
Journal of Machine Learning Research 12 (2011) 3147-3186 Submitted 9/10; Revised 5/11; Published 11/11

Adaptive Exact Inference in Graphical Models

Özgür Sümer OSUMER@CS.UCHICAGO.EDU

Department of Computer Science
University of Chicago
1100 E. 58th Street
Chicago, IL 60637, USA

Umut A. Acar UMUT@MPI-SWS.ORG

Max-Planck Institute for Software Systems
MPI-SWS Campus E 1 4
D-66123 Saarbruecken, Germany

Alexander T. Ihler IHLER@ICS.UCI.EDU

Donald Bren School of Information and Computer Science
University of California, Irvine
Irvine, CA 92697 USA

Ramgopal R. Mettu METTU@ECS.UMASS.EDU

Electrical and Computer Engineering Department
University of Massachusetts, Amherst
151 Holdsworth Way
Amherst, MA 01003, USA

Editor: Neil Lawrence

Abstract

Many algorithms and applications involve repeatedly solving variations of the same inference prob-
lem, for example to introduce new evidence to the model or to change conditional dependencies.
As the model is updated, the goal ofadaptive inferenceis to take advantage of previously com-
puted quantities to perform inference more rapidly than from scratch. In this paper, we present
algorithms for adaptive exact inference on general graphs that can be used to efficiently compute
marginals and update MAP configurations under arbitrary changes to the input factor graph and its
associated elimination tree. After a linear time preprocessing step, our approach enables updates to
the model and the computation of any marginal in time that is logarithmic in the size of the input
model. Moreover, in contrast to max-product our approach can also be used to update MAP config-
urations in time that is roughly proportional to the number of updated entries, rather than the size
of the input model. To evaluate the practical effectivenessof our algorithms, we implement and
test them using synthetic data as well as for two real-world computational biology applications.
Our experiments show that adaptive inference can achieve substantial speedups over performing
complete inference as the model undergoes small changes over time.

Keywords: exact inference, factor graphs, factor elimination, marginalization, dynamic program-
ming, MAP computation, model updates, parallel tree contraction

c©2011Özg̈ur Sümer, Umut A. Acar, Alexander T. Ihler and Ramgopal R. Mettu.

SÜMER, ACAR, IHLER AND METTU

1. Introduction

Graphical models provide a rich framework for describing structure withina probability distribution,
and have proven to be useful in numerous application areas such as computational biology, statistical
physics, and computer vision. Considerable efforts have been made to understand and minimize the
computational complexity of inferring the marginal probabilities or most likely stateof a graphical
model. However, in many applications we may need to perform repeated computations over a
collection of very similar models. For example, hidden Markov models are commonly used for
sequence analysis of DNA, RNA and proteins, while protein structure requires the definition of a
factor graph defined by the three-dimensional topology of the protein of interest. For both of these
types of models, it is often desirable to study the effects of mutation on functional or structural
properties of the gene or protein. In this setting, each putative mutation gives rise to a new problem
that is nearly identical to the previously solved problem.

The changes described in the examples above can, of course, be handled by incorporating them
into the model and then performing inference from scratch. However, in general we may wish to
assess thousands of potential changes to the model—for example, the number of possible mutations
in a protein structure grows exponentially with the number of considered sites—and minimize the
total amount of work required.Adaptive inferencerefers to the problem of handling changes to the
model (e.g., to model parameters and even dependency structure) more efficiently than performing
inference from scratch. Performing inference in an adaptive manner requires a new algorithmic
approach, since it requires us to balance the computational cost of the inference procedure with the
reusability of its calculations. As a simple example, suppose that we wish to compute the marginal
distribution of a leaf node in a Markov chain withn variables. Using the standard sum-product
algorithm, upon a change to the conditional probability distribution at one end of the chain, we must
performΩ(n) computation to compute the marginal distribution of the node at the other end of the
chain. In such a setting, it is worth using additional preprocessing time to restructure the underlying
model in such a way that changes to the model can be handled in time that is logarithmic, rather
than linear, in the size of the model.

In this paper, we focus on developing efficient algorithms for performing exact inference in
the adaptive setting. Specifically, we present techniques for two basic inference tasks in general
graphical models: marginalization and finding maximuma posteriori(MAP) configurations. Our
high-level approach to enabling efficient updates of the model, and recalculation of marginals or
a MAP configuration, is to “cluster” parts of the input model by computing partial eliminations,
and construct a balanced-tree data structure with depthO(logn). We use a process based on factor
elimination (Darwiche, 2009) that we callhierarchical clusteringthat takes as input a graph and
elimination tree (equivalent to a tree-decomposition of the graphical model), and produces an al-
ternative, balanced elimination sequence. The sufficient statistics of the balanced elimination are
re-usable in the sense that they will remain largely unchanged by any small update to the model.
In particular, changes to factors and the variables they depend on can be performed in time that is
logarithmic in the size of the input model. Furthermore, we show that after suchupdates, the time
necessary to compute marginal distributions is logarithmic in the size of the model, and the time to
update a MAP configuration is roughly proportional to the number of variables whose values have
changed.

3148

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

1.1 Related Work

There are numerous machine learning and artificial intelligence problems, such as path planning
problems in robotics, where new information or observations require changing a previously com-
puted solution. As an example, problems solved by heuristic search techniques have benefited
greatly from incremental algorithms (Koenig et al., 2004), in which solutions can be efficiently up-
dated by reusing previously searched parts of the solution space. The problem of performing adap-
tive inference in graphical models was first considered by Delcher et al. (1995). In their work, they
introduced a logarithmic time method for updating marginals under changes to observed variables
in the model. Their algorithm relies on the input model being tree-structured, and can only handle
changes to observations in the input model. At a high level their approach issimilar to our own, in
that they also use a linear time preprocessing step to transform the input tree-structured model into a
balanced tree representation. However, their algorithm addresses onlyupdates to “observations” in
the model, and cannot update dependencies in the input model. Additionally, while their algorithm
can be applied to general graphs by performing a tree decomposition, it is not clear whether the tree
decomposition itself can be easily updated, as is necessary to remain efficient when modifying the
input model. Adaptive exact inference using graph-cut techniques has also been studied by Kohli
and Torr (2007). Although the running time of their method does not dependon the tree-width of the
input model, it is restricted to pairwise models with binary variables or with submodular pairwise
factors. Adaptivity for approximate inference has also been studied by Komodakis et al. (2008); in
this work, adaptivity is achieved by performing “warm starts”. That is, a change to model is simply
made at the final iteration of approximate inference and the algorithm is restarted from this state and
allowed to continue until convergence.

The preprocessing technique used by Delcher et al. (1995) is inspiredby a method known as
parallel tree contraction, devised by Miller and Reif (1985) to evaluate expressions on parallel ar-
chitectures. In parallel tree contraction we must evaluate a given expression tree, where internal
nodes are arithmetic operations and leaves are input values. The parallelalgorithm of Miller and
Reif (1985) works by “contracting” both leaves and internal nodes of the tree in rounds. At each
round, the nodes to eliminate are chosen in a random fashion and it can be shown that, in expec-
tation, a constant fraction of the nodes are eliminated in each round. By performing contractions
in parallel, the expression tree can be evaluated in logarithmic time and linear totalwork. Paral-
lel tree contraction can be applied to any semi-ring, including sum-product (marginalization) and
max-product (maximization) operators, making it directly applicable to inference problems, and
it has also been used to develop efficient parallel implementations of inference (Pennock, 1998;
Namasivayam et al., 2006; Xia and Prasanna, 2008).

An interesting property of tree contraction is that it can also be made to beadaptiveto changes
in the input (Acar et al., 2004, 2005). In particular, the techniques of self-adjusting computation
(Acar, 2005; Acar et al., 2006, 2009a; Hammer et al., 2009) show that tree contraction can, for
example, be used to derive an efficient and reasonably general data structure for dynamic trees
(Sleator and Tarjan, 1983). In this paper we apply similar techniques to develop a new algorithm
for adaptive inference that can handle arbitrary changes to the input model and can be used for both
marginalization and for computing MAP configurations.

3149

SÜMER, ACAR, IHLER AND METTU

1.2 Contributions

In this paper, we present a new framework for adaptive exact inference, building upon the work of
Delcher et al. (1995). Given a factor graphG with n nodes, and domain sized (each variable can take
d different values), we require the user to specify an elimination treeT on factors. Our framework
for adaptive inference requires a preprocessing step in which we builda balanced representation of
the input elimination tree inO(d3wn) time wherew is the width of the input elimination treeT. We
show that this balanced representation, which we call acluster tree, is essentially equivalent to a tree
decomposition. For marginal computations, a change to the model can be processed inO(d3w · logn)
time, and the marginal for particular variable can be computed inO(d2w · logn) time. For a change
to the model that inducesℓ changes to a MAP configuration, our approach can update the MAP
configuration inO(d3w logn+dwℓ log(n/ℓ)) time, without knowingℓ or the changed entries in the
configuration.

As in standard approaches for exact inference in general graphs,our algorithm has an expo-
nential dependence on the tree-width of the input model. The dependencein our case, however
is stronger: if the input elimination tree has widthw, our balanced representation is guaranteed to
have width at most 3w. As a result the running time of our algorithms for building the cluster tree as
well as the updates have aO(d3w) multiplicative factor; updates to the model and queries however
require logarithmic, rather than linear, time in the size of the graph. Our approach is therefore most
suitable for settings in which a single build operation is followed by a large number of updates and
queries.

Sinced andw can often be bounded by reasonably small constant factors, we know that there
exists somen beyond which we would achieve speedups, but where exactly the speedups materialize
is important in practice. To evaluate the practical effectiveness of our approach, we implement the
proposed algorithms and present an experimental evaluation by considering both synthetic data
(Section 6.1) and real data (Sections 6.2 and 6.3). Our experiments using synthetically generated
factor graphs show that even for modestly-sized graphs (10−1000 nodes) our algorithm provides
orders of magnitude speedup over computation from scratch for computing both marginals and
MAP configurations. Thus, the overhead observed in practice is negligible compared to the speedup
possible using our framework. Given that the asymptotic difference between linear and logarithmic
run-times can be large, it is not surprising that our approach yields speedups for large models. The
reason for the observed speedups in the smaller graphs is due to the factthat constant factors hidden
by the asymptotic bounds associated with the exponential bounds are small (because they involve
fast floating point operations) and because our worst-case bounds are often not attained for relatively
small graphs (Section 6.1.5).

In addition, we also show the applicability of our framework to two problems in computational
structural biology (Sections 6.2 and 6.3). First, we apply our algorithm to protein secondary struc-
ture prediction using an HMM, showing that secondary structure types can be efficiently updated as
mutations are made to the primary sequence. For this application, our algorithm isone to two orders
of magnitude faster than computation from scratch. We also apply our algorithm to protein sidechain
packing, in which a (general) factor graph defines energetic interactions in a three-dimensional pro-
tein structure and we must find a minimum-energy conformation of the protein. For this problem,
our algorithm can be used to maintain a minimum-energy conformation as changesare being made
to the underlying protein. In our experiments, we show that for a subset of the SCWRL benchmark

3150

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

(Canutescu et al., 2003), our algorithm is nearly 7 times faster than computingminimum-energy
conformations from scratch.

Several elements of this work have appeared previously in conferenceversions (Acar et al.,
2007, 2008, 2009b). In this paper we unify these into a single frameworkand improve our al-
gorithms and our bounds in several ways. Specifically, we present deterministic versions of the
algorithms, including a key update algorithm and its proof of correctness; we derive upper bounds
in terms of the tree-width, the size of the model, and the domain size; and we givea detailed exper-
imental analysis.

1.3 Outline

The remainder of the paper is organized as follows. In Section 2, we givethe definitions and notation
used throughout this paper, along with some background on the factor elimination algorithm and
tree decompositions. In Section 3, we describe our algorithm and the clustertree data structure
and how they can be used for marginalization. Then, in Section 4, we describe how updates to the
underlying model can be performed efficiently. In Section 5, we extend our algorithm to compute
and maintain MAP configurations under model changes. In Section 6, we show experimental results
for our approach on three synthetic benchmarks and two applications in computational biology. We
conclude with a discussion of future directions in Section 7.

2. Background

Factor graphs (Kschischang et al., 2001) describe the factorization structure of the functiong(X)
using a bipartite graph consisting ofvariablenodes andfactor nodes. Specifically, suppose such a
graphG= (X,F) consists of variable nodesX = {x1, . . . ,xn} and factor nodesF = { f1, . . . , fm} (see
Figure 1a). We denote the adjacency relationship in graphG by∼G , and letXf j =

{

xi ∈ X : xi∼G f j
}

be the set of variables adjacent to factorf j . For example, in Figure 1a,Xf5 = {x,v}. G is said to be
consistent with a functiong(·) if and only if

g(x1, . . . ,xn) = ∏
j

f j

for some functionsf j whose arguments are the variable setsXf j . We omit the argumentsXf j of each
factor f j from our formulas. In a common abuse of notation, we use the same symbol to denote a
variable (resp., factor) node and its associated variablexi (resp., factorf j). We assume that each
variablexi takes on a finite set of values.

In this paper we first study the problem of marginalization of the functiong(X). Specifically,
for anyxi we are interested in computing the marginal function

gi(xi) = ∑
X\xi

g(X).

Once we establish the basic results for performing adaptive inference, we will also show how our
methods can be applied to another commonly studied inference problem, that offinding the config-
uration of the variables that maximizesg, that is,

X∗ = argmax
X

g(X).

In this paper, we call the vectorX∗ themaximum a posteriori(MAP) configuration ofX.

3151

SÜMER, ACAR, IHLER AND METTU

f3

f4

f5 f6

f2

f1

z

y

x

v

w

(a)Gt

f3

f4

f5 f6

f2

f1

(b) Tt

f3

f4

f5 f6

y

x

v

w

f ′
2

f ′
2
= f2

∑

z
f1

(c) Gt+1

Figure 1: Factor elimination. Factor elimination takes a factor graphG1 and an elimination tree
T1 as input and sequentially eliminates the leaf factors in the elimination tree. As an
example, to eliminatef1 in iteration t, we first marginalize out any variables that are
only adjacent to the eliminated factor, and then propagate this information to the unique
neighbor inTt , that is, f ′2 = f2 ∑z f1.

2.1 Factor Elimination

There are various essentially equivalent algorithms proposed for solving marginalization problems,
including belief propagation (Pearl, 1988) or sum-product (Kschischang et al., 2001) for tree-
structured graphs, or more generally bucket elimination (Dechter, 1998),recursive conditioning
(Darwiche and Hopkins, 2001), junction-trees (Lauritzen and Spiegelhalter, 1988) and factor elimi-
nation (Darwiche, 2009). The basic structure of these algorithms is iterative; in each iteration partial
marginalizations are computed by eliminating variables and factors from the graph. The set of vari-
ables and factors that are eliminated at each iteration is typically guided by somesort of auxiliary
structure on either variables or factors. For example, the sum-product algorithm simply eliminates
variables starting at leaves of the input factor graph. In contrast, factor elimination uses anelimina-
tion tree Ton the factors and eliminates factors starting at leaves ofT; an example elimination tree
is shown in Figure 1b.

For a particular factorf j , the basic operation offactor eliminationeliminates f j in the given
model and then propagates information associated withf j to neighboring factors. At iterationt, we
pick a leaf factorf j in Tt and eliminate it from the elimination tree formingTt+1. We also remove
f j along with all the variablesV j ⊆ X that appear only in factorf j from Gt formingGt+1. Let fk be
f j ’s unique neighbor inTt . We then partially marginalizef j , and update the value offk in Gt+1 and
Tt+1 with

λ j = ∑
V j

f j , f ′k = fkλ j .

For reasons that will be explained in Section 3.1, we use the notationλi to represent the partially
marginalized functions; for standard factor elimination these operations aretypically combined into
a single update tofk. Finally, since multiplying byλ j may makef ′k depend on additional variables,
we expand the argument set off ′k by making the arguments ofλ j adjacent tof ′k in Gt+1, that is,
Xf ′k

:=Xfk ∪Xf j \V j . Figure 1 gives an example where we apply factor elimination to a leaf factorf1
in the elimination tree. We marginalize out the variables that are only adjacent tof1 (i.e.,V1 = {z})

3152

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

z

y

x

v

w

f3

f4

f5 f6

f2

f1

vwx
xyz

yx yvx

xv w

ψ1 = {f1}

ψ2 = {f2} ψ3 = {f3}

ψ4 = {f4}

ψ5 = {f5} ψ6 = {f6}

µχ1→χ2 = λ1

µχ2→χ3 = λ2

µχ5→χ4 = λ5

µχ6→χ4 = λ6

µχ4→χ3 = λ4

Figure 2: Factor trees and tree decompositions.A tree-decomposition (right) that is equivalent to
a given elimination tree (left) can be obtained by first replacing each factorwith a hyper-
node that contains the variables adjacent to that factor node and then adding variables to
the hyper-nodes so that the running intersection property is satisfied.

and updatef1’s neighbor f2 in the elimination tree withf ′2 = f2 ∑V1
f1. Finally, we add an edge

between the remaining variablesXf1 \V1 = {x} and the updated factorf ′2.
Suppose we wish to compute a particular marginalgi(xi). We root the elimination tree at a factor

f j such thatxi∼G f j , then eliminate leaves of the elimination tree one at a time, until only one factor
remains. By definition the remaining factorf ′j corresponds tof j multiplied by the results of the
elimination steps. Then, we have thatgi(xi) = ∑X\xi

f ′j . All of the marginals in the factor graph can
be efficiently computed by re-rooting the tree and reusing the values propagated during the previous
eliminations.

Factor elimination is equivalent to bucket (or variable) elimination (Kask et al.,2005; Darwiche,
2009) in the sense that we can identify a correspondence between the computations performed
in each algorithm. In particular, the factor elimination algorithm marginalizes out avariablexi

when there is no factor left in the factor graph that is adjacent toxi . Therefore, if we consider
the operations from the variables’ point of view, this sequence is also a valid bucket (variable)
elimination procedure. With a similar argument, one can also interpret any bucket elimination
procedure as a factor elimination sequence. In all of these algorithms, whilemarginal calculations
are guaranteed to be correct, the particular auxiliary structure or ordering determines the worst-case
running time. In the following section, we analyze the performance consequences of imposing a
particular elimination tree.

2.2 Viewing Elimination Trees as Tree-decompositions

For tree-structured factor graphs, the typical choice for the elimination tree is based on the fac-
tor graph itself. However, when the input factor graph is not tree-structured, we must choose an
elimination ordering that ensures that the propagation of variables over thecourse of elimination
is not too costly. In this section, we outline how a particular elimination tree can berelated to a
tree decomposition on the input graph (e.g., as in Darwiche and Hopkins, 2001 and Kask et al.,
2005), thereby allowing us to use the quality of the associated tree decomposition as a measure of
quality for elimination trees. In subsequent sections, this relationship will enable us to compare the
constant-factor overhead associated with our algorithm against that of the original input elimination
tree.

3153

SÜMER, ACAR, IHLER AND METTU

Let G = (X,F) be a factor graph. Atree-decompositionfor G is a triplet (χ,ψ,D) where
χ = {χ1,χ2, . . . ,χm} is a family of subsets ofX andψ = {ψ1,ψ2, . . . ,ψm} is a family of subsets
of F such that∪ f∈ψi Xf ⊆ χi for all i = 1,2, . . . ,m andD is a tree whose nodes are the subsetsχi

satisfying the following properties:

1. Cover property:Each variablexi is contained in some subset belonging toχ and each factor
f j ∈ F is contained in exactly one subset belonging toψ.

2. Running Intersection property:If χs,χt ∈ χ both contain a variablexi , then all nodesχu of the
tree in the (unique) path betweenχs andχt containxi as well. That is, the nodes associated
with vertexxi form a connected sub-tree ofD.

Any factor elimination algorithm can be viewed in terms of a message-passing algorithm in
a tree-decomposition. For a factor graphG, we can construct a tree decomposition(χ,ψ,D) that
corresponds to an elimination treeT = (F,E) on G. First, we setψi = { fi} andD = (χ,E′) where
(χi ,χ j) ∈ E′ is an edge in the tree-decomposition if and only if(fi , f j) ∈ E is an edge in the elim-
ination treeT. We then initializeχ =

{

Xf1,Xf2, . . . ,Xfm

}

and add the minimal number of variables
to each setχ j so that the running intersection property is satisfied. By construction, the final triplet
(χ,ψ,D) satisfies all the conditions of a tree-decomposition. This procedure is illustrated in Fig-
ure 2. The factor graph (light edges) and its elimination tree (bold edges) on the left is equivalent
to the tree-decomposition on the right. We first initializeχ j = Xf j for each j = 1, . . . ,6 and add
necessary variables to setsχ j to satisfy the running intersection property:x is added toχ2,χ3 and
χ4. Finally, we setψ j =

{

f j
}

for eachj = 1, . . . ,6.
Using a similar procedure, it is also possible to obtain an elimination tree equivalent to the

messages passed on a given tree-decomposition. We define two messagesfor each edge(χi ,χ j) in
the tree decomposition: the messageµχi→χ j from χi to χ j is the partial marginalization of the factors
on theχi side ofD, and the messageµχ j→χi from χ j to χi is the partial marginalization of the factors
on theχ j side ofD. The outgoing messageµχi→χ j from χi can be computed recursively using the
incoming messagesµχk→χi except fork= j, that is,

µχi→χ j = ∑
χ j\χi

fi ∏
(χk,χi)∈E′\{(χ j ,χi)}

µχk→χi . (1)

The factor elimination process can then be interpreted as passing messagesfrom leaves to parents
in the corresponding tree-decomposition. The partial marginalization function λi computed during
the elimination offi is identical to the messageµχi→χ j where f j is the parent offi in the elimination
tree. This equivalence is illustrated in Figure 2 where each partial marginalization functionλ j is
equal to a sum-product messageµχ j→χk for somek. This example assumes thatf3 is eliminated last.

For an elimination treeT, suppose that the corresponding tree decomposition is(χ,ψ,D). For
the remainder of this paper, we will define thewidthof T to be the size of the largest set contained in
χ minus 1. Inference performed usingT incurs a constant-factor overhead that is exponential in its
width; for example, computing marginals using an elimination treeT of width w takesO(dw+1 ·n)
time and space wheren is the number of variables andd is the domain size.

3. Computing Marginals with Deferred Factor Elimination

When performing inference with factor elimination, one typically attempts to select an elimination
tree to minimize its associated width. However, such an elimination ordering may notbe optimal

3154

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

f3

f4

f5

f7

f6f2

f1

(a) Chain graph

f3

f4

f5

f7

f6f2

f1

(b) Unbalanced elim-
ination tree

f3

f4

f5 f7

f6f2

f1

(c) Balanced elimination tree

Figure 3: Balanced and unbalanced elimination trees.For the chain factor graph in (a), the elimi-
nation tree in (b) has width 1 but requiresO(n) steps to propagate information from leaves
to the root. The balanced elimination tree in (c), for the same factor graph, has width 2 but
takes onlyO(logn) steps to propagate information from a leaf to the root, sincef3 and f5
are eliminated earlier. Iff1 is modified, then using a balanced elimination tree, we only
need to updateO(logn) elimination steps, while an unbalanced tree requires potentially
O(n) updates.

for repeated inference tasks. For example, an HMM typically used for sequence analysis yields a
chain-structured factor graph as shown in Figure 3a. The obvious elimination tree for this graph is
also chain-structured (Figure 3b). While this elimination tree is optimal for a single computation,
suppose that we now modify the leaf factorf1. Then, recomputing the marginal for the leaf factor
f7 requires time that is linear in the size in the model, even though only a single factorhas changed.
However, if we use thebalancedelimination tree shown in Figure 3c, we can compute the marginal-
ization for f7 in time that is logarithmic in the size of the model. While the latter elimination tree
increases the width by one (increasing the dependence ond), for fixed d and asn grows large we
can achieve a significant speedup over the unbalanced ordering if we wish to make changes to the
model.

In this section we present an algorithm that generates a logarithmic-depth representation of a
given elimination tree. Our primary technique, which we calldeferred factor elimination, gener-
alizes factor elimination so that it can be applied to non-leaf nodes in the input elimination tree.
Deferred factor elimination introduces ambiguity, however, since we cannot determine the “direc-
tion” that a factor should be propagated until one of its neighbors is also eliminated. We refer to
the local information resulting from each deferred factor elimination as acluster function(or, more
succinctly, as acluster), and store this information along with the balanced elimination tree. We use
the resulting data structure, which we call acluster tree, to perform marginalization and efficiently
manage structural and parameter updates. Pseudocode is given in Figure 4.

For our algorithm, we assume that the user provides both an input factor graphG and an associ-
ated elimination treeT. While the elimination tree is traditionally computed from an input model,
in an adaptive setting it may be desirable to change the elimination tree to take advantage of changes
made to the factors (see Figure 9 for an example). Furthermore, domain-specific knowledge of the
changes being made to the model may also inform how the elimination tree should bechosen and

3155

SÜMER, ACAR, IHLER AND METTU

DeferredFactorElimination(G, T, fj)

Compute cluster λj using Equation (3)
if fj is a leaf in elimination tree T

Let fk be fj’s unique neighbor in T

Attach λj to fk in T

end if
if fj is a degree-2 node in T

Let fi and fk be fj’s neighbors in T

Create a new edge (fi, fk) in T

Attach λj to the newly created edge (fi, fk)
endif
Remove factor fj from factor graph G and T

for each variable xi that is connected to only fj in G

Remove xi from G

endfor

Figure 4: Deferred factor elimination.In addition to eliminating leaves, deferred factor elimination
also eliminates degree-two nodes. This operation can be simultaneously appliedto an
independent set of leaves and degree-two nodes.

updated. Thus, in the remainder of the paper we separate the discussion of updates applied to the
input model from updates that are applied to the input elimination tree. As we willsee in Section 4,
the former prove to be relatively easy to deal with, while the latter require a reorganization of the
cluster tree data structure.

3.1 Deferred Factor Elimination and Cluster Functions

Consider the elimination of a degree-two factorf j , with neighborsfi and fk in the given elimination
tree. We can perform a partial marginalization forf j to obtainλk, but cannot yet choose whether to
updatefi or fk—whichever is eliminated first will needλk for its computation. To address this, we
definedeferred factor elimination, which removes the factorf j and saves the partial marginalization
λ j as acluster, leaving the propagation step to be decided at a later time. In this section, we show
how deferred factor elimination can be performed on the elimination tree, and how the intermediate
cluster information can be saved and also used to efficiently compute marginals.

For convenience, we will segregate the process of deferred factor elimination on the input model
into rounds. In a particular roundt (1≤ t ≤ n), we begin with a factor graphGt and an elimination
treeTt , and after performing some set of deferred factor eliminations, we obtain aresulting factor
graphGt+1 and elimination treeTt+1 for the next round. For the first round, we letG1 = G and
T1 = T. Note that since each factor is eliminated exactly once, the number of total rounds depends
on the number of the factors eliminated in each round.

To constructTt+1 from Tt , we modify the elimination tree as follows. When we eliminate a
degree-one (leaf) factorf j , we attachλ j to the neighbor vertexfk. When a degree-two factorf j

is removed, we attachλ j to a newly created edge(fi , fk) where fi and fk are f j ’s neighbors in
elimination treeT. We defineCT(f j) to be the set of clusters that are attached either directly tof j or

3156

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

f3

f4

f5 f6

f2

y

x

v

wz

f1

(a)T1 andG1

f4

f5 f6

f2

y

x

v

w

λ1(x) f3

(b) T2 andG2

f4

f5 f6

f2

y

x

v

w

λ1(x) λ3(y, v)

(c) T3 andG3

Figure 5: Deferred factor elimination.(a) An elimination treeT1 (bold elges), with variable de-
pendencies shown with light edges for reference. To eliminate a leaf nodef1, we sum
out variables that are not attached to any other factors (shaded), resulting in the cluster
function λ1 and new elimination treeT2 in (b). To eliminate a degree-two nodef3, we
replace it withλ3 attached to the edge(f2, f4), giving treeT3 shown in (c).

to an edge incident tof j . In the factor graphGt+1, we remove allλk ∈ CTt (f j) and variablesV j ⊂ X
that do not depend on any factors other thanf j or λk ∈ CTt (f j). Finally, we replacef j with λ j , given
by

λ j = ∑
V j

f j ∏
λk∈CTt (f j)

λk. (2)

The clusterλ j is referred as aroot clusterif degTt
(f j) = 0, adegree-one clusterif degTt

(f j) = 1, and
adegree-two clusterif degTt

(f j) = 2. Figure 5 illustrates the creation of degree-one and degree-two
clusters, and the associated changes to the elimination tree and factor graph. We first eliminatef1 by
replacing it with degree-one clusterλ1(x) = ∑z f1(x). Clusterλ1 is attached to factorf2 and the set
of clusters aroundf2 is CT2(f2) = {λ1,λ3}. We then eliminate a degree-two factorf3 by replacing it
with degree-two clusterλ3(y,v) = f3(y,v). This connectsf2 to f4 in the elimination tree, and places
λ3 on the newly created edge.

We note that the correctness of deferred factor elimination follows from thecorrectness of stan-
dard factor elimination. To perform marginalization for any particular variable, we can simply
instantiate a series of propagations, at each step using a cluster function that has already been com-
puted in one of the aforementioned rounds.

To establish the overall running time of deferred factor elimination we first explain how the clus-
ters we compute can be interpreted in the tree-decomposition framework. Recall that in Section 2.2,
we established an equivalence between clusters and messages in the tree-decomposition in the case
where only leaf factors in the elimination tree are eliminated. We can generalize this relationship
to the case where degree-two factors are also eliminated. As discussed earlier in Section 2.2, the
equivalent tree-decomposition(χ,ψ,D) of an elimination treeT = (F,E) consists of a treeD on
hyper-nodesχ = {χ1, . . . ,χm} with the same adjacency relationship with the factors{ f1, . . . , fm} in
T.

A degree-one clusterλ j produced after eliminating a leaff j factor inT is a partial marginaliza-
tion of the factors on a sub-tree ofT. Let fk be f j ’s unique neighbor in the elimination tree when
it is eliminated. This impliesλ j = µχt→χk for somet as previously shown in Section 2.2. Note that
the indext may not equalj, since there may be a cluster attached to the edge(f j , fk) (for example
in Figure 5,λ1(x) = µχ1→χ2(x)).

3157

SÜMER, ACAR, IHLER AND METTU

A degree-two clusterλ j produced after eliminating a degree-two factorf j in T is a partial
marginalization of the factors in a connected subgraphS⊂ T such thatSandT \Sare connected by
exactly two edges. Let(fi , fc) and(fd, fk) be these edges, wherefc and fd belong toSand fi and
fk are outside ofS (we will show how these “boundary” edges can be efficiently computed in Sec-
tion 3.2). We interpretλ j as an intermediary function that enables us to compute an outgoing mes-
sageµχd→χk by using onlyλ j and the incoming messageµχ j→χc, that is,µχd→χk = ∑χk\χ j

λiµχ j→χc.
These intermediate functions are in fact the mechanism that allows us avoid long sequences of mes-
sage passing. For example in Figure 5,λ3 can be used to compute the messageµχ3→χ4 using only
µχ2→χ3, that is,µχ3→χ4(x,v) = ∑yµχ2→χ3(x,y)λ3(y,v).

Finally, we note that we have a single root cluster that is just a marginalization of all of the
factors in the factor graph. Using the relationships established above between cluster functions and
messages in a tree decomposition, we give the running time of deferred factor elimination on a given
elimination tree and input factor graph.

Lemma 1 For an elimination tree with width w, the elimination of leaf factors takesΘ(d2w) time
and produces a cluster of sizeΘ(dw), where d is the domain size of the variables in the input factor
graph. The elimination of degree-two vertices takesΘ(d3w) time and produces a cluster of size
Θ(d2w).

Proof Each degree-one cluster has sizeO(dw) because it is equal to a sum-product message in the
equivalent tree-decomposition. For a degree-two vertexf j , the clusterλ j can be interpreted as an
intermediary function that enables us to compute the outgoing messagesµχc→χi andµχd→χk using
the incoming messagesµχk→χd andµχi→χc for someχc,χd,χi andχk wherefi and fk are neighbors of
f j in the elimination tree during its elimination. The set of variables involved in these computations
is (χi ∩ χc)∪ (χk ∩ χd) which is bounded by 2w. Hence, the clusterfi that computes the partial
marginalization of the factors that are between(fd, fk) and(fi , fc) has sizeO(d2w). Moreover, these
bounds are achieved ifχi ∩χc andχk∩χk are disjoint and each hasw variables.

We now establish the running times of calculating cluster functions, by bounding the number
of variables involved in computing a cluster. We first show that when a leaf node f j is eliminated,
the set of variables involved in the computation isχ j ∪ χk where fk is f j ’s neighbor. For all the
degree-one clusters off j , their argument set is a subset ofχ j , so the product in Equation (2) can
be computed inO(dw) time. There can be a clusterλc on the edge(f j , fk) whose argument set has
to be subset ofχ j ∪χk. If there is such a cluster, the cost of computing the product in Equation (2)
becomesO(d2w). This bound is achieved when there is a degree-two cluster andχ j and χk are
disjoint.

When a degree-two factorf j is eliminated, the set of variables involved in the computation is
χi ∪χ j ∪χk where fi and fk are neighbors off j . As shown above, the argument set of degree-one
clusters is a subset ofχ j . This cluster can have degree-two clusters on edges(fi , f j) and(f j , fk), and
in this case, computation of a degree-two cluster takesO(d3w) time. This upper bound is achieved
when the setsχi , χ j andχk are disjoint.

We note that in the above discussion we assumed that the number of operands in Equation (2) is
bounded, that is, for any factorf , |CT(f)| = O(1). This assumption is valid because for any given
elimination tree, we can construct an equivalent elimination tree with degree 3 by adding dummy
factors. For example, suppose the input elimination tree has degreen− 1 (i.e., it is star-shaped);
then Equation (2) hasn multiplication operands hence requiresO(ndw) time to compute. By adding
dummy factors in the shape of a complete binary tree between the center factorand the leaf factors,

3158

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

BuildClusterTree(G, T)

G0 := G, T0 := T

Initialize H as an empty rooted tree
for round t = 1 up to k

Gt := Gt−1, Tt := Tt−1

S := A maximal independent set of leaves and degree two nodes in Tt

for each factor fj in S
call DeferredFactorElimination(Gt, Tt, fj)
for each cluster λi that is used to compute λj

Add edge (λi, λj) in H where λj is the parent.
endfor
for each variable xi eliminated along with fj

Add edge (xi, λj) in H where λj is the parent
endfor

endfor
endfor
return H as the cluster tree

Figure 6: Hierarchical clustering.Using deferred factor elimination, we can construct a balanced
cluster tree data structure that can be used for subsequent marginal queries.

we can bring the complexity of computing Equation (2) down toO(dw) for each factor.

3.2 Constructing a Balanced Cluster Tree

In this section, we show how performing deferred factor elimination in rounds can be used to create
a data structure we call acluster tree. As variables and factors are eliminated through deferred
factor elimination, we build the cluster tree using the dependency relationshipsamong clusters (see
Figure 6). The cluster tree can then be used to compute marginals efficiently,and as we will see, it
can also be used to efficiently update the original factor graph or elimination tree.

For a factor graphG= (X,F) and an elimination treeT, a cluster treeH = (X∪C,E) is a rooted
tree on variables and clustersX∪C whereC is the set of clusters. The edgesE represent the depen-
dency relationships among the quantities computed while performing deferredfactor elimination.
When a factorf j is eliminated, clusterλ j is produced by Equation (2). All the variablesV j and
clustersC (f j) removed in this computation becomeλ j ’s children. For a clusterλ j , theboundary∂ j

is the set of edges inT that separates the collection of factors that is contracted intoλ j from the rest
of the factors.

In Equation (2), we gave a recursive formula to computeλ j in terms of its children in the cluster
tree. In order to use the cluster tree in our computations, we need to derivea similar recursive
formula for the boundary∂ j for each clusterλ j . Let clustersλ1,λ2, . . . ,λk and variablesx1,x2, . . . ,xt

be λ j ’s children in the cluster tree. LetE(f j) be the set of edges incident tof j in T. Then the

3159

SÜMER, ACAR, IHLER AND METTU

f3

f4

f5 f6

f2

f1

z

y

x

v

w

(a) Factor GraphG

z

∂3 ∂5 ∂6

∂4

∂2

∂1 ∂4 = {(f2, f3)}

∂2 = ∅
∂1 = {(f1, f2)}

∂5 = {(f4, f5)}
∂6 = {(f4, f6)}

λ1

λ2

λ4

λ6λ5λ3

∂3 = {(f2, f3), (f3, f4)}

y

v

x

w

(b) Cluster TreeH

Figure 7: Cluster Tree Construction.To obtain the cluster tree in (b), eliminations are performed
in the factor graphG (a) in the following order:f1, f3, f5 and f6 in round 1, f4 in round
2 and f2 in round 3. The cluster-tree (b) representing this elimination is annotated by
boundaries.

boundary ofλ j can be computed by

∂ j = E(f j)△∂1△∂2△ . . .△∂k

where∂i is the boundary of clusterλi and△ is the symmetric set difference operator. An ex-
ample cluster tree, along with explicitly computed boundaries, is given in Figure7b. For ex-
ample the boundary of the clusterλ4 is computed by∂4 = E(f4)△∂3△∂5△∂6 whereE(f4) =
{(f2, f4),(f4, f5),(f4, f6)}.

Theorem 2 Let G= (X,F) be a factor graph with n nodes and T be an elimination tree on G with
width w. Constructing a cluster tree takesΘ(d3w ·n) time.

Proof During the construction of the cluster tree, every factor is eliminated once. By Lemma 1,
each such elimination takesO(d3w) time.

For our purposes it is desirable to perform deferred factor elimination sothat we obtain a cluster
tree with logarithmic depth. We call this processhierarchical clusteringand define it as follows. We
start withT1 = T and at each roundi we identify a setK of degree-one or -2 factors inTi and apply
deferred factor elimination to this independent set of factors to constructTi+1. This procedure ends
once we eliminate the last factor, sayfr . We makeλr the root of the cluster tree. At each round,
the setK ⊂ F is chosen to be a maximal independent set, that is, forfi , f j ∈ K, fi 6∼ f j in T, and
no other factorfk can be added toK without violating independence. The sequence of elimination
trees created during the hierarchical clustering process will prove to beuseful in Section 4, when
we show how to perform structural updates to the elimination tree. As an example, a factor graph
G, along with its associated elimination treeT = T1, is given in Figure 7a. In round 1, we eliminate
a maximal independent set{ f1, f3, f5, f6} and obtainT2. In round 2 we eliminatef4, and finally in
round 3 we eliminatef2. This gives us the cluster tree shown in Figure 7b.

As we show with the following lemma, the cluster tree that results from hierarchical clustering
has logarithmic depth. We will make use of this property throughout the remainder of the paper to
establish the running times for updating and computing marginals and MAP configurations.

3160

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

QueryMarginal(H, xi)

Let xi, λ1, . . . , λk be the path from xi to the root λk of cluster tree H

for j = k down to 1
Let fj be the factor associated with cluster λj

Compute downward marginalization function Mfj using Equation (4)
endfor
Compute the marginal at xi using Equation (5)

Figure 8: Performing Marginalization with a Cluster Tree.Computing any particular marginal in
the input factor graph corresponds to a root-to-leaf path in the cluster tree.

Lemma 3 For any factor graph G= (X,F) with n nodes and any elimination tree T , the cluster
tree obtained by hierarchical clustering has depth O(logn).

Proof Let the elimination treeT = (F,E) havea leaves,b degree-two nodes andc degree-3 or more
nodes, that is,m= a+b+ c wherem is the number of factors. Using the fact that the sum of the
degrees of the vertices is twice the number of edges, we get 2|E| ≥ a+2b+3c. Since a tree with
mvertices havem−1 edges, we get 2a+b−2≥ m. On the other hand, a maximal independent set
of degree-one and degree-two vertices must have size at leasta−1+(b−a)/3 ≥ m/3, since we
can eliminate at least a third of the degree-two vertices that are not adjacent to leaves. Therefore at
each round, we eliminate at least a third of the vertices, which in turn guarantees that the depth of
the cluster tree isO(logn).

3.3 Computing Marginals

Once a balanced cluster treeH has been constructed from the input factor graph and elimination
tree, as in standard approaches we can compute the marginal distribution ofany variablexi by prop-
agating information (i.e., partial marginalizations) through the cluster tree. Forany fixed variable
xi , let λ1,λ2, . . . ,λk be the sequence fromxi to the rootλk in the cluster treeH . We now de-
scribe how to compute the marginal forxi (see Figure 8 for pseudocode). For each factorf j , let
∂ j contain neighborsfa and fb of f j (i.e., neighboring factors at the timef j is eliminated). This
information can be obtained easily, sincefa and fb are ancestors off j in the cluster tree, that is,
fa, fb ∈

{

f j+1, f j+2, . . . , fk
}

. For convenience we state our formulas as if there are two neighbors
in the boundary; in the case of degree-one clusters, terms associated withone of the neighbors, say
fb, can be ignored in the statements below. First, we compute a downward pass of marginalization
functions fromλk to λ1 given by

M f j = ∑
Y\Xλ j

f jM faM fb ∏
f∈C j\{ f j−1}

f , (3)

whereY is the set of variables that appear in the summands andXλ j
is the set of variables that cluster

λ j depends on. Therefore each marginalization functionM j from parentλ j is computed using only

3161

SÜMER, ACAR, IHLER AND METTU

information in the path aboveλ j . Then, the marginal for variablexi is

gi(xi) = ∑
Y\{xi}

M f1 ∏
f∈C1

f (4)

whereY is the set of variables that appear in the summands. Combining this approach with Lemmas
1 and 3, we have the following theorem.

Theorem 4 Consider a factor graph G with n nodes and let T be an elimination tree with width w.
Then, Equation (4) holds for any variable xi and can be computed in O(d2w logn) time.

Proof The correctness of Equation (4) follows when each marginalization function M f j is viewed
as a sum-product message in the equivalent tree-decomposition. To prove the latter, we will show
that for∂ j = {(fc, fa),(fd, fb)}, M fa andM fb are equal to the tree-decomposition messagesµχa→χc

and µχb→χd , respectively. This can be proven inductively starting withM fk. First, note that the
base case holds trivially. Then, using the inductive hypothesis, we assume thatM fa = µχa→χc and
M fb = µχb→χd . Now, there has to be a descendantλℓ of λ j such that(fe, f j) ∈ ∂ℓ. By multiplying
with the degree-two clusters inC j \

{

f j−1
}

, we can convert the messagesµχa→χc andµχb→χd to the
messages intof j . Applying Equation (1) then givesM f j = µχ j→χe as desired.

For the running time, we observe that each message computation is essentially the same proce-
dure as eliminating a leaf factor, therefore each message has sizeO(dw) and takesO(d2w) time to
compute by Lemma 1.

We note that it is also possible to speed-up successive marginal queries by caching the down-
ward marginalization functions in Equation (3). For example, if we query all variables as described
above, we computeO(nlogn) many downward marginalization messages. However, by caching the
downward marginalization functions in the cluster tree, we can compute all marginals inO(d2w ·n)
time, which is optimal given the elimination ordering. As we will see in Section 4.1, thebal-
anced nature of the cluster tree allows us to perform batch operations efficiently. In particular, for
marginal computation, using the caching strategy above, any set ofℓ marginals can be computed in
O(d2wℓ log(n/ℓ)) time.

4. Updates

The preceding sections described the process of constructing a balanced, cluster tree elimination
ordering from a given elimination tree, and how to use the resulting cluster tree to compute marginal
distributions. However, the primary advantage of a balanced ordering liesin its ability to adapt to
changes and incorporate updates to the model. In this section, we describehow to efficiently update
the cluster tree data structure after changes are made to the input factor graph or elimination tree.

We divide our update process into two algorithmic components. We first describe how to make
changes to the factors, whether changing the parameters of the factor orits arguments (and thus
the structure of the factor graph), but leaving the original elimination tree (and thus the cluster
tree) fixed. We then describe how to make changes to the elimination tree and efficiently update
the cluster tree. In practice these two operations may be combined; for example when modifying
a tree-structured graph such that it remains a tree we are likely to change the elimination tree to
reflect the new structure. Similarly, for a general input factor graph wemay also wish to change the

3162

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

f3

f4

f5 f6

f2

f1

z

y

x

v

w

(a)

f3

f4

f5 f6

f2

f1

z

y

x

v

w

(b)

Figure 9: Modifying the Elimination Tree.If the factor graph in (a) is modified by removing the
edge(y, f1), we can reduce the width of the elimination tree (from 3 to 2) by replacing
the edge(f1, f2) by (f1, f5).

f3

f4

f5 f6

f2

f1

z

y

x

v

w

(a)

z

λ1

λ2

λ4

λ6λ5λ3

y

v

x

w

x

(b)

Figure 10: Modifying the arguments of factors.If the factor graph in (a) is modified by removing
the edge(x, f1), we update two paths in the cluster tree, as shown in (b), from bothx and
λ1 to the root. The position in whichx is eliminated is found by bottom-up traversing of
the factors adjacent tox.

elimination tree upon changes to factors. Figure 9 illustrates such an example,in which changing a
dependency in the factor graph makes it possible to reduce the width of the elimination tree.

4.1 Updating Factors With a Fixed Elimination Tree

For a fixed elimination tree, suppose that we change the parameters of a factor f j (but not its ar-
guments), and consider the new cluster tree created for the resulting graph. As suggested in the
discussion in Section 3, the first change in the clustering process occurswhen computingλ j ; a
change toλ j changes its parent, and so on upwards to the root. Thus, the number of affected func-
tions that need to be recalculated is at most the depth of the cluster tree. Sincethe cluster tree is of
depthO(logn) by Lemma 3, and each operation takes at mostO(d3w), the total recomputation is at
mostO(d3w logn).

If we change the structure of graphG by modifying the arguments of a factorf j by adding
or removing some variablexi , then the point at whichxi is removed from the factor graph may

3163

SÜMER, ACAR, IHLER AND METTU

λ1 λ3 λ5 λ7 λ9 λ11 λ13 λ15

λ2

λ4

λ6

λ8

λ10

λ12

λ14

log(n/ℓ)































log(ℓ)































Figure 11: Batch updates.After modifying ℓ= 3 factors,f1, f5 and f12, we update the correspond-
ing clusters and their ancestors in a bottom-up fashion. The total number of nodes visited
is O(ℓ log(n

ℓ)+2log(ℓ)) = O(ℓ log(n
ℓ)).

also change. Sincexi is eliminated (i.e., summed out) once every factor that depends on it has
been eliminated, adding an edge may postpone elimination, while removing an edgemay lead to an
earlier elimination. To update the cluster tree as a result of this change, we must update all clusters
affected by the change tof j , and we must also identify and update the clusters affected by earlier, or
later, removal ofxi from the factor graph. In both edge addition and removal, we can update clusters
from λ j to the root inO(d3w logn) time.

We describe how to identify the new elimination point forxi in O(logn) time. Observe that
the original clusterλk at whichxi is eliminated is the topmost cluster in the cluster tree with the
property that eitherfk, the associated factor, depends onxi , or λk has two children clusters that both
depend onxi . The procedure to find the new point of elimination differs for edge insertion and edge
removal. First, suppose we add edge(xi , f j) to the factor graph. We must traverse upward in the
cluster tree until we find the cluster satisfying the above condition. For edgeremoval, suppose that
we remove the dependency(xi , f j). Then,xi can only need to be removed earlier in the clustering
process, and so we traverse downwards from the cluster wherexi was originally eliminated. At any
clusterλk during the traversal, if the above condition is not satisfied thenλk must have one or no
children clusters that depend onxi . If λk has a single child that depends onxi , we continue traversing
in that direction. Ifλk has no children that depend onxi , then we continue traversing towardsλ j .
Note that this latter case occurs only when the paths ofxi andλ j to the root overlap, and thus is
always possible to traverse towardλ j .

Once we have identified the new cluster at whichxi is eliminated, we can recalculate cluster
functions upwards inO(d3w logn) time. Therefore the total cost of performing an edge insertion or
removalO(d3w logn). Figure 10 illustrates how the cluster tree is updated after deleting an edge in
a factor graph keeping the elimination tree fixed. After deleting(x, f1) we first update the clusters
upwards starting fromλ1. Then traverse downwards to find the point at whichxi is eliminated,
which isλ5 becausef5 depends onx. Finally, we updateλ5 and its ancestors.

We can also extend the above arguments to handle multiple, simultaneous updatesto the factor
graph. Suppose that we makeℓ changes to the model, either to the definition of a factor or its
dependencies. Each change results in a set of affected nodes that must be recomputed; these nodes
are the ancestors of the changed factor, and thus form a path upwardsthrough the cluster tree. This
situation is illustrated in Figure 11. Now, we count the number of affected nodes by grouping them
into two sets. If our cluster tree has branching factorb, level logb(ℓ) hasℓ nodes; above this point,

3164

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

f3

f4

f5 f6

f2

f1

z

y

x

v

w

(a)

z

λ1

λ2

λ4

λ6λ5λ3

y

v

x

w

(b)

v w

y
x

z

λ1

λ2

λ3

λ4

λ5 λ6

(c)

Figure 12: Updating the elimination tree.Suppose we modify the input factor graph by removing
(y, f1) from the factor graph and replacing(f1, f2) by (f1, f5) in the elimination tree as
shown in (a). The original cluster tree (b) must be changed to reflect these changes. We
must revisit the decisions made during the hierarchical clustering for the affected factors
(shaded).

pathsmustmerge, and all clusters may need to be recalculated. Below level logb(ℓ), each path may
be separate. Thus the total number of affected clusters isℓ+ ℓ logb(n/ℓ).

Note that for edge modifications, we must also address how to find new elimination points
efficiently. As stated earlier, any elimination pointλk for xi satisfies the condition that it is the
topmost cluster in the cluster tree with the property that eitherfk depends onxi , or λk has two
children clusters that both depend onxi . As we update the clusters in batch, we can determine the
variables for which the above condition is not satisfied until we reach the root cluster. In addition,
we also mark the bottommost clusters at which the above condition is not satisfied. Starting from
these marked clusters, we search downwards level-by-level until we find the new elimination points.
At each stepλk, we check if there is a variablexi such thatxi 6∼ f j and only one child cluster of
λk depends onxi . If there is not, we stop the search; if there is, we continue searching towards
those clusters. Since each step takesO(w) time, the total time to find all new elimination points is
O(wℓ log(n/ℓ)). We then update the clusters upwards starting from the new elimination points until
the root, which takesO(d3wℓ log(n/ℓ)) time.

Combining the arguments above, we have the following theorem.

Theorem 5 Let G= (X,F) be a factor graph with n nodes andH be the cluster tree obtained using
an elimination tree T with width w. Suppose that we makeℓ changes to the model, each consisting
of either adding or removing an edge or modifying the parameters of somefactor, while holding T
fixed. Then, we can recompute the cluster treeH ′ in O(d3wℓ log(n/ℓ)) time.

4.2 Structural Changes to the Elimination Tree

Many changes to the graphical model will be accompanied by some change tothe desired elimina-
tion ordering. For example, changing the arguments of a factor may suggest some more efficient
ordering that we may wish to exploit. However, changing the input elimination order also requires
modifying the cluster tree constructed from it. Figure 12 shows such a scenario, where removing
a dependency suggests an improved elimination tree. In this section we provethat it is possible to
efficiently reorganize the cluster tree after a change to the elimination tree.

3165

SÜMER, ACAR, IHLER AND METTU

As in the previous section, we wish to recompute only those nodes in the clustertree whose
values have been affected by the update. In particular we construct thenew cluster tree by stepping
through the creation of the original sequenceT1,T2, . . ., marking some nodes asaffectedif we need
to revisit the deferred elimination decision we made in constructing the cluster tree, and leaving
the rest unchanged. We first describe the algorithm itself, then prove therequired properties: that
the original clustering remains valid outside the affected set; that after re-clustering the affected set,
our clustering remains a valid maximal independent set and is thus consistentwith the theorems in
Section 3; and finally that the total affected set is again only of sizeO(logn). Since the elimination
tree can be arbitrarily modified by performing edge deletions and insertions successively, for ease
of exposition we first focus on how the cluster tree can be efficiently updated when a single edge
in the elimination tree is inserted or deleted. For the remainder of the section, we assume that the
hierarchical clustering process produced intermediate trees(T1,T2, . . . ,Tk) and that(fi , f j) is the
edge being inserted or deleted.

Observe that, to update any particular round of the hierarchical clustering, for any factor fk
we must be able to efficiently determine whether its associated cluster must be recomputed due to
the insertion or deletion of an edge(fi , f j). A trivial way to check this would be to compute a
new hierarchical clustering(T ′

1,T
′
2, . . . ,T

′
l) using the changed elimination tree. Then, the clusterλk

that is generated after eliminatingfk depends only on the set of clusters aroundfk at the time of
the elimination. IfCi(fk) andC ′

i (fk) are the set of clusters aroundfk on Ti andT ′
i , respectively,

then fk is affected at roundi if the setsCi(fk) andC ′
i (fk) are different. Note that we consider

Ci(fk) = Ci(fk) if λ j ∈ Ci(fk) ⇐⇒ λ j ∈ C ′
i (fk) and the values ofλ j are identical in both sets.

Clearly, this approach is not efficient, but motivates us to (incrementally) track whether or notCi(fk)
andC ′

i (fk) are identical in a more efficient manner. To do this, we define thedegree-statusof the
neighbors offk, and maintain it as we update the cluster tree. Given two hierarchical clusterings
(T1 = (F1,E1),T2 = (F2,E2), . . . ,Tk = (Fk, /0)) and(T1 = (F ′

1,E
′
1),T2 = (F ′

2,E
′
2), . . . ,Tl = (F ′

l , /0)), we
define the degree-statusσi(f) of a factor f at roundi as

σi(f) =

{

1 if degTi
(f)≤ 2 or degT ′

i
(f)≤ 2 or f /∈ Fi ∩F ′

i ,

0 if degTi
(f)≥ 3 and degT ′

i
(f)≥ 3.

The degree status tells us whetherf is a candidate for elimination in either the previous or the new
cluster tree.

At a high level, we step through the original clustering, marking factors as affected according
to their degree-status. For a factorf j , if σi(f j) = 1, then f j is either eliminated or a candidate for
elimination at roundi in one or both of the previous and new hierarchical clusterings. Since we
must recompute clusters for affected factors, if we markf j as affected, then its unaffected neighbors
should also be marked as affected in the next round. An example is shown inFigure 13. This
approach conservatively tracks how affectedness “spreads” from one round to the next; we may
mark factors as affected unnecessarily. However, we will be able to show that any round of the new
clustering has a constant number of factors for which we must recompute clusters.

We now describe our algorithm for updating a hierarchical clustering after a change to the
elimination tree. We first insert or remove the edge(fi , f j) in the original elimination tree and
obtainT ′

1 = (V ′
1,E

′
1) whereE′

1 = E1 ∪
{

(fi , f j)
}

if the edge is inserted orE′
1 = E1 \

{

(fi , f j)
}

if
deleted. Fori = 1,2, . . . , l , the algorithm proceeds by computing the affected setAi , an independent
setMi ⊆ Ai of affected factors of degree at most two inT ′

i , and then eliminatingMi to form T ′
i+1.

We letA0 =
{

fi , f j
}

, M0 = /0 andT ′
0 = T ′

1. For roundi = 1,2, . . . l we do the following:

3166

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

f2

f5

f3 f6 f8

f1

f4

f10

f7

f9

f12

f13

f11f0

σ1(f3) = 0

σ1(f8) = 1

σ1(f9) = 0

(a) Round 1

f5

f3 f8

f4

f10

f9

f12

f13

f11

f1

f0

σ2(f3) = 1 σ2(f8) = 1

σ2(f9) = 0

λ2

λ6

λ9

(b) Round 2

Figure 13: Affected nodes in the clustering.By rule 2 for marking factors as affected, eliminating
f6 in the first round makesσ2(f3) = 1, thereby makingf1 and f5 affected. In contrast,
sinceσ2(f9) = 0, f12 and f13 are not marked as affected. By rule 1, eliminatingf7 in the
first round makesf10 affected.

• We obtain the new elimination treeT ′
i = (F ′

i ,E
′
i) by eliminating the factors inMi−1 from Ti−1

via deferred factor elimination subroutine.

• All affected factors left inT ′
i remain affected, namely the setAi−1 \Mi−1. We mark a previ-

ously unaffected factorf as affected if

1. f has an affected neighborg in T ′
i−1 such thatg∈ Mi−1 or

2. f has an affected neighborg in T ′
i such thatg∈ Ai−1\Mi−1 with σi(g) = 1.

Let Ni be the set of factors that are marked in this round according to these two rules, then
Ai = (Ai−1\Mi−1)∪Ni .

• Initialize Mi = /0 and greedily add affected factors toMi starting with the factors that are
adjacent to an unaffected factor. Letf ∈ Ai be an affected factor with an unaffected neighbor
g ∈ V ′

i \Ai . If g is being eliminated at roundi we skip f , otherwisef is included inMi if
degT ′

i
(f)≤ 2. We continue traversing the set of affected factors with degree at mosttwo and

add as many of them as we can toMi , subject to the independence condition.

Observe that a factorf in T ′
i becomes affected either if an affected neighbor off is eliminated

at roundi −1 or if f has neighbor that was affected in earlier rounds with degree-status onein T ′
i .

Once a factor becomes affected, it stays affected. For an unaffectedfactor f at roundi, f ’s neighbors
have to be (i) unaffected, (ii) affected with degree-status zero, or (iii) have become affected at round
i.

In order to establish that the procedure above correctly updates the hierarchical clustering, we
first prove that we are able to correctly identify unaffected factors, and incrementally maintain
maximal independent sets.

Lemma 6 Given T= (T1,T2, . . . ,Tk), let T′ = (T ′
1,T

′
2, . . . ,T

′
l) be the updated hierarchical cluster-

ing. For any round i= 1. . . l, let T′
i = (F ′

i ,E
′
i), let Pi = F ′

i \Ai be the set of unaffected factors and
Ri = Pi \F ′

i+1 be the ones that are eliminated at round i. Then, the following statements hold:

• Ri ∪Mi is a maximal independent set among vertices of degree at most two in F′
i .

• For any f∈ Pi , the set of clusters around f and the set of neighbors of f are the samein Ti as
in T ′

i .

3167

SÜMER, ACAR, IHLER AND METTU

Proof For the first claim, we first observe thatRi is an independent since it is contained inMi .
For maximality, assume thatRi ∪Mi is not a maximal independent set among degree≤ 2 vertices
of F ′

i . Then there must be a factorf with two neighborsg,h with degrees≤ 2 and none of which
are eliminated at roundi. This triplet(f ,g,h) cannot be entirely inAi or F ′

i \Ai , because the sets
Ri andMi are maximal on their domain, namelyRi is a maximal independent set overF ′

i \Ai and
Mi is a maximal independent set overAi . On the other hand, the triplet(f ,g,h) cannot be on the
boundary either because the update algorithm eliminates any factor with degT ′

i
≤ 2 if it is adjacent

to an unaffected factor that is not eliminated at roundi. Therefore,Ri ∪Mi is a maximal independent
set over degree≤ 2 vertices ofF ′

i .
We now prove the first part of the second claim by induction oni. Let Ci(f) andC ′

i (f) be the
set of clusters aroundf in Ti and T ′

i , respectively. The claim is trivially true fori = 1 because
Ci(f) = C ′

i (f) = /0 for all factors. Assume thatC j(f) = C ′
j(f) for all unaffected factors at roundj

where j = 1, . . . , i −1. Sincef ∈ Pi implies that f ∈ Pi−1, we have thatCi−1(f) = C ′
i−1(f). Since

the set of clusters around a factor changes only if any of its neighbors are eliminated, we must
prove that if a neighbor off is eliminated inTi−1, then it must be eliminated inT ′

i−1 and vice versa;
additionally we must prove that they also generate the same clusters. Sincef ∈ Pi−1, the neighbors
of f in T ′

i can be unaffected, affected with degree-status zero or newly affected in roundi. When
an unaffected factorg is eliminated inTi−1, it is eliminated inT ′

i as well, so the resulting clusters
are identical sinceCi−1(g) = C ′

i−1(g). So any change toCi(f) due to f ’s unaffected neighbors is
replicated inC ′

i (f). On the other hand, by definition we cannot eliminate a factor with degree-status
zero, so they do not pose a problem even if they are affected. The lastcase is a newly affected
neighborg of f in Ti−1 with σi−1(g) = 1. But this case is impossible because, ifg is eliminated
then we would have markedf as affected inTi via the first rule, or ifg is not eliminated then by
the second rule and the fact thatσi(g) = 1, we would have markedf as affected inTi . Therefore
Ci(f) = C ′

i (f) for all unaffected factors. This implies that clusters of unaffected factors are identical
and do not have to be recalculated inT ′

i .
LetNi(f) andN ′

i (f) be the set of neighbors off in Ti andT ′
i , respectively. Proving the second

part of the second claim (i.e.,Ni(f) =N ′
i (f)) proceeds similarly to that forCi(f) = Ci(f). The only

difference is the initial round wheni = 1. In round 1, the update algorithm marks all the factors that
are incident to the added or removed edges as affected, so for all unaffected factors their neighbor
set must be identical inTi andT ′

i .

Using this lemma, we can now prove the correctness of our method to incrementally update a
hierarchical clustering.

Theorem 7 Given a valid hierarchical clustering T , let T′ = (T ′
1,T

′
2, . . . ,T

′
l) be the updated hierar-

chical clustering, where T′i = (F ′
i ,E

′
i). Then, T′ is a valid hierarchical clustering, that is,

• the set Mi = F ′
i \F ′

i+1 is a maximal independent set containing vertices of degree at most two,
and

• T ′
i+1 is obtained from T′i by applying deferred factor elimination to the factors in Mi .

Proof Recall thatAi is the set of affected factors marked andM′
i ∈ Ai be the independent set chosen

by the algorithm. LetPi = F ′
i \Ai be the set of unaffected factors andRi = Pi \F ′

i+1 be the ones that
are eliminated at roundi. The fact thatMi is a maximal independent set follows from Lemma 6

3168

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

becauseMi = Ri ∪M′
i . Since the update algorithm keeps the decisions made for the unaffected fac-

tors, the set of eliminated vertices are preciselyMi = Ri ∪M′
i and by Lemma 6,Mi is a maximal

independent set over degree-one and degree-two inT ′
i . The update algorithm applies the deferred

factor elimination subroutine on the setM′
i , so what remains to be shown is the saved values forRi

are the same as if we eliminate them explicitly. By Lemma 6, the factors inRi have the same set
of clusters around them inTi andT ′

i , which means that deferred factor elimination procedure will
produce the same result in both elimination trees when unaffected factors are eliminated. Therefore,
we can reuse the clusters inRi .

Theorem 7 shows that our update method correctly modifies the cluster tree,and thus marginals
can be correctly computed. Note that, by Lemma 3, we also have that the resulting cluster tree also
has logarithmic depth. It remains to show that we can efficiently update the clustering itself. We do
this by first establishing a bound on the number of affected nodes in each round.

Lemma 8 For i = 1,2, . . . , l, let Ai be the set of affected nodes computed by our algorithm after
inserting or deleting edge(fi , f j) in the elimination tree. Then,|Ai | ≤ 12.

Proof First, we observe that the edge(fi , f j) defines two connected components, that are either
created or merged, in the elimination tree. Since an unaffected node becomesaffected only if it
is adjacent to an affected factor, the set of affected nodes forms a connected sub-tree throughout
the elimination procedure. For the remained of the proof, we focus on the component associated
with fi , and show that it has at most six affected nodes. A similar argument can beapplied to the
component associated withf j , thereby proving the lemma.

For roundi, let Bi be the set of affected neighbors of with at least one unaffected neighbor and
let Ni be the set of newly affected factors. We claim that|Bi | ≤ 2 and|Ni | ≤ 2 at every roundi.
This can be proven inductively: assume that|Bi | and |Ni | are at most two in roundi ≥ 0. Rule
1 for marking a factor affected can make only one newly affected factor at round i +1, in which
case it is eliminated, and hence|Bi | cannot increase. Rule 2 for marking a factor affected can make
two newly affected factors, as shown in the example Figure 13. What is leftto be shown is that if
|Bi | = 2, then rule 2 cannot create two newly affected factors and make|Bi | > 2. LetBi = { fa, fb}
and supposefa can force two previously unaffected factors affected in the next round. For this to
happen, the degree-status offa has to be one in roundi +1. However, this cannot becausefa must
have at least three neighbors in bothTi+1 andT ′

i+1. This is because it has two unaffected neighbors
plus an affected neighbor that is eventually connected to another unaffected factor throughfb. Note
that Figure 13 has|Bi |= 1, so we can increase|Bi | by one.

We have now established the fact that the number of affected nodes can increase at most by two
in each round, and it remains to be shown that the number of affected nodes is at most six in each
connected component.

To prove this, we argue that if there are more than six affected nodes in theconnected com-
ponent, our algorithm eliminates at least two factors. Since affected nodesform a sub-tree that
interacts with the rest of the tree on at most two factors, what remains to be shown is that in any tree
with at least four nodes, the size of a maximal independent set over the nodes with degree at most
two is at least two. To see this, observe that every tree has two leaves, and if the size of the tree is at
least four, the distance between these two leaves is at least two or the tree isstar-shaped. In either
case, any maximal independent set must include at least two nodes, proving the claim.

3169

SÜMER, ACAR, IHLER AND METTU

Combining the above arguments, we now conclude that a cluster tree can be efficiently updated
if the elimination tree is modified.

Theorem 9 Let G= (X,F) be a factor graph with n nodes andH be the cluster tree obtained using
an elimination tree T . If we insert or delete a single edge from T, it suffices tore-compute O(logn)
clusters inH to reflect the changes.

Proof Since the number of affected factors is constant at each round by Lemma 8and the number
of rounds isO(logn) by Lemma 3, the result follows.

We can easily generalize these results to multiple edge insertions and deletions by considering
each connected component resulting from a modification separately. As wediscussed in Section 4.1,
we only need to recalculateO(ℓ log(n/ℓ)) many clusters whereℓ is the number of modifications to
the elimination tree. We can now state the running time efficiency of our update algorithm under
multiple changes to the elimination tree.

Theorem 10 Let G= (X,F) be a factor graph with n nodes andH be the cluster tree obtained
using an elimination tree T . If we makeℓ edge insertions or deletions in T , we can recompute the
new cluster tree in O(d3wℓ log(n/ℓ)) time.

5. Maintaining MAP Configurations

The previous sections provide for efficient marginal queries to user-specified variables and can be
extended to compute max-marginals when each sum is replaced with max in the formulas. While we
can query each max-marginal, since we do not knowa priori which entries of the MAP configuration
have changed, in the worst case it may take linear time to update the entire MAP configuration. In
this section, we show how to use the cluster tree data structure along with a treetraversal approach
to efficiently update the entries of the MAP configuration. More precisely, for a change to the model
that inducesmchanges to a MAP configuration, our algorithm computes the new MAP configuration
in time proportional tomlog(n/m), without requiringa priori knowledge ofmor which entries in a
MAP configuration will change.

5.1 Computing MAP Configurations Using a Cluster Tree

In Section 3, we described how to compute a cluster tree for computing marginals for any given
variable. In this section, we show how this cluster tree can be modified to compute a MAP configu-
ration. First, we modify Equation (2) for computing a clusterλ j to be

λ j = max
V j

f j ∏
λk∈CT(f j)

λk (5)

whereV j ⊆ X is the set of children variables ofλ j andCT(f j) is the set of children clusters ofλ j in
the cluster-tree. For MAP computations, rather than using boundaries we make use of the argument
set of clusters. The argument setXλ j

of a clusterλ j is the set of variablesλ j depends on at time it
was created and it is implicitly computed as we perform hierarchical clustering.

3170

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

f3

f4

f5 f6

f2

f1

z

y

x

v

w Xλ3 Xλ5
Xλ6

Xλ4

Xλ2

Xλ1

Xλ1 = {x}
Xλ2 = ∅

Xλ3 = {y, v}

Xλ4 = {x, y}
Xλ5 = {x, v}
Xλ6 = {w}

z

λ1

λ2

λ4

λ6λ5λ3

y

v

x

w

Figure 14: Updating a MAP configuration.Factor f1 is modified and no longer depends onzon the
factor graph (left). We first update the clusters on the path from modified clusters to the
root, namely,λ1 andλ2. Then, we check for changes to the MAP configuration using
a top-down traversal in the cluster-tree (right). Herex is assumed to have a different
MAP configuration than before, which requires us to check for changes to the MAP
configuration in clusters withx in their argument sets, namelyλ4, λ5. The argument set
for each cluster is annotated in the cluster tree.

We now perform a downward pass, in which we select an optimal configuration for the variables
associated with the root of the cluster tree, then at its children, and so on. During this downward
pass, as we reach each clusterλ j , we choose the optimal configurations for its children variablesV j

using
V ∗

j = argmax
X

δ(Xλ j
= X∗

λ j
) f j ∏

λk∈CT(f j)

λk (6)

whereδ(·) is the Kronecker delta, ensuring thatλ j ’s argument setXλ j
takes on valueX∗

λ j
. By

the recursive nature of the computation, we are guaranteed that the optimalconfigurationX∗
λ j

is

selected before reaching the clusterλ j . This can be proven inductively: assume thatXλ j
has an

optimal assignment when the recursion reaches the clusterλ j . We are conditioning onXλ j
, which

is the Markov blanket forλ j , and can therefore optimize the subtree ofλ j independently. The value
in Equation (6) is thus the optimal configuration forV j (which by definition includes the Markov
blanket) for each child clusterλk; see Figure 14 for an example.

Theorem 11 Let G be a factor graph with n nodes and T be an elimination tree on G with tree-
width w. The MAP configuration can be computed in O(nd3w) time.

Proof Computation of the formulas in Equations (5) and (6) takesO(d3w) by Lemma 3. Since
the algorithm visits each node twice, once bottom-up using Equation (5) and once top-down using
Equation (6) the total cost isO(nd3w).

5.2 Updating MAP Configurations Under Changes

In this section we show, somewhat surprisingly, that the time required to update a MAP configu-
ration after a change to the model is proportional to the number of changed entries in the MAP

3171

SÜMER, ACAR, IHLER AND METTU

configuration, rather than the size of the model. Furthermore, the cost of updating the MAP config-
uration is in the worst case linear in the number of nodes in the factor graph,ensuring that changes
to model result in no worse cost than computing the MAP from scratch. This means that, although
the extent of any changed configurations is not knowna priori, it is identified automatically during
the update process. For the sake of simplicity, we present the case wherewe modify a single factor.
However, with little alteration the algorithm also applies to an arbitrary number of modifications
both to the factors and to the structure of the model.

Let G = (X,F) be a factor graph andH be its cluster tree. Suppose that we modify a factor
f1 ∈ F and letλ1 be the cluster formed after eliminatingf1. Let λ1,λ2, . . . ,λk be the path fromλ1

to the rootλk in H . As in Section 4, we recompute each cluster along the path using Equation (5).
We additionally mark these clustersdirty to indicate that they have been modified. In the top-down
phase we search for changes to and update the optimal configuration forthe children variables of
each cluster. Beginning at the root, we move downward along the path, checking for a MAP change.
At each node, we recompute the optimal MAP configuration for the children variables and recurse
on any children cluster who is marked as dirty or whose argument set has avariable with a changed
MAP configuration.

Figure 14 shows an example of how a MAP configuration changes after a factor (e.g.,f1) is
changed in the factor graph. The bottom-up phase marksλ1 andλ2 dirty and updates them. The
top-down phase starts at the root and re-computes the optimal configuration for x andy. Assuming
that the configuration forx is changed, the recursion proceeds onλ1 due to the dirty cluster andλ4

due to the modified argument set. Atλ4 we re-compute the optimal MAP configurations forv and
w and assuming nothing has changed, we proceed toλ5 and terminate.

We now prove the correctness and overall running time of this procedure.

Theorem 12 Suppose that we make a single change to a factor in the input factor graph G,and
that a MAP configuration of the new model differs from our previous result on at most m variables.
Let γ = min(1+ rm,n), where r is the maximum degree of any node in G. After updating the
cluster tree, the MAP update algorithm can find m variables and their new MAPconfigurations in
O(γ(1+ log(n

γ))d
w) time.

Proof Suppose that after the modified factor is changed, we update the cluster tree as described in
Section 4. To find the new MAP, we revisit our decision for the configuration of any variables along
this path.

Consider how we can rule out any changes in the MAP configuration of a subtree rooted atλ j

in the cluster tree. First, suppose that we have found all changed configurations aboveλ j . The
decision atλ j is based on its children clusters and the configuration of its argument set: if none
of these variables have changed, and no clusters used in calculatingλ j have changed, then the
configuration for all nodes in the subtree rootedλ j remains valid. Thus, our dynamic MAP update
procedure correctly finds all the changedmvariables and their new MAP configurations.

Now suppose thatm variables have changed the value they take on in the new MAP configu-
ration. The total number of paths with changed argument set is then at mostrm. These paths are
of heightO(logn), and every node is checked at most once, ensuring that the total numbernodes
visited is at mostO(γ log(n

γ)) whereγ = min(1+ rm,n). Each visit to a clusterλ j decodes the opti-

mal configuration for its children variablesV j using Equation (6). Since we are conditioning on the

argument set, this computation takesO(d|V j |) time. Using arguments as in the proof of Lemma 1,

3172

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

we can show that
∣

∣V j
∣

∣≤ w. Therefore the top-down phase takesO(γ(1+ n
γ)d

w) time.

It is also possible, using essentially the same procedure, to process batchupdates to the input
model. Suppose we modifyG or its elimination treeT by inserting and deleting a total ofℓ edges and
nodes. First, we use the method described in Section 4 to update the clusters.Then, the total number
of nodes recomputed (and hence marked dirty) is guaranteed to beO(ℓ log(n/ℓ)). Note that we also
requireO(ℓ logn) time to identify new points of elimination for at mostℓ variables. Therefore, the
bottom-up phase will takeO(d3wℓ log(n/ℓ)) time. The top-down phase works exactly as before
and can check an additionalO(rm) paths for MAP changes wherem is the number of variables
with changed MAP value andr is the maximum degree inG. Therefore the top-down phase takes
O(γ log(n

γ)d
w) time whereγ = min(ℓ+ rm,n).

6. Experiments

In this section, we evaluate the performance of our approach by comparing the running times for
building, querying, and updating the cluster-tree data structure against (from-scratch or complete)
inference using the standard sum- or max-product algorithms. For the experiments, we implemented
our proposed approach as well as the sum- and max-product algorithms inPython.1 In our imple-
mentation, all algorithms take the elimination tree as input; when it is not possible to compute
the optimal elimination tree for a given input, we use a simple greedy method to construct it (the
algorithm grows the tree incrementally while minimizing width). To evaluate our algorithm, we
performed experiments with both synthetic data (Section 6.1) and real-world applications (Sections
6.2 and 6.3).

First, we evaluate the practical effectiveness of our proposed approach by considering syn-
thetically generated graphs to compute marginals (Section 6.1.3) and MAP configurations (Sec-
tion 6.1.4). These experiments show that adaptive inference can yield significant speedups for
reasonably chosen inputs. To further explore the limits of our approach,we also perform a more de-
tailed analysis in which we compute the speedup achievable by our method for a range tree-width,
dimension, and size parameters. This analysis allows us to better interpret how the asymptotic
bounds derived in the previous sections fare in practice.

Second, we evaluate the effectiveness of our approach for two applications in computational
biology. The first application studies adaptivity in the context of using an HMM for the standard
task of protein secondary structure prediction. For this task, we show how a MAP configuration that
corresponds to the maximum likelihood secondary structure can be maintainedas mutations are
applied to the primary sequence. The second application evaluates our approach on higher-order
graphical models that are derived from three-dimensional protein structure. We show our algorithm
can efficiently maintain the minimum-energy conformation of a protein as its structure undergoes
changes to local sidechain conformations.

6.1 Experiments with Synthetic Data

For our experiments with synthetically generated data, we randomly generateproblems consisting
of either tree-structured graphs or loopy graphs and measure the running-time for the operations
supported by the cluster tree data structure and compare their running times tothat of the sum-

1. The source code of our implementation can be obtained by contacting theauthors.

3173

SÜMER, ACAR, IHLER AND METTU

product algorithm. Since we perform exact inference, the sum-product algorithm offers an adequate
basis for comparison.

6.1.1 DATA GENERATION

For our experiments on synthetically generated data, we randomly generateinput instances consist-
ing of either tree-structured graphs or loopy graphs, consisting ofn variables, each of which takes
on d possible values. For tree-structured graphs, we define how a factorfi (1≤ i < n) depends on
any particular variablex j (1≤ j < n) through the following distribution:

Pr
{

fi depends onx j
}

=







1 if j = i+1,
p(1− p)i− j if j = 2, . . . , i,

1−∑i
s=2 p(1− p)i−s if j = 1.

Here, p is a parameter that when set to 1 results in a linear chain. More generally, theparameter
p determines how far back a node is connected while growing the random tree. The ith node is
expected to connect as far back as thejth node wherej = i −1/p, due to the truncated geometric
distribution. In our experiments we chosep= .2 andd = 25 when generating trees.

For loopy graphs, we start with a simple Markov chain, where each factorfi depends on vari-
ablesxi andxi+1, where 1≤ i < n. Then for parametersw and p, we add a cycle to this graph as
follows: if i is even and less thann−2(w−1), with probabilityp we create a cycle by adding a new
factorgi that depends onxi andxi+2(w−1). This procedure is guaranteed to produce a random loopy
graph whose width along the chainx1, . . . ,xn is at mostw; to ensure that the induced width is exactly
w we then discard any created loopy graph with width strictly less thanw. In our experiments, we
setp= (0.2)1/(w−1) so that the maximum width is attained by 20% of the nodes in the chain regard-
less of the width parameterw. We use an elimination treeT = (F,E) that eliminates the variables
x1, . . . ,xn in order. More specifically,E includes{(fi , fi+1) : i = 1, . . . ,n−1} and any(fi ,gi) with
2≤ i ≤ n−2(w−1) that is selected by the random procedure above. In our experiments, wevaried
n between 10 and 50000.

For both tree-structured and loopy factor graphs, we generate the entries of the factors (i.e., the
potentials) by sampling a log-normal distribution, that is, each entry is randomlychosen fromeZ

whereZ is a Gaussian distribution with zero mean and unit variance.

6.1.2 MEASUREMENTS

To compare our approach to sum- and max-product algorithms when the underlying models undergo
changes, we measure the running times for build, update, structural update, and query operations.
To perform inference with a graphical model that undergoes changes, we start by performing an
initial build operation that constructs the cluster-tree data structure on the initial model. As the
model changes, we reflect these changes to the cluster tree by issuingupdateoperations that change
the factors, orstructural-updateoperations that change the dependencies in the graph (by insert-
ing/deleting edges) accordingly, and retrieve the updated inference results by issuingqueryopera-
tions. We are interested in applications where after an initial build, graphicalmodels undergo many
small changes over time. Our goal therefore is to reduce the update and query times, at the cost of
a slightly slower initial build operation.

3174

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

10
1

10
2

10
3

10
4

10
5

Size

10
−3

10
−2

10
−1

10
0

10
1

10
2

T
im

e
(s

e
c
)

build

sum-product

query

update

restructure

(a) tree-structured factor graphs

10
1

10
2

10
3

10
4

10
5

Size

10
−3

10
−2

10
−1

10
0

10
1

10
2

T
im

e
(s

e
c
)

build

sum-product

query

update

restructure

(b) loopy factor graphs with tree-width 3

Figure 15: Marginalization queries and model updates.We measure the running times for naive
sum-product, building the cluster tree, computing marginal queries, updatingfactors,
and restructuring (adding and deleting edges to the elimination tree) for tree-structured
and loopy factor graphs. Building the cluster tree is slightly more expensive than a single
execution of sum-product, but subsequent updates and queries are much more efficient
than recomputing from scratch. For both tree-structured and loopy graphs, our approach
is about three orders of magnitude faster than sum-product.

6.1.3 MARGINAL COMPUTATIONS

We consider marginal computation and how we can compute marginals of graphical models that un-
dergo changes using the proposed approach. To this end we measure the running-time for the build,
update, structural-update and query operations and compare them to the sum-product algorithm.
We consider graphs with tree-width one (trees) and three, with between 10and 200,000 nodes. For
trees, we setd = 25, and for graphs we setd = 6.

For the build time, we measure the time to build the cluster tree data structure for graphs gen-
erated for various input sizes. The running-time of sum-product is defined as the time to compute
messages from leaves to a chosen root node in the factor graph. To compute the average time for a
query operation, we take the average time over 100 trials to perform a query for a randomly chosen
marginal. To compute the update time, we take the average over 100 trials of the timerequired to
change a modify a randomly chosen factor (to a new factor that is randomly generated). To compute
the average time required for a structural updates (i.e, restructure operations), we take the average
over 100 trials of the total time required to remove a randomly chosen edge, update the cluster tree,
and to add the same edge back to the cluster tree.

Figure 15 shows the result of our measurements for tree-structured factor graphs and loopy
graphs with tree-width 3. We observe that the running time for the build operations, which con-
structs the initial cluster tree, is comparable to the time required to perform sum-product. Since we
perform exact inference, sum-product is the best we can expect in general. We observe that all of
our query and update operations exhibit running times that are logarithmic inn, and are between one

3175

SÜMER, ACAR, IHLER AND METTU

0 50 100 150 200 250 300

Changes to MAP configuration

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
U

p
d
a
te

ti
m

e
(s

e
c
)

update

max-product

(a) tree-structured

0 50 100 150 200 250 300

Changes to MAP configuration

0.00

0.05

0.10

0.15

0.20

U
p
d
a
te

ti
m

e
(s

e
c
)

update

max-product

(b) loopy

Figure 16: Updates to MAP configurations.We report the time required to update a MAP configu-
ration after a single change is made to the input model, in both tree-structured and loopy
factor graphs, with 300 variables. Our algorithm takes time that is roughly linear in
the number of changed entries, unlike the standard max-product algorithm,which takes
time that is linear in the size of the model.

to four orders of magnitude faster than a from-scratch inference with the sum-product algorithm.
Update and restructuring operations are costlier than the query operation, as predicted by our com-
plexity bounds on updates (O(d3w logn), Theorem 5) and queries (O(d2w logn), Theorem 4). The
overall trend is logarithmic inn, and even for small graphs (100–1000 nodes) we observe a factor of
10–30 speedup. In the scenario of interest, where we perform an initialbuild operation followed by
a large number of updates and queries, these results suggest that we can achieve significant speedups
in practice.

6.1.4 MAP CONFIGURATIONS

We also tested the approach for computing and maintaining MAP configurations, as outlined in
Section 5. For these experiments we generated factor graphs with tree-width one (trees) and three
comprised ofn= 300 variables. For trees, we choosed = 25 and for graphs we choosed = 6. We
compute the update time by uniformly randomly selecting a factor and replacing withanother factor,
averaging over 100 updates. We compare the update time to the running-time ofthe max-product
algorithm, which computes messages from leaves to a chosen root node in thefactor graph and then
performs maximization back to the leaves.

Figure 16 show the results of our experiments. For both tree-structured and loopy factor graphs,
we observed strong linear dependence between the time required to updatethe MAP on the number
of changed entries in the MAP configuration. We note that while there is an additional logarithmic
factor in the running time, it is likely negligible sincen was set to be small enough to observe
changes to the entire MAP configuration. Overall, our method of updating MAP configurations
were substantially faster than computing a MAP configuration from scratch inall cases, for both
tree-structured and loopy graphs.

3176

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

10
2

10
3

10
4

Size

2

4

6

8

10

12

14

16

V
a
ri

a
b
le

d
im

e
n
s
io

n

(a) tree width 2
xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx

10
2

10
3

10
4

Size

2

4

6

8

10

12

14

16

(b) tree width 3
xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx

xxxx
xxxx
xxxx

xxxx
xxxx
xxxx

xxxx
xxxx

10
2

10
3

10
4

Size

2

4

6

8

10

12

14

16

(c) tree width 4

x
x
x
xx
x
x

speedup

1×

5×

20×

100×

500×

Figure 17: Speedup Analysis.The regions where we obtain speedup, defined as the ratio of running
time of our algorithm for a single update and query to the running time of standard
sum-product, are shown for loopy graphs with width 2,3 and 4 and variable dimensions
2–16.

6.1.5 EFFICIENCY TRADE-OFFS ANDCONSTANT FACTORS

Our experiments with the computations of marginals and MAP configurations (Sections 6.1.3 and
6.1.4) suggest that our proposed approach can lead to efficiency improvements and significant
speedups in practice. In this section, we present a more detailed analysis by considering a broader
range of graphs and by presenting a more detailed analysis by considering constant factors and
realized exponents.

For a graph ofn nodes with tree-widthw and dimensiond, inference of marginals using sum
product algorithm requiresO(dw+1n) time. With adaptive inference, the preprocessing step takes
O(d3wn) time whereas updates and queries after unit changes requireO(d3w logn) andO(d2w logn)
time respectively. These asymptotic bounds imply that using updates and queries, as opposed to
performing inference with sum-product, would yield a speedup ofO(n

d3w logn), whered is the di-
mension (domain size) andw andn is the tree-width and the size of the graphical model. In the
case thatd andw can be bounded by constants, this speedup would result in a near linear efficiency
increase as the size of the graphical model increases. At what point and with what inputs exactly the
speedups materialize, however, depends on the constant factors hidden by our asymptotic analysis.
For example in Figure 15, we obtain speedups for nearly all graphs considered.

Speedups for varying input parameters.

To assess further the practical effectiveness of adaptive inference, we have measured the perfor-
mance of our algorithm versus sum-product for graphical models generated at random with varying
values ofd,w andn. Specifically, for a givend,w,n we generate a random graphical model as pre-
viously described and measure the average time for ten randomly generatedupdates plus queries,
and compare this to the time to perform from-scratch inference using the sum-product algorithm.
The resulting speedup is defined as the ratio of the time for the from-scratch inference to the time
for the random update plus query.

3177

SÜMER, ACAR, IHLER AND METTU

Figure 17 illustrates a visualization of this speedup information. For tree-widths, 2,3,4, we
show the speedup expected for each pair of values(n,d). Given fixedw,d we expect the speedup
to increase asn increases. The empirical evaluation illustrates this trend; for example, atw= 3 and
d = 4, we see a five-fold or more speedup starting with input graphs withn ≈ 100. As the plots
illustrate, we observe that when the tree-width is 2 or less, as in Figure 17a,adaptive inference is
preferable in many cases even for small graphs. With tree-widths 3 and 4,we obtain speedups for
dimensions below 10 and 6 respectively. We further observe that for a given width w, we obtain
higher speedups as we reduce the dimensionalityd and as we increasen, except for small values of
n. Disregarding such small graphs, this is consistent with our theoretical bounds. In small graphs
(n < 100) we see higher speedups than predicted because our method’s worst-case exponential
dependence is often not achieved, a phenomenon we examine in more detailshortly.

Constant Factors.The experiments shown in Figures 17 and 15 show that adaptive inference can
deliver speedups even for modest input sizes. To understand these result better, it helps to consider
the constant factors hidden in our asymptotic bounds. Taking into accountthe constant factors, we
can write the dynamic update times with adaptive inference asαad3w logn+βa logn, whereαa,βa

are constants dependent on the cost of operations involved. The firsttermαad2w logn accounts for
the cost of matrix computations (when computing the cluster functions) at eachnode and the term
βa logn accounts for the time to locate and visit the logn nodes to be updated in the cluster-tree data
structure. In comparison, sum-product algorithm requiresαsdw+1n+βsn time for some constants
αs,βs which again represent matrix computation at each node and the finding and visiting of the

nodes. Thus the speedup would beαsdw+1n+βsn
αad3w logn+βa logn.

These bounds suggest that for fixedd,w, there will be somen0 beyond which speedups will be
possible. The value ofn0 depends on the relationships between the constants. First, constantsαa

andαs are similar because they both involve similar matrix operations. Also, the constants βa and
βs are similar because they both involve traversing a tree in memory by following pointers. Given
this relationship between the constants, if the non-exponential terms dominate,that is,β ≫ α, then
we can obtain speedups even for smalln.

Our experiments showing that speedups are realized at relatively modestinput sizes suggest
that theβs dominate theαs. To test this hypothesis, we measured separately the time required for
the matrix operations. For an example model withn= 10000,w= 3,d = 6, the matrix operations
(the first term in the formulas) consumed roughly half the total time: 8.3 seconds, compared to 7.4
seconds for the rest of the algorithm. This suggests thatβs are indeed larger than theαs. This should
be expected: the constant factor for matrix computation, performed locally and in machine registers,
should be far smaller than the parts of the code that include more random memory accesses (e.g., for
finding nodes) and likely incur cache misses as well, which on modern machines can be hundreds
of times slower than register computations.

While this analysis compares the dynamic update times of adaptive inference, comparing the
pre-processing (build) time of our cluster tree data structures (Figure 15) suggests that a similar
case holds. Specifically, in Theorem 2 we showed that the building the cluster tree takes in the worst
caseΘ(d3w ·n) whereas the standard sum-product takesΘ(dw+1 ·n). Thus the worst-case build time
could bed2w = 62·3 = 46656 times slower than standard sum-product. In our experiments, this ratio
is significantly lower. For a graph of size 50,000, for example, it is only 3.05. Figure 15(b) also
shows a modest increase in build time as the input size grows. For example atn= 100, our build
time is about 1.20 slower than performing sum-product. Another 100-fold increase in the size makes

3178

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

10
2

10
3

10
4

Size

4

5

6

7

8

9

10

11

E
x
p
o
n
e
n
t

width=4

width=3

width=2

Figure 18: Cost of cluster computation.The maximum exponenteduring the computation of clus-
ters, which takesO(de) time, is plotted as a function of the input size. As can be seen, the
exponent starts relatively small and increases to reach the theoretical maximum of three
times the tree-width as the graph size increases. Since the cost of computing clusters
in our algorithm isO(de), our approach can yield speedup even for small and medium-
sized models. This shows that our worst-case bound ofO(d3w) for computing clusters
can be pessimistic, that is, it is not tight except in larger graphs.

our build time about 2.05 slower. As we illustrate in next this section, this is due to our bounds not
being tight in small graphs.

It is also worth noting that the differences between the running times of query and update op-
erations are also low in practice, in contrast to the results of Theorems 10 and 4. According to
Theorems 10 and 4, the query operation could, in the worst-case, bedw = 63 = 216 times faster
than an update operation. However, in practice we see that, for example atn = 100, the queries
are about 2.5 times faster than updates. This gap does increase asn increases, for example, at
n= 50000, queries are about 6.7 times faster than updates; this is again due to our bounds not being
tight in small graphs (described in detail next).

Tightness of our bounds in small graphs.Our experiments with varying sizes of graphs show
some unexpected behavior. For example, contrary to our bound that predicts speedup to increase
as the input size increases, we see in Figure 17 that speedups occur for very small graphs (less
than 100 nodes) then disappear as the graph size increases. To understand the reasons for this
we calculated the actual exponential factor in our bounds occurring in our randomly generated
graphs, by building each cluster-tree and calculating the maximum exponentencountered during
the computation. Figure 18 shows the measurements, which demonstrate that for small graphs the
worst case asymptotic bound is not realized because the exponent remains small. In other words,
we perform far fewer computations than would be predicted by our worst-case bound. As the graph
size grows, the worst case configurations become increasingly likely to occur, and the exponent
eventually reaches the bound predicted by our analysis. This suggests that our bounds may be loose
for small graphs, but more accurate for larger graphs, and explains why speedups are possible even
for small graphs.

3179

SÜMER, ACAR, IHLER AND METTU

6.2 Sequence Analysis with Hidden Markov Models

HMMs are a widely-used tool to analyze DNA and amino acid sequences; typically an HMM is
trained using a sequence with known function or annotations, and new sequences are analyzed by
inferring hidden states in the resulting HMM. In this context, our algorithm forupdating MAP
configuration can be used to study the effect of changes to the model andobservations on hidden
states of the HMM. We consider the application of secondary structure prediction from the primary
amino acid sequence of a given protein. This problem has been studied extensively (Frishman and
Argos, 1995), and is an ideal setting to demonstrate the benefits of our adaptive inference algorithm.
An HMM for protein secondary structure prediction is constructed by taking the observed variables
to be the primary sequence and setting the hidden variables (i.e., one hidden state per amino acid) to
be the type of secondary structure element (α-helix, β-strand, or random coil) of the corresponding
amino acid. Then, a MAP configuration of the hidden states in this model identifies the regions with
α helix andβ strands in the given sequence. This general approach has been studied and refined
(Chu et al., 2004; Martin et al., 2005), and is capable of accurately predicting secondary structure.
In the context of secondary structure prediction, our algorithm to adaptively update the model could
be used in protein design applications, where we make “mutations” to a starting sequence so that
the resulting secondary structure elements match a desired topology. Or, more conventionally, our
algorithm could be applied to determine which residues in the primary sequenceof a given protein
are critical to preserving the native pattern of secondary structure elements. It is also worth pointing
out that our approach is fully general and can be used at any application where biological sequences
are represented by HMMs (e.g., DNA or RNA sequence, exon-intron chains, CpG islands) and we
want to study the effects of changes to these sequences.

For our experiments, we constructed an HMM for secondary structure prediction by construct-
ing an observed state for each amino acid in the primary sequence, and a corresponding hidden
state indicating its secondary structure type. We estimated the model parametersusing 400 protein
sequences labeled by the DSSP algorithm (Kabsch and Sander, 1983),which annotates a three-
dimensional protein structure with secondary structure types using standard geometric criteria.
Since repeated modification to a protein sequence typically causes small updates to the regions
with α helices andβ strands, we expect to gain significant speedup by using our algorithm. To
test this hypothesis, we compared the time to update MAP configuration in our algorithm against
the standard max-product algorithm. The results of this experiment are given in Figure 19(a). We
observed that overall the time to update secondary structure predictions were 10-100 times faster
than max-product. The overall trend of running times, when sorted by protein size, is roughly loga-
rithmic. In some cases, smaller proteins required longer update times; in these cases it is likely that
due to the native secondary structure topology, a single mutation induced a large number of changes
in the MAP configuration. We also studied the update times for a single protein,E. coli hemolysin
(PDB id: 1QOY), with 302 amino acids, as we apply random mutations (see Figure 19(b)). As in
Section 6.1.4 above, we see that the update time scales linearly with the number ofchanges to a
MAP configuration, rather than depending on the size of the primary sequence.

6.3 Protein Sidechain Packing with Factor Graphs

In the previous section, we considered an application where the input modelwas a chain-structured
representation of the protein primary sequence. In this section, we consider a higher-order rep-
resentation that defines a factor graph to model the three-dimensional structure of protein, which

3180

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

10
1

10
2

10
3

Protein size

10
−3

10
−2

10
−1

T
im

e
(s

e
c
)

max-product

log n reference

update

(a) Update runtimes for 400 proteins

0 50 100 150 200 250 300

Changes to MAP configuration

0.00

0.02

0.04

0.06

0.08

0.10

0.12

U
p
d
a
te

ti
m

e
(s

e
c
)

(b) Update times for protein 1QOY

Figure 19: Secondary structure prediction using HMMs.We applied our algorithm to perform up-
dates in HMMs for secondary structure prediction. For our data set, we can perform
MAP updates about 10-100 faster than max-product, and we see a roughly logarithmic
trend as the size of the protein increases. For a single protein,E. coli hemolysin, we
see that the time required to update the MAP configuration is linear in the number of
changes to the MAP configuration, rather than in the size of the HMM.

essentially defines its biochemical function. Graphical models constructed from protein structures
have been used to successfully predict structural properties (Yanover and Weiss, 2002) as well as
free energy (Kamisetty et al., 2007). These models are typically constructed by taking each node
as an amino acid whose states represent a discrete set of local conformations calledrotamers(Dun-
brack Jr., 2002), and basing conditional probabilities on a physical energy function (e.g., Weiner
et al., 1984 and Canutescu et al., 2003).

The typical goal of using these models is to efficiently compute a maximum-likelihood(i.e.,
minimum-energy) conformation of the protein in its native environment. Our algorithmic frame-
work for updating MAP configurations allows us to study, for example, the effects of amino acid
mutations, and the addition and removal of edges corresponds directly to allowing backbone motion
in the protein. Applications that make use of these kinds of perturbations include protein design and
ligand-binding analysis. The common theme of these applications is that, given an input protein
structure with a known backbone, we wish to characterize the effects of changes to the underlying
model (e.g., by modifying amino acid types or their local conformations), in termsof their effect on
a MAP configurations (i.e., the minimum energy conformation of the protein).

For our experiments, we studied the efficiency of adaptively updating the optimal sidechain
conformation after a perturbation to the model in which a random group of sidechains are fixed
to new local conformations. This experiment is meant to mimic a ligand-binding study, in which
we would like to test how introducing ligands to parts of the protein structure affect the overall
minimum-energy conformation. For our data set, we took about 60 proteins from the SCWRL
benchmark or varying sizes (between 26 and 244 amino acids) and overall topology.

3181

SÜMER, ACAR, IHLER AND METTU

Proteins (ordered by max-product runtime)

10
−3

10
−2

10
−1

10
0

10
1

T
im

e
(s

e
c
)

max-product

update

Figure 20: Adaptive sidechain packing for protein structures.For 60 proteins from the SCWRL
benchmark, we compared the time to adaptively update a MAP configuration against
max-product. Since this set of proteins have a diverse set of folds (and thus graph
structures), we order the inputs by the time taken by max-product. The speedup achieved
by our algorithm varies due to the diversity of protein folds, but on average our approach
is 6.88 times faster than computation from scratch.

For each protein, we applied updates to a random group within a selected set amino acids (e.g.,
to represent an active site) by choosing a random rotameric state for each. With appropriate pre-
processing (using Goldstein dead-end elimination), we were able to obtain accurate models with
an induced width of about 5 on average. For the cluster tree corresponding to each protein we se-
lected a set of 10 randomly chosen amino acids for modification, and recorded the average time,
over 100 such trials, to update a MAP configuration and compared it against computing the latter
from scratch. The results of our experiment are given in Figure 20. Due to the diversity of protein
folds, and thus the resulting factor graphs, we sort the results according to the time required for
max-product. We find that our approach consistently outperforms max-product, and was on average
6.88 times faster than computation from scratch.

We note that the overall trend for our algorithm versus max-product is somewhat different than
the results in Sections 6.1.4 and 6.2. In those experiments we observed a clear logarithmic trend in
running times for our algorithm versus max-product, since the constant-factor overheads (e.g., for
computing cluster functions) grew as a function of a model size. For adaptive sidechain packing, it
is difficult to make general statements about the complexity of a particular inputmodel with respect
to its size: a small protein may be very tightly packed and induce a very dense input model, while a
larger protein may be more loosely structured and induce a less dense model.

7. Conclusion

In this paper, we have presented an adaptive framework for performing exact inference that effi-
ciently handles changes to the input factor graph and its associated eliminationtree. Our approach

3182

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

to adaptive inference requires a linear preprocessing step in which we construct a cluster-tree data
structure by performing a generalized factor elimination; the cluster tree offers a balanced represen-
tation of an elimination tree annotated with certain statistics. We can then make arbitrary changes
to the factor graph or elimination tree, and update the cluster tree in logarithmic time inthe size
of the input factor graph. Moreover, we can also calculate any particular marginal in time that is
logarithmic in the size of the input graph, and update MAP configurations in time that is roughly
proportional to the number of entries in the MAP configuration that are changed by the update.

As with all methods for exact inference, our algorithms carry a constant factor that is exponential
in the width of the input elimination tree. Compared to traditional methods, this constant factor is
larger for adaptive inference; however the running time of critical operations are logarithmic, rather
than linear, in the size of the graph in the common case. In our experiments, weestablish that for any
fixed tree-width and variable dimension, adaptive inference is preferable as long as the input graph
is sufficiently large. For reasonable values of these input parameters, our experimental evaluation
shows that adaptive inference can offer a substantial speedup overtraditional methods. Moreover,
we validate our algorithm using two real-world computational biology applications concerned with
sequence and structure variation in proteins.

At a high level, our cluster-tree data structure is a replacement for the junction tree in the typical
sum-product algorithm. A natural question, then, is whether our data structure, can be extended
to perform approximate inference. The approach does appear to be amenable to methods that rely
on approximate elimination (e.g., Dechter, 1998), since these approximations can incorporated be
into the cluster functions in the cluster tree. Approximate methods that are iterative in nature (e.g.,
Wainwright et al., 2005a,b and Yedidia et al., 2004), however, may be moredifficult, since they
often make a large number of changes to messages in each successive iteration.

Another interesting direction is to tune the cluster tree construction based on computational
concerns. While deferred factor elimination gives rise to a balanced elimination tree, it also incurs
a larger constant factor dependent on the tree width. While our benchmarks show that this overhead
can be pessimistic, it is also possible to tune the number of deferred factor eliminations performed, at
the expense of increasing the depth of the resulting cluster tree. It would be interesting to incorporate
additional information into the deferred elimination procedure used to build the cluster tree to reduce
this constant factor. For example, we can avoid creating a cluster functionif its run-time complexity
is high (e.g., its dimension or the domain sizes of its variables are large), preferring instead a cluster
tree that has a greater depth but will yield overall lower costs for queriesand updates.

Acknowledgments

This research was supported in part by gifts from Intel and MicrosoftResearch (U. A.) and by
the National Science Foundation through award IIS-1065618 (A. I.) and the CAREER award IIS-
0643768 (R. M.).

References

U. Acar, A. T. Ihler, R. R. Mettu, and̈O. S̈umer. Adaptive Bayesian inference in general graphs. In
Proceedings of the 24th Annual Conference on Uncertainty in Artificial Intelligence, pages 1–8,
2008.

3183

SÜMER, ACAR, IHLER AND METTU

U. A. Acar. Self-Adjusting Computation. PhD thesis, Department of Computer Science, Carnegie
Mellon University, May 2005.

U. A. Acar, G. Blelloch, R. Harper, J. Vittes, and M. Woo. Dynamizing staticalgorithms with
applications to dynamic trees and history independence. InACM-SIAM Symposium on Discrete
Algorithms (SODA), 2004.

U. A. Acar, G. Blelloch, and J. Vittes. An experimental analysis of changepropagation in dynamic
trees. InProc. 7th ACM-SIAM W. on Algorithm Eng. and Exp’ts, 2005.

U. A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functionalprogramming.ACM Trans.
Prog. Lang. Sys., 28(6):990–1034, 2006.

U. A. Acar, A. T. Ihler, R. R. Mettu, and̈O Sümer. Adaptive Bayesian inference. InAdvances in
Neural Information Processing Systems 20. MIT Press, 2007.

U. A. Acar, Guy E. Blelloch, Matthias Blume, Robert Harper, and Kanat Tangwongsan. An ex-
perimental analysis of self-adjusting computation.ACM Trans. Prog. Lang. Sys., 32(1):3:1–3:53,
2009a.

U. A. Acar, A. T. Ihler, R. R. Mettu, and̈O. S̈umer. Adaptive updates for maintaining MAP config-
urations with applications to bioinformatics. InProceedings of the IEEE Workshop on Statistical
Signal Processing, pages 413–416, 2009b.

A. A. Canutescu, A. A. Shelenkov, and R. L. Dunbrack Jr. A graph-theory algorithm for rapid
protein side-chain prediction.Protein Sci, 12(9):2001–2014, Sep 2003.

W. Chu, Z. Ghahramani, and D. Wild. A graphical model for protein secondary structure prediction.
In Proc. 21st International Conference on Machine Learning, 2004.

A. Darwiche.Modeling and Reasoning with Bayesian Networks. Cambridge, 1st edition, 2009.

A. Darwiche and M. Hopkins. Using recursive decomposition to construct elimination orders,
jointrees, and dtrees. InTrends in Artificial Intelligence, Lecture Notes in AI, pages 180–191.
Springer-Verlag, 2001.

R. Dechter. Bucket elimination: A unifying framework for probabilistic inference. In M. I. Jordan,
editor,Learning in Graphical Models, pages 75–104. MIT Press, 1998.

A. L. Delcher, A. J. Grove, S. Kasif, and J. Pearl. Logarithmic-time updates and queries in proba-
bilistic networks.J. Artificial Intelligence Research, 4:37–59, 1995.

R. L. Dunbrack Jr. Rotamer libraries in the 21st century.Curr Opin Struct Biol, 12(4):431–440,
2002.

D. Frishman and P. Argos. Knowledge-based protein secondary structure assignment.Proteins:
Structure, Function and Genetics, 23:566–579, 1995.

M. A. Hammer, U. A. Acar, and Y. Chen. CEAL: a C-based language forself-adjusting computation.
In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and
Implementation, June 2009.

3184

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

W. Kabsch and C. Sander. Dictionary of protein secondary structure:pattern recognition of
hydrogen-bonded and geometrical features.Biopolymers, 22(12):2577–2637, 1983.

H. Kamisetty, E. P. Xing, and C. J. Langmead. Free energy estimates of all-atom protein structures
using generalized belief propagation. InProc. 11th Ann. Int’l Conf. Research in Computational
Molecular Biology, pages 366–380, 2007.

K. Kask, R. Dechter, J. Larrosa, and A. Dechter. Unifying cluster-tree decompositions for reasoning
in graphical models.Artificial Intelligence, 166:165–193, 2005.

S. Koenig, M. Likhachev, Y. Liu, and David Furcy. Incremental heuristic search in artificial intelli-
gence.Artificial Intelligence Magazine, 25:99–112, 2004.

P. Kohli and P. H. S. Torr. Dynamic graph cuts for efficient inferencein markov random fields.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29:2079–2088, 2007.

N. Komodakis, G. Tziritas, and N. Paragios. Performance vs computational efficiency for optimiz-
ing single and dynamic mrfs: Setting the state of the art with primal-dual strategies. Comput. Vis.
Image Underst., 112:14–29, October 2008.

F. Kschischang, B. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm.IEEE
Trans. Inform. Theory, 47(2):498–519, February 2001.

S. Lauritzen and D. Spiegelhalter. Local computations with probabilities on graphical structures
and their applications to expert systems.J. Royal Stat. Society, Ser. B, 50:157–224, 1988.

J. Martin, J.-F. Gibrat, and F. Rodolphe. Choosing the optimal hidden Markov model for secondary-
structure prediction.IEEE Intelligent Systems, 20(6):19–25, 2005.

G. L. Miller and J. H. Reif. Parallel tree contraction and its application. InProc. 26th IEEE Symp.
Found. of Comp. Sci., pages 487–489, 1985.

V. Namasivayam, A. Pathak, and V. Prasanna. Scalable parallel implementation of bayesian network
to junction tree conversion for exact inference. InInformation Retrieval: Data Structures and
Algorithms, pages 167–176. Prentice-Hall PTR, 2006.

J. Pearl.Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, San Mateo, 1988.

D. M. Pennock. Logarithmic time parallel Bayesian inference. InProc. 14th Annual Conf. on
Uncertainty in Artificial Intelligence, pages 431–438, 1998.

D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.Journal of Computer and System
Sciences, 26(3):362–391, 1983.

M. Wainwright, T. Jaakkola, and A. Willsky. MAP estimation via agreement on (hyper)trees:
message-passing and linear programming approaches.IEEE Trans Info Theory, 51(11):3697–
3717, 2005a.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. A new class of upperbounds on the log
partition function.IEEE Trans Info Theory, 51(7):2313–2335, July 2005b.

3185

SÜMER, ACAR, IHLER AND METTU

S. J. Weiner, P.A. Kollman, D.A. Case, U.C. Singh, G. Alagona, S. ProfetaJr., and P. Weiner. A new
force field for the molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem.
Soc., 106:765–784, 1984.

Y. Xia and V. K. Prasanna. Junction tree decomposition for parallel exact inference. InIEEE
International Parallel and Distributed Preocessing Symposium, pages 1–12, 2008.

C. Yanover and Y. Weiss. Approximate inference and protein folding. InProc. NIPS, pages 84–86,
2002.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free energy approximations and general-
ized belief propagation algorithms. Technical Report 2004-040, MERL,May 2004.

3186

