Journal of Machine Learning Research 12 (2011) 2437-2459 bm8ted 7/10; Revised 2/11; Published 7/11

Parallel Algorithm for Learning Optimal Bayesian Network Structure

Yoshinori Tamada* TAMADA @IMS.U-TOKYO.AC.JP
Seiya Imoto IMOTO@IMS.U-TOKYO.AC.JP
Satoru MiyanoT MIYANO @IMS.U-TOKYO.AC.JP

Human Genome Center
Institute of Medical Science, The University of Tokyo
4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

Editor: Russ Greiner

Abstract

We present a parallel algorithm for the score-based optstnatture search of Bayesian networks.
This algorithm is based on a dynamic programming (DP) aflgorihavingO(n-2") time and
space complexity, which is known to be the fastest algoritbnthe optimal structure search of
networks withn nodes. The bottleneck of the problem is the memory requingénaad therefore,
the algorithm is currently applicable for up to a few tens ofles. While the recently proposed
algorithm overcomes this limitation by a space-time traffeour proposed algorithm realizes di-
rect parallelization of the original DP algorithm wi@(n®) time and space overhead calculations,
whereo > 0 controls the communication-space trade-off. The ovéira#t and space complexity is
O(n°+12"). This algorithm splits the search space so that the requveumunication between in-
dependent calculations is minimal. Because of this adgentaur algorithm can run on distributed
memory supercomputers. Through computational expersneve confirmed that our algorithm
can run in parallel using up to 256 processors with a paizdigbn efficiency of 0.74, compared
to the original DP algorithm with a single processor. We alemonstrate optimal structure search
for a 32-node network without any constraints, which is #igést network search presented in
literature.

Keywords: optimal Bayesian network structure, parallel algorithm

1. Introduction

A Bayesian network represents conditional dependencies amongmavat@bles via a directed
acyclic graph (DAG). Several methods can be used to construct a DiGee from observed

data, such as score-based structure search (Heckerman et aj.Fti@éEan et al., 2000; Imoto
et al., 2002), statistical hypothesis testing-based structure searath, (F¥8), and a hybrid of

these two methods (Tsamardinos et al., 2006). In this paper, we focusarexbased learning
algorithm and formalize it as a problem to search for an optimal structure¢hiaes the maximal

(or minimal) score using a score function defined on a structure with retspaic observed data set.
A score function has to be decomposed as the sum of the local scotmfigior each node in a
network. In general, posterior probability-based score functiorigatkfrom Bayesian statistics are
used. The optimal score-based structure search of Bayesian netiwdtkown to be an NP-hard

x. Currently at Department of Computer Science, Graduate Schoof@itation Science and Technology, The Uni-
versity of Tokyo. 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, daptamada@is.s.u-tokyo.ac.jp.
T. Also at the Computational Science Research Program, RIKEN, iesaiva, Wako, Saitama 351-0198, Japan.

(©2011 Yoshinori Tamada, Seiya Imoto and Satoru Miyano.

TAMADA , IMOTO AND MIYANO

problem (Chickering et al., 1995). Several efficient dynamic programr(¥) algorithms have
been proposed to solve such problems (Ott et al., 2004; Koivisto ardi 3604). Such algorithms
haveO(n-2") time and space complexity, whends the number of nodes in the network. When
these algorithms are applied to real problems, the main bottleneck is bound te baethory
space requirement rather than the time requirement, because these algagtunt® store the
intermediate optimal structures of all combinations of node subsets duringep®. Because of
this limitation, such algorithm can be applied to networks of only up to arouna@8&sin a typical
desktop computer. Thus far, the maximum number of nodes treated in an opéiarah without
any constraints is 29 (Silander and Myllgki, 2006). This was realized by using a 100 GB external
hard disk drive as the memory space instead of using the internal memaeis,igburrently limited

to only up to several tens of GB and in a typical desktop computer.

To overcome the above mentioned limitation, Perrier et al. (2008) proposetharithm to
reduce the search space using structural constraints. Their algogtohss for the optimal struc-
ture on a given predefined super-structure, which is often availableualgproblems. However, it
is still important to search for a globally optimal structure because Bayesisworks find a wide
range of applications. As another approach to overcome the limitation, P&viand Koivisto
(2009) proposed a space-time trade-off algorithm that can searehdtmbally optimal structure
with less space. From empirical results for a partial sub-problem, theyeshthat their algorithm
is computationally feasible for up to 31 nodes. They also mentioned that therithfg can be
easily parallelized with up to”2processors, wherp=0,1,...,n/2 is a parameter that is used to
control the space-time trade-off. Using parallelization, they suggested thaght be possible to
search larger-scale network structures using their algorithm. The timepaicé somplexities of
their algorithm ared(n-2"(3/2)P) andO(n- 2"(3/4)P), respectively.

Of course, the memory space limitation can be overcome by simply using a corwgiitsuf-
ficient memory. The DP algorithm remains computationally feasible even forrao@8 network
in terms of the time requirement. For such a purpose, a supercomputer widd shamory is
required. Modern supercomputers can be equipped with severaytiesadd memory space. There-
fore, they can be used to search larger networks than the curreritdZ9network that requires 100
GB of memory. However, such supercomputers are typically very exmeasd are not scalable in
terms of the memory size and the number of processors. In contrast, elagsivallel computers,
a much cheaper type of supercomputers, make use of distributed memoughisystems many
independent computers or computation nodes are combined and linkeghtigh-speed connec-
tions. This type of supercomputers is less expensive, as mentioned,iarstdable in terms of
both the memory space and the number of processors. However the Dihaigcannot be exe-
cuted on such a distributed memory computer because it requires memosg szt performed
over a wide region of data, and splitting the search space across distripoteessors and storing
the intermediate results in the distributed memory are not trivial problems.

Here, we present a parallelized optimal Bayesian network search algadtedPara-OS The
proposed algorithm is based on the OS algorithm using DP that was ptbpp<att et al. (2004).
Our algorithm realizes direct parallelization of the DP steps in the originafitiigo by splitting
the search space of DP wi(n®) time and space overhead calculations, wrere 1,2,... > 0
is a parameter that is used to split the search space and controls theffraeleveen the number
of communications (not the volume of communication) and the memory spaceeneguit. The
main feature of this algorithm is that it guarantees that the amount of intermesBates that are re-
quired to be shared redundantly among independently split calculations is imrother words,

2438

PARALLEL ALGORITHM FORLEARNING OPTIMAL BAYESIAN NETWORKS

our algorithm guarantees that minimal communications are required betwespeirdent parallel
processors. Because of this advantage, our algorithm can be easilglpged, and, in practice, it
can run very efficiently on massively parallel computers with severallifags of processors. An-
other important feature of our algorithm is that it calculates no redundamé $unctions, and it
can distribute the entire calculation almost equally across all processwsndin operation in our
algorithm is the calculation of the score function. In practice, this feature isritaupt to actually
search for the optimal structure. The overall time and space complegtyfs12"). Our algorithm
adopts an approach opposite to that of Parviainen and Koivisto (20@®etcome the bottleneck
of the memory space problem. Although our algorithm has slightly greatee spattime com-
plexties, it makes it possible to realize large-scale optimal network searchdtige using widely
available low-cost supercomputers.

Through computational experiments, we show that our algorithm is applitatéege-scale
optimal structure search. First, the scalability of the proposed algorithm toutider of proces-
sors is evaluated through computational experiments with simulated data. Vieneohthat the
program can run efficiently in parallel using up to 256 processors (G#ek) with a paralleliza-
tion efficiency of more than 0.74 on a current supercomputer system,caeg@tably using up to
512 processors with a parallelization efficiency of 0.59. Finally, we dematedfne largest optimal
Bayesian network search attempted thus far on a 32-node network withr@&éssors using our
proposed algorithm without any constraints and without an externaldigkdlirive. Our algorithm
was found to complete the optimal search including the score calculation witheek w

The remainder of this paper is organized as follows. Section 2 presemtgeaview of the
Bayesian network and the optimal search algorithm, which serves as tisefdrasur proposed
algorithm. Section 3 describes the parallel optimal search algorithm in detatio®d describes
the computational experiments used for evaluating our proposed algorithpresents the obtained
results. Section 5 concludes the paper with a brief discussion. Thedippemtains some proofs
and corollaries related to those described in the main paper.

2. Preliminaries

In this section, we first present a brief introduction to the Bayesian nktmodel, and then, we
describe the optimal search (OS) algorithm, which is the basal algorithm éhparallelize in the
proposed algorithm.

2.1 Bayesian Network

A Bayesian network is a graphical model that is used to represent a joleipility of random vari-
ables. By assuming the conditional independencies among variables, thergiability of all the
variables can be represented by the simple product of the conditiormdllplities. These indepen-
dencies can be represented via a directed acyclic graph (DAG). IrG Béch node corresponds to
a variable and a directed edge, to the conditional dependencies amaigesor to the indepen-
dencies from other variables. Suppose that we maadom variables/ = {Xi,Xz,...,Xn}. The
joint probability of variables iV is represented as

n
P(X, X2, ..., %n |‘| (X;|PaC(X;)),

2439

TAMADA , IMOTO AND MIYANO

wherePa®(X;) represents the set of variables that are direct parents gfttheariableX; in network
structureG andP(Xj|Pa®(X;)), a conditional probability for variablx;.

A score-based Bayesian network structure search or a Bayesiaorkestimation problem is
to search for the DAG structure fitted to the observed data, in which thedfitridise structure to the
given data is measured by a score function. The score function is defina node and its parent
set. The scores of nodes obtained by a score function are called docaks A network score is
defined simply as the sum of local scores of all nodes in a network. Ussuogra function, the
Bayesian network structure search can be defined as a problem torfetdark structures that
satisfies the following equation:

n
G=arg rgingls(Xj , PaG(Xj)aX),

wheres(X;,Pa®(X;), X) is a score functiors: V x 2V x RN" — R for nodeX; given the observed
input data of ar{N x n)-matrix X, whereN is the number of observed samples.

2.2 Optimal Search Algorithm using Dynamic Programming

Next, we briefly introduce the OS algorithm using DP proposed by Ott e2@04). Our proposed
algorithm is a parallelized version of this algorithm. We employ score functiessribed as in the
original paper by Ott et al. (2004). That is, a smaller score reprebetiisr fitting of the model.
Therefore, the problem becomes one of finding the structure that minimzesdhe function. The
optimal network structure search by DP can be regarded as an optimaltaépon search problem.
The algorithm consists of two-layer DP: one for obtaining the optimal choidheo parent set
for each node and one for obtaining the optimal permutation of nodes. Wwashtroduce some
definitions.

Definition 1 (Optimal local score) We define the function FV x 2V — R as

F(v.A) % mins(v, B, X).
BCA

That is, v, A) calculates the optimal choice of the parent set from A for node v and itsn
optimal local score. BZ A represents the actual optimal choice for v, and generally, we also need
to include it in the algorithm along with the score, in order to reconstruct thevaek structure
later.

Definition 2 (Optimal network score on a permutation) Lettt: {1,2,...,|A]} — A be a permu-
tation on AC V andl” be a set of all the permutations on A. Given a permutation?, the
optimal network score omcan be described as

A ¥ Z\F(v, {ue At i(u) < riv)}).

Definition 3 (Optimal network score) By using @(m) defined above, we can formalize the net-
work structure search as a problem to find the optimal permutation thas gheeminimal network
score:

M(A) &' arg minQA(m).

menA

2440

PARALLEL ALGORITHM FORLEARNING OPTIMAL BAYESIAN NETWORKS

Here,M(A) represents the optimal permutation that derives the minimal score of the ketorer
sisting of nodes irA.

Finally, the following theorem provides an algorithm to calcukate, A), M(A), andQ (M (A))
by DP. See Ott et al. (2004) for the proof of this theorem.

Theorem 4 (Optimal network search by DP) The functions Fv,A), M(A), and G{(M(A)) de-
fined above can be respectively calculated by the following recursive faemu

F(A) = min{s(v.A,X),minF (v A\ {a})}, (1)
oy IMAN () (<A
QAAM(A) =F (v, A\ {v'}) + QM (M(A\ {v'})), (3)

where
v = argmin(F (v A\ {v}) + QMM M(A\ {v}))}.

By applying the above equations fraA}l = 0 to |A| = |V|, we obtain the optimal permutatianon
V and its score ®(M(V)) in O(n-2") steps.

Note that in order to reconstruct the network structure, we need to keegptimal choice of
the parent set derived in Equation (1) and the optimal permutatioM (A) in Equation (3) for all
the combinations oA C V in an iterative loop for the next size &f

3. Parallel Optimal Search Algorithm

The key to parallelizing the calculation of the optimal search algorithm by DPlitirsgp all the
combinations of nodes in a single loop of DP fofv,A), M(A), andQ*(M(A)), given above by
Equations (1), (2), and (3), respectively. Simultaneously, we needrisiader how to reduce the
amount of information that needs to be exchanged between processtirs.calculation oM (A),
we need to obtain all the results bf(-) for one-smaller subsets @éfat hand, that isM(A\ {a})
for all a € A. Suppose that sudi(A\ {a})’s are stored in the distributed memory space, and we
have collected them for calculatifg(A). In order to reduce the number of communications, it
would be better if we can re-use the collected results for another calcul&orexample, we can
calculateM(B) (|B| = |A|) in the same processor that calculd#s\) such that some d¥l(B\ {b})
(b € B) overlaps MA\ {a}). That is, if we can collect the maximal numberM{X)’s for any X
such thatX| = |A|—1 A X C {(A\{a})N(B\ {b})}, then the number of communications required
for calculatingM (A) andM(B) can be minimized. Theorem 7 shows how we generate such a set of
combinations, and we prove that it provides the optimally minimal choice of sumibinations by
allowing some redundant calculations.

In addition, as is evident from Equations (1), (2), and (3), the DP algorbasically consists
of simply searching for the best choice from the candidates that degveithimal score. Time
is mainly required to calculate the score functsji A, X) for all the nodes and their parent com-
binations. Thus, our algorithm calculatgs, A, X) equally in independent processors without any
redundant calculations for this part.

In this section, we first describe some basic definitions, and then, wenpa®ofs of theorems
that the proposed algorithm relies on. Finally, we present the propesetigh algorithm.

2441

TAMADA , IMOTO AND MIYANO

3.1 Separation of Combinations

First, we define the combination, sub-combination, and super-combinatiwues.

Definition 5 (Combination) Inthis paper, we refer to a set of nodes inV as a combination of nodes.
We also assume a combination of k nodes, that is; ¥i,X2,...,X} C V such that ordx) <
ord(xj) if i < j, where ord: V — N is a function that returns the index of element V. For
example, suppose that¥ {a,b,c,d}. ord(a) = 1 and ord d) = 4.

Definition 6 (Sub-/super-combination) We define Cas a sub-combination of some combination
CifC' c C, and C is a super-combination of. OMe say that a super-combination C is generated
from C if C is a super-combination of'CIn addition, we say that sub-combination i€ derived
from C if C is a sub-combination of C. For the sake of convenience, if we do ndianeabout
the size of a sub-/super-combination of a combination, then we assutnertfars to a one-size
smaller/larger sub-/super-combination. In addition, we say that two @oatlons A and B share
sub-combinations ifi’ N B’ +# 0, where 4’ and B’ are sets of all the sub-combinations of A and B,
respectively.

We present two theorems that our algorithm relies on along with their probisse two theo-
rems are used to split the calculationFefv, A), M(A), andQ*(M(A)); all these require the results
for their sub-combinations. We show that the calculation can be split by tier-sombination of
A, and it is the optimal separation of the combinations in terms of the number of cagatians
required.

Theorem 7 (Minimality of required sub-combinations) Let 4 be a set of combinations of nodes
inV, wherelA| =k > 0for Ac Zand|V| =n. If 4] = (/%) (0 > 0 A 6+k < n), then the minimal
number of sub-combinations of length-B required to generate all the combinationsfhis ('lif‘lf)

Let S be a combination of nodes, whigBe= k+ 0. We can generate a set of combinations of length
k that satisfies the former condition by deriving all the sub-combinationsgfhek from S.

Proof Becaused contains(*?) combinations of lengtk, the number of distinct elements (nodes)

involved in4 is k+ o and is minimal. Therefore, the number of sub-combinations required teederiv
(*%) combinations of lengtlk in 4 is equal to the number of possible combinations that can be
generated fronk + o elements, and i§"%). No more combinations can be generated frif)
sub-combinations. Therefore, it is the minimal number of required sub-caitidins required to
generate(*|) combinations. A super-combinati®of lengthk + o containsk + o elements and
can derive('“k") combinations of lengtk. Therefore,Scan derive4, and all the combinations of
lengthk — 1 derived from elements iBare the sub-combinations required to generate combinations

in 4. [|

Theorem 8 (Minimality of required super-combinations) The minimal number of
super-combinations of length4ko from V that is required to generate all the sub-combinations
of size k is(",.%).

2442

PARALLEL ALGORITHM FORLEARNING OPTIMAL BAYESIAN NETWORKS

Proof Consider the seT =V \ {v1,Vv2,...,Vs}, Where any; € V, and thus|T| =n—o. If we
generate all the combinations of lendtliaken fromT, then these include all the combinations of
lengthk from nodes iV withoutvs, ..., Vs, and the number of combinations(i,°). Consider a
set of combinations = {{v1,...,vg}UT' : T" C T A|T’| = k}. Here,|§ =k+o for Se § and

15| = ("°). Becauses contains all the combinations of lengkhwithout v4,...,vs and all the
elements inS containvs,...,Vy, We can generate all the combinations/irof lengthk from some
Se $ by combining 0< a < k nodes fromvy,...,vs andk —a nodes fromS\ {va,...,Vg}. If
we remove anys € S from it, then there exist combinations that cannot be generated fromeanoth
Se S becausé lists all the combinations except for nodes. .., vs. Therefore,S is the minimal
set of super-combinations required to derive all the combinations of ldénfjtm V and its size

is |5| = ("°). We can generatg by taking the first(",°) combinations from(}) combinations
arranged in lexicographical order. |

Theorem 7 can be used to split the search space of DP usisigey-combinationsand Theo-
rem 8 provides the number of super-combinations required in the pamatigdtation for a certain
size ofAfor M(A). From these two theorems, we can easily derive the following corollaries.

Corollary 9 (Optimal separation of combination) The DP steps used to calculate(A and
Q*(M(A)) in the OS algorithm can be split intd",®) portions by super-combinations of A with
length k+ o, where|A| = k. The size of each split problem QET(“) and the number of required
M(B) for BC A A |B] = k—1is (K'9), which is the minimal number fof*}°) combinations of
M(A). Here, B is a set of sub-combinations of A. The calculation(@fA) can also be split based
on the sub-combinations B for (M).

The separation oM (A) by super-combinations causes some redundant calculations. The fol-
lowing corollary gives the amount of such overhead calculations andviralbcomplexity of the
algorithm.

Corollary 10 (Amount of redundant calculations) If we split the calculations of NA) (|A] = k)
using super-combinations of sizeHo (o > 0), then the number of calculations of(K) for all
AcVis ("9 - (%) = (})O(n°). Thus, as compared to the original DP ste(fl$, the overhead
increment of the calculations for M), Q*(M(A)), and F(v,A) is at most @n°). The memory re-
guirement to store the intermediate results is also dependent on the sizesoftttombinations for
split calculations. Therefore, the overall time and space complexity ofifegithm is Q(n°+12").

We present a proof in Appendix B. The parameter 0 can be used to control the size of split
problems. Because using a large valuealuppresses the number of required super-combinations,
the number of communications required between independent calculatidae sugpressed. In-
stead, the large value of requires a large memory space to store the sub-combinations in a pro-
cessor. Thereforey can be used to control the trade-off between the number of communications
and the memory space requirement. Because the algorithm requires tlam@xdf intermediate
results(",°) times for a loop withA| = k and is a relatively large number, decreasing the number
of communications reduces the communication speed. In a case with manggma;enowever,

a large value ob can also reduce the communication speed because a large valueegiires
the transfer of a large amount of data, instead of reducing the numbenwhanications. Table 1

2443

TAMADA , IMOTO AND MIYANO

Increment for
k o0=1 0=2 0=3
1 1 2 3
2 2 5 8
10 7 30 55
14 8 37 111
27 4 8 8

Table 1: Examples of the actual increment of various valudsasfdc for n = 32. The increment
is largest for all cases af for k = 14.

Algorithm 1 ProcessS(S, a,n,np) calculates the functiors(v,A), M(A), andQ*(M(A)) for com-
binationsA derived from the given super-combinatiSn
Input: SCV: Super-combinatiorg € N: size of combination to be calculated, total number of
nodes in the networlg,: number of CPU processors (cores).
Output: F(v,B), Q(A), andM(Q(A)) for all sub-combinations of with sizea, v A, andB =
A\ {v}.
1: A+ {ACS:|A =a}
2: Retrieve the local scorev, B, X) for B= A\ {v} (v€ A€ 4) from theLF (v, B, n,np)-th pro-
Cessor.
3: RetrieveF (u,B\ {u}) forue B (B= A\ {v},ve A€ 4) from theL" (u,B\ {u},n,np)-th pro-
Cessor.
4: RetrieveQ\V/(M(A\ {v})) for v e A € 4 from theLQ(A\ {v},n,ny)-th processor.
5: for eachA € 4 do
6: CalculateF(v,B) for ve A B = A\ {v} from s(v,B) andF(v,B\ {u}) for u € B by Equa-

tion (1).

7. CalculateM(A) andQA(M(A)) from QM (M(A\ {v})) andF (v,A\ {v}) by Equations (3)
and (2).

8: end for

9: StoreQ(A) andMA(Q(A)) (A € 4) in theL®(A, n, np)-th processor.
10: StoreF (v,B) (B=A\ {v},A€ 4) in theL" (v,B,n,n,)-th processor.

shows some examples of the actual overhead increment of the DP stegis, (figf) - (/%) /().
As shown in the table, the increment because of redundant DP stegsldauthe separation ap-
pears to be relatively small for a case of the practical sizeawfdo. If the algorithm runs in parallel
with hundreds of processors, the increment calculation in each pavdesgegligible as compared
to the total amount of calculations, and thus, it does not noticeably affecvérall computation

time. We discuss this later with the computational experiments presented in Se2tion 4

2444

PARALLEL ALGORITHM FORLEARNING OPTIMAL BAYESIAN NETWORKS

Algorithm 2 Para-OS8V, X,s,a,n,) calculates the exactly global optimal structure of the Bayesian

network with respect to the input daXaand the local score functicswith n, processors.

Input: V: set of input nodes (variables) whekg = n, X: (N x n)-input data matrixs(v, Pa, X):
functionV x 2 x RN*" — R that returns the local Bayesian network score for variahiéth
its parent sePaC V w.r.t. the input data matriX, o € N: size of super-combinatiomy:
number of CPU processors (cores).

Output: G = (V,E) : optimal Bayesian network structure.

1: {Initialization}
2: CalculateF (v,0) = s(v,0,X) for all v € V and store it in thé&.F (v, 0,n, np)-th processor.
3: StoreF (v,0) asQ™ (M({v})) andM({v})(1) = vfor all v € V in theL®({v},n, np)-th proces-
sor.
4. {Main Loop for size ofA}
5. fora=1ton—1do
6: {S-phase: Execute the following for-loop onin parallel. The{r =i modny+ 1}-th proces-
sor is responsible for th@ + 1)-th loop.}
7. fori=0ton(";')—1do
; V< imodn+1

o: j«<li/n]+1

10: Pa « m(v,RLI"Y(j,n— 1 a))

11 Calculates(v, Pa, X) and store it in the local memory of thieth processor.
12: end for

13: {Q-phase: Execute the following for-loop onin parallel. The{r =i modn,+ 1}-th pro-
cessor is responsible for ttie+ 1)-th loop.}
14: if a+0+1>nthen

15: o+—n—a—1.

16: end if

17: fori= (a+2+1) - (gjrclj) to (a+2+1) —1do

18: S« RLI"Yi+1,na+o+1).

19: Call Process-§5,a+1,n,np).

20: end for

21: end for

22: Construct networlG = (V,E) by collecting the final sets of the parents selected in line 6 of
ProcessS(-).

23: return G = (V,E).

3.2 Para-OS Algorithm

According to Theorems 7 and 8 and Corollary 9, the DP steps in Equatipn&jland (3) of
Theorem 4 can be split by super-combination®\ofThe pseudocode of the proposed algorithm is
given by Algorithms 1 and 2. The former is a sub-routine of the latter main ighgaor

The algorithm consists of two phases: the S-phase and the Q-phase forrtter, each pro-
cessor calculates the score functiin Pa, X) independently without communication, whereas the
latter calculated=(v,A), M(A), andQ*(M(A)) along with communications among each other to
exchange the results &f(v,A), M(A), andQ*(M(A)). Note that in line 6 of Algorithm 1, we need

2445

TAMADA , IMOTO AND MIYANO

to store not only the local scores but also the optimal choices of pardetseis, although we do
not describe this explicitly. This is required to reconstruct the optimal streictiter the algorithm
terminates.

In this algorithm, we need to determine which processor stores the calcultdenediate re-
sults. In order to calculate this, we define some functions as given below.

Definition 11 We define function’mN x N — N as follows:

a ifa<b
m(a,b) = {a+1 otherwise '

Using m(a, b), we define function mv x 2V — 2V as follows:
m(v,A) = {ord~(nf(ord(u),ord(v))) : u € A}.

In addition, we define function’n? : N x N — N as follows:

1 _Ja ifa<b
m™(a,b) = {a—l otherwise

Using m~1(a,b), we define function it : vV x 2¥ — 2V as follows:
m (v, A) = {ord~}(m~(ord(u),ord(v))) : u € A}.

The functionm(v, A) maps the combinatioA to a new combination ik \ {v}, andm~1(v,A) is the
inverse function ofn(v,A). These are used in the proposed algorithm and the following function.

Definition 12 (Calculation of processor index to store and retrieve esults) We define functions
L2: 2 xNxN—=NandLF:V x2¥ xNxN — N as follows:

LO(A, n,np) £ (RLI(A,n) — 1) modn,+1

and

LF (v, A, n,np) E{(RLI(M (v, A),n— 1) — 1) x n+ (ord(v) — 1)} modn,+1,
where RL[A,n) is a function used to calculate the reverse lexicographical index (RLI)robawa-
tion A taken from n objects ang,nthe number of processors.

FunctionL?(A,n,n,) locates the processor index used to store the resul(Af andQ*(M(A))
andL" (v,A)n,n,), the results of~(v,A). By using RLIs, the algorithm can independently and
discontinuously generate the required combinations and processorsificlicgtoring/retrieving of
intermediate results. We use RLIs instead of ordinal lexicographical imtlieeause the conversion
between a combination and the RLI can be calculated in linear time by prepagrigdix table
once (Tamada et al., 2011). In Algorithm 2, the inverse fundRait(-) is also used to reconstruct
a combination from the index. See Appendix D for details of these calculations

Figure 1 shows an example of the calculation of the DP for the super-cotialiizin a single
processor in a single loop. Note that in the figure, although a super-catitniris assigned to a
single processog(v, A, X) is calculated in a different processor from one that calculatgsA) for
the samer €V andAC V \ {v}.

2446

PARALLEL ALGORITHM FORLEARNING OPTIMAL BAYESIAN NETWORKS

Calculation for a super-combination S = {a, b, ¢, d} in a single loop

g)

S={a,b,c,d} Retrieved from other processors

Calculated in S-Phase
s(a, {b,c}) s(b, {a,c})

F(a, {b}) Fl(a, {c}) Fla, {d}) 0“B(M({a, b}))

Sa, (b.d}) (b acdy) | | PO A F A F A | 0i(MCta e))
s(a, {e,d}) s(b, {c,d}) Fe, {a}) Fle, {b}) Fle, {d}) Q' M({a, d}))
s(c, {a, b)) s(d, {a, b}) Fd, {a,:) F(d, {b}) F(d, {c}) Q" (M({b, c}))
s(c, {a, d}) s(d, {a, c}) F(v, Aa-l) ok “(M(Aa))

s(c, {b, d}) s(d, {b,c})

F(a, {b,c}) F(b,{a,c}) - h’d“

Fla, b.dy) Flb, {a.dy) o] € (Mta b, ch)
Fa, {c,d}) F(b, {c,d}) Qi (M({a, b, d}))
F(c, {a,b}) F(d, {a, b}) Q' d(M({a, c, d}))
F(C’ {a’ d}) F(d’ {a’ C}) {b,c,d}

F(c, {b,d}) F(d, {b, c}) b IM({b, ¢)

F(v, A7) 0

Calculate in Q-Phase

qatl

(M(4*))

_ Store in other processors Y,

Figure 1: Schematic illustration of the calculation in a single loop for a = 2. A2 represents a
subsetA C V where|A| = a.

4. Computational Experiments

In this section, we present computational experiments for evaluating theged algorithm. In the
experiments, we first compared the running times and memory requiremerarfous values of
0. Next, we evaluated the running times of the original dynamic programmingitgowith a
single processor and the proposed algorithm using 8 through 102dgsars. We also compared
the results for different sizes of networks. In the experiments, we meg#he running times using
the continuous model score function BNRC proposed by Imoto et al. j2Fdally, we tried to
run the algorithm with as many nodes as possible on our supercomputargrasf of long-run
practical execution that realizes the optimal large network structure lgarRir this experiment,
we used the discrete model score function BDe proposed by Hecketrahn(£995), in addition
to the BNRC score function. Brief definitions of BNRC and BDe are givefippendix A. Before
presenting the experimental results, we first describe the implementation afjihv@éhm and the
computational environments used to execute the implemented programs.

4.1 Implementation and Computational Environment

We have implemented the proposed algorithm using the C programming land8&g€%99). The
matrix computation in the BNRC score function is implemented using the BLAS/LAPH&Kry.
The parallelization is implemented using MPI-1.1.

2447

TAMADA , IMOTO AND MIYANO

We have used two different supercomputer systems, RIKEN RICC anthH&Genome Center
Supercomputer System. The former is a massively parallel computer wagre@mputation node
has dual Intel Xeon 5570 (2.93 GHz) CPUs (8 CPU cores per node)larGiB memory. The
computation nodes are linked by X4 DDR InfiniBand. RICC employs FujitsailReINavi that
provides an MPI implementation, C compiler, BLAS/LAPACK library, and jobestiling. The
latter system is similar to the former except that it has dual Intel Xeon 54&8H@ CPUs and 32
GiB memory per node. It employs OpenMPI 1.4 with Sun Grid Engine as a pasaitgoutation
environment. The compiler and the BLAS/LAPACK library are the Intel C compitel Intel MKL,
respectively.

In our implementation, each core in a CPU is treated equally as a single pposed$iat one
MPI process runs in a single core. Therefore, 8 processes runamputation node in both the
systems. The memory in a single node is divided equally among these 8 m®cess

For the comparison presented later and the verification of the implementaticaisavenple-
mented the originaDSalgorithm proposed by Ott et al. (2004). The verification of the implemen-
tation was tested by comparing the optimal structures calculated by the implementdtomih the
original algorithm and the proposed algorithm for uppte- 23 using artificial simulated data with
various numbers of processors. We also checked whether the drifleclimbing (HC) algorithm
(Imoto et al., 2002) could search for a network structure having a betee than that of the opti-
mal structure. We repeated the execution of the HC algorithm 10,000 timespafidned that no
result was better than the optimal structure obtained using our algorithm.

4.2 Results

First, we generated artificial data with= 50 (sample size) for the randomly generated DAG struc-
ture withn = 23 (node size). Refer to Appendix C for details on the generation of tifeciat
network and data. We used= 23 because RICC has a limited running time of 72 hours. The
calculation with a single processor foe= 24 exceeds this limit. In all the experiments, we carried
out three measurements for each setting and took the average of theseatéases as an obser-
vation for that setting. The total running times are measured for the enticatéee of the program,
including the input of the data from a file, output of the network to a file, afd Mitialization and
finalization routine calls.

Figure 2 shows the result of the comparisomwef 1,...,5 for n=23. The row foro = 0 shows
the results of the original DP algorithm with a single processor. We measieedinning times
using 256 processors here. During the computation, we also measutigdabeequired for calling
MPI functions to exchange required data between processors, atithésarequired for calculating
the score funtiors(-). As discussed in Section 3.d,controls the space-communication trade-off.
We expected that an increase in the valuesaofould reduce the time and increase the memory
requirement. As expected, the total time decreased for gp=tal with an increase io; however,
it increased foro = 5 and the memory requirement also increased significantly. As shown in the
figure, 0 does not affect the score calculation time. From these results, we empoye8l for
later experiments because the increase in the memory requirement andrédasdéa the total time
appeared reasonable.

Next, we compared the running times for various numbers of procedafrsarried out mea-
surements fon, = 8,16,32,64,128 256,512, and 1024 processors using 1, 2, 4, 8, 16, 32, 64,
and 128 computation nodes, respectively, on RICC. Hgyegpresents the number of processors.

2448

PARALLEL ALGORITHM FORLEARNING OPTIMAL BAYESIAN NETWORKS

1800 T T T
1 Total Time (left) —+— 1 100

Comm Time (left) -———><—

Score Time (left) -

Memory (right)

1600

1400

w 1200 | ® o Total Time CmTime Sc Time Mem
g A R 0 - - - 127
g 1000 | T o 1 1713.08 909.36 795.61 1.92
5 800 * * X x 50 g 2 1267.98 458.32 794.27 4.75
£ oo} . g 3 1072.85 249.06 795.01 15.01

00 1 . 2 4 1033.20 196.04 794.75 43.69

e 5 1042.21 191.13 797.00 106.91
200 Hmmmmmmmmmnaee 10
ot & :
1 2 3 4 5

Figure 2: Running times and memory requirements with 1,...,5 for n = 23 andN = 50 with
256 processors. “Total Time” represents the total time required fougiradn seconds,
“Cm Time" represents the total communication time required for calling MPI funstio
within the total time; “Sc Time,” the time required for score calculation; and “Mehe”
memory requirement in GiB.

n

T 7 5

Time (left) —>%— .
Speedup (right) —— .-~

100000 Ideal Speedup (right) -~ -~

Np T(np) Snp) E(np) Te(np) Re(np)
1 203297.04 1.00 1.00 000 0.00
8 2636758 7.71 096 14524 0.01
i 16 13563.89 1499 0.94 490.24 0.04
10000 ¢ 1256 32 6932.09 2933 092 39829 0.06
64 3574.89 56.87 0.89 302.46 0.08
128 1909.72 106.45 0.83 269.90 0.14
256 1072.85 189.49 0.74 249.06 0.23
1000 | # {64 512 667.38 304.62 059 25146 0.38
1024 515.29 39453 0.39 30512 0.59

Speedup

Time in seconds (log scale)

83264 128 256 512
Number of processors

Figure 3: Scalability test results for= 23 andN = 50 with 0 = 3. We did not present the result
for np = 1024 in the graph on the left-hand side because the speedup was too low.

As mentioned above, we used= 3. Fornp = 1, we used the implementation of the original DP
algorithm. Therefore, we do not use the super-combination-basedatiepaof our proposed al-
gorithm although it works fon, = 1. Figure 3 shows the experimental result. We evaluated the
parallelization scalability of the proposed algorithm from the spee®iop) and efficiencyE(np).

The speedufs(np) is defined asS(ny) = T(1)/T(np), whereny is the number of processors and
T(np), the running time witm,, processors. I§(ny) = np, then it is called the ideal speedup where
np-hold speedup is obtained y, processors. The parallelization efficiengyn,) is defined as
E(np) = S(np)/np. In the case of ideal speedupy,n,) = 1 for anyn,. Generally, parallel programs

2449

TAMADA , IMOTO AND MIYANO

T T T 160

" Total Time (left) —— 50
Comm Time (left) ——><— |
Score Time (left) K- = ¥ 40,\

10000 f Memory {right) = 30 n Total CmTime (ratio)) ScTime Mem
0 f20g 20 10554 3135 0.30 69.71 5.77
i X7 o 21 261.84 66.77 0.26 187.91 8.00
%1000] 102 22 546.07 188.80 0.35 344.00 10.97
g 5 23 1072.85 249.06 0.23 795.01 15.01
g i i 24 2645.04 579.61 0.22 1999.56 20.55
< g 25 5386.38 1127.62 0.21 4095.74 28.50
£ 100€ 2 26 11976.90 2374.81 0.20 9199.75 40.25

¥ X 27 23686.51 5174.94 0.22 17517.04 59.31

20 21 22 23 24 25 26 27
Number of nodes
Figure 4: Comparison of running tims for various network sizes. Colarrgpresents the size of

the network and “(ratio),” the ratio of “Cm Time” to “Total.” “Mem” is reprasted in
GiB. Other columns have the same meaning as in Figure 2.

that haveE(np) > 0.5 are considered to be successfully parallelized. As shown in the tabilg-in F
ure 3, the efficiencies are® and 059 for n, = 256 and 512, respectively. However, with 1024
processors, the efficiency became 0.39 and the speedup was very dmmpared to that with 512
processors, and therefore, it is not efficient and feasible. Froge tfesults, we can conclude that
the program can run very efficiently in parallel for up to 256 processamd acceptably for up to
512 processors.

Te(np) in Figure 3 represents the time required for calling MPI functions duringsxteetgions,
andR(np) is a ratio ofT¢(np) to the total timeT (np). Except forn, = 8, Tc(np) decreases with
an increase imp because the amount of communication for which each processor is sisigon
decreases. However, it did not decrease linearly; in facifor 512, it increased. This may indi-
cate the current limitation of both our algorithm and the computer used to aatrtlie experiment.
Forn, = 8, Tc(np) was very small. This is mainly because communication between computation
nodes was not required for this number of processors. If we suligas,) from T(ny), then the
efficiencyE(np) becomes 0.96, 0.95, and 0.94 for 256, 512, and 1024 processmsctigely. This
result suggests that the redundant calculation in our proposed algat@ibanot have a great ef-
fect, and the communication cost is the main cause of the inefficiency of aunitalg. Therefore,
improving the communication speed in the future may significantly improve the efficief the
algorithm with a larger number of processors.

Next, we compared the running times for various network sizes. We gedesdificial sim-
ulated data fon = 20 to 27 as we did for the above experiment wite- 23. We measured the
running times with 256 processors aod= 3. Figure 4 shows the result. As shown in the figure,
both the time and the space required increased exponentially. Note that &dgft-tland the right-
hand side y-axes are in log scale. The communication time decreased slighftytton = 26 with
an increase im. However, fom = 27, it started to increase. From these results, we can say that the
score calculation remains dominant and the communication does not contigniteeantly to the
total running times for this range afwith n, = 256.

2450

PARALLEL ALGORITHM FORLEARNING OPTIMAL BAYESIAN NETWORKS

Total Time ——
10000 + Comm Time ---->---
Score Time -3

N Total CmTime ScTime

50 1072.85 249.06 795.01
100 1775.73 255.55 1492.78
150 2490.77 261.01 2201.52
200 2863.91 302.04 2533.35
250 3684.08 276.14 3379.34
300 5460.16 309.71 5122.12
350 7354.91 281.40 7045.05
400 8698.11 276.68 8392.88

8000

6000

4000

Time in seconds

2000

E

Y s s s e S S
50 100 150 200 250 300 350 400
Number of nodes

Figure 5: Comparison of running times for various sample sizes. CoNimapresents the number
of samples. Other columns have the same meaning as in Figure 2.

To check the scalability of the algorithm to the sample size, we compared thieaguimes for
various sample sizes. We generated artificial simulated datdNwtB0, 100,150 200, 250,300, 350,
and 400 for the artificial network af = 23, which is used for the previous analyses. Theoretically,
the sample size does not affect the running times, except for the sdondatian. Figure 5 shows
the result. We confirmed that the communication times are almost constant fa edkted sample
sizes and that the score calculation increased with the sample sizes, agpeete@. Note that the
calculation of the BNRC score function is not in linear time, and it is difficult tiefaine the exact
time complexity because it involves an iterative optimization step (Imoto et al., 2002)

4.3 Structure Search for Large Networks

Finally, we tried to search for the optimal structure of nodes with as manysraemlpossible in the
HGC system because it allows long execution for up to two weeks with 25@gsor cores and has
a larger memory in each computation node.

As in the above experiment, we first generated random DAGs havinguganiombers of nodes,
and then generated simulated data with 50 samples. With the BNRC score fumaitiave suc-
ceeded in searching for the optimal structure of a 31-node networkiby 464.3 GiB memory in
total (1.8 GiB per process) with 256 CPU cores in 32 computation nodeghiBaralculation, we
did not impose a restriction on the parent size or any other parametertirestic8 days 6 hours
50 minutes 24 seconds were required to finish the calculation. The total timeedor calling
MPI functions was 2 days 15 hours 11 minutes 58 seconds. This is 32% tdtdi running time.
Therefore, the communication time became a relatively large portion of the totgdutation time,
relative to that in the case of = 27 presented above. As described in Parviainen and Koivisto
(2009), thus far, the largest network search that has been repaatetbr a 29-node network (Si-
lander and Myllynaki, 2006). Therefore, our result improved upon this result withoahaysing
an external hard disk drive.

To search for the optimal structure of an even larger network, we useBille network score,
which is a discrete model that is much faster than the BNRC score. Gen#ralBDe score can be

2451

TAMADA , IMOTO AND MIYANO

calculated 100 times faster than the BNRC score (data not shown). UsiBdp#hecore function,
we successfully carried out optimal structure search for a 32-ndskriewithout any restriction
using 836.1 GiB memory (3.3 GiB per process) in total with 256 CPU corestofalecomputation
time was 5 days 14 hours 24 minutes and 34 seconds. The MPI communicationasmedays
12 hours 56 minutes 26 seconds, and this is 81% of the total time. Thus,=fd82 with the
BDe score function, the calculation of score functions requires rebatiegy little time (actually, it
required only around 1.5 hours per process) as compared to the totahtichthe communication
cost becomes the dominant part and the bottleneck of the calculation.

These results show that our algorithm is applicable to the optimal structuhsgaelatively
large-sized networks and it can be run on modern low-cost superd¢erapu

5. Discussions

In this paper, we have presented a parallel algorithm to search fordhesased optimal structure
of Bayesian networks. The main feature of our algorithm is that it can emy efficiently on mas-
sively parallel computers in parallel. We confirmed the scalability of the algoriththe number
of processors through computational experiments and successfullyndeated optimal structure
search for a 32-node network with 256 processors, an improvementhay most successful result
reported thus far. Our algorithm overcomes the bottleneck of the preaigosithm by using a
large amount of distributed memory for large-scale Bayesian networksteusearch.

Our algorithm has a feature similar to that of an algorithm recently propos@aitviainen and
Koivisto (2009) that requires less space. Both algorithms divide thelsaspace of the problem,
and provide a way to compute the optimal structure in parallel. Both are caplabieaking the
current limitation of the network size in optimal network structure search.edewthese two algo-
rithms differ in several respects. First, Parviainen and Koivisto (2pfi8)arily intended to develop
a space-time trade-off algorithm to overcome the bottleneck of the searslepr. They found that
the search problem can be divided into sub-problems and that theggahlbms can be solved
independently with less space. Therefore, although the time requiremesdises with a decrease
in the space requirement, they mentioned that their algorithm can obtain the ogttinzalire for a
34-node network by massive parallelization. Our algorithm, on the othet, lbmercomes the bot-
tleneck in a more straightforward way. We found a way to divide the DP stigipe fastest known
algorithm with a relatively low overhead cost. In terms of memory requiremenglgorithm con-
sumes much more memory space than that of Parviainen and Koivisto (2t@yan more than
the original DP algorithm to realize parallelization. However, our algorithmazdually search for
the optimal structure of a 32-node network with 256 processors in lesativaek, including score
calculation, whereas Parviainen and Koivisto (2009) computed only trialparoblems. Their
estimate from their empirical result is 4 weeks using 100 processors to theadptimal structure
for a 31-node network. In addition, their estimate ignores the parallelizatienhead that generally
becomes problematic in parallelization as well as score calculation, whicieedue most time in
the actual application. We showed that our algorithm works efficiently wittougb6 processors,
and acceptably with up to 512 processors. An optimal search for egar laetworks may be real-
ized by improving the current implementation. Our implementation regards eacégsor core in
a CPU equivalently. Therefore, exploiting the modern multi-core CPUseziuce the communica-
tions required among computation nodes and increase the amount of memoey@pindependent
calculations without requiring improved hardware relative to currenésagmputers.

2452

PARALLEL ALGORITHM FORLEARNING OPTIMAL BAYESIAN NETWORKS

Acknowledgments

Computational time was provided by the Supercomputer System, Human Genaree, Qgsti-
tute of Medical Science, The University of Tokyo; and RIKEN Superpater system, RICC. This
research was supported by a Grant-in-Aid for Research and DenetdgProject of the Next Gen-
eration Integrated Simulation of Living Matter at RIKEN and by MEXT, Japime authors would
like to thank the anonymous referees for their valuable comments.

Appendix A. Definitions of Score Functions

In this paper, we use BNRC (Imoto et al., 2002) and BDe (Heckerman €t%85) as a score
function s(-) for computational experiments of the proposed algorithm. Here, we gresenh
definitions of these score functions.

A.1 The BNRC Score Function

BNRC is a score function for modeling continuous variables. In a continomgel, we consider
the joint density of the variables instead of their joint probability. We searemétwork structure
G by maximizing the posterior db for the input data matriX. The posterior ofs is given by

n(Gx) = (o) [rl rlf (%] pat;8))T(6G|A) b,

whereTi(G) is the prior distribution ofG; f (x| pai(j;; 9;), the local conditional density for thgth

variable; paﬁ = (pai(i),...,pai(éj)), the set of observations in theh sample ofg; variables that
represents the direct parents of thtéh node in a networkfg = (041,...,6,), the parameter vector
of the conditional densities to be estimated; aiélg|A), the prior distribution 0Bg specified by
the hyperparametey. Conditional densityf (Xij|pan;ej) is modeled by nonparametric regression
with B-spline basis functions given by

2110]-2

‘ (2
G. 1 {xj — 3 mi(pay)}
wheremjk(pi(kj)= z, 1V|k (pIk), {blk (-);-- bfv'l ik(-)} 1s the prescribed set &flj B-splines;

gj, the variance, anvfk , the coefficient parameters. By taking-& log of the posterior, the BNRC
score function for thg-th node is defined as

N
senra(Xj, Pa®(Xj), X) = —2|09{Tf?/_|]f(XajIpa‘f:ej)ﬂj(ele)dej},

wherer§ is the prior distribution of the local structure associated withjttie node; andr; (6j[A),
the decomposed prior distribution 8f specified by the hyperparamtey.

2453

TAMADA , IMOTO AND MIYANO

A.2 The BDe Score Function

BDe, a score function for the discrete model, can be applied to discré¢gecizal) data. As in the
case of BNRC, BDe also considers the posteridépthat is,

P(G|X) 0 P(G) / P(X|G,6)P(6|G)d®

where P(X|G,0) is the product of local conditional probabilities (likelihood Xfgiven G) and
P(B|G), the prior distribution for paramete®& In the discrete model, we employ multinomial
distribution for modeling the conditional probability and the Dirichlet distributienta prior dis-
tribution. LetX; be a discrete random variable corresponding tojttie node, which takes one
of r values{uy,...,us}, wherer is the number of categories &. In this model, the conditional
probability of X; is parameterized as

P(Xj = uPa®(X;) = uji) = Bjik,

whereu; (I =1,...,r%) is a combination of values for the parents apdthe number of parents of
the j-th node. Note thay|_, 8 = 1. For the discrete model, the likelihood can be expressed as

n % r
P(X|G.6) = ﬂlﬂﬂejlﬂk,

whereN;jk is the number of observations for thie¢h node whose values equalin the data matrix
X with respect to a combination of the parents’ observaltiddy = ¥} _, Njic andd denotes a set of
parameter®;. For the parameter s8t we assume the Dirichlet distribution a88|G); then, the

marginal likelihood can be described as

n i F(itk + Njik)
P(X|G,8)P(8|G)d6 = ! !
/ | (81G) I_U_!F aj +NJ| r(aik)

where0 is a set of parametersyjx, a hyperparameter for the Dirichlet distribution; amg =
Sk_10jik. By taking—log of the posterior, the BDe score function for ti#h node is defined as

SBDe(Xj,PaG(Xj) X) = IogT[G |og{|—!r O(JI) rF(O(jlk+Nj|k)}

(o +Njr) [(ajik)

wherenﬁ3 is the prior probability of the local structure associated withjttie node.

Appendix B. Proof of Corollary 10
Proof We prove tha(",%) - (%) = (})O(n°).

n—o k+ao\ (n—o)! (k+o)!
(k >< k) " K(n—0—k)! K(k+0—K)!
(n—o)! (k+o)! (n—Kk)! n!

kiin—o—k)! kla! (n—Kk)! n!

2454

PARALLEL ALGORITHM FORLEARNING OPTIMAL BAYESIAN NETWORKS

nl (n—o)l(k+0)!(n—k)!
Kiin—k!' (n—o—K!Kaln
(n>. (n-o)! (k+0)! (n—k)!
(

k/ (n—o—k)! kal n!
n\ (n—o)(n—-o-1) (n—o—-k+1) (k+0)---(k+1)k!
<k> o (n—1) (n—k+1) o'k!

_ @ :0(1)-O((k+0)°) = (E) .O((k+0)°).

For n < k+ o, we consider only super-combinations of sizeThus, for eaclk, there are at
most () O(n°) calculations. [|

Appendix C. Method for Generating Artificial Network and Data

To generate the random DAG structure, we simply added edges at randammempty graph so
that the acyclic structure is maintained and the average degree bedes®6. Consequently, the
number of total edges equaisd/2. Note that the degree of DAGs does not affect the execution
time of the algorithm as the algorithm searches all possible structures. émgethe artificial data,
we first randomly assigned 8 different nonlinear or linear equations tedpes and then generated
the artificial numerical values based on the normal distribution and the agségiuations. Figure 6
shows the assigned equations and examples of the generated data.dd hasomore than two
parent nodes, the generated values are summed before adding théNess the noise ratio to be
0.2.

To apply BDe to the artificial data on thre= 32 network, we discretized the continuous data
generated by the same method for all variables into three categore8)(and then executed the
algorithm for these discretized values.

Appendix D. Efficient Indexing of Combinations

When running the algorithm, we need to generate combination vectors discmumlg and indepen-
dently in a processor. To do this efficiently, we require an algorithm tHatlkedes a combination
vector from its index and the index from its combination vector. Buckles ghdhon (1977) pre-
sented an efficient lexicographical index - vector conversion algoritHmwever, this algorithm
requires the calculation of binomial coefficients for every possible elementombination every
time. To speed up this calculation, we developed a linear time algorithm thatchpet@momial
time to construct a reusable table (Tamada et al., 2011). Our algorithm aaealky withthe re-
verse lexicographical indeirstead of the ordinal lexicographical index; this enables us to calculate
the table only once and to make it reusable. In this section, we present tithaits as described
in Tamada et al. (2011). See Tamada et al. (2011) for details and this pfdbe theorems. In this
section, note that we assume tlygt, fi = O for any f; if n < k.

Theorem 13 (RLI calculation) Let ¢ = {Cy4,Cy,...,Cn} be the set of all the combinations of

length k taken from n objects, arranged in lexicographical order, whete (). We call i the lex-
icographical index of Ce C. Let us define the reverse lexicographical index of €, RLI(Ci,n)

2455

(@)
(b)

Figure 6: Left: Linear and nonlinear equations assigned to each eddg#ioiad networks.€ repre-
sents the noise based on the normal distribution. Right: Examples of the gelhested

by these equations.

def

TAMADA , IMOTO AND MIYANO

1

-3 -1

T e v gk
~ 4 RS o et
N : _,%
q 7 c %" 2 .
o Py < °°s o ° o
T T T T T T T 17T ! T T T T T T 17717
-4 0 2 4 -6 -2 2 4 -2 0o 1 2 -4 02 46
(b) (d)) (h)

RLI(X, n) X
20 1,2,3 A
19 1,2,4 4
18 1,2,5 (1)
17 1,2,6
[16 134 A 5
ENEINEINEII IG) 3]
14 1,3,6
"""""""""""" 13 145 Ao
I(?)+(J=(3)=3.02 . 1461(1)
\ 4 11 1,5,6 ¢ ()v
AT 10 234 A
9 2,3,5
4 3 2 5 ____8_ _______ 2_3(_3 _________ 4
2+ (2)+(3)=(3)=10 77243 (2)=¢
6 2,4,6
s 256 v
"""""""""""""" 4345 A
B\ 2y (4 3386 I(i)=3
Y R B e T
R 456 A

Figure 7: RLI calculation fon = 6 andk = 3.

2456

= m—i+ 1. Suppose that we consider a combination of natural numbers, thairis sombina-
tion X = {x1,%,..., %} € C, where x< x; ifi < jand ¥ € {1,2,...,n}. Then, RL(X,n) can be

PARALLEL ALGORITHM FORLEARNING OPTIMAL BAYESIAN NETWORKS

Algorithm 3 RLITablgm) generates the index table for conversion between a combination and the
index.
Input: m: maximum number of elements appearing in a combination,
Output: T : mx mindex table.
. {Initialization}
T(i,1)«<0 (1<i<m).
T« -1 2<j<m).
: {Main Routing
: fori=2tomdo

for j =2tomdo

T,)« T(@{—-2,)+T(I,j—1).

end for
end for
: return T.

© NSO AE®®DNR

[EnY
o

Algorithm 4 RLI(X,n,T) calculates the reverse lexicographical index of the given combinAtion
Input: X = {Xq,%2,... X%} (X1 <---<xA1<x <n):input combination of lengtk taken from
n objectsn: total number of element§, : index table calculated bRLITablg-).
Output: reverse lexicographical index of combinati¥n
11«0
2: fori=1tokdo
3 r«z+T(k—i+Ln—k—x+i+1).
4
5

: end for
s return r+1.

calculated by
IX| n— X
RLI(X,n) = : 1.
=3 (1 ha) *

Figure 7 shows an example of the calculation of RLI foe= 6 andk = 3. For example,
RLI({1,3,5},6) = (3) +(3) +(}) +1=15.

Corollary 14 (RLI calculation by the index table) LetT be ak,n—k+ 1)-size matrix whose ele-
ment Ta, B) &' (“*B~2) Matrix T can be calculated only iy —1)(n—k— 1) time addition and by
using T, RL(X, n) can be calculated in linear time by R, n) = S ; T(k—i+1,n—k—x+i+1)

+ 1.

Algorithm 3 shows the pseudocode used to genefatmnd Algorithm 4, the pseudocode of
RLI(X,n). The inverse function that generates the combination vector for an Rlbeaalculated
by simply finding the largest column positiondf subtracting the value in the table from the index,
and then repeating thistimes.

Corollary 15 Let RLI(X,n) be the reverse lexicographical index defined above for combination X
= {X1,X2,...,%/}. The inverse function of R[X,n), that is, the i-th element ;xof

2457

TAMADA , IMOTO AND MIYANO

Algorithm 5 RLI=%(r,n,k, T) calculates the combination vector of lengtfrom n elements, corre-
sponding to the given reverse lexicographical index
Input: r: reverse lexicographical index of the combination to be calculatedptal number of
elementsk: length of the combinatiorT : index table calculated bRLITabld-).
Output: X = {x1,X2,...,X} : combination corresponding to
Lr+r—1
2: fori=1tokdo
3 for j=n—-k+1to1ldo

4: ifr>T(k—i+1,j) then
5: X< n—K—j+i+1.
6: r<r—T(k—-i+1,j).
7: break

8: end if

9: endfor

10: end for

11: return X = {Xq,X2, ..., X}-

RLI~1(RLI(X,n),n,k) can be calculated by, for+ 1, ...k,

xi=argmaxt (k—i+1n—k—j+i+1)
! i-1
< RLI(X) — z T(k—a+1ln—k—xy+a+1).
a=1

Algorithm 5 shows the pseudocode used to calculate RLn, k) for RLI r in linear time.

The search space of 15 is independenk difut dependent on. This is because onceg is
identified, we need to search onty for j > i such thatx; > x;. Therefore, the inverse function
RLI~1(-) can generate the combination vector in linear time. By using the binary s#aectearch
of proper objects in a vector can be calculated in log time. See Tamada €Hl) (@r the binary
search version of this algorithm.

The advantage of using RLI is that on€eis calculated fomm, it can be used for calculating
RLI(X,n) andRLI~Y(r,n,k) for anyn andk, wherek < n < m. The normal lexicographical order
can also be calculated in a similar manner for fixed valuas aridk. However, it is required for
constructing a different table for different valuesadindk.

References

B. P. Buckles and M. Lybanon. Algorithm 515: Generation of a vectomfthe lexicographical
index [G6]. ACM Transductions on Mathematical Softwad€2):180-182, 1977.

D. M. Chickering, D. Geiger, and D. Heckerman. Learning Bayesidwarks: Search methods
and experimental results. Proceedings of the Fifth Conference on Artificial Intelligence and
Statistics pages 112-128, 1995.

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian nétsvtor analyze expression
data.J. Computational Biology7:601—-620, 2000.

2458

PARALLEL ALGORITHM FORLEARNING OPTIMAL BAYESIAN NETWORKS

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesianor&s: the combination of
knowledge and statistical dat&lachine Learning20:197-243, 1995.

S. Imoto, T. Goto, and S. Miyano. Estimation of genetic networks and furadtgiructures be-
tween genes by using Bayesian networks and nonparametric regreBaidific Symposium on
Biocomputing7:175-186, 2002.

M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesetworks. Journal of
Machine Learning Research:549-573, 2004.

S. Ott, S. Imoto, and S. Miyano. Finding optimal models for small gene netw&ddafic Sympo-
sium on Biocomputind:557-567, 2004.

P. Parviainen and M. Koivisto. Exact structure discovery in Bayese&warks with less space.
Proceedings of the 25th Conference on Uncertainty in Artificial Intelligébied 2009) 2009.

J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networks of Plausible imferdMlorgan
Kaufman Publishers, San Mateo, CA, 1988.

E. Perrier, S. Imoto, and S. Miyano. Finding optimal Bayesian networkga/super-structurel.
Machine Learning Research:2251-2286, 2008.

T. Silander and P. Myllyraki. A simple approach for finding the globally optimal Bayesian network
structure. Proceedings of the 22th Conference on Uncertainty in Artificial Intelligefubl
2006) pages 445-452, 2006.

Y. Tamada, S. Imoto, and S. Miyano. Conversion between a combinatidor\atd the lexico-
graphical index in linear time with polynomial time preprocessing, 2@Lbmitted

I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bsian network
structure learning algorithnMachine Learning65:31—78, 2006.

2459

