Journal of Machine Learning Research 12 (2011) 1389-1423 bm8ted 8/09; Revised 9/10; Published 4/11

Clustering Algorithms for Chains

Antti Ukkonen AUKKONEN @YAHOO-INC.COM
Yahoo! Research

Av. Diagonal 177

08018 Barcelona, Spain

Editor: Marina Meila

Abstract

We consider the problem of clustering a set of chaink tdusters. A chain is a totally ordered
subset of a finite set of items. Chains are an intuitive wayxioress preferences over a set of
alternatives, as well as a useful representation of ratingiguations where the item-specific scores
are either difficult to obtain, too noisy due to measuremerargor simply not as relevant as the
order that they induce over the items. First we adapt thesiclalk-means for chains by proposing
a suitable distance function and a centroid structure. \&& plesent two different approaches for
mapping chains to a vector space. The first one is relatecetpléimted partition model, while the
second one has an intuitive geometrical interpretationallyi we discuss a randomization test for
assessing the significance of a clustering. To this end wsepten MCMC algorithm for sampling
random sets of chains that share certain properties withrigaal data. The methods are studied
in a series of experiments using real and artificial data.uRemdicate that the methods produce
interesting clusterings, and for certain types of inputpriore upon previous work on clustering
algorithms for orders.

Keywords: Lloyd’s algorithm, orders, preference statements, pthptatition model, randomiza-
tion testing

1. Introduction

Clustering (see, e.g., Alpaydin, 2004; Hand et al., 2001) is a traditioohlgm in data analysis.
Given a set of objects, the task is to divide the objects to homogeneouyssdrased on some crite-
ria, typically a distance function between the objects. Cluster analysis phsadions in numerous
fields, and a myriad of different algorithms for various clustering problee& been developed
over the past decades. The reader is referred to the surveys bhyddWansch (2005) and Berkhin
(2006) for a more general discussion about clustering algorithms amdgpications.

This work is aboutlustering a set of orders problem previously studied by Murphy and Mar-
tin (2003), Busse et al. (2007), and Kamishima and Akaho (2009). iRgskf items occur naturally
in various applications, such as preference surveys, decision enalggain voting systems, and
even bioinformatics. As an example, consider the Single transferableyaitars(Tideman, 1995),
where a vote is an ordered subset of the candidates. By clusteringstash the set of voters can
be divided to a number of groups based on their political views. Or, in gepeession analysis it
is sometimes of interest to analyze the order of genes induced by the sgprevels instead of
the actual numeric values (Ben-Dor et al., 2002). In this case a clustmangs genes according
to their activity for example under various environmental conditions.

(©2011 Antti Ukkonen.

UKKONEN

We focus on a particular subclass of (partial) orders, caltedns Informally, chains are totally
ordered subsets of a set of items, meaning that for all items that belongamangnknow the order,
and for items not belonging to the chain the order is unknown. For exangisider a preference
survey about movies where the respondents are requested to ranls tayidnave seen from best
to worst. In this scenario chains are a natural representation for tfergmee statements, as it is
very unlikely that everyone would list the same movies. In a clustering oktsgonses people with
similar preferences should be placed in the same cluster, while people whglgtdisagree should
be placed in different clusters.

This example also illustrates a very useful property of chains as pnekertatements: inde-
pendence of the “scale” used by the respondents when assignirep goothe alternatives. For
example, suppose that person A gives movie X three stars, and movie ¥dige Person B gives
movies X and Y one and three stars, respectively. While these ratingearelifferent, both A
and B prefer movie Y to movie X. If we represent a response as a vefctatimgs, there is a risk
of obtaining clusters that are based on the general level of ratings dniteactual preferences.
That is, one cluster might contain respondents who tend to give low ratirgle another cluster
contains respondents who give high ratings. Clearly this is not a destatdleme if the purpose is
to study the preferences of the respondents. Statements in the forniref lghtaus directly focus on
the relationships between the alternatives. Moreover, the use of claaiadso facilitate preference
elicitation, as people may find it easier to rank a small set of items instead ohiags&gores to
individual items.

Fundamentally the problem of clustering orders does not differ muchtierproblem of clus-
tering any set of objects for which a distance function can be definecreTére some issues,
however. Firstdefining a good distance function for chains is not straightforwae option is
to use existing distance functions for permutations, such as Kendall's 8pearrman’s rho. The
usual approach to accommodate these for chains, as taken for exanifdenishima and Akaho
(2009), is to only consider the common items of two chains. However, if thiashave no over-
lap, which can in practice happen quite often, their distance has to be defs@ute arbitrary way.
The second issue is ttemputational complexityf some of the operations that are commonly used
by clustering algorithms. For instance, running Lloyd’s algorithm (oftdled&-means) requires
the computation of the mean of a set of objects. While this is very easy for mah&puts and
common distance functions, in case of orders one has to solve the ragigaton problem that is
computationally nontrivial; for some choices of the distance function ragkeggtion is NP-hard
(Dwork et al., 2001). We tackle the aforementioned issues on one hafodrbylating the cluster-
ing problem in a way that no computationally hard subproblems are invohexti¢g 2), and on
the other hand by by mapping the chains to a vector space (Section 3).iBy tiak latter approach
the problem of clustering chains is reduced to that of clustering vectd®s3.in

In general clustering algorithms will always produce a clustering. Hewevis not obvious
whether this clustering is reflecting any real phenomena present in thie Dpances are that the
output is simply a consequence of random noise. Therefore, in additiagaathms for finding
a clustering, we also propose a method for assessing the validity of thericlgstere find. Our
approach falls in the framework edindomization testingGood, 2000), where the statistical signif-
icance of a data analysis result is evaluated by running the same analysisuomber of random
data sets. If clusterings of a number of random data sets are indistinigigi$iam a clustering of
real data (according to a relevant test statistic), the validity of the clustiringl in real data can

1390

CLUSTERING ALGORITHMS FORCHAINS

be questioned. To make use of this approach we propose a method &wateg random sets of
chains that share some properties with our original input (Section 4).

1.1 Related Work

Previous research on cluster analysis in general is too numerous tedredbere in full. Instead,
we refer the readers to recent surveys by Xu and Wunsch (20@bBarkhin (2006). For the
problem of clustering orders, surprisingly little work has been done.pfblelem discussed in this
paper is also studied by Kamishima and Akaho (2009), and earlier by Kamiglnid@ujiki (2003).
Murphy and Martin (2003) propose a mixture model for clustering ordéteswever, they only
consider inputs that consist of total orders, that is, every chain in thu¢ inpst order all items iMm.
This restriction is not made by Busse et al. (2007) who study a setting similargoAn important
aspect of their approach is to represent a chain using the set of td&kahat are compatible
with the chain. This idea can also be found in the work by Critchlow (198%], ia a crucial
component of a part of our work in Section 3. Recentlg@éncon and Jakubowicz (2010) propose
a distance function for permutations based on earth mover’s distanceepeti@ebly stochastic
matrices. While this framework seems quite interesting, extending it for cheemssnontrivial.
The use of randomization testing (Good, 2000) in the context of data minisdfivga proposed
by Gionis et al. (2007). Theoretical aspects of the sampling approadtisoussed by Besag and
Clifford (1989) and Besag and Clifford (1991).

1.2 Organization and Contributions of This Paper
The contributions of this paper are the following:

e In Section 2 we adapt Lloyd’s algorithm (Lloyd, 1982) for chains. Thémpaoblem is the
lack of a good distance function for chains, as well as the computationgdlesity of rank
aggregation. At the core of our approach is to consider the probabilitiegirs of items to
precede one another in the cluster.

¢ In Section 3 we present two methods for mapping chains to high-dimensiectarspaces.
The first method aims to preserve the distance between two chains thasanmgedso origi-
nate from the same component in a simple generative model. The second megthessnts
each chain as the mean of the set of linear extensions of the chain. Ourangibwtion here
is Theorem 5 stating that this can be achieved with a very simple mapping.ticupe; it is
not necessary to enumerate the set of linear extensions of a chain.

e In Section 4 we present an MCMC algorithm for uniformly sampling sets ahehthat share
a number of characteristics with a given set of chains. The randomfsgtaios are used for
significance testing.

e In Section 5 we conduct a number of experiments to compare the proposhddveith
existing algorithms for clustering chains. Turns out that the algorithms arenie sense
orthogonal. For smaller data sets the algorithms by Kamishima and Akaho (8i¥@9n
most cases a better result. However, as the input size increases, the prethosed in this
paper outperforms other algorithms.

Many of the results presented have appeared previously as a pae afitthor's doctoral dis-
sertation (Ukkonen, 2008). Theorem 5 in Section 3.2 was presenties égrUkkonen (2007) but

1391

UKKONEN

Algorithm 1 Lloyd’s algorithm
1: k-meansD, k) {Input: D, set of points;k, number of clusters. Output: The clusteridg=
{Dy,...,Dk}.}

2: {Dy,...,Dg} « PickinitialClustersD, k);
3. e+ YK 1 S ep, d(TT CentroidDy));

4: repeat

5: €y < €

6: (o<« {D1,...,Dx};

7. for i« 1,....,k do

8: Di + {xe D |i=argmind(x,CentroidDj)};
9: end for

10. e« YK 3yep d(x,CentroidD;));

11: until e=ep;

12: return (p;

its proof was omitted. Also contents of Section 4 have appeared in less dgiegvious work by
Ukkonen and Mannila (2007).

2. Adapting Lloyd’s Algorithm for Chains

Lloyd’s algorithm, also known ak-means, is one of the most common clustering algorithms. In
this section we address questions related to the use of Lloyd’s algorithmheithsc We start with
the basic definitions used throughout this paper.

2.1 Basic Definitions

Let M be a set omitems. AchainTtis a subset oM together with a total ordery on the items,
meaning that for every,v € mC M we have eithefu,v) € 1 or (v,u) € 1. We use a slightly
simplified notation, and say that the péirv) belongs tat, denotedu,v) € 1, wheneveKu, V) € Tr.
Whenever(u,v) belongs tat, we say that precedes according tat For items inM \ 11, the chain
1tdoes not specify the order in any way. The chais therefore aartial order. Whenrtis defined
over the entire sl of items, we say it is &otal order. LetD be a multiset of chains. A clustering
of D is a disjoint partition oD to k subsets, denotdds, ..., D, so that everyt€ D belongs to one
and only oneD;.

Lloyd’s algorithm (Duda and Hart, 1973; Lloyd, 1982; Ball and Hall, TPénds a clustering
of Dy,..., Dk so that itsreconstruction errordefined as

i % d(x,CentroidD;)), 1)

is at a local minimum. Herd is a distance functiorD; is a cluster, and CentroiD;) refers to a
“center point” of D;. With numerical data one typically uses the mean as the centroid and squared
Euclidean distance at The algorithm is given in Algorithm 1. On every iteration Lloyd’s algo-
rithm updates the clustering by assigning each poiatD to the cluster with the closest centroid.
The PickinitialClusters function on line 2 of Algorithm 1 can be implemented famg{e by se-
lectingk total orders at random, and assigning each chain to the the closest oreesdphisticated

1392

CLUSTERING ALGORITHMS FORCHAINS

techniques, such as the one suggested by Arthur and Vassilvitskii)(28A7also be considered.
The algorithm terminates when the clustering error no longer decreas#s. ti\it the resulting
clustering is not necessarily a global optima of Equation 1, but the algoriimeied up at a local
minimum.

2.2 Problems with Chains

Clustering models are usually based on the concept of distance. In the@fch®rarchical clus-
tering we must be able to compute distances between two objects in the input, \thildayd’s
algorithm we have to compute distances to a centroid. Usually the centroidgbdlmithe same
family of objects as the ones D that we are clustering. However, it can also be something else,
and in particular for the problem of clustering chaitis centroid does not have to be a chain
even a total order. This is very useful, because defining a good distanction for chains is not
straightforward. For example, given the chaits4,5) and(2,3,6), it is not easy to say anything
about their similarity, as they share no common items. We return to this questioim|8&aation 3.1,

but before this we will describe an approach where the distance betweeaains is not required.

Another issue arises from the centroid computation. If we use a total todeepresenting
the centroid we have to solve the rank aggregation problem: given allshaionging to the
clusterC;, we have to compute a total order that is in some sense the “average” dfaims inG;.
This is not trivial, but can be solved by several different apprasicBeme of them have theoretical
performance guarantees, such as the algorithms by Ailon et al. (200&)apersmith et al. (2006),
and some are heuristics that happen to give reasonable results in p¢eticishima and Akaho,
2006). The hardness of rank aggregation also depends on the diftiaation. For the Kendall's
tau the problem is always NP-hard (Dwork et al., 2001), but for Speals rho it can be solved in
polynomial time if all chains in the input happen to be total orders. In the geoase the problem
is NP-hard also for Spearman’s rho (Dwork et al., 2001). Our agbrégato replace the centroid
with a structure that can be computed more efficiently.

2.3 Distances and Centroids

Next we discuss the choice of a centroid and a distance function so thatitAtg 1 can be used
directly with an input consisting of chains. Suppose first that the centfaadctuster is the total
ordert. Observe that can be represented by a matkx whereX;(u,v) = 1 if and only if we have

(u,v) € 1, otherwiseX;(u,v) = 0. We can viewX; as anorder relation This relation is completely
deterministic, since each pdin,v) either belongs, or does not belongrtavioreover, if(u,v) does

not belong tar, the pair(v,u) has to belong ta.

A simple generalization of this is to allow the centroid to contain fractional coritoibs for
the pairs. That is, the pafu,v) may belong to the centroid with a weight that is a value between 0
and 1. We restrict the set of possible weights so that they satisfyrthability constraint defined
asX(u,v) +X(v,u) = 1 for all u,v € M. In this case the centroid corresponds tprababilistic
order relation Below we show that for a suitable distance function this approach leadsaieal
generalization of the case where the centroids are represented by deta tngether with Kendall's
tau as the distance function. However, this relaxation lets us avoid the ggn&gation problem
discussed above.

1393

UKKONEN

Consider the following general definition of a centroid. Given &>sef objects and the clas3
of centroids foiD, we want to find &* € Q, so that

X*=argminy d(m X),
XeQ g

whered(1, X) is a distance betweemandX. Intuitively X* must thus reside at the “center” of the
setD. We letQ be set of probabilistic order relations &y that is, the set ofM| x |M| matrices
satisfying the probability constraint. Given a matixc Q and a chaint, we define the distance
d(m, X) as

dmXx)= Y Xwu? (2)

(uv)em

This choice ofd(1, X) leads to a simple way of computing the optimal centroid, as is shown below.
Note that this distance function is equivalent with Kendall's taXi i$ a deterministic order relation.
To find the centroid of a given sétof chains, we must find a matrix € Q such that the cost

c(X,D) = §D Y X(vu)?
TeD (uv)en

is minimized. By writing the sum in terms of pairs of items instead of chains, we obtain
e(X.D)= 5 3 ColuvX(vu?,
ueM ve

whereCp (u,v) denotes the number of chainsbnwhereu appears before LetU denote the set of
all unordered pairs of items froM. UsingU the above can be written as

c(X,D)= 5 (Co(uv)X(v,u)?+Co(V,u)X(u,v)?).
{uv}eu

As X must satisfy the probability constraint, this becomes

c(X,D) = 2 (Co (U, v)(1—X(u,v))2+Cp (v, u)X (u,v)?). (3)
tuvie e(X,{uv})

To minimize Equation 3 it is enough to independently minimize the individual partseo§uim
corresponding to the pairs th, denoted:(X, {u,v}). Setting the first derivative of this with respect
to X(u,v) equal to zero gives

B Cpo(u,v)
~ Cp(u,v) +Cp(v,u)°

X*(u,v) (4)
That is, the optimal centroid is represented by a matrixvhereX*(u,v) can be seen as a simple
estimate of the probability of iteme M to precede itemr € M in the inputD. This is a natural way
of expressing the the ordering information present in a set of chainswtittaving to construct an
explicit total order.

It is also worth noting that long chains will be consistently further away ftioencentroid than
short chains, because we do not normalize Equation 2 with the length ofidlire CThis is not a
problem, however, since we are only using the distance to assign a chaia tj thek centroids.

1394

CLUSTERING ALGORITHMS FORCHAINS

Distances of two chains of possibly different lengths are not companaialso emphasize that
even if longer chains in some sense contribute more to the centroid, as titainalarger number
of pairs, the contribution to an individual element of the maXiis independent of chain length.

We propose thus to use Lloyd’s algorithm as shown in Algorithm 1 with the distmction in
Equation 2 and the centroid as defined by Equation 4. The algorithm g@s/&r a local optimum,
as the reconstruction error decreases on every step. When assijaing to updated centroids the
error can only decrease (or stay the same) because the chainsgmess clusters that minimize
the error (line 8 of Alg. 1). When we recompute the centroids given theassignment of chains
to clusters, the error is non-increasing as well, because the ceKirqidquation 4) by definition
minimizes the error for every cluster.

3. Mappings to Vector Spaces

In this section we describe an alternative approach to clustering chagtsadl of operating directly
on the chains, we first map them to a vector space. This makes it possiblapaoieothe clustering
using any algorithm that clusters vectors. Note that this will lead to a clustering that dokes
minimize the same objective function as the algorithm described in the previctimnséHowever,
the two approaches are complementary: we can first use the vectorspeesentation to compute
an initial clustering of the chains, and then refine this with Lloyd’s algorithimguthe centroid and
distance function of the previous section. Note that these mappings cabeals®d to visualize
sets of chains (Ukkonen, 2007; Kidwell et al., 2008).

3.1 Graph Representation

The mapping that we describe in this section is based on the adjacency nmattieegraphs where
the chains of the inpuD appear as vertices. These graphs can be seen as special cagesf th
called planted partition model (Condon and Karp, 2001; Shamir and T802)2

3.1.1 MOTIVATION

We return to the question of computing the distance between two chains. Be#in$n’s rho
and Kendall's tau can be modified for chains so that they only consideiothenon items. If the
chainsm; andm have no items in common, we have to use a fixed distance betweand To.
This is done for example by Kamishima and Fujiki (2003), where the distagtweskn two chains
is given by 1- p, wherep € [—1,1] is Spearman’s rho. For two fully correlated chains the distance
becomes 0, and for chains with strong negative correlation the distancéfigh@ chains have no
common items we have = 0 and the distance is 1. We could use the same approach also with the
Kendall distance by defining the distance between the chmiaadrp as the (normalized) Kendall
distance between the permutations that are induced by the common itemsaimd o. If there
are no common items we set the distance .t Wow consider the following example. Lt =
(1,2,3,4,5), o = (6,7,8,9,10), andt = (4,8,2,5,3). By definition we havelk (Ty, ™) = 0.5,
and a simple calculation givel (14, T3) = 0.5 as well. Without any additional information this is
a valid approach.

However, suppose that the inpDthas been generated by the following model: We are given
k partial orderd1j, j = 1,...,k, onM. A chainttis generated by first selecting one of tfigs at
random, then choosing one linear extensiari I1; at random, and finally picking a random subset

1395

UKKONEN

of | items and creating the chain by projectm@n this subset. (This model is later used in the
experiments in Section 5).

Continuing the example, lety, o, andti be defined as above, assume for simplicity that the
;s of the generative model are total orders, and thandm, have been generated by the same
component, the total ordét, 2,3,4,5,6,7,8,9,10), and thati is generated by another component,
the total order(6,7,9,10,4,8,2,5,3,1). Under this assumption it no longer appears meaningful
to havedk (Ty, T®) = dk (T, TB), as the clustering algorithm should separate chains generated by
different components from each other. We would like to hdwet, ™) < dk (T4, T8). Of course
we can a priori not know the underlying components, but when computifgstéedng we are
assuming that they exist.

3.1.2 AGREEMENT AND DISAGREEMENT GRAPHS

Next we propose a method for mapping the chainR't®o that the distances between the vectors
that correspond taoy, To and Ty satisfy the inequality of the example above. In general we want
chains that are generated by the same component to have a shorteredistaach other than

to chains that originate from other components. To this end, we define tiamabsbetween two
chains inD as the distance between their neighborhoods in appropriately constguaets. If the
neighborhoods are similar, that is, there are many chaibsthmat are (in a sense to be formalized
shortly) “close to” bothy andT, we consider alsoy andTp similar to each other. Note that this
definition of distance between two chains is dependent on the Diplit other words, the distance
betweermy andmy, can change if other chains ihare modified.

We say that chains; andmy, agreeif for some itemsau andv we have(u,v) € Ty and(u,V) € To.
Likewise, the chainsy and T, disagreeif for someu andv we have(u,v) € Ty and(v,u) € To.
Note thatry and m can simultaneously both agree and disagree. We define the agreement and
disagreement graphs:

Definition 1 Let Gy(D) and Gy(D) be undirected graphs with chains in D as vertices. The graph
Ga(D) is the agreement graphwhere two vertices are connected by an edge if their respective
chainsagree and do not disagre€he graph @(D) is thedisagreement graplwhere two vertices
are connected by an edge if their respective chdisagree and do not agree

The distance between chains and T, will be a function of the sets of neighboring verticesmaf
andTy in G4(D) andGq4(D). Before giving the precise definition we discuss some theory related to
the graphG,(D). This will shed some light on the hardness of finding a clustering if the iDgat
very sparse.

3.1.3 THE PLANTED PARTITION MODEL

Consider the following stochastic model for creating a random graphveftices. First partition
the set of vertices t& disjoint subsets denotéd,,...,Vk. Then, independently generate edges
between the vertices as follows: add an edge between two vertices thag) belthe same subset
with probability p, and add an edge between two vertices that belong to different subisets w
probabilityg < p. This model, called the planted partition model, was first discussed by Condon
and Karp (2001) and subsequently by Shamir and Tsur (2002). Teeyeoposed algorithms for
recovering the underlying clustering as long as thefyapp — q is not too small.

Assuming a simple process that generates the iDpué can view the agreement gra@q(D)
as an instance of the planted partition model with valugsaridqg that depend on the characteristics

1396

CLUSTERING ALGORITHMS FORCHAINS

of the inputD. More specifically, leD be generated bl total orders on the set of itend$, so that
each chairte D is the projection of one of the total orders on sdrsized subset df1. In theory

we can compute a clustering Bfby applying one of the existing algorithms for the planted partition
model on the grapls,(D). However, this approach may fail in practice. We argue that for realistic
inputsD the graphG,(D) is unlikely to satisfy the condition on the gAprequired by the algorithms
given by Condon and Karp (2001) and Shamir and Tsur (2002). Aiese algorithms are rather
complex to implement.

We start by considering the probability of observing an edge betweendntices in the graph
Ga(D) whenD is generated using the model outlined above. This happens when two raidepe
events are realized. First, the chains corresponding to the vertices awgsahleast 2 common
items, the probability of which we denote by(Ru N 1| > 2). Observe that this is the disjoint
union of events where there are exacttpmmon itemsi, € [2,1]. Therefore, we have By N1p| >
2) =5l _,PrjuNme| = i). Second, the common items must be ordered in the same way in both
of the chains. Denote the probability of this by(RrL;ty) for the case of common items. The
probability of observing an edge betwernandTr, is thus given by the sum

[
_ZZPr(\nlﬂT[ﬂ =1)Pr(my LiTp). (5)

Next we use this to derive the probabilitipsandq of observing an edge between two chains that
belong either to the same, or two different components, respectivelylyleahave Py N1R| =

i) = ()(™) (™ in both cases, as the number of common items is independent of their ordering.
The only part that matters is thus(Rt LiTp). Whenty andTt, belong to thesame componenthis
probability is equal to 1, becausg andty are always guaranteed to order every subset of items in
the same way. Hence Equation 5 gives

(1) 50)0) ®

Whenmy andme belong todifferent componentsve must make sure that the component that emits
T orders the common items in the same wayras (To simplify matters we allow the second
component to be identical to the one that has genemted his will not significantly affect the
subsequent analysis.) The number of permutations iams where the order ofitems is fixed is

m! /il. Since the component af; is sampled uniformly at random from all possible permutations,
we have Py _LiTp) = ™ = 1/il. This together with Equation 5 yields

L (m) "5 OIED o

The algorithm of Condon and Karp (2001) requires a fay orderQ(n*%“) given an input
of sizen to find the correct partitioning (fak = 2). The improved algorithm by Shamir and Tsur
(2002) is shown to produce a correct output witbf orderQ(kn*% logn). Another way of seeing
these results is that &sdecreases more and more data is needeulst increase) for the algorithms
to give good results. Next we study how the gapehaves irG,(D) as a function o = |[M| and
the lengthl of the chains. (Assuming that all chains are of equal length.) Since wee hav

S0 (1-3)
" M

A=p-

1397

UKKONEN

where(1— %) is significantly less than 1 only for very smallsay,i < 3), it is reasonable to bound
A by using an upper bound fqr. We obtain the following theorem:

Theorem 2 Let p and g be defined as in Equations 6 and 7, respectively, add<4ep — q. For

| <m/2, we have
2

I
A<p= O(ﬁ) .
Proof See Appendix A.1. |

The bound expresses how the density of the gagD) depends on the number of itemmsand the
length of the chainé. The gapA becomes smaller anincreases antdecreases. This, combined
with the existing results concernidg means that for short chains over a laijehe inputD has to
be very large for the algorithms of Condon and Karp (2001) and Sharahif sur (2002) to produce
good results. For example with=5 andm = 200, Theorem 2 gives an upper bound ¢8Ior

A. But for example the algorithm of Shamir and Tsur (2002) requivés be lower bounded by
kn~2 log(n) (up to a constant factor). To reach8with k = 2, n must in this case be of order
10°, which can be tricky for applications such as preference surveysteTdgre, we conclude that
for these algorithms to be of practical use a relatively large number of €imireeded if the data
consists of short chains over a large number of different items. Als #hough Theorem 2 is
related to the grap,(D), it gives some theoretical justification to the intuition that increasing the
length of the chains should make the clusters easier to separate.

3.1.4 USING G4(D) AND Gy(D)

In the agreement graph, under ideal circumstances the chaimostly connected to chains gen-
erated by the same componentraAlso, it is easy to see that in the disagreement graph the chain
Ttis (again under ideal circumstances) not connecteghyoof the chains generated by the same
component, and only to chains generated by the other components. Thifalketttaakes it possible

to find the correct clustering by finding<acoloring ofG4(D). Unfortunately this has little practical
value as in real data sets we expect to observe noise that will distorGaah) andGy(D).

Above we argued that representations of two chains emitted by the sameramhgbould be
more alike than representations of two chains emitted by different comportemsider the case
wherek = 2 and both clusters are of sing2. Let f; € R" be the row of the adjacency matrix of
Ga(D) that corresponds to chain Let chainty be generated by the same component,amnd let
T, be generated by a different component. Also, define the similaligtweenf; and fy as the
number of elements where both and fy have the value 1. Consider the expected value of this
similarity under the planted partition model. We have:

n n n

E[S(fr, fry)] = 5p2+§q2:§(p2+q2),
n n

Els(fr, frp)] = >Pa+5ap=nqp

It is easy to see th&[s(fr, fr,)] > E[fr, fr,] if we let p=cq, with c > 1. (This is true ifp andq are
defined as in Equations 6 and 7.) Therefore, at least under these sgsphagions the expected
distance between two chains from the same component is always less trexpduted distance
between two chains from different components. In practice we can centiéradjacency matrices
of Ga(D) andGgy(D) to create the final mapping:

1398

CLUSTERING ALGORITHMS FORCHAINS

Definition 3 Let Gyg = Ga(D) — G4(D), where G(D) and Gy(D) denote the adjacency matrices of
the agreement and disagreement graphs. The representation dfahercin R" is the row of Gg
that corresponds tat

While the analysis above only concei@g(D), we chose to combine both graphs in the final repre-
sentation. This can be motivated by the following example. As abovéy igenote the row of the
adjacency matrix 06,(D) that corresponds to the chamand letg, denote the same f@y(D).
Suppose that the chaim agrees with the chair, meaning thatfr, (1) = 1 andgy, (1) = 0, and

let the chainmy, disagree withi, meaning thatf, (1) = 0 andgr, (1) = 1. Also, assume that the
chaintg neither agrees nor disagrees withmeaning thaff, (1) = gr, (1) = 0. Intuitively, in this
example the distance betwernpandr, should be larger than the distance betwaeandri. With
Gad(D) this property is satisfied, as now in the final representations, definleg &sfy — g, we
havehy, (1) = 1, hy, () = —1, andhg (1) = 0. Using onlyG,4(D) fails to make this distinction,
becausé, (1) = fry (7).

Using the agreement and disagreement graphs has the obvious diaWwhtthe adjacency
matrices 0fG,(D) andGgy (D) are both of sizeé x n, and computing one entry takes time proportional
to 12. Even thoughG,(D) and G¢(D) have the theoretically nice property of being generated by
the planted partition model, using them in practice can be prohibited by thesbilgaissues.
However, there is some experimental evidence that the dBfiygraph is not necessarily needed
(Ukkonen, 2008).

3.2 Hypersphere Representation

Next we devise a method for mapping chains tonadimensional (as opposed tedimensional)
vector space. The mapping can be computed in @f@m). This method has a slightly different
motivation than the one discussed above. Lbe the mapping from the set of all chainsR® and
let d be a distance function iR™. Furthermore, lettbe a chain and denote hr;'? the reverse off,
that is, the chain that orders the same items,dsut in exactly the opposite way. The mappihg
and distancel should satisfy

d(f(m), f(m) = max{d(f(r, f(1())} 8
d(f(m), f(M) = d(f(m), f(1§)) for all m andT. 9

Less formally, we want the reversal of a chain to be furthest away ifrimthe vector space (8), and
the distance betweemandT® should be the same for all chains (9). We proceed by first defining
a mapping for total orders that satisfy the conditions above and thenaljieeethis for chains. In
both cases the mappings have an intuitive geometrical interpretation.

3.2.1 A MAPPING FORTOTAL ORDERS

We define a functiorf that maps total orders f&™ as follows: Lett be a total order oM, and let
T(u) denote the position af € M in 1. For example, iM = {1,...,8} andt = (5,1,6,3,7,2,8,4),
we havet(5) = 1. Consider the vectdt where

m+1
fo(u) = — o=+ T(u) (10)
for all u € M. We define the mapping such thatf (1) = f;/||f;|| = f;. Note that this mapping is a

simple transformation of the Borda count (see, e.g., Moulin, 1991), wdsréidates in an election

1399

UKKONEN

are given points based on their position in the order specified by a voterritey to the example,
according to Equation 10 we have

f =(—25,1.5,-0.5,35—35,—-15,0.5,25),
and as|f;|| = 6.48, we have
f(1) =f; = (—0.39,0.23 —0.08, 0.54, —0.54, —0.23,0.08,0.39).

Whend is thecosine distanceetween two vectors, which in this case is simplyf] f as the vec-
tors are normalized, it is straightforward to check thatatisfies Equations 8 and 9. This mapping
has a geometrical interpretation: all permutations are points on the suffacenedimensional
unit-sphere centered at the origin. Moreover, the permutatiand its reversatR are on exactly
opposite sides of the sphere. That is, the imageias found by mirroring the image af at the
origin.

3.2.2 A MAPPING FORCHAINS

To extend the above for chains we apply the technique used also by Gittt885) and later by
Busse et al. (2007). The idea is to represent a chi@inM by the set of total orders av that are
compatible withrt. That is, we viewrtas a partial order oM and use the set of linear extensibns
of 1t to construct the representatidiiry). More precisely, we wanf (1) to be thecenterof the
points in the sef f (1) : T € E(m) }, wheref is the mapping for permutations defined in the previous
section, ande(m) is the set of linear extensions af Our main contribution in this section is that
despite the size of(m) is (') (m—1)!, we can computd (T) very efficiently. We start by giving a
definition for f (1) that is unrelated t&(m).

Definition 4 Letttbe a chain over M and define the vecfgiso that

MR) iffuem
f"(u>_{ 0 " iff u e Tt D

for all u € M. The mapping f is defined so thard) = fr/||fr]| = fre.

This is a generalization of the mapping for total orders to the case whera aullyset of the items
has been ordered. The following theorem states that this definition nidékgthe center of the set

{f(1):te E(m}.

Theorem 5 If the vectorf; is defined as in Equation 10, and the vectgiis defined as in Equa-
tion 11, then there exists a constant Q so that

fW=Q Y fr(u) (12)

TEE(T)

forallu e M.

1. Alinear extension of a partial ordenis a total order so that(u,v) € T— (u,v) € T.

1400

CLUSTERING ALGORITHMS FORCHAINS

Proof See Appendix A.2. [|

What does this theorem mean in practice? We warj to be the mean of the points that represent
the linear extensions aof, normalized to unit length. Theorem 5 states that this mean has a simple
explicit formula that is given by Equation 11. Thus, when normaliZipge indeed get the normal-
ized mean vectowithout having to sum over all linear extensionstofThis is very important, as
E(m) is so large that simply enumerating all its members is computationally infeasible.

The first advantage of the hypersphere representation over thenagme and disagreement
graphs is efficiency. Computing the vectéggor all chains in the input is of ordeéd(nm), which
is considerably less than the requiremen®on’n?) for the graph based approach. As a downside
we lose the property of having a shorter distance between chains tgghbydhe same component
than between chains generated by different components. The satvardage of the hypersphere
mapping is size. Storing the full graph representation requ@@g) memory, while storing the
hypersphere representation needs @lgm) of storage. This is the same as needed for stdBing
and in most cases less th@(in?) as usually we haven < n.

4. Assessing the Significance of Clusterings

Clustering algorithms will in general always produce a clustering of thetiopjects. However,

it is not obvious that these clusterings are meaningful. If we run one dltwithms discussed
above on a random set of chains, we obtain a clustering as a resultleBrly ¢his clustering has

in practice no meaning. To assess the significance of a clustering of theDnpte compare its
reconstruction error with the errors of clusterings obtained from man@lio a sense made precise
below) sets of chains. If the error from real data is smaller than the drmrsrandom data, we
have evidence for the clustering to be meaningful. The random sets iosamast share certain
aspects with our original inpuD. In this section we define these aspects precisely, and devise a
method for sampling randomized sets of chains that share these aspectgiwgh smputD.

4.1 Randomization Testing and Empiricalp-values

For a thorough discussion of randomization testing, we refer the readlee textbook by Good
(2000). Below we give only a brief outline and necessary definitionsioleby 4 a data analysis
algorithm that take® as the input and produces some output, dengtddl). We can assume that
A(D) is in fact the value of dest statisticthat we are interested in. For the remainder of this
paperA is a clustering algorithm and (D) is the reconstruction error of the clustering found4y
Moreover, denote b4, ...,Dy, a sequence of random sets of chains that share certain properties
with D. These will be defined more formally later.

If the value4(D) considerably deviates from the valug@gD,), ..., 4(Dy), we have some ev-
idence for the output off to be meaningful. In practice this means we can rule out the common
properties of the real and random data sets as the sole causes fosuhe f@und. As usual in
statistical testing we can speak ofiall hypothesis pland aralternative hypothesis H These are
defined as follows:

Ho:4(D) > miin{ﬂ(f)i)}’
H1:A(D) < min{a(Bp)}.

1401

UKKONEN

In statistics thep-valueof a test usually refers to the probability of making an error when
rejectingHp (and acceptindd;). In order to determine the-value one typically needs to make
some assumptions of the distribution of the test statistic. In general, if we Gamao not want
to make such assumptions, we can computeetheirical p-valuebased on the randomized data
sets. This is defined simply as the fraction of cases where the val@é®j is more extreme than
the value4(D). Or more formally, for the one-tailed case whei¢D) is expected to be small
according tdH1, we have

~ {Di:A(Di) <AD)}+1

P= h+1 '
One problem with usingp s that in order to get useful values the number of randomized data
sets must be fairly high. For instance, to hgve- 0.001 we must sample at least 999 data sets.
Depending on the complexity of generating one random data set this mayfibeldifOf course,
already with 99 data sets we can obtain an empifeahlue of Q01 if all random data sets have a
larger value of the test statistic. This should be enough for many pragipbtations.

4.2 Equivalence Classes of Sets of Chains

The random data sets must share some characteristics with the originBl. daiteenD, we define
an equivalence class of sets of chains, so that all sets belonging to tilialegce class have the
same properties d3.

Definition 6 Let Dy and D, be two sets of chains on items of the set M.add D, belong to the
same equivalence class whenever the following three conditions hold.

1. The number of chains of length | is the same ireB in D, for all |.
2. For all M’ C M, the number of chains that contairf s a subset is the same in Bnd D,.

3. We have g, (u,v) = Cp,(u,v) for all u,v € M, where G(u,v) is the number of chains in D
that rank u before v.

Given a seD of chains, we denote the equivalence class specified jth (D). Next we
discuss an algorithm for sampling uniformly fro@{D). But first we elaborate why it is useful to
maintain the properties listed above when testing the significangéyf.

When analyzing chains over the itemsNh the most interesting property is how the chains
actually order the items. In other words, the clustering should reflecorthering information
present inD. This is only one property dD, however. Other properties are those that we mention
in the conditions above. Condition 1 is used to rule out the possibility that the wdld (D) is
somehow caused only by the length distribution of the chaii iNote that this requirement also
implies thatD; andD, are of the same size. Likewise, condition 2 should rule out the possibility
that the result is not a consequence of the rankings, but simply thectwrences of the items.

MaintainingCp (u, V) is motivated from a slightly different point of view. D contained real-
valued vectors instead of chains, it would make sense to maintain the empirealahtihe obser-
vations. The intuition with chains is the same: we vievas a set of points in the space of chains.
The random data sets should be located in the same region of this spBceBys maintaining
Cp(u,v) the randomized data sebs will (in a way) have the same mean Bs This is because the
rank aggregation problem, that is, finding the mean of a set of permutatiange solved using
only theCp(u,Vv) values (Ukkonen, 2008).

1402

CLUSTERING ALGORITHMS FORCHAINS

4.3 An MCMC Algorithm for Sampling from (D)

Next we will discuss a Markov chain Monte Carlo algorithm that samples imifofrom a subset
of C(D) givenD. We can only guarantee that the sample will be from a neighborhobdrot”(D).
Whether this neighborhood covers all@fD) is an open problem.

4.3.1 ALGORITHM OVERVIEW

The MCMC algorithm we propose can be seen as a random walk on arctediigraph withi”(D)

as the set of vertices. Denote this graptGip). The vertice®; andD; of G(D) are connected by
an edge if we obtai, from D; by performing a small local modification ; (and vice versa).
We call this local modification awapand will define it in detail below. First, let us look at a high
level description of the algorithm.

In general, when using MCMC to sample from a distribution, we must constnecMarkov
Chain so that itstationary distributionequals the target distribution we want to sample from. If
all vertices ofG(D) are of equal degree, the stationary distribution will be the uniform distributio
As we want to sample uniformly fron(D), this would be optimal. However, it turns out that the
way we have defined the gragh(D) does not result in the vertices having the same number of
neighboring vertices. To remedy this, we use Metropolis-Hastingslgorithm (see, e.g., Gelman
et al., 2004) for picking the next state. DenoteN¢D;) the set of neighbors of the vert& in
G(D). When the chain is aD;, we pick uniformly at random the verte®;,; from N(D;). The
chain moves td®; 1 with probability

min(m,l), (13)

that is, the move is accepted always wliign; has a smaller degree, and otherwise we move with a
probability that decreases as the degreb;qf increases. If the chain does not move, it stays at the
stateD; and attempts to move again (possibly to some other neighboring vertex) in thetegx

It is easy to show that this modified random walk has the desired propedynvkrging to
a uniform distribution over the set of vertices. Denotedi};) the target distributionwe want
to sample from. In this casp(D;) is the uniform distribution oveC (D). Hence, we must have
p(Di) = p(Dis1) = |C(D)|L. The Metropolis-Hastings algorithm jumps to the next sBatg with
probability min(r,1), where

_ P(Di+1)/J(Dit1|Di)
p(Di)/I(Di|Diy1) -

AboveJ(-|-) is aproposal distributionwhich in this case is simply the uniform distribution over the
neighbors oD; for all i. That is, we have(Dj1|Di) = [N(Dj)|~* andJ(Di|Di;1) = [N(Di;1)| L.
When this is substituted into Equation 14 along with the fact i) = p(D;;1) we obtain Equa-
tion 13.

GivenD, a simple procedure for sampling oBeuniformly from (D) works as follows: we
start fromD = Dg, run the Markov chain resulting in slightly modified ddda on every step.
After s steps we are at the sBt which is ourD. We repeat this process until enough samples from
C(D) have been obtained. It is very important to run the Markov chain longgin¢have a large
enoughs), so that the samples are as uncorrelated as possible with the startin@pasvell as
independent of each other. We will discuss a heuristic for assessiggrieet number steps below.

(14)

1403

UKKONEN

However, guaranteeing that the samples are independent is nontrivéakfdre we only require
the samples to bexchangeableThe following approach, originally proposed by Besag and Clifford
(1989), drawsh sets of chains frong’(D) so that the samples satisfy the exchangeability condition.
We first start the Markov chain fro and run itbackwardgfor s steps. (In practice the way we
define our Markov chain, running it backwards is equivalent to rupitiforwards.) This gives us
the setDg. Next, we run the chain forwards— 1 times fors steps, each time starting froby.
This way the samples are not dependent on each other, but ofly.ohnd since we obtaineB,
by running the Markov chain backwards frdby the samples depend @ in the same way ab
depends o). Note that a somewhat more efficient approach is proposed by Bedagliéord
(1991).

4.3.2 THE SwAP

Above we defined the Markov chain as a random walk over the elemea{¥)f where two states
D andD’ are connected if one can be obtained from the other by a local modificgtarator. \We
call this local modification awapfor reasons that will become apparent shortly. Since the Markov
chain must remain i”(D), the swap may never result in a set of chding C(D). More precisely,
if Djy1 is obtained fromD; by the swap an®; € C(D), thenD;;; must belong ta”(D) as well.
Next we define a swap that has this property.

Formally we define a swap as the tupte, 1o, i, j), wherery andTy, are chainsi is an index of
Ty, andj an index ofrp. To execute the swau, T, i, j), we transpose the items at positiarand
i+1inTy, and at positiongandj +1 in 1. For example, ify = (1,2,3,4,5) andm, = (3,2,6,4,1),
the swap(ty, T, 2, 1) will result in the chainst = (1,3,2,4,5) andtt, = (2,3,6,4,1). The positions
of items 2 and 3 are changed in bathandTp.

Clearly this swap does not affect the number of chains, lengths of ag,ctor the occurrence
frequencies of any itemset as items are not inserted or removed. Toreatiaat also th€p (u,v)s
are preserved, we must pose one additional requirement for the $Wam transposing two adja-
cent items in the chaimy, say,u andv with u originally beforev, Cp(u,V) is decremented by one
as there is one instance lessugfrecedingy after the transposition, ar€h (v, u) is incremented by
one as now there is one instance more whepeecedesl. Obviously, if the swap would change
only 1y, the resulting data set would no longer belongt®) asCp(u,v) andCp (v, u) are changed.
But the second transposition we carry outincancels out the effect the first transposition had on
Cp(u,v) andCp(v,u), and the resulting set of chains remaing’ifD).

Definition 7 Let D be a set of chains and Iat and Ty, belong to D. The tupléry, 1,1, j) is avalid
swapfor D, if the item at the ith position af; is the same as the item at the-jLth position ofrp,
and if the item at i 1th position ofry is the same as the item at the jth positiormpf

The swap we show in the example above is thus a valid swap.

Given the dat®, we may have several valid swaps to choose from. To see how the saicf v
swaps evolves in a single step of the algorithm, consider the following exatgil®; contain the
three chains below:

™ (1,2,3,4,5) ™ (7,8,4,3,6) B (3,2,6,4,1)

The valid swaps in this case am, 13,2, 1) and(Tq, 1@, 3, 3). If we apply the swagm, 0, 3,3) we
obtain the chains

™ (1,2,4,3,5) %: (7,8,3,4,6) : (3,2,6,4,1)

1404

CLUSTERING ALGORITHMS FORCHAINS

Obviously(my, T, 3,3) is still a valid swap, as we can always revert the previous swap. Butenotic
that (T, ™, 2,1) is no longer a valid swap as the items 2 and 3 are not adjacernit innstead
(15, 18,4, 3) is introduced as a new valid swap since now 4 and 6 are adjacght in

Given this definition of the swap, §(D) connected with respect to the valid swaps? Meaning,
can we reach every member ¢fD) starting fromD? This is a desirable property as we want to
sample uniformly fromC(D), but so far this remains an open question.

4.3.3 ONVERGENCE

Above it was mentioned that we must let the Markov chain run long enoughke maeDs is not
correlated with the starting stal®. The chain should haveixed meaning that when we stop it
the probability of landing at a particular stddg actually corresponds to the probabiliDg has in
the stationary distribution of the chain. Determining when a simulated Markaw bha converged
to its stationary distribution is not easy.

Hence we resort to a fairly simple heuristic. An indicator of the current &aBybeing uncor-
related toDg = D is the following measure:

ID|

8(D,Di) = [D|™* 3 A (P(0). Bi0)); (15)
£

whereD(j) is the jth chain inD. Note thatd(D,D;) is always defined, as the chay(j) is a
permutation ofD(j). The distance defined in Equation 15 is thus the average Kendall distance
between the permutationsihandD;. To assess the convergence we observed{@yD;) behaves
asi grows. Whend(D,D;) has converged to some value or is not increasing only at a very low
rate, we assume the current sample is not correlated Dgtmore strongly than with most other
members of"(D).

Note that here we are assuming that the chaifisanelabeled To see what this means consider
the following example with the se andD; both containing four chains.

D(1):1,2,3 Di(1):2,1,3
D(2):4,5,6 Di(2):6,5,4
D(3):2,1,3 Di(3):1,2,3
D(4):6,5,4 Di(4):4,5,6

Here we have obtaineld; from D with the multiple swap operations. The dista@®, D;) is 2

even thouglD andD; clearly are identical as sets. Hence, the measure of Equation 15 caa not b
used for testing this identity. To do this we should compute the Kendall distateeénD(j) and
Di(h(j)), whereh is a bijective mapping between chainddrandD; that minimizes the sum of the
pairwise distances. However, we consider this simple approach suffioretiie purposes of this
paper.

4.3.4 IMPLEMENTATION ISSUES

Until now we have discussed the approach at a general level. Tlaége'a practical issue when im-
plementing the proposed algorithm. The number of valid swaps at a givernsstdtarderO(n’n?)

in the worst case, which can get prohibitively large for storing each sal@p as a tuple explicitly.

Hence, we do not store the tuples, but only maintain two sets that repthsesnttire set of swaps

1405

UKKONEN

but use a factor afi less space. We let
Ap = {{u,v} |3m € Dstuve m AJmp € DStvue T},

whereuv € Tt denotes thati andv are adjacent imt with u beforev. This is the set ofwappable
pairs of items. The size o is of orderO(n¥) in the worst case. In addition, we also have the sets

S(u,v)={meD|uve

for all (u,v) pairs. This is simply a list that contains the set of chains where we can trsespnd

v. Note thatSy(u,v) andSp(v,u) are not the same set. 8 (u,v) we have chains whereappears
beforev, while in S(v,u) are chains where appears befora. The size of eacBy(u,V) is of order

O(n) in the worst case, and the storage requiremenffpandSy is hence onlyO(n?n), a factor
of nless than storing the tuples explicitly.

The sets?p andSy indeed fully represent all possible valid swaps. A valid swap is consttucte
from Ap and & by first picking a swappable pafu,v} from Ap, and then picking two chains,
one fromSy(u,v) and the other frongy(v,u). It is easy to see that a swap constructed this way
must be a valid swap. Also, verifying that there are no valid swaps netited byAp andSy is
straightforward.

There is still one concern. Recall that we want to use the Metropolis-Hggstipproach to
sample from the uniform distribution over(D). In order to do this we must be able to sample
uniformly from the neighbors oD;, and we have to know the precise sizelps neighborhood.
The size of the neighborhodd(D;) is precisely the number of valid swapsat and is given by

IND)[= % [So(uV)]-[Soi(wu)l,
{u,v}eAp,
which is easy to compute givelp, andSp, .
To sample a neighbor @; uniformly at random using\p, andSy;, we first pick the swappable
pair {u, v} from Ap, with the probability
|1 (U, V)] - 1Soi (W, U)|
Pr({u,v}) Ny , (16)
which is simply the fraction of valid swaps N(D;) that affect itemau andv. Thenty and Ty
are sampled uniformly fron$p(u,v) and Sp(v,u) with probabilities|Sp(u,v)|~* and |Sy(v,u)| 4,
respectively. Thus we have

Pr({u,v})-1So(uv)| ™ [So(vu)| =

IN(D)|
as required.

The final algorithm that we calwAP-PAIRS is given in Algorithm 2. It takes as arguments the
dataD and the integes that specifies the number of rounds the algorithm is run. On lines 2—6 we
initialize the set$%p andSp, while lines 8-20 contain the main loop. First, on line 9 the pajv}
is sampled fromAp with the probability given in Equation 16. TheaMPLE-UNIFORM function
simply samples an element from the set it is given as the argument. On lines 18 eedcompute
the neighborhood sizes before and after the swap, respectivelactind swap is carried out by the
APPLY-SWAP function, that modifiestandt in D and update$p and Sy accordingly. Lines 16—
18 implement the Metropolis-Hastings step. Note that it is easier to simply perferswp and
backtrack if the jump should not have been accepted. A swap can beledsanply by applying it
a second time. The functiaraND() returns a uniformly distributed number from the interj@all].

1406

CLUSTERING ALGORITHMS FORCHAINS

Algorithm 2 The swaP-pAIRS algorithm for sampling uniformly front”(D).
1. SWAP-PAIRS(D,)
2: Ap <+ {{u,v} | 3m € Dstuve m A3, € DSstvu e TR}
3: forall {u,v} € Ap do
S(u,v) +{meD|uve
S(u) - {meD |vue T}
end for
i«<0
- whilei <ndo
{u,v} <~ SAMPLE-PAIR(Ap,)
10: Tt SAMPLE-UNIFORM(Sp(u,V))
11: T+ SAMPLE-UNIFORM(Sp(V,u))
12: s« (T, T, 1U),T(V))
13: Noefore = ¥ {uven [So (U, V)] - [So(V,u)|
14: APPLY-SWAP(S,D,Ap,)
15: Nafter <= Y fuvieap 1So (U, V)| - [So(v,u)l
16: if RAND() > e then
17: APPLY-SWAP(S,D,Ap,)
18: endif
190 i+i+1
20: end while
21: return D

© o N O A

5. Experiments

In this section we discuss experiments that demonstrate how our algorithfosnpen various
artificial and real data sets. We consider a two-step algorithm that either with random initial
clusters RND), or a clustering that is computed with standlngheans (initialized with random cen-
troids) in the graph@Rr) or hypersphereHs) representation. This initial clustering is subsequently
refined with the variant of Lloyd’s algorithm discussed in Section 2 to obtarfittal clustering.
We also compare our method against existing approaches by Kamishima ahd @006). These
algorithms, calledMsE andEBC, are similar clustering algorithms for sets of chains, but they are
based on slightly different distance functions and types of centroid. 3&@ ariginal implementa-
tions of TMSE andEBC that were obtained from the authors.

5.1 Data Sets

The artificial data sets are generated by the procedure describedtionSgd.1. In addition to
artificial data we use four real data sets that are all based on publidlgt#easources. The data
consist of preference rankings that are either explicit, derivedpserwed. We say a preference
ranking isexplicitif the preferences are directly given as a ranked list of alternativgseference
ranking isderivedif the ranking is based on item-specific scores, such as movie ratings. Finally
a preference ranking isbservedf it originates from a source where preferences over alternatives
only manifest themselves indirectly in different types of behavior, suchedsserver access logs.

1407

UKKONEN

SUSHI MLENS DUBLIN MSNBC
n 5000 2191 5000 5000
m 100 207 12 17
min. | 10 6 4 6
avg.| 10 13.3 4.8 6.5
max. | 10 15 6 8

Table 1: Key statistics for different real data sets. The number of chhi@smumber of items, and
the length of a chain are denoted tyym, |, respectively.

Key statistics of the data sets are summarized in Table 1. More details ardgioanfor each data
set.

5.1.1 SUSHI

These data are explicit preference rankings of subsets of 100 iterols.cBain is a response from
a survey where participants were asked to rank 10 flavors of sushi in ordeetéqence. Each set
of 10 flavors was chosen randomly from a total set of 100 flavors. dBit@ consists of 5000 such
responses.

5.1.2 MLENS

These data are derived preference rankings of subsets of 207 ifdrasriginal data consists of
movie ratings (1-5 stars) collected by the GrouplCelesearch group at University of Minnesota.
We discarded movies that had been ranked by fewer than 1000 usesgenleft with 207 movies.
Next we pruned users who have not used the entire scale of five sthesrimatings and were left
with 2191 users. We generate one chain per user by first sampling et siilbsovies the user has
rated, so that at most three movies having the same rating are in the samplly. iinarder the
sample according to the ratings and break ties in ratings arbitrarily.

5.1.3 DUBLIN

These data are explicit preference rankings of subsets of 12 items cRain is a vote placed in the
2002 general elections in Irelafidand ranks a subset of 12 candidates from the electoral district of
northern Dublin. We only consider votes that rank at least 4 and at meetdidates and are left
with 17737 chains. Of this we took a random sample of 5000 chains for Higsin

5.1.4 MSNBC

These data are observed preference rankings over 17 items. Eantsbbws the order in which
a user accessed a subset of 17 different sections of a welmsitec(con).> Each chain contains
only the first occurrence of a category, subsequent occurreveresremoved. Also, we selected a

2. The SUSHI data be found bttt p: / / ww. kani shi ma. net/ sushi (29 April 2011).

3. The MLENS data can be foundlatt p: / / ww. gr oupl ens. or g/ node/ 12 (29 April 2011).

4. At the time of publication this data can be found by accessing old versiginshttp://ww.
dubl i ncount yr et ur ni ngof fi cer. conl in the Internet Archive 4ttt p: / / waybackmachi ne. or g.

5. MSNBC data can be found lattt p: // kdd. i cs. uci . edu/ dat abases/ nsnbc/ (29 April 2011).

1408

CLUSTERING ALGORITHMS FORCHAINS

subset of the users who had visited at least 6 and at most 8 diffetegocies and were left with
14598 chains. Again we used a random subset of 5000 chains fondhesis.

5.2 Recovering a Planted Clustering

In this section we discuss experiments on artificial data, with the emphasis ayingfuhe per-
formance of the algorithms under different conditions. These conditiande characterized by
parameters of the input data, such as length of the chains or total numitemef The task is to
recover a “true” clustering that was planted in the input data.

5.2.1 EXPERIMENTAL SETUP

The notion of correctness is difficult to define when it comes to clusteringetaodlVith real data
we do not in general know the correct structure, or if there even istangture to be found. To have
a meaningful definition of a correct clustering, we generate synthetictiataontains a planted
clustering. We compare this with the clusterings found by the algorithms.

To measure the similarity between two clusterings we use a variant of the Rdexl (Rand,
1971) called the Adjusted Rand Index (Lawrence and Phipps, 198&)bdsic Rand Index essen-
tially counts the number of pairs of points where two clusterings agree (bitieassign the points
in the same cluster, or both assign the points in different clusters), norchéljzthe total number
of pairs. The maximum value for two completely agreeing clusterings is thuselddwnside with
this approach is that as the number of clusters increases, even raaditions will have a score
close to 1, which makes it difficult to compare algorithms. The Adjusted Raheklnorrects for
this by normalizing the scores with respect to the expected value of thelguhee the assumption
that the random partition follows a generalized hypergeometric distributiomrrece and Phipps,
1985).

Artificial sets of chains are created with the procedure described in 8e&tlol. Instead of
arbitrary partial orders as the components, we use bucket ordersl@ed partitiony of M. More
specifically, a bucket order dv is a totally ordered set of disjoint subsets (bucketd\lahat cover
all items inM. If the itemsu andv both belong to the buckeé¥l; C M, they are unordered. If
ue M; € M andv e Mj C M, andM; precededvl;, then alsau precedes. We used bucket orders
with 10 buckets in the experiments.

Input sizen is fixed to 2000. We varied the following parameters: length of a chaiatal
number of iteman, and number of clusters in the true clustering We ran the algorithms on
various combinations of these with different valueskothat is, we also wanted to study how the
algorithms behave when the correct number of clusters is not known @nady

5.2.2 GOMPARING INITIALIZATION STRATEGIES

Results for our variant of Lloyd’s algorithm with the three different initiatiaa strategies{s, GR,
andrND) are shown in Figure 1 for a number of combination& ahdm. Here we only plot cases
wherek = K, meaning that the algorithm was given the correct number of clusters anedvThe
grey lines are 95 percent confidence intervals. As on one handsteddey intuition, and on the
other hand by Theorem 2, finding a planted clustering becomes easiar lemngith of the chains
increase. With = 9 the original clustering is found almost always independent of the values
andk. For smaller values dfthe effect ofmandk is stronger. The problem becomes more difficult
asmandk increase. When comparing the initialization strategiessandGR outperformrND.

1409

UKKONEN

20 m =50 m =100

8
8

Figure 1: The Adjusted Rand Index (median over 25 trials) between agmbclustering and the
true clustering as a function of the length of a chain in random data setstogef 2000
chains each. Initialization methods areGR, +: HS, ando: RND. Gray lines indicate 95
percent confidence intervals.

5.2.3 (MOMPARING AGAINST EXISTING METHODS

We compared how our approach using #sinitialization compares with existing algorithms. The
Hs-based variant was chosen because of fairness: The processevte generate artificial data
exactly matches the assumption underlyingdi®eapproach, and hence may give this algorithm an
unfair advantage. Also, thes initialization is faster to compute.

Results are shown in Figure 2 for= 10 andm= 100, andk € {2,6,10}. The total number of
itemsm has a strong effect on the performance. As above, the problemavergeg the clustering
becomes harder asincreases anbddecreases. Our algorithm suffers from very poor performance

1410

CLUSTERING ALGORITHMS FORCHAINS

K=2 K=6 K=10
1 1 1
o
-
i 0.5 0.5 0.5
IS
0
6 3 4 5 6
1 1 1
o
=
n 05 0.5 0.5
1S
4
0 5 2
3 4 5 6 3 4 5 6 3 4 5 6

Figure 2: The Adjusted Rand Index (median over 25 trials) between aeesb clustering and
the true clustering as a function of the length of a chain. Labels-areour algorithm
initialized usingHsS, o: EBC, ¢ TMSE.

with m = 100, while theeBc and TMSE algorithms can recover the planted clustering rather well
also in this case. In contrast, for= 10 and small, our approach yields better results especially
for k > 2. Recall that our algorithm relies on the pairwise probabilities of one itemeocepgie an
other. Wherm = 100 we have 4950 distinct pairs of items, whea= 10 this number is merely 45.
With a largemit is therefore likely that our estimates of the pairwise probabilities are noisylsimp
because there are less observations of individual pairs since thesiapus fixed. By increasing
the size of the input these estimates should become more accurate.

We tested this hypothesis by running an experiment with random data sets tetatiger, that
is, with an input of 20000 chains am = 100 items. We concentrated on two casks: 2 with
| =4, andk = 6 with | = 6. The first corresponds to a situation where there is a small gap between
the performance ofMSE/EBC and our method, and all algorithms show mediocre performance (see
Fig. 2, 2nd row, left column). The second combinatiork@nd| covers a case where this gap is
considerably bigger, anumse/EBcC both do rather well in recovering the planted clustering (see
Fig. 2, 2nd row, middle column). Results are shown in Table 2. Increasengizie of the input
leads to a considerable increase in performance of our algorithm. Thiestisghat for large data
sets the approach based on pairwise probabilities may yield results supeatiose obtained with
existing algorithms.

5.2.4 INKNOWN SIZE OF TRUE CLUSTERING

So far we have only considered cases whetek, that is, the algorithms were given the correct
number of clusters. When analyzing real diatia obviously unknown. We studied the algorithms’
sensitivity to the value ok. Figure 3 shows the Adjusted Rand Index for our algorithm with
initialization, and theeec and TMSE algorithms whemn = 20, andk = 6. All three algorithms

1411

UKKONEN

234567 8910 23456 7 8 910 23456 7 8 910

Figure 3: Adjusted Rand Index (median over 25 trials) as a functidofof different algorithms.
We havex = 6, andm= 20 in each case, the valueldé shown above each curve. Labels
are:+: our algorithm initialized usingis, o: EBC, ©: TMSE.

perform similarly. For short chain$ € 4) the differences are somewhat stronger. While togH
based method seems to be marginally better in recovering the original clustbeng is a lot of
overlap in the confidence intervals, and none of the algorithms is able to fntlud clustering
exactly. We also acknowledge that the stronger performance of our chetittol =5 andl = 6
may be attributed to an implementation detail: Our algorithm is not guaranteed to ketiuisters,

it may return a number less thanf one of the clusters becomes empty during the computation. It
is not clear how the implementationsfise andeBc deal with empty clusters.

5.3 Experiments with Real Data

This experiment was carried out by computinkraay clustering of each data set described in Sec-
tion 5.1 withk ranging from 2 to 10. Performance is measured by the clustering erdafiagd in
Equation 1, using the centroid and distance function that are describextfios2.3. Each com-
bination of algorithm, data, andwas repeated 25 times with a randomly chosen initial clustering.
(Note that even if we initialize our method by computing a clustering using eithéreofector
space representations, the algorithms that compute these must be initializémbaome

Figure 4 shows the reconstruction error as a functiok. dfiote that values on thgaxis have
been normalized by the baseline error of having all chains in the same cllis¢egrror bars indicate
95 percent confidence intervals. TihBC algorithm is omitted from the figures, as this method was
consistently outperformed by the1se algorithm. This result is also in line with previous empirical

\ EBC \ TMSE \ HS init.
2,1=41]0.817 (0.816,0.822) 0.818 (0.816,0.822) 0.891 (0.891, 0.892)
6, =6 | 0.935 (0.932,0.938) 0.937 (0.934,0.939) 0.974 (0.973,0.976)

k
k

Table 2: Adjusted Rand Index (median over 25 trials) for different metlcochputed from artificial
data consisting of 20000 chains wittih= 100 and the shown values fkrandl. Numbers
in parenthesis indicate 95 percent confidence intervals.

1412

CLUSTERING ALGORITHMS FORCHAINS

SUSHI

clustering cost

clustering cost

Figure 4: Reconstruction error as expressed in Equation 1 with the defmafaistance and cen-
troid from Section 2.3 as a function &f The y-axis has been normalized to show the
error as a fraction of the baseline errokef 1. Legend: only standarck-means inGRr
representatiom;: only standarck-means irHS representatiory-: our variant of Lloyd's
algorithm withRND init., x: the TMSE algorithm.

evidence reported by Kamishima and Akaho (2006). We also left outtsesitained with our
algorithm using either of the vector space representations to compute andhititdring. (The
curves forHs and GR therefore show performance that is obtained simply by mapping chains to
the respective vector spaces and running stanklangans.) Contrary to random data (see results
of Section 5.2), these initialization strategies did not give significantly betsedtsethan simple
random initialization.

Our k-means procedure outperforms thesk algorithm with the MSNBC and DUBLIN data
sets. With SUSHI and MLENS the situation is reversed. This statement holaéyalues ok, and
seems robust as the confidence intervals do not overlap. Also, whesurmgaclustering quality
in this way, the results obtained by using only the vector space represastati® considerably
inferior to the other methods. Of course this is not an entirely fair compagdsathe objective
functions differ. In Figure 5 we plot the reconstruction error computét thie distance function
and centroid representation usedbyse. For details, please see Kamishima and Akaho (2006,
Section 3.1). Using this measure, the SUSHI and MLENS data sets demoast®ten stronger
difference between the methods. With MSNBC and DUBLIN our algorithntinaas to perform
somewhat better, albeit this time the confidence intervals overlap. Intefgstfran algorithm is
better, it is better independent of the cost function used to evaluate thie rEer instance, with
MSNBC and DUBLIN our algorithm marginally outperformisse even in terms off MSE's own

1413

UKKONEN

MSNBC SUSHI

clustering cost

2 4 6 8 10 2 4 6 8 10

DUBLIN MLENS

clustering cost

Figure 5: Reconstruction error of a clustering as expressed in Equatiith the definitions of dis-
tance and centroid from Kamishima and Akaho (2006) as a fraction of sediba error
of k= 1. Legend:+: our algorithm with random initialization;: the TMSE algorithm.

cost function, and vice versa with SUSHI and MLENS. These resultmdiee with the ones we
obtain with artificial data. As can be seen in Table 1, the data sets MSNBC dBd.IDN have a
considerably smallem. The experiments in Section 5.2.3 suggest that by collecting more data we
could improve our result for the SUSHI and MLENS data sets.

5.4 Testing Clustering Validity

We use the randomization method of Section 4 to test the interestingness aftidecfasterings. A
clustering is assumed to be interesting if its test statistic substantially differgtieames we obtain
from randomized data. The test statistic we use is the reconstruction exorig Equation 1. The
methods use their respective definitions of distance and centroid to competedhe

To carry out the test, we must first estimate how many swaps are needethio alsingle
sample that is uncorrelated with the original data. To this end we rusmh@-PAIRS algorithm for
10 x 10° swaps on each data set and measi D;) every 01 x 1P swaps. The assumption is
that the datd; are uncorrelated with the initial stalewhend(D, D;) no longer increases. Figure 6
shows how the distana®D, D;) develops with the number of swap$or the data sets. From this
we can read the number of swaps that are needed to obtain approximaiefseleted samples. For
SUSHI and MLENS the Markov chain seems to converge after approximately0® swaps, for
DUBLIN the distanced(D, D;) stabilizes already after abous0x 10° swaps, while with MSNBC
this happens after roughly>310° swaps. The randomized data used in the remaining analysis are

1414

CLUSTERING ALGORITHMS FORCHAINS

SUSHI MLENS
20 25
;W”Ww 20 .
15] 4 o
=k & |77
@: : 9: 151 ¢
“ 10 ok
10
5 5
0 2 4 6 8 1 0 4 6 8 10
i x 10° ! x 10°
DUBLIN MSNBC
4.4 7.5 .
#ﬁ;"-vﬂ‘,,ﬁ;% cﬂm#“’m&é" pF) dé,%mﬂ%"&d:]
4.3} . .2 o o0 O 7 N
ET&::\:DQ& by -l - ‘
o 42|, ’ 1 o 65l
S 41 =
4 6
3.9 5.5
0 2 4 6 8 10 0 2 4 6 8 10
i x 10° i x 10°

Figure 6: The distanc&D, D;) as a function of the number of swaips

computed using these swap counts, respectively. Here we also warmttopithat randomization
is computationally intensive. The table below shows the times to perform18 swaps for the
different data sets.

SUSHI
297

MLENS DUBLIN MSNBC
670 73 81

t (seconds)

We observe tham, the number of chains in the input, does not affect the running tirbet the
number of itemsn plays a significant part. (See also Table 1.)

For the actual analysis we sample 99 random instances from the equi&aless of each data
set, and compare the test statistic with the one obtained from real data. Figjurers the histogram
of the reconstruction error in randomized data together with the minimum, maximehmedian
error over 25 trials with real data. If this interval is clearly to the left of tledgram, it is unlikely
to observe an error of the same magnitude in randomized data. If the inbeerédps with the
histogram, the results should be considered as not significant acctudinig test.

In general the results suggest that the clusterings we obtain from thal detta sets have a
smaller reconstruction error than a clustering computed with the same algarithmafrandomized
data. There are some interesting exceptions, however. For MSNBCHISASd DUBLIN the
clusterings obtained by our method from real data seem considerablythattehose we obtain in
random data, independentl¢f In case of MLENS the results are clearly not significant for Kny
For theTMmsE algorithm the test suggests a significant outcome in case of SUSHI and BlL\i#Nle
for MSNBC and DUBLIN the clustering from real data is not considerddgiter than a clustering
from randomized data.

1415

UKKONEN

6 k=10

=~
1
)
=~
1
iy
o
=~
1l
N
=~
1

RND

E
=

o
Ik - - — -
al
o
o — — — —
@

k=2
| |
\ \
\ \
| |
J\Jil |
0.87 0.65 0.56 0.90
J;
0.98

\ \ \ \
L I I w I I
2 \ \ 2 \
[| | = |
|
0.79 0.65 0.84 0.62 0.55
MSNBC SUSHI
k=2 k=6 k=10 k=2 k=6 k=10

RND

-
=

TMSE
TMSE

0.38

|

| ‘ '

|

|
0.53

Figure 7: Results of randomization testing with our algorithm using initialization and the
TMSE algorithm for different values oK. The numbers are normalized by the clus-
tering error forK = 1. The histograms show the distribution of the clustering error on the
randomized data. The light gray (green online), dashed, and dayKrgichonline) lines
indicate the minimum, median, and maximum of the clustering error on the original data
Both algorithms use their own cost functions.

|

|

|

|

I
0.80 0.55 0.40 0.78 0.59
DUBLIN MLENS

6. Conclusion

We have discussed the problem of clustering chains. First, in Section 2weesgnple definitions
of a centroid and a distance function that can be used together with Lislgdathm k-means) for
computing a clustering directly using chains. In Section 3 we gave two metbodgpping chains
to a high-dimensional vector space. These representations have thda/that any clustering
algorithm can be used. Moreover, a clustering obtained in this way canesfilirther refined using
the technique of Section 2. Mapping chains to vector spaces is an interagbjegt in its own right
and can have many other uses in addition to clustering. For example, thég cesed to visualize
of sets of chains, as was done by Ukkonen (2007), as well as by Kidwal. (2008). Also, we
believe that the connections to the planted partition model (Condon and R@0f; Shamir and
Tsur, 2002) are very interesting at least from a theoretical point @f. vie

1416

CLUSTERING ALGORITHMS FORCHAINS

We also proposed a method for testing if a clustering found in a set of dsaing different from
a clustering of random data. If the value of a suitable test statistic, suck asdbnstruction error,
does not substantially differ between the original input and the randordetadsets the clustering
found in real data is probably not very meaningful. To this end we de@se@dCMC algorithm for
sampling sets of chains that all belong to the same equivalence class as aefiof chains.

In the experiments we compared our methods withrthee andeBsc algorithms by Kamishima
and Akaho (2009). We observe that for some data sets our algorithm pieties results, while for
some other data sets thie1se algorithm is a preferred choice. Interestingly, these differences can
also be seen in the randomization tests. When an algorithm performs poergsilits tend to be
not significant according to the randomization test. Moreover, it seemmtt@ases where themMSE
algorithm is superior, our algorithm does not have enough data to pev@il. Experiments on
artificial data indicate that as the size of the input is increased (and othiales left unchanged),
the performance of our algorithm increases considerably, and euwpertarms theTmMSE algo-
rithm. Therefore, we suspect that by increasing data size we could imgre\performance of our
algorithm also with real data.

The main difference between the algorithms is the notion of distanmsEe essentially uses
a modified version of Spearman’s rank correlation coefficient that isoaitipnal” distance for
permutations, as it only considers the positions in which different items app#a propose a
“pairwise” distance that considers how pairs of items are related to eaeh dthe experiments
suggest that the pairwise approach is more powerful as long as the@uigtedata, but for smaller
data sets positional distances seem more robust. Finding the tipping poimhgdemnput size and
other data parameters where the pairwise approach becomes favombpmsitional distances is
an interesting open question.

Acknowledgments

| would like to thank the anonymous reviewers for their valuable feedbatkhttiped to improve
this manuscript considerably. This work was partly funded by the Acadeihfjinland (grant
131276).

Appendix A. Proofs of Theorems

Proofs of Theorem 2 and Theorem 5 are given below.

A.1 Proof of Theorem 2

The proof is a simple matter of upper bounding Equation 6. First we noteshrag Mandermonde’s
convolution (Graham et al., 1994, Equation 5.22) the sum in Equation 6eceewhitten as

(M- (@) ()

A

Essentially Vandermonde’s convolution states $iat, (1) (T-/) = (), and we simply subtract the
first two terms indicated bg, because above the sum starts fiocm2. Using simple manipulations

1417

UKKONEN

we obtain ,
m—| [
A= (|)(m—2I+1+1)’

which gives the following:

o= (1) (D) (") gzt

With | <m/2 the partﬁz‘|+1 + 1 is lower bounded by 1, and we have

m\ *//m m—| m\ */m—I
() (@)D =2) (")
(m-D! I(m-1)!
- 1_Il(m 20 m
—(m—-1-1)---(m=-21+1)
mm—1)---(m—1+1)
(m—=H(m—-1-21)---(m-21+1)
mf

m=-21+1)" m—(m-2)

- oW

©
N

o,

< 1-

< 1-
We can factom — (m—21)' as follows:

m—(m-2) = (m—(m—2l))<m"1(m—2I)°+m'*2(m—2I)1+
rmt(m—2D) 2 e mP(m—21) - 1)

= 2 I__Zl)m"l‘i(m—Zl)i.

Using this we write

1-1
M_m 1'm'1'm 20,

Lettinga=1—1 and taking one;}—1 out of the sum we get

Q

Sl

R28 D 3 (A m-2ar 1) = D) (' (m-2(a+)

2(a+1)

= loaty ii(l—)i

We assumé = a+ 1 is considerably smaller than, and hencgl — a”)) is at most 1. There are

a+ 1 terms in the sum, so the above is upper boundeﬁl(yvr 1(a+1) = 2%, which concludes
the proof of the theorem.

1418

CLUSTERING ALGORITHMS FORCHAINS

A.2 Proof of Theorem 5

Let ue Tt We start by showing that the claim of Equation 12 holds foudHhat belong tat That

is, we will show that
fe(w) = Q(- ") ar)

T€EE(M)

for all u € T First, note thaf (e« fr(u) can be rewritten as follows

m+1 =TT 7 m+1
5 +1(u) = Z #{T(U):I}(—T-i-I), (18)
T€E(T) i=T1(u)

where #1(u) = i} denotes the number of timesappears at positionin the linear extensions ot
The sum is taken over the ranggu), ..., m— |1 + Ti(u), ast(u) can not be less tham(u), because
the items that appear befoudn 1t must appear before it inas well, likewise for the other end of
the range.

To see what #t(u) =i} is, consider how a linear extensiownf Ttis structured. When appears
at positioni in 1, there are exactlyf(u) — 1 items belonging tat that appear in the— 1 indices to
the left ofu, and|m] — 1(u) items also belonging ta that appear in then—i indices to the right of
u. The ones on the left may choose their indicey(fj)fl) different ways, while the ones on the
right may choose their indices (rpn"f;i(u)) different ways. The remaining items that do not belong
to Ttare assigned in an arbitrary fashion to the remaimning|1] indices. We have thus,

1= (o

When this is substituted into the right side of (18), and after rearrangingtimns slightly, we get
U UV | m—i m+1 .
=m0 5 (s ())
TEE(M) i=T(u)
This can be written as

T felu) = (M- [0S +). (19)

TEE(M)

3= mzlmgmu} (n(iuﬁl) <|nrnl_ni<u>>’ and

i=m(u)

» - mi_m%(mi (st 1) (i)

Let us first look atS,. The part (n('u‘)f l) can be rewritten as follows:

where

i=1\ i (i—1)! mu) i! B [
'<n<u> - 1> = D mw)) i may (n(u))'

UKKONEN

This gives

o E) D

where the second equality is based on Equation 5.26 in Graham et al).(289¢ we must show
that(m“) will appear inS; as well. We can rewrite the sum as follows:

|T+1
3 o) ()2 DG

whereq=T1(u)—1,r =m—1andp = | — 1. Again we apply Equation 5.26 of Graham et al.

(1994) to get
S — _m+1(r+l> m+1<)
N 2 p+1 2 \m

M+1 and have

[T+1

5 — [m+1 m+1<) \ny+1<m+1>
N 2 |m+1\r 2 \Um+1)

WhenS, and$S, are substituted into (19) we have

flw) = (m—)t (3 <:|111> +(u) <|:1111>)’

which is precisely Equation 17 when we @t (m— |11)! \+1

Let u¢ 1t To complete the proof we must still show that Equation 12 also holds for itetimest
do not appear in the cham For suchu we havef;(u) = O by definition. Since we showed above
thatQ > 0, we have to show thgtc £y fi(u) = 0 whenu ¢ Ttto prove the claim.

We'll partition ‘£(1) to disjoint groups defined by index sdtsLet S(1) denote the subset of
£(m) where the items that belong toappear at indices = {iy,...,ijy}. Furthermore, letR =
{m—i1+1,...,m—iy+1}. See Figure 8 for an illustration of the structure of the permutations
that belong taS(1) andS(IR).

Now we can write for every & Tt

which we multiply by ——=

TeE(M)

fr(u) ==

fr(u). (20)
T1€E(M) 2 Zte{S(I)US(IR)}

Thatis, we first sum over all possible index setand then sum over allthat belong to the union of
S(1) andS(IR). Eachl is counted twice (once asand once at?), so we multiply the right hand side
by % To make sure that Equation 20 equals zero, it is enough to showy thag) sr); fr(u) =0
for eachl.

Note that we havé; (u) + fr(u) = 0 because®(u) = m—1(u) + 1. Thatis, the values at indices
j andm— j + 1 cancel each other out. This property will give us the desired result ifam show
that for each permutationc {S(1) US(IR)} where an itenu ¢ rtappears at positiof there exists a
corresponding permutatian, also in{S(1) US(IR)}, whereu appears at positiom— j +1. Denote
by #(S,u, j) the size of the sefft € S| 1(u) = j}.

1420

CLUSTERING ALGORITHMS FORCHAINS

I

|
SO N ™ N |
S(1) | % R

I

Figure 8: Permutations i8(1) have the positions occupied by items that belong to the chain
while permutations ir§(I?) have the positions? occupied by items oft See proof of
Theorem 5.

An index isfreeif it does nobelong to the sefl U IR}. Let j be a free index. By definition of
the setd andIR, m— j+ 1 is also a free index. We havéSfl),u, j) = #(S(1),u,m— j+1). This
holds forS(IR) as well. As a consequence, when we sum over all permutatiofinu (1R},
the values corresponding to ind@andm— j + 1 cancel each other out becausappears equally
many times at positionsandm— j + 1. The total contribution to the sufyc (g usir)y fr(u) of u
appearing at the free indices is therefore zero.

Let j belong tol, meaning it is not free. By definition of the sétandIR, the indexm— j + 1
now belongs tdR, and is also not free. However, because of symmetry we hés@Rg,u, j) =
#(S(1),u,m— j+1). That is, the number of times the itamappears at positionin a permutation
belonging toS(IR) is the same as the number of times it appears at positiof+ 1 in a permutation
belonging taS(I). When we sum over the permutations{(1) U S(I?)}, the values ofi appearing
at positionj in S(IR) are cancelled out by the valueswhppearing at positiom— j +1 in S(1).
The total contribution to the surfi.c(si)usi®)) fr(u) of u appearing at an index ihis therefore
zero as well. This concludes the proof of Theorem 5.

References

N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent infornmati@nking and clus-
tering. InProceedings of the 37th ACM Symposium on Theory of Compuytayes 684—693,
2005.

E. Alpaydin. Introduction to Machine LearningThe MIT Press, 2004.

D Arthur and S Vassilvitskii. k-means++: the advantages of carefulisgeth Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algoritipages 1027-1035, 2007.

G. H. Ball and D. J. Hall. A clustering technique for summarizing multivariate.dBehavioral
Science12:153-155, 1967.

A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering local sture in gene expression
data: the order-preserving submatrix problemPtoceedings of the Sixth Annual International
Conference on Computational Biolggyages 49-57, 2002.

P Berkhin. Grouping Multidimensional Datachapter A Survey of Clustering Data Mining Tech-
niques, pages 25-71. Springer, 2006.

1421

UKKONEN

J. Besag and P. Clifford. Generalized Monte Carlo significance tBstsnetrikg 76(4):633—-642,
1989.

J. Besag and P. Clifford. Sequential Monte Carlaalues.Biometrikg 78(2):301-304, 1991.

L. M. Busse, P. Orbanz, and J. M. Buhmann. Cluster analysis of lygeeous rank data. In
Proceedings of the 24th international conference on Machine learpiages 113-120, 2007.

S Clémencgon and J Jakubowicz. Kantorovich distances between rankithgspplications to rank
aggregation. IrMachine Learning and Knowledge Discovery in Databases, Europearfie€o
ence, ECML PKDD 201,®2010.

A. Condon and R. M. Karp. Algorithms for graph partitioning on the plantedifoon model.
Random Structures and Algorithpi8(2):116—-140, 2001.

D. Coppersmith, L. Fleischer, and A. Rudra. Ordering by weighted nuwbeins gives a good
ranking for weighted tournaments. Rroceedings of the Seventeenth Annual ACM-SIAM Sym-
posium on Discrete Algorithmpages 776—782, 2006.

D. Critchlow. Metric Methods for Analyzing Partially Ranked Datelume 34 ofLecture Notes in
Statistics Springer-Verlag, 1985.

R. O. Duda and P. E. HarRattern Classification and Scene Analyslshn Wiley & Sons, 1973.

C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation austor the web. In
Proceedings of the 10th International World Wide Web Confere2@@l.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. RubBayesian Data AnalysisTexts in Statistical
Science. Chapman & Hall, CRC, 2004.

A. Gionis, H. Mannila, T. Mielikiinen, and P. Tsaparas. Assessing data mining results via swap
randomization ACM Transactions on Knowledge Discovery from Ddt8), 2007.

P | Good. Permutation Tests: A Practical Guide to Resampling Methods for Testingthisges
volume 2 ofSpringer series in statisticsSpringer, 2000.

R. L. Graham, D. E. Knuth, and O. Patashrilancrete Mathematic®\ddison-Wesley, 2nd edition,
1994.

D. Hand, H. Mannila, and P. SmytRrinciples of Data Mining The MIT Press, 2001.

T. Kamishima and S. Akaho. Efficient clustering for orders Warkshops Proceedings of the 6th
IEEE International Conference on Data Miningages 274-278, 2006.

T. Kamishima and S. AkahoMining Complex Datavolume 165 ofStudies in Computational
Intelligence chapter Efficient Clustering for Orders, pages 261-279. Spri2§es.

T. Kamishima and J. Fujiki. Clustering orders. Proceedings of the 6th International Conference
on Discovery Scien¢gpages 194-207, 2003.

P Kidwell, G Lebanon, and W S Cleveland. Visualizing incomplete and partiaikeddatalEEE
Trans. Vis. Comput. Graphl4(6):1356—-1363, 2008.

1422

CLUSTERING ALGORITHMS FORCHAINS

H Lawrence and A Phipps. Comparing partitiodsurnal of Classification2:193-218, 1985.

S. P. Lloyd. Least squares quantization in PAMEE Transactions on Information Theo38(2):
129-137, 1982.

H. Moulin. Axioms of Cooperative Decision MakinGambride Universiy Press, 1991.

T. B. Murphy and D. Martin. Mixtures of distance-based models for iramkiata. Computational
Statistics & Data AnalysisA1:645—-655, 2003.

W M Rand. Obijective criteria for the evaluation of clustering methadtsurnal of the American
Statistical Associatiarn56(336):846—850, 1971.

R. Shamir and D. Tsur. Improved algorithms for the random cluster grapleimtn Proceedings
of Scandanavian Workshop on Algorithms Thepgges 230-239, 2002.

N. Tideman. The single transferable vofeurnal of Economic Perspective1):27—-38, 1995.

A. Ukkonen. Visualizing sets of partial rankings. Agdvances in Intelligent Data Analysis VIl
pages 240-251, 2007.

A. Ukkonen. Algorithms for Finding Orders and Analyzing Sets of ChaiRD thesis, Helsinki
University of Technology, 2008.

A. Ukkonen and H. Mannila. Finding outlying items in sets of partial rankintgs Knowledge
Discovery in Databases: PKDD 200p@ages 265-276, 2007.

R. Xu and D. Wunsch. Survey of clustering algorithmMEEE Transactions on Neural Netwotks
16(3):645-678, 2005.

1423

