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Abstract

In medicine, one often bases decisions upon a comparatalgsis of patient data. In this paper,
we build upon this observation and describe similarityeoaalgorithms to risk stratify patients
for major adverse cardiac events. We evolve the traditiappfoach of comparing patient data in
two ways. First, we propose similarity-based algorithmest tompare patients in terms of their
long-term physiological monitoring data. Symbolic misotatdentifies functional units in long-
term signals and measures changes in the morphology angefreg of these units across patients.
Second, we describe similarity-based algorithms that aseipervised and do not require compar-
isons to patients with known outcomes for risk stratificatidhis is achieved by using an anomaly
detection framework to identify patients who are unlikeestpatients in a population and may
potentially be at an elevated risk. We demonstrate the fiateutility of our approach by showing
how symbolic mismatch-based algorithms can be used toifglgegients as being at high or low
risk of major adverse cardiac events by comparing their-d@ng electrocardiograms to that of
a large population. We describe how symbolic mismatch candeel in three different existing
methods: one-class support vector machines, nearesthagighalysis, and hierarchical cluster-
ing. When evaluated on a population of 686 patients with alstgllong-term electrocardiographic
data, symbolic mismatch-based comparative approachesatde to identify patients at roughly
a two-fold increased risk of major adverse cardiac eventsdérd0 days following acute coronary
syndrome. These results were consistent even after adjusti other clinical risk variables.

Keywords: risk stratification, cardiovascular disease, time-sex@aparison, symbolic analysis,
anomaly detection
1. Introduction

In medicine, as in many other disciplines, decisions are often based upomEaative analy-
sis. Patients are given treatments that worked in the past on apparently siomithtions. When

given simple data (e.g., demographics, comorbidities, and laboratory yalugscomparisons are
relatively straightforward. For more complex data, such as continuogstéym signals recorded

during physiological monitoring, they are harder. Comparing such timessermade challenging
by three factors: the need to capture the many different changes that@er long periods, for
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Figure 1: 24 hour ECG signals from two patients. Each time-series is overillen samples long
and contains patient-specific differences in the shape, frequendinandcale of activity
over the recording duration. These differences need to be capthitdoomparing these
data.

example, in the shape, frequency, or time scale of activity; the need t@eefljiccompare very
long signals across a large number of patients; and the need to deal witit{sageific differences
(Figure 1).

Despite these challenges, comparative analyses of long-term physabltigie-series can po-
tentially offer clinically useful prognostic information. While there is an extanbody of research
focussed on comparing relatively short time-series, including measurkss dynamic time warp-
ing (Keogh and Pazzani, 2001; Keogh and Ratanamahatana, 20Gfgsi@mommon subsequence
(Vlachos et al., 2002), edit distance with real penalty (Cheng and Niy})28equence weighted
alignment (Morse and Patel, 2007), spatial assembling distance (Chieni2€0q), this work does
not directly focus on comparing very long time-series (e.g., millions of sampieg.ldn this pa-
per, we investigate the hypothesis that comparative analyses of longpigsiological activity can
aid risk stratification and present symbolic mismatch as a way to quantify diffesebetween the
physiological signals of patients. Symbolic mismatch compares long-term tings-bgrmapping
the original signals into a symbolic domain and quantifying differences battleemorphology
and frequency of prototypical functional units. The use of symbolizati@n abstraction process
that greatly reduces the size of the data to be compared. For example,rzgrtha long-term
electrocardiographic (ECG) activity between two patients may involve cangpaver a hundred
thousand beats (with each beats having roughly 500 samples per beaty) sysibolization to
reduce this data to a small number of representative units can greathasethe size of this prob-
lem. This reduction allows for symbolic mismatch to be useful in analyzing very tiome-series.
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We describe how this measure can be modified in a reasonably simple manuose fwith kernel
classifiers.

We also present different ways in which symbolic mismatch can be used tifydeaigh risk
patients in a population. The methods we propose are motivated by the atimsethat high risk
patients typically constitute a small minority in a population. For example, cardiaalitypover a
90 day period following acute coronary syndrome (ACS) was reportée tb.79% for the SYM-
PHONY trial involving 14,970 patients (Newby et al., 2003) and 1.71% forQHePERSE?2 trial
with 990 patients (Cannon et al., 2007). The rate of myocardial infarcidhdver the same pe-
riod for the two trials was 5.11% for the SYMPHONY trial and 3.54% for the BERSE?2 trial.
Our hypothesis is that these patients can be discovered as anomalies ipuledipn, that is, their
physiological activity over long periods of time is dissimilar to the majority of the ptgienthe
population. In contrast to algorithms that require labeled training data, ep®pe identifying these
patients using unsupervised approaches based on three methodsigyesgported in the litera-
ture: one-class support vector machines (SVMs) (Scholkopf et @l1)20earest neighbor analysis
(Cover and Hart, 1967) and hierarchical clustering (Ward Jr, 1963)

In the remainder of this paper, we describe our work in the context ofstiskification for
cardiovascular disease. Cardiovascular disease is the leading ¢alestloglobally and causes
roughly 17 million deaths each year (World Health Organization, 2009). @ 2this number is
expected to grow to nearly 24 million deaths annually (World Health Organiz&@g®). Most of
these cases are expected to be the result of coronary attacks. Despitesiments in survival rates,
in the United States, 1 in 4 men and 1 in 3 women still die within a year of a recoginigedeart
attack (Mackay et al., 2004). This risk of death can be substantially ldmeith an appropriate
choice of treatment (e.g., drugs to lower cholesterol and blood presspiin; operations such
as coronary artery bypass graft and balloon angioplasty; and meldiciges such as pacemakers
and implantable cardioverter defibrillators) (World Health Organization92@8owever, matching
patients with treatments that are appropriate for their risk has proven tablerading (Bailey et al.,
2001; Lopera and Curtis, 2009). Existing techniques based upomrctional medical knowledge
continue to be inadequate for risk stratification. This leads us to explore dsettith fewa priori
assumptions. We focus, in particular, on identifying patients at risk of mdjarae cardiac events
(death, myocardial infarction and severe recurrent ischemia) folloaengnary attacks. This work
uses long-term ECG signals recorded during patient admission for amgigacy syndrome. These
signals are routinely collected, potentially allowing for the work presented teebe deployed
easily without imposing additional needs on patients, caregivers, or Hithtare infrastructure.
We demonstrate that it is possible to do long-term ECG-based risk stratifieativout defining a
set of features, performing cross-patient symbol or feature alignmehéving any labeled data.

The main contributions of our work are: (1) we describe a novel agpréar cardiovascular
risk stratification that is complementary to existing clinical approaches, (2¢xptore the idea
of similarity-based clinical risk stratification where patients are categorizéstins of their simi-
larities rather than specific features based on prior knowledge, (3ewadap the hypothesis that
patients at future risk of adverse outcomes can be detected using gewrised approach as out-
liers in a population, (4) we present symbolic mismatch, as a way to efficientipaie very long
time-series without first reducing them to a set of features or requirimipslregistration across
patients, and (5) we present a rigorous evaluation of unsupervisedrgtiydilased risk stratifying
using long-term data in a population of 700 patients with detailed admission®bmd-tip data.
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While this manuscript focuses on cardiovascular disease, we believih¢higieas presented here
can potentially be extended to other data sets in a relatively straightforwamiema

2. Background

We start by briefly reviewing the clinical background for our reseakl focus, in particular, on
aspects of cardiac function related to electrophysiology. This is follovwyedal discussion of acute
coronary syndromes (ACS) and a summary of recently proposed lomgeEG metrics for risk

stratification following ACS. Finally, we present a short overview of siavanalysis methods used
to evaluate metrics for risk stratification.

2.1 Electrocardiogram

An electrocardiogram (ECG) is a continuous recording of the electratity of the heart muscle
or myocardium (Lilly, 2007). A cardiac muscle cell at rest maintains a negjatiltage with respect
to the outside of the cell. During depolarization, this voltage increases ancdewesybecome
positive. Consequently, when depolarization is propagating through, dhege exists a potential
difference on the membrane between the part of the cell that has beelariigd and the part of
the cell at resting potential. After the cell is completely depolarized, its memlisamaformly
charged again, but at a more positive voltage than initially. The reversdisiiiakes place during
repolarization, which returns the cell to baseline.

These changes in potential, summed over many cells, can be measuredtogekeplaced on
the surface of the body. For any pair of electrodes, a voltage is red¢avbilenever the direction of
depolarization (or repolarization) is aligned with the line connecting the twdrelles. The sign
of the voltage indicates the direction of depolarization, and the axis of theadeqair is termed
the lead. Multiple electrodes along different axes can be used so thatdarega direction of de-
polarization, as a three-dimensional vector, can be reconstructedtisoBCG tracings. However,
such multi-lead data is not always available, especially for portable ECG metiitat maximize
battery life by reducing the number of electrodes used. Much of our igdHerefore designed for
the single ECG lead case. As we show subsequently, there is sufficiematfon even within a
single lead of ECG to risk stratify patients.

ECG data is routinely recorded for hospitalized patients, since it is usafdietermination of
heart rate and pulse, and for the detection of progressive cardeasdisind complicating arrhyth-
mias (Goldstein, 1997). ECG has the advantage of being easy to acqaiedettrical activity of
the heart can be measured on the surface of the body in an inexpandimen-invasive manner. In
an in-patient setting, the ECG is typically captured by bedside monitors. lotamatient setting, a
Holter monitor (a portable ECG device worn by patients) can record datenaonsly over multiple
days.

The ECG is a quasi-periodic signal (i.e., corresponding to the quasidieriature of cardiac
activity). Three major segments can be identified in a normal ECGPhluave is associated with
depolarization of cardiac cells in the upper two chambers of the heart (ieeattia). TheQRS
complex (comprising the Q, R and S waves) is associated with depolarization of caella in the
lower two chambers of the heatrt (i.e., the ventricles). Theave is associated with repolarization
of the cardiac cells in the ventricles. The QRS complex is larger than the P emaise the
ventricles are much larger than the atria. The QRS complex also coincides withpblarization
of the atria, which is therefore usually not seen on the ECG. The T wava lterger width and
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Figure 2: Schematic representation of the normal ECG for a single hedrt be

smaller amplitude than the QRS complex because repolarization takes longelefi@arization
(Lilly, 2007). Figure 2 presents a schematic representation of the nor@fal E

2.2 Acute Coronary Syndromes

In our research, we mainly focus on identifying high risk patients followiogt@ coronary syn-
drome (ACS), an umbrella term covering clinical symptoms compatible with redaloed supply

to the heart (i.e., myocardial ischemia). Heart attacks and unstable anginaladed in this group.
An ACS is an event in which the blood supply to the myocardium is blockedvarsly reduced.

The most common symptom of ACS is unusual and unprovoked chest pathjdbmay often be ab-
sent (most notably in patients with diabetes who experience “silent” heatkg}taDther symptoms
may include shortness of breath, profuse sweating, and nausea.

An ACS is usually caused by the rupture of an atherosclerotic plaquegrada clot within a
coronary artery. This restricts blood flow to the heart, causing ischerdip@®entially cell death in
the myocardium. Various sub-classifications of ACS are distinguished lgyrésence of myocar-
dial necrosis (cell death) and by ECG diagnosis (Lilly, 2007).

Unstable angina refers to an ACS event in which necrosis does not occur, whylecardial
infarction (MI) refers to one in which it does. Usually, we distinguish between AC&relihe
ECG shows an ST segment elevation (indicative of complete occlusion ofesp with myocardial
necrosis) and ACS where the ECG does not show an ST segment eldiatimative of partal
occlusion of an artery with or without myocardial necrosis). Patients witls&jiment elevation
are given the diagnosis of ST-elevation MI (STEMI) while patients withous&Fment elevation
are given the diagnosis of non-ST-elevation ACS (NSTEACS). NST&EA&h correspond to either
unstable angina or non-ST-elevation MI (NSTEMI). Patients with STEMItgpically at a higher
risk relative to patients with NSTEACS. The differentiation between whetleeN®TEACS corre-
sponds to unstable angina or NSTEMI is done on the basis of whethesigoccurs. This involves
blood tests to measure the levels of two serum biomarkers, cardiac-spepfiain and creatine
kinase MB, which are chemicals released into the bloodstream when mydcaitiaie.
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2.3 Post-ACS Risk Stratification and Long-Term ECG Techniques

Since patients who experience ACS remain at an elevated risk of deataftarareceiving treatment
for the initial index event (Newby et al., 2003), post-ACS risk stratificaticemismportant clinical

step in determining which patients should be monitored and treated more (or desspsively

subsequently. Roughly speaking, the goal of risk stratification is to idegtdyps of patients
within the post-ACS population with different rates of adverse outcomgsitdagceiving similar

care. This information can provide an important basis to deliver customemedand to perform
clinical cost-benefit analyses.

A number of different methods have been proposed to risk stratify paf@itwing ACS with
an excellent review provided by Breall and Simons (2010) and Alp@a® We focus here on re-
cent techniques for risk stratification based on information in long-term.E2G@riety of methods
have been proposed that assess risk based on automated analysistefhof=CG data collected
in the hours or days following admission. Such data is routinely collectedglarpatient’s stay
and therefore these risk assessments can be obtained at almost no aldctisbn\We discuss three
ECG-based methods that have been proposed in the liter&igar rate variability (HRV) (Malik
et al., 1996; Kleiger et al., 2005heart rate turbulence (HRT) (Barthel et al., 2003), andecel-
eration capacity (DC) (Bauer et al., 2006). Each of these measures has been showrrdtaie
with an increased risk of adverse events in the period following an AC8.additional long-term
ECG-based risk stratification technique, T-wave alternans (TWA) (Smith,et988; Rosenbaum
et al., 1994), has also shown promise. However, evaluating TWA typicdiyires the use of spe-
cialized recording equipment, patient maneuvers or chemical agents ttedteeat rate, and input
by a human expert for signal selection. As a result we do not consM#r il our present study,
while focusing on automated methods that can be applied to data collected Isofstinepost-ACS
patients.

The class of ECG-based risk stratification techniques that has beesslisdamost extensively
in the literature is HRV (Malik et al., 1996; Kleiger et al., 2005). The theorgartying HRV-
based techniques is that in healthy people, the body should continuougbensate for changes in
oxygen demand by changing the heart rate. The heart rate shouldhalsgecas a result of phys-
iological phenomena such as respiratory sinus arrhythmia (Lilly, 200 fedkt rate that changes
little suggests that the heart or its control systems are not actively rasgdodstimuli.

HRT (Barthel et al., 2003) is related to HRV in that it studies the autonomic topatignts (i.e.,
control of the heart rate by the nervous system). HRT studies the retequtiibrium of the heart
rate after premature beats. Typically, following a premature beat thererisfaspeed-up in heart
rate followed by a slow decrease back to the baseline rate. This condsspmthe “turbulence” in
the heart rate and is present in patients with a healthy autonomic nerveaimsiART is essentially
a reflex phenomenon. When a premature beat interrupts the normalcceydla, the ventricles
have not had time to fill to their normal levels, resulting in a weaker pulse. Tigipetis pressure
reflex mechanisms that compensate by increasing the heart rate. Thisxsatgog increase in heart
rate causes blood pressure to overcompensate and actives thegrefiex in reverse. Patients that
have diminished HRT responses after premature beats are believed tadier&k due to abnormal
nervous control of the cardiovascular system.

DC (Bauer et al., 2006) is an extension of work on HRV and HRT, andstisties information
in the heart rate signal. The theory underlying DC is that decreaseteds@ans in the heart rate
suggest an increased unresponsiveness of the heart to catdabpeosignals from the vagal system
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for the heart to slow down. This is often the first line of defense againgtrradverse events such
as fatal arrhythmias.

2.4 Survival Analysis

Metrics for risk stratification are typically evaluated using survival analgshniques. These meth-
ods study the rates of adverse outcomes in patients assigned to differeps ge.g., high and low
risk groups in the context of risk stratification post-ACS). In generalhsanalyses can be carried
out in terms of sensitivity and specificity. However, data from clinical ssditen consists of a
mix of patients who either remain event free throughout the duration of thg, sixperience events
at fairly different times within the study, or leave the study before it is comkefghenomenon
termed censoring). Survival analysis focuses on using information ithedle cases, that is, by
factoring in both the timing of events in patients who experience adversemes;@and by using
data from patients who leave the study early for the period during whichpiieticipated.

Survival data is commonly visualized as a Kaplan-Meier survival cugfef, 1988), which
reflects the event rate over time in patients belonging to different groupgorééent examples of
Kaplan-Meier survival curves subsequently in this manuscript. Visudlseoved differences be-
tween Kaplan-Meier survival curves (i.e., differences in the rateveifits over time in patients
belonging to two or more groups) can be quantified through a variety of m&tite Cox propor-
tional hazards test is most widely used (Cox, 1972) and correspoadetpession-based approach
to determine how the relative risk between populations varies over time inmsspo explanatory
covariates. The outcomes of this analysis are typically a hazard ratio estinfagingultiplica-
tive increase in the rate of events over time between populations, and armeése statistical
strength of this estimate (a 95% confidence interval for the hazard ratip gale). Findings are
usually considered to be significant if tipevalue is less than 0.05 (corresponding to a 5% chance
of rejecting the null hypothesis, that is, a Type | error).

3. Symbolic Mismatch

In this section, we describe the process through which symbolic mismatch isitenripetween a
pair of long-term ECG time-series. The use of symbolic mismatch for risk steiifitis presented
in Section 4.

3.1 Symbolization

As a first step, the ECG signal}, for each patienm = 1,...,n is symbolized using the technique
proposed by Syed et al. (2007). To segment the ECG signal into beatssevtwo open-source
QRS detection algorithms (Hamilton and Tompkins, 1986; Zong et al., 2003% &@Riplexes are
marked at locations where both algorithms agree. A variant of dynamic timanga DTW) (My-
ers and Rabiner, 1981) is then used to quantitatively measure diffsrenogorphology between
beats. Using this information, beats with distinct morphologies are partitionedyiatgs, with
each group being assigned a unique label or symbol. This is done by wfeaMax-Min iterative
clustering algorithm that starts by choosing the first observation as thedirgoid,c;, and initial-
izes the seb of centroids tof{c; }. During thei-th iteration,c; is chosen such that it maximizes the
minimum difference betweet; and observations i&:
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¢ =arg r)z;zgxyelgc(x, y)
whereC(x,y) is the DTW difference betweenandy. The setSis incremented at the end of each
iteration such thab= Sug;.

The number of clusters discovered by Max-Min clustering is chosen atittgruntil the maxi-
mized minimum difference falls below a thresh@dchosen empirically as the 'knee’ of the maxi-
mized minimum difference curve). At this point, the Sestomprises the centroids for the clustering
process, and the final assignment of beats to clusters proceeds byngaabh beat to its nearest
centroid. Each set of beats assigned to a centroid constitutes a unigige. clire final number of
clustersy, obtained using this process depends on the separability of the undetitag

Intuitively, the Max-Min clustering algorithms attempts to partition the data into ggaugh
that the similarity of points within the same groups is minimized, while the similarity of points
within different groups is maximized. Theoretical analyses of Max-Minkaged methods show
that this approach leads to more balanced separations of the data thaapptteerches (Ding et al.,
2001).

The overall effect of DTW-based partitioning of beats is to transformoattiginal raw ECG
signal into a sequence of symbols, that is, into a sequence of labelspaming to the different
beat morphology classes that occur in the signal. Our approach dibensghe methods typically
used to annotate ECG signals in two ways. First, we avoid using specialinededye to parti-
tion beats into known clinical classes. There is a set of generally accapikeld that cardiologists
use to differentiate distinct kinds of heart beats. For example, the Assocfar the Advance-
ment of Medical Instrumentation (AAMI) standards define five basic bietses (AAMI, 1998,
1987; de Chazal et al., 2004), while the Physionet MIT-BIH Arrhythnsitatlase sub-divides these
classes to produce 18 different heart beat labels (Physionet,.2B0%)ever, in some cases, even
finer distinctions than provided by these labels can be clinically relevard(8yal., 2007). Our
use of beat clustering rather than beat classification allows us to idengtyoh characteristic mor-
phology classes dynamically from the data that capture these finer-gdisimctions. Second, our
approach does not involve extracting features (e.g., the length of thehie amplitude of the P
wave) from individual beats. Instead, our clustering algorithm congplieentire raw morphology
of pairs of beats. This approach is potentially advantageous, becalsesinot assuma priori
knowledge about what aspects of a beat are most relevant. It caheaksasily extended to other
time-series data (e.g., blood pressure waveforms and respiratory ctivity

3.2 Measuring Mismatch in Symbolic Representations

Denoting the set of symbol centroids for patigrdsS, and the set of frequencies with which these
symbols occur in the electrocardiogramfagfor patientq an analogous representation is adopted),
we define the symbolic mismatch between the long-term ECG time-series for pgtimds) as:

Wpg= C(pi, 9j)FplpilFqla;] (1)
p.q pig%qje 1t p qiH]

whereC(pj,q;) corresponds to the DTW cost of aligning the centroids of symbol clggsesiq;.
Intuitively, the symbolic mismatch between patieptandq corresponds to an estimate of the
expected difference in morphology between any two randomly chosda fiem these patients.
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The symbolic mismatch computation achieves this by weighting the difference doetive cen-
troids for every pair of symbols for the patients by the frequencies withiwthiese symbols occur.

An important feature of symbolic mismatch is that it is explicitly designed to avoiddled o
set up a correspondence between the symbols of pafesutsig. In contrast to cluster matching
techniques (Chang et al., 1997; Cohen and Richman, 2002) to comparermavo patients by first
making an assignment from symbols in one patient to the other, symbolic mismashairequire
any cross-patient registration of symbols. Instead, it performs weighteghologic comparisons
between all symbol centroids for patiem&ndqg. As a result, the symbolization process does not
need to be restricted to well-defined labels and is able to use a richer sdtasftgspecific symbols
that capture fine-grained activity over long periods of time.

3.3 Spectrum Clipping

The formulation for symbolic mismatch in Equation 1 gives rise to a symmetric dissimifagity
trix. For methods that are unable to work directly from dissimilarities, this catraresformed
into a similarity matrix using a generalized radial basis function (Vanschoéehamd Manderick,
2005). For both the dissimilarity and similarity case, however, symbolic mismatcprealuce a
matrix that is indefinite. This can be problematic when using symbolic mismatch witlkelkeased
algorithms because the optimization problems become non-convex and thiyungdbeory is in-
validated (Chen et al., 2009b). In particular, kernel-based classificat&thods require Mercer’s
condition (Scholkopf and Smola, 2002) to be satisfied by a positive semiitdeffiernel matrix.
This creates the need to transform the symbolic mismatch matrix before it casetdes a kernel
in these methods.

We use spectrum clipping to generalize the use of symbolic mismatch for classific This
approach has been shown both theoretically and empirically to offer tedyeover other strategies
(e.g., spectrum flipping, spectrum shifting, spectrum squaring, andsth@fuindefinite kernels)
(Chen et al., 2009a). The symmetric mismatch mattikas an eigenvalue decomposition:

Ww=UTAU

whereU is an orthogonal matrix anfl is a diagonal matrix of real eigenvalues:

A =diag(A1,...,An).
Spectrum clipping maked positive semi-definite by clipping all negative eigenvalues to zero.
The modified positive semi-definite symbolic mismatch matrix is then given by:
l'I"clip = UT/\cIipU

where;

Adip = diag(max(A1,0), ...,max(An,0)).

Using Wqip as a kernel matrix is then equivalent to us(mg”p)l/zui as the representation of
thei-th training sample.

We note that while we introduce spectrum clipping mainly for the purposeazdaming the
applicability of symbolic mismatch to kernel-based methods, this approack affitional advan-
tages. Some researchers, for example, assume that negative eigefahe similarity matrix are
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caused by noise and view spectrum clipping as a denoising step (Wu €2@8), Z'he results of
our experiments, presented later in this paper, support the view of spedipping being useful in
a broader context.

4. Risk Stratification Using Symbolic Mismatch

We now present three different approaches using symbolic mismatch tifyddgh risk patients
in a population. We choose these algorithms consistent with Eskin et al.)(280&ethods that
can operate on high dimensional data, and that each detect points lyingrse spgions of the
feature space in different ways. The first of these approachesausge-class SVM and a symbolic
mismatch similarity matrix obtained using a generalized radial basis transformakiom.other
two approaches, nearest neighbor analysis and hierarchical olgstese the symbolic mismatch
dissimilarity matrix. In each case, the symbolic mismatch matrix is processed usicigusp clip-
ping. All three of our approaches focus on finding patients with long-te@® time-series that are
anomalies in the population.

4.1 Classification Approach

Our first approach is based on SVMs. SVMs have been applied to andetalstion in the one-class
setting. Scholkopf et al. (2001) propose a method of adapting the SVM dwdtigy to the one-
class classification problem. This is done by mapping the data into the featw® aprresponding
to the kernel and separating instances from the origin with the maximum mamsepBarate data
from the origin, the following quadratic program is solved:

15 1

min = — V& -

min S IWE+ L Y & —p
subject to:

(W-®(z)) >p-& i=1..n&>0

wherev reflects the tradeoff between incorporating outliers and minimizing the size ciugport
region.

For a new instance, the label is determined by evaluating which side of tleeghigpe the in-
stance falls on in the feature space. The resulting predicted label in tetheslafgrange multipliers
aj and the spectrum clipped symbolic mismatch similarity ma#x, is then:

¥ =s9n(} aiaip(i, j) — p)-

We apply this approach to train a one-class SVM on all patients. Patients whiotdiele the
enclosing boundary are then labeled as anomalies. The paransarebe varied to control the size
of this group.

4.2 Nearest Neighbor Approach

Our second approach is based on the concept of nearest neiglabysis. The assumption under-
lying this approach is that normal data instances occur in dense neiglbbsrhehile anomalies
occur far from their closest neighbors.
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We use an approach similar to that in Eskin et al. (2002). In this case, tmeadyn score of
each patient’s long-term time-series is computed as the sum of its distancesnre-series for its
k-nearest neighbors, as measured by symbolic mismatch. Patients with anoarak/exceeding a
thresholdd are labeled as anomalies.

4.3 Clustering Approach

Our third approach is based on agglomerative hierarchical clusterirgbagyin by putting each
patient in a separate cluster, and then proceed in each iteration to mergetbleidters that are
most similar to each other. The distance between two clusters is defined asthgeaof the

pairwise symbolic mismatch of the patients in each cluster. The clustering pitecesnates when
it enters a region of diminishing returns (i.e., at a 'knee’ of the curveespwnding to the distance
of clusters merged together at each iteration). At this point, all patients eutsdargest cluster
are labeled as anomalies.

5. Evaluation Methodology

We evaluated our work on patients enrolled in the DISPERSE?2 trial (Casiralny 2007). Patients
in the study were admitted to a hospital with non-ST-elevation acute corogadrasne (non-
ST-elevation myocardial infarction or unstable angina). Three lead cantsnECG monitoring
(LifeCard CF / Pathfinder, DelMar Reynolds / Spacelabs, Issaqup¥sa performed for a median
duration of 4 days at a sampling rate of 128 Hz. The endpoints of castiolaa death, myocardial
infarction and severe recurrent ischemia were adjudicated by a blireteel pf clinical experts
for a median follow-up period of 60 days. The maximum follow-up was 90sdapata from
686 patients was available after removal of noise-corrupted signalsnddiive follow-up period
there were 14 cardiovascular deaths, 28 myocardial infarctions, &uodskes of severe recurrent
ischemia. We define a major adverse cardiac event to be any of thesadiverse events. The
clinical characteristics of this patient population are presented in Table 1.

We studied the ability of each approach (i.e., classification, nearest weighblysis and clus-
tering) to identify a high risk group of patients. Consistent with earlier stuidies/aluate new
methods for risk stratification in the setting of acute coronary syndrome é&hdipal., 2008), we
classified patients in the highest quartile as the high risk group. For théficktssn approach, this
corresponded to choosingsuch that the group of patients lying outside the enclosing boundary
constituted roughly 25% of the population. For the nearest neighbooagipmwe investigated all
odd values ok from 3 to 9, and patients with anomaly scores in the top 25% of the populatien wer
classified as being at high risk. For the clustering approach, the vasigieg of the clusters merged
together at each step made it difficult to select a high risk quartile. Ingpatiénts lying outside
the largest cluster were categorized as being at risk. In the tests kpetde in this paper, this
group contained roughly 23% the patients in the population. We used the/MB@&plementation
for our one-class SVM. Both the nearest neighbor and clusteringapipes were carried out using
MATLAB implementations.

We employed Kaplan-Meier survival analysis (Efron, 1988) to comffaeates for major ad-
verse cardiac events between patients declared to be at high and lowrradkthree approaches.
Hazard ratios (HR) and 95% confidence interval (Cl) were estimated) @si@ox proportional
hazards regression model (Cox, 1972). The predictions of eacbagpwere studied in univari-
ate models, and also in multivariate models that additionally included other clirskalariables
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Age (years) 62 (53 to 70)
Age>65 years 41%
Female Gender 36%
Current Smoker 57%
Hypertension 69%
Diabetes Mellitus 23%
Hyperlipidemia 64%
History of COPD 9%
History of CHD 37%
Previous Ml 25%
Previous angina 58%
ST depression0.5mm 66%
Index diagnosis of Ml 49%

Table 1: Clinical characteristics of patient population used for study.

(age>65 years, gender, smoking history, hypertension, diabetes mellitustlipigemia, history
of chronic obstructive pulmonary disorder (COPD), history of corgiteart disease (CHD), pre-
vious MI, previous angina, ST depression on admission, index diagobd) as well as ECG
risk metrics proposed in the past such as heart rate variability (HRV) (Mabk, 1996), heart rate
turbulence (HRT) (Barthel et al., 2003), and deceleration capacity (B&uer et al., 2006).

For HRV, we used metrics proposed by the Task Force of the Europmaetyof Cardiology
and the North American Society of Pacing and Electrophysiology: the sthddeiation of normal-
to-normal intervals (SDNN), standard deviation of sequential five minutealeto-normal means
(SDANN), mean of the standard deviation of sequential five minute normadtmal intervals
(ASDNN), root mean square successive differences (rMSSRY)t Inate variability index (HRVI),
percent of normal-to-normal interval increments greater than 50 ms (PN& the ratio of low
frequency power to the high frequency power (LF/HF). While we congateHRV measures, we
only report results for the best performing one, that is, LF/HF. HRYHE-was dichotomized at
0.95 using the results reported earlier in the literature (Malik et al., 1996).

We measured HRT and DC for each patient using the libRASCH softwaredshar research
use by the inventors of the method (Technische Universitat MunchenjckluGermany). HRT
was trichotomized based on the turbulence onset (TO) and turbulenee($®pas follows: HRTO
(TO<O0 and TS-2.5ms), HRTL1 (either TOO0 or TS<2.5ms), and HRT2 (TG0 and TS<2.5ms)
(Barthel et al., 2003). DC was trichotomized as follows: category£.5ms), category 1 (2.5 ms-
4.5 ms), and category 2@.5ms) (Bauer et al., 2006). Both HRT and DC were treated as continuous
variables in our study.

We did not compare our work to T-wave alternans (TWA) (Rosenbauah,et994) as TWA is
typically measured using specialized hardware and maneuvers to intmedssart rate. While we
experimented with a TWA algorithm that has recently been proposed to necBidy on ECG data
collected routinely during admission (Nearing and Verrier, 2002), thisrighgo did not produce
good results. We believe these results reflect an inability to measure TWAuvispecialized
hardware and manoeuvres, as opposed to the lack of predictive disdiimifa the method. We
therefore excluded TWA from our analysis, as an ECG approach thadris appropriate for ECG
signals collected under specialized conditions.

1010



SIMILARITY -BASED CARDIOVASCULAR RISK STRATIFICATION USING TIME-SERIES DATA

Method HR PValue 95% Cl
One-Class SVM 1.38 0.033 1.04-1.89
3-Nearest Neighbor | 1.91  0.031 1.06-3.44
5-Nearest Neighbor | 2.10 0.013  1.17-3.76
7
|
3

7-Nearest Neighbor | 2.28 0.005 1.28-4.0]
9-Nearest Neighbor | 2.07 0.015 1.15-3.71
Hierarchical Clustering 2.04 0.017 1.13-3.6§

Table 2: Univariate association of high risk predictions from differgmgraaches using symbolic
mismatch with major adverse cardiac events over a 90 day period followitg eawonary
syndrome.

6. Results

We divide our results into two broad groups: univariate results (symbolimatth-based ap-
proaches in univariate models), and multivariate results (symbolic mismasettlagproaches in
multivariate models). We also report on the effect of spectrum clippingediopnance and provide
some brief results regarding the runtime performance of our approach.

6.1 Univariate Results

Results of univariate analysis for all three unsupervised symbolic misrbaséd approaches are
presented in Table 2. The predictions from all methods showed a statistigaiificant (i.e.,

p < 0.05) association with major adverse cardiac events following acute cogrepadrome. The
results in Table 2 can be interpreted as roughly a doubled rate of aswecsames per unit time in
patients identified as being at high risk by the nearest neighbor and olgstégproaches. For the
classification approach, patients identified as being at high risk had lg 48&b6 increased risk of
adverse outcomes. Kaplan-Meier survival curves for all three metagdshown in Figures 3 to 5.
For the nearest neighbor approach, we present only the resultefoeshperforming (i.e.,k=7).

For comparison, we also include the univariate association of the otheratlanid ECG risk
variables in our study (Tables 3 and 4). Both the nearest neighbordastéring approaches had a
higher hazard ratio in this patient population than any of the clinical and Esk@ariables studied.
Of the clinical risk variables, only age was found to be associated oarigie analysis with major
cardiac events after acute coronary syndrome. Diabgte®(72) was marginally outside the 5%
level of significance. Of the ECG risk variables, both HRT and DC shavewivariate association
with major adverse cardiac events during follow-up.

These results suggest that unsupervised risk stratification using symtislitatch can suc-
cessfully identify patients at an elevated risk of major adverse cardiatdsefa@lowing ACS. In
particular, our data shows that patients categorized as high risk by ouodasatbntinue to experi-
ence an increased risk of adverse outcomes throughout the entirg 9eritzd post-ACS (Figures
3-5). Our findings are also encouraging in that the relative increasatienp risk found using our
methods compares quite favorably with other metrics based on specializetélge that are used
in existing cardiac risk scoring tools. While the size of our patient populatamtsles to avoid state-
ments about the nearest neighbor and clustering approaches beimgHzettéhe other variables in
our study (i.e., on the basis of having a higher observed hazard ratithihse other variables), we
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Figure 3. Kaplan-Meier major cardiac event curve for the one-clads &yproach. Ticks represent
patient censoring (i.e., patients leaving the study before completion). Tljgremm) line
corresponds to patients with anomaly scores in the top quartile of the population
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Figure 4: Kaplan-Meier major cardiac event curve for the 7-neamghbor approach. Ticks rep-
resent patient censoring (patients leaving the study before completibe)top (green)
line corresponds to patients with anomaly scores in the top quartile of the fiopula
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Figure 5: Kaplan-Meier major cardiac event curve for the hierarcluicstering approach. Ticks
represent patient censoring (patients leaving the study before completidre top
(green) line corresponds to patients with anomaly scores in roughly theutogilg of
the population.

Clinical Variable HR PValue 95% CI
Age>65 years 1.82 0.041 1.02-3.24
Female Gender 0.69 0.261 0.37-1.31
Current Smoker 1.05 0.866 0.59-1.87

Hypertension 144 0.257 0.77-2.68

Diabetes Mellitus 195 0.072 0.94-4.04
Hyperlipidemia 1.00 0.994 0.55-1.82

History of COPD 1.05 0.933 0.37-2.92
History of CHD 1.10 0.994 0.37-2.92

Previous Ml 1.17 0.630 0.62-2.22
Previous angina 094 0.842 0.53-1.68
ST depression0.5mm | 1.13 0.675 0.64-2.01
Index diagnosis of MI | 1.42  0.134  0.90-2.26

Table 3: Univariate association of existing clinical risk variables with majoeesk cardiac events
over a 90 day period following acute coronary syndrome.

believe that our data provides strong support for the ability of unsigevisk stratification to add
information beyond these existing metrics.
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ECG Variable| HR P Value 95% CI
HRV 156 0.128 0.88-2.77
HRT 1.64 0.013 1.11-2.42

DC 1.77 0.002 1.23-2.54

Table 4: Univariate association of existing ECG risk variables with majorradveardiac events
over a 90 day period following acute coronary syndrome.

Age Fem Smo Hpt Dia Lip COPD CHD Ml Ang ST Ind

One-Class SVM -0.07 0.02 -0.03 -0.08 -0.06 0.03 -0.03 0.03 -0.07 0.01 0.0®.02-
3-Nearest Neighbor | 0.11 0.00 -0.02 0.05 0.03 -0.05 0.04 -0.09 0.08 0.04 0.01 Q@02
5-Nearest Neighbor | 0.12 0.01 -0.03 0.05 0.05 -0.04 0.04 -0.10 0.09 0.05 0.02 Q@.02
7-Nearest Neighbor | 0.11 0.00 -0.03 0.05 0.06 -0.04 0.04 -0.10 0.09 0.06 0.02 Q.02
9-Nearest Neighbor | 0.11 0.00 -0.02 0.05 0.06 -0.04 0.05 -0.10 0.09 0.07 0.01 Q@02
Hierarchical Clustering] 0.16 0.03 -0.04 0.05 0.08 -0.05 0.05 -0.08 0.04 000 0.03 0.04

Table 5: Correlation of high risk predictions with clinical risk variables (Agge>65,
Fem=female gender, Smo=current smoker, Hpt=hypertension, Diatelaleellitus,
Lip=hyperlipidemia, COPD=history of COPD, CHD=history of CHD, MI=pi@us MI,
Ang=previous angina, ST=ST depressidh5mm, Ind=Index diagnosis of MI).

HRV HRT DC
One-Class SVM -0.14 -0.01 -0.09
3-Nearest Neighbor | 0.16 0.00 0.02
5-Nearest Neighbor | 0.16 0.01 0.03
7-Nearest Neighbor | 0.15 0.01  0.03
9-Nearest Neighbor | 0.17 0.01 0.04
Hierarchical Clustering 0.20 0.06 0.08

Table 6: Correlation of high risk predictions with ECG risk variables.

6.2 Multivariate Results

We measured the correlation between the predictions of the unsupemnuisbdliE mismatch-based
approaches and both the clinical and ECG risk variables. These resultk@wn in Tables 5 and
6. All of the unsupervised symbolic mismatch-based approaches had toslation with both the
clinical and ECG variableR< 0.2).

Our results on multivariate analysis reflect this low correlation between thbaic mismatch-
based approaches and existing clinical and ECG risk variables. On miali@&/analysis, both the
nearest neighbor approach and the clustering approach were i gredictors of adverse out-
comes (Table 7). In our study, the nearest neighbor approack &) had the highest hazard ratio
on both univariate and multivariate analysis. Both the nearest neightarlastering approaches
predicted patients with an approximately two-fold increased risk of advarsmmes. This in-
creased risk did not change much even after adjusting for other climcaE€G risk variables.
While the classification approach did not perform as well, we note that thidtnmay potentially
be improved with availability of a larger data set to learn an enclosing boyiahar by only using
data from patients known to remain event-free on follow-up.
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Method Adjusted HR P Value 95% Cl
One-Class SVM 1.32 0.074 0.97-1.79
3-Nearest Neighbor 1.88 0.042 1.02-3.46
5-Nearest Neighbor 2.07 0.018 1.13-3.79
7-Nearest Neighbor 2.25 0.008 1.23-4.11
9-Nearest Neighbor 2.04 0.021 1.11-3.73
Hierarchical Clustering 1.86 0.042 1.02-3.46

Table 7: Multivariate association of high risk predictions from differgugraaches using symbolic
mismatch with major adverse cardiac events over a 90 day period followitg eawonary
syndrome. Multivariate results adjusted for a@® years, gender, smoking history, hy-
pertension, diabetes mellitus, hyperlipidemia, history of COPD, history of Gif&vious
MI, previous angina, ST depression on admission, index diagnosis oHRN-LF/HF,
HRT and DC.

Method HR PValue 95% Cl
One-Class SVM 1.36 0.038 1.01-1.79
3-Nearest Neighbor | 1.74 0.069 0.96-3.16
5-Nearest Neighbor | 1.57 0.142 0.86-2.88
1
L
D

7-Nearest Neighbor | 1.73  0.071  0.95-3.14
9-Nearest Neighbor | 1.89 0.034  1.05-3.41
Hierarchical Clustering 1.19 0.563 0.67-2.12

Table 8: Univariate association of high risk predictions without the uspeaftsum clipping. None
of the approaches showed a statistically significant association with the shapint
in any of the multivariate models including other clinical risk variables whemtspe
clipping was not used.

Method AUROC (Model 1) AUROC (Model 2)
One-Class SVM 0.683 0.705
3-Nearest Neighbor 0.683 0.713
5-Nearest Neighbor 0.683 0.721
7-Nearest Neighbor 0.683 0.725
9-Nearest Neighbor 0.683 0.719
Hierarchical Clustering 0.683 0.711

Table 9: Improvement in discrimination when information obtained through persised risk
stratification is added to multivariate models containing=e@fe years, gender, smoking
history, hypertension, diabetes mellitus, hyperlipidemia, history of COPiriisf CHD,
previous MI, previous angina, ST depression on admission, indexasegaf Ml, HRV-
LF/HF, HRT and DC (Model A: existing risk variables, Model B: existingkriariables
combined with unsupervised risk stratification).

Consistent with the univariate case above, we consider these findingsetoacburaging. Our
data suggests that the information available through unsupervised risfcsttian based on sym-
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bolic mismatch is generally independent of the information available throughsjkeialized met-
rics. Moreover, our approach can potentially be used in a synergistisanaith these other metrics
to improve risk stratification. For example, our study found that nearéghiper-based risk strati-
fication using symbolic mismatch can identify individuals who are at a two- to{lmldencreased
risk of adverse outcomes, even after adjusting for an extensive seisting risk variables. This
provides strong support for the potential ability of our research to camgaié present approaches
to prognosticate cardiac patients. We hypothesize that these resultggatg thre to our focus on
capturing information that is quite distinct from existing metrics. In particulath lour approach of
risk stratifying patients within an unsupervised anomaly detection framewandkour focus on ex-
ploiting large volumes of long-term ECG data that is not well-suited for humalysis, predispose
to capturing information that is clinically useful but not reflected in curreetrics.

To quantify this effect better, we also studied how the area under thiveeoperating char-
acteristic curve (AUROC) changed for multivariate models constructed witlwathout the use of
information obtained through unsupervised risk stratification. Table ®pteshe results obtained
for this experiment. For each of the unsupervised risk stratification appes, the addition of the
information produced by these methods increased the ability of models dedelsing existing
risk variables to discriminate between high and low risk patients. Consistentheitharlier results,
this improvement was greatest for the 7-nearest neighbor approaehre$ults here provide fur-
ther support for the information provided by our methods being potentiatiyptementary to that
captured by current risk variables.

6.3 Effect of Spectrum Clipping

We also investigated the effect of spectrum clipping on the performanoerafifferent risk strati-
fication approaches. Table 8 presents the associations when spelghpingavas not used. For all
three methods, performance was improved when spectrum clipping wes \Wgenote that while
our motivation for using spectrum clipping was largely to broaden the ajilityaof symbolic mis-
match to kernel-based methods, the ability of spectrum clipping to reduceproigded a positive
effect for all methods.

6.4 Runtime Performance

Figure 6 presents a histogram of the number of heart beats in each gdtegtterm ECG signal
over the first 24 hours following admission. The median humber of beatggtient was 99,581,
with an interquartile range of 89,051 to 110,337. The minimum number of beatdwa30 while
the maximum was 161,696.

Figure 7 presents similar information for the number of symbols obtained pienpthrough
the clustering process described in Section 3.1. The median number of Isypeogatient was
66, with an interquartile range of 37 to 114. The minimum number of symbols welsilé the
maximum was 284.

On a dual-core Intel Pentium 4 3.06 GHz platform with 4GB RAM running MABLR2007a
with Ubuntu 9.10 the symbolization of each patient’s data (24 hours of ECGlediail 28 Hz) took
around 10 minutes. Roughly speaking, the use of symbolization comprasset 100,000 beats
per patient to below 70 symbols (i.e., a reduction by a factor of just unded}L,5he corresponding
improvement in the runtime of comparing long-term ECG signals was quadratitsirettuction,
since (roughly speaking) instead of 100,000-by-100,000 comparcfdresart beats in the original
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Figure 6: Histogram of the heart beats per patient over 24 hoursi$seale:x 10P).
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Figure 7: Histogram of the number of symbols per patient.

signals, only 70-by-70 symbol centroid and symbol frequency compaig/ere necessary. The
overall runtime complexity of our analysis was theref@?6212) + O(nBmi?), where the left
term corresponds to the runtime of finding anomalies using symbolized datdhaniht term
corresponds to the runtime of creating symbolic representations of thearg@G signals. We
denote the number of patients by the maximum number of symbols for any patient Gyythe
maximum number of heart beats for any patientiyand the maximum length of any heart beat (in
samples) by. The left term of the runtime above is quadratic in the number of patients (glhce
pairs of patients are compared to find anomalies), the number of symbols élipairs of symbols
are compared for any pair of patients), and the length of symbol ceniigiitte DTW compares
all the samples for each pair of symbol centroids). The right term of thénne above is linear in
the number of patients (since each patient’s data is symbolized oncefmibrresponding to the
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time taken to make a pass through mlbeats in each of thé iterations of Max-Min clustering,
and|? being the cost of using DTW to compare heart beats. While the computatiosiabt
clustering is significant, it leads to @ factor in the runtime associated with finding anomalies
using symbolic mismatch rather than @ factor (wheremis much larger tha® as shown by our
results). The use of symbolization therefore represents one of theokeges of speedup in our
study, reducing the runtime fro@(n?m?l2) without symbolization ta@(n?6212) 4+ O(nBmi2) with
symbolization. We note that while other sources of runtime improvement arpadsible (e.g., by
addressing the quadratic runtime of DTW or by avoiding comparisons betallegairs of patients

in the population for anomaly detection), the values ahdl are both much smaller, and therefore
represent smaller gains, than tnéfactor reduced by symbolization.

7. Related Work

Previous work on comparing time-series can be divided into two broacdestassgethods to compare
signals based on their raw samples, and methods to compare signals byrextestures from the
data.

Most previous work on comparing signals in terms of their raw samples, imgjudetrics such
as dynamic time warping (Keogh and Pazzani, 2001; Keogh and Ratanam&h2005), longest
common subsequence (Vlachos et al., 2002), edit distance with redtyp@tzeng and Ng, 2004),
sequence weighted alignment (Morse and Patel, 2007), spatial assewufibtangce (Chen et al.,
2007), focuses on relatively short time-series. This is due to the runtithesd methods (quadratic
for many methods) and the need to reason in terms of the frequency aachidgrof higher-level
signal constructs (as opposed to individual samples) when studyitgnsyover long periods.
These existing methods do not, therefore, directly focus on comparigdorey signals (e.g., tens
of millions of samples).

In contrast to this, the vast majority of prior research on comparing lomg-tiene-series fo-
cuses on extracting specific features from long-term signals and quagtifie differences between
these features. For example, in the context of cardiovascular dideageerm ECG is often re-
duced to features (e.g., mean heart rate or heart rate variability) ancacednin terms of these
features. These approaches, unlike our symbolic mismatch based @mspdraw upon signifi-
canta priori knowledge. Our belief was that for applications like risk stratifying patiestsrfajor
cardiac events, focusing on a set of specialized features leads to intpoftemation being poten-
tially missed. In our work, we focus instead on developing an approathybals use of significant
a priori knowledge by comparing the raw morphology of long-term time-series. \¢eoge do-
ing this in a computationally efficient and systematic way through symbolization. Whdaise
of symbolization represents a lossy compression of the original signalntherlying process of
guantifying differences between long-term time-series remains grounded comparison of raw
morphology.

The process of symbolization maps the problem of comparing long-term tines-geo the do-
main of sequence comparison. There is an extensive body of priorfacwking on the comparison
of sequential or string data. Algorithms based on measuring the edit didtahween strings are
widely used in disciplines such as computational biology (Jones and Re2f04; Durbin et al.,
1998), but are typically restricted to comparisons of short sequeroasibe of their computational
complexity. More closely related to our research is previous work on teeotiprofile hidden
Markov models (Krogh, 1994; Jaakkola et al., 1999) to optimize recognitidrinary labeled se-
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guences. This work focuses on learning the parameters of a hiddé&wWaodel that can represent
approximations of sequences and can be used to score other seqgu&acerally, this approach re-
quires large amounts of data or sophisticated priors to train the hidden Wawbaels. Computing
forward and backward probabilities from the Baum-Welch algorithm is absp ®omputationally
intensive. Subsequent research in this area focuses on mismatcltasexbkzrnels (Leslie et al.,
2003), which use the mismatch tree data structure (Eskin and Pevzn@j,ta0fuantify the dif-
ference between two sequences based on the approximate occuafréred length subsequences
within them. Similar to this approach is work on using a “bag of motifs” represientéBen-Hur
and Brutlag, 2006), which provides a more flexible representation thad kength subsequences
but usually requires prior knowledge of motifs in the data (Ben-Hur andl&y, 2006).

In contrast to these efforts, we use a simple, computationally efficienbagiprto compare
symbolic sequences without prior knowledge. Most importantly, our a@mbrdielps address the
scenario where symbolizing long-term time-series in a patient-specific méads to the sym-
bolic sequences for patients being drawn from different alphabetdd(8yal., 2010). In this case,
hidden Markov models, mismatch trees or a “bag of motifs” approach tramed® patient cannot
be easily used to score the sequences for other patients. Insteachnapgrative approach must
maintain a hard or soft registration of symbols across individuals. Symbolimamis addresses
this scenario and complements existing work on sequence comparisonhtlasugple, computa-
tionally efficient measure that quantifies differences across patients sghaiaing information on
how the symbols for these patients differ.

Finally, we also distinguish our work from earlier efforts to risk stratify patseusing long-term
data. In particular, we supplement our symbolic mismatch kernel with the idi@dting high risk
patients as those individuals in the population with unusual long-term timess&oe example, in
the context of cardiovascular disease, techniques such as heamniatglity (Malik et al., 1996),
heart rate turbulence (Barthel et al., 2003), and t-wave alternans (8traihy 1988; Rosenbaum
et al., 1994) have all been shown to be useful in risk stratifying patieniskafor future cardio-
vascular events following acute coronary syndromes. The focus sé tmethods is to calculate a
particular pre-defined feature from the raw ECG signal, and to use intopatients along a risk
continuum. Our approach, focusing on detecting patients with high symbolic mismedétive to
other patients in the population, is orthogonal to the use of specialized hiigieaittires along two
important dimensions. First, it does not require the presence of sigrificin knowledge. For
the cardiovascular care, we only assume that ECG signals from patientsrevlat high risk differ
from those of the rest of the population. There are no specific assursptimut the nature of these
differences. Second, the ability to partition patients into groups with similar El@Eacteristics
and potentially common risk profiles potentially allows for a more fine-graine@nstanding of a
how a patient’s future health may evolve over time. Matching patients to pass eath similar
ECG signals could lead to more accurate assignments of risk scores fioujgarevents such as
death and recurring heart attacks.

8. Discussion
In this paper, we proposed using symbolic mismatch to quantify differenémsgrterm physiologi-

cal time-series. Our approach uses a symbolic transformation to meaaungestin the morphology
and frequency of prototypical functional units observed over lonmggs in two signals.
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In addition to proposing symbolic mismatch, which avoids feature extractiordaal$ with
inter-patient differences in a parameter-less way, we also exploredypiwhiesis that high risk
patients in a population can be identified as individuals with anomalous longstgrals. We de-
veloped multiple comparative approaches to detect such patients, andtedahese methods in a
real-world application of risk stratification for major adverse cardiac evilowing acute coro-
nary syndrome. Our results suggest that symbolic mismatch-based ctingapgproaches may
have clinical utility in identifying high risk patients, and can provide informaticat ik comple-
mentary to existing clinical risk variables.

In particular, we note that the hazard ratios we report are typically cereictlinically mean-
ingful. Risk stratification following ACS is an extremely challenging goal. In &edint study of
118 variables in 15,000 post-ACS patients with 90 day follow-up similar to opuladion, Newby
et al. (2003) did not find any variables with a hazard ratio greater thdh 2\@ observed a sim-
ilar result in our patient population, where all of the existing clinical and E{St variables had
a hazard ratio less than 2.00. In contrast to this, our nearest neighbed approach achieved a
hazard ratio of 2.28, even after being adjusted for existing risk measWvesbelieve that these
results provide strong support for the potential role of our researoghpnoving the management
of patients post-ACS.

We envision our techniques being primarily useful in their ability to enrich mddelsardio-
vascular risk stratification. In other words, we expect the risk scarergted by our methods to
serve as features that can be combined with other features basedcaiizpe knowledge while
assessing the overall health of patients. While we dichotomized the resultsfodar methods for
evaluation consistent with the way most new cardiovascular risk metricaaidated, we believe
that the best use of this information is in its original continuous form to prosidi@er grained
distinction between high and low risk patients. We further believe that thelualemse case of
our tools will be to assess individual patients that present at differens tlme@nomalies relative
to a continuously increasing data set of patients seen previously. Asgemis research, such as
symbolic mismatch, may also have a role in a supervised setting, as we discusstlagesection.

In the context of cardiovascular disease, techniques such as heanariability, heart rate
turbulence, T wave alternans, and morphologic variability have all bemmrsto be useful in risk
stratifying patients at risk for future cardiovascular events followindexcaronary syndromes. The
focus of these methods is to calculate a specific pre-defined featurétfeoraw ECG signal, and
to use it to rank patients along a risk continuum. Our approach, focusirdgt@cting patients
with high symbolic mismatch relative to other patients in the population, is orthogamaperhaps
complementary) to the use of specialized high risk features. First, it ddesagre the presence
of significant prior knowledge. For the cardiovascular care, we osduime that ECG signals from
patients who are at high risk differ from those of the rest of the populafitvere are no specific
assumptions about the nature of these differences. Second, the abilitytitop patients into
groups with similar ECG characteristics and potentially common risk profiles toaitgrallows
for a more fine-grained understanding of a how a patient’s future healfhewwve over time.
Matching patients to past cases with similar ECG signals could lead to more @cassggnments
of risk scores for particular events such as death and recurringdttsaoks.

We conclude with some limitations of our work. While our decision to compare thphmotygy
and frequency of prototypical functional units leads to a measure thatriputationally efficient
on large volumes of data, this process does not capture information reddtexldynamics of these
prototypical units or in specific sequences of symbols. We also obsavaltithree of the com-
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parative approaches investigated in our study focus only on identifgtigrmis who are anomalies.
Although we believe that symbolic mismatch may have further use in superveseing, the size of
our patient population and the small number of adverse cardiac outcoerethe®0 day follow-up
meant that dividing the patients into separate training and testing groups maikdit challenging
to learn models that generalized well. This hypothesis, that is, of symbolic misineitcg useful
in the setting of supervised learning, therefore needs to be evaluated uligrerf larger patient
populations. Finally, we note that we did not have echocardiographidalapatients in the DIS-
PERSE?2 trial. As a result, we did not include a comparison in our study to metridsas left
ventricular ejection fraction (LVEF). We believe that our research avdsrfurther investigation on
larger data sets, with a more comprehensive set of existing clinical memitdomager follow-ups
in the future.
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