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Abstract

Since the invention of temporal difference (TD) learningitfSn, 1988), many new algorithms
for model-free policy evaluation have been proposed. Aitfitothey have brought much progress
in practical applications of reinforcement learning (Rthere still remain fundamental problems
concerning statistical properties of the value functiotinestion. To solve these problems, we
introduce a new frameworlsemiparametric statistical inference® model-free policy evaluation.
This framework generalizes TD learning and its extensiand, allows us to investigate statistical
properties of both of batch and online learning proceduseghfe value function estimation in a
unified way in terms oéstimating functionsFurthermore, based on this framework, we derive an
optimal estimating function with thesinimum asymptotic varianand propose batch and online
learning algorithms which achieve the optimality.

Keywords: reinforcement learning, model-free policy evaluation, [BArning, semiparametirc
model, estimating function

1. Introduction

Studies in reinforcement learning (RL) have provided a methodologygtimal control and deci-
sion making in various practical applications, for example, job schedulihgr(@ and Dietterich,
1995), backgammon (Tesauro, 1995), elevator dispatching (CriteBamao, 1996), and dynamic
channel allocation (Singh and Bertsekas, 1997). Although the taskssia sihedies are large-scale
and complicated, RL has achieved good performance which exceedd thahan experts. These
successes were attributed to model-free policy evaluation, that is, thefaratit®n which evaluates
the expected cumulative reward is estimated from a given sample trajectoputsbecifying the
task environment. Since the policy is updated based on the estimated valtierfutiee quality
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of its estimation directly affects policy improvement. Hence, it is important fagaiesh in RL to
develop efficient model-free policy evaluation techniques.

This article introduces a novel framewosdemiparametric statistical inference® model-free
policy evaluation. This framework generalizes previously developed nfoekeklgorithms, which
include temporal difference learning and its extensions, and moreoadles us to investigate the
statistical properties of these algorithms, which have not been yet elutidate

The overall framework can be summarized as follows. We focus on theymléduation like in
previous studies (Singh and Dayan, 1998; Mannor et al., 2004;8@&lder and Obermayer, 2006;
Mannor et al., 2007); then we deal with the Markov Reward Proces$P(MiR which the initial,
transition, and the reward probabilities are assumed to be unknown. Fsamge trajectory given
by MRP, the value function is estimated without directly identifying those pridibab. Central
to our proposed framework is the notion gémiparametric statistical modelghich include not
only parameters of interest but also additional nuisance parameters \sgilydanfinite degrees of
freedom. We specify the MRP as a semiparametric model, where only the vakit®h is modeled
parametrically with a smaller number of parameters than necessary, while éneioipecified part
of MRP corresponds to the nuisance parameters. For estimating the pasaofiétéerest in such
models,estimating functionprovide a well-established toolbox: they give consistent estimators
(M-estimators) regardless of the nuisance parameters (Godambe 19980 Huber and Ronchetti,
2009; van der Vaart, 2000). In this sense, the semiparametric infeieagaromising approach to
model-free policy evaluation.

Our contributions are summarized as follows:

(a) A set of all estimating functions is shown explicitly: the set constitutes argenlass of
consistent estimators (Theorem 4). Furthermore, by applying the asymatatigsis, we
derive the asymptotic estimation variance of general estimating functions (Lejauad
the optimal estimating function that yields th&inimum asymptotic varianagf estimation
(Theorem 6).

(b) We discuss two types of learning algorithms based on estimating func@oresis the class
of batch algorithms which obtain estimators in one shot by using all samples invéire g
trajectory such as least squares temporal difference (LSTD) lea(Birsgitke and Barto,
1996). The other is the class of online algorithms which update the estimatpystgep
such as temporal difference (TD) learning (Sutton, 1988). In the lagghithm, we assume
that the value function is represented as a parametrically linear functictesind a new least
squares-type algorithngLSTDlearning, which achieves the minimum asymptotic variance
(Algorithm 1).

(c) Following previous work (Amari, 1998; Murata and Amari, 1999; Botama LeCun, 2004,
2005), we examine the convergence of statistical deviations of the onliogthifgs. We
then show that the online algorithms can achieve the same asymptotic perferasmtieir
batch counterparts if the parameters controlling learning processep@@gately tuned
(Lemma 9 and Theorem 10). We derive the optimal choice of the estimatingdorand
construct the online learning algorithm that achieves the minimum estimationasyorp-
totically (Algorithm 2). We also propose an acceleration of TD learning, wisccalled
accelerated TD learningAlgorithm 3).

(d) We then show that our proposed framework generalizes almosttht abnventional model-
free policy evaluation algorithms, such as TD learning, N)D¢arning (Sutton, 1988; Sutton
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Figure 1: Graphical model for infinite horizon MR$andr denote state variable and reward, re-
spectively.

and Barto, 1998), Bellman residual (RG) learning (Baird, 1995), L3dd@ning (Bradtke
and Barto, 1996), LSTD\Y) learning (Boyan, 2002), least squares policy evaluation (LSPE)
learning (Nedi and Bertsekas, 2003), and incremental LSTD (iLSTD) learning (@ifsed

et al., 2006, 2007) (Table 1).

We compare the performance of the proposed online algorithms with a cdupdd-@stablished
algorithms in simple numerical experiments and show that the results suppdhieouvetical find-
ings.

The rest of this article is organized as follows. First, we give backgtairMRP and define
the semiparametric statistical model for estimating the value function (Sectiorfty. pkoviding
a short overview of estimating functions (Section 3), we present the matnitmation, fundamen-
tal statistical analysis based on the estimating function theory (Section 4, Weeexplain the
construction of practical learning algorithms, derived from estimatingtfons, as both batch and
online algorithms (Section 5). Furthermore, relations of our proposed n&thadrrent algorithms
in RL are discussed (Section 6). Finally, we report our experimentaltsg$Section 7), and discuss
open questions and future direction of this study (Section 8).

2. Markov Reward Processes

Figure 1 shows a graphical model for an infinite horizon MRRich is defined by the initial state
probability p(sp), the state transition probabilify(s|s-1) and the reward probabilitp(r|s, s-1)-
State variables is an element of a finite s& and reward variable € R can be either discrete or
continuous. The joint distribution of a sample trajectdsy= {sp,S1,r1---,Sr,rr} of the MRP is
described as

;
P(Zr) = p(%o) I_l p(re|s, 1) P(St[s-1)- 1)
t=

We further impose the following assumptions on MRPs.

Assumption 1 Under p(s|s-1), the MRP has a unique invariant stationary distributiofs

Assumption 2 For any time t, rewardis uniformly bounded.

1. In this study, we only consider MRPs; however, extension to Markesidion Processes (MDPs) is straightforward
as long as considering the policy evaluation problem (hence the policy @ fixe

1979



UENO, MAEDA, KAWANABE AND [SHII

Before introducing the statistical framework, we begin by confirming thatéthée function esti-
mation can be interpreted as estimation of certain statistics of MRP (1).

Proposition 1 (Bertsekas and Tsitsiklis, 1996) Consider a conditional probabilitjrof } given
S-1,

p(re, stls—1) = p(rels, s—1) p(st|si-1)-
Then, there is such a function V that
Ertls-1] =V(s-1) —YEV(8t)|s-1] (2)

holds for any state;s; € S, wheregy € [0, 1) is a constant called discount factor. He&|-|s] denotes
the conditional expectation for the given state s. The function V that satisfiegi&y(R) is unique
and found to be the value function:

ZV 't|So ] 3)

We assume throughout this article that the value function can be repreéfgrdaecertain parametric
function, even a nonlinear function with respect to its parameter.

s)=1lmE

T—o0

Assumption 3 The value function given by Equation (3) is represented by a parametritidan
9(s.6):

V(s)=g(s,0).

Here, g: Sx ©® — R and @ € © is a certain parameter in a parameter spa@C R™. Also, the
dimension of the parametéris smaller than that of the state space:<tS. Moreover, ds,0) is
assumed to be twice continuously differentiable with respegt to

Under Assumption 3p(r|s_1) is partially parametrized b§, through its conditional mean

E[rt|s-1] = 9(s-1,0) — YE[9(s, 0)[s-1]- (4)

Our objective is to find out such a value of the paramétehat functiong(s, @) satisfies Equa-
tion (4), that is, it coincides with the true value function.

To specify the probabilistic model (1) altogether, we usually need extagers other than
0. Let & and&s be such additional parameters thasy, £&o) and p(r, ) can completely
represent the initial and transition distributions, respectively. In suase, the joint distribution of
the trajectoryZr is expressed as

;
P(Z7;0,€) = p(so; o) r!p(rt7&’St—l;9:£S)a (5)
t=

whereg = (&, &s).

Since it is in general quite difficult to know the complexity of the target systeenattempt to
estimate the paramet@rrepresenting the value function beside the presence of the &xitach
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may have innumerable degrees of freedom. Statistical models which conthifpsssibly infinite-
dimensional) nuisance parametef} ifh addition to the parameter of intere#t)( are called semi-
parametric (Bickel et al., 1998; Amari and Kawanabe, 1997; van dartVa000). We emphasize
that the nuisance parameters are necessary only for developingtitedrameworks. In actual
estimation procedures of the paramétesame as in other model-free policy evaluation algorithms,
we neither define them concretely, nor estimate them. This can be achiewesinigyestimating
functions which is a well-established technique to obtain a consistent estinfidtar parameter
without estimating the nuisance parameters (Godambe, 1960, 1991; Ardafiasvanabe, 1997;
Huber and Ronchetti, 2009). The advantages of considering suchaamigtric models behind
the model-free policy evaluation are:

(a) we can characterize all possible model-free algorithms,

(b) we can discuss asymptotic properties of the estimators in a unified waptaid the optimal
one with theminimum estimation error

We review the estimating function method in the next section.

3. Estimating Functions in Semiparametric Models

We begin with a short overview of the estimating function theory in the indegrgrahd identically
distributed (i.i.d.) case and then discuss the MRP case in the next sectiorond/der a general
semiparametric modegd(x;0,£), whered is an m-dimensional parameter of interest afds a
nuisance parameter which can have infinite degrees of freedorm-dimensional vector function

f of x and@ is called arestimating functiofGodambe, 1960, 1991) when it satisfies the following
conditions for anyd and¢ for sufficiently large values of;

Egé[_f(w,g)] =0, (6)
det|/A| # 0, whereA =FEg¢[0gf(x,0)], (7)
Eog [|| f(x,0)]?] <o, ®)

wheredg = d/06 is the partial derivative with respect & and det- | and||- || denote the determi-
nant and the Euclidean norm, respectively. Hegg [-]| means the expectation overwith respect
to the distributionp(x; 8, &) and we further remark that the paramedén f(x,0) andEg ¢[-] must
be the same.

Suppose i.i.d. samplgges,---, @7} are generated from the mode(xz; 6*,£*). If there is an
estimating functionf (x, @), we can obtain an estimatéf which has good asymptotic properties,
by solving the following estimating equation:

T ~
1) =0. 9
t;f(fct T) %)

A solution of the estimating Equation (9) is calledMrestimatorin statistics (Huber and Ronchetti,
2009; van der Vaart, 2000). The M-estimator is consistent, that is, itetges to the true value
regardless of the nuisance paramegér’> Moreover, it is normally distributed, that is,

2. In this study, ‘consistency’ means ‘local consistency’ as well asdrptievious works (Amari and Kawanabe, 1997;
Amari and Cardoso, 2002; Kawanabe andlidr, 2005).
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1T 3 f(%,0)

Figure 2: An illustrative plot of 1T 5, f(x,0) as function of® (solid line). Due to the effect of
finite samples, the function is slightly apart from its expectatign;- [f(x,0)] (dashed
line) which takes 0 & = 6* because of condition (6). Condition (7) means that the expec-
tation (dashed line) has a non-zero slope ardindvhich ensures the local uniqueness
of the zero crossing point. On the other hand, condition (8) guarantee#sistandard
deviation, shown by the two dotted lines, shrinks in the order/af T, thus we can ex-
pect to find asymptotically at least one solutién of estimating Equation (9) near the
true valued*. This situation holds regardless of the value of the true nuisance parameter

g

01 ~ A(6*,Av), when the sample siZE approaches infinity. The matrix Av, which is called the
asymptotic variance, can be calculated by

A 1
AV = Av(fr) = ZAEq ¢ f(m,O*)f(ac,B*)T] (AT)2,
whereA = Eg- ¢ [0g f (x,607)], and the symbol” denotes the matrix transpose. Note that the matrix
Av depends ornj8*,£*), but not on the samplegge, - - -, 1 }. We illustrate in Figure 2 the left side
of the estimating Equation (9) normalized by the sample Eite explain why an M-estimator has
good properties and to show the meaning of conditions (6)-(8).

4. Estimating Functions in MRP Model

The notion of estimating functions has been extended to be applicable to WMarleseries (Go-
dambe, 1985, 1991; Wefelmeyer, 1996; Sgrensen, 1999). We reeilar extension to enable it
to be applied to MRPs. For convenience, we write the triplet at tiasz, = {s_1,5,1t} € ¥ xR
and the trajectory up to timeasz; = {so,s1,r1,...,%, M} € ST x R.

Let us consider am-dimensional vector-valued function of the forfa : ST+ x RT x © — R™

T
fT(ZT70) = t;'lpt(ztve)'
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This is similar to the left side of (9) in the i.i.d. case, but now each trmS*! x R x @ — R™
depends also on previous observations, that is, a function of thersmue to timet. If the
sequence of the functior{g): } satisfies the following properties for ayand¢, the functionfr
becomes an estimating function forsufficiently large (Godambe, 1985, 1991).

EG-ﬁs [wt (Zhg)‘zt—l] =0, ¥V, (10)
det/A| #£ 0, where A = tlmEef [Oovt(Z,0)], (11)
lim Eo ¢ | 440(Z:,0)°] < . (12)

Note that the estimating functiofi (Z7,0) satisfies the martingale properties because of condition
(10). Therefore, itis calledmartingale estimating functioin the literature (Godambe, 1985, 1991,
Wefelmeyer, 1996; Sgrensen, 19§9lthough time-series estimating functions can be defined in
a more general form, the above definition is sufficient for our theoretmasideration.

4.1 Characterizing Class of Estimating Functions

In this section, we characterize possible estimating functions in MRPs. Let
£: S x Rx © — R! be the so-called temporal difference (TD) error, that is,

& =¢(z,0)=9(5-1,0) —Y9(%,60) — 1.
From Equation (4), its conditional expectatiBg ¢, [€t|Z;—1] = Eg ¢, [€t|S—1] is equal to O for any.

Furthermore, this zero-mean property holds even when multiplied by anyhtvéigction
wy—1(Z-1,0), which depends on past observations and the parameter, that is,

Eg ¢ [wi-1(Z-1,0)€(z,0)|Z 1] = wi-1(Z-1,0)Eq ¢, [€(2,0)[Z-1] = 0, (13)

for anyt. We can obtain a class of possible estimating functifn&r,0) in MRPs from this
observation if we impose some regularity conditions summarized in Assumption 4.

Assumption 4

(@) Functionwy : St x R x @ — R™ can be twice continuously differentiable with respect to
parameterd for any t, andJiLn Eg ¢ [|0owt(Z:,0)|] < o for anyé.

(b) There exists a limit of matriKe ¢ [wi_1(Z—1,0){0e€(z,0)} '], and the matrix
t"_ﬁ[]oEB,é [wi_1(Z;_1,0){06€(z,0)} '] is nonsingular for any) and&.

(©) Eoelllwi-1(Z-1,0)e(z,0)||?] is finite for any t,0 and¢.

3. Strictly speaking, strict consistency of M-estimator given by funcfi¢zr,0) requires some additional conditions.
To show consistency rigorously, we have to impose further conditianexithange between limit and expectation
operators in the neighborhood of the true parameter (more detailedsiigeus shown in Theorem 3.6 in Sgrensen
1999). In this article, for the sake of readability, we do not show sudatt siscussion.
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Lemma 2 Suppose that random sequenceiZ generated from a distribution of semiparametric
model{ p(Z7;0,£) |0, £} defined by Equation (5). If the conditions in Assumptions 1-4 are satisfied
then

T T
fr(Zy,0) = t;".bt(ztae) = t;wtfl(ztflve)s(ztaa) (14)

becomes an estimating function.

The proof is given in Appendix C. From Lemma 2, we can obtain an M-estimator
01 : ST x RT — R™ by solving the estimating equation

T ~
Z,.61) = 0. 15
t;%( t,07) (15)

Practical procedures for finding the solution of the estimating Equationwilbpe discussed in
Section 5. The estimator derived from the estimating Equation (15) has arptic variance
summarized in the following lemma.

Lemma 3 Suppose that random sequenceiZ generated from distribution (gr; 6*,£*). If the
conditions in Assumptions 1-4 are satisfied, then the M-estimator derivedEguation (15) has
asymptotic estimation variance

-~ -1
Av = Av(d) = %A*lz (AT) , (16)

whereA = A(6",£7) = lim Eg- ¢ [wt,l(zt,l,o*) {aes(zhe*)ﬂ ,
Y =3%(6%¢) = t”_fl]oEa*,g* [e(z,07)wi—1(Z-1,0")wi-1(Z-1,60%) .
The proof is given in Appendix D. Interestingly, for the MRP model, we spacify all possi-

ble estimating functions. More specifically, the converse of Lemma 2 also;hamtgsmartingale
estimating functions for MRP must take the form (14).

Theorem 4 Suppose that the conditions in Assumptions 1-4 are satisfied. Then,atiggale
estimating functionfr (Zr,0) = S{_,14(Z,0) in the semiparametric modéb(Zr;6,£) |0, £} of
MRP can be expressed as

T T
fr(Zr,0) = Zl@bt(zt,e) = Z\'wt—l(zt—l,e)s(ztva)- (17)
t= t=
The proof is given in Appendix E.

4.2 Optimal Estimating Function

Since Theorem 4 has specified the set of all martingale estimating functierganwnow discuss the
optimal estimating function among them which gives an M-estimator witlmimémum asymptotic
variance The weight functiomw;(Z;_1,0) may depend not only on the current stateand the
paramete#, but also on the previous states and rewards. However, we do ribtmeensider such
weight functions, as Lemma 5 shows.
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Lemma5 Letwy(Z;,0) be any weight function that depends on the current and previous\abser
tions and the parameter, and satisfies the conditions in Assumption 4. Thenjdmecessarily a
weight function depending only on the current state and the parametesendwresponding esti-
mator has the minimum asymptotic variance among all possible weight fusction

The proof is given in Appendix F.
We next discuss the optimal weight function of Equation (14) in terms of atiowariance,
which corresponds to the optimal estimating function.

Theorem 6 Suppose that random sequenagei€ generated from distribution(gr;0*,£*). If the
conditions in Assumptions 1-4 are satisfied, an optimal estimating function wittom asymp-
totic estimation variance is given by

T T
fi(Zr,0) = ;wt* (z,0) = t;wéil(&_lﬁ*)S(ztﬁ), (18)

t

where
wi_1(5-1,0%) =Eg- ¢:[6(2,0%)%|S5-1] "Eo- ¢:[00€(z,0)|5—1).

The proof is given in Appendix G. Note that weight functiagi_;(Z;_1,6*) depends on true pa-
rameter@* (unknown) and requires the expectation with respegh(@, s|s—1;6*,£%), which is
also unknown. Therefore, we need to approximate the true parametéheespectation, which
will be explained in a later section.

The asymptotic variance of the optimal estimating function can be calculatedLieanma 3
and Theorem 6.

Lemma 7 The minimum asymptotic variance is given by
R 1,
Av:Av(OT):TQ ,

whereQ = lim Eo- ¢ [09%); (2,0")] = |im Eq- ¢- [4¢ (%,0°)4¢ (2,6")"].

The proof is given in Appendix H. We here note that positive definite m&ris similar to the
Fisher information matrixwhich is well-known in asymptotic estimation theory. However, the in-
formation associated with this mati@is generally smaller than the Fisher information because we
sacrifice statistical efficiency for robustness against the nuisanaepter (Amari and Kawanabe,
1997; Amari and Cardoso, 2002). In other words, the estimator dEfioe the estimating function
(18) does not achieve the statistical lower bound, that is, the &r&ao lower bound.

5. Learning Algorithms

In this section, we present two kinds of practical algorithms to obtain the solotithe estimating
Equation (15): one is the batch learning procedure and the other is the tadiming procedure. In
Section 5.1, we discuss batch learning and derive new least squpeealgwprithms like LSTD and

4. If one wants more efficient estimators, it is necessary to identify thettMRP, including the nuisance parameters.

1985



UENO, MAEDA, KAWANABE AND [SHII

LSTD(A) to determine the paramet@runder the assumption that the value function is represented
as a parametrically linear function. In Section 5.2, we then study conwergesues of online
learning. We first analyze the sufficient condition of the convergerdbeoestimation and the
convergence rate of various online procedures without the constfdinear parametrization. This
theoretical consideration allows us to obtain a new online learning algorithnaslyanptotically
converges faster than current online algorithms.

5.1 Batch Learning

Letg(s, @) be a linear parametric function of features:
V(s)=o(s)'0. (19)

whereg : S— R™Mis a feature vector arlic © is a parameter vector. Then, estimating Equation (14)
is given as

T ~
3, wi1(Z1,0) {(9(5-0) ~Vo(s)) b1 1} =0,
t=

If the weight function does not depend on param@iehe estimatoé can be analytically obtained
as

-1
1 = {iuil(ztl)(cb(&l) —v¢(&>)T} {iuﬁl(ztl)ft}’

wherew : St1 x R — R™ is a function which depends only on the previous observations. Note
that when the weight functiow (%) is set tog(s ), this estimator is equivalent to that of the LSTD
learning.

We now derive a new least-squares learning algoriteneralized least squares temporal dif-
ference (gLSTD)which achieves minimum estimation of asymptotic variance in linear estimations
of value functions. If weight functiom;(Z,0*) defined in Theorem 6 is known, an estimator of
the estimating function (18) can be obtained as

T o
Or = {t;wf_l(ztl,e*)(qﬁ(&l) V¢(&))T} {t;wt*_l(ztl,e*)ft}»

by recalling thatw;_;(Z—1,0%) = Eg- ¢:[€(z, 0*)2|st,1}*1]E9*.’5§ [p(s—1) —Yo(s)|s—1]. Obviously,
we do not knoww;" ;(Z;—1,6*) because the definition @b, ,(Z_1,0*) contains the residual at the
true parameteg(z,6*), and unknown conditional expectatiofi: ¢; [(z,0%)%|s 1]

andEg- ¢:[¢p(s-1) — Yo(s)|s—1]. Therefore, we replace the true reside@,6*) with that of the
LSTD estimator and approximate the expectatiBipse: [¢(z,0%)%|s-1]* and

Eo+¢:[¢(s-1) — Yo(s)|s-1] by using function approximations

Eo- ¢ [€(z,07)%|s-1] "~ V(s-1, ),
Eg-¢:[(s-1) — YO(st)|s-1] = ((8-1,8),
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Algorithm 1 gLSTD learning

fort=1,2,--- do
Obtain sample; = {§_1,%,t}
end for

Set constarit to a sufficiently large value
fort=1,2,--- do

Calculate LSTD estimat@-S™ based on sample
{z, 21} U{zk, - 21}

Calculate its residuak A
& (P(s-1) —Y(x)) 05T —1y

Calculate conditional expectationgs_1, ), {(s—1,3) by means of function approximations
based on Sampl&lv e )thl} U {Zt+k7 e )ZT}

Obtain the weight function

W 4+ V(s_1, ) ¢ (s-1.8)
end for

Obtain the gLSTD estimator
6950 sy a4 (d(s-1) — ¥ () ) My o]

wherea and 3 are adjustable parameters for function approximawss 1, ) and ¢(s-1,03),
respectively. The estimation of conditional expectations is a simpler probkemthiat of the con-
ditional probability itself. Also note that if the weight function is approximatedubing past ob-
servationsZ; _;, condition (13) still holds regardless of the approximation accuracy ofvight
function, implying the consistency of gLSTD. This is because any functiandhly depends on
past observations can be employed as a weight function. This favatadnlacteristic is consistent
regardless of the accuracy of approximation and allows us to use angxapption techniques
(e.g., sparse regression, kernel regression, or neural nejweitkeut particular constraints. Al-
gorithm 1 demonstrates the pseudo-code of gLSTD learning. We introdunstant non-negative
integerk to Algorithm 1 to enhance the efficient use of samples. LSTD estin@&fJP can be ob-
tained in an unbiased manner by using future trajecfary, - - - , zr } for sufficiently large positive
integerk, because the MRPs defined in Equation (1) satisfy geometrically uniformgniriaplying
the exponential decay of the correlation between the statistissanfds . Althoughk must be
infinite to guarantee consistency in a strict sense, it could be a certain a@daieger when we
consider the trade-off between the accuracy of function approximatisthgonsistency. There are
also some computational difficulties in Algorithm 1 with a lafgealue, because we must store the
sample trajectory in memory to estimate weight functiginat each time. Thus, in the simulations
in Sections 7 and 8, we sktto zero; both the LSTD estimator and conditional expectations are
calculated by using whole samples. Although this simplified implementation in factesothe
condition of consistency, it works well in practice.
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5.2 Online Learning

Online learning procedures in the field of RL are often preferred to begéching ones because they
require less memory and can be adapted even to time-variant situationsailergine estimator of
6 at timet is denoted a#;. Suppose that sequenfe(Z1,6),-- , 7 (Zr,6)} forms a martingale
estimating function for MRP. Then, an online update rule can simply be given b

6 = 61— (Z, 6 1), (20)

wheren; denotes a nonnegative scalar stepsize. In fact, there are other gudiate uules derived
from the same estimating functigh(z;,0) = S!_,4i(Z,0) as

6y = 61 —NR(6:_1)Yx(Z:,6 1), (21)

whereR(6) denotes amx mnonsingular matrix only depending ér(Amari, 1998). This variation
results from the fact that functioR(8) St_,i(Z, ) yields the same roots as its original for any
R(#). This equivalence guarantees that both learning procedures, rf@d0R4), have the same
equilibrium, while their dynamics may be different, that is, even if the originabritlym (20) is
unstable around the required solution, it can be stabilized by introducing@pgte R(0) into
(21).

We will discuss the convergence of the online learning algorithm (21) in élxetwo subsec-
tions.

5.2.1 GONVERGENCE TOTRUE VALUE

We will now discuss the convergence of online learning (21) to the truenpeterd*. For the sake
of simplicity, we will focus on local convergence, that is, initial estima@@ris confined in the
neighborhood of the true parameter, which is assumed to be a unique soiutiemeighborhood.
Now let us introduce sufficient conditions for convergence.

Assumption 5
(@) Foranyt,(8;—0*)"R(6\)Eg: ¢:[thr+1(Z+1,6:)|s] is nonnegative.

(b) For anyt, there exists such nonnegative constantnd ¢ that

Eo- ¢ [HR(ét)’,le(ZtH,ét)Hz‘Sc} < 01+Cz}|ét—0*H2.

Condition (a) assumes that the opposite of graCﬁ&ﬂ?{)Eg*’sg [Yt+1(Zes1, ét) |s] must point toward
the true parametd&t* at each time¢. Then, the following theorem guarantees the convergenég of
to6*.

Theorem 8 Suppose that random sequenceiZ generated from distribution(@r; 0*,£*). Also,
suppose that the conditions in Assumptions 1-5 hold. If stepéipésare all positive and sat-
isfy SNt =c0 and 524 n? < o, then the online algorithm (21) almost surely converges to true
parameterg*.

The proof is given in Appendix I. Theorem 8 ensures that even if tlyggnad online learning algo-
rithm (20) does not converge to the true parameter, we can constroctiae learning algorithm
with local consistency by appropriately choosing maRi9).
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5.2.2 GONVERGENCERATE

The convergence speed of an online algorithm could generally be stbamerthat of its batch
counterpart that tries to solve the estimating equation using all available saidpigsver, if we set
matrix R(€) and stepsize$n.} appropriately, then it is possible to achieve the same convergence
speed as that of the batch algorithm (Amari, 1998; Murata and Amari, B&®u and LeCun,
2004, 2005). Following the discussion on the previous work (Bottou at@uh, 2004, 2005), we
elucidate the convergence speed of online learning for estimating the walciBoh in this section.
Throughout the following discussion, the notionstéchastic orderplays a central role. Appendix

A briefly describes the definition of stochastic orders and their properiiesn, we characterize

the learning process for the batch algorithm.

Lemma9 Letét andét,l be solutions to estimating equations

(1/t) S 1 4i(Z,6,) = 0 and (1/(t — 1)) Y= 4pi(Z,6;_1) = 0, respectively. We assume that the
conditions in Assumptions 2-4 are satisfied. Also we assumétthatmiformly bounded for any t,
and matrixR;(6;_1) = (1/t) St 1007 (Z,6,_1) is nonsingular for any t. Then, we have

o o 1~ ~ ~ 1
6 =06i_1— th_l(Otfl)wt(Zta 6:_1)+Op <t2> ) (22)

where the definition of g-) is given in Appendix A.

The proof is given in Appendix J. Note that Equation (22) defines theesemp of9; as a recursive
stochastic process that is essentially the same as online learning (21) fantie®R. In other
words, Lemma 9 indicates that online algorithms can converge with the sanergenge speed as
their batch counterparts through an appropriate choice of mRtriinally, the following theorem
addresses the convergence speed of the (stochastic) learningsgosach as that in Equation (22).

Theorem 10 Suppose that random sequenceiZ generated from distribution (gr; 6*,£*), and
then consider the following learning process

~ ~ 1~ ~ 1
0y =0y 1— th—l'l,bt(Ztaetfl) +0p (,@) , (23)

whereR; = {(1/t) 3!_,09%i(Z,6i_1)}. Assume that:
(a) For anyt,8; is uniformly bounded.
(b) R* can be written aR; * = Eg- ¢: [Ry *|Zi—1] +0p(1/t).

(€) Eo- ¢ [00v1(Z,07)6; 16, 4] can be written as
Eg-¢:[00%1(Z,0%)0t-10,_ 1] = Eg- ¢[00t (Zt,0")|Eo- ¢-[6:-16,_ 4] +0(1/1).
(d) For anyt,ﬁt is a nonsingular matrix.
Also assume that the conditions in Assumptions 1-4 are satisfied. If lggorocess (23) almost
surely converges to the true parameter, then the convergence ratesis agv

Eg- ¢ [0 —07)?] = %tr {A*E(A*)T} +0 (3) : (24)
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whereA = tIiﬁm Eo: ¢+ [wi_1(Zi-1,07){00%(z,6%)} "] and
E=1imEg: ¢ (e(z,6")*wi_1(Z 1,60 )wr_1(Z1,60%)"].

The proof is given in Appendix K. Note that this convergence rate (2agither affected by the
third term of (23) nor by thep(1/t) termin matrixR; L.

5.2.3 GENERALIZED TD LEARNING

We now present the online learning procedure that yields the minimum estimation Roughly
speaking, this is given by estimating functigii(Zr,0) in Theorem 6 with the best (i.e., with the
fastest convergence) choice of the nonsingular matrix in Theorem 10:

. 1oy .0 4
6 =9t71—th Yp*(z,6-1), (25)

whereQ = {(1/t) T_,00v*(z,6 1)} and+y*(z,0) have been defined by Equation (18). If
learning equation (25) satisfies conditions in Assumptions 1-5 and Theldethen it converges
to the true parameter with the minimum estimation er¢dyt)Q~1. However, this is impractical
as learning rule (25) contains unknown parameters and quantities. &aiicpl implementation,
we need to evaluatBe- ¢: [€(z,6*)?|s—1] andEg- ¢ [0p€(z,60")|s—1] by using function approxi-
mations, whereas standard online learning procedures do not maintaiticstatésa time series to
avoid increasing the amount of memory. Therefore, we apply online furadtapproximations to
these.

Letv(s, a;)and( (s, B;) be the approximations @ ¢:[€(z1,6:)%|s] and
Eo-¢:[00€(2+11,6t)|s], respectively. Hereq and3; are adjustable parameters, and they are ad-
justed in an online manner;

6y = Gy-1—NPOaV(S-1, G- 1) {V(S-1,4-1) — €(z,6;-1)%)
Bi=Bi1-nPas¢(s 1,8 1){¢(s 1,6 1) — 00e(z,6: 1)},

whereng andr]tﬁ are stepsizes. By using these parametrized functions, we can rdméz(:;ﬁt,l)
andQ; ! by

Vi (2,00-1) = V(S -1, é4-1) ¢ (s-1,68t-1)8(,0t1)
-1
A~ t ~ PN
Ql= {_ZV(S1,di1)_1C(SLﬂil)aoE(Z«w@il)T} : (26)

Note that update (26) can be done in an online manner by applying the vesliikkmatrix
inversion lemma (Horn and Johnson, 1985);

& Qtillﬁ’f—la@s(zta ét—l)TQtill
1—& (1—&)+&00e(z,01)TQ; Lay 4

~A—1 _ 1 ~A—1
Qt - (l*St)Qt_l

; (27)

whereg; = 1/t andw; ; = v(s[,l,dt,l)‘lqs(,l,ﬁt,l). Following Amari et al. (2000), we addi-
tionally simplify update equation (27) as

Q' = (1+&)QY — & Qb 1008(z,6-1) ' QY. (28)
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Algorithm 2 Optimal TD Learning
Initialize G, Bo, 6o, Qg * = €lm, a1, @
{e andl,, denote a small constant and mrx midentical matrix}

fort=1212,--- do
Obtain a new sample; = {s_1,,r}

Calculate the weight functiony;”;
Gy ¢ Gy 1N #0aV(st-1, 6t 1){V(%-1, Gt 1) — (2,6t 1)%}
B+ Bro1-nPopC(s-1.Bi-){¢(s-1.8-1) — 96€(z, 6-1)}
wtfl <_V(Sflaatfl) C(St 17Bt 1)
UpdateQ; ! by using Equation (28) ) )
Qi (1+(1/1)Qy — (1/)Q ey 1008(z, 6 1) QY
Update the parameter,
T+ min(ay,az/t)

6 + 61— (1/1)Q Y 1&(z,6;-1)
end for

which can be obtained becauseis small. We call this procedureptimal TD learningand its
pseudo-code is summarized in Algorithnd 2.

5.2.4 ACCELERATEDTD LEARNING

TD learning is a traditional online approach to model-free policy evaluationhais been one of
the most important algorithms in the RL field. Although TD learning is widely usexise of
its simplicity, it is known that it converges rather slowly. This section disai$&elearning from
the viewpoint of the method of estimating functions and proposes a new oldiitlam that can
achieve faster convergence than standard TD learning.

To simplify the following discussion, we have assumed t(at0) is a linear function as in
Equation (19) with which we can solve the linear estimating equation using btuth &ad online
procedures. When weight functian (Z;,0) in Equation (13) is set t¢(s), the online and batch
procedures correspond to the TD and LSTD algorithms, respectivetg tNat both TD and LSTD
share the same estimating function. Therefore, from Lemma 9 and TheOreve tan theoretically
construct accelerated TD learning, which converges at the sameap&&d D learning.

Here, we consider the following learning equation:

.. 1. R
0 =61 — {Rt_l¢(5tfl)€(2t, 0i_1), (29)

whereR; ! = {(1/t) 31_1 #(s-1)(#(5-1) — y$(s)) "} . SinceR; * converges to
A~l= lim Eo- ¢ [¢(s-1) (P (s-1) —vo(s)) "]t and A~! must be a positive definite matrix (see

Lemma 6.4 in Bertsekas and Tsitsiklis 1996), online algorithm (29) also almosy stonverges
to the true parameter. Then,R; satisfies the conditions in Theorem 10, it can achievestirae

5. Since the online approximation of the weight function only depends shqgtmervations, optimal TD learning is
necessarily consistent even when the online approximation of the weiggtidn is inaccurate.
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Algorithm 3 Accelerated-TD Learning
Initialize 6o, Ry = €l m, a1, a2
{e andl,, denote a small constant and mrx midentical matrix}
fort=1212,--- do
Obtain a new sample; = {s_1,,r}

UpdateR; * A ) A o
Rt (1+ (1/1)R Y — (1/H)R4009(s 1,6t 1)068(2, 6 1)R Y
Update the parameter,
T+ min(ag, az/t)

6 — 61— (1/)T)R; 2099(5:_1,0: 1)&(z,6; 1)
end for

convergence rate as LSTBV/e call this proceduréccelerated-TD learningWe present an imple-
mentation of Accelerated-TD learning in Algorithm 3.

6. Related Work

This section discusses the relation between current major RL algorithmsegmiebgfosed ones from
the viewpoint of estimating functions. Theorem 4 describes the broaldsstaf estimating func-
tions that lead to unbiased estimators. Therefore, almost all the curiaatvased RL methods, in
which consistency is assured, can be viewed as instances of the me#sidratting functions.

For simplicity, letg(s, 8) be a linear function, that is, the value function can be represented as in
Equation (19). We have two ways of solving such a linear estimating equdtenfirst is a batch
procedure:

or = [let 1(d(s-1) — V(s ] [let 1rt].

and the second is an online procedure:

6; = 6,1 —nRewy_18(z,60; 1),

wherewy is a weight function at timé. By choosing both weight functiom;_1 and the learning

procedure, we can derive various RL algorithms. J&b, fTTD(A), FRCand f5 be the estimating
functions that are defined as

f1° = f°(z1,0) Zlqb S-1)€(z,6),
f:rr -fT ZT) ZZ y)\t I(’i)s 1 (Zt 0)
RG _ tRG(7, g ZEQ* & —Vp(s)|s-1J€(, 0),

1 = f1(Z7,0) ZEG-,Eg &(z,0%)%|s-1] 'Eg ¢:[d(5-1) — Yo (3)|S-1]€(, ).
=
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Figure 3: A five-states MRP.

Here, we remark that TD-based algorithms (TD Sutton and Barto, 1998, Bf&dtke and Barto,
1996, LSTD Bradtke and Barto, 1996, LSPE Nednhd Bertsekas, 2003, GTD Sutton et al., 2009b,
GTD2, TDC Sutton et al., 2009a and iLSTD Geramifard et al., 2006), A)Ebé&sed algorithms
(TD (A) Sutton and Barto, 1998, NTD\) Bradtke and Barto, 1996, LSTIA)Y Boyan, 2002, LSPE
(A) Nedic and Bertsekas, 2003, and iLSTR) (Geramifard et al.,, 2007) and RG (Baird, 1995)
originated from the estimating function&l®, f TD( and fR®, respectively. It should be noted
that GTD, GTD2, GTDc, iLSTD, and |LSTD)\0 are specific online implementations for solving
corresponding estimating equations; however, these algorithms can aigerpeeted as instances
of the method of estimating functions we propose. We have briefly summarizeeldéiion between
the current learning algorithms and the proposed algorithms in Table 1.

The asymptotic behavior of model-free policy evaluation has been analjted special con-
texts; Konda (2002) derived the asymptotic variance of LSXa6d revealed that the convergence
rate of TD Q\) was worse than that of LSTD\). Yu and Bertsekas (2006) derived the convergence
rate of LSPEX) and found that it had the same convergence rate as L3 [Bécause these results
can be seen in Lemma 3 and Theorem 8, our proposed framework g pevious asymptotic
analyses to provide us with a methodology that can be more widely appliedyoocéamsymptotic
analyses.

7. Simulation Experiment

In order to validate our theoretical developments, we compared the perfoenistatistical error)
of the proposed algorithms (gLSTD, Accelerated-TD and Optimal-TD algusjtwith those of the
online and batch baselines: TD algorithm (Sutton and Barto, 1998) an® la®jorithm (Bradtke
and Barto, 1996), respectively, in a very simple problem. An MRP trajgetas generated from a
simple Markov random walk on a chain with five statss=1,---,5) as depicted in Figure 3. At
each timd, the state changes to either of its leftl() or right (-1) with equal probability of (. A
reward function was set as a deterministic function of the state:

r = [0.6594 —0.387Q —0.9742 —0.9142 0.9714° and the discount factor was set t®8. The
value function was approximated by a linear function with three-dimensi@sas functions, that is,
V(s) ~ T2_,6ntn(s). The basis functiongs(s) were generated according to a diffusion model (Ma-
hadevan and Maggioni, 2007); basis functions were given baseceanittor eigenvectors of the

6. This reward function was prepared as follows. We first set the &luefunction by choosing the basis function and
generating the parameter randomly, then the reward function was seitsbsatisfied the Bellman equation.

1993



UENO, MAEDA, KAWANABE AND [SHII

Online Learning: O = 61— r]tlitwt,l(zt,l)a(zt, 6:)

o f1°(Z1,6) = 31 p(s-1)e(2,0)

e TD (Sutton, 1988) Ri=R=1I

e NTD (Bradtke and Barto, 1996) Re={(1/t) 31 b(s) p(s)} M

e LSPE (Nedt and Bertsekas, 2003) Ry = {(1/t) 5!, o(s)e(s)T} L

e GTD (Sutton et al., 2009b) See Equations (9) and (10) in the literature
e GTD2 (Sutton et al., 2009a) See Equations (8) and (9) in the literature
e TDC (Sutton et al., 2009a) See Equations (9) and (10) in the literature
¢ iLSTD (Geramifard et al., 2006) See Algorithm 3 in the literature

e Accelerated-TD Learning Ry = (@S o(s_1)(d(s-1) —

yo(s) '}t =1/t
o f10M(Zr,0) =315 (W p(s 1)e(z,6)
e TD()\) (Sutton, 1988) Ri=R=1I
e NTD(A) (Bradtke and Barto, 1996) Ry = {(1/t)5!_;¢ ' (s)é(s)}
e LSPEQ) (Nedic and Bertsekas, 2003) Ry = {(1/t)S!_; ¢(s)p(s)} L
¢ iLSTD(A) (Geramifard et al., 2007) See Algorithm 2 in the literature

o fRC(Zr,0) = 31 (d(5-1) — VEg- ¢ [B(s)|5-1]) £(2,6)
e RG (Baird, 1995) R=R=I
o f1(Z7,0) given by Equation (18)
e Optimal-TD Learning Ri=0Qr%n =1/t

Batch Leaming: fr = [57_; w1(Z1)(é(5-1) —vé(8) ] [STaw(Zo)r]

o f1°(Zr,0) = 31 p(s-1)(2.6)
e LSTD (Bradtke and Barto, 1996)

o f17M(21,0) = 5T15 (W) T B(s-1)e(z,0)
¢ LSTD(M) (Boyan, 2002)

e f1(Zr,0) given by Equation (18)
e gLSTD

Table 1: Relation between the current learning and the proposed algarithtlesiotes am x m
identity matrix.
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Figure 4: Boxplots of MSE both of the online (TD, Accelerated-TD and Ogtifiity) and batch
(LSTD and gLSTD) algorithms. The center line, and the upper and lowes sitleach
box denote the median of MSE, and the upper and lower quartiles, regbhgctihe
number above each box is the average MSE.

graph Laplacian on an undirected graph constructed by the state tranShimbasis functions actu-
ally used in this simulation weré(s;) = [1,—0.60150.5117", ¢(sp) = [1,—0.3717,—0.1954 ",
¢(s3) =[1,0,—0.6323 ", p(s4) =[1,0.3717 —-0.1954 ", and¢(ss) = [1,0.60150.5117 . In gen-
eral, there is no guarantee that the true value function is included in the spacned by the gener-
ated basis functions. In our example, however, the true value functioheceepresented faithfully
by the basis vectors above.

We first generate = 500 trajectories (episodes) each of which consisted €f500 random
walk steps. The value function was estimated for each episode. We edatbatenean squared
error (MSE) between the true value function and the estimated value fupetialuated over the
five states.

Figure 4 shows the boxplots of the MSE of the value functions estimated byapeged
(Accelerated-TD, Optimal-TD and gLSTD) and baseline (TD and LSTD)ritlgms, in which the
MSEs of all 500 episodes are shown by box-plots. For this example, tiditiomal expectations
both in Optimal-TD and gLSTD can be calculated by sample average in eachbsteseise there
were only five states. In the online algorithms (TD, Accelerated-TD, anih@pTD), we used
some batch procedures to obtain initial estimates of the parameters, as isaoféeim dhany online
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procedures. More specifically, the first 10 steps in each episodesseddo obtain initial estimators
in a batch manner and the online algorithm started after the 10 steps.

In the proposed online algorithms (Accelerated-TD and Optimal-TD), thesigepwere de-
creased as simple agtl On the other hand, the convergence of TD learning was too slow in the sim-
ple 1/t setting due to fast decay of the stepsizes; this slow convergence wabatsved when em-
ploying a certain well-chosen constant stepsize. Therefore, we adagad-hoc adjustment for the
stepsizes as/1, wheret = ap(np+1)/(np+t). The bestip andng have been selected by searching
the sets ofip € {0.05,0.1,0.2,0.3,0.4} andng € {10,50,100, 150,200,250 300 400 500,1000},
so thatog andng are selected as®and 200, respectively.

As shown in Figure 4, the Optimal-TD and gLSTD algorithms achieved the minimurd MS
among the online and batch algorithms, respectively. The MSEs by these tlodsavere com-
parable’ It should be noted that the Accelerated-TD algorithm performed significhatter than
the ordinary TD algorithm, showing the matfikwas effective for accelerating the convergence of
the online procedure as expected by our theoretical analysis.

Figure 5 shows how the estimation error of the estimeﬁe) behaves as the learning proceeds,
both for online (upper panel) and batch (lower panel) learning algoritifraxis and y-axis denote
the number of learning steps and the estimation error, that is, the MSE betveegne parameter
and estimated parameter, average over 500 runs, respectively. Tetited results, dotted and
solid lines, exhibit good accordance with the simulation results, crossesratas, respectively, as
expected. Although our theoretical methods were mostly based on asympialfsia, they were
supported by simulation results even in the cases of relatively small numbampiies.

8. Discussion and Future Work

The contributions of this study are to present a new semiparametric appimalce model-free
policy evaluation, which generalizes most of the current policy evaluationadsttand to clarify
statistical properties of the policy evaluation problem. On the other handramaework to eval-
uate the policy evaluation has been restricted to situations in which the fungijwoxamation is
faithful, that is, there is no model misspecification for the value function;ave not referred to sta-
tistical behaviors of our proposed algorithms in misspecified cases.t|nagroposed algorithms
may not better than current algorithms when the choice of parametric furgctiothe preparation
of basis functions for approximating the value function introduces bia, Alss unsure whether
our proposed online algorithms converge or not in misspecified casesreMghows an example
where the proposed algorithms (Optimal-TD and gLSTD) fail to obtain thedséishation accuracy.
Here, an MRP trajectory was generated from an Markov random chaimeosame dynamics as in
Section 7. Rewards 1 and—1 were given when arriving at states ‘1’ and ‘20’, respectively e
discounted factor was set a98. Under this setting, we generatiéd= 500 trajectories (episodes)
each of which consisted df = 1000 random walk steps. We tested two linear function approxi-
mations with eight-dimensional and four-dimensional basis functions, ctagplg, which were also
generated by the diffusion model. The former basis functions cause aasghich can be ignored,
whereas the latter ones make a significant bias. The upper and lowés paReyure 6 show the

7. In a particular implementation of the gLSTD algorithm (Algorithm 1) here,used the whole sample trajectory to
approximate the weight functiaw;’, that is,k = 0, implying gLSTD does not necessarily hold consistency. Based on
good agreement of the results between gLSTD and Optimal-TD, hoywegaran speculate that the approximation
of the weight function using the whole sample trajectory did not affectstiation accuracy so much.
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Figure 5: 500 learning runs by varying the initial conditions were perfdindpper panel) Trian-
gles (), crossesx) and circles ¢) denote the simulation results for TD, Accelerated-TD
and Optimal-TD, respectively. They were averaged over the 500 fTins.dotted and
solid lines show the theoretical results discussed in Lemma 3 for estimating fusictio

0 and f5 described in Section 6. (Lower panel) Crossesdnd circles ¢) denote the
simulation results for LSTD and gLSTD, respectively.

MSEs of the value functions estimated by the proposed (Accelerated-{3tiin&-TD and gLSTD)
and baseline (TD and LSTD) algorithms employing eight-dimensional anddiownsional ba-
sis functions, respectively. For scheduling of stepsizes in the onlineithigs, we followed the
same procedures as in Section 7. In the well-specified case (uppd), prm@roposed algorithms
achieved the smaller MSEs than the baseline algorithms as expected by lysisaneéhile in the
misspecified case (lower panel), our proposed algorithms were inferibe tbaseline algorithms.
These results indicate the limitation of our analysis. When the bias-variameedfficannot be ig-
nored, it is not sufficient to consider solely the asymptotic variance.eftwer, we need to analyze a
risk ® (67) which represents the deviation between the estimated value function andethvaltra
function. Also, it is an important future work to construct good paramegjrasentations (e.g.,
basis functions in linear cases) which attain small modeling biases. Furtheitrismecessary to
extend our convergence analysis for online learning algorithms to aplgitabnisspecified cases.
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Figure 6: Boxplots of MSE for both of the online (TD, Accelerated-TD @mdimal-TD) and batch
(LSTD and gLSTD) algorithms on a twenty states Markov random walk pnob{&lpper
panel) Simulation results on the function approximation with eight-dimensionababffi
basis functions. (Lower panel) Simulation results on the function approximatith
four-dimensional diffusion basis functions.

8.1 Asymptotic Analysis in Misspecified Situations

First, let us revisit the asymptotic variance of the estimating function (15). Ispadfied cases,
estimating function (14) does not necessarily satisfy the martingale prpfestyits asymptotic
variance can no longer be calculated by Equation (16). However, lmdinting a notion ofiniform
mixing the asymptotic variance can be correctly evaluated, even in misspecifes] cas

To clarify the following discussion, we only consider the class of estimatoe @y the fol-
lowing estimating functionfr : ST x RT x © — R™

fr(Zr,0) Zilbt (Z,9) let 1(Z-1)e(z,0). (30)

Note that the class of estimators characterized by the above estimating fu(@jois general
enough for our theoretical consideration because it leads to almosttak ofiajor algorithms for
model-free policy evaluation that have been proposed so far (see TabMow we demonstrate
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with Lemma 11 that the asymptotic variance of the estima@@rgiven by the estimating equation

T — ~
,6) =0. 31
t;d’t(zt ) (31)

Lemma 11 Suppose that the random sequengédsZgenerated from the distribution(fr) defined
by Equation (1). Assume that:

(&) There exists such a parameter vallie O that

lim E [4(2,6)] =0,

where thatE[-] denotes the expectation with respect {@p, and 61 converges to the pa-
rameter@ in probability2

(b) There exists a _limit of matrix E[wi-1(Z-1){00€(%,0)}"] and

lim & [wi—1(Zi-1){06€(z,0)} "] is nonsingular.

(©) E[||lwr-1(Z-1)e(z,0)?] is finite for any t.

Then, the estimator derived from estimating Equation (31) has the asymgntiose

Av = Av(6r) =E [(6r — 0)(0r ~0)"] = %/K—li (/v)*l, (32)
where
A= A_( _) Etlﬂl [1&,1{698(2,0_)}1 ,

X =3%(0)=ImE [e(zt, 0_)2'@7115;_1} +lim 2 Z cov[e(z, 0)w1,€(z1v,0)wi 1] -
t'=1

Here,w: andcoV-, -] denote the abbreviation a@b:(Z;) and the covariance function, respectively.
The proof is given in Appendix L. Since this proof required the central lihdibrem under uni-
form mixing condition, we briefly review the notion and properties of unifoning in Appendix
B. We note that the infinite sum of covariance in Equation (32) becomesaxtesn the parametric
representation of the value function is faithful. This implies that Lemma 11 gknes the result
of Lemma 3.
Furthermore, we can derive the upper bound of the asymptotic variagge (

Lemma 12 There exists such a positive constafthat

holds, whereSo = lim E [¢(z, 0)2; 11y 4.

8. We can show the stochastic convergence of the estimator to the par&hgtimposing further mild conditions to
fT. The proof can be obtained by following the procedure used in The8réim Sgrensen (1999).
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The proof is given in Appendix M. This lemma addresses that the estimatbish we have
proposed so far, minimize the upper bound of the asymptotic variance in wifssgpeases.
Lemma 11 allows us to see the asymptotic behavior of the risk, like done by theysevork in
a different context; Liang and Jordan (2008) evaluated the qualityobfgtnilistic model-based pre
dictions in a structured prediction task. They analyzed the expected Is¢risls) of composite like-
lihood estimators and compared it with those of generative, discriminativeseuto-likelihood
estimators, both when the probabilistic models are well-specified and misspeSifiee composite
likelihood estimators are in the class of M-estimator, we will be able to evaluatesthefrvari-
ous estimators by performing a similar analysis to Liang and Jordan (2008)st{ and Kitagawa
(1996) introduced generalized information criterion (GIC) which couldpygied to evaluate statis-
tical models constructed by various types of estimation procedures. GIE getteralization of the
well-known Akaike information criterion (AIC) (Akaike, 1974) and proetian unbiased estimator
for the expected log-loss (risk) of statistical models obtained by M-estimaldrsrefore, it may
be possible to select a good model from a set of potential models by cctirtggran information
criterion for model-free policy evaluation based on the analysis in KonighKatagawa (1996).

8.2 Online Learning Procedures in Large Scale Situations

In both Optimal-TD and Accelerated-TD learning, it is necessary to maintaimteese of the
scaling matrixR;. Since this matrix inversion operation co€§MP) in each step, maintaining the
inverse matrix becomes expensive when the dimensionality of the parameterasies. An effi-
cient implementation in such a large-scale setting is to use a coarsely-ra@prkeseale matrix, for
example, a diagonal or a block diagonal matrix. An appropriate setting ssillres the conver-
gence rate 0O(1/t) without losing the computational efficiency. Le Roux et al. (2008) preskn
an interesting implementation of natural gradient learning (Amari, 1998) fgeiacale settings,
which was called “TONGA’". TONGA uses a low-rank approximation of thalisg matrix and
casted both problems of finding the low-rank approximation and computingrtitkegt onto a
lower-dimensional space, thereby attaining a lower computational compl&Rigyefore, by apply-
ing such an idea to our proposed algorithms, we can improve the computatonglexity without
sacrificing the fast convergence.

9. Conclusions

We introduced a framework of semiparametric statistical inference for fahation estimation
which can be applied to analyzing both batch learning and online learningguces. Based on
this framework, we derived the general form of estimating functions fatehtree value function
estimation in MRPs, which provides a statistical basis to many batch and onlinatpalgorithms
available currently for policy evaluation. Moreover, we found an optiretil@ating function, which
yields the minimum asymptotic estimation variance amongst the general clasgeardtpd new
learning algorithms based on it as both batch and the online proceduiag.dsmple MRP prob-
lem, we confirmed the validity of our analysis; actually, our proposed algosighowed reasonably
good performance.
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Appendix A. Stochastic Order Symbols

The stochastic order symbo(®, ando, are useful when evaluating the rate of convergence by
means of asymptotic theory. Letdenote the number of observations. The stochastic order symbols
are defined as follows.

Definition 13 Let {X,} and {R,} denote a sequence of random variables and a sequence of real
numbers, respectively. Thep % op(R,) if and only if X%,/R, converges in probability t® when
n— oo,

Definition 14 Let {X,} and{R,} denote a sequence of random variables and a sequence of real
numbers, respectively. Thenp % Op(R,) if and only if X,/R, is bounded in probability when

n — . “Bounded in probability” means that there exist a constagte@d a natural number g{e)

such that for ang > 0 and n> np(g),

P{Xn| <Ce} >1-¢

holds.
Most properties of the usual orders also apply to stochastic orderdtance,

Op(1) +0p(1) = 0p(1),
Op(1) +Op(1) = Op(1),
Op(1)op(1) = 0p(1),
(1+0p(1)) "t =0p(D),
Op(Rn) = Rnop(1),
Op(Rn) = Rnop(l)a
0p(Op(1)) = 0p(1).

Moreover, by taking the expectation, the stochastic order symmjiol reduces to the usual order
symbolo(+).

Remark 15 Let{X,} and{R,} denote a sequence of random variables which satisfies (1)
and a sequence of real numbers, respectively. ket X,R, denote a random variable which
satisfies Y= op(Rn). If the sequence of random variablgi¥ asymptotically uniformly integrable,
then, the expectation of the random variablg$¥s the same normal ordét[Y,| = o(Ry).

This remark can be shown from Theorem 2.20 in van der Vaart (200Xg that the sequence
of real numbergR,} which appears in Definition 13 and 14 corresponds tocthrevergence rate
thenY, = 0p(Ra) andY, = Op(R,) mean that the sequentgconverges in probability to zero and
is bounded in probability, respectively, at the ratdRgf
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Appendix B. Uniform Mixing and Central Limit Theorem

The notion ofmixingis important when analyzing the rate of convergence in the stochasticsgesce
which do not satisfy the martingale condition. There are several diffeiedimitions for mixing. In
this section, we will especially focus amiform mixingwhich is defined as follows.

Definition 16 LetY = {Y; :t =1,2,...} be a strictly stationary proce®n a probabilistic space
(Q, F,P) and 7" bec-algebra generated b{Xk, - - - ,Ym}. Then, the process is said to be uniform
mixing @mixing) if¢(t) — 0 as t— o« where

¢(t)= sup [P(BJA)—P(B)|, P(A)#O0.
ACH BERS,

The functiong(t) is calledmixing coefficient If the mixing coefficienth(t) converges to zero
as fast as exponential, then Y is callgebmetrically uniform mixing

Definition 17 Suppose thaY is a strictly stationary process. If there exist some constants@
andp € [0,1) such that
o(t) <Cp',

thenY is said to be geometrically uniform mixing. _
Let f be a Borel function on the state space and define: 1/T 5, f(Y). We now consider
the conditions under which the central limit theorem holdsffar

Lemma 18 (Ibragimov and Linnik, 1971, Theorem 18.5.2.) Supposef{tfat is a strictly station-
ary process with geometrically uniform mixing.tlilrfn E[||f(%)||?] is finite, then the central limit
—00

theorem holds foff, that is,
_ d
VT (fr = Im E[f(%)]) % 2((0,02),

as T— o whereo? = lim E[f (Y%)2] + 21im 57y cov[f (%), f (Year)].

Note that, unlike the i.i.d. or the martingale case, the variance of the asymptotibudistr
involves the correlation between different times. Generally, such time depey makes finding
an exact relationship difficult; however, it may be easy to evaluate ther inopmd of the time-
dependent covariance.

Lemma 19 (Ibragimov and Linnik, 1971, Theorem 17.2.3.) SupposeYhigta strictly stationary
process with uniform mixing. Let f and g be measurable functions with aeap)éflk and %7,
respectively. If f and g satisfy

E[|f|P] < w0, E[|g| < o,
where pg > 1, p+q=1, then
E[fg] - E[f]E[g]| < 20(t)YPE[ f[P]PE [|g|%"e.

Finally in this section, we consider the conditions that Markov processies$ystne uniform
mixing condition.

9. In a strictly stationary stochastic process, joint probability distributionmsistent when shifted in time.

2002



GENERALIZED TD LEARNING

Lemma 20 (Bradley, 2005, Theorem 3.1) Suppose thad a strictly stationary, finite state Markov
process. Then the following statements are equivalent:

(a) Y isirreducible and aperiodic.
(b) Y is ergodic.

(c) Y is geometrically uniform mixing.

Note that if a finite state Markov process has an unique and invariant statidistribution, it
implies ergodicity. Then Lemma 20 addresses that such Markov procesfagmumixing.

Appendix C. Proof of Lemma 2

Proof Condition corresponding to (12) is satisfied by condition (c) in Assumptiohigb, condi-
tion (10) is satisfied by Equation (13). From condition (a) in Assumption 4exipectation of the
derivative of the functionu;_1(Z—1,0)€(z,0) can be expressed as

lim Eg ¢ [0 {wt-1(Z-1,0)€(z,0)}]
=limEg¢ [Oowt_1(Z-1,0)e(%,0)] +1limEg ¢ [wy-1(Z;—1,0)00€(%,0)]

ZJmEe,g Opwi—1(Zt—1,0)Eg ¢ [€(7,0)] Z—1] +t|i_|’>[]oE0,g [wi—1(Zt—1,0)00€(z,0)]
-0
=IlimEg¢ [wi 1(Z1,0)008(7,0)],

t—o0

where we have used the fact in Equation (13). Therefore, usingt@m(b) in Assumption 4, we
can show that condition (11) is satisfied. |

Appendix D. Proof of Lemma 3

Proof By performing a Taylor series expansion of estimating Equation (15) drihentrue param-
eter@*, we obtain

T T A A
0 :t;fﬁt(zt,e*) +t;ae¢t(2t,9*)(9_r —6")+0, <H9T - 9*H2> |

Here, high order terms of the above equation are in total represented as

Op(HéT — 6+%||?) because of Assumption 3, that is, the twice differentiable condition for thetifan
9(s,6). By applying the law of large numbers (ergodic pointwise theorem) (Billingsl®&®5,
Theorem 24.1) td1/T) S\ ,89%t(Z,0*) and the martingale central limit theorem (Billingsley,
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1961) to(1/v/T) S1_, 09t (Z:,0*), we have

T

1 T
ft;aoibt(zt, =T Zlaowt 1(Z-1,07)e(z,0%) + zl 1(Z-1,07)00€(z,0")

22, t'mEe*,g* [Oowi—1(Zi-1,0")e(%,0")]

-0
+im Ege ¢ [wi-1(Zi-1,0){008(2,67)} ]

—A
— Y %(Z,0) = wr-1(Z1-1,0%)€(z,67)
FLBEOI= Y

d : * * *
— N O7tlmE9*,§* |:£(Zt70 )Zwt—l(zt—lag )wt—l(zt—:be )T

—

=3

By neglecting higher order terms, we obtain
VT (61— 0%) ~ A <O,A‘12(AT)‘1) .

Then, 67 is Gaussian distributedit ~ AN (6*,Av), where the asymptotic variance Av is given by
Equation (16). [ |

Appendix E. Proof of Theorem 4
Proof From Equation (2), for an;, the value functiolV (s) = g(s, 0) must satisfy

Ee,ﬁs [rt+1‘&] = g(&v 0) - Ee,ﬁs [g(&+1a 0) | St] )

regardless of the nuisance paraméterhen, the TD error

€(z+1,0) = 9(,0) — YO(St+1,0) — Iy must satisfyle ¢ [€(z+1,0)|Z] = 0 for anyt and§. Also,
from the condition of martingale estimating functions, for any timehe estimating function must
satisfy

Eo ¢ [fi+1(Z+1,0) — fi(Z4,0)|Z] = 0, (33)

regardless of the nuisance paramdtelf we can show from Equation (33) that

fir1(Zi11,0) — fi(Z4,0) = wi(Z4,0)e(z41,0) holds, fr(Zr, ) must have the form (17) by induc-
tion. Since this statement can be considered component-wise, we will pwatiiar claim for
scalar functions, that is,

]EO,}ES [h(zt+17 0) |Zt] - 07 \V/SS = h(zt+la 0) - W(Zt7 e)s(zt+17 9)7 (34)

in the following two steps.
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1. We first prove in aonstructivemanner that any simple functidi(z1,0) which depends
only onz1 and satisfyEg ¢, [N(z+1,0)|s] = 0 andEg ¢, [{h(z1,0)}?] < « for anyt, # and
&s can be expressed B& . 1,0) =wW(s,0)e(z41,0), wherew(s;, ) is a function ofs.

2. Our claim (34) for general functiam(Z;, 1,0) is derived from the fact shown in the previous
step, because for each fix&dthis problem boils down to the simple case above.

To prove the simple case first, for arbitrary fixadand 8, we consider the se¥ (s, 6) of
all probability distributions ofr;,1 ands. 1 with each of which the expectation of the TD error
€(z+1,0) vanishes. In the following discussios,is treated as éixed constantIn our semipara-
metric case, this set can be expressed as the set of all conditional distr#bofr, . ; ands. 1 for
givens which has value functiog(s;, ) with the fixed#, that is,

M(s,0) = {p(ri+1,5+1/5:60,&s) | s, 0: fixed,
Eo.¢,[6(2+1,0)|s] = 0(s.0) ~ VEo.&. [0(+1,0) 8] — Eo.g, [ri1ls] = 0},

where the nuisance parametgris designed so that it becomes bijective with the distributions in
M(s,0). We remark that the se¥/ (s, 60) and the domain of the nuisance paramétetepend on
s andé.

Suppose that there exists a functiorh@#_, 1) which satisfies€€y[h(z-1)] = 0 and
Ep[{h(zt+1)}2] < oo for any p(riy1,5+1) € M(s,0). Then, because of the linearity and continuity
of the integral operator, the unbiasedness condition can be extendey torationq(ri+1,S+1)
which belongs to the closed spaf(s, 0) of M(s,0):

> /h(2t+1)Q(l’t+1,St+1)dft+1 =0. (35)

S+1

It is also easy to show thaYT/[(s{,H) contains any functions (i.e., even without satisfying the non-
negativity constraint of probabilities) which satisfy the condition

Z /E(Zt+1) q(re41,84+1)drey1 =0. (36)

S+1

Indeed, we can always construct a linear representation of sualctdiig(r;;1,S-1) with four
probability distributions inM (s, @) which take positive values only in two regions out of
{(r+1,5+1)[€>0, > 0}, {(re41,S+1)[€ >0, <O}, {(re41,5+1)|€ <0, g> 0} and
{(rts1,841) [€ <0, g <O}

Now, we take a distributiom(ry, 1,5.1) in M (s,0) which is positive over its domatf and
consider its perturbation

Ep[h(z1)e(z41)]
Eple(z+1)?]

whered > 0 is a small constant arii, denotes the expectation ouer; ands..1 with respect to
p(ri+1,S+1). This functionq(ri;+1,S+1) does not necessarily belong to the mo@éls, @), but

A(re1,+1) = P(res1,S+1) {1+ oN(z41) —d S(Zt+1)} ;

10. If there exists a region where all distributionsifi(s, 0) take 0, it is impossible to characterize the functional form
of h(z+1) in that region. For simplicity, however, we do not consider such a pagiealbcase in this proof.
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is an element of its closed spaTr[(st,O), because it also satisfies the condition (36). Therefore,
Equation (35) must hold for this perturbed functigreading to

Z /h(2t+1) q(res1,S41)dregr = 5{Ep[h(2t+1)2] B Ep[s(zul)z}

S+1

(Ep[h(zt+1)€(zt+l)])2} _o. (37)

From Cauchy-Schwarz’s inequality, this equation holds if and onty4f,1) 0 €(z.1) and other-
wise Eg[h(z1)], the left-hand-side of Equation (37), becomes strictly positive, whiclraditts
the fact (35). Since the whole argument holds for grgnd@, the first claim is proved.

In the general case for the function 4&f, 1, we just show that any function(Z..1,8) which
satisfiesEg ¢ [N(Zi+1,0)|Z] = 0 andEg ¢ [{h(Z+1,0)}?] < o for anys, @ and&s can be expressed
ash(Zi41,0) =wi(Z,0)e(z41,60), wherew (Z;, 6) is a function ofZ; andé.

For arbitrary fixedZ;, h(Z;1,0) can be regarded as a functionref; ands.1. Therefore,
the problem reduces to the case that the function only depends grso that we can say that
h(res1,S+1,%,0) O €(rer1,5+1,%)- Since this relationship holds for ady, we conclude that the
functionh(Z1,0) must have the fornm (Z;,0)e(z1,0). [

Appendix F. Proof of Lemma 5

Proof We show that the conditional expectatian(s, 8) = E¢ [wi(Z;,0)|s], which depends only

on the current statg and the parameté, gives an equally good estimator or better estimator than
those by the original weight functiam(Z;,8). As shown in Equation (16), the asymptotic variance
of the estimatoB,, with w(Z, 0) is given by

AV (By) = %A;vlzw (A

whereA,, = lim Eg. ¢. [wt_l {aes(zt,e*)ﬂ = lim Eg- ¢- [wt_l(zt_l, 0*) {aes(zt,e*)}ﬂ and
Zw = lim Eg- ¢ (&) ?wi—1w’ 4] =1m Eg- ¢ [(&7)?wi-1(Zi-1,0")wr_1(Z-1,0") " ]. Here,wy is

an abbreviation ofv; (Z;, 0*). Similarly, the asymptotic variance of the estima‘i@rwith Wi-1(8-1,0)
is given by

whereAy = lim Eo- ¢ [ayt,l {aes(zt,e*)ﬂ = lim Eo- ¢ [wt,l(st,l,e*) {aga(zt,e*)}q and

Sy = |im Eg- ¢- (&) 10, 4] = lim Eo- ¢- (&) Wt-1(5—1,0%)Wr—1(S—1,0") ']. Here,uj is
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an abbreviation ofv(s,0). The matriced\,, and3,, can be calculated as

Aw=lim Eg- - [wi1{0081(z,67)} |
= lim Eg. ¢ {Eg*& [wr_1|S_1] {agst(zt,e*)}q = Aw,
Ty = lim Eg- ¢ [(8?‘)2 (Eo+ g [wr-1|s—1] + w1 — Eor g [wr-1]51])
(B £: [wi—1|s—1] + wi—1— Eo- ¢; [’wt71|947ﬂ)T]
= lim Eo- ¢ | (6)*Eo- ¢ w151 Eo- ¢ [wi-alsi o] |
+1im Eg- ¢- [ Eg- ¢: [wi—1/S-1) (wi—1 — Egr gx [wi_1/s— 1])1
+lim Eg- ¢ [ (w1 —Eor g; [wr-1|s-1]) (Eo- g, [wt—llst—l])q
+1im Eg- ¢ {(ﬁt )? (wi-1—Eg ¢; [wi-1|5-1]) (wi-1—Eo- ¢ [wt—llst—l])—r}
=%+ lim Eg- ¢- {(EEF)Z (wi—1—Eo- ¢ [wi_1]5-1]) (wi—1—Eg- ¢ ['wt—1|5t—1])T]
—g + im Boee- |(6)2 (w1 — 1) (we 1~ 1B-1) |

where we have us€lly: ¢: [wi-1|z 1] = Eg- ¢; [wy_1|§-1] = w1 and

lim Eg- ¢ [(8?)2 (wi—1—Eo- ¢; [wi—1]S-1]) Eo- ¢ ['wt—l‘st—l]T}

t—o0

= |Im Eg £¥ |:( ) (Eg*ygs [wt 1|S¢ 1] Eg*{; [wt_]_’S[_l]) (E9*7§§ [’wt_l‘St_]_])T:| =0.
This implies that

AV(Ou) = %A I3 (A | =

1

TAL S (AzY) " = Av(6a),

where>= denotes the semipositive definiteness of the subtraction.

Appendix G. Proof of Theorem 6
Proof As shown in Equation (16), the asymptotic variance of the estinthtds given by

Av = %AWEW(A\,T,l)T,

where

Aw = lim Eg- ¢ [wi-1(Zi-1,07){062(z;, o)} '],
Zw=lim Eg- ¢ [e(z, 0*)wr 1(Z 1,0 )wr_1(Z-1,6%)"].
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For the sake of expression simplicity, the weight functon(Z;,0*) the TD errore(z,0*) are
abbreviated as; andg;, respectively; we rewritd,, andX as

AW = tllrc]o Eg*{* [wt_l{ags(Z{,e*)}T} 5
EW = tImE9*7§* |:8t2wt_1wt—|;1i| .
We first derive the weight function that minimizes the trace of the asymptotiangs, that is,

w;_q = argminF (w;_1)

W1

where F (wi_1) = tr{Av (wi_1) }.

Let 61 = 6t—1(Z—1,60") be an arbitrary function aZ;_; and@*. We consider how much a func-
tional F (w;_1) changes when we make a small chahge ; to the weight functionu;_;. For nota-
tional convenience, we defit@h;w;_1,8;_1) =F (w_1+hd;_1).2! Ifthe functionG(h; wy_1, 6 1)
is twice differentiable with respect tg then we have

G(Mwi-1,0-1) = G(0;wr_1,8t-1) +h IG(M w1, 8 1) |p_o + O(h?),

wheredy, denotes the partial derivative with respecht@ince the functiondf (w;_1) is stationary
for tiny variation in the functionw;_1, the weight functionw,” ; which minimizes the asymptotic
estimation variance must satisfy

ahG(h;wt*fl,(St_]_ O,

)‘h:O:

for arbitrary choice ob;_;.
The definition of derivative says

. G\ wi_1,0t-1) — G(0;wi_1, 0t
ahG(h;wt71,5t71)|h:o:1@0 Aoy tl))\ (Oieon—1,01-1)

The numerator of the above equation is written as
GA, wi—1,6t-1) — G(0;wi—1,0t-1)
—tr [A;vimzw%(Av;im)T} —tr [Agvlzw(A;Vl)T] , (38)
where
Awins = lim Eg- ¢ [(wi—1+ A1) {0p2(%,6")} ]
= Aw+Alim Ep- ¢ [81-1{068(2,60")} '] (39)
Twias = IM Eg- ¢- €7 (we-1+A8t1) (wr-1+Ad 1) "]
= Zw +Alim Eg- [ -1 1 +wi-18 1))+ O(N?). (40)

11. We used this notation to emphasize tB&h; w;_1,d;—1) is a function ofh, while w;_1 andd;_1 are regarded as
auxiliary variables.
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By using the matrix inversion lemma (Horn and Johnson, 198@19\5 can be written as

1 . A\ T -1
A= (AW+)\tlmEg*7€* [0t-1{00%(z,0")} ])

-1
= Ayt lim ALt (14 AEg g [-1{006(2,07)} TIAGY)  NEog:[6-1{008(2,0")} A
The matrix(l + AEg- ¢- [ét_l{ags(zt,a*)}T]Av‘vl)fl can be calculated as

(14 MEg- -0 1{002(2.0)) TIAGY) = (1 - ABge ¢ [5-1{3pe(2.6)) TIAGY) + OO,
because of

(| +AEg- ¢ [0r_1{00€(z, 9*)}T]AV‘\,1) (| — AEg- ¢ [6_1{00&(z, 9*)}T]AV‘\,1) =14+0(72).
Thus we obtain

Aubio = Au' =AM A 'Eg- ¢ [di1{00(2,0")} | Ay +O(N?), (41)

where high order terms are summarized4a?).
Substituting Equations (39)-(41) to Equation (38), we have

tr [Av;imzwm(Av—viw)q —tr [Av—vlz:W(Av—vl)T}
=~ Alim tr [Aqleg*,g* [5t_1{aes(zt,e*)}q AISy (A;Vlﬂ
—AJimtr [Agle,,*,g* [a(,s(zt, 0*)6, 1} AIS, (Agvl)T]
+Afim tr A im o [2(8 1w+ 18] )] (A1) ] +00?)
=~ 2\ Jim tr [AL (ALY Eor g [30(2,67)8 1 (AY)]
+2AJim tr (A Eo- ¢ [P 16 1)(A)| +0().
This gives the partial derivative,G(h; w;_1,d;-1) as
OnG(hwt—1,6t-1)|h—o
=—2jimr [AV-Vlz:W(AV-Vl)TEN* [ags(zt, 0*)5, 1} (Av—vlﬂ
+2imtr [AV‘\,l]Eg*é* (2wt 16, 4] (A\,‘Vl)q
=20 Eg- ¢ [6 1 (ALY AL Dul(ArY) Ep- ¢ 022,672 1]
+21im Eg- ¢- [5£1(A®1)TAVV1E0*,£§ [e? th_l]wt_l}

—2limEg ¢ |81 (A AGH {Eor g [els - 1lwi1 — Su(AZY) "Eo- ¢;[008(2,0)ls-1] ]
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By applying the condition that the deviation becordder any functiond;_1(Z_1,0*), the optimal
weight function is obtained as

wi_ 1 =Eo ¢ [(e(z.0°)%|5-1] " Zw(AL") "Eo- ¢:[00€(z, 07)|si-1).-

Because any estimating function is invariant to transformation applied byegar matrix, the
optimal estimating function is restricted as

* * * * 71 *
wi_ g =w 1(Z-1,0") =Eg ¢ [€(2,0)%|5-1]  Ee- ¢:[00(z,0%)|s-1],

or its transformation applied by any regular matrix.
Now, we confirm that the estimator obtained by Equation (18) yields the minimymstic
variance. Substituting;” , to the matrixA,y, some calculations in Appendix H lead us to

AW* = 2\/\/* = Qa
where
Q= lim Eo- ¢ |Eo- &:[67/5) "Eo- ¢;[008(2,0")|-1]Eo- &; D0 (2, 07 I51] |

We consider how much the asymptotic variance Av changes when we makd! alsange
0t—1 = hét—1 onw;"_;. The matrices atv; ; + ;1 become

Au5=Q+[IMEg- ¢ [61-1008(2,67) ],
Ew+g: Q—]—tli_r)];]oEg*’g* [aes(ztye*)é_t—r—l}
+t”_r>'2°E9**£* |:5t71{69€(2t,0*)}—r1| +t|mEe*,£* [5t25t715t11} :
Therefore,

-
-1 _(a-1 -1 =N
A 152w +3 (Aw*+3> —Aw Zw (Ay)

- A\;}Jrg (EW* 15 AwdAu Sw (A TAL +3) (A\Xf*lJrg) -
Ci
The matrixC, is a semipositive definite matrix, because
Ci=%y 5~ Au.5Aw Sw (Av_\rﬁl)TA\Imrg
=M Eg- ¢ [626 16 1] — lim Eg ¢ [ 1{008(2,6)} | Q "B ¢- [00e(2,6)8
=B [(61-11) (a-ma)'| 20,

where

1 =Eg g 6?5 1] "Eo- ¢ [0 1{008(2.67)} | Q Eo g [d08(z, 675 1]
Thus we have

.
Al B s (Aghs) — AW Sw (A =0,

w3 W \ w48
where- denotes the semipositive definiteness of the subtraction. The equality inoveeduation
holds only wherd;_; O w;" ;. [
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Appendix H. Proof of Lemma 7

Proof The matrixA in the asymptotic variance given by Equation (16) can be calculated as
A = lim Eg. ¢- (09t (z,6")]
= lIm Egr ¢ [w]1(Z 1,6") {00£(2,0)}
= lim Eg- ¢- [Ee*,sz [£(z,67)|s-a]
Eo ¢ [008(2,0")Is-1]Eo.¢: [008(2,07)s: 1] |.
Also the matrix3 can be calculated as
% = lim Eo- ¢- [47(2,6")9i (2,67)" |

= lIm Bg - [Eo-; [6(2, 6725 1] wi_1(Z 1,67 {wi 1(Z 1,6)}]

= tlmEg* £ |:E Zt 0 |S[71]
* -1 *
{Eo-e: [6(2.6")Is-1] " Eo-¢; 008 (2,651
{Bo g e2,0"15-1) o O0c(a 0" a1} |
= ||m Eg* £ [Ee* 5* |$ 1}

Eg&;[008(2,07) |5 1Fo- ¢;[00€(2,0")Isi-1)"| =A = Q.

These observations yield

Av () = EA’lzl(A’l)T =

—1
T Q.

1
=

Appendix I. Proof of Theorem 8

Proof To simplify the following proof, we assume the true parameter is located on tgi or
without loss of generality9* = 0. Let hy be ||6;|>. The conditional expectation of variation kf
can be derived as

Eo- ¢ [Ns1— hi|s] = — 20410 R(0)Eo ¢; [v141(Ze11,60)| &)
+N¢ 1 Eee e [IIR(O)Yri1(Zes1,00)]1%| ] -

From Assumption 5, the second term of this equation is bounded by thedsemmmnent, thus we
obtain

Eg- ¢: [t1— (1+nt2+102)ht‘5t]
< —201410 R(6)Eg- ¢: [¢r+1(Zis1,00) | s] +NEaca. (42)
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Now, letx; = [Tk_1 1/(1+nZcz) andh; = X;h;. From the assumption
z{”:lr]tz < oo, we easily verify that G< x; < 1. Multiplying the both sides of Equation (42) ky, 1,
we obtain

Eg- ¢ [Nty1— ht|Z]

< —2Mt1Xe+10) R(O)Eo- &1 [¥r41(Zir1,61)| S] +NELaXes1Cr.
The first term of this upper bound is negative because of Assumptiore Seitond term is non-
negative becausg, X;.1, andc; are nonnegative, and the sum of the second tqm§r]t2xt+1c1

is finite. Then, the supermartingale convergence theorem (Neveu; B8nSekas and Tsitsiklis,
1996, Proposition 4.2) guarantees tr(atonverges to a nonnegative random variable almost surely,

ands > 1 Nts1Xes 16 Re(6))Eg-. & |:’l,bt+1(2t+]_,0t || <. Sincey;ne=coand I|th Xo >0,

we haveetTR(Ot)Eg*{S [1/;t+1(Zt+1,0t \st] 25 0. This result suggests the conclusmn that the on-
line learning algorithm converges to the true parameter almost sukefiZs 6* = 0. [

Appendix J. Proof of Lemma 9
Proof Using Taylor series expansion of the estimating equafigh) S!_, v(Z,6;) aroundé; 1,
we obtain

¥i(Zi,6,) = Yi(Zi,6-1)

=

1
t.£

HM~

Zae¢l Z,60, 1)(9t 6, 1) +0p (Het 0 1| )
Sincez}zldzi (Zi,ét) = z}j i (Zi,Ot,l) = 0, we obtain the following equation:
1 ~ Y~ . .
_flﬁt(zta 6i-1) = Ri(6—1) (0 — 6:_1) + Op (|6 — 6:_1?) .
We can then rewrite the right hand side as
1 ~ I .~ .
— 1 %t(Z,0-1) = {Re(6t-1) + Op([| 6 — Or-a[1) } (6 — 1),
and
. 1 ~ . ~ .~ ~
(6 —6r1) = —f{Rfl(at—l) + Op (|6 — Or—1l) febt(Z, 6t-1).
Note thatR; (6;_1) is uniformly bounded because of the nonsingular condition in Lemma 9. Also
6y is uniformly bounded for any. Furthermoreg)x(Z;, 6;_ 1) is uniformly bounded for any since
the conditions in Assumptions 2-4 imply thei (Z;, 6;_ 1) is a continuous function of uniformly

bounded variables. Hence, the above equation implies that
0y — 6;_1 = Op(1/t). Therefore, we can obtain the following equation

_f1¢t(zt7ét—1) = Iit(ét—l)(ét - 5t—1) +0p (tlz) .
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By using the matrix inversion operation, we derive

~ ~ 1~ ~ 1
6 =6i_1— fRfld)t(Zt,at—l) +0p <t2> .

Appendix K. Proof of Theorem 10

Proof Similar to the proof in Appendix |, we assume the true parameter is located atigfire o
6* = 0. From the assumption in Theorem 10, the online learning converges to éhparameter
almost surely; this implies thak = 6* + 0p(1) = 0p(1). Note also thaR; converges ta\ almost
surely; this implies thaR; = A+ 0p(1). Furthermore, from condition (d) in Theorem 10, the matrix
R, is invertible for anyt; this implies thaR; 1 = A~1+ 0p(1).

Using Equation (23)(6; — 6*)(6; —0*)" = 6,6, can be expressed as

~oa ~ 14 ~ 1
6.6, = (at—l— fRflll’t(Ztaat—l) +0Op <t2>)

0 1s g A 1 T
01— tROY(Z,00-1) +Op |
1
t
Lo 5 s 1
TR (Z, O-1) i (Z,0-1) T (R T +0p (t2> :

A A 1 A N A A A
=0, 16, | — fot_lwt(zt,et_lf(Rt HT - 2R (24, 60:-1)6 4

where high order terms are in total representedpa(i/tz) because of

60:-10p(1/t?) = 0,(1)Op(1/t2) = 0p(1/t?). Taking the conditional expectation &f6,” givenz;_1,
we obtain

A A A~ A 1. R R
Eg- ¢ [0:0712c-1] =0c-100 1 T 01Borg; | $0(Z00-0) (RTYT| 2
|
1 a ~ A
— f]Eo*,gg [Ri'41(Z,6i-1)| Z-1) 61

-~

C1
lg Ry Y (Z, 0 1) (Ze,0-1) T (Ry V) 7| Ze_1 | 40 1
2 ongs | N vlas b)) P4, B t -1 Pliz )

Ca

We now express each of the terms in the above equation.
In order to expres€, andC,, we introduce the following lemma.

Lemma 21 (Bottou and LeCun, 2005, Theorem 4) LebX a uniformly bounded random variable
depending on Z Then we have

) ) 1
Eo- s [Re %] Z-1] =Fo- ¢ [Ri Y Z-1] Bor g5 [ %] Z-1] +0p (t) :
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Proof By using assumption (b) in Theorem Iy ¢: [RrX|Z;_1] can be calculated as

Eo- ¢: [Ry ™% Zi-1] = Egr ¢:[Re Y Zi-1]Eo- 5 [%]Z—1] + Eo- g2 [&0(Z0) % | Z—1],

whereg(Z;) = 0p(1/t). Eg- ¢:[€t(Z)%|Z 1] is summarized asp(1/t) because of the Cauchy-
Schwartz’s inequality:

Eog- ¢ [€(Z)%]Z1] < \/Ee*,gg[

(2)21 20 1]/ Bor g5 [ 1%121 2]

Since condition (a) in Theorem 10 and Assumgtions 2-4 }pﬁ(dt,ét,l) andR; to be continuous
functions of uniformly bounded variableg (Z;,6;_1) andR; are uniformly bounded for ant
Then, using Lemma 213, can be expressed as

Ca —{anes [ReYZia]
1
Eo- ¢ [¢t(zt,9t )t (Z, 6i-1) ‘Zt 1} Eg- ¢ [ R ‘Zt 1}}4—0[) (t>
We note thalle: ¢: [¢r(Zt, 0 —1)vt(Z, 6:-1)T|Z 1] can be calculated as

Eo-g; | $1(Z000-2)9n(Z,6c1)| Zeo1) = Eorg; [10(Z 0020|221 +0p(D),

becausé)t 1 converges to the true parameter ahdZ;, 0) is uniformly bounded. Since
Ryl =A"140p(1) is satisfiedC, can be rewritten as

Cz = A_lEg*{; [W(Zh 0*)Ipt (Zt, 0*)T‘ Zt,11| (A_l)—r + Op (1) . (43)
Using similar argument$;; can be expressed as
C1=Eg ¢ [R7(Z, 6011 )| Zi-1] 6 1

A 1
=Eo& [R Y Z-1] Bo- ¢ [90(Z,60-1)I1Z1] 01 + 0p <t> :

We now consideEg:- ¢; [¢t(Zt,ét_1)]Zt_1]. Applying a Taylor series expansion to
Eo+ ¢:[¢1(Zt, 6t 1)|Z 1] around the true paramet@t = 0, we have

Eg+ ¢: [";bt(ztyétfl)lztfl]
=Eo- ¢ [¥1(Z,07)| Zi—1] + Eor ¢ [00%1(Z:,07)| Z—1] i1+ 0p (16 1])
=Eg+ ¢: [009t(Z,07)| Zt 1] 61+ 0p (|ét71\) ;

where we have used the fact i ¢ [v1(Z;, 0%)|Z;1] is zero. Since
Ri=A+ 0p(1) is satisfiedC, can be rewritten as

C1= (A1 +0p(2)) (Ee- ¢ [00%1(Z,0%)|Z—1] 6—1+0p (16i-1]) ) 61 +0p <t1)

. - 1
— AflEg*{; [agd)t(zt,g )‘Zt—l] Ot_10£1+0p (Hat_luz) +0p (t> . (44)
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We now use Equations (43) and (44), leading to
A A 1\ ~ = 1 i} A oA
Eo- ¢ [etetht—l} = <1+0p <t>> 616, 1 — A "Eo- & [004t(Z:,07)Z: 1] 616, 4
1 -1 * ) NT T
G (A Eo- ¢ 091t (Z:,0")|Z: 1] 9t719t_1)

! 1
+ SA By ¢ [$e(Z0)%0(Z,0) 21| (AT +0p <t2> .

Taking the expectation over the sequence, we obtain

Eg- ¢- {étét—r} = <1+0 (3)) Eg- ¢+ [ét—lét—il} - %AflEe*,g* [60"/’t(zt70*)ét—lét—r—l}
1

T 1 1
- (A—lng [agwt(zt,a*)et,loi_l}) +t2A—12(A—1)T+o<) ,

t2

where we have used the fact th&f ¢- [ (Z;, 0% )y (Z,6%) "] converges ta:
Eo- ¢ [¥1(Z, 0%y (Z,6%) "] = X+ 0(1). Using assumption (c) in Theorem 10 and applying the
trace operator, we obtain

16:]1%) = <l— % +0 (t1>> |

We now introduce the following lemma.

1

~ 1 B B
E@*{* [ |0t71‘|2} +t7tr {A 12(A 1)T} "‘O <t2> .

Lemma 22 (Bottou and LeCun, 2005, Lemma 1) {et} be a positive sequence defined as

N )

If @ > 1andB > 0 hold, then

B
tw — -1
The proof is given in Lemma 1 in Bottou and LeCun (2005). Referring thelref Lemma 22, we
have

Eog- ¢ [

16,7 = t}tr{A*E(A*l)T} +o <t1> .

Appendix L. Proof of Lemma 11

Proof Since the MRPs defined in Section 2 are ergodic, the MRPs satisfy georgtitiéorm
mixing. By performing a Taylor series expansion to estimating Equation (bbinarthe parameter
6, we obtain

T T

0 :;Jt(zt,é) +t;ag¢7(zt,§>(éT ~6)+0 (HéT —e_Hz) .
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Here, high order terms are in total represente@@t@T — 67||2) because of the twice differentiable
condition for the functiorgy(s, @) as Assumption 3. By applying the law of large numbers (ergodic
pointwise theorem) (Billingsley, 1995, Theorem 24.1J1¢T) S{_; 941 (Z,0), we have

Zl"“”f Z.,0) let 1(Z1){008(2,0)} T 25 M E | 1(Zu 1)00{e(,0)} ]

=A

Let k € R™ be any nonzero vector. By applying the central limit theorem in Lemma 18 to

(1/VT) 5Tk 91(Z,0), we have

Zlkth (Z,0) = Zlk:th 1(Zi-1)&(z,0)

d . 5 _ , -
— N | Ok (tlglgo E [st(zt,o)zwtflwll} +lim 2 Z cov[e(z, 0)w-1, (Zt+t’79)wt+t’1}> k

>}

Therefore, from the Craér-Wold theorem (van der Vaart, 2000},/v/T) th:lz[t(Zt,O_) converges
to a Gaussian distribution as follows;

lept A (0,%).
By neglecting higher order terms, we obtain
VT (61— 6) ~ N (0,,6_(1§(A_\T)’1> .

Then, 87 is Gaussian distributeddt ~ A((8,Av), where the asymptotic variande is given by
Equation (32). [ |

Appendix M. Proof of Lemma 12

Proof Letk € R™ be any nonzero vector. By applying the central limit theorem to
(1/VT) S,k 9 (Z,0) in Lemma 18, we have

\% ikﬁﬂ(zt,a_) 4, N(O,kT§k> :
pA

where

k' Sk =lim kB [e(2,0)2 1w 4] k
+1lim 2 cov[e(zt,0_)kTuTt,1,£(zt+t/,6T)szEt+t/_1.
t'=1
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Since the target process is a geometrically uniform mixing, there exist sosi#/@@onstant&
andp € [0,1) such thath(t) < Cp!. Then, by using the covariance bound in Lemma 19, we obtain

‘cov [8(zt,éT)kT15t_1,£(z¢+t/,@kT@H/,l} ‘ <2,/p()lim k'E [s(zt,é)_)ztﬁt_lu_)ll} k
< 2vCp'/2Jim kT E [6(z, 6) % 110y 4 k.
Thereforek” Sk is bounded as
‘kTikz‘
JkaE :s(zt,tsT)zu_yt,ltEtT,l: k+2lim S cov{s(zt,5)szEt,1,s(zt+t/,67)kT15mf,1]

=1

< lim |k"E [e(2.0)2w 1 4| k| +2)im S (cov[e(zt,(i)kla_l,s(zm,,é)kwm_l}‘

T toow tﬁwt’:l

< lim |k E [e(z,0)%w0 1w, 4| k| +4vC Y o2 lim ‘kTE [e(zt,e_)zza_lzﬁtil} k‘
- - t'=1

T too

— lim |k"E |e(z,0) 2w 100, 4| k (1+4ﬁ > p"/2>
- - t'=1

t—oo

) B i 1/2
T T 2 — T pi
_tlm k'E _S(Zt,e) Wr—1Wy_1 | k (1+4\@(1—p1/2)>

Y

= Ylim (kTE £(2,0)%in 114 k:‘ - Y‘kTiok

whereY = 14 4/Cp%?/(1— p*/?). Thus, we can obtain the following relation;
k' (YSo—%)k>0.
This implies thatrXo— X is a semipositive definite matrix, hence we derive

1—71_ 1\ T
TAE(ATY <

N Y (a1 T
TA So(ATY) .
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