R
n×p,‖di‖ ≤ 1

}

,

taken as a metric space with the distance induced by‖·‖∞, has a subset of cardinality at most
(4λ/ε)np, such that every element from the class is at distance at mostε from the subset.

While we give formal definitions in Section 3, such a subset is called anε cover, and such a
bound on its cardinality is called a covering number bound.

Extension to k sparse representation.Our second main contribution is to extend both our ap-
proach and that of Maurer and Pontil (2010) to provide generalization bounds for dictionaries fork
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sparse representations, by using a boundλ on thel1 norm of the representation coefficients when the
dictionaries are close to orthogonal. Distance from orthogonality is measured by the Babel function
(which, for example, upper bounds the magnitude of the maximal inner product between distinct
dictionary elements) defined below and discussed in more detail in Section 4.

Definition 2 (Babel function, Tropp 2004) For any k∈ N, the Babel function µk : Rn×m → R
+ is

defined by:
µk (D) = max

i∈{1,...,p}
max

Λ⊂{1,...,p}\{i};|Λ|=k
∑
j∈Λ

∣

∣

〈

d j ,di
〉∣

∣ .

The following proposition, which is proved in Section 3, bounds the 1-normof the dictionary
coefficients for ak sparse representation and also follows from analysis previously done by Donoho
and Elad (2003) and Tropp (2004).

Proposition 3 Let each column di of D fulfill ‖di‖ ∈ [1,γ] and µk−1(D) ≤ δ < 1, then a coeffi-
cient vector a∈ R

p minimizing the k-sparse representation error hHk,D(x) exists which has‖a‖1 ≤
γk/(1−δ).

We now consider the class of allk sparse representation error functions. We prove in Section 3
the following bound on the complexity of this class.

Corollary 4 The function class

Fδ,k =
{

hHk,D : Sn−1 → R : µk−1(D)< δ,di ∈ S
n−1} ,

taken as a metric space with the metric induced by‖·‖∞, has a covering number bound of at most
(4k/(ε(1−δ)))np.

The dependence of the last two results onµk−1(D) means that the resulting bounds will be
meaningful only for algorithms which explicitly or implicitly prefer near orthogonal dictionaries.
Contrast this to Theorem 1 which does not require significant conditions on the dictionary.

Asymptotically almost all dictionaries are near orthogonal.A question that arises is what values
of µk−1 can be expected for parametersn, p,k? We shed some light on this question through the
following probabilistic result, which we discuss in Section 4 and prove in Appendix B.

Theorem 5 Suppose that D consists of p vectors chosen uniformly and independentlyfrom S
n−1.

Then we have

P(µk > δ)≤
√

π
2

p(p−1)exp






−
(n−2)

(

δ
k

)2

2






.

Since low values of the Babel function have implications to representation finding algorithms,
this result is of interest also outside the context of dictionary learning. Essentially it means that
random dictionaries whose cardinality is sub-exponential in(n−2)/k2 have low Babel function.

New generalization bounds for l1 case.The covering number bound of Theorem 1 implies sev-
eral generalization bounds for the problem of dictionary learning forl1 regularized representations
which we give here. These differ from bounds by Maurer and Pontil (2010) in depending more
strongly on the dimension of the space, but less strongly on the particular regularization term. We

3263



VAINSENCHER, MANNOR AND BRUCKSTEIN

first give the relevant specialization of the result by Maurer and Pontil (2010) for comparison and
for reference as we will later build on it. This result is independent of the dimensionn of the un-
derlying space, thus the Euclidean unit ballB may be that of a general Hilbert space, and the errors
measured byhA,D are in the same norm.

Theorem 6 (Maurer and Pontil 2010) Let A⊂ Rλ, and letν be any distribution on the unit sphere
B. Then with probability at least1−e−x over the m samples in Em drawn according toν, for all
dictionaries D⊂ B with cardinality p:

Eh2
A,D ≤ Emh2

A,D +

√

√

√

√
p2
(

14λ+1/2
√

ln(16mλ2)
)2

m
+

√

x
2m

.

Using the covering number bound of Theorem 1 and a bounded differences concentration in-
equality (see Lemma 21), we obtain the following result. The details are given inSection 3.

Theorem 7 Let λ > e/4, with ν a distribution onSn−1. Then with probability at least1−e−x over
the m samples in Em drawn according toν, for all D with unit length columns:

EhRλ,D ≤ EmhRλ,D +

√

npln(4
√

mλ)
2m

+

√

x
2m

+

√

4
m
.

Using the same covering number bound and the general result Corollary 23 (given in Section
3), we obtain the following fast rates result. A slightly more general result iseasily derived by using
Proposition 22 instead.

Theorem 8 Letλ> e/4, np≥ 20and m≥ 5000with ν a distribution onSn−1. Then with probability
at least1−e−x over the m samples in Em drawn according toν, for all D with unit length columns:

EhRλ,D ≤ 1.1EmhRλ,D +9
npln(4λm)+x

m
.

Note that the absolute losshRλ,D in the new bounds can be replaced with the quadratic lossh2
Rλ,D

used in Theorem 6, at a small cost: an added factor of 2 inside the ln, and the same applies to many
other loss functions. This applies also to the cover number based bounds given below.

Generalization bounds for k sparse representation.Proposition 3 and Corollary 4 imply certain
generalization bounds for the problem of dictionary learning fork sparse representations, which we
give here.

A straight forward combination of Theorem 2 of Maurer and Pontil (2010) (given here as The-
orem 6) and Proposition 3 results in the following theorem.

Theorem 9 Let δ < 1 with ν a distribution onSn−1. Then with probability at least1−e−x over the
m samples in Em drawn according toν, for all D s.t. µk−1(D)≤ δ and with unit length columns:

Eh2
Hk,D ≤ Emh2

Hk,D +
p√
m





14k
1−δ

+
1
2

√

√

√

√ln

(

16m

(

k
1−δ

)2
)



+

√

x
2m

.
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In the case of clustering we havek = 1 andδ = 0 and this result approaches the rates of Biau
et al. (2008).

The following theorems follow from the covering number bound of Corollary4 and applying
the general results of Section 3 as for thel1 sparsity results.

Theorem 10 Let δ < 1 with ν a distribution onSn−1. Then with probability at least1−e−x over
the m samples in Em drawn according toν, for all D s.t. µk−1(D)≤ δ and with unit length columns:

EhHk,D ≤ EmhHk,D +

√

npln 4
√

mk
1−δ

2m
+

√

x
2m

+

√

4
m
.

Theorem 11 Letδ < 1, np≥ 20and m≥ 5000with ν a distribution onSn−1. Then with probability
at least1−e−x over the m samples in Em drawn according toν, for all D s.t. µk−1(D)≤ δ and with
unit length columns:

EhHk,D ≤ 1.1EmhHk,D +9
npln

(

4
√

mk
1−δ

)

+x

m
.

Generalization bounds for dictionary learning in feature spaces.We further consider applica-
tions of dictionary learning to signals that are not represented as elements ina vector space, or that
have a very high (possibly infinite) dimension.

In addition to providing an approximate reconstruction of signals, sparse representation can also
be considered as a form of analysis, if we treat the choice of non zero coefficients and their magni-
tude as features of the signal. In the domain of images, this has been used to perform classification
(in particular, face recognition) by Wright et al. (2008). Such analysisdoes not require that the data
itself be represented inRn (or in any vector space); it is enough that the similarity between data
elements is induced from an inner product in a feature space. This requirement is fulfilled by using
an appropriate kernel function.

Definition 12 Let R be a set of data representations, then a kernel functionκ : R 2 → R and a
feature mappingφ : R →H are such that:

κ(x,y) = 〈φ(x) ,φ(y)〉H
whereH is some Hilbert space.

As a concrete example, choose a sequence ofn words, and letφ map a document to the vector of
counts of appearances of each word in it (also called bag of words). Treatingκ(a,b) = 〈φ(a),φ(b)〉
as the similarity between documentsa andb, is the well known “bag of words” approach, appli-
cable to many document related tasks (Shawe-Taylor and Cristianini, 2004). Then the statement
φ(a)+φ(b)≈ φ(c) does not imply thatc can be reconstructed froma andb, but we might consider
it indicative of the content ofc. The dictionary of elements used for representation could be de-
cided via dictionary learning, and it is natural to choose the dictionary so that the bags of words of
documents are approximated well by small linear combinations of those in the dictionary.

As the example above suggests, the kernel dictionary learning problem is tofind a dictionaryD
minimizing

Ex∼νhφ,A,D(x),
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where we consider the representation error function

hφ,A,D(x) = min
a∈A

‖(ΦD)a−φ(x)‖H ,

in which Φ acts asφ on the elements ofD, A∈ {Rλ,Hk}, and the norm‖·‖H is that induced by the
kernel on the feature spaceH .

Analogues of all the generalization bounds mentioned so far can be replicated in the kernel
setting. The dimension free results of Maurer and Pontil (2010) apply mostnaturally in this setting,
and may be combined with our results to cover also dictionaries fork sparse representation, under
reasonable assumptions on the kernel.

Proposition 13 Let ν be any distribution onR such that x∼ ν implies thatφ(x) is in the unit ball
BH ofH with probability 1. Then with probability at least1−e−x over the m samples in Em drawn
according toν, for all D ⊂ R with cardinality p such thatΦD ⊂ BH and µk−1(ΦD)≤ δ < 1:

Eh2
φ,Hk,D ≤ Emh2

φ,Hk,D +

√

√

√

√

√

√

p2

(

14k/(1−δ)+1/2

√

ln

(

16m
(

k
1−δ

)2
)

)2

m
+

√

x
2m

.

Note that inµk−1(ΦD) the Babel function is defined in terms of inner products inH , and can
therefore be computed efficiently by applications of the kernel.

In Section 5 we prove the above result and also cover number bounds asin the linear case
considered before. In the current setting, these bounds depend on the Hölder smoothness orderα of
the feature mappingφ. Formal definitions are given in Section 5 but as an example, the well known
Gaussian kernel hasα = 1. We give now one of the generalization bounds using this method.

Theorem 14 Let R haveε covers of order(C/ε)n. Let κ : R 2 → R
+ be a kernel function s.t.

κ(x,y) = 〈φ(X),φ(Y)〉, for φ which is uniformly L-Ḧolder of orderα > 0 over R , and let γ =
maxx∈R ‖φ(x)‖H . Let δ < 1, and ν any distribution onR , then with probability at least1− e−x

over the m samples in Em drawn according toν, for all dictionaries D⊂ R of cardinality p s.t.
µk−1(ΦD)≤ δ < 1 (whereΦ acts likeφ on columns):

EhHk,D ≤ EmhHk,D + γ









√

√

√

√

npln
(√

mCα kγ2L
1−δ

)

2αm
+

√

x
2m









+

√

4
m
.

The covering number bounds needed to prove this theorem and analogs for the other general-
ization bounds are proved in Section 5.

3. Covering Numbers ofGλ andFδ,k

The main content of this section is the proof of Theorem 1 and Corollary 4. We also show that in
thek sparse representation setting a finite bound onλ does not occur generally thus an additional
restriction, such as the near-orthogonality on the set of dictionaries on which we rely in this setting,
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is necessary. Lastly, we recall known results from statistical learning theory that link covering
numbers to generalization bounds.

We recall the definition of the covering numbers we wish to bound. Anthony and Bartlett (1999)
give a textbook introduction to covering numbers and their application to generalization bounds.

Definition 15 (Covering number) Let (M,d) be a metric space and S⊂ M. Then theε covering
number of S defined as N(ε,S,d) = min{|A| |A⊂ M and S⊂ (

⋃
a∈ABd (a,ε))} is the size of the

minimalε cover of S using d.

To prove Theorem 1 and Corollary 4 we first note that the space of all possible dictionaries is a
subset of a unit ball in a Banach space of dimensionnp (with a norm specified below). Thus (see
formalization in Proposition 5 of Cucker and Smale, 2002) the space of dictionaries has anε cover
of size(4/ε)np. We also note that a uniformlyL Lipschitz mapping between metric spaces converts
ε/L covers intoε covers. Then it is enough to show thatΨλ defined asD 7→ hRλ,D andΦk defined as
D 7→ hHk,D are uniformly Lipschitz (whenΦk is restricted to the dictionaries withµk−1(D)≤ c< 1).
The proof of these Lipschitz properties is our next goal, in the form of Lemmas 18 and 19.

The first step is to be clear about the metrics we consider over the spaces of dictionaries and of
error functions.

Definition 16 (Induced matrix norm) Let p,q≥ 1, then a matrix A∈ R
n×m can be considered as

an operator A:
(

R
m,‖·‖p

)

→
(

R
n,‖·‖q

)

. The p,q induced norm is‖A‖p,q , supx∈Rm‖x‖p=1‖Ax‖q.

Lemma 17 For any matrix D,‖D‖1,2 is equal to the maximal Euclidean norm of any column in D.

Proof That the maximal norm of a column bounds‖D‖1,2 can be seen geometrically;Da/‖a‖1 is a
convex combination of column vectors, then‖Da‖2 ≤ maxdi ‖di‖2‖a‖1 because a norm is convex.
Equality is achieved fora= ei , wheredi is the column of maximal norm.

The images ofΨλ andΦk are sets of representation error functions—each dictionary induces
a set of precisely representable signals, and a representation error function is simply a map of
distances from this set. Representation error functions are clearly continuous, 1-Lipschitz, and into
[0,1]. In this setting, a natural norm over the images is the supremum norm‖·‖∞.

Lemma 18 The functionΨλ is λ-Lipschitz from
(

R
n×m,‖·‖1,2

)

to C
(

S
n−1
)

.

Proof Let D andD′ be two dictionaries whose corresponding elements are at mostε > 0 far from
one another. Letx be a unit signal andDa an optimal representation for it. Then‖(D−D′)a‖2 ≤
‖D−D′‖1,2‖a‖1 ≤ ελ. If D′a is very close toDa in particular it is not a much worse repre-
sentation ofx, and replacing it with the optimal representation underD′, we havehRλ,D′(x) ≤
hRλ,D(x)+ ελ. By symmetry we have|Ψλ(D)(x)−Ψλ(D

′)(x)| ≤ λε. This holds for all unit sig-
nals, then‖Ψλ(D)−Ψλ(D

′)‖∞ ≤ λε.

This concludes the proof of Theorem 1. We now provide a proof for Proposition 3 which is used
in the corresponding treatment for covering numbers underk sparsity.
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Proof (Of Proposition 3) LetDk be a submatrix ofD whosek columns fromD achieve the minimum

on hHk,D(x) for x∈ S
n−1. We now consider the Gram matrixG=

(

Dk
)⊤

Dk whose diagonal entries
are the norms of the elements ofDk, therefore at least 1. By the Gersgorin theorem (Horn and
Johnson, 1990), each eigenvalue of a square matrix is “close” to a diagonal entry of the matrix; the
absolute difference between an eigenvalue and its diagonal entry is upper bounded by the sum of
the absolute values of the remaining entries of the same row. Since a row inG corresponds to the
inner products of an element fromDk with every element fromDk, this sum is upper bounded byδ
for all rows. Then we conclude the eigenvalues of the Gram matrix are lower bounded by 1−δ > 0.
Then in particularG has a symmetric inverseG−1 whose eigenvalues are positive and bounded from
above by 1/(1−δ). The maximal magnitude of an eigenvalue of a symmetric matrix coincides with
its induced norm‖·‖2,2, therefore

∥

∥G−1
∥

∥

2,2 ≤ 1/(1−δ).
Linear dependence of elements ofDk would imply a non-trivial nullspace for the invertibleG.

Then the elements ofDk are linearly independent, which implies that the unique optimal represen-
tation ofx as a linear combination of the columns ofDk is Dka with

a=

(

(

Dk
)⊤

Dk
)−1

(

Dk
)⊤

x.

Using the above and the definition of induced matrix norms, we have

‖a‖2 ≤
∥

∥

∥

∥

∥

(

(

Dk
)⊤

Dk
)−1

∥

∥

∥

∥

∥

2,2

∥

∥

∥

∥

(

Dk
)⊤

x

∥

∥

∥

∥

2
≤ (1−δ)−1

∥

∥

∥

∥

(

Dk
)⊤

x

∥

∥

∥

∥

2
.

The vector
(

Dk
)⊤

x is in R
k and by the Cauchy Schwartz inequality〈di ,x〉 ≤ γ, then

∥

∥

∥

(

Dk
)⊤

x
∥

∥

∥

2
≤

√
k
∥

∥

∥

(

Dk
)⊤

x
∥

∥

∥

∞
≤
√

kγ. Since onlyk entries ofa are non zero,‖a‖1 ≤
√

k‖a‖2 ≤ kγ/(1−δ).

Lemma 19 The functionΦk is a k/(1−δ)-Lipschitz mapping from the set of normalized dictionar-
ies with µk−1(D)< δ with the metric induced by‖·‖1,2 to C

(

S
n−1
)

.

The proof of this lemma is the same as that of Lemma 18, except thata is taken to be an
optimal representation that fulfills‖a‖1 ≤ λ = k/(1−µk−1(D)), whose existence is guaranteed by
Proposition 3. As outlined in the beginning of the current section, this concludes the proof of
Corollary 4.

The next theorem shows that unfortunately,Φ is not uniformly L-Lipschitz for any constantL,
requiring its restriction to an appropriate subset of the dictionaries.

Theorem 20 For any1< k < n, p, there exists c> 0 and q, such that for everyε > 0, there exist
D,D′ such that‖D−D′‖1,2 < ε but |(hHk,D(q)−hHk,D′(q))|> c.

Proof First we show that for any dictionaryD there existc> 0 andx∈ S
n−1 such thathHk,D(x)> c.

Let νSn−1 be the uniform probability measure on the sphere, andAc the probability assigned by it to
the set withinc of ak dimensional subspace. Ascց 0, Ac also tends to zero, then there existsc> 0
s.t.
(p

k

)

Ac < 1. Then for thatc and any dictionaryD there exists a set of positive measure on which
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hHk,D > c, let q be a point in this set. SincehHk,D(x) = hHk,D(−x), we may assume without loss of
generality that〈e1,q〉 ≥ 0.

We now fix the dictionaryD; its first k− 1 elements are the standard basis{e1, . . . ,ek−1}, its
kth element isdk =

√

1− ε2/4e1+ εek/2, and the remaining elements are chosen arbitrarily. Now
constructD′ to be identical toD except itskth element isv=

√

1− ε2/4e1+ lq choosingl so that
‖v‖2 = 1. Then there exista,b∈ R such thatq= aD′

1+bD′
k and we havehHk,D′(q) = 0, fulfilling

the second part of the theorem. On the other hand, since〈e1,q〉 ≥ 0, we havel ≤ ε/2, and then we
find ‖D−D′‖1,2 = ‖εek/2− lq‖2 ≤ ‖εek/2‖+‖lq‖= ε/2+ l ≤ ε.

To conclude the generalization bounds of Theorems 7, 8, 10, 11 and 14 from the covering
number bounds we have provided, we use the following results. Both specialize well known results
to the case ofl∞ cover number bounds, thereby improving constants and simplifying the proofs. The
first proof is simple enough we include it at the end of this section. The second result1 (along with
its corollary) gives fast rate bounds as in the more general results by Mendelson (2003) and Bartlett
et al. (2005).

Lemma 21 LetF be a class of[0,B] functions with covering number bound(C/ε)d > e/B2 under
the supremum norm. Then for every x> 0, with probability of at least1−e−x over the m samples
in Em chosen according toν, for all f ∈ F :

E f ≤ Em f +B

(
√

d ln(C
√

m)

2m
+

√

x
2m

)

+

√

4
m
.

Proposition 22 Let F be a class of[0,1] functions that can be covered for anyε > 0 by at most
(C/ε)d balls of radiusε in the L∞ metric where C≥ e andβ > 0. Then with probability at least
1−exp(−x), we have for all f∈ F :

E f ≤ (1+β)Em f +K (d,m,β)
d ln(Cm)+x

m
,

where K(d,m,β) =
√

2
(

9√
m+2

)

(

d+3
3d

)

+1+
(

9√
m+2

)

(

d+3
3d

)

+1+ 1
2β .

The corollary we use to obtain Theorems 8 and 11 follows becauseK (d,m,β) is non-increasing
in d,m.

Corollary 23 LetF ,x be as above. For d≥ 20, m≥ 5000andβ = 0.1 we have with probability at
least1−exp(−x) for all f ∈ F :

E f ≤ 1.1Em f +9
d ln(Cm)+x

m
.

Proof (Of Lemma 21) We wish to bound supf∈F E f −Em f . TakeFε to be a minimalε cover of
F , then for an arbitraryf , denotingfε anε close member ofFε, E f −Em f ≤ E fε −Em fε +2ε. In
particular, supf∈F E f −Em f ≤ 2ε+supf∈Fε

E f −Em f . To bound the supremum on the now finite

1. We thank Andreas Maurer for suggesting this result and a proof elaborated in Appendix A.
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class of functions, note thatE f −Em f is an average ofm independent copies of the identical zero
mean bounded variableE f −E1 f .

Applying Hoeffding’s inequality, we haveP(E f −Em f > t)≤ exp
(

−2mB−2t2
)

.
The probability that any of the|Fε| differences under the supremum is larger thant may be

bounded asP
(

supf∈Fε
E f −Em f ≥ t

)

≤ |Fε| ·exp
(

−2mB−2t2
)

≤ exp
(

d ln(C/ε)−2mB−2t2
)

.
In order to control the probability withx as in the statement of the lemma, we take−x =

d ln(C/ε)−2mB−2t2 or equivalently we chooset =
√

B2/2m
√

d ln(C/ε)+x. Then with probabil-
ity 1−e−x we bound supf∈F E f −Em f ≤ 2ε+ t. Using the covering number bound assumption and

the sublinearity of
√·, we have by supf∈F E f −Em f ≤ 2ε+B

(

√

d ln(C/ε)/2m+
√

x/2m
)

. The

proof is completed by takingε = 1/
√

m.

4. On the Babel Function

The Babel function is one of several metrics defined in the sparse representations literature to quan-
tify an ”almost orthogonality” property that dictionaries may enjoy. Such properties have been
shown to imply theoretical properties such as uniqueness of the optimalk sparse representation. In
the algorithmic context, Donoho and Elad (2003) and Tropp (2004) use theBabel function to show
that particular efficient algorithms for finding sparse representations fulfill certain quality guaran-
tees when applied to such dictionaries. This reinforces the practical importance of the learnability
of this class of dictionary. We proceed to discuss some elementary properties of the Babel function,
and then state a bound on the proportion of dictionaries having sufficiently good Babel function.

Measures of orthogonality are typically defined in terms of inner products between the elements
of the dictionary. Perhaps the simplest of these measures of orthogonality isthe following special
case of the Babel function.

Definition 24 The coherence of a dictionary D is µ1(D) = maxi 6= j

∣

∣

〈

di ,d j
〉∣

∣.

The proof of Proposition 3 demonstrates that the Babel function quantifiesthe effects of non orthog-
onality on the representation of a signal with particular levelk+1 of sparsity. Is enough to bound
the Babel function using coherence? only at a cost of significantly tightening our requirements on
dictionaries. While the coherence and Babel measures are indeed relatedby the inequalities

µ1(D)≤ µk (D)≤ kµ1(D) ,

the factork gap between the bounds cannot be improved. The tightness of the right inequality is
witnessed by a dictionary includingk+1 copies of the same element. That of the left inequality
is witnessed by the following example. LetD consist ofk pairs of elements, so that the subspace
spanned by each pair is orthogonal to all other elements, and such that theinner product between
the elements of any single pair is half. In this caseµk(D) = µ1(D) = 1/2. However note that to
ensureµk < 1 only restrictingµ1 requires the constraintµ1(D) < 1/k, which is not fulfilled in our
example.

To better understandµk (D), we consider first its extreme values. Whenµk (D) = 0, for any
k > 1, this means thatD is an orthogonal set (thereforep≤ n). The maximality ofµk (D) = k we
have seen before.
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A well known generic class of dictionaries with more elements than a basis is thatof frames(see
Duffin and Schaeer, 1952), which includes many wavelet systems and filter banks. Some frames
can be trivially seen to fulfill our condition on the Babel function.

Proposition 25 Let D ∈ R
n×p be a frame ofRn, so that for every v∈ S

n−1 we have that
∑n

i=1 |〈v,di〉|2 ≤ B, with‖di‖2 = 1 for all i, and B< 1+1/k. Then µk−1(D)< 1.

This may be easily verified by considering the inner products of any dictionary element with
any otherk elements as a vector inRk; the frame condition bounds its squared Euclidean norm by
B−1 (we remove the inner product of the element with itself in the frame expression). Then use
the equivalence ofl1 andl2 norms.

4.1 Proportion of Dictionaries with µk−1(D)< δ

We return to the question of the prevalence of dictionaries havingµk−1 < δ. Are almost all dictionar-
ies such? If the answer is affirmative, it implies that Theorem 11 is quite strong, and representation
finding algorithms such as basis pursuit are almost always exact, which might help prove proper-
ties of dictionary learning algorithms. If the opposite is true and few dictionaries have low Babel
function, the results of this paper are weak. While there might be better probability measures on the
space of dictionaries, we consider one that seems natural: suppose thata dictionaryD is constructed
by choosingp unit vectors uniformly fromSn−1; what is the probability thatµk−1(D) < δ? how
does this depend onp,k?

Theorem 5 gives us the following answer to these questions. Asymptoticallyalmost all dictio-
naries under the uniform measure are learnable withÕ(np) examples, as long ask ln p= o(

√
n).

5. Dictionary Learning in Feature Spaces

We propose in Section 2 a scenario in which dictionary learning is performedin a feature space
corresponding to a kernel function. Here we show how to adapt the different generalization bounds
discussed in this paper for the particular case ofR

n to more general feature spaces, and the de-
pendence of the sample complexities on the properties of the kernel functionor the corresponding
feature mapping. We begin with the relevant specialization of the results of Maurer and Pontil
(2010) which have the simplest dependence on the kernel, and then discuss the extensions tok
sparse representation and to the cover number techniques presented in the current work.

A general feature space, denotedH , is a Hilbert space to which Theorem 6 applies as is, under
the simple assumption that the dictionary elements and signals are in its unit ball; this assumption
is guaranteed by some kernels such as the Gaussian kernel. Then we takeν on the unit ball ofH to
be induced by some distributionν′ on the domain of the kernel, and the theorem applies to any such
ν′ onR . Nothing more is required if the representation is chosen fromRλ. The corresponding gen-
eralization bound fork sparse representations when the dictionary elements are nearly orthogonal
in the feature space is given in Proposition 13.
Proof (Of Proposition 13) Proposition 3 applies with the Euclidean norm ofH , andγ= 1. We apply
Theorem 6 withλ = k/(1−δ).

The results so far show that generalization in dictionary learning can occur despite the poten-
tially infinite dimension of the feature space, without considering practical issues of representation
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and computation. We now make the domain and applications of the kernel explicitin order to
address a basic computational question, and allow the use of cover numberbased generalization
bounds to prove Theorem 14. We now consider signals represented in ametric space(R ,d), in
which similarity is measured by the kernelκ corresponding to the feature mapφ : R → H . The
elements of a dictionaryD are now fromR , and we denoteΦD their mapping byφ to H . The
representation error function used ishφ,A,D.

We now show that the approximation error in the feature space is a quadraticfunction of the
coefficient vector; the quadratic function for particularD andx may be found by applications of the
kernel.

Proposition 26 Computing the representation error at a given x,a,D requires O
(

p2
)

kernel appli-
cations in general, and only O

(

k2+ p
)

when a is k sparse.

The squared error expands to

p

∑
i=1

ai

p

∑
j=1

a jκ(di ,d j)+κ(x,x)−2
p

∑
i=1

aiκ(x,di) .

We note that thek sparsity constraint ona poses algorithmic difficulties beyond those addressed
here. Some of the common approaches to these, such as orthogonal matching pursuit (Chen et al.,
1989), also depend on the data only through their inner products, and maytherefore be adapted to
the kernel setting.

The cover number bounds depend strongly on the dimension of the space of dictionary elements.
TakingH as the space of dictionary elements is the simplest approach, but may lead to vacuous
or weak bounds, for example in the case of the Gaussian kernel whose feature space is infinite
dimensional. Instead we propose to use the space of data representationsR , whose dimensions are
generally bounded by practical considerations. In addition, we will assume that the kernel is not
“too wild” in the following sense.

Definition 27 Let L,α > 0, and let(A,d′) and(B,d) be metric spaces. We say a mapping f: A→ B
is uniformly L Ḧolder of orderα on a set S⊂ A if ∀x,y∈ S, the following bound holds:

d( f (x), f (y))≤ L ·d′(x,y)α.

The relevance of this smoothness condition is as follows.

Lemma 28 A Hölder function maps anε cover of S to an Lεα cover of its image f(S). Thus, to
obtain anε cover of the image of S, it is enough to begin with an(ε/L)1/α cover of S.

A Hölder feature mapφ allows us to bound the cover numbers of the dictionary elements inH
using their cover number bounds inR . Note that not every kernel corresponds to a Hölder feature
map (the Diracδ kernel is a counter example: any two distinct elements are mapped to elements ata
mutual distance of 1), and sometimes analyzing the feature map is harder than analyzing the kernel.
The following lemma bounds the geometry of the feature map using that of the kernel.

Lemma 29 Letκ(x,y) = 〈φ(x),φ(y)〉, and assume further thatκ fulfills a Hölder condition of order
α uniformly in each parameter, that is,|κ(x,y)−κ(x+h,y)| ≤ L‖h‖α. Thenφ uniformly fulfills a
Hölder condition of orderα/2 with constant

√
2L.
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This result is not sharp. For example, for the Gaussian case, both kernel and the feature map are
Hölder order 1.
Proof Using the Ḧolder condition, we have that‖φ(x)−φ(y)‖2

H = κ(x,x)− κ(x,y) + κ(y,y)−
κ(x,y)≤ 2L‖x−y‖α. All that remains is to take the square root of both sides.

For a given feature mappingφ, set of representationsR , we define two families of function
classes so:

Wφ,λ =
{

hφ,Rλ,D : D ∈D p}and

Qφ,k,δ =
{

hφ,Hk,D : D ∈D p∧µk−1(ΦD)≤ δ
}

.

The next proposition completes this section by giving the cover number bounds for the repre-
sentation error function classes induced by appropriate kernels, fromwhich various generalization
bounds easily follow, such as Theorem 14.

Proposition 30 Let R be a set of representations with a cover number bound of(C/ε)n, and let
eitherφ be uniformly L Ḧolder condition of orderα onR , or κ be uniformly L Ḧolder of order2α on
R in each parameter, and letγ = supd∈R ‖φ(d)‖H . Then the function classesWφ,λ andQφ,k,δ taken

as metric spaces with the supremum norm, haveε covers of cardinalities at most
(

C(λγL/ε)1/α
)np

and
(

C
(

kγ2L/(ε(1−δ))
)1/α

)np
, respectively.

Proof We first consider the case ofl1 constrained coefficients. If‖a‖1 ≤ λ and maxd∈D ‖φ(d)‖H ≤
γ then by considerations applied in Section 3, to obtain anε cover of the image of dictionaries
{mina‖(ΦD)a−φ(x)‖H : D ∈D}, it is enough to obtain anε/(λγ) cover of{ΦD : D ∈D}. If

also the feature mappingφ is uniformly L Hölder of orderα overR then an(λγL/ε)−1/α cover

of the set of dictionaries is sufficient, which as we have seen requires atmost
(

C(λγL/ε)1/α
)np

elements.
In the case ofl0 constrained representation, the bound onλ due to Proposition 3 isγk(1−δ),

and the result follows from the above by substitution.

6. Conclusions

Our work has several implications on the design of dictionary learning algorithms as used in signal,
image, and natural language processing. First, the fact that generalization is only logarithmically
dependent on thel1 norm of the coefficient vector widens the set of applicable approachesto pe-
nalization. Second, in the particular case ofk sparse representation, we have shown that the Babel
function is a key property for the generalization of dictionaries. It might thus be useful to modify
dictionary learning algorithms so that they obtain dictionaries with low Babel functions, possibly
through regularization or through certain convex relaxations. Third, mistake bounds (e.g., Mairal
et al. 2010) on the quality of the solution to the coefficient finding optimization problem may lead to
generalization bounds for practical algorithms, by tying such algorithms tok sparse representation.
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The upper bounds presented here invite complementary lower bounds. The existing lower
bounds fork = 1 (vector quantization) and fork = p (representation using PCA directions) are
applicable, but do not capture the geometry of generalk sparse representation, and in particular
do not clarify the effective dimension of the unrestricted class of dictionaries for it. We have not
excluded the possibility that the class of unrestricted dictionaries has the samedimension as that of
those with a small Babel function. The best upper bound we know for the larger class, being the
trivial one of orderO

((p
k

)

n2
/

m), leaves a significant gap for future exploration.
We view the dependence onµk−1 from an “algorithmic luckiness” perspective (Herbrich and

Williamson, 2003): if the data are described by a dictionary with low Babel function the general-
ization bounds are encouraging.
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Appendix A. Generalization with Fast Rates

In this appendix we give a proof, essentially due to Andreas Maurer, ofthe fast rates result Proposi-
tion 22. The assumption ofl∞ cover numbers allows a much simpler argument than that in the more
general results by Mendelson (2003) and Bartlett et al. (2005), whichalso leads to better constants
for this case.
Proof (Of Proposition 22) We takeG to be an1

m cover ofF as guaranteed by the assumption. Then
for any f ∈ F , there existsg∈ G such that‖ f −g‖∞ ≤ 1

m, and Lemmas 31 and 33 apply. we have
with probability at least 1−exp(−x), for every f ∈ F :

E f −Em f ≤ Eg+
1
m
−
(

Emg− 1
m

)

(4)

=
2
m
+Eg−Emg

≤ 2
m
+

√

2Varg(d ln(Cm)+x)
m

+
2(d ln(Cm)+x)

3m
(5)

≤ 2
m
+

(

√

Var f +
2
m

)

√

2(d ln(Cm)+x)
m

+
2(d ln(Cm)+x)

3m
(6)

Inequality (4) follows from Lemma 33 and

E f ≤ Eg+
1
m

andEm f ≥ Emg− 1
m
.

Inequality (5) follows from Lemma 31:

Pr

(

∃g∈ G : Eg> Emg+

√

2Varg(d ln(Cm)+x)
m

+
2(d ln(Cm)+x)

3m

)

≤ e−x.
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Inequality (6) follows from Lemma 33 because
√

2Varg(d ln(Cm)+x)
m

=
√

Varg

√

2(d ln(Cm)+x)
m

≤
(

√

Var f +
2
m

)

√

2(d ln(Cm)+x)
m

.

After slight rearrangement, we have

E f −Em f ≤
√

2Var f (d ln(Cm)+x)
m

+
2
m

√

2(d ln(Cm)+x)
m

+
2(d ln(Cm)+x)

3m
+

2
m

≤
√

2Var f (d ln(Cm)+x)
m

+

(

9√
m
+2

)

(d ln(Cm)+x)
3m

+
2
m

(7)

≤
√

2E f (d ln(Cm)+x)
m

+

(

9√
m
+2

)

d ln(Cm)+x
3m

+
2
m

(8)

≤
√

2E f (d ln(Cm)+x)
m

+

(

9√
m
+2

)(

d+3
3d

)

d ln(Cm)+x
m

(9)

Simple algebra, the fact that Varf ≤E f for a [0,1] valued functionf and Lemma 37 respectively
justify inequalities (7), (8) and (9).

For convenience, we denoteK =
(

9√
m+2

)

(

d+3
3d

)

. We also denoteA= Em f +K d ln(Cm)+x
m and

B= (d ln(Cm)+x)/m, and note we have shown that with probability at least 1−exp(−x) we have
E f −A ≤ √

2BE f, which by Lemma 34 impliesE f ≤ A+B+
√

2AB+B2. By substitution and
Lemma 36 we conclude that then:

E f ≤ A+B+
√

2AB+B2

= Em f +K
d ln(Cm)+x

m
+B+

√

2BEm f +2BK
d ln(Cm)+x

m
+B2

≤ Em f +K
d ln(Cm)+x

m
+B+

√

2BEm f +

√

2BK
d ln(Cm)+x

m
+B2

= Em f +

√

2Em f
d ln(Cm)+x

m
+
(

√

(2K+1)+K+1
) d ln(Cm)+x

m

using Lemma 36 for the second inequality.
From Lemma 35 witha= Em f andb= 2(d ln(Cm)+x)/m we find that for everyλ > 0

√

2Em f (d ln(Cm)+x)/m≤ λEm f +
1
2λ

(d ln(Cm)+x)/m

and the proposition follows.

The following lemma encapsulates the probabilistic part of the analysis.

Lemma 31 LetG be a class of[0,1] functions, of finite cardinality|G | ≤ (Cm)d. Then

Pr

(

∃g∈ G : Eg> Emg+

√

2Varg(d ln(Cm)+x)
m

+
2(d ln(Cm)+x)

3m

)

≤ e−x.
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In proving Lemma 31, we use the following well known fact, which we recall for its notations.

Lemma 32 (Bernstein Inequality) Let Xi be independent zero mean variables with|Xi | ≤ c almost

surely then Pr
(

1
m ∑m

i=1Xi > ε
)

≤ exp
(

− mε2

2σ2+2cε/3

)

Proof (Of Lemma 31) DenoteXi = Eg−g(si), where{si}m
i=1 is a set of IID random variables, we

recall the notationEmg= (1/m)∑m
i=1g(si), then∑m

i=1Xi = ∑m
i=1(Eg−g(si)) = mEg−∑m

i=1g(si) =
m(Eg−Em)⇒ 1

m ∑m
i=1Xi = Eg−Em.

Using the fact ourXi areIID and the translation invariance of variance, we have

σ2 =
1
m

m

∑
i=1

Var(Xi)

= Var(Xi)

= Var(Eg−g(si))

= Varg.

Since‖g‖∞ ≤ 1, we also know|Xi | ≤ 1.

Applying the Bernstein Inequality we getPr (Eg−Emg> ε)≤ exp
(

− mε2

2Varg+2ε/3

)

for anyε >
0. We wish to bound the probability of a large deviation by exp(−y), so it is enough forε to satisfy:

exp

(

− mε2

2Varg+2ε/3

)

≤ exp(−y) ⇐⇒ − mε2

2Varg+2ε/3
≤−y

⇐⇒ y≤ mε2

2Varg+2ε/3

⇐⇒ y

(

2Varg+
2ε
3

)

≤ mε2

⇐⇒ 0≤ ε2− 2y
3m

ε− 2yVarg
m

.

This quadratic inequality inε has the roots:

(

2y/(3m)±
√

(2y/(3n))2+8yVarg/m

)

/2 and

a positive coefficient forε2, then we requireε to not be between the roots. The root closer to−∞

is always negative because
√

(2y/(3m))2+8yVarg/m≥
√

(2y/(3m))2 = 2y/(3m), but the other
is always strictly positive, so it is enough to takeε greater than both. In particular, by Lemma 36,

we may chooseε = 2y/(3m)+
√

2yVarg/m≥
(

2y/(3m)±
√

(2y/(3m))2+8yVarg/m

)

/2, and

conclude that

Pr

(

Eg−Eng>
2y
3m

+

√

2yVarg
m

)

≤ exp(−y) .
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Taking a union bound over all|G |, we have:

Pr

(

∃g∈ G : Eg−Emg> y/
2y
3m

+

√

2yVarg
m

)

≤ |G |exp(−y) ⇐⇒

Pr

(

∃g∈ G : Eg−Emg>
2y
3m

+

√

2yVarg
m

)

≤ exp(ln |G |−y)⇒

Pr

(

∃g∈ G : Eg−Emg>
2y
3m

+

√

2yVarg
m

)

≤ exp
(

ln(Cm)d −y
)

.

Then we take−x= ln(Cm)d −y ⇐⇒ y= ln(Cm)d +x and have:

Pr









∃g∈ G : Eg−Emg>
2d ln(Cm)+x

3m
+

√

√

√

√

2Varg
(

ln(Cm)d +x
)

m









≤ exp(−x) .

Lemma 33 Let ‖ f −g‖∞ ≤ ε. Then under any distribution we have|E f −Eg| ≤ ε, and
√

Varg−√
Var f ≤ 2ε

Proof The first part is clear. For the second, we need mostly the triangle inequalityfor norms:

√

Var f −
√

Varg=

√

E ( f −E f)2−
√

E (g−Eg)2

= ‖ f −E f‖L2
−‖g−Eg‖L2

≤ ‖ f −E f −g+Eg‖L2

≤ ‖ f −g‖L2
+‖E f −Eg‖L2

≤ ‖ f −g‖∞ +‖E ( f −g)‖L2

≤ 2‖ f −g‖∞

≤ 2ε.

Lemma 34 If A,B≥ 0 and E f−A≤√
2E f B then E f≤ A+B+

√
2AB+B2.
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Proof First note that ifE f < A, we are done, becauseA,B≥ 0, then we assumeE f ≥ A. Squaring
both sides ofE f −A≤√

2E f Bwe find

(E f −A)2 ≤ 2E f B ⇐⇒ (E f)2−2E f A+A2 ≤ 2E f B

⇐⇒ (E f)2−2E f A−2E f B≤−A2

⇐⇒ (E f)2−2E f A−2E f B+(A+B)2 ≤−A2+(A+B)2

⇐⇒ (E f)2−2E f (A+B)+(A+B)2 ≤−A2+(A+B)2

⇐⇒ (E f − (A+B))2 ≤−A2+(A+B)2

(√
· of non-negative expressions

)

⇐⇒ E f − (A+B)≤+

√

(A+B)2−A2

⇐⇒ E f ≤ (A+B)+
√

2AB+B2.

We omit the easy proofs of the next two lemmata.

Lemma 35 For β > 0,
√

2ab≤ βa+ b
2β .

Lemma 36 For any a,b≥ 0,
√

a+b≤√
a+

√
b

Lemma 37 For d,m≥ 1, x≥ 0 and C≥ e we have

(

9√
m
+2

)

d ln(Cm)+x
3m

+
2
m

≤
(

9√
m
+2

)(

d+3
3d

)

d ln(Cm)+x
m

.

Proof By the assumptions,9√m+2≥ 2 (fact(a)) andd ≤ d ln(Cm)+x (fact (b)). Then

(

9√
m
+2

)

d ln(Cm)+x
3m

+
2
m

=

(

9√
m
+2

)

d ln(Cm)+x
3m

+
2
m

≤
(

9√
m
+2

)

d ln(Cm)+x+3
3m

=

(

9√
m
+2

)

d ln(Cm)+x+ 3
dd

3m

≤
(

9√
m
+2

)

d ln(Cm)+x+ 3
d (d ln(Cm)+x)

3m

=

(

9√
m
+2

)(

d+3
3d

)

d ln(Cm)+x
m

.
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Appendix B. Proof of Theorem 5

In the proof we will use an isoperimetric inequality about the sphere in high dimensions.

Definition 38 Theε expansion of a set S in a metric space(X,d) is defined as

Sε = {x∈ X|d(x,S)≤ ε} ,

where d(x,A) = infa∈Ad(x,a).

Lemma 39 (Lévy’s isoperimetric inequality 1951) Let C be one half of Sn−1, then

µ
((

S
n−1\Cε

))

≤
√

π
8 exp

(

− (n−2)ε2

2

)

.

Proof (Of Theorem 5) For anyp ∈ N we denote[p] = {1, . . . , p} and for i ∈ [p], we defineWi =
maxΛ⊂[p]\i,|Λ|=k ∑λ∈Λ |〈di ,dλ〉|. Then it is enough to prove thatP(∃i ∈ [p] : Wi ≥ δ) ≤
√

π/2p(p−1)exp

(

−(n−2)
(

δ
k

)2
/2

)

.

Wi are identically distributed variables, then by a union bound,P(∃i ∈ [p] : Wi ≥ δ) ≤
pP(W1 ≥ δ).

By definition,P(W1 ≥ δ) =P
(

maxΛ⊂[p]\1,|Λ|=k ∑ j∈Λ
∣

∣

〈

d1,d j
〉∣

∣≥ δ
)

and since∑ j∈Λ
∣

∣

〈

d1,d j
〉∣

∣≤
kmaxj 6=1

∣

∣

〈

d1,d j
〉∣

∣ always,

P(W1 ≥ δ)≤ P

(

kmax
j 6=1

∣

∣

〈

d1,d j
〉∣

∣≥ δ
)

= P

(

max
j 6=1

∣

∣

〈

d1,d j
〉∣

∣≥ δ
k

)

Note that maxj 6=1
∣

∣

〈

d1,d j
〉∣

∣ ≥ δ/k ⇐⇒ ∃ j ∈ [p]\i :
∣

∣d1,d j
∣

∣ ≥ δ/k. Noting the random variables
∣

∣

〈

d1,d j
〉∣

∣ are identically distributed, and using a union bound on the choice ofj, we have
P(W1 ≥ δ)≤ (p−1)P(|〈d1,d2〉| ≥ δ/k).

Since 〈d1,d2〉 is invariant to applying tod1 and d2 the same orthonogonal transformation,
we may assume without loss of generality thatd2 = e1, and with another union bound note that
P(|〈d1,d2〉| ≥ δ/k) = P(|〈e1,d1〉| ≥ δ/k)≤ 2P(〈e1,d1〉 ≥ δ/k).

The fractionδ
k is positive, then the set ofd1 on which〈e1,d1〉< δ/k holds includes the negative

half sphere, and any point withinδ/k of it. Then by the isoperimetric inequality of Lemma 39,

2P(〈e1,d1〉 ≥ δ/k)≤
√

π/2exp
(

−(n−2)(δ/k)2/2
)

.

The theorem results by substitution.
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