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Abstract

In this paper we develop a class of nonlinear generative lnddehigh-dimensional time series.
We first propose a model based on the restricted Boltzmanmima¢RBM) that uses an undi-
rected model with binary latent variables and real-valugsible” variables. The latent and visible
variables at each time step receive directed connectians fihe visible variables at the last few
time-steps. This “conditional” RBM (CRBM) makes on-linefenence efficient and allows us to
use a simple approximate learning procedure. We demoadstratpower of our approach by syn-
thesizing various sequences from a model trained on mo#éiptuce data and by performing on-line
filling in of data lost during capture.

We extend the CRBM in a way that preserves its most importamiputational properties and
introduces multiplicative three-way interactions thédalthe effective interaction weight between
two variables to be modulated by the dynamic state of a thariable. We introduce a factoring
of the implied three-way weight tensor to permit a more cothparameterization. The resulting
model can capture diverse styles of motion with a single $gtasameters, and the three-way
interactions greatly improve its ability to blend motiotylss or to transition smoothly among
them.

Videos and source code can be founhitigt//www.cs.nyu.edu/ ~ gwtaylor/publications/
jmir2011
Keywords: unsupervised learning, restricted Boltzmann machines series, generative models,
motion capture

1. Introduction

The simplest time series models, and the earliest studied, contain no hidddslegribvo mem-
bers of this class of “fully-observed” models are the vector autorsiyesodel and thal™" order

x. This article is dedicated to the memory of the third author who unexpectadiep away on January 12, 2010.
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Markov model. Though elegant in their construction, these models are limitedelnylack of
memory. To capture long-range structure they must maintain explicit links towatiems in the
distant past, which results in a blow-up in the number of parameters. Ting s&gularities present
in many time series suggest that a more efficient parameterization is possible.

More powerful models, such as the popular hidden Markov model (HMioduce a hidden
(or latent) state variable that controls the dependence of the curregrivaben on the history of
observations. HMMs, however, cannot efficiently model data that iswdtref multiple underlying
influences since they rely on a single, disci¢tstate multinomial to represent the entire history of
observations. To mod&l bits of information about the past, they requifétidden states.

In this paper, we propose an alternative class of time series models tleathinee key proper-
ties which distinguish them from the prior art. The first property is distrib(ited componential)
hidden state. Mixture models such as HMMs generate each observatioa gimgle category. Dis-
tributed state models (e.g., products) generate each object from a setnfels that each contain
some aspect of that object’s description. linear dynamical systems (L&&)a continuous, and
therefore componential hidden state, but in order to make inference ia thedels tractable, the
relationship between latent and visible variables is constrained to be lineashdW that by care-
fully choosing the right form of nonlinear observation model it is possiblattain tractable, exact
inference, yet retain a rich representational capacity that is linear iruthéer of components.

Directed acyclic graphical models (or Bayes nets) are a dominant paradigiodels of static
data. Their temporal counterparts, dynamic Bayes nets (Ghahrama8), §@8eralize many ex-
isting models such as the HMM and its various extensions. In all but the sintiested models,
inference is made difficult due to a phenomenon known as “explaining”amiagre observing a
child node renders its parents dependent (Pearl, 1988). To perffarance in these networks, typ-
ically one resorts to approximate technigues such as variational infefideeéand Hinton, 1998)
or Monte Carlo methods which have a significant number of disadvant&egh(amani, 1998;
Murphy, 2002).

An alternative to directed models is to abandon the causal relationship Ibetaeables, and
instead focus omndirectedmodels. One such model, the restricted Boltzmann machine (RBM)
(Smolensky, 1986), has garnered recent interest due to its desirapkrty of permitting efficient
exact inference. Unfortunately this comes at a cost: Exact maximum likelileaoning is no longer
possible due to the existence of an intractable normalizing constant calledrtiteop function.
However, the RBM has an efficient, approximate learning algorithm, cdiveadivergence (CD)
(Hinton, 2002), that has been shown to scale well to large problems. RBMsbeen used in a
variety of applications (Welling et al., 2005; Gehler et al., 2006; Hinton aaddkbutdinov, 2006;
Larochelle et al., 2007; Salakhutdinov et al., 2007) and over the lastdavs their properties have
become better understood (Bengio and Delalleau, 2008; Salakhutdiddaray, 2008; Sutskever
and Hinton, 2008). The CD learning procedure has also been impr@atdefra-Perpinan and
Hinton, 2005; Tieleman, 2008; Tieleman and Hinton, 2009). With a few dimep(Hinton and
Brown, 2000; Sutskever and Hinton, 2007) the literature on RBMs is medfio modeling static
data. In this paper, we leverage the desirable properties of an undiegctétecture, the RBM, and
extend it to model time series. This brings us to the second key property widtiels we propose:
their observation or emission distribution is an undirected, bipartite graph.nTdkes inference in
our models simple and efficient.

The final key property of our proposed models is that they can formuiteitg blocks of deep
networks by incrementally learning one layer of feature extractors at a {®me. motivation for
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promoting deep architectures is biological plausibility. Experimental evideapports the belief
that the brain uses multiple layers of feature-detecting neurons to pnoclkesensory input such
as speech or visual signals (Hinton, 2007). There is also a practizahant for deep learning. In
capturing more abstract, high-level structure from the data, the higherslgyovide a more sta-
tistically salient representation for tasks such as discrimination. Theseadeast new, but until
recently, the problem of how to efficiently train deep networks remained.ofiee backpropagation
algorithm requires a large amount of labeled data and has difficulties withlgpeed minima and
vanishing gradients. A resurgence in the study of deep architectusdselea sparked by the dis-
covery that deep networks can be initialized by greedy unsupervisetdrngaf each layer (Hinton
et al., 2006). RBMs were originally proposed for this task, but autodgrso(Bengio et al., 2007)
and sparse encoder-decoder networks (Ranzato et al., 2006xlkaveeen shown to work. After
a pre-training stage, the entire network can be fine-tuned with either aagiggeor discriminative
objective.

2. Modeling Human Motion

Motion capture (mocap) is the process of recording the movement of acsabja time series of 3D
cartesian coordinates corresponding to real or virtual points on the bkt modern systems use
a series of synchronized high-speed cameras to capture the locatioatedically-placed physical
markers attached to the subject (so called “marker-based” systems® onage features to infer
points of interest (so-called “markerless” systems). Marker-basgdrsg are much more common
but necessitate the use of a laboratory setting. Markerless systems petiuit oapture in more
natural environments (e.g., outdoors) but in general require more timesteppacess the data.
Recent advances in motion capture technology have fueled interest inglysia and synthesis of
motion data for computer animation and tracking.

Given its high-dimensional nature, nonlinearities, and long-range depeies, mocap data is
ideal for both studying the limitations of time series models and demonstrating tfesitiedness.
Several large motion capture data repositories are available, and pespieragood at detecting
anomalies in data that is generated from a model, so it is easy to judge theerglatirative ability
of two models. While focusing on a particular domain has greatly facilitated nuslelopment
and comparison, there is nothing motion-specific to any of the models disidusssin. Therefore,
there is no reason to believe that they cannot be applied to other high-dm&nkighly-structured
time series data. In the following discussion, we briefly review related warloicap-driven motion
synthesis.

2.1 Motion Synthesisfor Computer Animation

A dominant approach in computer animation is “keyframing” whereby an animeatploys soft-
ware to manually configure the “key” body poses over time, and these $rameinterpolated to
form smooth trajectories. This process, however, is time and labor inéensis therefore common
to use mocap data to supplement or replace keyframing. A variety of metheelbéan developed
to exploit the plethora of high-quality motion sequences available for animatlwese approaches
can be loosely divided into a handful of categories which we descrilogrbe
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2.1.1 GONCATENATION METHODS

Perhaps the simplest way to generate new motion sequences based otodsashly concatenate
short examples from a motion database to meet sparse user-specifitdiods (Tanco and Hilton,
2000; Arikan and Forsyth, 2002; Kovar et al., 2002; Lee et al., 200&an et al., 2003). Pullen
and Bregler (2002) propose a hybrid approach where low-fre;yuemmponents are retained from
user input and high-frequency components, called “texture”, arecafidm the database. The ob-
vious benefit of concatenation approaches is the high-quality motion thatdaged. However, the
“synthesized” motions are restricted to content already in the databasieemafbre many resources
must be devoted to capture all desired content.

2.1.2 BLENDING AND INTERPOLATION METHODS

Many methods produce new motions by interpolating or blending existing ddnbem a database
(Rose et al., 1998; Park et al., 2002; Kovar and Gleicher, 2004; MukbKuriyama, 2005). Unfor-
tunately, these methods typically require extensive pre-processing weiarally involves some
type of time-warping to align the original sequences. Furthermore, thétingsmotions often

grossly violate dynamics, resulting in artifacts such as “footskate” anéliggequiring extensive
clean-up using inverse kinematics.

2.1.3 TRANSFORMINGEXISTING MOTION

Another method is to transform motion in the training data to new sequencesrhintgpto adjust
its style or other characteristics (Urtasun et al., 2004; Hsu et al., 200&skmni et al., 2007). Such
approaches have produced impressive results given user-sujiiegnh content but we seek more
powerful methods that can synthesize both style and content.

2.1.4 MYSICS-BASED METHODS

Models based on the physics of masses and springs have produceitrgessive results by using
sophisticated “energy-based” learning methods (LeCun et al., 1998fitoete physical parameters
from motion capture data (Liu et al., 2005). However, if we want to geaem@alistic human
motion, we need to model all the complexities of the real dynamics which is extredifiatyilt

to do analytically. In this paper we focus on model driven analysis anthegis but avoid the
complexities involved in imposing physics-based constraints, relying instead‘pure” learning
approach in which all the knowledge in the model comes from the data.

2.1.5 ENERATIVE MODELS

Data from modern motion capture systems is high-dimensional and containdezongmlinear
relationships among the components of each observation, which is typicalliea ef joint angles
with respect to some skeletal structure. This is a challenge for existingaqes to sequence
modeling. However, there are examples of successes in the literatunel &rd Hertzmann (2000)
model style and content of human motion with hidden Markov models (HMMs)se/temission
distributions depend on stylistic parameters learned directly from the dagdr. dfproach permits
sampling of novel sequences from the model and applying new styles tmgxisntent. HMMs,
however, cannot efficiently model mocap data due to their simple, discréte lskaear dynamical
systems, on the other hand, have a more powerful hidden state but tiveyt caodel the complex
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nonlinear dynamics created by the nonlinear properties of muscles, téorees of the foot on
the ground and myriad other factors. This problem has been addi®sapglying piecewise-linear
models to synthesize motion (Pavlovic et al., 2001; Li et al., 2002; Biss2008). In general, exact
inference and learning is intractable in such models and approximationssthe &nd difficult to
evaluate.

2.1.6 (AUSSIAN PROCESSMODELS

Models based on Gaussian processes (GPs) have received degilestrecent attention, especially
in the tracking literature. The Gaussian process dynamical model (Waalg 2008) extends the
Gaussian process latent variable model (GP-LVM) (Lawrence, 2004)a GP-based dynamical
model over the latent representations. This model has been shown teatisteresting structure
in motion data and permit synthesis of simple actions. However, the main coniter@P-based
approaches is their computational expense (cubic in the number of traiangpées for learning,
guadratic in the number of training examples for prediction or generatidms problem may be
alleviated by sparse methods but this remains to be seen. Another dowh#igéeGPDM is that
a single model cannot synthesize multiple types of motion, a limitation of the simple rdanifo
structure and unimodal dynamics learned by these models. Recently gdomosiels such as the
multifactor GP (Wang et al., 2007) and hierarchical GP-LVMs (LawremmeMoore, 2007) address
this limitation.

3. Conditional Restricted Boltzmann Machines

We have emphasized that models with distributed hidden state are necessficiently model-
ing complex time series. But using distributed representations for hiddenrs@itected models
of time series (Bayes nets) makes inference difficult in all but the simplestisfid&IMs and
linear dynamical systems). If, however, we use a restricted BoltzmannimeaRBM) to model
the probability distribution of the observation vector at each time frame, thenmsover latent
variables factorizes completely, making inference easy. In this sectiofirsteeview the RBM
and then propose a simple extension to capture temporal dependenciesntein its most impor-
tant computational properties: simple, exact inference and efficienbxipmate learning using the
contrastive divergence algorithm.

3.1 Restricted Boltzmann M achines

The restricted Boltzmann machine (Smolensky, 1986) is a Boltzmann machine spiéitial struc-

ture (Figure 1c). It has a layer of visible units fully connected to a laydriddlen units but no

connections within a layer. This bi-partite structure ensures that the hidusnawe conditionally

independent given a setting of the visible units and vice-versa. Simplicitgxaaatness of inference
are the main advantages to using an RBM compared to a fully connected Baitznaahine.

To make the distinction between visible and hidden units clear, we; usalenote the state of
visible uniti andh; to denote the state of hidden unit We also distinguish biases on the visible
units,a; from biases on the hidden units;,, The RBM assigns a probability to any joint setting of
the visible unitsy and hidden unitd:

_exp(—E(v,h))

p(v.h)=———— 1)
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Figure 1: a) A Boltzmann machine. b) A Boltzmann machine partitioned into visibbedéd) and
hidden units. c) A restricted Boltzmann machine.

whereE(v,h) is an energy function. When both the visible and the hidden units are binary with
states 1 and 0, the energy function is

E(v,h) = —Z\/\/.J'Vihj — Za;vi — ijhj
] | ]

whereZ is a normalization constant called the partition function, whose name comestatistical
physics. The partition function is intractable to compute exactly as it involvasraayver the
(exponential) number of possible joint configurations:

Z:v; E(V,h).

Marginalizing over the hidden units in Equation 1 and maximizing the likelihood lesasery
simple maximum likelihood weight update rule:

AW O (vihj)data— (Vihj) modet (2)

where(-)gataiS @n expectation with respect to the data distribution@nghqelis an expectation with

respect to the model’s equilibrium distribution. Because of the conditionaperidence properties
of the RBM, we can easily obtain an unbiased sampl@/df ) 4ata by clamping the visible units to

a vector in the training data set, and sampling the hidden units in parallel awtod

1
- 1+exp(—bj _ZiVVIjVi).

p(hj = 1|v) 3
This is repeated for each vector in a representative “mini-batch” fronraiv@ng set to obtain
an empirical estimate ofvihj)data TO compute(vihj)model requires us to obtain unbiased samples
from the joint distributionp(v, h). However, there is no known algorithm to draw samples from this
distribution in a practical amount of time. We can perform alternating Gibbs lgagryy iterating
between sampling from(h|v) using Equation 3 and sampling froptv|h) using
1

P = 1IN = I exp—a — 5, W) X
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However, Gibbs sampling in high-dimensional spaces typically takes too launt@rge. Em-
pirical evidence suggests that rather than running the Gibbs samplemergence, learning works
well if we replace Equation 2 with

AW O (vihj)data— (Vihj)recon ()

where the second expectation is with respect to the distribution of “recotestfudata. The re-
construction is obtained by starting with a data vector on the visible units andadltey between
sampling all of the hidden units using Equation 3 and all of the visible units usipgtion 4K
times. The learning rules for the biases are just simplified versions of Equatio

Aa; 0 (Vi) data— (Vi) recon (6)
Abj O <hj>data_ (hj>recon

The above procedure is not maximum likelihood learning but it corresptmdpproximately
following the gradient of another function called the contrastive diverg€Hinton, 2002). We use
the notation CDK to denote contrastive divergence uskdull steps of alternating Gibbs sampling
after first inferring the states of the hidden units for a datavector frortrdivéng set. TypicallK is
set to 1, but recent results show that gradually incredsimgth learning can significantly improve
performance at an additional computational cost that is roughly lingar(fdarreira-Perpinan and
Hinton, 2005).

3.2 RBMswith Real-Valued Observations

Typically, RBMs use stochastic binary units for both the visible data and hiddegables, but for
many applications the observed data is non-binary. For some domains (edglimgdandwritten
digits) we can normalize the data and use the real-valued probabilities of ey bisible units
in place of their activations. When we use mean-field logistic units to model datdstivery
non-binary (e.g., modeling patches of natural images), it is difficult to olstaémp predictions for
intermediate values and so it is more desirable to use units that match the distrdfutierdata.

Fortunately, the stochastic binary units of RBMs can be generalized tastnjpation that falls
in the exponential family (Welling et al., 2005). This includes multinomial units, $eoisunits
and linear, real-valued units that have Gaussian noise (Freund aisglelad992). To model real-
valued data (e.g., mocap), we use a modified RBM with binary logistic hiddenamiteeal-valued
Gaussian visible units. The joint probability wfandh follows the form of Equation 1 where the
energy function is now

(vi—ai)2 v
E(v,h _—Ei—EW-—h-—Eb-h-.
(v.h) : 20i2 y ”oij J 1M

wherea; is the bias of visible unit, bj is the bias of hidden unit andg; is the standard deviation
of the Gaussian noise for visible unitThe symmetric weight\i;, connects visible unitto hidden
unit j.

Any setting of the hidden units makes a linear contribution to the mean of eacle uisit:

p(Vi|h):9\[<ai +0izVV|jhj,0i2> . )
J
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Inference simply uses a scaled form of Equation 3:

1
hj =1lv) = —.
PO e W )

Given the hidden units, the distribution of each visible unit is defined by abpdic log like-
lihood function that makes extreme values very improbable. For any settihg plrameters, the
gradient of the quadratic term with respect to a visible unit will alwayswketm the gradient
due to the weighted input from the binary hidden units provided the waloga visible unit is far
enough from its biasg;. Conveniently, the contrastive divergence learning rules remain theasame
in an RBM with binary visible units.

Finally, a brief note about;: it is possible to learn, but this is difficult using CD-1 (Hinton,
2010). In practice, we simply rescale our data to have zero mean andaniaibhee and fixo; to
be 1. Provided no noise is added to the mean reconstructions given byidtid, this makes the
learning work well even though we would expect a good model to prediaidlba with much higher
precision. For the remainder of the paper, we will assame 1, but that no noise is added to the
reconstructions used for learning.

3.3 The Conditional RBM

The RBM models static frames of data, but does not incorporate any tempioraation. We
can model temporal dependencies by treating the visible variables in theyséime slice(s) as
additional fixed inputs. We add two types of directed connections: autssige connections from
the pastN configurations (time steps) of the visible units to the current visible configuraand
connections from the pabt configurations of the visible units to the current hidden configuration.
The addition of these directed connections turns the RBM into a conditionsll @&yure 2). The
autoregressive weights can model linear, temporally local structurewetyleaving the hidden
units to model nonlinear, higher-level structure.

N andM are tunable parameters and need not be the same for both types of dimutedtions.
To simplify discussion, we will assunm¢ = M and refer ta\ as the order of the model. Typically,
in our experiments, we use a small number sucN as3. In modeling motion capture with higher
frame rates, we have found that a good rule of thumb is ttNsetF /10 whereF is the frame rate
of the data (in frames per second).

To simplify the presentation, we will assume the data-atl,...,t — N is concatenated into
a “history” vector which we call/;. So if v; is of dimensionD, thenv_; is of dimensionN - D.
We will usek to index the individual, scalar componentswf. The autoregressive parameters are
summarized by al - D x D weight matrix calledA and the directed “past to hidden” parameters
are summarized by ad - D x H matrix B whereH is the number of binary hidden units. This does
not change the computation, but allows us to simplify the presentation of thefiofj@equations as
we can avoid explicitly summing over past frames.

3.3.1 INFERENCE ANDLEARNING

Fortunately, inference in the CRBM is no more difficult than in the standarifl RBhe states of
the hidden units are determined by both the input they receive from thentwiservation and the
input they receive from the recent past. Giwgiandv_¢, the hidden units at timeare conditionally
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Hidden layer

Visible layer

Figure 2: Architecture of the CRBM. In this figure we shdW= 2 but in our experiments, we
typically use a slightly higher order. There are no connections betwedridtien units
at different time steps (see Section 3.4.3).

independent. The effect of the past on each hidden unit can be veswedynamic bias:
6” = bj + Z Bijk7<t

which includes the static bia;, and the contribution from the past. This slightly modifies the
factorial distribution over hidden unitg; in Equation 3 is replaced with; ; to obtain

1
1—|—eXp(—6j7t — ziV\/”'Vi’t) .

p(hjt = 1|v,Ver) = (8)

Note that we are now conditioning on,. Figure 3 shows an example of frame-by-frame
inference in a trained CRBM.

The past has a similar effect on the visible units. The reconstruction distridbecomes

P(Vitlht,Vet) :N<éi,t+zvvljhj,tal> 9
]

whereai; is also a dynamically changing bias that is an affine function of the past:

Gt =a+ ZAkin,<t.

We can still use contrastive divergence for training the CRBM. The tegdar the symmetric
weights,W, as well as the static biasesandb, have the same form as Equation 5 and Equation 6
but have a different effect because the states of the hidden unitewraftuenced by the previous
visible units. The updates for the directed weights are also based on simplesparoducts. The
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Figure 3: In a trained model, probabilities of each feature being “on’ditimmal on the data at the
visible units. Shown is a 100-hidden unit model and a sequence whichiree(itaorder)
walking, sitting/standing (three times), walking, crouching, and runningvsRepresent
features, columns represent sequential frames.

gradients are now summed over all time steps:

AW U Z((Vi.,thj7t>data— (Vith;t)recon) , (10)
DA O Z((Vi.,tvk,d)data— (VitVi <t)recon) , (11)
ABy; U Z ((hj tVk <t)data— (hj.tVk <t)recon) , (12)
N O Z((Vi,t>data_ (Vi) recon) , (13)
Ab; [ Z((hj,t>data— (hj t)recon (14)

where (-)4ata iS @n expectation with respect to the data distribution, @ngcon is the K-step re-
construction distribution as obtained by alternating Gibbs sampling, starting \eitvigible units
clamped to the training data.

While learning a CRBM, we do not need to proceed sequentially through divénty data
sequences. The updates are only conditional on theNpdshe steps, not the entire sequence.
As long as we isolate “chunks” dfl + 1 frames (the size depending on the order of the directed
connections), these small windows can be mixed and formed into mini-batthespeed up the
learning, we assemble these chunks of frames into “balanced” mini-batthiee 4 00.

We randomly assign chunks to different mini-batches so that the chunkslnneini-batch are
as uncorrelated as possible. To save computer memory, time frames actuadlyaeplicated in
mini-batches; we simply use indexing to simulate the “chunking” of frames.
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3.3.2 SORING OBSERVATIONS

The CRBM defines a joint probability distribution over a data vectgrand a vector of hidden
stateshy, conditional on the recent past:

exp(—E (Vt, ht ’V<t))
Z(V<t)
where the partition functiory, is constant with respect tg andh; but depends or.;. As in the

RBM, it is intractable to compute exactly because it involves an integratioradiyerssible settings
of the visible and hidden units:

p(ve, he|vet) = (15)

Z(Vt) / exp((—E(v;, hi|v<)) dv;.
vt
The energy function is given by
E(vt,ht|vet) = Z Vlt_éi,t)z_ZWjVi,thj,t_ZBj,thj,t (16)
1 1) ]

where we have assumexgl= 1. The probability of observing; can be expressed by marginalizing
out the binary hidden units:

> h €XP(—E(vt, h[vr))
Z(Vt) )

Under the CRBM, the probability of observingsequencev(y.1):t, givenviy, is just the
product of all the local conditional probabilities:

P(Vt|Vat) = Z p(vt, he|ver) = (17)

T
P(V(Nt1):T[VIN) = P(Vt|[V<t). (18)
t=N+1

We do not attempt to model the fildtframes of each sequence, though a separate set of biases
could be learned for this purpose.

Although the partition function makes Equation 17 and Equation 18 intractablenpute
exactly, we can exploit the fact that the hidden units are binary and inéetiram out to arrive at
the “free energy”:

F(Vtlvat) = 12 Vutféi,t)2*2|09 <1+9XD(ZW|jVi,t+bj,t)> , (19)
1 ] I

which is a function of the model parameters and recent past. It is the veeg@giprobability of an
observation plus log (see Equation 15). Given a history, the free energy allows us to ssimgla
temporal frame of observations under a fixed setting of the parameténsnlike a probability it
does not let us compare between modelscan still be useful, however, in making deterministic
forward predictions (as described in the following section). Freunddassler (1992) give details
on deriving the free energy for an RBM.

1. Different models will have different partition functions.
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3.3.3 ENERATION

Generation from a learned CRBM can be done on-line. The visible statbe dast few time
steps determine the effective biases of the visible and hidden units at tlemtcime step. We
always keep the previous visible states fixed and perform alternatings Gdohpling to obtain a
joint sample from the CRBM. This picks new hidden and visible states thatcempatible with

each other and with the recent (visible) history. To start alternating Gidniogpleng, we need to
initialize with eitherv; or h;. For time-series data that is smooth (e.g., mocap), a good choice is to
initially setvy = v¢_1. In practice, we alternate 30 to 100 times, though the quality of generated data
does not seem to be sensitive to this parameter.

Generation does not require us to retain the training data set, but it dpgseraitialization
with N observations. Typically we use randomly drawn consecutive frameasthie training data
as an initial configuration.

A trained CRBM has the ability to fill in missing data (complete or partial observaitjor-
gardless of where the dropouts occur in a sequence. To be strictBctone would need to use
smoothing (i.e., conditioning on future as well as past observations) intrtkke into account the
effect of a filled-in value on the probability of future observed valuesinithe learning procedure,
we ignore smoothing and this approximation allows us to fill in missing data on-linkngHn
missing data with the CRBM is very similar to generation. We simply clamp the knowntalata
the visible units, initialize the missing data to something reasonable (for exampleltizeat the
previous frame), and alternate between stochastically updating the hidderséole unitswith the
known visible states held fixed

The noise in sampling may be an asset when using the CRBM to generatecesjumit when
using the CRBM to fill in missing data, or in a predictive setting it may be unddsir&ather than
obtaining a sample, we may want the model’s “best guess”. Given the madehpters, and past
history, we can follow the negative gradient of the free energy (Equa®) with respect to either
a complete or partial setting of the visible variablgs,

oF (Vt ‘V<t)

et — A Wf - W i _A.
aVkVt Vi t (aq,t‘F; ij ( Iz 1j Vit b],t))

wheref(-) is the logistic function. The gradient at a unit has an intuitive form: it is thesdifice
between its current value and the value that would be obtained by meamefeldstruction. We
use conjugate-gradient optimization, but any general purpose grdutisad optimizer is suitable.

3.4 Higher Level Models: The Conditional Deep Belief Networ k

Once we have trained the model, we can add layers in the same way as &liefamebvork (DBN)
(Hinton et al., 2006). The previous layer CRBM is kept, and the sequefrttielden state vectors,
while driven by the data, is treated as a new kind of “fully observed” dakee next level CRBM
has the same architecture as the first (though we can alter the number dfs}sand is trained in
the exact same way. Upper levels of the network can then model higtherstructure.

Figure 4a shows a CRBM whose symmetric, undirected weights have h@eseated explic-
itly by two sets of directed weights: top-down “generative” weights and bottom-up “recogni-
tion” weights,WOT. This representation is purely illustrative: it does not at all change thesinod
The use of the zero subscripts and superscripts simply indicates that Bid GRirst in a series of
layers which we will introduce shortly.
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Figure 4: Building a conditional deep belief network. (a) The CRBM. (byenerative model
whose weights between layers are tied. It defines the same joint distributton’cand
h?. The top two layers interact using symmetric connections while all other ctions
are directed. (c) Improving the model by untying the weights; holdigA; and By
fixed and greedily trainind\h,A; andB;. Note that the “dashed” directed, bottom-up
weights are not part of the generative model. They are used to interiecapproximate
posterior distributions over? whenv? is clamped to the data. (d) The model we use in
practice. Note the change frouw}, to h%,. We ignore uncertainty in the past hidden
states.

Figure 4b shows a generative model that is equivalent to the originaMCiRBhe sense that
their joint distributions over? andh?, conditional orv®, are the same. We have added a second
set of visible unitsy{, identical to the first, and ensured that the undirected, symmetric weights
betweenvi andh? are equal to the weights used in the original CRBM. Furthermore, we irteodu
a copy ofv?, and the autoregressive connectioAs, The weights are therefore “tied” between
the two layers. Additionally, the bottom-up weights betwa€rand h?, W], are no longer part
of the generative model in Figure 4b. Although the model defines the samealjsinbution, its
semantics are very different than the CRBM. To generate an observgtj@onditional onv?,, we
must reach equilibrium in the conditional associative memory formed by the tolaywrs and then
perform a single down-pass using directed weigkgsandAy. The CRBM generates observations
as explained in Section 3.3.3.

Note that if we observa?, the unitsh? are no longer conditionally independent because the
undirected connections betweehandh? have been replaced by directed connections. The new
model is therefore subject to the effects of “explaining away”. Howédwerause of the tied weights,
the CRBM at the top two layers becomes a “complementary prior” (Hinton etG§)2 meaning
that when we multiply the likelihood term by the prior, the posterior is factoriakeRechers who
are used to using directed models often assument -+ Bov?, is computing a likelihood term.
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This is incorrect. It is computing the product of the likelihood term and ther peion (i.e., the
posterior). Both the likelihood term and the prior term are much more complisated they are
each far from being factorial.

If we holdWp, Ag andBy, fixed, but “untie the weights between the top two layers (Figure 4c)
we can improve the generative model by greedily learfigA; andB;, treating the activations
of h? while driven by the training data as a kind of “fully-observed” data. Wtienweights are
untied, units in the topmost layer no longer represent the visible units, btita@amayer of latent
features,hl. We can still uséy and By (which are not part of the generative model) to infer
factorialapproximateposterior distributions over the stateshgf

The joint distribution defined by the original CRBM(v?, h?|v2,), decomposes into a mapping
from features to datgy(vP|h?,v2,), and an implicit prior over the featureg(h?|v®,) which is also
determined by\p. We can think of training the next layer as a means of improving the prior model.
By fixing Wo, Ao, the distributionp(v?|h?,v2,) is unchanged. The gain from building a better model
of p(hf|v%,) more than offsets the loss from having to perform approximate inferdinie greedy
learning algorithm can be applied recursively to any number of higherday®l is guaranteed to
never decrease a variational lower bound on the log probability of theuddt the full generative
model (Hinton et al., 2006).

In practice, greedily training multiple layers of representation works wellwéler, there are
a number of small changes we make to gain flexibility and improve the computatiostadf per-
forming inference and learning. Bending the rules as follows breaksitveayuarantee:

1. We replace maximum likelihood learning with contrastive divergenceofferous computa-
tional reasons).

2. The guarantee relies on initializing the weights of each successiveWdyethe weights in
the layer below. This assumes that all odd layers are of equal size awballayers of equal
size. In practice, however, we typically violate this constraint and initializeathights to
small random values.

3. Rather than train each layer conditionahdp (which we assume to be the fully-observed re-
cent past of the visible units), we train each layer using its own recenap#sé conditioning
input. vgt,hgt,...,hﬂfl (whereH is the number of hidden layers), always treating the past
as fully-observed.

The model that we use in practice is shown in Figure 4d. It is a conditioregd Helief network
(CDBN). The inference we perform in this model, conditional on past Msstates, is approxi-
mate because it ignores the future (it does not do smoothing). Becatisedifected connections,
exact inference within the model should include both a forward and berckpass through each se-
guence. We perform only a forward pass because smoothing is infeattdbe multi-layer model.
Effectively, at each layer we replace the full posterior by an apprasfilgering distribution. How-
ever, there is no guarantee that this is a good approximation. Comparechwtitkilsl, the lack of
smoothing is a loss. But the deep model is still exponentially more powerfalray its hidden state
to represent data.

2. A note on our naming convention: the “untied) become®; since it now represents a visible-to-hidden connection.
The “untied” Bp becomesA; since it will ultimately be a “visible-visible” connection when the hidden units are
treated as observed during greedy learning.
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3.4.1 ON-LINE GENERATION WITH HIGHER-LEVEL MODELS

The generative model for a conditional DBN consists of a top-levelitiondl associative memory
(with symmetric weights and dynamic biases) and any number of directed loyezs lawvith top-
down generative weights and dynamic generative biases). We also méiot&im-up connections
that are used in approximate inference. Like in a DBN, to generate a savppike associative
memory must settle on a joint setting of the units in the top two hidden layers and #éopth
down weights are used to generate the lower layers. Since the model isammaddeach layer must
also consider the effect of the past via the dynamic biases. Note that gpandévork, all but the
topmost hidden layer will have two sets of dynamic biases: recognition biesaswhen it was
greedily trained as a hidden layer, and generative biases from whes ismbsequently trained as
a “visible” layer. During generation, we must be careful not to doubleat the input to each layer
(i.e., by including both types of biases when computing the total input to eath we use the
recognition biases during inference and generative biases duriegeagiem.

As a concrete example, let us consider generating an observation frondiional DBN built
by greedily training two CRBMs (the same network shown in Figure 4d).

1. If the first CRBM is ordeN and the second CRBM is ord®&f then we must initialize with
N+ M frames vy nwm) (Figure 5a).

2. Next, we initializeM frames of the first hidden layer using a mean-field up-pass through the
first CRBM (Figure 5b).

3. Then we initialize the first layer hidden unitstat N+ M + 1 to be a copy of the real-valued
probabilities we have just inferred = N + M. We perform alternating Gibbs sampling in
the 2nd layer CRBM. At each step, we stochastically activate the top-ledadh units, but
on the final step, we suppress noise by using the real-valued probalufities top layer to
obtain the real-valued probabilities of the first layer hidden units (Figuye 5c

4. We do a mean-field down-pass in the first layer CRBM to obtain the visibless time
t =N+ M+ 1 (Figure 5d).

Again, we copy the real-valued probabilities of the first layer hidden uniisitialize Gibbs
sampling for the next frame, and repeat steps 3 and 4 above for as rmargsfas desired.

3.4.2 ANE-TUNING

Following greedy learning, both the weights and the simple inference proeede suboptimal in
all but the top layer of the network, as the weights have not changed invilee layers since their
respective stage of greedy training. We can, however, use a dirdriesm of the “wake-sleep”
algorithm (Hinton et al., 1995) called the “up-down” algorithm (Hinton et &DQ&) to fine-tune
the generative model. In our experiments, we have observed that fimgtimproves the visual
quality of generated sequences at a modest additional computational cost.

3.4.3 TEMPORAL LINKS BETWEENHIDDEN UNITS

In a conditional restricted Boltzmann machine the hidden state and visible spetectenly on past
instances of the visible variables. The CRBM is a special case of the telmpstacted Boltz-
mann machine (TRBM) (Sutskever and Hinton, 2007) in which there arempael connections
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Figure 5: Generating from a conditional deep belief network with two hiddgers. For this ex-
ample, we assume the first layer CRBM is third order and the second layBMGR
second order. We provide five frames to initialize the model.

between hidden units. This makes filtering in the CRBM exact, and “mini-batelfiileg possible,
as training does not have to be done sequentially. This latter propertyeattygpeed up learning
as well as smooth the learning signal, as the order of data vectors poksethie network can be
randomized. This ensures that the training cases in each mini-batch areoaelated as possible.

As soon as we introduce connections between hidden units, we mudtteeapproximate fil-
tering or deterministic methods (Sutskever et al., 2009) even in a single layl.mao training
higher-level models using CRBMs, we gain hidden-to-hidden links via th&r@gressive connec-
tions of the higher layers. At each stage of greedy learning, filteringastexithin each CRBM.
However, filtering in the overall multi-layer model is approximate.

3.5 Experiments

We have carried out a series of experiments training CRBM models on motiarealata from
publicly available repositories. After learning a model using the updatesided in Section 3.3,
we can demonstrate in several ways what it has learned about the mrothwman motion. Per-
haps the most direct demonstration, which exploits the fact that it is a ghitpalensity model

of sequences, is to use the model to genedat®ovoa number of synthetic motion sequences.
Supplemental video files of these sequences are available on the webditmedim the abstract;
these motions have not been retouched by hand in any motion editing softM@teethat we also
do not have to keep a reservoir of training data sequences for gienerave only need the weights
of the trained model anll valid frames for initialization. Our model is, therefore, suitable for
low-memory devices.More importantly, we believe that compact models are likely to be better at
generalization.

3.5.1 DaTA SOURCE AND REPRESENTATION

The first data set used in these experiments was obtainechftmffmocap.cs.cmu.edu L twill

be hereafter referred to as the CMU data set. The second data seh usese experiments was
released by Hsu et al. (2005). We obtained it from fiatp://people.csail. mit.edu/ehsu/

work/sig05stf/ . It will be hereafter referred to as the MIT data set. The data consi$tad o

joint angles derived from 30 (CMU) or 17 (MIT) markers plus a roaeptation and displacement.

3. The level of compression obtained will of course vary with the nurobéee parameters and size of the data set.

1040



TwoO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

Data was represented with the encoding described in Appendix A. Theliimansionality of our
data vectors was 62 (CMU) and 49 (MIT).

One advantage of the CRBM is the fact that the data does not need tovily begprocessed
or dimensionality reduced before learning. Other generative appesg@rand and Hertzmann,
2000; Li et al., 2002) apply PCA to reduce noise and dimensionality. Hemvelimensionality
reduction becomes problematic when a wider range of motions is to be modetedufbinegressive
connections can be thought of as doing a kind of “whitening” of the data.

3.5.2 DETAILS OF LEARNING

Except where noted, all CRBM models were trained as follows: Each tpgaise was a window of
N + 1 consecutive frames and the order of the training cases was randommyitpd. The training
cases were presented to the model as “mini-batches” of size 100 anditfesweere updated after
each mini-batch. Models were trained using CD-1 (see Section 3.1) foe@ rfixmber of epochs
(complete passes through the data). All parameters used a learning fdie*pexcept for the
autoregressive weights which used a learning rate of.18 momentum term was also used90
of the previous accumulated gradient was added to the current graélieparameters (excluding
biases) used L2 weight decay of 0.0002.

3.5.3 (ENERATION OFWALKING AND RUNNING SEQUENCES FROM ASINGLE MODEL

In our first demonstration, we train a single CRBM on data containing bothingalknd running
motions; we then use the learned model to generate both types of motiondaepen how it is
initialized. We extracted 23 sequences of walking and 10 sequencesrohgufrom subject 35
in the CMU data set. After downsampling to 30Hz, the training data consiste81# ames.
We trained a 200 hidden-unit CRBM for 4000 passes through the traiwitag dsing a third-order
model (for directed connections). The order of the sequences wdsmdy permuted such that
walking and running sequences were distributed throughout the traiatag d

Figure 6 shows a walking sequence and a running sequence genayatieel same model,
using alternating Gibbs sampling (with the probability of hidden units being “ontitional on the
current and previous three visible vectors). Since the training datandde®ntain any transitions
between walking and running (andce-versg, the model will continue to generate walking or
running motions depending on where it is initialized.

3.5.4 LEARNING TRANSITIONS BETWEENWALKING AND RUNNING

In our second demonstration, we show that our model is capable of Igarotronly several types
of homogeneous motion content but also the transitions between them wheairtiveg data itself

contains examples of such transitions. We trained on 9 sequences (feoktiThdatabase, file
Jogl M containing long examples of walking and running, as well as a few transitietween the
two gaits. After downsampling to 30Hz, this provided us with 2515 framesinifigawas done

as before, but after the model was trained, an identical 200 hiddemai¢l was trained on top
of the first model (see Section 3.4). The resulting two-level model was tasgenerate data. A
video available on the website demonstrates our model’s ability to stochastica8ititta between

various types of motion during a single generated sequence.
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Figure 6: After training, the same model can generate walking (top) amdngifbottom) motion
(see supplemental videos). Each skeleton is 4 frames apart.

3.5.5 INTRODUCING TRANSITIONS USING NOISE

In our third demonstration, we show how transitions between differenstgpenotion content
can be generated even when such transitions are absent in the datae e same model and
data as described in Section 3.5.3, where we have learned on sepgretaces of walking and
running. To generate, we use the same sampling procedure as befmpt #hat at each time we
stochastically choose the hidden states (given the current and preékieesvisible vectors) we
add a small amount of Gaussian noise to the hidden state biases. Thisagesotire model to
explore more of the hidden state space without deviating too far from thertumotion. Applying
this “noisy” sampling approach, we see that the generated motion ocdésiomasitions between
learned gaits. These transitions appear natural (see the supplemeatal vid

3.5.6 LEARNING MOTION STYLE

We have demonstrated that the CRBM can generate and transition betweesndigaits, but what
about its ability to capture more subtle stylistic variation within a particular gait? Vdesalsk to
show the CRBM'’s ability to learn on data at a higher frame-rate (60Hz) framal a much larger
training corpus. Finally, we incorporate label information into our trainiragpdure.

From the CMU data set, we extracted a series of 10 stylized walk sequpadesmed by
subject 137. The walks were labeleda, chicken, dinosaur, drunk, gangly, graceful, normal,
old-man, sexyndstrong We balanced the data set by repeating the sequences three to six times
(depending on the original length) so that our final data set contairn@dxdmately 3000 frames of
each style at 60fps.

In general, we used the same training procedure as above, but madegpfartant changes:
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e At each iteration of CD learning, we performed 10 steps of alternating Gitatogpling (CD-
10)

e We added a sparsity term to the energy function to gently encourage trenhidits, while
driven by the data, to have an average activation of 0.2 (details below)

e At each iteration of CD learning, we added Gaussian noise @ith1l to each dimension
of the past historyy_;. This ensures that the generative model can cope with the type of
noisy history that is produced when generating from the model. For the lgaregressive
parametersA, this is equivalent to L2 regularization (Matsuoka, 1992). For the paeme
which involve the binary hidden units it is not quite equivalent but has wasiemilar effect.

These experiments were carried out considerably later than the exptridestribed in Section
3.5.3 to 3.5.5 and so represent a refinement to our learning method. This akote cope with
the higher frame rate and larger degree of variability in the training set.nRemek on estimating
the partition functions of RBMs and evaluating the log probability of held-etg bas shown that
models trained with CB1 , although more computationally demanding to train, are significantly
better generative models (Salakhutdinov and Murray, 2008). We Hesen CD-10 as a compro-
mise between closely approximating maximum likelihood learning and minimizing commahtio
cost.

The recent popularity of sparse, overcomplete latent representatgnisighlighted both the
theoretical and practical motivations for their use in unsupervised leaf@itshausen and Field,
1997; Lee and Seung, 1999; Ranzato et al., 2006; Lee et al., 2Q@seepresentations are often
more easy to interpret, and also more robust to noise. Furthermore, e¥isieggests that they may
be used in biological systems. Recent sparse “energy-based me{Reggato et al., 2006, 2007,
2008) have proposed the use of sparsity as an alternative to comrdstrgence learning. The
“contrastive term” in CD (which represents the derivative of the log pantfiimction) corresponds
to pulling up on the energy (or pushing down on the probability) of pointsiadeithe training set.
Another way to ensure that the energy surface is low only around thénaist is to eliminate the
partition function and replace it with a term that limits the volume of the input spaeewhich
the energy surface can take low value (Ranzato et al., 2008). Usimgesp@ercomplete latent
representations is a means of limiting this volume by minimizing the information conteht of
latent representation. Using both a contrastive term and sparsity, as/edne here, is a two-fold
approach to sculpting energy surfaces.

To implement sparsity, we maintained a damped “average activation” estimatadiohidden
unit. Each element of this vector was initialized to the target activation, 0.2y Ewuee we presented
a mini-batch, we updated the estimate to be 0.9 times its current value plus 0.1 timgsrtgea
activation of the hidden units while the visible units were clamped to the data. VEtage was
taken over the mini-batch. After we calculated the positive-phase (dada)exative-phase (after
K steps of Gibbs sampling) statistics for each parameter, we added, to theabggidient, the
gradient of the cross-entropy error between the updated activity estimdtthe target, 0.2, with
respect to that parameter. Note that updates for visible-only parameigrsa(itoregressive weights
and visible biases) were unaffected by the sparsity term. Our sparsitysteimilar to the one used
by Lee et al. (2008). However, they used a squared-error pengtityelbn average activation and
target while we used cross-entropy error (Nair and Hinton, 2009) wisienore appropriate for
logistic units.
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1-layer Model.A single-layer CRBM with 1200 hidden units atd= 12 was trained for 200
epochs on data for 10 different walking styles, with the parameters beihgted after every 100
training cases. Each training case was a window of 13 consecutivedrantethe order of the
training cases was randomly permuted. In addition to the real-valued mocaphdatédden units
received additive input from a “one-hot” encoding of the matching stylelldarough another matrix
of weights. Respecting the conditional nature of our application (generatistylized motion, as
opposed to, say classification) this label was not reconstructed duangrg. After training the
model, we generated motion by initializing with 12 frames of training data and hottli¢abel
units clamped to the style matching the initialization.

With a single layer we could generate high-quality motion of 9/10 styles (see ipesnental
videos), however, the model failed to produce good generation aldamanstyle. We believe that
this relates to the subtle nature of this particular motion. In examining the activityedfidden
units over time while clamped to training data, we observed that the model dewostsof its
hidden capacity to capturing the more “active” styles as it pays a highéfaofiling to model
more pronounced frame-to-frame changes.

2-layer Model. We also learned a deeper network by first training a CRBM with 600 binary
hidden units and real-valued visible units and then training a higher-levBMC®ith 600 binary
hidden and 600 binary visible units. Both models ubkdg 12. The data for training the higher-
level CRBM consisted of the activation probabilities of the hidden units of tse @RBM while
driven by the training data. Style labels were only connected to the topdaytes network, while
training the second level CRBM. The first-level model was trained, withtylg sabels, for 300
epochs and the second-level model was trained for 120 epochs.

After training, the 2-hidden-layer network was able to generate hightgualks of all styles,
including old-man (see Figure 7 and the supplemental videos). The second level CRBM laye
effectively replaces the prior over the first layer of hidden ungts; |v-¢), that is implicitly defined
by the parameters of the first CRBM. This provides a better model of tlikesidorelations between
the features that the first-level CRBM extracts from the motion. The sujigrad the second layer
may indeed be a result of its ability to capture longer-term dependencies diathelearning the
old-manstyle is conditional on capturing longer-term dependencies since thd §igpeesenting
joint angles) changes more slowly. The 2-layer network has accessitteatemporal context and
therefore is better able to model this particular style. We thank one of theyauomis reviewers for

suggesting this explanation.

(a) Cat (b) Dinosaur (c) Graceful (d) Sexy (e) Strong

Figure 7: Generating different walking styles from the same conditiorgp telief network with
two hidden layers.
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Qualitative Comparison to the GPDMhe Gaussian process dynamical model (GPDM) (Wang
et al., 2008) was proposed for human motion synthesis and for use aw mgracking (Urtasun
et al., 2006). It extends the Gaussian process latent variable modeMEP(Lawrence, 2004)
with a GP-based dynamical model over the latent representations. Hpwsvwae demonstrate
in this section, the model has difficulty in capturing multiple styles of motion due to itslsimp
manifold structure and unimodal dynamics.

We used two publicly available GPDM implementations, each with its own suggesgped-h
parameters and structural settings. The first implementation was providédillyawrence’s FG-
PLVM toolbox: http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/fg plvm . Lawrence
recommends fixing by hand, rather than optimizing, the hyperparametere afytremics GP
(Lawrence, 2006). This ensures a strong preference for smogtictodes. For the dynamics,
we used the default compound (RBF + white noise) kernel with recommdngestparameter set-
tings ofa = [0.2,0.001, 1 x 1078]T. The observation model used a compound (RBF + bias + white
noise) kernel whose hyperparameters were optimized.

The second implementation we employed was provided by Jack Wiattpyfwww.dgp.
toronto.edu/  ~jmwang/gpdm/ . This implementation differed from the first in a number of re-
spects. First, it used a compound (linear + RBF + white noise) dynamicslk&hose hyperpa-
rameters were optimized rather than set by hand. The observation medeh e®mpound (RBF
+ white noise) kernel whose hyperparameters were optimized. This GR&M'lzalanced” the
objective function by reweighting the dynamics term by the ratio of obsediradnsions to latent
dimensions (Wang et al., 2008). Similar to fixing hyperparameters, this eagesismoothness of
the latent trajectories.

With each implementation we trained both a single model on the complete 10 walking style
data set as well as 10 style-specific models. The data was preprodsstchlly to the CRBM
experiments, however, we did not balance the data set by repeatingnsegu It would have taken
several weeks to train the GPDM on a corpora of approximately 30,00@&aWe tried each of the
sparse approximations provided by the FGPLVM toolbox to reduce the datigmal complexity.

In our experience, though drastically improving training time, all of the apprations led to far
worse synthesized motion quality. In all results shown, we use the reconah8naktent dimensions
(Lawrence, 2006; Urtasun et al., 2006; Wang et al., 2008). We alseriexented with 8 and 16
latent dimensions but found that this caused quality to decrease.

Similar to the online process used for drawing samples from a CRBM, we sirduifreelynam-
ical process one frame at a time, starting from training data (mapped to |pta®)s At each time
step, we set the latent position to the mean latent position conditioned on theusretep. The
latent trajectory then induces a per-frame Gaussian distribution ovenéfined) poses (i.e., the re-
construction distribution). We take the mean of this distribution for each fr&viamg et al. (2008)
recommend drawing fair samples of entire trajectories using hybrid Monte G#vIC), using the
simulated latent trajectory as an initialization. We did not observe any sigrifiognovement in
the quality of synthesized motion when using HMC. Moreover, it increagedlation time by an
order of magnitude.

The supplemental videos show the result of synthesizing motion styles feGRDM. For
each model and style we show three sequences: 1) a sequencaegefrera the same initializa-
tion as we used for the CRBM; 2) the best sequence, as determined hYivispection, over ten
different initializations spaced uniformly over the training data; and 3)nsitocting the training
data using the latent representation. We observed that when trainstylgeboth implementations
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of the GPDM could generate reasonable-looking motion, though not ofathe guality as a 1 or
2-layer CRBM trained on all styles. Regardless of the implementation, a sirRjli;MIrained on
all styles failed to generate satisfactory motion. More recent extensiothe @P-LVM, such as
Topologically-constrained GP-LVMs (Urtasun et al., 2008), multifactos G#ang et al., 2007) and
hierarchical GP-LVMs (Lawrence and Moore, 2007) may perfortielbat this task.

3.5.7 HLLING IN MISSING DATA

Normalized joint angle
i
Normalized joint angle
|
Normalized joint angle
|

) 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 o 20 40 60 80 100 120 140
Frame Frame Frame

Figure 8: The model successfully fills in missing data using only the previalues of the joint
angles (through the temporal connections) and the current anglesofaitits (through
the symmetric connections). Shown are the three angles of rotation for tiépl¢dint.
The original data is shown as a solid line, the model’s prediction is shown asled
line, and the results of nearest neighbour interpolation are shown adted tioe.

Due to the nature of the motion capture process, which can be adversdiedfby lighting
and environmental effects, as well as noise during recording, motidmreagata often contains
missing or unusable data. Some markers may disappear (“dropout”) fppkmiods of time due to
sensor failure or occlusion. The majority of motion editing software packegetain interpolation
methods to fill in missing data, but this leaves the data unnaturally smooth. Thesmisalso rely
on the starting and end points of the missing data. Hence, if a marker goesgnissiirthe end
of a sequence, iinge interpolation will not work. Such methods often only use the past andefutu
data from the single missing marker to fill in that marker’'s missing values. Simgiegogles are
highly correlated, substantial information about the placement of one neakde gained from the
others. To demonstrate filling in, we trained a model exactly as describedioi$8.5.3, holding
out one walking and one running sequence from the training data to beagdest data. For each
of these walking and running test sequences, we erased two diffeEnof joint angles, starting
halfway through the test sequence. These sets were the joints in (1)tthegy|edind (2) the entire
upper body. As seen in the supplemental video, the quality of the filled-inislatecellent and is
hardly distinguishable from the original ground truth of the test sequelfigrire 8 demonstrates
the model’s ability to predict the three angles of rotation of the left hip.

We report results on the held-out walking sequence, of length 124 $rakive compared our
model’s performance to nearest neighbour interpolation, a simple methad feneach frame, the
values on known dimensions are compared to each example in the trainingfieet ttoe closest
match (measured by Euclidean distance in the normalized angle space)nkiteeva dimensions
are then filled in using the matched example. As reconstruction from our nmdé&bchastic,
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we repeated the experiment 100 times and report the mean. For the missingekeay squared
reconstruction error per joint using our model was8 measured in normalized joint angle space,
and summed over the 62 frames of interest. Using nearest neighbouolatenp, the error was
greater: 1168. For the missing upper body, mean squared reconstruction errfmitensing our
model was 2(b2. Using nearest neighbour interpolation, again the error was gr@at2e.

We note that by adding additional neighbouring points, the nearest rigpbediction can be
significantly improved. For filling in the left leg, we found thidt= 8 neighbours gave minimal
error (863), while for the missing upper body, usiKg= 6 neighbours gave minimal error (87).
These scores, especially in the case of the missing upper body, aret,iarffamprovement over
using the CRBM for prediction. However, we note that in practice we wouotdoe able to fine-
tune the number of nearest neighbours nor could we be expected tadwas to a large database
of extremely similar training data. In more realistic missing-data scenarios, wklegpect the
model-based approach to generalize much better. Furthermore, wediaygimized other tunable
parameters such as the model order, number of Gibbs steps per CD itematiarumber of hidden
units; all of which are expected to have an impact on the prediction error.

4. Factored Conditional Restricted Boltzmann M achines

In this section we present a different model, based on the CRBM, théitidyppreserves the
CRBM'’s most important computational properties but includes multiplicativetirray interactions
that allow the effective interaction weight between two units to be modulatedebyytamic state
of a third unit. We factor the three-way weight tensor implied by the multiplicativdehareatly
reducing the number of parameters.

4.1 Multiplicative Interactions

A major motivation for the use of RBMs is that they can be used as the buildicgtd deep belief
networks (DBN), which are learned efficiently by training greedily, laygilayer (see Section 3.4).
DBNs have been shown to learn very good generative models of hdtshwaigits (Hinton et al.,
2006), but they have difficulty modeling patches of natural images. Thisdause RBMs have no
simple way to capture the smoothness constraint in natural images: a sindlegrixasually be
predicted very accurately by simply interpolating its neighbours.

To address this concern, Osindero and Hinton (2008) introduced tthiersstricted Boltzmann
machine (SRBM). In an SRBM, the constraints on the connectivity of the RBMelaxed to allow
lateral connections between thesible units in order to model the pair-wise correlations between
inputs, thus allowing the hidden units to focus on modeling higher-ordertsteucSemi-restricted
Boltzmann machines also permit deep networks. Each time a new level is dldelguevious top
layer of units is given lateral connections, so, after the layer-by-lagening is complete, all layers
except the topmost contain lateral connections between units. SRBMs mabssible to learn
deep belief nets that model image patches much better, but they still havg ktnitations that
can be seen by considering the overall generative model. The equilibénmle generated at each
layer influences the layer below by controlling its effective biases. The mamiéd be much more
powerful if the equilibrium sample at the higher level could also control tteedhinteractions at the
layer below using a three-way, multiplicative relationship. Memisevic and Hi{&007) introduced
the gated CRBM, which permitted such multiplicative interactions and showedt thas able to
learn rich distributed representations of image transformations (see Se&jon 4
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In this section, we explore the idea of multiplicative interactions in the conteatdifferent
type of CRBM. Instead of gating lateral interactions with hidden units, we allset of real-valued
style variables to gate the three types of connections: autoregresastdomidden, and visible to
hidden within the CRBM. We will use the term “sub-model” to refer to a set @inextions of a
given type. Our modification of the CRBM architecture does not changedebeable properties
related to inference and learning but allows the style variables to modulateténactions in the
model.

Like the CRBM, the multiplicative model is applicable to general time series wlgr@itbonal
data is available (e.g., seasonal variables for modeling rainfall oco@seeconomic indicators
for modeling financial instruments). However, we are largely motivatedunysoccess thus far in
modeling mocap data. In Section 3 we showed that a CRBM could capture riffamgrat styles
with a single set of parameters. Generation of different styles was p@sklyd on initialization,
and the model architecture did not allow control of transitions between styledid it permit style
blending. By using explicit style variables to gate the connections of a CREMan obtain a much
more powerful generative model that permits controlled transitioning amdliolg. We demonstrate
that in a conditional model, the gating approach is superior to simply using ladass the hidden
units, which is the approach most commonly used in static models (Hinton et &),.200

4.2 Styleand Content Separation

There has been a significant amount of work on the separation of stylecswent in motion. The
ability to separately specify the style (e.g., sad) and the content (e.g., walkatiolo A) is highly
desirable for animators. One approach to style and content separatiogugléa factor model
(e.g., PCA, factor analysis, ICA) by giving it “side-information” relatedhe structure of the data.
Tenenbaum and Freeman (2000) considered the problem of extraxticiyewo types of factors,
namely style and content, using a bilinear model. In a bilinear model, the effeetch factor on
the output is linear when the other is held fixed, but together the effectqatiplicative. This
model can be learned efficiently, but supports only a rigid, discrete defirofistyle and content
requiring that the data be organized in a (styleontent) grid.

Previous work has looked at applying user-specified style to an existitignreequence (Ur-
tasun et al., 2004; Hsu et al., 2005; Torresani et al., 2007). Thebdickmo these approaches is
that the user must provide the content. We propose a generative modehtent that adapts to
stylistic controls. Recently, models based on the Gaussian process latabtevmodel (Lawrence,
2004) have been successfully applied to capturing style in human motiorg(#VYah., 2007). The
advantage of our approach over such methods is that our model doaseaubto retain the training
data set (just a few frames for initialization). Furthermore, training time ise®#inearly with
the number of frames of training data, and so our model can scale up tovendssa sets, un-
like the kernel-based methods which are cubic in the number of frames. oltexfpl distributed
hidden state of our model means that it does not suffer from the limitedseuaional power of
HMM-based methods of modeling style (e.g., Brand and Hertzmann, 2000).

4.3 Gated Conditional Restricted Boltzmann M achines

Memisevic and Hinton (2007) introduced a way of implementing multiplicative inters in a
conditional model. The gated CRBM was developed in the context of leatramgformations
between image pairs. The idea is to model an observation (the output) giy@evtsus instance
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(the input). For example, the input and output might be neighbouring frafmédeo. The gated
CRBM has two equivalent views: first, as gated regression (Figurevd&re hidden units can
blend “slices” of a transformation matrix into a linear regression, and seasmmodulated filters
(Figure 9b) where input units gate a set of basis functions used tostegonthe output. In the
latter view, each setting of the input units defines an RBM. This means thditicoral on the input,

inference and learning in a gated CRBM are tractable.

Hidden
layer

Hidden
Q layer
®N\%
Q Output
O O
Input layer Output layer Input layer
() (b)

Figure 9: Two views of the gated CRBM, reproduced from the originpep&Viemisevic and Hin-
ton, 2007).

For ease of presentation, let us consider the case where all inputt,@rtgiidden variables are
binary (the extension to real-valued input and output variables is strarglafd). As in Equation
15, the gated CRBM describes a joint probability distribution through exgi@teng an energy
function and renormalizing. This energy function captures all possibielations between the
components of the input, the outputy, and the hidden variablek;

E (V,h|X) = — ZV\/.jkvihjxk— zcijvihj — Za;vi — ijhj (20)
1] 1 [ J

whereag;, bj index the standard biases on each unit apdhdex the gated biases, which shift the
total input to a unit conditionally. The paramet&vg are the components of a three-way weight
tensor. The CD weight updates for learning a gated CRBM are similar todasthGRBM (Ackley

et al., 1985). For example, the weight update rule/gy is:

AWk O (vihjX) data— (VihjXi) recon

Considering the “modulated filters” view of tpe gated CRBM, we can fold the(g inputs into the
weights to express the input-dependent fili&is= 5, WijxXx. This allows us to rewrite the energy
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function (Equation 20) as:
E(v,h|x) = ZV\/.Jv,hJ Zc,lv.hJ Za,vI thJ

Fixing the input, the first term is bilinear mandh. Therefore at first glance, the model appears
similar to the bilinear factor model (Tenenbaum and Freeman, 2000). Howée two models
differ considerably in both their learning method and structure. Note thailihearity only occurs

in the energy function: the gated CRBM permits the learned transformatiorstiglbly nonlinear
functions of the data.

4.4 Factoring

To model time-series, we can consider the output of a gated CRBM to bertemiciitame of data,
v = V¢, and the input to be the previous frame (or frames}; v = Vi_nt_1. In this sense, the
gated CRBM is a kind of autoregressive model where a transformationripaged from a set of
basis transformations, with each binary hidden unit specifying whethaooto include one of
the basis transformations. The number of possible compositions is expdientia number of
hidden units, but the componential nature of the hidden units preventsitiigenof parameters in
the model from becoming exponential, as it would in a mixture model. Becaube tfiree-way
weight tensor, the number of parameters is cubic (assuming that the nuohligpsit, output and
hidden units are comparable).

In many applications, including human motion modeling, strong underlying negesain the
data suggest that structure can be captured using three-way, multiglicaitivactions but with less
than the cubically many parameters implied by the weight tensor. This motivatedargor the
interaction tensor into a product of pairwise interactions (Figure 10koRag changes the energy
function (Equation 20) to:

E (v,h|x) = ZZV\/&/ Wlﬁfvihjxk—ZCijvihj—Za;vi—ijhj
] | ]

wheref indexes a set of deterministic factors. Superscripts differentiate theedhffgypes of pair-
wise interactions:W connect output units to factors (undirecte’czi)jf‘f connect hidden units to
factors (undirected), and; connect input units to factors (directed).

The factors correspond to an intermediate layer of “simple cells” which mtadthia interac-
tions between units. Each factor is connected to all input units, all hiddies, @md all output
units. However, there are typically about as many factors as the numbacltype of unit, so the
introduction of factors corresponds to a kind of low-rank approximatiotnéointeraction tensor,
W, that uses abouth\& parameters instead Of. Factors are deterministic, and are therefore very
different than the visible and hidden units, which have stochastic statesor§always send the
product of the total input from two types of units to the remaining third typenitf dror example,
during inference, each factor collects the total input arriving at it ftbeninput and output layers,
respectively, multiplies these quantities together, and sends this input tdiedetm unit. During
reconstruction, each factor collects the total input arriving at it frominipet and hidden layers,
respectively, multiplies these quantities together, and sends this input twisditd unit. This is
in contrast to the visible and hidden units. These must be sampled befdiagémeir stochastic
states to the factors, and, unlike factors, they send the same messagéiever Factors cannot be
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replaced by a layer of nonlinear stochastic units because this wouldhptéeehidden states from
being conditionally independent.

Although factoring has been motivated by the introduction of multiplicative intenas, models
that only involve pairwise interactions can also be factored (e.g., Salakbutdtral., 2007). To
factor the CRBM, we change the energy function in Equation 16 to:

1 ) .
E(vi,hilva) = 53 (vie— &)~ Z > WiWivichie = bjihje
T 0] T

and additionally, factor the weights of the dynamic bia&esndb:
dr=a+ z ZA,VmAkvﬁﬁvk,a,
m
E)j,t =bj+ z Z Brj]nB\éﬁth,d-
n
The indicesm andn correspond to the factoring of directed connectighandB. We may use a

different number of factors for each of the three different typesoohections in the CRBM. This
procedure can be seen as a kind of learned low-rank matrix factorizatieach ofV,A, andB.

O 0 O Hidden layer

Factors

O
O
®
O

O

Input layer Output layer
(e.g. data at time t-1) (e.g. data at time t)

Figure 10: Factoring the gated CRBM.

45 A Style-Gated, Factored Model

We now consider modeling multiple styles of human motion using factored, multipkcdtivee-
way interactions. Hinton et al. (2006) showed that a good generativelmbtiandwritten digits
could be built by connecting a softmax label unit to the topmost hidden layar@BN (Figure
11a). After learning, clamping a label changes the energy landscdhe afitoassociative model
formed by the top two layers, so that performing alternating Gibbs samplirtypes a joint sam-
ple compatible with a particular digit class. It is easy to extend this modification tCREM,
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where discrete style labels bias the hidden units. In a CRBM, howeverjdterhunits are also
conditioned on information from the past that is much stronger than the infimmaoming from
the label (Figure 11b). The model has learned to respect consistestyes between frames and
so will resist a transition introduced by changing the label units.

(:) s

O 02 @

——>

|
/
|

(@) (b)

Figure 11: a) In a deep belief network, clamping the label units changentrgy function. b) In
a conditional model, label information is swamped by the signal coming fromeatsie p

As in the gated CRBM, we are motivated to let style changeinteractionsof the units as
opposed to simply their effective biases. Memisevic and Hinton (2010)fastmted three-way in-
teractions to allow the hidden units of a gated CRBM to control the effect@¥ateo frame on the
subsequent video frame. Figure 12 shows a different way of usitgréd three-way interactions to
allow real-valued style features, derived from discrete style labels ritvaidhree different sets of
pairwise interactions. Like the standard CRBM (Equation 15), the modeileseéi joint probability
distribution ovew; andh;, conditional on the pa®t observationsy.;. However, the distribution is
also conditional on the style labelg, through a set of deterministic, real-valued featuresThe
features are a linear function of the “one-hot” encoded style labels:

Zt= z RolYpit-
P

This resembles the use of componential word-features used in Mnih atahtitanguage model
(Mnih and Hinton, 2007).

Similar to our discussion of the CRBM, we assume binary stochastic hiddenanutseal-
valued visible units with additive Gaussian noise ane- 1. The energy function is:

1

E (Ve hevary) = 5 3 (i —&i0)* - > ZVV#V\/,-*}VfoVi,thj,tZl,t — ¥ bjhje. (1)
I 1] J
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Vi QQ@‘Q Style Hidden layer

\ he |
Z; ‘@O Features

Factors

v |(®) vi|(@)

Input layer Output layer
(e.g. data at time t-1:t-N) (e.g. data at time t)

Figure 12: A factored CRBM whose interactions are gated by real-valydidtic features.

The three terms in Equation 21 correspond to the three sub-models (thes gidlinks connected

to each triangular factor in Figure 12). Note that for each sub-model, weérma matrix of weights

is now replaced by three sets of weights connecting units to factors. Témetipes of weights are
differentiated again by superscripts. For example, the matrix of undireaayhts in the standard
CRBM, W, has been replaced by three matrices involved in a factored, multiplicativagtite:

[, er} andW3. The same process is applied to the other two sub-models. Note that the three
sub-models may have a different number of factors (which we indei by andn).
The dynamic biases become:

it =a+ Z ;A,ymAkvﬁf.quka,dZLt
m

=a+) A ZAlﬁivk,« Zﬁqzmzu, (22)
m
bjt=bj+3 > Bl B BE Vi <t ¢
n
=bj+ 5 B, Z By=Vi <t Z BA 2 (23)
n

where the dynamic component of Equation 22 and Equation 23 is simply the tptdltm the
visible/hidden unit via the factors. The total input is a three-way prodatiiden the input to
the factors (coming from the past and from the style features) and thdfeign the factors to
the visible/hidden unit. The dynamic biases include a static compoaamiib. As in the gated
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CRBM, we could also add three types of gated biases, correspondirg paitivise interactions in
each of the sub-models. In our experiments, we have not used anyhjgsed.

4.5.1 INFERENCE ANDLEARNING

Adding multiplicative interactions to the model and factoring does not charmgertperty that the
posterior distribution is factorial. Inference is performed by considermgarallel, the total input
to each hidden unit via the factors:

1
1+ exp(—bj¢ — 3t Wi} T Wvie 31 W 20)

p(hjt = 1vi,Ver, V1) =

Wherij,t is defined in Equation 23. The reconstruction distribution is found by cerisigl the
total input to each visible unit via the factors:

P(Vitlhe,Vat, Y1) = A (éi,t + Z\M\f/ szr} hjt Z\lefzhta 1)
]

wherea; is defined in Equation 22.

As in the other models based on RBMs, exact maximum likelihood learning is ifitacta
However, applying contrastive divergence leads to a set of very signathent update rules which
are the same for binary or real-valued Gaussian visible units. The gradtarrespect to a weight
that connects a unit to a factor is the difference of two expectations ofupte. Each product
involves three terms: the activity of the respective unit, and the total inpuétiattor from each of
the two other sets of units involved in the three-way relationship. For example:

A |\fl 0 Z ((Vi,t ZVVB‘ hijt szle,t>data— (Vit ZVVth hjt szle,t>recon> .
J ]

The complete set of update rules is given in Appendix C.

The weights connecting labels to featur®s,can simply be learned by backpropagating the
gradients obtained by CD. Since these weights affect all three sub-mtudstsupdates are more
complicated. Applying the chain rule, we obtain:

ARp U Z ((Ci tYpt)data— (Ci tYpt)recon) ,
Cru= 3 Wi 3 Wi > Wihic+ Y ALY Avie ZAx;;vk,a +3 B, S Blhhis )3 Bin Vic<t-
i ] m [ n J

The updates for the static biases on the hidden and visible biases are thassamntbe standard
CRBM (Equation 13 and 14).

4.5.2 ARAMETER SHARING

In addition to the large reduction in the number of free parameters obtain&ttoying, further

savings may be obtained by tying some sets of parameters together. In thpafaligeterized model
(Figure 13a), there are 9 different sets (matrices) of weights but ieateict the number of factors
to be the same for each of the three sub-models, four sets of parametg&ferdical in dimension:
the weights that originate from the inputs (past visible units), the outputsléisitits), the hidden
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units and the features. Any combination of the compatible parameters may be-igede 13b
shows a fully-shared parameterization. This has slightly less than half thieerwof parameters of
the fully parameterized model, assuming that the number of input, output, higldefeature units
are comparable.

O00® O0® -
~ o ~, o
@10 @00

A
-

@ @ © @

(@) (b)

Figure 13: a) Fully parameterized model with each dot representing aetfitfeet of parameters
and different colors denoting a different number of factors in eabhnsadel. b) Full
parameter sharing where each dot represents a tied group of pasarmé&enumber of
factors is restricted to be the same for each sub-model.

In comparing different reduced parameterizations, tying only the feéditer parameters,
W3 AL, andBf, led to models synthesizing the highest quality motion. When sharing the au-
toregressive weighta, -\ andAY, with non-autoregressive weighBy:! andWY, respectively, we
found that the component of the gradient related to the autoregressiled tanded to dominate the
weight update early in learning. This was due to the strength of the correlagioveen past and
present compared to hidden and present or hidden and past. Witholdiagttregressive compo-
nent of the gradient for the first 100 epochs, until the hidden units algleeto extract interesting
structure from the data, solved this problem. In our reported experimentsaimed models with
only the feature-factor parameters tied.

4.6 Experiments

CRBM models share a common deficiency: biasing the hidden units with a styleidabat a
true integration of context into their architecture. Despite our attempts, wetprevent spurious
transitions (see Section 3.5.6), nor does a change of label duringatjeneallow us to transition or
blend between styles. We carry out a set of experiments that demonséatteigtshortcoming can
be addressed by using factored, multiplicative interactions.
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4.6.1 MODELING WITH DISCRETESTYLE LABELS

Using the 10-styles data set described in Section 3.5.6, we trained a taCREM with Gaussian
visible units whose parameters were gated by 100 real-valued featiues loly discrete style labels
(Figure 12). This model had 600 hidden units, 200 factors per subiraad®& = 12. Feature-to-
factor parameters were also tied between sub-models. All parametera leseding rate of 107,
except for the autoregressive parametés, Al, A% and the label-to-feature parameteRy,
which used a learning rate of 18 After training the model for 500 epochs, we tested its ability to
synthesize realistic motion by initializing with 12 frames of training data and holdm{athel units
clamped to the matching style. The single-layer model was able to generatedstglitent as well
as the 2-layer standard CRBM (see the supplemental videos). In addigonere able to induce
transitions between two or more styles by linearly blending the discrete styldriaimeone setting
to another over 200 framésWe were further able to blend together styles (lexyandstrong
by applying a linear interpolation of the discrete labels. The resulting motionnvesie natural
when a single style was dominant (e.g., an 0.8/0.2 blend). We believe this is sicgug af better
performance when the desired motion more closely resembles the casad préke training data
set, so training on a few examples of blends should greatly improve theirajieme

4.6.2 MODELING WITH REAL-VALUED STYLE PARAMETERS

The motions considered thus far have been described by a single telisdrel such aganglyor
drunk Motion style, however, can be characterized by multiple discrete labelsaramntinuous
factors such as the level of flow, weight, time and space formally definedbai. movement
analysis (Torresani et al., 2007). In the case of multiple discrete labalgeal-valued feature
units, z, can receive input from multiple categories of labels. For continuousriaofostyle, we
can connect real-valued style units to the real-valued feature units, cams&mply gate the model
directly by the continuous description of style.

To test this latter configuration, we trained a model exactly as in Section 4.6ihstead of gat-
ing connections with 100 real-valued feature units, we gated with 2 readd/alyle descriptors that
were conditioned upon at every frame. Again we trained with walking datahle data was cap-
tured specifically for this experiment. One style unit represented the gpaedking and the other,
the stride length. The training data consisted of nine sequences at é@fhsapproximately 6000
frames corresponding to the cross-product of (slow, normal, fasgdspnd (short,normal,long)
stride length. The corresponding labels each had values of 1, 2 oré3e Malues were chosen to
avoid the special case of all gating units being set at zero and nullifyingffibetive weights of the
model. The model was trained for 500 epochs.

After training, the model could, as before, generate realistic motion aocptal the nine dis-
crete combinations of speed and stride-length with which it was trained basedialization and
setting the label units to match the labels in the training set. Furthermore, the mpgelted both
interpolation and extrapolation along the speed and stride length axes andtdigpear overly
sensitive to initialization (see the supplemental videos).

4. The number of frames was selected empirically and provided a srtraosition, but the model is not sensitive to
this number. A quick (e.g., frame-to-frame) change of labels will irppoduce a “jerky” transition.
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4.6.3 QUANTITATIVE EVALUATION

In our experiments so far, we have sought a qualitative comparison toRBMCbased on the
realism of synthesized motion. We have also focused on the ability of aéacatoodel with multi-
plicative interactions to synthesize transitions as well as interpolate angelstiebetween styles
present in the training data set. The application does not naturally peegeantitative comparison,
but in the past, other time series models have been compared by their peideromethe prediction
of either full or partial held-out frames (e.g., Wang et al., 2008; LaaeeBA007). We use the data set
first proposed by Hsu et al. (2005) which consists of labeled segsafcseven types of walking:
(crouch jog, limp, normal, side-right sway waddlg each at three different speedsofy, medium
fasf). We preprocessed the data to remove missing or extremely noisy sectidrsnaothed with

a low-pass filter before downsampling from 120 to 30fps.

For each architecture: CRBM, factored CRBM, style-gated unfactorBM, and style-gated
factored CRBM, we trained 21 different models on all style/speed paieptxone, which we held
out for testing. Then, for each model, we attempted to predict every gudsee of lengtiv in the
test set, given the pabl= 6 frames. We repeated the experiments for each architecture, each time
reporting results averaged over the 21 models. Prediction could bempeddsy initializing with
the previous frame and Gibbs sampling in the same way we generated, byggioaceh is subject
to noise. We found that in all cases, integrating out the hidden units andviofahe gradient
of the negative free energy with respect to the visible units gave lesgfioederror (see Section
3.3.3). We minimized the free energy using conjugate-gradient descentznaiisvith the previous
frame. The architectures were subject to different learning ratesatttesnumber of epochs for
which to train each model was determined by setting aside 10% of the trainifay satidation.

We have also included a sixth-order autoregressive model as a ba3¢liseorresponds to the
CRBM model without hidden units, except that it is trained using least squastead of contrastive
divergence.

Figure 14 presents the results. With almost half the number of free paramigter600-60
factored model performed as well as the fully parameterized CRBM. Gaithgstyle information
gives an advantage in longer-term prediction because it prevents thes frood gradually changing
the style. The unfactored model with style information performed slightly witvae the factored
model and was extremely slow to train (it took two days to train whereas the wibeels were
each trained in a few hours). The baseline autoregressive modetped extremely well in the
short term, but was quickly eclipsed by the latent variable models fors.

4.6.4 GOMPUTATIONAL COMPLEXITY

The CRBM (1 or 2 layer) and FCRBM take a few hours to train on a modeglesitore work-
station. All of the models we have presented can generate motion at least as 60fps (i.e., the
visualizations we have produced were generated in real-time). Leamirigf@rence in the CRBM
and FCRBM are extremely efficient, with complexity linear in the number of traisamgples. In
practice, this is slightly optimistic since larger and more complex data sets will esqpaire hidden
units, and learning and inference are also linear in the number of hiddtsn Tine scale of corpora
that we use in our experiments are problematic for GP-LVMs, since leaanidignference for those
models areD(N3) andO(N?), whereN is the number of training samples.
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Figure 14: Prediction experiment. The number of free parameters amn sh@arentheses. Error
is reported in the normalized space in which the models are trained and isyparsibn,
per-frame. The first two values for the autoregressive model (0.4666.2628) have
been intentionally cut off.

5. Conclusion

We have introduced the conditional restricted Boltzmann machine (CRBM)ké&h properties of
the CRBM are that it permits rich distributed representations to be learnedtiinee series, and
that exact inference is simple and efficient. We derived the contrastieegdnce (CD) learning
rules for CRBMs and showed how CRBMs can be stacked to form condititeep belief nets. We
demonstrated that a single model can generate many different styles of motion.

Perhaps the two greatest limitations of CRBMs (and RBMs in general) areefieduating the
quality of trained models, and second, the learning algorithm with which tleeyrained. Though
we have explored different methods of model evaluation, sudhstep forward prediction and the
subjective assessment of synthesized data, the most natural way tate\alyenerative model is
to compute the log-likelihood it assigns to a held-out test set. For all but thikesimaodels, this
is impossible to do exactly due to the intractability of computing the partition functiatakBut-
dinov and Murray (2008) have successfully applied annealed impersampling (AIS) to RBMs.
However, conditioning changes the partition function which implies that wddvoeed to perform
AIS for every possible configuration ®&f-frame histories (wher#l is the order of the CRBM) if
we wish to evaluate the likelihood assigned by the model to an arbitrary semué&ortunately,
to evaluate models we are often interested in computing likelihoods for a fixesketasther than
arbitrary sequences. This means that we need only to concern ogrgeétiieconditioning on all
possibleN-frame histories in the test set. If we are evaluatihgequences whose maximum length
is T, we would need to make on the orded{ T — N) complete AlS estimates.

A major criticism of contrastive divergence learning is that by “pulling up”tbe energy of
individual reconstructed data points, the algorithm fails to visit regionavay from the training

5. Note that for each of these “conditional” estimates we would still perfeweral runs of AlS.
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data. Consequently, the bulk of the energy surface is left arbitrarily@we solution is to abandon
CD altogether, and pursue other learning methodologies, such as the Sraergy-based methods”
discussed in Section 3.5 or score matching (&hyven, 2005). The alternative is to improve CD
(e.g., Tieleman, 2008).

In Section 4 we extended the CRBM to permit context units to modulate the existingise
interactions. The resulting multiplicative model implies cardinality of parametdais quthe num-
ber of units. However, we factorized the weights to make the parameterigatainatic and further
reduced this number by tying weights. We demonstrated that the resulting coddl capture
several different motion styles, as well as transition and blend naturdilyelba them. A sensible
and natural extension of this work is to the fully unsupervised setting,endtglistic parameters are
learned rather than provided (cf., Brand and Hertzmann, 2000).
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Appendix A. Data Representation

The most statistically salient patterns of variation in the data may differ coasigerom the pat-
terns that humans find perceptually and expressively salient (BrahHartizmann, 2000). There-
fore our learning algorithms can benefit from a carefully chosen septation that highlights im-
portant sources of variation and suppresses irrelevant soureesiation. Specifically, we aim to
make our representation of motion invariant to rotation about the gravitatentédtal (which we
will simply call the vertical) and translation in the ground-plane. In the followdiggussion, we
describe the steps taken to achieve a representation amenable to learning.

A.1 Original Representation

Data from a motion capture system typically consists of the 3D cartesianioatas of 15-30
virtual markers (usually representing joint centres) for a series ofatesstime-steps, which we call
frames. The data is processed to remove missing and noisy markers ambtierted to a joint
angle hierarchy through an optimization that assumes constant limb lengthsadtoframe, we
obtain a vector of relative joint angle orientations, each 1-3 degreegeddm (dof) plus a root
orientation and translation in global coordinates (6 dof). The definitioneofabt depends on the
data source, but typically it is the coccyx, near the base of the backurlexperiments, we used
a variety of mocap sources, each of which provided the data alreadyiénaadiical “joint-angle”
format.

A.2 Conversion to Exponential Maps

The most common representation for orientations in mocap data are Eules.abgleer angles
describe a one, two or three dof orientation by a sequence of rotations akes in the global or
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local coordinate system. The order of rotations is user-defined andisman source of confusion,
often differing between data sources. Euler angles do not permit destdiatween rotations to be
directly computed nor do they support interpolation or optimization since thatatien space is
highly nonlinear. It is also not trivial to ensure that similar poses areesged by similar Euler
angles. Euler angles also suffer from “gimbal lock”, the loss of rotatidegrees of freedom
due to singularities in the parameter space. Equivalent representatdnasithe 3 3 rotation
matrix or 4D quaternion are not well suited to optimization and synthesis asahaire additional
constraints to ensure that they remain valid. Therefore we convert jogiésto an exponential
map parameterization (Grassia, 1998) before learning.

The exponential map parameterization is also known as “axis-angle’sexpiggion since it con-
sists of a three-element vector, whose direction specifies an axis of notattbwhose magnitude
specifies the angle by which to rotate about this axis. Exponential map&fmmed to interpola-
tion, optimization and unconstrained synthesis since they are locally lineavangdthree-element
vector maps to a valid rotation. The parameterization still contains singularittetharefore is
subject to gimbal lock, but the singularities in the exponential map are of@dable (Grassia,
1998)°

A.3 Conversion to Body-Centred Orientations

We treat the root specially because it encodes a transformation withctésefixed global coor-
dinate system. At each framig this transformation can be described by:a3rotation matrixR;,

and a translation vect6r,[ X Vi % ]T. We will assume, for our discussion, ttatorresponds
to the vertical. WherR; is the identity matrix, this defines the “rest position” which is typically
defined by skeleton meta-data that accompanies the joint angles. Withouf Igsserality, let
us assume that in the rest position the subject is axis-aligned such thatrsogeatdral axis (from
spinal column to belly) aligns with theaxis:

wW=[10 0],
the lateral axis (from left to right side of body) aligns with thexis:
w=[0 1 0],
and the anteroposterior axis (from head to feet) aligns with the negzdixis:
wW=[0 0 —1]",

When the root is rotated (i.€%; is not the identity) the body-centred coordinate system is no longer
axis aligned. It becomes:

u = R U,
Vi = RtTVth
wp = RTw?

6. For joints with a single degree of freedom, the exponential map redocan Euler angle and so we do not con-
vert. The orientation of the root does not need to be converted to exfi@nmaps since we build an alternative
representation in the following section which requires the orientation to hessgd as a 8 3 rotation matrix.

7. ltis also common to represent the transformation byal4matrix.
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where we have assumed a particular convention for the rotation matrix. Naitéhdse axes are
simply the rows of the rotation matrix under our chosen convention.
Measuring the angle that the dorsoventral axis makes with the vertica gtva measure of

pitch:
0
—cos 1| W os? (utwt> .
* (IutHHth u]|

Similarly, measuring the angle that the lateral axis makes with the gravitationalayegjives us a

measure of roll:
Y=cost| L W cost (Vt 'W?> :
(vl | [w]| [Vt

Both pitch and roll are invariant to rotation about the vertical and thezefan be thought of as
“body-centred” rotations. By projecting into the ground-plane, this provides a measure of yaw,
or rotation about the vertical: y

6 =tan ! <$(>

whereu andu are the first two components of vectar. Care should be taken to use the four-
quadrant version of tart (often called thetan2 function). We unwra to eliminate discontinu-
ities.

A.4 Conversion to Incremental Changes

We represent the rotation about the vertical, as well as translations indbadyplane by their
incremental changes (forward differences) and not their absollitesza

B = 61— 6y,
).(t =X+1— X,
Yo = Y1 — Ve

For the last frame, we can use the two preceding frames to make a cordtarityvprediction.
To achieve translational invariance, we need to express velocity in thmdpplane with respect
to body-centred and not global coordinates. We can representtyeilothe ground-plane by its

magnitude:
=/ %%+ W2
W
tan”
e ()

Again we make use of the four-quadrant version of tanThe velocity is then expressed with
respect to the orientation about the verti€gl),in both a forward and lateral component:

i = o cos(6 —Br),
& = arsin(6 —Br)
where we have used “dot” notation to imply that these quantities are increnvaihtials. Taken

collectively, [ & z @& W 6 ]T form our invariant representation of the root. Note that
the heightz, is untouched.

and its angle with respect to theaxis:
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A.5 Data Normalization

Any joint angle dimensions that have constant value are not modeledmosgied from the training
data (they are re-inserted before playback or export). Each compofihe data is normalized to
have zero mean and unit variance.

Appendix B. Approximations

In practice, we make several small modifications to the algorithms for bothingeaind generation.
These rely on several approximations, most of which are chosen lbasedllective experience
of training similar networks. The approximations typically replace sampled salith expected
values, to reduce unnecessary noise.

While training a CRBM, we replace; in Equation 10, 11 and 13 by its expected value and
we also use the expected valuewpf when computing the probability of activation of the hidden
units (Equation 8). However, to compute each of kheeconstructions of the data (Equation 9),
we use stochastically chosen binary values of the hidden units. Thisngseabe hidden activities
from transmitting an unbounded amount of information from the data to thes&cation (Teh and
Hinton, 2001).

While updating the directed visible-to-hidden connections (Equation 12xytimenetric undi-
rected connections (Equation 10), and the hidden biases (Equatiowd 4ise the stochastically
chosen binary values of the hidden units in the first term (under the dmti)eplaceh;; by its
expected value in the second term (under the reconstruction). We takaptirizach because the
reconstruction of the data depends on the binary choices made whetingetedden state. Thus,
when we infer the hiddens from the reconstructed data, the probabiliedsgily correlated with
the binary hidden states inferred from the data. On the other hand, weaftold reconstructions,
so the binary choice of hiddens from tk¢h reconstruction does not correlate with any other terms,
and there is no reason to include this extra noise.

The alternating Gibbs sampling used when generating data is similar to the pregezluse to
learn a CRBM. So we make similar approximations during generation: usinigesttically chosen
binary values of the hidden units but the expected values of the recotestruisible units. As
a further step to reduce noise, on thieal iteration of Gibbs sampling, we use the real-valued
probabilities of the hidden units when updating the visible units.

Appendix C. FCRBM Weight Updates

The CD updates for the parameters of the FCRBM have an intuitive formgrBtaient with respect
to a weight that connects a unit to a factor is the difference of two expawsatioproducts. Each
product involves three terms: the activity of the respective unit, and theriptd to the factor from
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each of the two other sets of units involved in the three-way relationship:
AVV|¥ 0 Z <<Vi,t ZVVth hijt ZWZfZI,Odata— (Vi ZVVR hjt Z\sz Z|7t>recon> ;
] ]

AvwaZ

(hjt ZV\4¥Vi,t Z\szzl,t>data_ (hjt Z\Ni\]{vi,t ZWZfZI,t)recon) ,
| |

ZItZWfVItZ fhjt data— ZItZVV.anZ fh]t recon) ,

AAL O Z (Vit ZAkak <t ZA|ZmZI,t>data_<Vi7t ZAkvfrﬁngt ZAlzmzl,t>recon> ,

AN O Z (Vi <t IZAIVrnVi,t ZA|ZmZI7t>data— (Vi <t IzAuymVi,t ZA|ZmZI7t>recon> ,

MDY

ABY, O Z

0B O Z

"
Aa,DZ(

Ab; O Z (hj t)data— (Nj t)recon) -

(7 t z A1ymVi.,t ZAxﬁVk,<t>data— <Zl,t z A|ymVi 1 ZAXﬁVk,<t>recon> )
| |

hj,t Z B\éﬁtvk,d Z B|anl,t>data— <hj.,t Z B\éﬁtvk,d Z B|anl,t>recon> )
Vk,<t Z Brj]n hj7t Z B|anl,t>data— (Vi <t z B?nhj.,t Z B|anl7t>recon> )
J J

/—\/\/\/\/—\/—\/—\/—\
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