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Abstract
We present a parallel algorithm for the score-based optimalstructure search of Bayesian networks.
This algorithm is based on a dynamic programming (DP) algorithm havingO(n · 2n) time and
space complexity, which is known to be the fastest algorithmfor the optimal structure search of
networks withn nodes. The bottleneck of the problem is the memory requirement, and therefore,
the algorithm is currently applicable for up to a few tens of nodes. While the recently proposed
algorithm overcomes this limitation by a space-time trade-off, our proposed algorithm realizes di-
rect parallelization of the original DP algorithm withO(nσ) time and space overhead calculations,
whereσ > 0 controls the communication-space trade-off. The overalltime and space complexity is
O(nσ+12n). This algorithm splits the search space so that the requiredcommunication between in-
dependent calculations is minimal. Because of this advantage, our algorithm can run on distributed
memory supercomputers. Through computational experiments, we confirmed that our algorithm
can run in parallel using up to 256 processors with a parallelization efficiency of 0.74, compared
to the original DP algorithm with a single processor. We alsodemonstrate optimal structure search
for a 32-node network without any constraints, which is the largest network search presented in
literature.

Keywords: optimal Bayesian network structure, parallel algorithm

1. Introduction

A Bayesian network represents conditional dependencies among random variables via a directed
acyclic graph (DAG). Several methods can be used to construct a DAG structure from observed
data, such as score-based structure search (Heckerman et al., 1995; Friedman et al., 2000; Imoto
et al., 2002), statistical hypothesis testing-based structure search (Pearl, 1988), and a hybrid of
these two methods (Tsamardinos et al., 2006). In this paper, we focus on ascore-based learning
algorithm and formalize it as a problem to search for an optimal structure thatderives the maximal
(or minimal) score using a score function defined on a structure with respect to an observed data set.
A score function has to be decomposed as the sum of the local score functions for each node in a
network. In general, posterior probability-based score functions derived from Bayesian statistics are
used. The optimal score-based structure search of Bayesian networks is known to be an NP-hard
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problem (Chickering et al., 1995). Several efficient dynamic programming (DP) algorithms have
been proposed to solve such problems (Ott et al., 2004; Koivisto and Sood, 2004). Such algorithms
haveO(n ·2n) time and space complexity, wheren is the number of nodes in the network. When
these algorithms are applied to real problems, the main bottleneck is bound to be the memory
space requirement rather than the time requirement, because these algorithmsneed to store the
intermediate optimal structures of all combinations of node subsets during DP steps. Because of
this limitation, such algorithm can be applied to networks of only up to around 25 nodes in a typical
desktop computer. Thus far, the maximum number of nodes treated in an optimalsearch without
any constraints is 29 (Silander and Myllymäki, 2006). This was realized by using a 100 GB external
hard disk drive as the memory space instead of using the internal memory, which is currently limited
to only up to several tens of GB and in a typical desktop computer.

To overcome the above mentioned limitation, Perrier et al. (2008) proposed an algorithm to
reduce the search space using structural constraints. Their algorithm searches for the optimal struc-
ture on a given predefined super-structure, which is often available in actual problems. However, it
is still important to search for a globally optimal structure because Bayesian networks find a wide
range of applications. As another approach to overcome the limitation, Parviainen and Koivisto
(2009) proposed a space-time trade-off algorithm that can search fora globally optimal structure
with less space. From empirical results for a partial sub-problem, they showed that their algorithm
is computationally feasible for up to 31 nodes. They also mentioned that their algorithm can be
easily parallelized with up to 2p processors, wherep = 0,1, . . . ,n/2 is a parameter that is used to
control the space-time trade-off. Using parallelization, they suggested that it might be possible to
search larger-scale network structures using their algorithm. The time and space complexities of
their algorithm areO(n·2n(3/2)p) andO(n·2n(3/4)p), respectively.

Of course, the memory space limitation can be overcome by simply using a computerwith suf-
ficient memory. The DP algorithm remains computationally feasible even for a 29-node network
in terms of the time requirement. For such a purpose, a supercomputer with shared memory is
required. Modern supercomputers can be equipped with several terabytes of memory space. There-
fore, they can be used to search larger networks than the current 29-node network that requires 100
GB of memory. However, such supercomputers are typically very expensive and are not scalable in
terms of the memory size and the number of processors. In contrast, massively parallel computers,
a much cheaper type of supercomputers, make use of distributed memory; in such systems many
independent computers or computation nodes are combined and linked through high-speed connec-
tions. This type of supercomputers is less expensive, as mentioned, and itis scalable in terms of
both the memory space and the number of processors. However the DP algorithm cannot be exe-
cuted on such a distributed memory computer because it requires memory access to be performed
over a wide region of data, and splitting the search space across distributed processors and storing
the intermediate results in the distributed memory are not trivial problems.

Here, we present a parallelized optimal Bayesian network search algorithm calledPara-OS. The
proposed algorithm is based on the OS algorithm using DP that was proposed by Ott et al. (2004).
Our algorithm realizes direct parallelization of the DP steps in the original algorithm by splitting
the search space of DP withO(nσ) time and space overhead calculations, whereσ = 1,2, . . . > 0
is a parameter that is used to split the search space and controls the trade-off between the number
of communications (not the volume of communication) and the memory space requirement. The
main feature of this algorithm is that it guarantees that the amount of intermediateresults that are re-
quired to be shared redundantly among independently split calculations is minimal. In other words,
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our algorithm guarantees that minimal communications are required between independent parallel
processors. Because of this advantage, our algorithm can be easily parallelized, and, in practice, it
can run very efficiently on massively parallel computers with several hundreds of processors. An-
other important feature of our algorithm is that it calculates no redundant score functions, and it
can distribute the entire calculation almost equally across all processors. The main operation in our
algorithm is the calculation of the score function. In practice, this feature is important to actually
search for the optimal structure. The overall time and space complexity isO(nσ+12n). Our algorithm
adopts an approach opposite to that of Parviainen and Koivisto (2009) toovercome the bottleneck
of the memory space problem. Although our algorithm has slightly greater space and time com-
plexties, it makes it possible to realize large-scale optimal network search in practice using widely
available low-cost supercomputers.

Through computational experiments, we show that our algorithm is applicableto large-scale
optimal structure search. First, the scalability of the proposed algorithm to thenumber of proces-
sors is evaluated through computational experiments with simulated data. We confirmed that the
program can run efficiently in parallel using up to 256 processors (CPUcores) with a paralleliza-
tion efficiency of more than 0.74 on a current supercomputer system, and acceptably using up to
512 processors with a parallelization efficiency of 0.59. Finally, we demonstrate the largest optimal
Bayesian network search attempted thus far on a 32-node network with 256processors using our
proposed algorithm without any constraints and without an external harddisk drive. Our algorithm
was found to complete the optimal search including the score calculation within a week.

The remainder of this paper is organized as follows. Section 2 presents anoverview of the
Bayesian network and the optimal search algorithm, which serves as the basis for our proposed
algorithm. Section 3 describes the parallel optimal search algorithm in detail. Section 4 describes
the computational experiments used for evaluating our proposed algorithm and presents the obtained
results. Section 5 concludes the paper with a brief discussion. The appendix contains some proofs
and corollaries related to those described in the main paper.

2. Preliminaries

In this section, we first present a brief introduction to the Bayesian network model, and then, we
describe the optimal search (OS) algorithm, which is the basal algorithm that we parallelize in the
proposed algorithm.

2.1 Bayesian Network

A Bayesian network is a graphical model that is used to represent a joint probability of random vari-
ables. By assuming the conditional independencies among variables, the joint probability of all the
variables can be represented by the simple product of the conditional probabilities. These indepen-
dencies can be represented via a directed acyclic graph (DAG). In a DAG, each node corresponds to
a variable and a directed edge, to the conditional dependencies among variables or to the indepen-
dencies from other variables. Suppose that we haven random variables,V = {X1,X2, . . . ,Xn}. The
joint probability of variables inV is represented as

P(X1,X2, . . . ,Xn) =
n

∏
j=1

P(Xj |PaG(Xj)),
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wherePaG(Xj) represents the set of variables that are direct parents of thej-th variableXj in network
structureG andP(Xj |PaG(Xj)), a conditional probability for variableXj .

A score-based Bayesian network structure search or a Bayesian network estimation problem is
to search for the DAG structure fitted to the observed data, in which the fitness of the structure to the
given data is measured by a score function. The score function is defined on a node and its parent
set. The scores of nodes obtained by a score function are called local scores. A network score is
defined simply as the sum of local scores of all nodes in a network. Using ascore function, the
Bayesian network structure search can be defined as a problem to find anetwork structureĜ that
satisfies the following equation:

Ĝ= argmin
G

n

∑
j=1

s(Xj ,PaG(Xj),X),

wheres(Xj ,PaG(Xj),X) is a score functions : V×2V ×R
N,n→ R for nodeXj given the observed

input data of an(N×n)-matrixX, whereN is the number of observed samples.

2.2 Optimal Search Algorithm using Dynamic Programming

Next, we briefly introduce the OS algorithm using DP proposed by Ott et al. (2004). Our proposed
algorithm is a parallelized version of this algorithm. We employ score functions described as in the
original paper by Ott et al. (2004). That is, a smaller score representsbetter fitting of the model.
Therefore, the problem becomes one of finding the structure that minimizes the score function. The
optimal network structure search by DP can be regarded as an optimal permutation search problem.
The algorithm consists of two-layer DP: one for obtaining the optimal choice of the parent set
for each node and one for obtaining the optimal permutation of nodes. First,we introduce some
definitions.

Definition 1 (Optimal local score) We define the function F: V×2V → R as

F(v,A)
def
= min

B⊂A
s(v,B,X).

That is, F(v,A) calculates the optimal choice of the parent set from A for node v and returns its
optimal local score. B⊂ A represents the actual optimal choice for v, and generally, we also need
to include it in the algorithm along with the score, in order to reconstruct the network structure
later.

Definition 2 (Optimal network score on a permutation) Let π : {1,2, . . . , |A|} → A be a permu-
tation on A⊂ V andΠA be a set of all the permutations on A. Given a permutationπ ∈ ΠA, the
optimal network score onπ can be described as

QA(π) def
= ∑

v∈A

F(v,{u∈ A : π−1(u)< π−1(v)}).

Definition 3 (Optimal network score) By using QA(π) defined above, we can formalize the net-
work structure search as a problem to find the optimal permutation that gives the minimal network
score:

M(A)
def
= arg min

π∈ΠA
QA(π).
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Here,M(A) represents the optimal permutation that derives the minimal score of the network con-
sisting of nodes inA.

Finally, the following theorem provides an algorithm to calculateF(v,A), M(A), andQA(M(A))
by DP. See Ott et al. (2004) for the proof of this theorem.

Theorem 4 (Optimal network search by DP) The functions F(v,A), M(A), and QA(M(A)) de-
fined above can be respectively calculated by the following recursive formulae:

F(v,A) = min{s(v,A,X),min
a∈A

F(v,A\{a})}, (1)

M(A)(i) =

{

M(A\{v∗})(i) (i < |A|)
v∗ (i = |A|)

, (2)

QA(M(A)) = F(v∗,A\{v∗})+QA\{v∗}(M(A\{v∗})), (3)

where
v∗ = argmin

v∈A
{F(v,A\{v})+QA\{v}(M(A\{v}))}.

By applying the above equations from|A|= 0 to |A|= |V|, we obtain the optimal permutationπ on
V and its score QV(M(V)) in O(n·2n) steps.

Note that in order to reconstruct the network structure, we need to keep the optimal choice of
the parent set derived in Equation (1) and the optimal permutationπ = M(A) in Equation (3) for all
the combinations ofA⊂V in an iterative loop for the next size ofA.

3. Parallel Optimal Search Algorithm

The key to parallelizing the calculation of the optimal search algorithm by DP is splitting all the
combinations of nodes in a single loop of DP forF(v,A), M(A), andQA(M(A)), given above by
Equations (1), (2), and (3), respectively. Simultaneously, we need to consider how to reduce the
amount of information that needs to be exchanged between processors.In the calculation ofM(A),
we need to obtain all the results ofM(·) for one-smaller subsets ofA at hand, that is,M(A\ {a})
for all a∈ A. Suppose that suchM(A\ {a})’s are stored in the distributed memory space, and we
have collected them for calculatingM(A). In order to reduce the number of communications, it
would be better if we can re-use the collected results for another calculation. For example, we can
calculateM(B) (|B|= |A|) in the same processor that calculatesM(A) such that some ofM(B\{b})
(b∈ B) overlaps M(A\ {a}). That is, if we can collect the maximal number ofM(X)’s for anyX
such that|X|= |A|−1∧ X ⊂ {(A\{a})∩ (B\{b})}, then the number of communications required
for calculatingM(A) andM(B) can be minimized. Theorem 7 shows how we generate such a set of
combinations, and we prove that it provides the optimally minimal choice of such combinations by
allowing some redundant calculations.

In addition, as is evident from Equations (1), (2), and (3), the DP algorithm basically consists
of simply searching for the best choice from the candidates that derive the minimal score. Time
is mainly required to calculate the score functions(v,A,X) for all the nodes and their parent com-
binations. Thus, our algorithm calculatess(v,A,X) equally in independent processors without any
redundant calculations for this part.

In this section, we first describe some basic definitions, and then, we present proofs of theorems
that the proposed algorithm relies on. Finally, we present the proposed parallel algorithm.
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3.1 Separation of Combinations

First, we define the combination, sub-combination, and super-combination ofnodes.

Definition 5 (Combination) In this paper, we refer to a set of nodes in V as a combination of nodes.
We also assume a combination of k nodes, that is, X= {x1,x2, . . . ,xk} ⊂ V such that ord(xi) <
ord(x j) if i < j, where ord: V → N is a function that returns the index of element v∈ V. For
example, suppose that V= {a,b,c,d}. ord(a) = 1 and ord(d) = 4.

Definition 6 (Sub-/super-combination) We define C′ as a sub-combination of some combination
C if C′ ⊂C, and C is a super-combination of C′. We say that a super-combination C is generated
from C′ if C is a super-combination of C′. In addition, we say that sub-combination C′ is derived
from C if C′ is a sub-combination of C. For the sake of convenience, if we do not mention about
the size of a sub-/super-combination of a combination, then we assume that it refers to a one-size
smaller/larger sub-/super-combination. In addition, we say that two combinations A and B share
sub-combinations ifA ′∩B ′ 6= /0, whereA ′ andB ′ are sets of all the sub-combinations of A and B,
respectively.

We present two theorems that our algorithm relies on along with their proofs.These two theo-
rems are used to split the calculation ofF(v,A), M(A), andQA(M(A)); all these require the results
for their sub-combinations. We show that the calculation can be split by the super-combination of
A, and it is the optimal separation of the combinations in terms of the number of communications
required.

Theorem 7 (Minimality of required sub-combinations) LetA be a set of combinations of nodes
in V , where|A|= k> 0 for A∈A and|V|= n. If |A |=

(k+σ
k

)

(σ > 0∧ σ+k≤ n), then the minimal

number of sub-combinations of length k−1 required to generate all the combinations inA is
(k+σ

k−1

)

.
Let S be a combination of nodes, where|S|= k+σ. We can generate a set of combinations of length
k that satisfies the former condition by deriving all the sub-combinations of length k from S.

Proof BecauseA contains
(k+σ

k

)

combinations of lengthk, the number of distinct elements (nodes)
involved inA is k+σ and is minimal. Therefore, the number of sub-combinations required to derive
(k+σ

k

)

combinations of lengthk in A is equal to the number of possible combinations that can be
generated fromk+σ elements, and is

(k+σ
k−1

)

. No more combinations can be generated from
(k+σ

k−1

)

sub-combinations. Therefore, it is the minimal number of required sub-combinations required to
generate

(k+σ
k

)

combinations. A super-combinationSof lengthk+σ containsk+σ elements and
can derive

(k+σ
k

)

combinations of lengthk. Therefore,Scan deriveA , and all the combinations of
lengthk−1 derived from elements inSare the sub-combinations required to generate combinations
in A .

Theorem 8 (Minimality of required super-combinations) The minimal number of
super-combinations of length k+σ from V that is required to generate all the sub-combinations
of size k is

(n−σ
k

)

.
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Proof Consider the setT = V \ {v1,v2, . . . ,vσ}, where anyvi ∈ V, and thus,|T| = n−σ. If we
generate all the combinations of lengthk taken fromT, then these include all the combinations of
lengthk from nodes inV without v1, . . . ,vσ, and the number of combinations is

(n−σ
k

)

. Consider a
set of combinationsS = {{v1, . . . ,vσ}∪T ′ : T ′ ⊂ T ∧ |T ′| = k}. Here,|S| = k+σ for S∈ S and
|S | =

(n−σ
k

)

. BecauseS contains all the combinations of lengthk without v1, . . . ,vσ and all the
elements inS containv1, . . . ,vσ, we can generate all the combinations inV of lengthk from some
S∈ S by combining 0≤ α ≤ k nodes fromv1, . . . ,vσ and k−α nodes fromS\ {v1, . . . ,vσ}. If
we remove anyS∈ S from it, then there exist combinations that cannot be generated from another
S∈ S becauseS lists all the combinations except for nodesv1, . . . ,vσ. Therefore,S is the minimal
set of super-combinations required to derive all the combinations of lengthk from V and its size
is |S | =

(n−σ
k

)

. We can generateS by taking the first
(n−σ

k

)

combinations from
(n

k

)

combinations
arranged in lexicographical order.

Theorem 7 can be used to split the search space of DP using bysuper-combinations, and Theo-
rem 8 provides the number of super-combinations required in the parallel computation for a certain
size ofA for M(A). From these two theorems, we can easily derive the following corollaries.

Corollary 9 (Optimal separation of combination) The DP steps used to calculate M(A) and
QA(M(A)) in the OS algorithm can be split into

(n−σ
k

)

portions by super-combinations of A with

length k+σ, where|A| = k. The size of each split problem is
(k+σ

k

)

and the number of required

M(B) for B⊂ A ∧ |B| = k− 1 is
(k+σ

k−1

)

, which is the minimal number for
(k+σ

k

)

combinations of
M(A). Here, B is a set of sub-combinations of A. The calculation of F(v,A) can also be split based
on the sub-combinations B for M(A).

The separation ofM(A) by super-combinations causes some redundant calculations. The fol-
lowing corollary gives the amount of such overhead calculations and the overall complexity of the
algorithm.

Corollary 10 (Amount of redundant calculations) If we split the calculations of M(A) (|A| = k)
using super-combinations of size k+σ (σ > 0), then the number of calculations of M(A) for all
A⊂V is

(n−σ
k

)

·
(k+σ

k

)

=
(n

k

)

O(nσ). Thus, as compared to the original DP steps
(n

k

)

, the overhead
increment of the calculations for M(A),QA(M(A)), and F(v,A) is at most O(nσ). The memory re-
quirement to store the intermediate results is also dependent on the size of the sub-combinations for
split calculations. Therefore, the overall time and space complexity of the algorithm is O(nσ+12n).

We present a proof in Appendix B. The parameterσ > 0 can be used to control the size of split
problems. Because using a large value ofσ suppresses the number of required super-combinations,
the number of communications required between independent calculations is also suppressed. In-
stead, the large value ofσ requires a large memory space to store the sub-combinations in a pro-
cessor. Therefore,σ can be used to control the trade-off between the number of communications
and the memory space requirement. Because the algorithm requires the exchange of intermediate
results

(n−σ
k

)

times for a loop with|A| = k and is a relatively large number, decreasing the number
of communications reduces the communication speed. In a case with many processors, however,
a large value ofσ can also reduce the communication speed because a large value ofσ requires
the transfer of a large amount of data, instead of reducing the number of communications. Table 1
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Increment for
k σ = 1 σ = 2 σ = 3
1 1 2 3
2 2 5 8

10 7 30 55
14 8 37 111
27 4 8 8

Table 1: Examples of the actual increment of various values ofk andσ for n= 32. The increment
is largest for all cases ofσ for k= 14.

Algorithm 1 Process-S(S,a,n,np) calculates the functionsF(v,A), M(A), andQA(M(A)) for com-
binationsA derived from the given super-combinationS.
Input: S⊂V : Super-combination,a∈N : size of combination to be calculated,n: total number of

nodes in the network,np : number of CPU processors (cores).
Output: F(v,B), Q(A), andM(Q(A)) for all sub-combinations ofS with sizea, v ∈ A, andB =

A\{v}.
1: A ←{A⊂ S: |A|= a}
2: Retrieve the local scoress(v,B,X) for B= A\{v} (v∈ A∈ A) from theLF(v,B,n,np)-th pro-

cessor.
3: RetrieveF(u,B\{u}) for u∈ B (B= A\{v},v∈ A∈ A) from theLF(u,B\{u},n,np)-th pro-

cessor.
4: RetrieveQA\{v}(M(A\{v})) for v∈ A∈ A from theLQ(A\{v},n,np)-th processor.
5: for eachA∈ A do
6: CalculateF(v,B) for v ∈ A,B = A\ {v} from s(v,B) andF(v,B\ {u}) for u ∈ B by Equa-

tion (1).
7: CalculateM(A) andQA(M(A)) from QA\{v}(M(A\{v})) andF(v,A\{v}) by Equations (3)

and (2).
8: end for
9: StoreQ(A) andMA(Q(A)) (A∈ A) in theLQ(A,n,np)-th processor.

10: StoreF(v,B) (B= A\{v},A∈ A) in theLF(v,B,n,np)-th processor.

shows some examples of the actual overhead increment of the DP steps, that is,
(n−σ

k

)

·
(k+σ

k

)

/
(n

k

)

.
As shown in the table, the increment because of redundant DP steps caused by the separation ap-
pears to be relatively small for a case of the practical size ofn andσ. If the algorithm runs in parallel
with hundreds of processors, the increment calculation in each processor is negligible as compared
to the total amount of calculations, and thus, it does not noticeably affect the overall computation
time. We discuss this later with the computational experiments presented in Section 4.2.
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Algorithm 2 Para-OS(V,X,s,σ,np) calculates the exactly global optimal structure of the Bayesian
network with respect to the input dataX and the local score functionswith np processors.

Input: V: set of input nodes (variables) where|V| = n, X: (N×n)-input data matrix,s(v,Pa,X):
functionV×2V ×R

N×n→ R that returns the local Bayesian network score for variablev with
its parent setPa⊂ V w.r.t. the input data matrixX, σ ∈ N: size of super-combination,np:
number of CPU processors (cores).

Output: G= (V,E) : optimal Bayesian network structure.
1: {Initialization}
2: CalculateF(v, /0) = s(v, /0,X) for all v∈V and store it in theLF(v, /0,n,np)-th processor.
3: StoreF(v, /0) asQ{v}(M({v})) andM({v})(1) = v for all v∈V in theLQ({v},n,np)-th proces-

sor.
4: {Main Loop for size ofA}
5: for a= 1 ton−1 do
6: {S-phase: Execute the following for-loop oni in parallel. The{r = i modnp+1}-th proces-

sor is responsible for the(i+1)-th loop.}
7: for i = 0 ton

(n−1
a

)

−1 do
8: v← i modn+1
9: j ← ⌊i /n⌋+1

10: Pa←m(v,RLI−1( j,n−1,a))
11: Calculates(v,Pa,X) and store it in the local memory of ther-th processor.
12: end for
13: {Q-phase: Execute the following for-loop oni in parallel. The{r = i modnp+1}-th pro-

cessor is responsible for the(i+1)-th loop.}
14: if a+σ+1> n then
15: σ← n−a−1.
16: end if
17: for i =

( n
a+σ+1

)

−
(n−σ

a+1

)

to
( n

a+σ+1

)

−1 do
18: S← RLI−1(i+1,n,a+σ+1).
19: Call Process-S(S,a+1,n,np).
20: end for
21: end for
22: Construct networkG = (V,E) by collecting the final sets of the parents selected in line 6 of

Process-S(·).
23: return G= (V,E).

3.2 Para-OS Algorithm

According to Theorems 7 and 8 and Corollary 9, the DP steps in Equations (1), (2), and (3) of
Theorem 4 can be split by super-combinations ofA. The pseudocode of the proposed algorithm is
given by Algorithms 1 and 2. The former is a sub-routine of the latter main algorithm.

The algorithm consists of two phases: the S-phase and the Q-phase. In the former, each pro-
cessor calculates the score functions(v,Pa,X) independently without communication, whereas the
latter calculatesF(v,A), M(A), andQA(M(A)) along with communications among each other to
exchange the results ofF(v,A), M(A), andQA(M(A)). Note that in line 6 of Algorithm 1, we need
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to store not only the local scores but also the optimal choices of parent node sets, although we do
not describe this explicitly. This is required to reconstruct the optimal structure after the algorithm
terminates.

In this algorithm, we need to determine which processor stores the calculated intermediate re-
sults. In order to calculate this, we define some functions as given below.

Definition 11 We define function m′ : N×N→ N as follows:

m′(a,b) =

{

a if a< b
a+1 otherwise

.

Using m′(a,b), we define function m: V×2V → 2V as follows:

m(v,A) = {ord−1(m′(ord(u),ord(v))) : u∈ A}.

In addition, we define function m′−1 : N×N→ N as follows:

m′−1(a,b) =

{

a if a< b
a−1 otherwise

.

Using m′−1(a,b), we define function m−1 : V×2V → 2V as follows:

m−1(v,A) = {ord−1(m′−1(ord(u),ord(v))) : u∈ A}.

The functionm(v,A) maps the combinationA to a new combination inV \{v}, andm−1(v,A) is the
inverse function ofm(v,A). These are used in the proposed algorithm and the following function.

Definition 12 (Calculation of processor index to store and retrieve results) We define functions
LQ : 2V ×N×N→ N and LF : V×2V ×N×N→ N as follows:

LQ(A,n,np)
def
= (RLI(A,n)−1) modnp+1

and
LF(v,A,n,np)

def
=

{

(RLI(m−1(v,A),n−1)−1)×n+(ord(v)−1)
}

modnp+1,

where RLI(A,n) is a function used to calculate the reverse lexicographical index (RLI) of combina-
tion A taken from n objects and np, the number of processors.

FunctionLQ(A,n,np) locates the processor index used to store the results ofM(A) andQA(M(A))
and LF(v,A,n,np), the results ofF(v,A). By using RLIs, the algorithm can independently and
discontinuously generate the required combinations and processor indices for storing/retrieving of
intermediate results. We use RLIs instead of ordinal lexicographical indices because the conversion
between a combination and the RLI can be calculated in linear time by preparing the index table
once (Tamada et al., 2011). In Algorithm 2, the inverse functionRLI−1(·) is also used to reconstruct
a combination from the index. See Appendix D for details of these calculations.

Figure 1 shows an example of the calculation of the DP for the super-combination S in a single
processor in a single loop. Note that in the figure, although a super-combination is assigned to a
single processor,s(v,A,X) is calculated in a different processor from one that calculatesF(v,A) for
the samev∈V andA⊂V \{v}.
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F(c, {a}) F(c, {b}) F(c, {d})

F(d, {a}) F(d, {b}) F(d, {c})

Calculated in S-Phase

Q{a, d}(M({a, d}))

Q{a, c}(M({a, c}))

Q{a, b}(M({a, b}))

Retrieved from other processors

Calculate in Q-Phase

F(v, Aa - 1 )

F(v, Aa ) Q A a+1
(M(Aa+1))

Q A a(M(Aa))

Calculation for a super-combination S = {a, b, c, d} in a single loop

Store in other processors

Q{b, c}(M({b, c}))

Figure 1: Schematic illustration of the calculation in a single loop oni for a= 2. Aa represents a
subsetA⊂V where|A|= a.

4. Computational Experiments

In this section, we present computational experiments for evaluating the proposed algorithm. In the
experiments, we first compared the running times and memory requirement forvarious values of
σ. Next, we evaluated the running times of the original dynamic programming algorithm with a
single processor and the proposed algorithm using 8 through 1024 processors. We also compared
the results for different sizes of networks. In the experiments, we measured the running times using
the continuous model score function BNRC proposed by Imoto et al. (2002). Finally, we tried to
run the algorithm with as many nodes as possible on our supercomputers, asa proof of long-run
practical execution that realizes the optimal large network structure learning. For this experiment,
we used the discrete model score function BDe proposed by Heckerman et al. (1995), in addition
to the BNRC score function. Brief definitions of BNRC and BDe are given inAppendix A. Before
presenting the experimental results, we first describe the implementation of thealgorithm and the
computational environments used to execute the implemented programs.

4.1 Implementation and Computational Environment

We have implemented the proposed algorithm using the C programming language (ISO C99). The
matrix computation in the BNRC score function is implemented using the BLAS/LAPACKlibrary.
The parallelization is implemented using MPI-1.1.
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We have used two different supercomputer systems, RIKEN RICC and Human Genome Center
Supercomputer System. The former is a massively parallel computer where each computation node
has dual Intel Xeon 5570 (2.93 GHz) CPUs (8 CPU cores per node) and 12 GiB memory. The
computation nodes are linked by X4 DDR InfiniBand. RICC employs Fujitsu’s ParallelNavi that
provides an MPI implementation, C compiler, BLAS/LAPACK library, and job scheduling. The
latter system is similar to the former except that it has dual Intel Xeon 5450 (3GHz) CPUs and 32
GiB memory per node. It employs OpenMPI 1.4 with Sun Grid Engine as a parallel computation
environment. The compiler and the BLAS/LAPACK library are the Intel C compiler and Intel MKL,
respectively.

In our implementation, each core in a CPU is treated equally as a single processor so that one
MPI process runs in a single core. Therefore, 8 processes run in a computation node in both the
systems. The memory in a single node is divided equally among these 8 processes.

For the comparison presented later and the verification of the implementation, wealso imple-
mented the originalOSalgorithm proposed by Ott et al. (2004). The verification of the implemen-
tation was tested by comparing the optimal structures calculated by the implementations of both the
original algorithm and the proposed algorithm for up top= 23 using artificial simulated data with
various numbers of processors. We also checked whether the greedyhill-climbing (HC) algorithm
(Imoto et al., 2002) could search for a network structure having a better score than that of the opti-
mal structure. We repeated the execution of the HC algorithm 10,000 times, andconfirmed that no
result was better than the optimal structure obtained using our algorithm.

4.2 Results

First, we generated artificial data withN = 50 (sample size) for the randomly generated DAG struc-
ture with n = 23 (node size). Refer to Appendix C for details on the generation of the artificial
network and data. We usedn = 23 because RICC has a limited running time of 72 hours. The
calculation with a single processor forn= 24 exceeds this limit. In all the experiments, we carried
out three measurements for each setting and took the average of these measured times as an obser-
vation for that setting. The total running times are measured for the entire execution of the program,
including the input of the data from a file, output of the network to a file, and MPI initialization and
finalization routine calls.

Figure 2 shows the result of the comparison ofσ = 1, . . . ,5 for n= 23. The row forσ = 0 shows
the results of the original DP algorithm with a single processor. We measuredthe running times
using 256 processors here. During the computation, we also measured thetimes required for calling
MPI functions to exchange required data between processors, and thetimes required for calculating
the score funtions(·). As discussed in Section 3.1,σ controls the space-communication trade-off.
We expected that an increase in the value ofσ would reduce the time and increase the memory
requirement. As expected, the total time decreased for up toσ = 4 with an increase inσ; however,
it increased forσ = 5 and the memory requirement also increased significantly. As shown in the
figure, σ does not affect the score calculation time. From these results, we employedσ = 3 for
later experiments because the increase in the memory requirement and the decrease in the total time
appeared reasonable.

Next, we compared the running times for various numbers of processors.We carried out mea-
surements fornp = 8,16,32,64,128,256,512, and 1024 processors using 1, 2, 4, 8, 16, 32, 64,
and 128 computation nodes, respectively, on RICC. Here,np represents the number of processors.
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Figure 2: Running times and memory requirements withσ = 1, . . . ,5 for n= 23 andN = 50 with
256 processors. “Total Time” represents the total time required for execution in seconds,
“Cm Time” represents the total communication time required for calling MPI functions
within the total time; “Sc Time,” the time required for score calculation; and “Mem,”the
memory requirement in GiB.
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Figure 3: Scalability test results forn= 23 andN = 50 with σ = 3. We did not present the result
for np = 1024 in the graph on the left-hand side because the speedup was too low.

As mentioned above, we usedσ = 3. Fornp = 1, we used the implementation of the original DP
algorithm. Therefore, we do not use the super-combination-based separation of our proposed al-
gorithm although it works fornp = 1. Figure 3 shows the experimental result. We evaluated the
parallelization scalability of the proposed algorithm from the speedupS(np) and efficiencyE(np).
The speedupS(np) is defined asS(np) = T(1)/T(np), wherenp is the number of processors and
T(np), the running time withnp processors. IfS(np) = np, then it is called the ideal speedup where
np-hold speedup is obtained bynp processors. The parallelization efficiencyE(np) is defined as
E(np) = S(np)/np. In the case of ideal speedup,E(np) = 1 for anynp. Generally, parallel programs
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Figure 4: Comparison of running tims for various network sizes. Columnn represents the size of
the network and “(ratio),” the ratio of “Cm Time” to “Total.” “Mem” is represented in
GiB. Other columns have the same meaning as in Figure 2.

that haveE(np)≥ 0.5 are considered to be successfully parallelized. As shown in the table in Fig-
ure 3, the efficiencies are 0.74 and 0.59 for np = 256 and 512, respectively. However, with 1024
processors, the efficiency became 0.39 and the speedup was very low as compared to that with 512
processors, and therefore, it is not efficient and feasible. From these results, we can conclude that
the program can run very efficiently in parallel for up to 256 processors, and acceptably for up to
512 processors.

Tc(np) in Figure 3 represents the time required for calling MPI functions during the executions,
andRc(np) is a ratio ofTc(np) to the total timeT(np). Except fornp = 8, Tc(np) decreases with
an increase innp because the amount of communication for which each processor is responsible
decreases. However, it did not decrease linearly; in fact, fornp ≥ 512, it increased. This may indi-
cate the current limitation of both our algorithm and the computer used to carry out this experiment.
For np = 8, Tc(np) was very small. This is mainly because communication between computation
nodes was not required for this number of processors. If we subtract Tc(np) from T(np), then the
efficiencyE(np) becomes 0.96, 0.95, and 0.94 for 256, 512, and 1024 processors, respectively. This
result suggests that the redundant calculation in our proposed algorithmdoes not have a great ef-
fect, and the communication cost is the main cause of the inefficiency of our algorithm. Therefore,
improving the communication speed in the future may significantly improve the efficiency of the
algorithm with a larger number of processors.

Next, we compared the running times for various network sizes. We generated artificial sim-
ulated data forn = 20 to 27 as we did for the above experiment withn = 23. We measured the
running times with 256 processors andσ = 3. Figure 4 shows the result. As shown in the figure,
both the time and the space required increased exponentially. Note that both the left- and the right-
hand side y-axes are in log scale. The communication time decreased slightly forup ton= 26 with
an increase inn. However, forn= 27, it started to increase. From these results, we can say that the
score calculation remains dominant and the communication does not contribute significantly to the
total running times for this range ofn with np = 256.
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Figure 5: Comparison of running times for various sample sizes. ColumnN represents the number
of samples. Other columns have the same meaning as in Figure 2.

To check the scalability of the algorithm to the sample size, we compared the running times for
various sample sizes. We generated artificial simulated data withN= 50,100,150,200,250,300,350,
and 400 for the artificial network ofn= 23, which is used for the previous analyses. Theoretically,
the sample size does not affect the running times, except for the score calculation. Figure 5 shows
the result. We confirmed that the communication times are almost constant for all the tested sample
sizes and that the score calculation increased with the sample sizes, as was expected. Note that the
calculation of the BNRC score function is not in linear time, and it is difficult to determine the exact
time complexity because it involves an iterative optimization step (Imoto et al., 2002).

4.3 Structure Search for Large Networks

Finally, we tried to search for the optimal structure of nodes with as many nodes as possible in the
HGC system because it allows long execution for up to two weeks with 256 processor cores and has
a larger memory in each computation node.

As in the above experiment, we first generated random DAGs having various numbers of nodes,
and then generated simulated data with 50 samples. With the BNRC score function, we have suc-
ceeded in searching for the optimal structure of a 31-node network by using 464.3 GiB memory in
total (1.8 GiB per process) with 256 CPU cores in 32 computation nodes. Forthis calculation, we
did not impose a restriction on the parent size or any other parameter restrictions. 8 days 6 hours
50 minutes 24 seconds were required to finish the calculation. The total time required for calling
MPI functions was 2 days 15 hours 11 minutes 58 seconds. This is 32% of the total running time.
Therefore, the communication time became a relatively large portion of the total computation time,
relative to that in the case ofn = 27 presented above. As described in Parviainen and Koivisto
(2009), thus far, the largest network search that has been reportedwas for a 29-node network (Si-
lander and Myllym̈aki, 2006). Therefore, our result improved upon this result without even using
an external hard disk drive.

To search for the optimal structure of an even larger network, we used the BDe network score,
which is a discrete model that is much faster than the BNRC score. Generally,the BDe score can be

2451



TAMADA , IMOTO AND M IYANO

calculated 100 times faster than the BNRC score (data not shown). Using theBDe score function,
we successfully carried out optimal structure search for a 32-node network without any restriction
using 836.1 GiB memory (3.3 GiB per process) in total with 256 CPU cores. Thetotal computation
time was 5 days 14 hours 24 minutes and 34 seconds. The MPI communication time was 4 days
12 hours 56 minutes 26 seconds, and this is 81% of the total time. Thus, forn = 32 with the
BDe score function, the calculation of score functions requires relatively very little time (actually, it
required only around 1.5 hours per process) as compared to the total time,and the communication
cost becomes the dominant part and the bottleneck of the calculation.

These results show that our algorithm is applicable to the optimal structure search of relatively
large-sized networks and it can be run on modern low-cost supercomputers.

5. Discussions

In this paper, we have presented a parallel algorithm to search for the score-based optimal structure
of Bayesian networks. The main feature of our algorithm is that it can run very efficiently on mas-
sively parallel computers in parallel. We confirmed the scalability of the algorithm to the number
of processors through computational experiments and successfully demonstrated optimal structure
search for a 32-node network with 256 processors, an improvement over the most successful result
reported thus far. Our algorithm overcomes the bottleneck of the previousalgorithm by using a
large amount of distributed memory for large-scale Bayesian network structure search.

Our algorithm has a feature similar to that of an algorithm recently proposed by Parviainen and
Koivisto (2009) that requires less space. Both algorithms divide the search space of the problem,
and provide a way to compute the optimal structure in parallel. Both are capableof breaking the
current limitation of the network size in optimal network structure search. However, these two algo-
rithms differ in several respects. First, Parviainen and Koivisto (2009)primarily intended to develop
a space-time trade-off algorithm to overcome the bottleneck of the search problem. They found that
the search problem can be divided into sub-problems and that these sub-problems can be solved
independently with less space. Therefore, although the time requirement increases with a decrease
in the space requirement, they mentioned that their algorithm can obtain the optimalstructure for a
34-node network by massive parallelization. Our algorithm, on the other hand, overcomes the bot-
tleneck in a more straightforward way. We found a way to divide the DP stepsof the fastest known
algorithm with a relatively low overhead cost. In terms of memory requirement, our algorithm con-
sumes much more memory space than that of Parviainen and Koivisto (2009) and even more than
the original DP algorithm to realize parallelization. However, our algorithm can actually search for
the optimal structure of a 32-node network with 256 processors in less thana week, including score
calculation, whereas Parviainen and Koivisto (2009) computed only the partial problems. Their
estimate from their empirical result is 4 weeks using 100 processors to obtainthe optimal structure
for a 31-node network. In addition, their estimate ignores the parallelization overhead that generally
becomes problematic in parallelization as well as score calculation, which requires the most time in
the actual application. We showed that our algorithm works efficiently with upto 256 processors,
and acceptably with up to 512 processors. An optimal search for even larger networks may be real-
ized by improving the current implementation. Our implementation regards each processor core in
a CPU equivalently. Therefore, exploiting the modern multi-core CPUs can reduce the communica-
tions required among computation nodes and increase the amount of memory space for independent
calculations without requiring improved hardware relative to current supercomputers.
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Appendix A. Definitions of Score Functions

In this paper, we use BNRC (Imoto et al., 2002) and BDe (Heckerman et al.,1995) as a score
function s(·) for computational experiments of the proposed algorithm. Here, we present brief
definitions of these score functions.

A.1 The BNRC Score Function

BNRC is a score function for modeling continuous variables. In a continuousmodel, we consider
the joint density of the variables instead of their joint probability. We search the network structure
G by maximizing the posterior ofG for the input data matrixX. The posterior ofG is given by

π(G|X) = π(G)
∫ N

∏
i=1

n

∏
j=1

f (xi j |paG
i j ;θ j)π(θG|λ)dθG,

whereπ(G) is the prior distribution ofG; f (xi j |paG
i j ;θ j), the local conditional density for thej-th

variable; paG
i j = (pa( j)

i1 , . . . , pa( j)
iq j
), the set of observations in thei-th sample ofq j variables that

represents the direct parents of thej-th node in a network;θG = (θ1, . . . ,θn), the parameter vector
of the conditional densities to be estimated; andπ(θG|λ), the prior distribution ofθG specified by
the hyperparameterλ. Conditional densityf (xi j |paG

i j ;θ j) is modeled by nonparametric regression
with B-spline basis functions given by

f (xi j |paG
i j ;θ j) =

1
√

2πσ2
j

exp

[

−
{xi j −∑q j

k=1mjk(pa( j)
ik )}2

2σ2
j

]

,

wheremjk(p
( j)
ik ) = ∑

M jk

l=1 γ( j)
lk b( j)

lk (p( j)
ik ), {b( j)

1k (·), . . . ,b
( j)
M jk,k

(·)} is the prescribed set ofM jk B-splines;

σ j , the variance, andγ( j)
lk , the coefficient parameters. By taking a−2log of the posterior, the BNRC

score function for thej-th node is defined as

sBNRC(Xj ,PaG(Xj),X) =−2log
{

πG
j

∫ N

∏
i=1

f (xi j |paG
i j ;θ j)π j(θ j |λ j)dθ j

}

,

whereπG
J is the prior distribution of the local structure associated with thej-th node; andπ j(θ j |λ j),

the decomposed prior distribution ofθ j specified by the hyperparamterλ j .
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A.2 The BDe Score Function

BDe, a score function for the discrete model, can be applied to discrete (categorical) data. As in the
case of BNRC, BDe also considers the posterior ofG; that is,

P(G|X) ∝ P(G)
∫

P(X|G,θ)P(θ|G)dθ,

whereP(X|G,θ) is the product of local conditional probabilities (likelihood ofX given G) and
P(θ|G), the prior distribution for parametersθ. In the discrete model, we employ multinomial
distribution for modeling the conditional probability and the Dirichlet distribution as its prior dis-
tribution. Let Xj be a discrete random variable corresponding to thej-th node, which takes one
of r values{u1, . . . ,ur}, wherer is the number of categories ofXj . In this model, the conditional
probability ofXj is parameterized as

P(Xj = uk|PaG(Xj) = u jl ) = θ jlk ,

whereu jl (l = 1, . . . , rq j ) is a combination of values for the parents andq j , the number of parents of
the j-th node. Note that∑r

k=1 θ jlk = 1. For the discrete model, the likelihood can be expressed as

P(X|G,θ) =
n

∏
j=1

rqj

∏
l=1

r

∏
k=1

θNjlk

jlk ,

whereNjlk is the number of observations for thej-th node whose values equaluk in the data matrix
X with respect to a combination of the parents’ observationl . Njl = ∑r

k=1Njlk andθ denotes a set of
parametersθ jlk . For the parameter setθ, we assume the Dirichlet distribution asπ(θ|G); then, the
marginal likelihood can be described as

∫
P(X|G,θ)P(θ|G)dθ =

n

∏
j=1

rqj

∏
l=1

Γ(α jl )

Γ(α jl +Njl )

r

∏
k=1

Γ(α jlk +Njlk)

Γ(α jlk)
,

whereθ is a set of parameters;α jlk , a hyperparameter for the Dirichlet distribution; andα jl =

∑r
k=1 α jlk . By taking− log of the posterior, the BDe score function for thej-th node is defined as

sBDe(Xj ,PaG(Xj),X) =− logπG
j − log

{

rqj

∏
l=1

Γ(α jl )

Γ(α jl +Njl )

r

∏
k=1

Γ(α jlk +Njlk)

Γ(α jlk)

}

,

whereπG
j is the prior probability of the local structure associated with thej-th node.

Appendix B. Proof of Corollary 10

Proof We prove that
(n−σ

k
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)
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=
n!

k!(n−k)!
·
(n−σ)!(k+σ)!(n−k)!

(n−σ−k)!k!σ!n!

=

(

n
k

)

·
(n−σ)!

(n−σ−k)!
·
(k+σ)!

k!σ!
·
(n−k)!

n!

=

(

n
k

)

·
(n−σ)

n
(n−σ−1)
(n−1)

· · ·
(n−σ−k+1)
(n−k+1)

·
(k+σ) · · ·(k+1)k!

σ!k!

=

(

n
k

)

·O(1) ·O((k+σ)σ) =

(

n
k

)

·O((k+σ)σ).

For n < k+σ, we consider only super-combinations of sizen. Thus, for eachk, there are at
most

(n
k

)

O(nσ) calculations.

Appendix C. Method for Generating Artificial Network and Data

To generate the random DAG structure, we simply added edges at randomto an empty graph so
that the acyclic structure is maintained and the average degree becomesd = 4.0. Consequently, the
number of total edges equalsn ·d/2. Note that the degree of DAGs does not affect the execution
time of the algorithm as the algorithm searches all possible structures. To generate the artificial data,
we first randomly assigned 8 different nonlinear or linear equations to theedges and then generated
the artificial numerical values based on the normal distribution and the assigned equations. Figure 6
shows the assigned equations and examples of the generated data. If a node has more than two
parent nodes, the generated values are summed before adding the noise. We set the noise ratio to be
0.2.

To apply BDe to the artificial data on then = 32 network, we discretized the continuous data
generated by the same method for all variables into three categories (r = 3) and then executed the
algorithm for these discretized values.

Appendix D. Efficient Indexing of Combinations

When running the algorithm, we need to generate combination vectors discontinuously and indepen-
dently in a processor. To do this efficiently, we require an algorithm that calculates a combination
vector from its index and the index from its combination vector. Buckles and Lybanon (1977) pre-
sented an efficient lexicographical index - vector conversion algorithm.However, this algorithm
requires the calculation of binomial coefficients for every possible elementin a combination every
time. To speed up this calculation, we developed a linear time algorithm that needed polynomial
time to construct a reusable table (Tamada et al., 2011). Our algorithm actuallydeals withthe re-
verse lexicographical indexinstead of the ordinal lexicographical index; this enables us to calculate
the table only once and to make it reusable. In this section, we present the algorithms as described
in Tamada et al. (2011). See Tamada et al. (2011) for details and the proofs of the theorems. In this
section, note that we assume that∑n

i=k fi = 0 for any fi if n< k.

Theorem 13 (RLI calculation) Let C = {C1,C2, . . . ,Cm} be the set of all the combinations of
length k taken from n objects, arranged in lexicographical order, wherem=

(n
k

)

. We call i the lex-
icographical index of Ci ∈ C . Let us define the reverse lexicographical index of Ci ∈ C , RLI(Ci ,n)
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(a) fa(X) = X+ ε

(b) fb(X) =−X+ ε

(c) fc(X) = 1
1+e−4X + ε

(d) fd(X) =− 1
1+e−4X + ε

(e) fe(X) =−(X−1.5)2+ ε

(f) f f (X) = (−X−2.5)2+ ε

(g) fg(X) =−(−X−2.5)2+ ε

(h) fh(X) = (X−1.5)2+ ε
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Figure 6: Left: Linear and nonlinear equations assigned to each edge in artificial networks.ε repre-
sents the noise based on the normal distribution. Right: Examples of the valuesgenerated
by these equations.

1,2,3

1,2,4

1,2,5

1,2,6

1,3,4

1,3,5

1,3,6

1,4,5

1,4,6

1,5,6

2,3,4

2,3,5

2,3,6

2,4,5

2,4,6

3,4,5

3,4,6

3,5,6

4,5,6

2,5,6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RLI(X, n) X

5

2(    )

4

2(    )

3

2(    )

= 10

= 6

= 3

2

2(    ) = 1

4

2(    ) 3

2(    ) 2

2(    )+ + = 
5

3(    ) = 10

3

2(    ) = 
4

3(    ) = 4
2

2(    )+

4

1(    )

3

1(    )
2

1(    )
1

1(    )

3

1(    ) 2

1(    ) 1

1(    )+ + = 
4

2(    ) = 6

2

1(    ) 1

1(    )+ = 
3

2(    ) = 3

Figure 7: RLI calculation forn= 6 andk= 3.

def
= m− i +1. Suppose that we consider a combination of natural numbers, that is, some combina-
tion X = {x1,x2, . . . ,xk} ∈ C , where xi < x j if i < j and xi ∈ {1,2, . . . ,n}. Then, RLI(X,n) can be
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Algorithm 3 RLITable(m) generates the index table for conversion between a combination and the
index.
Input: m: maximum number of elements appearing in a combination,
Output: T : m×m index table.

1: {Initialization}
2: T(i,1)← 0 (1≤ i ≤m).
3: T(1, j)← j−1 (2≤ j ≤m).
4: {Main Routine}
5: for i = 2 tomdo
6: for j = 2 tomdo
7: T(i, j)← T(i−1, j)+T(i, j−1).
8: end for
9: end for

10: return T.

Algorithm 4 RLI(X,n,T) calculates the reverse lexicographical index of the given combinationX.

Input: X = {x1,x2, . . .xk} (x1 < · · ·< xk ∧ 1≤ xi ≤ n) : input combination of lengthk taken from
n objects,n: total number of elements,T : index table calculated byRLITable(·).

Output: reverse lexicographical index of combinationX.
1: r ← 0
2: for i = 1 tok do
3: r ← z+T(k− i+1,n−k−xi + i+1).
4: end for
5: return r +1.

calculated by

RLI(X,n) =
|X|

∑
i=1

(

n−xi

|X|− i+1

)

+1.

Figure 7 shows an example of the calculation of RLI forn = 6 andk = 3. For example,
RLI({1,3,5},6) =

(5
3

)

+
(3

2

)

+
(1

1

)

+1= 15.

Corollary 14 (RLI calculation by the index table) Let T be a(k,n−k+1)-size matrix whose ele-

ment T(α,β) def
=

(α+β−2
α

)

. Matrix T can be calculated only by(n−1)(n−k−1) time addition and by
using T , RLI(X,n) can be calculated in linear time by RLI(X,n)=∑k

i=1T(k− i+1,n−k−xi+ i+1)
+ 1.

Algorithm 3 shows the pseudocode used to generateT and Algorithm 4, the pseudocode of
RLI(X,n). The inverse function that generates the combination vector for an RLI can be calculated
by simply finding the largest column position ofT, subtracting the value in the table from the index,
and then repeating thisk times.

Corollary 15 Let RLI(X,n) be the reverse lexicographical index defined above for combination X
= {x1,x2, . . . ,xk}. The inverse function of RLI(X,n), that is, the i-th element xi of
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Algorithm 5 RLI−1(r,n,k,T) calculates the combination vector of lengthk from n elements, corre-
sponding to the given reverse lexicographical indexr.
Input: r : reverse lexicographical index of the combination to be calculated,n: total number of

elements,k: length of the combination,T : index table calculated byRLITable(·).
Output: X = {x1,x2, . . . ,xk} : combination corresponding tor.

1: r ← r−1.
2: for i = 1 tok do
3: for j = n−k+1 to 1do
4: if r ≥ T(k− i+1, j) then
5: xi ← n−k− j + i+1.
6: r ← r−T(k− i+1, j).
7: break
8: end if
9: end for

10: end for
11: return X = {x1,x2, . . . ,xk}.

RLI−1(RLI(X,n),n,k) can be calculated by, for i= 1, . . . ,k,

xi = argmax
j

T(k− i+1,n−k− j + i+1)

< RLI(X)−
i−1

∑
α=1

T(k−α+1,n−k−xα +α+1).

Algorithm 5 shows the pseudocode used to calculate RLI−1(r,n,k) for RLI r in linear time.

The search space of 15 is independent ofk but dependent onn. This is because oncexi is
identified, we need to search onlyx j for j > i such thatx j > xi . Therefore, the inverse function
RLI−1(·) can generate the combination vector in linear time. By using the binary search,the search
of proper objects in a vector can be calculated in log time. See Tamada et al. (2011) for the binary
search version of this algorithm.

The advantage of using RLI is that onceT is calculated form, it can be used for calculating
RLI(X,n) andRLI−1(r,n,k) for anyn andk, wherek≤ n≤ m. The normal lexicographical order
can also be calculated in a similar manner for fixed values ofn andk. However, it is required for
constructing a different table for different values ofn andk.
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