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Abstract

We consider the problem of clustering a set of chains tok clusters. A chain is a totally ordered
subset of a finite set of items. Chains are an intuitive way to express preferences over a set of
alternatives, as well as a useful representation of ratingsin situations where the item-specific scores
are either difficult to obtain, too noisy due to measurement error, or simply not as relevant as the
order that they induce over the items. First we adapt the classicalk-means for chains by proposing
a suitable distance function and a centroid structure. We also present two different approaches for
mapping chains to a vector space. The first one is related to the planted partition model, while the
second one has an intuitive geometrical interpretation. Finally we discuss a randomization test for
assessing the significance of a clustering. To this end we present an MCMC algorithm for sampling
random sets of chains that share certain properties with theoriginal data. The methods are studied
in a series of experiments using real and artificial data. Results indicate that the methods produce
interesting clusterings, and for certain types of inputs improve upon previous work on clustering
algorithms for orders.

Keywords: Lloyd’s algorithm, orders, preference statements, planted partition model, randomiza-
tion testing

1. Introduction

Clustering (see, e.g., Alpaydin, 2004; Hand et al., 2001) is a traditional problem in data analysis.
Given a set of objects, the task is to divide the objects to homogeneous groups based on some crite-
ria, typically a distance function between the objects. Cluster analysis has applications in numerous
fields, and a myriad of different algorithms for various clustering problemshave been developed
over the past decades. The reader is referred to the surveys by Xu and Wunsch (2005) and Berkhin
(2006) for a more general discussion about clustering algorithms and their applications.

This work is aboutclustering a set of orders, a problem previously studied by Murphy and Mar-
tin (2003), Busse et al. (2007), and Kamishima and Akaho (2009). Rankings of items occur naturally
in various applications, such as preference surveys, decision analysis, certain voting systems, and
even bioinformatics. As an example, consider the Single transferable vote system (Tideman, 1995),
where a vote is an ordered subset of the candidates. By clustering suchvotes, the set of voters can
be divided to a number of groups based on their political views. Or, in geneexpression analysis it
is sometimes of interest to analyze the order of genes induced by the expression levels instead of
the actual numeric values (Ben-Dor et al., 2002). In this case a clusteringgroups genes according
to their activity for example under various environmental conditions.
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We focus on a particular subclass of (partial) orders, calledchains. Informally, chains are totally
ordered subsets of a set of items, meaning that for all items that belong to a chain we know the order,
and for items not belonging to the chain the order is unknown. For example, consider a preference
survey about movies where the respondents are requested to rank movies they have seen from best
to worst. In this scenario chains are a natural representation for the preference statements, as it is
very unlikely that everyone would list the same movies. In a clustering of the responses people with
similar preferences should be placed in the same cluster, while people who strongly disagree should
be placed in different clusters.

This example also illustrates a very useful property of chains as preference statements: inde-
pendence of the “scale” used by the respondents when assigning scores to the alternatives. For
example, suppose that person A gives movie X three stars, and movie Y fivestars. Person B gives
movies X and Y one and three stars, respectively. While these ratings are very different, both A
and B prefer movie Y to movie X. If we represent a response as a vector of ratings, there is a risk
of obtaining clusters that are based on the general level of ratings instead the actual preferences.
That is, one cluster might contain respondents who tend to give low ratings,while another cluster
contains respondents who give high ratings. Clearly this is not a desirableoutcome if the purpose is
to study the preferences of the respondents. Statements in the form of chains let us directly focus on
the relationships between the alternatives. Moreover, the use of chains can also facilitate preference
elicitation, as people may find it easier to rank a small set of items instead of assigning scores to
individual items.

Fundamentally the problem of clustering orders does not differ much fromthe problem of clus-
tering any set of objects for which a distance function can be defined. There are some issues,
however. First,defining a good distance function for chains is not straightforward. One option is
to use existing distance functions for permutations, such as Kendall’s tau orSpearman’s rho. The
usual approach to accommodate these for chains, as taken for example byKamishima and Akaho
(2009), is to only consider the common items of two chains. However, if the chains have no over-
lap, which can in practice happen quite often, their distance has to be definedin some arbitrary way.
The second issue is thecomputational complexityof some of the operations that are commonly used
by clustering algorithms. For instance, running Lloyd’s algorithm (often called k-means) requires
the computation of the mean of a set of objects. While this is very easy for numerical inputs and
common distance functions, in case of orders one has to solve the rank aggregation problem that is
computationally nontrivial; for some choices of the distance function rank aggregation is NP-hard
(Dwork et al., 2001). We tackle the aforementioned issues on one hand byformulating the cluster-
ing problem in a way that no computationally hard subproblems are involved (Section 2), and on
the other hand by by mapping the chains to a vector space (Section 3). By taking the latter approach
the problem of clustering chains is reduced to that of clustering vectors inR

n.

In general clustering algorithms will always produce a clustering. However, it is not obvious
whether this clustering is reflecting any real phenomena present in the input. Chances are that the
output is simply a consequence of random noise. Therefore, in addition toalgorithms for finding
a clustering, we also propose a method for assessing the validity of the clusterings we find. Our
approach falls in the framework ofrandomization testing(Good, 2000), where the statistical signif-
icance of a data analysis result is evaluated by running the same analysis ona number of random
data sets. If clusterings of a number of random data sets are indistinguishable from a clustering of
real data (according to a relevant test statistic), the validity of the clusteringfound in real data can
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be questioned. To make use of this approach we propose a method for generating random sets of
chains that share some properties with our original input (Section 4).

1.1 Related Work

Previous research on cluster analysis in general is too numerous to be covered here in full. Instead,
we refer the readers to recent surveys by Xu and Wunsch (2005) and Berkhin (2006). For the
problem of clustering orders, surprisingly little work has been done. Theproblem discussed in this
paper is also studied by Kamishima and Akaho (2009), and earlier by Kamishimaand Fujiki (2003).
Murphy and Martin (2003) propose a mixture model for clustering orders. However, they only
consider inputs that consist of total orders, that is, every chain in the input must order all items inM.
This restriction is not made by Busse et al. (2007) who study a setting similar to ours. An important
aspect of their approach is to represent a chain using the set of total orders that are compatible
with the chain. This idea can also be found in the work by Critchlow (1985), and is a crucial
component of a part of our work in Section 3. Recently Clémençon and Jakubowicz (2010) propose
a distance function for permutations based on earth mover’s distance between doubly stochastic
matrices. While this framework seems quite interesting, extending it for chains seems nontrivial.
The use of randomization testing (Good, 2000) in the context of data mining was first proposed
by Gionis et al. (2007). Theoretical aspects of the sampling approach are discussed by Besag and
Clifford (1989) and Besag and Clifford (1991).

1.2 Organization and Contributions of This Paper

The contributions of this paper are the following:

• In Section 2 we adapt Lloyd’s algorithm (Lloyd, 1982) for chains. The main problem is the
lack of a good distance function for chains, as well as the computational complexity of rank
aggregation. At the core of our approach is to consider the probabilities of pairs of items to
precede one another in the cluster.

• In Section 3 we present two methods for mapping chains to high-dimensional vector spaces.
The first method aims to preserve the distance between two chains that are assumed to origi-
nate from the same component in a simple generative model. The second methodrepresents
each chain as the mean of the set of linear extensions of the chain. Our main contribution here
is Theorem 5 stating that this can be achieved with a very simple mapping. In particular, it is
not necessary to enumerate the set of linear extensions of a chain.

• In Section 4 we present an MCMC algorithm for uniformly sampling sets of chains that share
a number of characteristics with a given set of chains. The random sets of chains are used for
significance testing.

• In Section 5 we conduct a number of experiments to compare the proposed method with
existing algorithms for clustering chains. Turns out that the algorithms are in some sense
orthogonal. For smaller data sets the algorithms by Kamishima and Akaho (2009)give in
most cases a better result. However, as the input size increases, the method proposed in this
paper outperforms other algorithms.

Many of the results presented have appeared previously as a part of the author’s doctoral dis-
sertation (Ukkonen, 2008). Theorem 5 in Section 3.2 was presented earlier by Ukkonen (2007) but
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Algorithm 1 Lloyd’s algorithm
1: k-means(D, k) {Input: D, set of points;k, number of clusters. Output: The clusteringC =
{D1, . . . ,Dk}.}

2: {D1, . . . ,Dk}← PickInitialClusters(D, k );
3: e← ∑k

i=1 ∑x∈Di
d(π,Centroid(Di));

4: repeat
5: e0← e;
6: C0←{D1, . . . ,Dk};
7: for i← 1, . . . ,k do
8: Di ←{x∈ D | i = argminj d(x,Centroid(D j)};
9: end for

10: e← ∑k
i=1 ∑x∈Di

d(x,Centroid(Di));
11: until e= e0 ;
12: return C0;

its proof was omitted. Also contents of Section 4 have appeared in less detail inprevious work by
Ukkonen and Mannila (2007).

2. Adapting Lloyd’s Algorithm for Chains

Lloyd’s algorithm, also known ask-means, is one of the most common clustering algorithms. In
this section we address questions related to the use of Lloyd’s algorithm with chains. We start with
the basic definitions used throughout this paper.

2.1 Basic Definitions

Let M be a set ofm items. Achainπ is a subset ofM together with a total orderτπ on the items,
meaning that for everyu,v ∈ π ⊆ M we have either(u,v) ∈ τπ or (v,u) ∈ τπ. We use a slightly
simplified notation, and say that the pair(u,v) belongs toπ, denoted(u,v)∈ π, whenever(u,v)∈ τπ.
Whenever(u,v) belongs toπ, we say thatu precedesv according toπ. For items inM \π, the chain
π does not specify the order in any way. The chainπ is therefore apartial order. Whenπ is defined
over the entire setM of items, we say it is atotal order. LetD be a multiset ofn chains. A clustering
of D is a disjoint partition ofD to k subsets, denotedD1, . . . ,Dk, so that everyπ ∈ D belongs to one
and only oneDi .

Lloyd’s algorithm (Duda and Hart, 1973; Lloyd, 1982; Ball and Hall, 1967) finds a clustering
of D1, . . . ,Dk so that itsreconstruction error, defined as

k

∑
i=1

∑
x∈Di

d(x,Centroid(Di)), (1)

is at a local minimum. Hered is a distance function,Di is a cluster, and Centroid(Di) refers to a
“center point” ofDi . With numerical data one typically uses the mean as the centroid and squared
Euclidean distance asd. The algorithm is given in Algorithm 1. On every iteration Lloyd’s algo-
rithm updates the clustering by assigning each pointx∈ D to the cluster with the closest centroid.
The PickInitialClusters function on line 2 of Algorithm 1 can be implemented for example by se-
lectingk total orders at random, and assigning each chain to the the closest one. More sophisticated
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techniques, such as the one suggested by Arthur and Vassilvitskii (2007) can also be considered.
The algorithm terminates when the clustering error no longer decreases. Note that the resulting
clustering is not necessarily a global optima of Equation 1, but the algorithm can end up at a local
minimum.

2.2 Problems with Chains

Clustering models are usually based on the concept of distance. In the case of hierarchical clus-
tering we must be able to compute distances between two objects in the input, while with Lloyd’s
algorithm we have to compute distances to a centroid. Usually the centroid belongs to the same
family of objects as the ones inD that we are clustering. However, it can also be something else,
and in particular for the problem of clustering chains,the centroid does not have to be a chainor
even a total order. This is very useful, because defining a good distance function for chains is not
straightforward. For example, given the chains(1,4,5) and(2,3,6), it is not easy to say anything
about their similarity, as they share no common items. We return to this question laterin Section 3.1,
but before this we will describe an approach where the distance betweentwo chains is not required.

Another issue arises from the centroid computation. If we use a total orderfor representing
the centroid we have to solve the rank aggregation problem: given all chains belonging to the
clusterCi , we have to compute a total order that is in some sense the “average” of the chains inCi .
This is not trivial, but can be solved by several different approaches. Some of them have theoretical
performance guarantees, such as the algorithms by Ailon et al. (2005) and Coppersmith et al. (2006),
and some are heuristics that happen to give reasonable results in practice(Kamishima and Akaho,
2006). The hardness of rank aggregation also depends on the distance function. For the Kendall’s
tau the problem is always NP-hard (Dwork et al., 2001), but for Spearman’s rho it can be solved in
polynomial time if all chains in the input happen to be total orders. In the general case the problem
is NP-hard also for Spearman’s rho (Dwork et al., 2001). Our approach is to replace the centroid
with a structure that can be computed more efficiently.

2.3 Distances and Centroids

Next we discuss the choice of a centroid and a distance function so that Algorithm 1 can be used
directly with an input consisting of chains. Suppose first that the centroid of a cluster is the total
orderτ. Observe thatτ can be represented by a matrixXτ, whereXτ(u,v) = 1 if and only if we have
(u,v) ∈ τ, otherwiseXτ(u,v) = 0. We can viewXτ as anorder relation. This relation is completely
deterministic, since each pair(u,v) either belongs, or does not belong toτ. Moreover, if(u,v) does
not belong toτ, the pair(v,u) has to belong toτ.

A simple generalization of this is to allow the centroid to contain fractional contributions for
the pairs. That is, the pair(u,v) may belong to the centroid with a weight that is a value between 0
and 1. We restrict the set of possible weights so that they satisfy theprobability constraint, defined
asX(u,v)+X(v,u) = 1 for all u,v ∈ M. In this case the centroid corresponds to aprobabilistic
order relation. Below we show that for a suitable distance function this approach leads to anatural
generalization of the case where the centroids are represented by total orders together with Kendall’s
tau as the distance function. However, this relaxation lets us avoid the rank aggregation problem
discussed above.
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Consider the following general definition of a centroid. Given a setD of objects and the classQ
of centroids forD, we want to find aX∗ ∈Q, so that

X∗ = argmin
X∈Q

∑
π∈D

d(π,X),

whered(π,X) is a distance betweenπ andX. Intuitively X∗ must thus reside at the “center” of the
setD. We letQ be set of probabilistic order relations onM, that is, the set of|M| × |M| matrices
satisfying the probability constraint. Given a matrixX ∈ Q and a chainπ, we define the distance
d(π,X) as

d(π,X) = ∑
(u,v)∈π

X(v,u)2. (2)

This choice ofd(π,X) leads to a simple way of computing the optimal centroid, as is shown below.
Note that this distance function is equivalent with Kendall’s tau ifX is a deterministic order relation.
To find the centroid of a given setD of chains, we must find a matrixX ∈Q such that the cost

c(X,D) = ∑
π∈D

∑
(u,v)∈π

X(v,u)2

is minimized. By writing the sum in terms of pairs of items instead of chains, we obtain

c(X,D) = ∑
u∈M

∑
v∈M

CD(u,v)X(v,u)2,

whereCD(u,v) denotes the number of chains inD whereu appears beforev. LetU denote the set of
all unordered pairs of items fromM. UsingU the above can be written as

c(X,D) = ∑
{u,v}∈U

(
CD(u,v)X(v,u)2+CD(v,u)X(u,v)2).

As X must satisfy the probability constraint, this becomes

c(X,D) = ∑
{u,v}∈U

(
CD(u,v)(1−X(u,v))2+CD(v,u)X(u,v)2

︸ ︷︷ ︸

c(X,{u,v})

)
. (3)

To minimize Equation 3 it is enough to independently minimize the individual parts of the sum
corresponding to the pairs inU , denotedc(X,{u,v}). Setting the first derivative of this with respect
to X(u,v) equal to zero gives

X∗(u,v) =
CD(u,v)

CD(u,v)+CD(v,u)
. (4)

That is, the optimal centroid is represented by a matrixX∗ whereX∗(u,v) can be seen as a simple
estimate of the probability of itemu∈M to precede itemv∈M in the inputD. This is a natural way
of expressing the the ordering information present in a set of chains without having to construct an
explicit total order.

It is also worth noting that long chains will be consistently further away fromthe centroid than
short chains, because we do not normalize Equation 2 with the length of the chain. This is not a
problem, however, since we are only using the distance to assign a chain to one of thek centroids.
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Distances of two chains of possibly different lengths are not compared.We also emphasize that
even if longer chains in some sense contribute more to the centroid, as they contain a larger number
of pairs, the contribution to an individual element of the matrixX is independent of chain length.

We propose thus to use Lloyd’s algorithm as shown in Algorithm 1 with the distance function in
Equation 2 and the centroid as defined by Equation 4. The algorithm converges to a local optimum,
as the reconstruction error decreases on every step. When assigningchains to updated centroids the
error can only decrease (or stay the same) because the chains are assigned to clusters that minimize
the error (line 8 of Alg. 1). When we recompute the centroids given the newassignment of chains
to clusters, the error is non-increasing as well, because the centroidX∗ (Equation 4) by definition
minimizes the error for every cluster.

3. Mappings to Vector Spaces

In this section we describe an alternative approach to clustering chains. Instead of operating directly
on the chains, we first map them to a vector space. This makes it possible to compute the clustering
using any algorithm that clusters vectors. Note that this will lead to a clustering that doesnot
minimize the same objective function as the algorithm described in the previous section. However,
the two approaches are complementary: we can first use the vector spacerepresentation to compute
an initial clustering of the chains, and then refine this with Lloyd’s algorithm using the centroid and
distance function of the previous section. Note that these mappings can alsobe used to visualize
sets of chains (Ukkonen, 2007; Kidwell et al., 2008).

3.1 Graph Representation

The mapping that we describe in this section is based on the adjacency matricesof two graphs where
the chains of the inputD appear as vertices. These graphs can be seen as special cases of the so
called planted partition model (Condon and Karp, 2001; Shamir and Tsur, 2002).

3.1.1 MOTIVATION

We return to the question of computing the distance between two chains. Both Spearman’s rho
and Kendall’s tau can be modified for chains so that they only consider the common items. If the
chainsπ1 andπ2 have no items in common, we have to use a fixed distance betweenπ1 andπ2.
This is done for example by Kamishima and Fujiki (2003), where the distance between two chains
is given by 1−ρ, whereρ ∈ [−1,1] is Spearman’s rho. For two fully correlated chains the distance
becomes 0, and for chains with strong negative correlation the distance is 2. If the chains have no
common items we haveρ = 0 and the distance is 1. We could use the same approach also with the
Kendall distance by defining the distance between the chainsπ1 andπ2 as the (normalized) Kendall
distance between the permutations that are induced by the common items inπ1 andπ2. If there
are no common items we set the distance to 0.5. Now consider the following example. Letπ1 =
(1,2,3,4,5), π2 = (6,7,8,9,10), andπ3 = (4,8,2,5,3). By definition we havedK(π1,π2) = 0.5,
and a simple calculation givesdK(π1,π3) = 0.5 as well. Without any additional information this is
a valid approach.

However, suppose that the inputD has been generated by the following model: We are given
k partial ordersΠ j , j = 1, . . . ,k, on M. A chainπ is generated by first selecting one of theΠ js at
random, then choosing one linear extensionτ of Π j at random, and finally picking a random subset
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of l items and creating the chain by projectingτ on this subset. (This model is later used in the
experiments in Section 5).

Continuing the example, letπ1, π2, andπ3 be defined as above, assume for simplicity that the
Π js of the generative model are total orders, and thatπ1 andπ2 have been generated by the same
component, the total order(1,2,3,4,5,6,7,8,9,10), and thatπ3 is generated by another component,
the total order(6,7,9,10,4,8,2,5,3,1). Under this assumption it no longer appears meaningful
to havedK(π1,π2) = dK(π1,π3), as the clustering algorithm should separate chains generated by
different components from each other. We would like to havedK(π1,π2) < dK(π1,π3). Of course
we can a priori not know the underlying components, but when computing a clustering we are
assuming that they exist.

3.1.2 AGREEMENT AND DISAGREEMENTGRAPHS

Next we propose a method for mapping the chains toR
n so that the distances between the vectors

that correspond toπ1, π2 andπ3 satisfy the inequality of the example above. In general we want
chains that are generated by the same component to have a shorter distance to each other than
to chains that originate from other components. To this end, we define the distance between two
chains inD as the distance between their neighborhoods in appropriately constructedgraphs. If the
neighborhoods are similar, that is, there are many chains inD that are (in a sense to be formalized
shortly) “close to” bothπ1 andπ2, we consider alsoπ1 andπ2 similar to each other. Note that this
definition of distance between two chains is dependent on the inputD. In other words, the distance
betweenπ1 andπ2 can change if other chains inD are modified.

We say that chainsπ1 andπ2 agreeif for some itemsu andv we have(u,v)∈ π1 and(u,v) ∈ π2.
Likewise, the chainsπ1 andπ2 disagreeif for someu andv we have(u,v) ∈ π1 and(v,u) ∈ π2.
Note thatπ1 and π2 can simultaneously both agree and disagree. We define the agreement and
disagreement graphs:

Definition 1 Let Ga(D) and Gd(D) be undirected graphs with chains in D as vertices. The graph
Ga(D) is the agreement graph, where two vertices are connected by an edge if their respective
chainsagree and do not disagree. The graph Gd(D) is thedisagreement graph, where two vertices
are connected by an edge if their respective chainsdisagree and do not agree.

The distance between chainsπ1 andπ2 will be a function of the sets of neighboring vertices ofπ1

andπ2 in Ga(D) andGd(D). Before giving the precise definition we discuss some theory related to
the graphGa(D). This will shed some light on the hardness of finding a clustering if the inputD is
very sparse.

3.1.3 THE PLANTED PARTITION MODEL

Consider the following stochastic model for creating a random graph ofn vertices. First partition
the set of vertices tok disjoint subsets denotedV1, . . . ,Vk. Then, independently generate edges
between the vertices as follows: add an edge between two vertices that belong to the same subset
with probability p, and add an edge between two vertices that belong to different subsets with
probability q < p. This model, called the planted partition model, was first discussed by Condon
and Karp (2001) and subsequently by Shamir and Tsur (2002). They also proposed algorithms for
recovering the underlying clustering as long as the gap∆ = p−q is not too small.

Assuming a simple process that generates the inputD we can view the agreement graphGa(D)
as an instance of the planted partition model with values ofp andq that depend on the characteristics
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of the inputD. More specifically, letD be generated byk total orders on the set of itemsM, so that
each chainπ ∈ D is the projection of one of the total orders on somel -sized subset ofM. In theory
we can compute a clustering ofD by applying one of the existing algorithms for the planted partition
model on the graphGa(D). However, this approach may fail in practice. We argue that for realistic
inputsD the graphGa(D) is unlikely to satisfy the condition on the gap∆ required by the algorithms
given by Condon and Karp (2001) and Shamir and Tsur (2002). Also,these algorithms are rather
complex to implement.

We start by considering the probability of observing an edge between two vertices in the graph
Ga(D) whenD is generated using the model outlined above. This happens when two independent
events are realized. First, the chains corresponding to the vertices must have at least 2 common
items, the probability of which we denote by Pr(|π1∩ π2| ≥ 2). Observe that this is the disjoint
union of events where there are exactlyi common items,i ∈ [2, l ]. Therefore, we have Pr(|π1∩π2| ≥
2) = ∑l

i=2Pr(|π1∩π2| = i). Second, the common items must be ordered in the same way in both
of the chains. Denote the probability of this by Pr(π1⊥iπ2) for the case ofi common items. The
probability of observing an edge betweenπ1 andπ2 is thus given by the sum

l

∑
i=2

Pr(|π1∩π2|= i)Pr(π1⊥iπ2). (5)

Next we use this to derive the probabilitiesp andq of observing an edge between two chains that
belong either to the same, or two different components, respectively. Clearly we have Pr(|π1∩π2|=

i) =
(l

i

)(m−l
l−i

)(m
l

)−1
in both cases, as the number of common items is independent of their ordering.

The only part that matters is thus Pr(π1⊥iπ2). Whenπ1 andπ2 belong to thesame component, this
probability is equal to 1, becauseπ1 andπ2 are always guaranteed to order every subset of items in
the same way. Hence Equation 5 gives

p=

(
m
l

)−1 l

∑
i=2

(
l
i

)(
m− l
l − i

)

. (6)

Whenπ1 andπ2 belong todifferent components, we must make sure that the component that emits
π2 orders the common items in the same way asπ1. (To simplify matters we allow the second
component to be identical to the one that has generatedπ1. This will not significantly affect the
subsequent analysis.) The number of permutations onm items where the order ofi items is fixed is
m!/i!. Since the component ofπ2 is sampled uniformly at random from all possible permutations,
we have Pr(π1⊥iπ2) =

m!
i!m! = 1/i!. This together with Equation 5 yields

q=

(
m
l

)−1 l

∑
i=2

(l
i

)(m−l
l−i

)

i!
. (7)

The algorithm of Condon and Karp (2001) requires a gap∆ of orderΩ(n−
1
2+ε) given an input

of sizen to find the correct partitioning (fork = 2). The improved algorithm by Shamir and Tsur
(2002) is shown to produce a correct output with∆ of orderΩ(kn−

1
2 logn). Another way of seeing

these results is that as∆ decreases more and more data is needed (n must increase) for the algorithms
to give good results. Next we study how the gap∆ behaves inGa(D) as a function ofm= |M| and
the lengthl of the chains. (Assuming that all chains are of equal length.) Since we have

∆ = p−q=
∑l

i=2

(l
i

)(m−l
l−i

)(

1− 1
i!

)

(m
l

) ,
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where(1− 1
i! ) is significantly less than 1 only for very smalli (say,i ≤ 3), it is reasonable to bound

∆ by using an upper bound forp. We obtain the following theorem:

Theorem 2 Let p and q be defined as in Equations 6 and 7, respectively, and let∆ = p−q. For
l < m/2, we have

∆ < p= O
( l2

m

)

.

Proof See Appendix A.1.

The bound expresses how the density of the graphGa(D) depends on the number of itemsmand the
length of the chainsl . The gap∆ becomes smaller asm increases andl decreases. This, combined
with the existing results concerning∆, means that for short chains over a largeM the inputD has to
be very large for the algorithms of Condon and Karp (2001) and Shamir and Tsur (2002) to produce
good results. For example withl = 5 andm= 200, Theorem 2 gives an upper bound of 1/8 for
∆. But for example the algorithm of Shamir and Tsur (2002) requires∆ to be lower bounded by
kn−

1
2 log(n) (up to a constant factor). To reach 1/8 with k = 2, n must in this case be of order

105, which can be tricky for applications such as preference surveys. Therefore, we conclude that
for these algorithms to be of practical use a relatively large number of chains is needed if the data
consists of short chains over a large number of different items. Also, even though Theorem 2 is
related to the graphGa(D), it gives some theoretical justification to the intuition that increasing the
length of the chains should make the clusters easier to separate.

3.1.4 USING Ga(D) AND Gd(D)

In the agreement graph, under ideal circumstances the chainπ is mostly connected to chains gen-
erated by the same component asπ. Also, it is easy to see that in the disagreement graph the chain
π is (again under ideal circumstances) not connected toany of the chains generated by the same
component, and only to chains generated by the other components. This latterfact makes it possible
to find the correct clustering by finding ak-coloring ofGd(D). Unfortunately this has little practical
value as in real data sets we expect to observe noise that will distort bothGa(D) andGd(D).

Above we argued that representations of two chains emitted by the same component should be
more alike than representations of two chains emitted by different components.Consider the case
wherek = 2 and both clusters are of sizen/2. Let fπ ∈ R

n be the row of the adjacency matrix of
Ga(D) that corresponds to chainπ. Let chainπ1 be generated by the same component asπ, and let
π2 be generated by a different component. Also, define the similaritys betweenfπ and fπ′ as the
number of elements where bothfπ and fπ′ have the value 1. Consider the expected value of this
similarity under the planted partition model. We have:

E[s( fπ, fπ1)] =
n
2

p2+
n
2

q2 =
n
2
(p2+q2),

E[s( fπ, fπ2)] =
n
2

pq+
n
2

qp= nqp.

It is easy to see thatE[s( fπ, fπ1)]> E[ fπ, fπ2] if we let p= cq, with c> 1. (This is true ifp andq are
defined as in Equations 6 and 7.) Therefore, at least under these simple assumptions the expected
distance between two chains from the same component is always less than theexpected distance
between two chains from different components. In practice we can combine the adjacency matrices
of Ga(D) andGd(D) to create the final mapping:

1398



CLUSTERING ALGORITHMS FORCHAINS

Definition 3 Let Gad = Ga(D)−Gd(D), where Ga(D) and Gd(D) denote the adjacency matrices of
the agreement and disagreement graphs. The representation of the chain π in R

n is the row of Gad

that corresponds toπ.

While the analysis above only concernsGa(D), we chose to combine both graphs in the final repre-
sentation. This can be motivated by the following example. As above, letfπ denote the row of the
adjacency matrix ofGa(D) that corresponds to the chainπ, and letgπ denote the same forGd(D).
Suppose that the chainπ1 agrees with the chainπ, meaning thatfπ1(π) = 1 andgπ1(π) = 0, and
let the chainπ2 disagree withπ, meaning thatfπ2(π) = 0 andgπ2(π) = 1. Also, assume that the
chainπ3 neither agrees nor disagrees withπ, meaning thatfπ3(π) = gπ3(π) = 0. Intuitively, in this
example the distance betweenπ1 andπ2 should be larger than the distance betweenπ1 andπ3. With
Gad(D) this property is satisfied, as now in the final representations, defined ashπi = fπi −gπi , we
havehπ1(π) = 1, hπ2(π) = −1, andhπ3(π) = 0. Using onlyGa(D) fails to make this distinction,
becausefπ2(π) = fπ3(π).

Using the agreement and disagreement graphs has the obvious drawback that the adjacency
matrices ofGa(D) andGd(D) are both of sizen×n, and computing one entry takes time proportional
to l2. Even thoughGa(D) andGd(D) have the theoretically nice property of being generated by
the planted partition model, using them in practice can be prohibited by these scalability issues.
However, there is some experimental evidence that the entireGad graph is not necessarily needed
(Ukkonen, 2008).

3.2 Hypersphere Representation

Next we devise a method for mapping chains to anm-dimensional (as opposed ton-dimensional)
vector space. The mapping can be computed in timeO(nm). This method has a slightly different
motivation than the one discussed above. Letf be the mapping from the set of all chains toR

m and
let d be a distance function inRm. Furthermore, letπ be a chain and denote byπR the reverse ofπ,
that is, the chain that orders the same items asπ, but in exactly the opposite way. The mappingf
and distanced should satisfy

d( f (π), f (πR)) = max
π′
{d( f (π), f (π′))} (8)

d( f (π1), f (πR
1)) = d( f (π2), f (πR

2)) for all π1 andπ2. (9)

Less formally, we want the reversal of a chain to be furthest away fromit in the vector space (8), and
the distance betweenπ andπR should be the same for all chains (9). We proceed by first defining
a mapping for total orders that satisfy the conditions above and then generalize this for chains. In
both cases the mappings have an intuitive geometrical interpretation.

3.2.1 A MAPPING FORTOTAL ORDERS

We define a functionf that maps total orders toRm as follows: Letτ be a total order onM, and let
τ(u) denote the position ofu∈M in τ. For example, ifM = {1, . . . ,8} andτ = (5,1,6,3,7,2,8,4),
we haveτ(5) = 1. Consider the vectorfτ where

fτ(u) =−
m+1

2
+ τ(u) (10)

for all u∈M. We define the mappingf such thatf (τ) = fτ/‖fτ‖ = f̂τ. Note that this mapping is a
simple transformation of the Borda count (see, e.g., Moulin, 1991), wherecandidates in an election
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are given points based on their position in the order specified by a vote. Returning to the example,
according to Equation 10 we have

fτ = (−2.5,1.5,−0.5,3.5,−3.5,−1.5,0.5,2.5),

and as‖fτ‖= 6.48, we have

f (τ) = f̂τ = (−0.39,0.23,−0.08,0.54,−0.54,−0.23,0.08,0.39).

Whend is thecosine distancebetween two vectors, which in this case is simply 1− f̂T
τ f̂τ′ as the vec-

tors are normalized, it is straightforward to check thatf̂τ satisfies Equations 8 and 9. This mapping
has a geometrical interpretation: all permutations are points on the surface of an m-dimensional
unit-sphere centered at the origin. Moreover, the permutationτ and its reversalτR are on exactly
opposite sides of the sphere. That is, the image ofτR is found by mirroring the image ofτ at the
origin.

3.2.2 A MAPPING FORCHAINS

To extend the above for chains we apply the technique used also by Critchlow (1985) and later by
Busse et al. (2007). The idea is to represent a chainπ on M by the set of total orders onM that are
compatible withπ. That is, we viewπ as a partial order onM and use the set of linear extensions1

of π to construct the representationf (π). More precisely, we wantf (π) to be thecenterof the
points in the set{ f (τ) : τ ∈E(π)}, wheref is the mapping for permutations defined in the previous
section, andE(π) is the set of linear extensions ofπ. Our main contribution in this section is that
despite the size ofE(π) is

(m
l

)
(m− l)!, we can computef (π) very efficiently. We start by giving a

definition for f (π) that is unrelated toE(π).

Definition 4 Let π be a chain over M and define the vectorfπ so that

fπ(u) =

{

− |π|+1
2 +π(u) iff u ∈ π,

0 iff u 6∈ π,
(11)

for all u ∈M. The mapping f is defined so that f(π) = fπ/‖fπ‖= f̂π.

This is a generalization of the mapping for total orders to the case where onlya subset of the items
has been ordered. The following theorem states that this definition makesf (π) the center of the set
{ f (τ) : τ ∈ E(π)}.

Theorem 5 If the vectorfτ is defined as in Equation 10, and the vectorfπ is defined as in Equa-
tion 11, then there exists a constant Q so that

fπ(u) = Q ∑
τ∈E(π)

fτ(u) (12)

for all u ∈M.

1. A linear extension of a partial orderπ is a total orderτ so that(u,v) ∈ π→ (u,v) ∈ τ.
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Proof See Appendix A.2.

What does this theorem mean in practice? We wantf (π) to be the mean of the points that represent
the linear extensions ofπ, normalized to unit length. Theorem 5 states that this mean has a simple
explicit formula that is given by Equation 11. Thus, when normalizingfπ we indeed get the normal-
ized mean vectorwithout having to sum over all linear extensions ofπ. This is very important, as
E(π) is so large that simply enumerating all its members is computationally infeasible.

The first advantage of the hypersphere representation over the agreement and disagreement
graphs is efficiency. Computing the vectorsfπ for all chains in the input is of orderO(nm), which
is considerably less than the requirement ofO(n2m2) for the graph based approach. As a downside
we lose the property of having a shorter distance between chains generated by the same component
than between chains generated by different components. The second advantage of the hypersphere
mapping is size. Storing the full graph representation requiresO(n2) memory, while storing the
hypersphere representation needs onlyO(nm) of storage. This is the same as needed for storingD,
and in most cases less thanO(n2) as usually we havem≪ n.

4. Assessing the Significance of Clusterings

Clustering algorithms will in general always produce a clustering of the input objects. However,
it is not obvious that these clusterings are meaningful. If we run one of thealgorithms discussed
above on a random set of chains, we obtain a clustering as a result. But clearly this clustering has
in practice no meaning. To assess the significance of a clustering of the input D, we compare its
reconstruction error with the errors of clusterings obtained from random (in a sense made precise
below) sets of chains. If the error from real data is smaller than the errorsfrom random data, we
have evidence for the clustering to be meaningful. The random sets of chains must share certain
aspects with our original inputD. In this section we define these aspects precisely, and devise a
method for sampling randomized sets of chains that share these aspects with agiven inputD.

4.1 Randomization Testing and Empiricalp-values

For a thorough discussion of randomization testing, we refer the reader tothe textbook by Good
(2000). Below we give only a brief outline and necessary definitions. Denote byA a data analysis
algorithm that takesD as the input and produces some output, denotedA(D). We can assume that
A(D) is in fact the value of atest statisticthat we are interested in. For the remainder of this
paperA is a clustering algorithm andA(D) is the reconstruction error of the clustering found byA .
Moreover, denote bỹD1, . . . , D̃h a sequence of random sets of chains that share certain properties
with D. These will be defined more formally later.

If the valueA(D) considerably deviates from the valuesA(D̃1), . . . ,A(D̃h), we have some ev-
idence for the output ofA to be meaningful. In practice this means we can rule out the common
properties of the real and random data sets as the sole causes for the results found. As usual in
statistical testing we can speak of anull hypothesis H0 and analternative hypothesis H1. These are
defined as follows:

H0 : A(D) ≥ min
i
{A(D̃i)},

H1 : A(D) < min
i
{A(D̃i)}.
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In statistics thep-valueof a test usually refers to the probability of making an error when
rejectingH0 (and acceptingH1). In order to determine thep-value one typically needs to make
some assumptions of the distribution of the test statistic. In general, if we cannot, or do not want
to make such assumptions, we can compute theempirical p-valuebased on the randomized data
sets. This is defined simply as the fraction of cases where the value ofA(D̃i) is more extreme than
the valueA(D). Or more formally, for the one-tailed case whereA(D) is expected to be small
according toH1, we have

p̂=
|{D̃i : A(D̃i)≤ A(D)}|+1

h+1
.

One problem with using ˆp is that in order to get useful values the number of randomized data
sets must be fairly high. For instance, to have ˆp = 0.001 we must sample at least 999 data sets.
Depending on the complexity of generating one random data set this may be difficult. Of course,
already with 99 data sets we can obtain an empiricalp-value of 0.01 if all random data sets have a
larger value of the test statistic. This should be enough for many practical applications.

4.2 Equivalence Classes of Sets of Chains

The random data sets must share some characteristics with the original dataD. GivenD, we define
an equivalence class of sets of chains, so that all sets belonging to this equivalence class have the
same properties asD.

Definition 6 Let D1 and D2 be two sets of chains on items of the set M. D1 and D2 belong to the
same equivalence class whenever the following three conditions hold.

1. The number of chains of length l is the same in D1 as in D2 for all l.

2. For all M′ ⊆M, the number of chains that contain M′ as a subset is the same in D1 and D2.

3. We have CD1(u,v) = CD2(u,v) for all u,v∈ M, where CD(u,v) is the number of chains in D
that rank u before v.

Given a setD of chains, we denote the equivalence class specified byD with C (D). Next we
discuss an algorithm for sampling uniformly fromC (D). But first we elaborate why it is useful to
maintain the properties listed above when testing the significance ofA(D).

When analyzing chains over the items inM, the most interesting property is how the chains
actually order the items. In other words, the clustering should reflect theordering information
present inD. This is only one property ofD, however. Other properties are those that we mention
in the conditions above. Condition 1 is used to rule out the possibility that the value of A(D) is
somehow caused only by the length distribution of the chains inD. Note that this requirement also
implies thatD1 andD2 are of the same size. Likewise, condition 2 should rule out the possibility
that the result is not a consequence of the rankings, but simply the co-occurrences of the items.

MaintainingCD(u,v) is motivated from a slightly different point of view. IfD contained real-
valued vectors instead of chains, it would make sense to maintain the empirical mean of the obser-
vations. The intuition with chains is the same: we viewD as a set of points in the space of chains.
The random data sets should be located in the same region of this space asD. By maintaining
CD(u,v) the randomized data setsD̃i will (in a way) have the same mean asD. This is because the
rank aggregation problem, that is, finding the mean of a set of permutations,can be solved using
only theCD(u,v) values (Ukkonen, 2008).
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4.3 An MCMC Algorithm for Sampling from C (D)

Next we will discuss a Markov chain Monte Carlo algorithm that samples uniformly from a subset
of C (D) givenD. We can only guarantee that the sample will be from a neighborhood ofD in C (D).
Whether this neighborhood covers all ofC (D) is an open problem.

4.3.1 ALGORITHM OVERVIEW

The MCMC algorithm we propose can be seen as a random walk on an undirected graph withC (D)
as the set of vertices. Denote this graph byG(D). The verticesD1 andD2 of G(D) are connected by
an edge if we obtainD2 from D1 by performing a small local modification toD1 (and vice versa).
We call this local modification aswapand will define it in detail below. First, let us look at a high
level description of the algorithm.

In general, when using MCMC to sample from a distribution, we must construct the Markov
Chain so that itsstationary distributionequals the target distribution we want to sample from. If
all vertices ofG(D) are of equal degree, the stationary distribution will be the uniform distribution.
As we want to sample uniformly fromC (D), this would be optimal. However, it turns out that the
way we have defined the graphG(D) does not result in the vertices having the same number of
neighboring vertices. To remedy this, we use theMetropolis-Hastingsalgorithm (see, e.g., Gelman
et al., 2004) for picking the next state. Denote byN(Di) the set of neighbors of the vertexDi in
G(D). When the chain is atDi , we pick uniformly at random the vertexDi+1 from N(Di). The
chain moves toDi+1 with probability

min(
|N(Di)|

|N(Di+1)|
,1), (13)

that is, the move is accepted always whenDi+1 has a smaller degree, and otherwise we move with a
probability that decreases as the degree ofDi+1 increases. If the chain does not move, it stays at the
stateDi and attempts to move again (possibly to some other neighboring vertex) in the next step.

It is easy to show that this modified random walk has the desired property ofconverging to
a uniform distribution over the set of vertices. Denote byp(Di) the target distributionwe want
to sample from. In this casep(Di) is the uniform distribution overC (D). Hence, we must have
p(Di) = p(Di+1) = |C (D)|−1. The Metropolis-Hastings algorithm jumps to the next stateDi+1 with
probability min(r,1), where

r =
p(Di+1)/J(Di+1|Di)

p(Di)/J(Di |Di+1)
. (14)

AboveJ(·|·) is aproposal distribution, which in this case is simply the uniform distribution over the
neighbors ofDi for all i. That is, we haveJ(Di+1|Di) = |N(Di)|

−1 andJ(Di |Di+1) = |N(Di+1)|
−1.

When this is substituted into Equation 14 along with the fact thatp(Di) = p(Di+1) we obtain Equa-
tion 13.

GivenD, a simple procedure for sampling oneD̃ uniformly from C (D) works as follows: we
start fromD = D0, run the Markov chain resulting in slightly modified dataDi on every stepi.
After ssteps we are at the setDs which is ourD̃. We repeat this process until enough samples from
C (D) have been obtained. It is very important to run the Markov chain long enough (have a large
enoughs), so that the samples are as uncorrelated as possible with the starting pointD, as well as
independent of each other. We will discuss a heuristic for assessing thecorrect number steps below.
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However, guaranteeing that the samples are independent is nontrivial. Therefore we only require
the samples to beexchangeable. The following approach, originally proposed by Besag and Clifford
(1989), drawsh sets of chains fromC (D) so that the samples satisfy the exchangeability condition.
We first start the Markov chain fromD and run itbackwardsfor s steps. (In practice the way we
define our Markov chain, running it backwards is equivalent to running it forwards.) This gives us
the setD̃0. Next, we run the chain forwardsh− 1 times fors steps, each time starting from̃D0.
This way the samples are not dependent on each other, but only onD̃0. And since we obtained̃D0

by running the Markov chain backwards fromD, the samples depend oñD0 in the same way asD
depends oñD0. Note that a somewhat more efficient approach is proposed by Besag and Clifford
(1991).

4.3.2 THE SWAP

Above we defined the Markov chain as a random walk over the elements ofC (D), where two states
D andD′ are connected if one can be obtained from the other by a local modification operator. We
call this local modification aswapfor reasons that will become apparent shortly. Since the Markov
chain must remain inC (D), the swap may never result in a set of chainsD̂ 6∈ C (D). More precisely,
if Di+1 is obtained fromDi by the swap andDi ∈ C (D), thenDi+1 must belong toC (D) as well.
Next we define a swap that has this property.

Formally we define a swap as the tuple(π1,π2, i, j), whereπ1 andπ2 are chains,i is an index of
π1, and j an index ofπ2. To execute the swap(π1,π2, i, j), we transpose the items at positionsi and
i+1 in π1, and at positionsj and j+1 in π2. For example, ifπ1=(1,2,3,4,5) andπ2=(3,2,6,4,1),
the swap(π1,π2,2,1)will result in the chainsπ′1 =(1,3,2,4,5) andπ′2 =(2,3,6,4,1). The positions
of items 2 and 3 are changed in bothπ1 andπ2.

Clearly this swap does not affect the number of chains, lengths of any chain, nor the occurrence
frequencies of any itemset as items are not inserted or removed. To guarantee that also theCD(u,v)s
are preserved, we must pose one additional requirement for the swap.When transposing two adja-
cent items in the chainπ1, say,u andv with u originally beforev, CD(u,v) is decremented by one
as there is one instance less ofu precedingv after the transposition, andCD(v,u) is incremented by
one as now there is one instance more wherev precedesu. Obviously, if the swap would change
only π1, the resulting data set would no longer belong toC (D) asCD(u,v) andCD(v,u) are changed.
But the second transposition we carry out inπ2 cancels out the effect the first transposition had on
CD(u,v) andCD(v,u), and the resulting set of chains remains inC (D).

Definition 7 Let D be a set of chains and letπ1 andπ2 belong to D. The tuple(π1,π2, i, j) is avalid
swapfor D, if the item at the ith position ofπ1 is the same as the item at the j+1th position ofπ2,
and if the item at i+1th position ofπ1 is the same as the item at the jth position ofπ2.

The swap we show in the example above is thus a valid swap.
Given the dataD, we may have several valid swaps to choose from. To see how the set of valid

swaps evolves in a single step of the algorithm, consider the following example.Let Di contain the
three chains below:

π1 : (1,2,3,4,5) π2 : (7,8,4,3,6) π3 : (3,2,6,4,1)

The valid swaps in this case are(π1,π3,2,1) and(π1,π2,3,3). If we apply the swap(π1,π2,3,3) we
obtain the chains

π′1 : (1,2,4,3,5) π′2 : (7,8,3,4,6) π3 : (3,2,6,4,1)
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Obviously(π1,π2,3,3) is still a valid swap, as we can always revert the previous swap. But notice
that (π1,π2,2,1) is no longer a valid swap as the items 2 and 3 are not adjacent inπ′1. Instead
(π′2,π3,4,3) is introduced as a new valid swap since now 4 and 6 are adjacent inπ′2.

Given this definition of the swap, isC (D) connected with respect to the valid swaps? Meaning,
can we reach every member ofC (D) starting fromD? This is a desirable property as we want to
sample uniformly fromC (D), but so far this remains an open question.

4.3.3 CONVERGENCE

Above it was mentioned that we must let the Markov chain run long enough to make sureD̃s is not
correlated with the starting stateD0. The chain should havemixed, meaning that when we stop it
the probability of landing at a particular stateDs actually corresponds to the probabilityDs has in
the stationary distribution of the chain. Determining when a simulated Markov chain has converged
to its stationary distribution is not easy.

Hence we resort to a fairly simple heuristic. An indicator of the current sample Di being uncor-
related toD0 = D is the following measure:

δ(D,Di) = |D|
−1
|D|

∑
j=1

dK(D( j),Di( j)), (15)

whereD( j) is the jth chain inD. Note thatδ(D,Di) is always defined, as the chainDi( j) is a
permutation ofD( j). The distance defined in Equation 15 is thus the average Kendall distance
between the permutations inD andDi . To assess the convergence we observe howδ(D,Di) behaves
as i grows. Whenδ(D,Di) has converged to some value or is not increasing only at a very low
rate, we assume the current sample is not correlated withD0 more strongly than with most other
members ofC (D).

Note that here we are assuming that the chains inD arelabeled. To see what this means consider
the following example with the setsD andDi both containing four chains.

D(1) : 1,2,3 Di(1) : 2,1,3
D(2) : 4,5,6 Di(2) : 6,5,4
D(3) : 2,1,3 Di(3) : 1,2,3
D(4) : 6,5,4 Di(4) : 4,5,6

Here we have obtainedDi from D with the multiple swap operations. The distanceδ(D,Di) is 2
even thoughD andDi clearly are identical as sets. Hence, the measure of Equation 15 can not be
used for testing this identity. To do this we should compute the Kendall distance betweenD( j) and
Di(h( j)), whereh is a bijective mapping between chains inD andDi that minimizes the sum of the
pairwise distances. However, we consider this simple approach sufficient for the purposes of this
paper.

4.3.4 IMPLEMENTATION ISSUES

Until now we have discussed the approach at a general level. There’salso a practical issue when im-
plementing the proposed algorithm. The number of valid swaps at a given stateis of orderO(m2n2)
in the worst case, which can get prohibitively large for storing each validswap as a tuple explicitly.
Hence, we do not store the tuples, but only maintain two sets that representthe entire set of swaps
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but use a factor ofn less space. We let

AD = {{u,v} | ∃π1 ∈ Dst.uv∈ π1∧∃π2 ∈ Dst.vu∈ π2},

whereuv∈ π denotes thatu andv are adjacent inπ with u beforev. This is the set ofswappable
pairsof items. The size ofAD is of orderO(m2) in the worst case. In addition, we also have the sets

SD(u,v) = {π ∈ D | uv∈ π}

for all (u,v) pairs. This is simply a list that contains the set of chains where we can transposeu and
v. Note thatSD(u,v) andSD(v,u) are not the same set. InSD(u,v) we have chains whereu appears
beforev, while in SD(v,u) are chains wherev appears beforeu. The size of eachSD(u,v) is of order
O(n) in the worst case, and the storage requirement forAD andSD is hence onlyO(m2n), a factor
of n less than storing the tuples explicitly.

The setsAD andSD indeed fully represent all possible valid swaps. A valid swap is constructed
from AD andSD by first picking a swappable pair{u,v} from AD, and then picking two chains,
one fromSD(u,v) and the other fromSD(v,u). It is easy to see that a swap constructed this way
must be a valid swap. Also, verifying that there are no valid swaps not described byAD andSD is
straightforward.

There is still one concern. Recall that we want to use the Metropolis-Hastings approach to
sample from the uniform distribution overC (D). In order to do this we must be able to sample
uniformly from the neighbors ofDi , and we have to know the precise size ofDi ’s neighborhood.
The size of the neighborhoodN(Di) is precisely the number of valid swaps atDi , and is given by

|N(Di)|= ∑
{u,v}∈ADi

|SDi (u,v)| · |SDi (v,u)|,

which is easy to compute givenADi andSDi .
To sample a neighbor ofDi uniformly at random usingADi andSDi , we first pick the swappable

pair{u,v} from ADi with the probability

Pr({u,v}) =
|SDi (u,v)| · |SDi (v,u)|

|N(Di)|
, (16)

which is simply the fraction of valid swaps inN(Di) that affect itemsu andv. Thenπ1 andπ2

are sampled uniformly fromSD(u,v) andSD(v,u) with probabilities|SD(u,v)|−1 and |SD(v,u)|−1,
respectively. Thus we have

Pr({u,v}) · |SD(u,v)|
−1 · |SD(v,u)|

−1 =
1

|N(Di)|

as required.
The final algorithm that we callSWAP-PAIRS is given in Algorithm 2. It takes as arguments the

dataD and the integers that specifies the number of rounds the algorithm is run. On lines 2–6 we
initialize the setsAD andSD, while lines 8–20 contain the main loop. First, on line 9 the pair{u,v}
is sampled fromAD with the probability given in Equation 16. TheSAMPLE-UNIFORM function
simply samples an element from the set it is given as the argument. On lines 13 and15 we compute
the neighborhood sizes before and after the swap, respectively. Theactual swap is carried out by the
APPLY-SWAP function, that modifiesπ andτ in D and updatesAD andSD accordingly. Lines 16–
18 implement the Metropolis-Hastings step. Note that it is easier to simply perform the swap and
backtrack if the jump should not have been accepted. A swap can be canceled simply by applying it
a second time. The functionRAND() returns a uniformly distributed number from the interval[0,1].
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Algorithm 2 TheSWAP-PAIRS algorithm for sampling uniformly fromC (D).
1: SWAP-PAIRS(D, s)
2: AD←{{u,v} | ∃π1 ∈ Dst.uv∈ π1∧∃π2 ∈ Dst.vu∈ π2}
3: for all {u,v} ∈ AD do
4: SD(u,v)←{π ∈ D | uv∈ π}
5: SD(v,u)←{π ∈ D | vu∈ π}
6: end for
7: i← 0
8: while i < n do
9: {u,v}← SAMPLE-PAIR(AD,SD)

10: π← SAMPLE-UNIFORM(SD(u,v))
11: τ← SAMPLE-UNIFORM(SD(v,u))
12: s← (π,τ,π(u),τ(v))
13: Nbefore← ∑{u,v}∈AD

|SD(u,v)| · |SD(v,u)|
14: APPLY-SWAP(s,D,AD,SD)
15: Nafter← ∑{u,v}∈AD

|SD(u,v)| · |SD(v,u)|

16: if RAND()≥ Nbefore
Nafter

then
17: APPLY-SWAP(s,D,AD,SD)
18: end if
19: i← i+1
20: end while
21: return D

5. Experiments

In this section we discuss experiments that demonstrate how our algorithms perform on various
artificial and real data sets. We consider a two-step algorithm that either starts with random initial
clusters (RND), or a clustering that is computed with standardk-means (initialized with random cen-
troids) in the graph (GR) or hypersphere (HS) representation. This initial clustering is subsequently
refined with the variant of Lloyd’s algorithm discussed in Section 2 to obtain the final clustering.
We also compare our method against existing approaches by Kamishima and Akaho (2006). These
algorithms, calledTMSE andEBC, are similar clustering algorithms for sets of chains, but they are
based on slightly different distance functions and types of centroid. We used original implementa-
tions ofTMSE andEBC that were obtained from the authors.

5.1 Data Sets

The artificial data sets are generated by the procedure described in Section 3.1.1. In addition to
artificial data we use four real data sets that are all based on publicly available sources. The data
consist of preference rankings that are either explicit, derived, or observed. We say a preference
ranking isexplicit if the preferences are directly given as a ranked list of alternatives. Apreference
ranking isderivedif the ranking is based on item-specific scores, such as movie ratings. Finally,
a preference ranking isobservedif it originates from a source where preferences over alternatives
only manifest themselves indirectly in different types of behavior, such asweb server access logs.
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SUSHI MLENS DUBLIN MSNBC
n 5000 2191 5000 5000
m 100 207 12 17
min. l 10 6 4 6
avg. l 10 13.3 4.8 6.5
max. l 10 15 6 8

Table 1: Key statistics for different real data sets. The number of chains, the number of items, and
the length of a chain are denoted byn, m, l , respectively.

Key statistics of the data sets are summarized in Table 1. More details are givenbelow for each data
set.

5.1.1 SUSHI

These data are explicit preference rankings of subsets of 100 items. Each chain is a response from
a survey2 where participants were asked to rank 10 flavors of sushi in order of preference. Each set
of 10 flavors was chosen randomly from a total set of 100 flavors. Thedata consists of 5000 such
responses.

5.1.2 MLENS

These data are derived preference rankings of subsets of 207 items.The original data consists of
movie ratings (1–5 stars) collected by the GroupLens3 research group at University of Minnesota.
We discarded movies that had been ranked by fewer than 1000 users and were left with 207 movies.
Next we pruned users who have not used the entire scale of five stars intheir ratings and were left
with 2191 users. We generate one chain per user by first sampling a subset of movies the user has
rated, so that at most three movies having the same rating are in the sample. Finally we order the
sample according to the ratings and break ties in ratings arbitrarily.

5.1.3 DUBLIN

These data are explicit preference rankings of subsets of 12 items. Each chain is a vote placed in the
2002 general elections in Ireland.4 and ranks a subset of 12 candidates from the electoral district of
northern Dublin. We only consider votes that rank at least 4 and at most 6candidates and are left
with 17737 chains. Of this we took a random sample of 5000 chains for the analysis.

5.1.4 MSNBC

These data are observed preference rankings over 17 items. Each chain shows the order in which
a user accessed a subset of 17 different sections of a web site (msnbc.com).5 Each chain contains
only the first occurrence of a category, subsequent occurrenceswere removed. Also, we selected a

2. The SUSHI data be found athttp://www.kamishima.net/sushi (29 April 2011).
3. The MLENS data can be found athttp://www.grouplens.org/node/12 (29 April 2011).
4. At the time of publication this data can be found by accessing old versionsof http://www.

dublincountyreturningofficer.com/ in the Internet Archive athttp://waybackmachine.org.
5. MSNBC data can be found athttp://kdd.ics.uci.edu/databases/msnbc/ (29 April 2011).
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subset of the users who had visited at least 6 and at most 8 different categories and were left with
14598 chains. Again we used a random subset of 5000 chains for the analysis.

5.2 Recovering a Planted Clustering

In this section we discuss experiments on artificial data, with the emphasis on studying the per-
formance of the algorithms under different conditions. These conditions can be characterized by
parameters of the input data, such as length of the chains or total number ofitems. The task is to
recover a “true” clustering that was planted in the input data.

5.2.1 EXPERIMENTAL SETUP

The notion of correctness is difficult to define when it comes to clustering models. With real data
we do not in general know the correct structure, or if there even is anystructure to be found. To have
a meaningful definition of a correct clustering, we generate synthetic datathat contains a planted
clustering. We compare this with the clusterings found by the algorithms.

To measure the similarity between two clusterings we use a variant of the Rand Index (Rand,
1971) called the Adjusted Rand Index (Lawrence and Phipps, 1985). The basic Rand Index essen-
tially counts the number of pairs of points where two clusterings agree (eitherboth assign the points
in the same cluster, or both assign the points in different clusters), normalized by the total number
of pairs. The maximum value for two completely agreeing clusterings is thus 1. The downside with
this approach is that as the number of clusters increases, even random partitions will have a score
close to 1, which makes it difficult to compare algorithms. The Adjusted Rand Index corrects for
this by normalizing the scores with respect to the expected value of the scoreunder the assumption
that the random partition follows a generalized hypergeometric distribution (Lawrence and Phipps,
1985).

Artificial sets of chains are created with the procedure described in Section 3.1.1. Instead of
arbitrary partial orders as the components, we use bucket orders (orordered partitions) of M. More
specifically, a bucket order onM is a totally ordered set of disjoint subsets (buckets) ofM that cover
all items in M. If the itemsu andv both belong to the bucketMi ⊆ M, they are unordered. If
u∈Mi ⊆M andv∈M j ⊆M, andMi precedesM j , then alsou precedesv. We used bucket orders
with 10 buckets in the experiments.

Input sizen is fixed to 2000. We varied the following parameters: length of a chainl , total
number of itemsm, and number of clusters in the true clusteringκ. We ran the algorithms on
various combinations of these with different values ofk, that is, we also wanted to study how the
algorithms behave when the correct number of clusters is not known in advance.

5.2.2 COMPARING INITIALIZATION STRATEGIES

Results for our variant of Lloyd’s algorithm with the three different initialization strategies (HS, GR,
andRND) are shown in Figure 1 for a number of combinations ofk andm. Here we only plot cases
wherek= κ, meaning that the algorithm was given the correct number of clusters in advance. The
grey lines are 95 percent confidence intervals. As on one hand suggested by intuition, and on the
other hand by Theorem 2, finding a planted clustering becomes easier as the length of the chains
increase. Withl = 9 the original clustering is found almost always independent of the valuesof m
andk. For smaller values ofl the effect ofmandk is stronger. The problem becomes more difficult
asmandk increase. When comparing the initialization strategies,HS andGR outperformRND.
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Figure 1: The Adjusted Rand Index (median over 25 trials) between a recovered clustering and the
true clustering as a function of the length of a chain in random data sets consisting of 2000
chains each. Initialization methods are◦: GR, +: HS, and⋄: RND. Gray lines indicate 95
percent confidence intervals.

5.2.3 COMPARING AGAINST EXISTING METHODS

We compared how our approach using theHS initialization compares with existing algorithms. The
HS-based variant was chosen because of fairness: The process we use to generate artificial data
exactly matches the assumption underlying theGR approach, and hence may give this algorithm an
unfair advantage. Also, theHS initialization is faster to compute.

Results are shown in Figure 2 form= 10 andm= 100, andk∈ {2,6,10}. The total number of
itemsm has a strong effect on the performance. As above, the problem or recovering the clustering
becomes harder asm increases andl decreases. Our algorithm suffers from very poor performance
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Figure 2: The Adjusted Rand Index (median over 25 trials) between a recovered clustering and
the true clustering as a function of the length of a chain. Labels are:+: our algorithm
initialized usingHS, ◦: EBC, ⋄: TMSE.

with m= 100, while theEBC andTMSE algorithms can recover the planted clustering rather well
also in this case. In contrast, form= 10 and smalll , our approach yields better results especially
for k > 2. Recall that our algorithm relies on the pairwise probabilities of one item to precede an
other. Whenm= 100 we have 4950 distinct pairs of items, whenm= 10 this number is merely 45.
With a largem it is therefore likely that our estimates of the pairwise probabilities are noisy simply
because there are less observations of individual pairs since the inputsize is fixed. By increasing
the size of the input these estimates should become more accurate.

We tested this hypothesis by running an experiment with random data sets ten times larger, that
is, with an input of 20000 chains onm= 100 items. We concentrated on two cases:k = 2 with
l = 4, andk= 6 with l = 6. The first corresponds to a situation where there is a small gap between
the performance ofTMSE/EBC and our method, and all algorithms show mediocre performance (see
Fig. 2, 2nd row, left column). The second combination ofk and l covers a case where this gap is
considerably bigger, andTMSE/EBC both do rather well in recovering the planted clustering (see
Fig. 2, 2nd row, middle column). Results are shown in Table 2. Increasing the size of the input
leads to a considerable increase in performance of our algorithm. This suggests that for large data
sets the approach based on pairwise probabilities may yield results superiorto those obtained with
existing algorithms.

5.2.4 UNKNOWN SIZE OF TRUE CLUSTERING

So far we have only considered cases wherek = κ, that is, the algorithms were given the correct
number of clusters. When analyzing real dataκ is obviously unknown. We studied the algorithms’
sensitivity to the value ofk. Figure 3 shows the Adjusted Rand Index for our algorithm withHS

initialization, and theEBC and TMSE algorithms whenm= 20, andκ = 6. All three algorithms
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Figure 3: Adjusted Rand Index (median over 25 trials) as a function ofk for different algorithms.
We haveκ = 6, andm= 20 in each case, the value ofl is shown above each curve. Labels
are:+: our algorithm initialized usingHS, ◦: EBC, ⋄: TMSE.

perform similarly. For short chains (l = 4) the differences are somewhat stronger. While ourHS-
based method seems to be marginally better in recovering the original clustering, there is a lot of
overlap in the confidence intervals, and none of the algorithms is able to find the true clustering
exactly. We also acknowledge that the stronger performance of our method with l = 5 andl = 6
may be attributed to an implementation detail: Our algorithm is not guaranteed to return k clusters,
it may return a number less thank if one of the clusters becomes empty during the computation. It
is not clear how the implementations ofTMSE andEBC deal with empty clusters.

5.3 Experiments with Real Data

This experiment was carried out by computing ak-way clustering of each data set described in Sec-
tion 5.1 withk ranging from 2 to 10. Performance is measured by the clustering error asdefined in
Equation 1, using the centroid and distance function that are described in Section 2.3. Each com-
bination of algorithm, data, andk was repeated 25 times with a randomly chosen initial clustering.
(Note that even if we initialize our method by computing a clustering using either ofthe vector
space representations, the algorithms that compute these must be initialized somehow.)

Figure 4 shows the reconstruction error as a function ofk. Note that values on they-axis have
been normalized by the baseline error of having all chains in the same cluster. The error bars indicate
95 percent confidence intervals. TheEBC algorithm is omitted from the figures, as this method was
consistently outperformed by theTMSE algorithm. This result is also in line with previous empirical

EBC TMSE HS init.
k= 2, l = 4 0.817 (0.816, 0.822) 0.818 (0.816, 0.822) 0.891 (0.891, 0.892)
k= 6, l = 6 0.935 (0.932, 0.938) 0.937 (0.934, 0.939) 0.974 (0.973, 0.976)

Table 2: Adjusted Rand Index (median over 25 trials) for different methods computed from artificial
data consisting of 20000 chains withm= 100 and the shown values fork andl . Numbers
in parenthesis indicate 95 percent confidence intervals.
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Figure 4: Reconstruction error as expressed in Equation 1 with the definitions of distance and cen-
troid from Section 2.3 as a function ofk. The y-axis has been normalized to show the
error as a fraction of the baseline error ofk= 1. Legend:�: onlystandardk-means inGR

representation,◦: only standardk-means inHS representation,+: our variant of Lloyd’s
algorithm withRND init., ∗: theTMSE algorithm.

evidence reported by Kamishima and Akaho (2006). We also left out results obtained with our
algorithm using either of the vector space representations to compute an initialclustering. (The
curves forHS and GR therefore show performance that is obtained simply by mapping chains to
the respective vector spaces and running standardk-means.) Contrary to random data (see results
of Section 5.2), these initialization strategies did not give significantly better results than simple
random initialization.

Our k-means procedure outperforms theTMSE algorithm with the MSNBC and DUBLIN data
sets. With SUSHI and MLENS the situation is reversed. This statement holds for all values ofk, and
seems robust as the confidence intervals do not overlap. Also, when measuring clustering quality
in this way, the results obtained by using only the vector space representations are considerably
inferior to the other methods. Of course this is not an entirely fair comparisonas the objective
functions differ. In Figure 5 we plot the reconstruction error computed with the distance function
and centroid representation used byTMSE. For details, please see Kamishima and Akaho (2006,
Section 3.1). Using this measure, the SUSHI and MLENS data sets demonstratean even stronger
difference between the methods. With MSNBC and DUBLIN our algorithm continues to perform
somewhat better, albeit this time the confidence intervals overlap. Interestingly, if an algorithm is
better, it is better independent of the cost function used to evaluate the result. For instance, with
MSNBC and DUBLIN our algorithm marginally outperformsTMSE even in terms ofTMSE’s own
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Figure 5: Reconstruction error of a clustering as expressed in Equation1 with the definitions of dis-
tance and centroid from Kamishima and Akaho (2006) as a fraction of the baseline error
of k= 1. Legend:+: our algorithm with random initialization,∗: theTMSE algorithm.

cost function, and vice versa with SUSHI and MLENS. These results arein line with the ones we
obtain with artificial data. As can be seen in Table 1, the data sets MSNBC and DUBLIN have a
considerably smallerm. The experiments in Section 5.2.3 suggest that by collecting more data we
could improve our result for the SUSHI and MLENS data sets.

5.4 Testing Clustering Validity

We use the randomization method of Section 4 to test the interestingness of the found clusterings. A
clustering is assumed to be interesting if its test statistic substantially differs fromthe ones we obtain
from randomized data. The test statistic we use is the reconstruction error given in Equation 1. The
methods use their respective definitions of distance and centroid to compute theerror.

To carry out the test, we must first estimate how many swaps are needed to obtain a single
sample that is uncorrelated with the original data. To this end we run theSWAP-PAIRSalgorithm for
10×106 swaps on each data set and measureδ(D,Di) every 0.1×106 swaps. The assumption is
that the dataDi are uncorrelated with the initial stateD whenδ(D,Di) no longer increases. Figure 6
shows how the distanceδ(D,Di) develops with the number of swapsi for the data sets. From this
we can read the number of swaps that are needed to obtain approximately uncorrelated samples. For
SUSHI and MLENS the Markov chain seems to converge after approximately5×106 swaps, for
DUBLIN the distanceδ(D,Di) stabilizes already after about 0.5×106 swaps, while with MSNBC
this happens after roughly 3×106 swaps. The randomized data used in the remaining analysis are
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Figure 6: The distanceδ(D,Di) as a function of the number of swapsi.

computed using these swap counts, respectively. Here we also want to point out that randomization
is computationally intensive. The table below shows the times to perform 10×106 swaps for the
different data sets.

SUSHI MLENS DUBLIN MSNBC
t (seconds) 297 670 73 81

We observe thatn, the number of chains in the input, does not affect the running timet, but the
number of itemsm plays a significant part. (See also Table 1.)

For the actual analysis we sample 99 random instances from the equivalence class of each data
set, and compare the test statistic with the one obtained from real data. Figure7 shows the histogram
of the reconstruction error in randomized data together with the minimum, maximum, and median
error over 25 trials with real data. If this interval is clearly to the left of the histogram, it is unlikely
to observe an error of the same magnitude in randomized data. If the intervaloverlaps with the
histogram, the results should be considered as not significant accordingto this test.

In general the results suggest that the clusterings we obtain from the actual data sets have a
smaller reconstruction error than a clustering computed with the same algorithm from a randomized
data. There are some interesting exceptions, however. For MSNBC, SUSHI, and DUBLIN the
clusterings obtained by our method from real data seem considerably better than those we obtain in
random data, independent ofK. In case of MLENS the results are clearly not significant for anyK.
For theTMSE algorithm the test suggests a significant outcome in case of SUSHI and MLENS, while
for MSNBC and DUBLIN the clustering from real data is not considerablybetter than a clustering
from randomized data.
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Figure 7: Results of randomization testing with our algorithm usingRND initialization and the
TMSE algorithm for different values ofK. The numbers are normalized by the clus-
tering error forK = 1. The histograms show the distribution of the clustering error on the
randomized data. The light gray (green online), dashed, and dark gray (red online) lines
indicate the minimum, median, and maximum of the clustering error on the original data.
Both algorithms use their own cost functions.

6. Conclusion

We have discussed the problem of clustering chains. First, in Section 2 we gave simple definitions
of a centroid and a distance function that can be used together with Lloyd’salgorithm (k-means) for
computing a clustering directly using chains. In Section 3 we gave two methods for mapping chains
to a high-dimensional vector space. These representations have the advantage that any clustering
algorithm can be used. Moreover, a clustering obtained in this way can still be further refined using
the technique of Section 2. Mapping chains to vector spaces is an interestingsubject in its own right
and can have many other uses in addition to clustering. For example, they canbe used to visualize
of sets of chains, as was done by Ukkonen (2007), as well as by Kidwell et al. (2008). Also, we
believe that the connections to the planted partition model (Condon and Karp,2001; Shamir and
Tsur, 2002) are very interesting at least from a theoretical point of view.
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We also proposed a method for testing if a clustering found in a set of chainsis any different from
a clustering of random data. If the value of a suitable test statistic, such as the reconstruction error,
does not substantially differ between the original input and the randomizeddata sets the clustering
found in real data is probably not very meaningful. To this end we devisedan MCMC algorithm for
sampling sets of chains that all belong to the same equivalence class as a given set of chains.

In the experiments we compared our methods with theTMSE andEBC algorithms by Kamishima
and Akaho (2009). We observe that for some data sets our algorithm yieldsbetter results, while for
some other data sets theTMSE algorithm is a preferred choice. Interestingly, these differences can
also be seen in the randomization tests. When an algorithm performs poorly, the results tend to be
not significant according to the randomization test. Moreover, it seems thatin cases where theTMSE

algorithm is superior, our algorithm does not have enough data to perform well. Experiments on
artificial data indicate that as the size of the input is increased (and other variables left unchanged),
the performance of our algorithm increases considerably, and even outperforms theTMSE algo-
rithm. Therefore, we suspect that by increasing data size we could improve the performance of our
algorithm also with real data.

The main difference between the algorithms is the notion of distance.TMSE essentially uses
a modified version of Spearman’s rank correlation coefficient that is a “positional” distance for
permutations, as it only considers the positions in which different items appear. We propose a
“pairwise” distance that considers how pairs of items are related to each other. The experiments
suggest that the pairwise approach is more powerful as long as there is enough data, but for smaller
data sets positional distances seem more robust. Finding the tipping point in terms of input size and
other data parameters where the pairwise approach becomes favorable over positional distances is
an interesting open question.
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Appendix A. Proofs of Theorems

Proofs of Theorem 2 and Theorem 5 are given below.

A.1 Proof of Theorem 2

The proof is a simple matter of upper bounding Equation 6. First we note that using Vandermonde’s
convolution (Graham et al., 1994, Equation 5.22) the sum in Equation 6 can be rewritten as

(
m
l

)

−
(( l

1

)(
m− l
l −1

)

+

(
m− l

l

)

︸ ︷︷ ︸

A

)

.

Essentially Vandermonde’s convolution states that∑l
i=0

(l
i

)(m−l
l−i

)
=
(m

l

)
, and we simply subtract the

first two terms indicated byA, because above the sum starts fromi = 2. Using simple manipulations
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we obtain

A=

(
m− l

l

)( l2

m−2l +1
+1

)

,

which gives the following:

p=

(
m
l

)−1((m
l

)

−

(
m− l

l

)( l2

m−2l +1
+1

))

.

With l < m/2 the part l2
m−2l+1 +1 is lower bounded by 1, and we have

p <

(
m
l

)−1((m
l

)

−

(
m− l

l

))

= 1−

(
m
l

)−1(m− l
l

)

= 1−
(m− l)!

l !(m−2l)!
·
l !(m− l)!

m!

= 1−
(m− l)(m− l −1) · · ·(m−2l +1)

m(m−1) · · ·(m− l +1)

< 1−
(m− l)(m− l −1) · · ·(m−2l +1)

ml

< 1−
(m−2l +1)l

ml <
ml − (m−2l)l

ml .

We can factorml − (m−2l)l as follows:

ml − (m−2l)l = (m− (m−2l))
(

ml−1(m−2l)0+ml−2(m−2l)1+ . . .

· · ·+m1(m−2l)l−2+m0(m−2l)l−1
)

= 2l
l−1

∑
i=0

ml−1−i(m−2l)i .

Using this we write

ml − (m−2l)l

ml = 2l
l−1

∑
i=0

(
1
m
)l ml−1−i(m−2l)i .

Lettinga= l −1 and taking one1
m out of the sum we get

1
m

2(a+1)
a

∑
i=0

(
1
m
)ama−i(m−2(a+1))i =

1
m

2(a+1)
a

∑
i=0

(
1
m
)i(m−2(a+1))i

=
1
m

2(a+1)
a

∑
i=0

(1−
2(a+1)

m
)i .

We assumel = a+1 is considerably smaller thanm, and hence(1− 2(a+1)
m )i is at most 1. There are

a+1 terms in the sum, so the above is upper bounded by1
m2(a+1)(a+1) = 2 l2

m, which concludes
the proof of the theorem.
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A.2 Proof of Theorem 5

Let u∈ π: We start by showing that the claim of Equation 12 holds for allu that belong toπ. That
is, we will show that

∑
τ∈E(π)

fτ(u) = Q
(
−
|π|+1

2
+π(u)

)
(17)

for all u∈ π. First, note that∑τ∈E(π) fτ(u) can be rewritten as follows

∑
τ∈E(π)

−
m+1

2
+ τ(u) =

m−|π|+π(u)

∑
i=π(u)

#{τ(u) = i}
(

−
m+1

2
+ i

)

, (18)

where #{τ(u) = i} denotes the number of timesu appears at positioni in the linear extensions ofπ.
The sum is taken over the rangeπ(u), . . . ,m−|π|+π(u), asτ(u) can not be less thanπ(u), because
the items that appear beforeu in π must appear before it inτ as well, likewise for the other end of
the range.

To see what #{τ(u) = i} is, consider how a linear extensionτ of π is structured. Whenu appears
at positioni in τ, there are exactlyπ(u)−1 items belonging toπ that appear in thei−1 indices to
the left ofu, and|π|−π(u) items also belonging toπ that appear in them− i indices to the right of
u. The ones on the left may choose their indices in

( i−1
π(u)−1

)
different ways, while the ones on the

right may choose their indices in
( m−i
|π|−π(u)

)
different ways. The remaining items that do not belong

to π are assigned in an arbitrary fashion to the remainingm−|π| indices. We have thus,

#{τ(u) = i}=

(
i−1

π(u)−1

)(
m− i
|π|−π(u)

)

(m−|π|)!.

When this is substituted into the right side of (18), and after rearranging theterms slightly, we get

∑
τ∈E(π)

fτ(u) = (m−|π|)!
m−|π|+π(u)

∑
i=π(u)

(
i−1

π(u)−1

)(
m− i
|π|−π(u)

)(

−
m+1

2
+ i

)

.

This can be written as

∑
τ∈E(π)

fτ(u) = (m−|π|)!(S1+S2), (19)

where

S1 = −
m+1

2

m−|π|+π(u)

∑
i=π(u)

(
i−1

π(u)−1

)(
m− i
|π|−π(u)

)

, and

S2 =
m−|π|+π(u)

∑
i=π(u)

i

(
i−1

π(u)−1

)(
m− i
|π|−π(u)

)

.

Let us first look atS2. The parti
( i−1

π(u)−1

)
can be rewritten as follows:

i

(
i−1

π(u)−1

)

=
i (i−1)!

(π(u)−1)!(i−π(u))!
·

π(u)
π(u)

= π(u)
i!

π(u)!(i−π(u))!
= π(u)

(
i

π(u)

)

.
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This gives

S2 = π(u)
m−|π|+π(u)

∑
i=π(u)

(
i

π(u)

)(
m− i
|π|−π(u)

)

= π(u)
(

m+1
|π|+1

)

,

where the second equality is based on Equation 5.26 in Graham et al. (1994). Next we must show
that

(m+1
|π|+1

)
will appear inS1 as well. We can rewrite the sum as follows:

m−|π|+π(u)

∑
i=π(u)

(
i−1

π(u)−1

)(
m− i
|π|−π(u)

)

=
m−|π|+π(u)−1

∑
i=π(u)−1

(
i
q

)(
r− i
p−q

)

,

whereq = π(u)−1, r = m−1 andp = |π| −1. Again we apply Equation 5.26 of Graham et al.
(1994) to get

S1 =−
m+1

2

(
r +1
p+1

)

=−
m+1

2

(
m
|π|

)

,

which we multiply by |π|+1
|π|+1 and have

S1 =−
|π|+1

2
·

m+1
|π|+1

(
m
|π|

)

=−
|π|+1

2

(
m+1
|π|+1

)

.

WhenS1 andS2 are substituted into (19) we have

∑
τ∈E(π)

fτ(u) = (m−|π|)!
(

−
|π|+1

2

(
m+1
|π|+1

)

+π(u)
(

m+1
|π|+1

))

,

which is precisely Equation 17 when we letQ= (m−|π|)!
(m+1
|π|+1

)
.

Let u 6∈ π: To complete the proof we must still show that Equation 12 also holds for itemsu that
do not appear in the chainπ. For suchu we havefπ(u) = 0 by definition. Since we showed above
thatQ> 0, we have to show that∑τ∈E(π) fτ(u) = 0 whenu 6∈ π to prove the claim.

We’ll partition E(π) to disjoint groups defined by index setsI . Let S(I) denote the subset of
E(π) where the items that belong toπ appear at indicesI = {i1, . . . , i|π|}. Furthermore, letIR =
{m− i1+1, . . . ,m− i|π|+1}. See Figure 8 for an illustration of the structure of the permutations
that belong toS(I) andS(IR).

Now we can write for everyu 6∈ π:

∑
τ∈E(π)

fτ(u) =
1
2 ∑

I
∑

τ∈{S(I)∪S(IR)}

fτ(u). (20)

That is, we first sum over all possible index setsI , and then sum over allτ that belong to the union of
S(I) andS(IR). EachI is counted twice (once asI and once asIR), so we multiply the right hand side
by 1

2. To make sure that Equation 20 equals zero, it is enough to show that∑τ∈{S(I)∪S(IR)} fτ(u) = 0
for eachI .

Note that we havefτ(u)+ fτR(u) = 0 becauseτR(u) =m−τ(u)+1. That is, the values at indices
j andm− j +1 cancel each other out. This property will give us the desired result if we can show
that for each permutationτ∈ {S(I)∪S(IR)} where an itemu 6∈ π appears at positionj, there exists a
corresponding permutationτ′, also in{S(I)∪S(IR)}, whereu appears at positionm− j +1. Denote
by #(S,u, j) the size of the set{τ ∈ S| τ(u) = j}.
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Figure 8: Permutations inS(I) have the positionsI occupied by items that belong to the chainπ,
while permutations inS(IR) have the positionsIR occupied by items ofπ. See proof of
Theorem 5.

An index isfree if it does notbelong to the set{I ∪ IR}. Let j be a free index. By definition of
the setsI andIR, m− j +1 is also a free index. We have #(S(I),u, j) = #(S(I),u,m− j +1). This
holds forS(IR) as well. As a consequence, when we sum over all permutations in{S(I)∪S(IR)},
the values corresponding to indexj andm− j +1 cancel each other out becauseu appears equally
many times at positionsj andm− j +1. The total contribution to the sum∑τ∈{S(I)∪S(IR)} fτ(u) of u
appearing at the free indices is therefore zero.

Let j belong toI , meaning it is not free. By definition of the setsI andIR, the indexm− j +1
now belongs toIR, and is also not free. However, because of symmetry we have #(S(IR),u, j) =
#(S(I),u,m− j +1). That is, the number of times the itemu appears at positionj in a permutation
belonging toS(IR) is the same as the number of times it appears at positionm− j+1 in a permutation
belonging toS(I). When we sum over the permutations in{S(I)∪S(IR)}, the values ofu appearing
at position j in S(IR) are cancelled out by the values ofu appearing at positionm− j +1 in S(I).
The total contribution to the sum∑τ∈{S(I)∪S(IR)} fτ(u) of u appearing at an index inI is therefore
zero as well. This concludes the proof of Theorem 5.
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