Journal of Machine Learning Research 12 (2011) 3147-3186

bm8ted 9/10; Revised 5/11; Published 11/11

Adaptive Exact Inference in Graphical Models

Ozgur Stimer

Department of Computer Science
University of Chicago

1100 E. 58th Street

Chicago, IL 60637, USA

Umut A. Acar

Max-Planck Institute for Software Systems
MPI-SWS Campus E 14

D-66123 Saarbruecken, Germany

Alexander T. lhler

Donald Bren School of Information and Computer Science
University of California, Irvine

Irvine, CA 92697 USA

Ramgopal R. Mettu

Electrical and Computer Engineering Department
University of Massachusetts, Amherst

151 Holdsworth Way

Amherst, MA 01003, USA

Editor: Neil Lawrence

Abstract

OSUMER@CS.UCHICAGO.EDU

UMUT @MPI-SWS.ORG

IHLER@ICS.UCI.EDU

METTU@ECS.UMASS.EDU

Many algorithms and applications involve repeatedly s@wariations of the same inference prob-
lem, for example to introduce new evidence to the model ohemge conditional dependencies.
As the model is updated, the goal aflaptive inferencés to take advantage of previously com-
puted quantities to perform inference more rapidly thamfigcratch. In this paper, we present
algorithms for adaptive exact inference on general grapaisdan be used to efficiently compute
marginals and update MAP configurations under arbitrarygha to the input factor graph and its
associated elimination tree. After a linear time preprergsstep, our approach enables updates to
the model and the computation of any marginal in time thabgstithmic in the size of the input
model. Moreover, in contrast to max-product our approachatso be used to update MAP config-
urations in time that is roughly proportional to the numbeupdated entries, rather than the size
of the input model. To evaluate the practical effectiverefssur algorithms, we implement and
test them using synthetic data as well as for two real-woolchgutational biology applications.
Our experiments show that adaptive inference can achidv&amntial speedups over performing

complete inference as the model undergoes small changetroee

Keywords: exact inference, factor graphs, factor elimination, maatjzation, dynamic program-

ming, MAP computation, model updates, parallel tree catita

©20110zgir Simer, Umut A. Acar, Alexander T. Ihler and Ramgopal R. Mettu.

SUMER, ACAR, |HLER AND METTU

1. Introduction

Graphical models provide a rich framewaork for describing structure wélpirobability distribution,
and have proven to be useful in numerous application areas such astational biology, statistical
physics, and computer vision. Considerable efforts have been madddwstand and minimize the
computational complexity of inferring the marginal probabilities or most likely si&gegraphical
model. However, in many applications we may need to perform repeated tatiops over a
collection of very similar models. For example, hidden Markov models are cotynoged for
sequence analysis of DNA, RNA and proteins, while protein structungnesgthe definition of a
factor graph defined by the three-dimensional topology of the proteirt@rfeist. For both of these
types of models, it is often desirable to study the effects of mutation on fuattayrstructural
properties of the gene or protein. In this setting, each putative mutatios igsesto a new problem
that is nearly identical to the previously solved problem.

The changes described in the examples above can, of course, edlaychcorporating them
into the model and then performing inference from scratch. Howevegnergl we may wish to
assess thousands of potential changes to the model—for example, the oiipisible mutations
in a protein structure grows exponentially with the number of considered-saed minimize the
total amount of work requiredddaptive inferenceefers to the problem of handling changes to the
model (e.g., to model parameters and even dependency structure) ficieatdyf than performing
inference from scratch. Performing inference in an adaptive mamggiires a new algorithmic
approach, since it requires us to balance the computational cost of ¢éneriné procedure with the
reusability of its calculations. As a simple example, suppose that we wish to tetmeunarginal
distribution of a leaf node in a Markov chain withvariables. Using the standard sum-product
algorithm, upon a change to the conditional probability distribution at one &thé ahain, we must
performQ(n) computation to compute the marginal distribution of the node at the other end of the
chain. In such a setting, it is worth using additional preprocessing timettocage the underlying
model in such a way that changes to the model can be handled in time that ithimgarrather
than linear, in the size of the model.

In this paper, we focus on developing efficient algorithms for performicagieinference in
the adaptive setting. Specifically, we present techniques for two basieirde tasks in general
graphical models: marginalization and finding maximarposteriori(MAP) configurations. Our
high-level approach to enabling efficient updates of the model, antcwtaiion of marginals or
a MAP configuration, is to “cluster” parts of the input model by computing pagtieninations,
and construct a balanced-tree data structure with detsgn). We use a process based on factor
elimination (Darwiche, 2009) that we cdillerarchical clusteringthat takes as input a graph and
elimination tree (equivalent to a tree-decomposition of the graphical model)prduces an al-
ternative, balanced elimination sequence. The sufficient statistics of ldueckd elimination are
re-usable in the sense that they will remain largely unchanged by any spaalteuto the model.
In particular, changes to factors and the variables they depend oregagrformed in time that is
logarithmic in the size of the input model. Furthermore, we show that afteriguidtes, the time
necessary to compute marginal distributions is logarithmic in the size of the madeheatime to
update a MAP configuration is roughly proportional to the number of versalvhose values have
changed.

3148

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

1.1 Related Work

There are numerous machine learning and artificial intelligence problemwts,asupath planning
problems in robotics, where new information or observations requiregihgua previously com-
puted solution. As an example, problems solved by heuristic search teebrigwe benefited
greatly from incremental algorithms (Koenig et al., 2004), in which solutiamsbe efficiently up-
dated by reusing previously searched parts of the solution space rdilem of performing adap-
tive inference in graphical models was first considered by Delchdr @995). In their work, they
introduced a logarithmic time method for updating marginals under changesdovetissariables
in the model. Their algorithm relies on the input model being tree-structured;amonly handle
changes to observations in the input model. At a high level their approaatiiar to our own, in
that they also use a linear time preprocessing step to transform the inpstrtieired model into a
balanced tree representation. However, their algorithm addressespataies to “observations” in
the model, and cannot update dependencies in the input model. Additionailly,their algorithm
can be applied to general graphs by performing a tree decompositionpttdtear whether the tree
decomposition itself can be easily updated, as is necessary to remain effioesmmodifying the
input model. Adaptive exact inference using graph-cut techniqueslsa been studied by Kohli
and Torr (2007). Although the running time of their method does not depe itk tree-width of the
input model, it is restricted to pairwise models with binary variables or with subiaogairwise
factors. Adaptivity for approximate inference has also been studiedbbyoldakis et al. (2008); in
this work, adaptivity is achieved by performing “warm starts”. That ishange to model is simply
made at the final iteration of approximate inference and the algorithm istezsfeom this state and
allowed to continue until convergence.

The preprocessing technique used by Delcher et al. (1995) is indpradnethod known as
parallel tree contractiondevised by Miller and Reif (1985) to evaluate expressions on parallel
chitectures. In parallel tree contraction we must evaluate a given axpmetsee, where internal
nodes are arithmetic operations and leaves are input values. The palgdieglhm of Miller and
Reif (1985) works by “contracting” both leaves and internal nodes @fttde in rounds. At each
round, the nodes to eliminate are chosen in a random fashion and it céwowe that, in expec-
tation, a constant fraction of the nodes are eliminated in each round. Rypérg contractions
in parallel, the expression tree can be evaluated in logarithmic time and lineawttal Paral-
lel tree contraction can be applied to any semi-ring, including sum-procuarginalization) and
max-product (maximization) operators, making it directly applicable to infergmmoblems, and
it has also been used to develop efficient parallel implementations of infe(@ennock, 1998;
Namasivayam et al., 2006; Xia and Prasanna, 2008).

An interesting property of tree contraction is that it can also be made ad#ygtiveto changes
in the input (Acar et al., 2004, 2005). In particular, the techniques léfaggusting computation
(Acar, 2005; Acar et al., 2006, 2009a; Hammer et al., 2009) show teatcontraction can, for
example, be used to derive an efficient and reasonably generaltdataue for dynamic trees
(Sleator and Tarjan, 1983). In this paper we apply similar techniques &apes new algorithm
for adaptive inference that can handle arbitrary changes to the ingélraod can be used for both
marginalization and for computing MAP configurations.

3149

ar

SUMER, ACAR, |HLER AND METTU

1.2 Contributions

In this paper, we present a new framework for adaptive exact iméereouilding upon the work of
Delcher et al. (1995). Given a factor gra@lwith n nodes, and domain sizieach variable can take
d different values), we require the user to specify an eliminationTrea factors. Our framework
for adaptive inference requires a preprocessing step in which wedbidanced representation of
the input elimination tree i©(d>"n) time wherew is the width of the input elimination tree. We
show that this balanced representation, which we calister tregis essentially equivalent to a tree
decomposition. For marginal computations, a change to the model can lesgeddrO(d>” - logn)
time, and the marginal for particular variable can be computéd @f" - logn) time. For a change
to the model that induceschanges to a MAP configuration, our approach can update the MAP
configuration inO(d®logn+ d"“¢log(n/¢)) time, without knowing/ or the changed entries in the
configuration.

As in standard approaches for exact inference in general graphslgorithm has an expo-
nential dependence on the tree-width of the input model. The depenidence case, however
is stronger: if the input elimination tree has widith our balanced representation is guaranteed to
have width at most\. As a result the running time of our algorithms for building the cluster tree as
well as the updates haveQ(d®") multiplicative factor; updates to the model and queries however
require logarithmic, rather than linear, time in the size of the graph. Our apipiie therefore most
suitable for settings in which a single build operation is followed by a large nuofhedates and
queries.

Sinced andw can often be bounded by reasonably small constant factors, we kiadwhére
exists some& beyond which we would achieve speedups, but where exactly thelgpeetterialize
is important in practice. To evaluate the practical effectiveness of quoaph, we implement the
proposed algorithms and present an experimental evaluation by caongideth synthetic data
(Section 6.1) and real data (Sections 6.2 and 6.3). Our experiments ysihgtically generated
factor graphs show that even for modestly-sized graphs-(1@00 nodes) our algorithm provides
orders of magnitude speedup over computation from scratch for computihgniarginals and
MAP configurations. Thus, the overhead observed in practice is ndglighimpared to the speedup
possible using our framework. Given that the asymptotic difference leetlimear and logarithmic
run-times can be large, it is not surprising that our approach yieldslspsdor large models. The
reason for the observed speedups in the smaller graphs is due to ttiafacinstant factors hidden
by the asymptotic bounds associated with the exponential bounds are secalligle they involve
fast floating point operations) and because our worst-case borgd&en not attained for relatively
small graphs (Section 6.1.5).

In addition, we also show the applicability of our framewaork to two problems mpatational
structural biology (Sections 6.2 and 6.3). First, we apply our algorithmdtepr secondary struc-
ture prediction using an HMM, showing that secondary structure typebeafficiently updated as
mutations are made to the primary sequence. For this application, our algorithetis two orders
of magnitude faster than computation from scratch. We also apply our algdntprotein sidechain
packing, in which a (general) factor graph defines energetic interadtianthree-dimensional pro-
tein structure and we must find a minimum-energy conformation of the protemhisgroblem,
our algorithm can be used to maintain a minimum-energy conformation as chemegasing made
to the underlying protein. In our experiments, we show that for a sulbsie¢ SCWRL benchmark

3150

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

(Canutescu et al., 2003), our algorithm is nearly 7 times faster than compniimgum-energy
conformations from scratch.

Several elements of this work have appeared previously in conferamsmns (Acar et al.,
2007, 2008, 2009b). In this paper we unify these into a single frameawdkimprove our al-
gorithms and our bounds in several ways. Specifically, we presemmnistic versions of the
algorithms, including a key update algorithm and its proof of correctnesslesive upper bounds
in terms of the tree-width, the size of the model, and the domain size; and wa detailed exper-
imental analysis.

1.3 Outline

The remainder of the paper is organized as follows. In Section 2, wetwwdefinitions and notation
used throughout this paper, along with some background on the factor atiomiralgorithm and
tree decompositions. In Section 3, we describe our algorithm and the citestetlata structure
and how they can be used for marginalization. Then, in Section 4, weilde$mw updates to the
underlying model can be performed efficiently. In Section 5, we extenélgorithm to compute
and maintain MAP configurations under model changes. In Section 6,aveestperimental results
for our approach on three synthetic benchmarks and two applicationsiputational biology. We
conclude with a discussion of future directions in Section 7.

2. Background

Factor graphs (Kschischang et al., 2001) describe the factorizatisetist of the functiorg(X)
using a bipartite graph consisting wdriable nodes andactor nodes. Specifically, suppose such a
graphG = (X, F) consists of variable nodéé= {x1,...,X,} and factor nodeb = { fy,..., fm} (see
Figure 1a). We denote the adjacency relationship in g@&pp~c , and letXy, = {xi eX: xi~Gf,-}

be the set of variables adjacent to factprFor example, in Figure 1y, = {x,v}. G is said to be
consistent with a functiog(-) if and only if

g(X, .-, %) = |_| f;
j

for some functiondj whose arguments are the variable $&{s We omit the argumentss, of each
factor f; from our formulas. In a common abuse of notation, we use the same symberateda
variable (resp., factor) node and its associated varigbleesp., factorf;). We assume that each
variablex; takes on a finite set of values.

In this paper we first study the problem of marginalization of the funagiof). Specifically,
for anyx we are interested in computing the marginal function

g(x) =3 g(X).
X\Xi

Once we establish the basic results for performing adaptive infererceiilivalso show how our
methods can be applied to another commonly studied inference problem, fimakiiod the config-
uration of the variables that maximizgsthat is,

X* =arg rr>1(a>g(X).

In this paper, we call the vectot* the maximum a posterio(MAP) configuration ofX.

3151

SUMER, ACAR, |HLER AND METTU

fa=fo “h
fo f3 fa f3 f2 I3
7 Y J1 fa Y fa
v v
é) z fs | (w)|{fo Is o g I5 w) fs
(@Gt (b T (©) Gt41

Figure 1: Factor elimination. Factor elimination takes a factor gra@i and an elimination tree
T1 as input and sequentially eliminates the leaf factors in the elimination tree. As an
example, to eliminate; in iterationt, we first marginalize out any variables that are
only adjacent to the eliminated factor, and then propagate this information taitieeu
neighbor inT, that is,f; = 25, f1.

2.1 Factor Elimination

There are various essentially equivalent algorithms proposed for gatvamginalization problems,
including belief propagation (Pearl, 1988) or sum-product (Kschisghet al., 2001) for tree-
structured graphs, or more generally bucket elimination (Dechter, 1888)rsive conditioning
(Darwiche and Hopkins, 2001), junction-trees (Lauritzen and Spialieth1988) and factor elimi-
nation (Darwiche, 2009). The basic structure of these algorithms is iteratieach iteration partial
marginalizations are computed by eliminating variables and factors from thb.grae set of vari-
ables and factors that are eliminated at each iteration is typically guided bysswinaf auxiliary
structure on either variables or factors. For example, the sum-proldiacithm simply eliminates
variables starting at leaves of the input factor graph. In contrastrfalitoination uses aelimina-
tion tree Ton the factors and eliminates factors starting at leavds ah example elimination tree
is shown in Figure 1b.

For a particular factoifj, the basic operation dactor eliminationeliminatesf; in the given
model and then propagates information associated fyith neighboring factors. At iteratian we
pick a leaf factorfj in Ty and eliminate it from the elimination tree formirig, ;. We also remove
f; along with all the variableg/j C X that appear only in factofj from G; forming G 1. Let fx be
fj’s unique neighbor i;. We then partially marginalizé, and update the value éf in G, and
Tt+1 with

A=Y, fl = fih;.
v

For reasons that will be explained in Section 3.1, we use the notititmrepresent the partially
marginalized functions; for standard factor elimination these operatiorngmcally combined into

a single update tdy. Finally, since multiplying by\j may makef; depend on additional variables,
we expand the argument set fff by making the arguments @f; adjacent tof; in G4, that is,
Xy 1= X5 UX; \ 7. Figure 1 gives an example where we apply factor elimination to a leaf f&ctor
in the elimination tree. We marginalize out the variables that are only adjacén(ite., 71 = {z})

3152

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

Uy ={fo} V3 = {f3}

Hg—ye = AL

fo I3

xa—sxs = A2

) f4 Hxs—xs = As
h "EEE" Pg—xa = A6
v =17 W
\C%)\ Py = A1
5 Jo

8]

Us ={fs} vo=1{fs}

Figure 2: Factor trees and tree decompositions.tree-decompaosition (right) that is equivalent to
a given elimination tree (left) can be obtained by first replacing each fadtiora hyper-
node that contains the variables adjacent to that factor node and thieg &edables to
the hyper-nodes so that the running intersection property is satisfied.

and updatef;’'s neighborf; in the elimination tree withf} = f; >4, f1. Finally, we add an edge
between the remaining variabl¥g \ 71 = {x} and the updated factdp.

Suppose we wish to compute a particular margihad). We root the elimination tree at a factor
fj such thak~g fj, then eliminate leaves of the elimination tree one at a time, until only one factor
remains. By definition the remaining factd)f corresponds td; multiplied by the results of the
elimination steps. Then, we have thyx;) = X\ fj’. All of the marginals in the factor graph can
be efficiently computed by re-rooting the tree and reusing the valuesgatgzhduring the previous
eliminations.

Factor elimination is equivalent to bucket (or variable) elimination (Kask e2@05; Darwiche,
2009) in the sense that we can identify a correspondence betweennipatations performed
in each algorithm. In particular, the factor elimination algorithm marginalizes oariable x;
when there is no factor left in the factor graph that is adjacens.toTherefore, if we consider
the operations from the variables’ point of view, this sequence is alsdic lmacket (variable)
elimination procedure. With a similar argument, one can also interpret anyetbetkination
procedure as a factor elimination sequence. In all of these algorithms, waitginal calculations
are guaranteed to be correct, the particular auxiliary structure oriogddgtermines the worst-case
running time. In the following section, we analyze the performance coesegs of imposing a
particular elimination tree.

2.2 Viewing Elimination Trees as Tree-decompositions

For tree-structured factor graphs, the typical choice for the eliminatienisréased on the fac-
tor graph itself. However, when the input factor graph is not tree-stred, we must choose an
elimination ordering that ensures that the propagation of variables oveothiee of elimination
is not too costly. In this section, we outline how a particular elimination tree caelated to a
tree decomposition on the input graph (e.g., as in Darwiche and Hopkif§, &td Kask et al.,
2005), thereby allowing us to use the quality of the associated tree decitioypas a measure of
quality for elimination trees. In subsequent sections, this relationship witlens to compare the
constant-factor overhead associated with our algorithm against that ofithinal input elimination
tree.

3153

SUMER, ACAR, |HLER AND METTU

Let G = (X,F) be a factor graph. Aree-decompositiofior G is a triplet (x,y, D) where
X = {X1,X2;---,Xm} is @ family of subsets oK andy = {@1,Y>,...,Un} is a family of subsets
of F such thatJscy Xs C xi foralli=1,2,...,mand® is a tree whose nodes are the subgets
satisfying the following properties:

1. Cover property:Each variableg is contained in some subset belongingtand each factor
f; € F is contained in exactly one subset belongingito

2. Running Intersection propertyf Xs, X: € X both contain a variablg, then all nodeg, of the
tree in the (unique) path betweggandy; containx as well. That is, the nodes associated
with vertexx; form a connected sub-tree @f.

Any factor elimination algorithm can be viewed in terms of a message-passiagtlafy in
a tree-decomposition. For a factor graphwe can construct a tree decompositigny,) that
corresponds to an elimination tré&e= (F,E) on G. First, we seth; = {f;} andD = (x,E’) where
(Xi»Xj) € E" is an edge in the tree-decomposition if and onlyfif f;) € E is an edge in the elim-
ination treeT. We then initializex = {Xfl,sz, . ,Xfm} and add the minimal number of variables
to each seg; so that the running intersection property is satisfied. By construction rthletrfiplet
(X, W, D) satisfies all the conditions of a tree-decomposition. This procedure is itledtia Fig-
ure 2. The factor graph (light edges) and its elimination tree (bold edgethedeft is equivalent
to the tree-decomposition on the right. We first initialige= X, for eachj =1,...,6 and add
necessary variables to sgfsto satisfy the running intersection propertyis added tox», x3 and
Xa. Finally, we setp; = { fj} for eachj =1,...,6.

Using a similar procedure, it is also possible to obtain an elimination tree equiitaléhe
messages passed on a given tree-decomposition. We define two méesageb edgex;, X;j) in
the tree decomposition: the message,y; from x; to x; is the partial marginalization of the factors
on thex; side of D, and the messagg, .y, fromx; to x; is the partial marginalization of the factors
on thex; side of D. The outgoing messagg, .y, from x; can be computed recursively using the
incoming messages, .y, except fork = j, that is,

Woox = D i 1 Hixi- @
XK (XX €EN] (%0

The factor elimination process can then be interpreted as passing megeagésaves to parents

in the corresponding tree-decomposition. The partial marginalization fungticomputed during

the elimination off; is identical to the messagg, .y, wheref; is the parent of; in the elimination

tree. This equivalence is illustrated in Figure 2 where each partial margitiahzfunctionA; is

equal to a sum-product message .y, for somek. This example assumes thiatis eliminated last.
For an elimination tred@, suppose that the corresponding tree decompositiggq 8, D). For

the remainder of this paper, we will define thiglth of T to be the size of the largest set contained in

X minus 1. Inference performed usifigincurs a constant-factor overhead that is exponential in its

width; for example, computing marginals using an elimination Trew width w takesO(d"+* . n)

time and space whereis the number of variables antis the domain size.

3. Computing Marginals with Deferred Factor Elimination

When performing inference with factor elimination, one typically attempts to sefeelimination
tree to minimize its associated width. However, such an elimination ordering madermitimal

3154

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

?‘f4‘? 1

3 fs I3 I5 fa
f2 o f2 Jo fo fo
fi fr fi fr f1 J3 5 7
(a) Chain graph (b) Unbalanced elim- (c) Balanced elimination tree
ination tree

Figure 3: Balanced and unbalanced elimination tre€mr the chain factor graph in (a), the elimi-
nation tree in (b) has width 1 but requir®én) steps to propagate information from leaves
to the root. The balanced elimination tree in (c), for the same factor graphvitith 2 but
takes onlyO(logn) steps to propagate information from a leaf to the root, sin@nd fs
are eliminated earlier. If; is modified, then using a balanced elimination tree, we only
need to updat®(logn) elimination steps, while an unbalanced tree requires potentially
O(n) updates.

for repeated inference tasks. For example, an HMM typically used tpresee analysis yields a
chain-structured factor graph as shown in Figure 3a. The obvious etionirteee for this graph is
also chain-structured (Figure 3b). While this elimination tree is optimal for desogmputation,
suppose that we now modify the leaf factiar Then, recomputing the marginal for the leaf factor
f7 requires time that is linear in the size in the model, even though only a single feaxtahanged.
However, if we use thbalancedelimination tree shown in Figure 3c, we can compute the marginal-
ization for f7 in time that is logarithmic in the size of the model. While the latter elimination tree
increases the width by one (increasing the dependench, dar fixed d and asn grows large we
can achieve a significant speedup over the unbalanced ordering ifske¢avmake changes to the
model.

In this section we present an algorithm that generates a logarithmic-dgpéseatation of a
given elimination tree. Our primary technique, which we cldferred factor eliminationgener-
alizes factor elimination so that it can be applied to non-leaf nodes in the ilipjubha&tion tree.
Deferred factor elimination introduces ambiguity, however, since we d¢atetermine the “direc-
tion” that a factor should be propagated until one of its neighbors is also elietin We refer to
the local information resulting from each deferred factor elimination@aster functionor, more
succinctly, as a&luster), and store this information along with the balanced elimination tree. We use
the resulting data structure, which we cattlaster treg to perform marginalization and efficiently
manage structural and parameter updates. Pseudocode is given m4igur

For our algorithm, we assume that the user provides both an input faefam@rand an associ-
ated elimination tred. While the elimination tree is traditionally computed from an input model,
in an adaptive setting it may be desirable to change the elimination tree to takdapb/af changes
made to the factors (see Figure 9 for an example). Furthermore, doreifisgnowledge of the
changes being made to the model may also inform how the elimination tree shochdd®En and

3155

SUMER, ACAR, |HLER AND METTU

DeferredFactorElimination(G, T, f;)

Compute cluster A; using Equation (3)
if f; is a leaf in elimination tree T’
Let fi, be f;’s unique neighbor in T'
Attach Aj to fpin T
end if
if f; is a degree-2 node in T
Let f; and f;, be f;’s neighbors in T'
Create a new edge (f;, f) in T
Attach A; to the newly created edge (f;, fi)
endif
Remove factor f; from factor graph G and T'
for each variable x; that is connected to only f; in G
Remove z; from G
endfor

Figure 4: Deferred factor eliminationln addition to eliminating leaves, deferred factor elimination
also eliminates degree-two nodes. This operation can be simultaneously a@ppdied
independent set of leaves and degree-two nodes.

updated. Thus, in the remainder of the paper we separate the discuksajmiates applied to the
input model from updates that are applied to the input elimination tree. As wee®ilin Section 4,
the former prove to be relatively easy to deal with, while the latter requirergaaization of the
cluster tree data structure.

3.1 Deferred Factor Elimination and Cluster Functions

Consider the elimination of a degree-two factgrwith neighborsf; andfy in the given elimination
tree. We can perform a partial marginalization fpto obtainA, but cannot yet choose whether to
updatef; or fk—whichever is eliminated first will neexk for its computation. To address this, we
definedeferred factor eliminatiorwhich removes the factds and saves the partial marginalization
Aj as acluster, leaving the propagation step to be decided at a later time. In this sectionpwe sh
how deferred factor elimination can be performed on the elimination tree,amdhe intermediate
cluster information can be saved and also used to efficiently compute marginals

For convenience, we will segregate the process of deferred fdectonation on the input model
into rounds. In a particular round1 <t < n), we begin with a factor grap8; and an elimination
treeT;, and after performing some set of deferred factor eliminations, we obta&suting factor
graphG;.; and elimination tred;; for the next round. For the first round, we I8f = G and
T1 = T. Note that since each factor is eliminated exactly once, the number of totals@epends
on the number of the factors eliminated in each round.

To constructT; ;1 from T;, we modify the elimination tree as follows. When we eliminate a
degree-one (leaf) factofj, we attach\j to the neighbor vertexty. When a degree-two factds
is removed, we attach; to a newly created edggfi, fx) where f; and fy are f;’s neighbors in
elimination tre€l. We defineCr (fj) to be the set of clusters that are attached either directly o

3156

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

fa I3
)
7. Ji
v
D 5] (w)i{hs ;
(@) Ty andGy (b) T, andG» (c) T3 andGs3

Figure 5: Deferred factor elimination.(a) An elimination tre€T; (bold elges), with variable de-
pendencies shown with light edges for reference. To eliminate a leaf hipaee sum
out variables that are not attached to any other factors (shadedljmgsn the cluster
functionA; and new elimination tre&, in (b). To eliminate a degree-two node, we
replace it withAz attached to the eddd>, f4), giving treeTs shown in (c).

to an edge incident té;. In the factor grapl®; 1, we remove alk, € Cr,(fj) and variableg/; C X
that do not depend on any factors other tligar A € Cr,(fj). Finally, we replacd; with Aj, given
by
Aj= Z fj I_l Ak. (2)
Y AeGr(f)

The clustei| is referred as @ot clusterif degy (f;) = 0, adegree-one clustef degy, (fj) = 1, and
adegree-two clusteif degy (fj) = 2. Figure 5 illustrates the creation of degree-one and degree-two
clusters, and the associated changes to the elimination tree and factar\yeafitst eliminatef, by
replacing it with degree-one cluster(x) = 3, f1(x). ClusterA; is attached to factof, and the set
of clusters around; is Cr, (f2) = {A1,A3}. We then eliminate a degree-two factgby replacing it
with degree-two clustexs(y,v) = f3(y,v). This connectd to f4 in the elimination tree, and places
A3 on the newly created edge.

We note that the correctness of deferred factor elimination follows froradhectness of stan-
dard factor elimination. To perform marginalization for any particular véeiatve can simply
instantiate a series of propagations, at each step using a cluster funetitbashalready been com-
puted in one of the aforementioned rounds.

To establish the overall running time of deferred factor elimination we figgeéxhow the clus-
ters we compute can be interpreted in the tree-decomposition framewoik! fRatin Section 2.2,
we established an equivalence between clusters and messages in tlectegosition in the case
where only leaf factors in the elimination tree are eliminated. We can generakzeltionship
to the case where degree-two factors are also eliminated. As discusbedir&ection 2.2, the
equivalent tree-decompositidiy, Y, 2) of an elimination treel’ = (F,E) consists of a tre@ on
hyper-nodex = {x1i,...,Xm} with the same adjacency relationship with the facfdis..., fn} in
T.

A degree-one clusteXj produced after eliminating a ledf factor inT is a partial marginaliza-
tion of the factors on a sub-tree ®f Let fx be f;’s unique neighbor in the elimination tree when
itis eliminated. This implied; = py,—y, for somet as previously shown in Section 2.2. Note that
the indext may not equaij, since there may be a cluster attached to the ¢figdy) (for example
in Figure 5A1(X) = by, —x,(X)).

3157

SUMER, ACAR, |HLER AND METTU

A degree-two clustel; produced after eliminating a degree-two facfgrin T is a partial
marginalization of the factors in a connected subgraphT such thaSandT \ Sare connected by
exactly two edges. Létfj, fc) and(fq, fx) be these edges, whefgand fq belong toSand f; and
fx are outside of (we will show how these “boundary” edges can be efficiently computed@ S
tion 3.2). We interpreh; as an intermediary function that enables us to compute an outgoing mes-
sagepl,x, by using onlyA; and the incoming messagg, ., that is,ty,—x. = 3y, \x; M —xe-
These intermediate functions are in fact the mechanism that allows us avgisdqonences of mes-
sage passing. For example in Figure\5can be used to compute the messpge,y, using only
U)(z%)(e,’ that iS’ngﬂxz; (Xv V) = Zy HXZ%X3 (Xa y))\3(y7 V)'

Finally, we note that we have a single root cluster that is just a marginalizatiah of the
factors in the factor graph. Using the relationships established abovedretiuster functions and
messages in a tree decomposition, we give the running time of deferreddlctimation on a given
elimination tree and input factor graph.

Lemma 1 For an elimination tree with width w, the elimination of leaf factors tal&s?") time
and produces a cluster of sig&{d"), where d is the domain size of the variables in the input factor
graph. The elimination of degree-two vertices talsl®¥) time and produces a cluster of size
o(d?).

Proof Each degree-one cluster has S@") because it is equal to a sum-product message in the
equivalent tree-decomposition. For a degree-two veffethe clustei; can be interpreted as an
intermediary function that enables us to compute the outgoing mesgaggs and ., using

the incoming messages, .y, andpl, .y, for somexc, Xd, Xi andxx wheref; andfy are neighbors of

fj in the elimination tree during its elimination. The set of variables involved in thes@utations

is (Xi N Xc) U (Xk N Xd) Which is bounded by ®. Hence, the clustef; that computes the partial
marginalization of the factors that are betwééa fi) and(f;, f.) has sizeD(d?"). Moreover, these
bounds are achievedf N xc andxk N Xk are disjoint and each hasvariables.

We now establish the running times of calculating cluster functions, by bogrdenumber
of variables involved in computing a cluster. We first show that when a ledé fy is eliminated,
the set of variables involved in the computatiorisJ xx where fy is f;’s neighbor. For all the
degree-one clusters df, their argument set is a subset)gf so the product in Equation (2) can
be computed ifO(d") time. There can be a clustk¢ on the edgé f;, fx) whose argument set has
to be subset ofj UXk. If there is such a cluster, the cost of computing the product in Equatjon (2
becomesO(d?¥). This bound is achieved when there is a degree-two clusterxamahd xx are
disjoint.

When a degree-two factds is eliminated, the set of variables involved in the computation is
Xi UX;j U Xk wheref; and f are neighbors of;. As shown above, the argument set of degree-one
clusters is a subset gf. This cluster can have degree-two clusters on edfje) and(fj, f), and
in this case, computation of a degree-two cluster tak@s") time. This upper bound is achieved
when the setg;, Xj andxk are disjoint.

We note that in the above discussion we assumed that the number of cper&ugiation (2) is
bounded, that is, for any factdr, |Gr(f)| = O(1). This assumption is valid because for any given
elimination tree, we can construct an equivalent elimination tree with degrgea@ding dummy
factors. For example, suppose the input elimination tree has dagrde(i.e., it is star-shaped);
then Equation (2) hasmultiplication operands hence requi@d”) time to compute. By adding
dummy factors in the shape of a complete binary tree between the centerdiadtiire leaf factors,

3158

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

BuildClusterTree(G, T)
GO = G, Tg =T

Initialize H as an empty rooted tree
for round t = 1 up to k
Gy =G, Ty =T
S := A maximal independent set of leaves and degree two nodes in T;
for each factor f; in S
call DeferredFactorElimination(Gy, Ty, f;)
for each cluster); that is used to compute \;
Add edge (A, A;) in H where JA; is the parent.
endfor
for each variable z; eliminated along with f;
Add edge (z;, Aj) in H where); is the parent
endfor
endfor
endfor
return H as the cluster tree

Figure 6: Hierarchical clustering.Using deferred factor elimination, we can construct a balanced
cluster tree data structure that can be used for subsequent margnakqu

we can bring the complexity of computing Equation (2) dow®ta") for each factor. [|

3.2 Constructing a Balanced Cluster Tree

In this section, we show how performing deferred factor elimination in rewath be used to create

a data structure we call euster tree As variables and factors are eliminated through deferred
factor elimination, we build the cluster tree using the dependency relatiorestiusg clusters (see
Figure 6). The cluster tree can then be used to compute marginals efficimtlgs we will see, it
can also be used to efficiently update the original factor graph or eliminagen tr

For a factor grapl® = (X, F) and an elimination tre€, a cluster tree/ = (XUC, E) is a rooted
tree on variables and clusteXs) C whereC is the set of clusters. The edgesepresent the depen-
dency relationships among the quantities computed while performing defacid elimination.
When a factorf; is eliminated, clusted; is produced by Equation (2). All the variablég and
clustersC(f;) removed in this computation becomgs children. For a clustek;, theboundaryo,
is the set of edges in that separates the collection of factors that is contracted\intimm the rest
of the factors.

In Equation (2), we gave a recursive formula to compytan terms of its children in the cluster
tree. In order to use the cluster tree in our computations, we need to @esiveilar recursive
formula for the boundarg; for each clustek;. Let clusters\i, A, ..., A and variablesy, o, ..., %
be A;’s children in the cluster tree. Ld(f;) be the set of edges incident fp in T. Then the

3159

SUMER, ACAR, |HLER AND METTU

9, o ={(fi. f)}
fé j% A2 Dy =10
9 P 03 = {(f2,f3), (f3, f4)}
S ! Hoo O ={(f1, f5)}
@\ @{ 95 = {(f4, fo)}
z v)\3)\5)\6
é f5 fo % 00
(a) Factor Grapi® (b) Cluster TreeH

Figure 7: Cluster Tree ConstructionTo obtain the cluster tree in (b), eliminations are performed
in the factor graptG (a) in the following order:fy, f3, fs and fg in round 1,f4 in round
2 andf, in round 3. The cluster-tree (b) representing this elimination is annotated by
boundaries.

boundary ofA; can be computed by
0j =E(fj)A01A02A ... Adk

whered; is the boundary of clustex; and A is the symmetric set difference operator. An ex-
ample cluster tree, along with explicitly computed boundaries, is given in FigoreFor ex-
ample the boundary of the clustgg is computed byds = E(f4) Ad3Ad5A0s WhereE(fs) =
{(va f4)’ (f4v f5)7(f47 fG)}

Theorem 2 Let G= (X,F) be a factor graph with n nodes and T be an elimination tree on G with
width w. Constructing a cluster tree tak€d3" - n) time.

Proof During the construction of the cluster tree, every factor is eliminated ongd.eBima 1,
each such elimination tak&d>") time. [|

For our purposes it is desirable to perform deferred factor eliminatidinetave obtain a cluster
tree with logarithmic depth. We call this procéssrarchical clusteringand define it as follows. We
start withT; = T and at each rounidwe identify a seK of degree-one or -2 factors i and apply
deferred factor elimination to this independent set of factors to consfructThis procedure ends
once we eliminate the last factor, sy We makeh; the root of the cluster tree. At each round,
the setk C F is chosen to be a maximal independent set, that isfifdy ¢ K, fi¢f; in T, and
no other factorf, can be added t& without violating independence. The sequence of elimination
trees created during the hierarchical clustering process will prove tsdfel in Section 4, when
we show how to perform structural updates to the elimination tree. As an éxamfactor graph
G, along with its associated elimination trée= Ty, is given in Figure 7a. In round 1, we eliminate
a maximal independent séfy, f3, f5, fs} and obtainT,. In round 2 we eliminatd,, and finally in
round 3 we eliminatd,. This gives us the cluster tree shown in Figure 7b.

As we show with the following lemma, the cluster tree that results from hieraaictliestering
has logarithmic depth. We will make use of this property throughout the remagidhe paper to
establish the running times for updating and computing marginals and MAP cratfans.

3160

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

QueryMarginal(H, z;)

Let z;, A\1,..., A\x be the path from z; to the root A\; of cluster tree H
for j = k down to 1

Let f; be the factor associated with cluster A;

Compute downward marginalization function M, using Equation (4)
endfor
Compute the marginal at z; using Equation (5)

Figure 8: Performing Marginalization with a Cluster Tre€Computing any particular marginal in
the input factor graph corresponds to a root-to-leaf path in the cluseer tre

Lemma 3 For any factor graph G= (X,F) with n nodes and any elimination tree T, the cluster
tree obtained by hierarchical clustering has deptfid@n).

Proof Let the elimination tre@ = (F, E) havea leavesp degree-two nodes armxegree-3 or more
nodes, that ism= a+ b+ c wheremis the number of factors. Using the fact that the sum of the
degrees of the vertices is twice the number of edges, we |ggt2a+ 2b+ 3c. Since a tree with
mvertices haven— 1 edges, we geté2+ b— 2 > m. On the other hand, a maximal independent set
of degree-one and degree-two vertices must have size atdeast- (b—a)/3 > m/3, since we
can eliminate at least a third of the degree-two vertices that are not atjadeaves. Therefore at
each round, we eliminate at least a third of the vertices, which in turn ge@wsthat the depth of
the cluster tree i©(logn). [|

3.3 Computing Marginals

Once a balanced cluster tréé has been constructed from the input factor graph and elimination
tree, as in standard approaches we can compute the marginal distribLaioyn\@riable by prop-
agating information (i.e., partial marginalizations) through the cluster treearmofixed variable

Xi, let A1, Ao, ..., Ak be the sequence from to the rootAg in the cluster tree’/. We now de-
scribe how to compute the marginal far(see Figure 8 for pseudocode). For each faéjpret

0; contain neighborg, and f, of f; (i.e., neighboring factors at the tinfg is eliminated). This
information can be obtained easily, sineand f, are ancestors of;j in the cluster tree, that is,

fa, fp € {f,-+1, fiio,..., fk}. For convenience we state our formulas as if there are two neighbors
in the boundary; in the case of degree-one clusters, terms associatexheithf the neighbors, say
fp, can be ignored in the statements below. First, we compute a downwardfpaasyinalization
functions fromA to A1 given by

My = 5 fiM Mg, M (3)
YKy fec\{fj1}

whereY is the set of variables that appear in the summandgnid the set of variables that cluster
Aj depends on. Therefore each marginalization fundtigrirom parenf\; is computed using only

3161

SUMER, ACAR, |HLER AND METTU

information in the path abovk;. Then, the marginal for variablg is

gx)= Mgy []f (4)
Y\{x} feta

whereY is the set of variables that appear in the summands. Combining this appritattemmas
1 and 3, we have the following theorem.

Theorem 4 Consider a factor graph G with n nodes and let T be an elimination tree with width w
Then, Equation (4) holds for any variableand can be computed in(@"logn) time.

Proof The correctness of Equation (4) follows when each marginalization funbtio is viewed
as a sum-product message in the equivalent tree-decomposition. Eotheolatter, we will show
that foro; = {(fc, fa), (4, fo) }, Mf, andMy, are equal to the tree-decomposition messagesy.
and by, x4, respectively. This can be proven inductively starting viiy. First, note that the
base case holds trivially. Then, using the inductive hypothesis, wenasthatMy, = L, .y, and
M, = Hy,—xq- NOW, there has to be a descendandf A; such that(fe, f;) € d,. By multiplying
with the degree-two clusters iy \ { fj_1}, we can convert the messaggs .y, andpy, ., to the
messages intd;. Applying Equation (1) then giveldl; = Ly, . as desired.

For the running time, we observe that each message computation is esseraialyn proce-
dure as eliminating a leaf factor, therefore each message ha®@¥¢ and take€O(d?") time to
compute by Lemma 1. []

We note that it is also possible to speed-up successive marginal qugrashting the down-
ward marginalization functions in Equation (3). For example, if we queryaalbbles as described
above, we comput®(nlogn) many downward marginalization messages. However, by caching the
downward marginalization functions in the cluster tree, we can compute alimaign O(d?" - n)
time, which is optimal given the elimination ordering. As we will see in Section 4.1b#te
anced nature of the cluster tree allows us to perform batch operatiocisr@fii. In particular, for
marginal computation, using the caching strategy above, any gehafginals can be computed in
O(d®¢log(n/¢)) time.

4. Updates

The preceding sections described the process of constructing a dxhlahester tree elimination
ordering from a given elimination tree, and how to use the resulting clusestcti@mpute marginal
distributions. However, the primary advantage of a balanced orderinmliesability to adapt to
changes and incorporate updates to the model. In this section, we ddsxwilbe efficiently update
the cluster tree data structure after changes are made to the input fagtbrogrelimination tree.
We divide our update process into two algorithmic components. We firstidegww to make
changes to the factors, whether changing the parameters of the fadteraoguments (and thus
the structure of the factor graph), but leaving the original elimination tred {aus the cluster
tree) fixed. We then describe how to make changes to the elimination treefaiehdf update
the cluster tree. In practice these two operations may be combined; for lexeumgn modifying
a tree-structured graph such that it remains a tree we are likely to cham@édirthnation tree to
reflect the new structure. Similarly, for a general input factor graphag also wish to change the

3162

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

f2 [f2 [

J4 P Y fa

<
ém f; /i é T /i

() (b)

Figure 9: Modifying the Elimination Treelf the factor graph in (a) is modified by removing the
edge(y, f1), we can reduce the width of the elimination tree (from 3 to 2) by replacing
the edge fy, f2) by (f1, fs).

J2 f3

208D G;l @// \
fi
Do dep 5

(@) (b)

Figure 10: Modifying the arguments of factor#. the factor graph in (a) is modified by removing
the edggXx, f1), we update two paths in the cluster tree, as shown in (b), fromxoexial
A1 to the root. The position in whickis eliminated is found by bottom-up traversing of
the factors adjacent ta

elimination tree upon changes to factors. Figure 9 illustrates such an exampldch changing a
dependency in the factor graph makes it possible to reduce the width dirttieation tree.

4.1 Updating Factors With a Fixed Elimination Tree

For a fixed elimination tree, suppose that we change the parameters abaffatout not its ar-
guments), and consider the new cluster tree created for the resulting ghapsuggested in the
discussion in Section 3, the first change in the clustering process osbers computing\j; a
change to\j changes its parent, and so on upwards to the root. Thus, the numbéraédffunc-
tions that need to be recalculated is at most the depth of the cluster tree ti&iratester tree is of
depthO(logn) by Lemma 3, and each operation takes at n@st®"), the total recomputation is at
mostO(d*¥logn).

If we change the structure of gragih by modifying the arguments of a factdy by adding
or removing some variablg, then the point at whiclx; is removed from the factor graph may

3163

SUMER, ACAR, |HLER AND METTU

|
log(n/0)

Figure 11: Batch updatesAfter modifying ¢ = 3 factors,f, f5 and f1,, we update the correspond-
ing clusters and their ancestors in a bottom-up fashion. The total numbedes nisited
is O(¢log() +2°°99) = O(¢log(1)).

also change. Sincr is eliminated (i.e., summed out) once every factor that depends on it has
been eliminated, adding an edge may postpone elimination, while removing ameagigead to an
earlier elimination. To update the cluster tree as a result of this change, weipuase all clusters
affected by the change tig, and we must also identify and update the clusters affected by earlier, or
later, removal ok; from the factor graph. In both edge addition and removal, we can upldsteis

from A; to the root inO(d*¥logn) time.

We describe how to identify the new elimination point ferin O(logn) time. Observe that
the original clusteiy at whichx; is eliminated is the topmost cluster in the cluster tree with the
property that eithefy, the associated factor, dependsxgror A has two children clusters that both
depend orx;. The procedure to find the new point of elimination differs for edge inseeial edge
removal. First, suppose we add edge f;) to the factor graph. We must traverse upward in the
cluster tree until we find the cluster satisfying the above condition. For esigeval, suppose that
we remove the dependengy, f;). Then,x can only need to be removed earlier in the clustering
process, and so we traverse downwards from the cluster whemes originally eliminated. At any
clusterAy during the traversal, if the above condition is not satisfied themust have one or no
children clusters that depend gn If Ax has a single child that dependsxwe continue traversing
in that direction. IfAx has no children that depend @ then we continue traversing towarlg
Note that this latter case occurs only when the pathg ahdA; to the root overlap, and thus is
always possible to traverse towarg

Once we have identified the new cluster at whigls eliminated, we can recalculate cluster
functions upwards i©(d>"logn) time. Therefore the total cost of performing an edge insertion or
removalO(d®¥logn). Figure 10 illustrates how the cluster tree is updated after deleting an edge in
a factor graph keeping the elimination tree fixed. After deletixdi) we first update the clusters
upwards starting fronmk;. Then traverse downwards to find the point at whiglhs eliminated,
which isA5 becausds depends om. Finally, we updatés and its ancestors.

We can also extend the above arguments to handle multiple, simultaneous tpdiatesctor
graph. Suppose that we makechanges to the model, either to the definition of a factor or its
dependencies. Each change results in a set of affected nodes théemesomputed; these nodes
are the ancestors of the changed factor, and thus form a path upwardgh the cluster tree. This
situation is illustrated in Figure 11. Now, we count the number of affectedsibgl grouping them
into two sets. If our cluster tree has branching fattdevel log,(¢) has? nodes; above this point,

3164

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

Figure 12: Updating the elimination treeSuppose we modify the input factor graph by removing
(y, f1) from the factor graph and replaciridy, f2) by (f1, fs) in the elimination tree as
shown in (a). The original cluster tree (b) must be changed to refles# ttieanges. We
must revisit the decisions made during the hierarchical clustering forfiheted factors
(shaded).

pathsmustmerge, and all clusters may need to be recalculated. Below leygllogach path may
be separate. Thus the total number of affected clustérs og,(n/¢).

Note that for edge modifications, we must also address how to find new elinmradiats
efficiently. As stated earlier, any elimination poikt for x; satisfies the condition that it is the
topmost cluster in the cluster tree with the property that eifipedepends orx;, or Ax has two
children clusters that both depend xn As we update the clusters in batch, we can determine the
variables for which the above condition is not satisfied until we reach thtechaster. In addition,
we also mark the bottommost clusters at which the above condition is not satiSfarting from
these marked clusters, we search downwards level-by-level until diéhmnew elimination points.
At each step\y, we check if there is a variabbe such thatx»¢ f; and only one child cluster of
Ak depends orx. If there is not, we stop the search; if there is, we continue searchingdswa
those clusters. Since each step takéw) time, the total time to find all new elimination points is
O(w/log(n/¢)). We then update the clusters upwards starting from the new elimination potiits un
the root, which take®(d®"/log(n/¢)) time.

Combining the arguments above, we have the following theorem.

Theorem 5 Let G= (X, F) be a factor graph with n nodes arf be the cluster tree obtained using
an elimination tree T with width w. Suppose that we makkanges to the model, each consisting
of either adding or removing an edge or modifying the parameters of $actar, while holding T
fixed. Then, we can recompute the cluster tfdn O(d®¥/log(n/¢)) time.

4.2 Structural Changes to the Elimination Tree

Many changes to the graphical model will be accompanied by some chatigedesired elimina-
tion ordering. For example, changing the arguments of a factor may susmas more efficient
ordering that we may wish to exploit. However, changing the input eliminatidaralso requires
modifying the cluster tree constructed from it. Figure 12 shows such @asoewhere removing
a dependency suggests an improved elimination tree. In this section wetpabveis possible to
efficiently reorganize the cluster tree after a change to the elimination tree.

3165

SUMER, ACAR, |HLER AND METTU

As in the previous section, we wish to recompute only those nodes in the destevhose
values have been affected by the update. In particular we construntwheluster tree by stepping
through the creation of the original sequefgely, ..., marking some nodes asfectedif we need
to revisit the deferred elimination decision we made in constructing the clusegranel leaving
the rest unchanged. We first describe the algorithm itself, then prowvedé&ed properties: that
the original clustering remains valid outside the affected set; that afténseedng the affected set,
our clustering remains a valid maximal independent set and is thus consigtetiie theorems in
Section 3; and finally that the total affected set is again only ofGizegn). Since the elimination
tree can be arbitrarily modified by performing edge deletions and insertimtessively, for ease
of exposition we first focus on how the cluster tree can be efficiently tepdahen a single edge
in the elimination tree is inserted or deleted. For the remainder of the sectiorsswma that the
hierarchical clustering process produced intermediate {{f€g3>,...,Tk) and that(f;, f;) is the
edge being inserted or deleted.

Observe that, to update any particular round of the hierarchical clugtdanany factorfy
we must be able to efficiently determine whether its associated cluster mustonepted due to
the insertion or deletion of an eddé, f;). A trivial way to check this would be to compute a
new hierarchical clusteringl;,T,,...,T/) using the changed elimination tree. Then, the cluster
that is generated after eliminatirfyg depends only on the set of clusters arodpat the time of
the elimination. IfG(fx) and G/ (fx) are the set of clusters arourfd on T, and T/, respectively,
then fy is affected at round if the setsG(fx) and G/ (fx) are different. Note that we consider
G(f) = G(fw) if A\j € G(fkx) <= Aj € G (k) and the values ok; are identical in both sets.
Clearly, this approach is not efficient, but motivates us to (incrementallyh whether or not (fx)
and (/(fx) are identical in a more efficient manner. To do this, we defineltugee-statusf the
neighbors offy, and maintain it as we update the cluster tree. Given two hierarchical ahgster
(Ti=(F,E1), o= (R, E2),..., Tk = (R, 0)) and(Ty = (F{,E}), T = (R}, E), ..., Ti = (F/,0)), we
define the degree-statag f) of a factorf at roundi as

(f) = 1 if degﬁ(f)§20rdegi/(f)§20rf¢F.ﬂFi’,
oi(f) = 0 if deg;(f)>3and deg(f)=>3.

The degree status tells us whettids a candidate for elimination in either the previous or the new
cluster tree.

At a high level, we step through the original clustering, marking factordfastad according
to their degree-status. For a factigr if o;(f;) = 1, thenf; is either eliminated or a candidate for
elimination at round in one or both of the previous and new hierarchical clusterings. Since we
must recompute clusters for affected factors, if we niqrks affected, then its unaffected neighbors
should also be marked as affected in the next round. An example is shokigure 13. This
approach conservatively tracks how affectedness “spreadsi dmoe round to the next; we may
mark factors as affected unnecessarily. However, we will be able i@ 8$tai any round of the new
clustering has a constant number of factors for which we must recomipisters.

We now describe our algorithm for updating a hierarchical clustering aftehange to the
elimination tree. We first insert or remove the eddg f;) in the original elimination tree and
obtain T, = (V{,E;) whereE; = E; U {(f;, fj)} if the edge is inserted dE; = Ei1 \ {(f;, fj)} if
deleted. For=1,2,...,1, the algorithm proceeds by computing the affected®setn independent
setM; C A of affected factors of degree at most twoTify and then eliminating/; to form T/, ;.
We letAg = { fi, f; }, Mo =0andTj = T,. For roundi = 1,2,...I we do the following:

3166

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

(a) Round 1 (b) Round 2

Figure 13: Affected nodes in the clusterinBy rule 2 for marking factors as affected, eliminating
fs in the first round makes,(f3) = 1, thereby makindg; and fs affected. In contrast,
sinceoy(fg) =0, f12 and f13 are not marked as affected. By rule 1, eliminatiagn the
first round maked; g affected.

e \We obtain the new elimination tréé = (F/, E/) by eliminating the factors iivl_1 from T,_1

via deferred factor elimination subroutine.
e All affected factors left inl,’ remain affected, namely the s&t 1 \ Mi_1. We mark a previ-
ously unaffected factof as affected if

1. f has an affected neighbgrin T ; such thag € M;_; or
2. f has an affected neighbgrin T such thag € Ai_; \ Mi_1 with gi(g) = 1.

Let Ni be the set of factors that are marked in this round according to these leg) tioen
A = (A_1\Mi_1) UN..

e Initialize M; = 0 and greedily add affected factors 4 starting with the factors that are
adjacent to an unaffected factor. Liet A; be an affected factor with an unaffected neighbor
g V/\A. If gis being eliminated at roundwe skip f, otherwisef is included inM; if
degy/(f) < 2. We continue traversing the set of affected factors with degree attmostnd
add as many of them as we canMig, subject to the independence condition.

Observe that a factdr in T' becomes affected either if an affected neighbof & eliminated
at roundi — 1 or if f has neighbor that was affected in earlier rounds with degree-status dfie
Once a factor becomes affected, it stays affected. For an unaffactedf at round, f's neighbors
have to be (i) unaffected, (ii) affected with degree-status zero, or &g tbecome affected at round
i

In order to establish that the procedure above correctly updates tlaedhieal clustering, we
first prove that we are able to correctly identify unaffected factors, ianrementally maintain
maximal independent sets.

Lemma6 Given T= (T, To,..., Ti), let T' = (T/,T,,...,T/) be the updated hierarchical cluster-
ing. Forany round i=1...1, let T/ = (F/,E/), let R = K/ \ A be the set of unaffected factors and
R =R\ F/ ; be the ones that are eliminated at round i. Then, the following statements hold:

e R UM; is a maximal independent set among vertices of degree at most two in F

e Forany fe R, the set of clusters around f and the set of neighbors of f are the seimas
inT.

3167

SUMER, ACAR, |HLER AND METTU

Proof For the first claim, we first observe thRt is an independent since it is containedii
For maximality, assume th& U M; is not a maximal independent set among degte® vertices
of F/. Then there must be a factérwith two neighborgy, h with degrees< 2 and none of which
are eliminated at round This triplet(f,g,h) cannot be entirely i\ or K’ \ A, because the sets
R andM; are maximal on their domain, namef is a maximal independent set ovet\ A and
M; is a maximal independent set owsr On the other hand, the tripléf,g,h) cannot be on the
boundary either because the update algorithm eliminates any factor wi]tihgiegf it is adjacent
to an unaffected factor that is not eliminated at rountherefore R UM; is a maximal independent
set over degre€ 2 vertices of~/.

We now prove the first part of the second claim by induction.oet G (f) and /() be the
set of clusters around in T; and T/, respectively. The claim is trivially true far= 1 because
G(f) = G(f) = 0for all factors. Assume thaf;(f) = j(f) for all unaffected factors at round
wherej =1,...,i — 1. Sincef € R implies thatf € B_1, we have thatG_1(f) = ¢ _,(f). Since
the set of clusters around a factor changes only if any of its neighberslianinated, we must
prove that if a neighbor of is eliminated inT;_1, then it must be eliminated if{’_; and vice versa;
additionally we must prove that they also generate the same clusters.fSiée 1, the neighbors
of f in T/ can be unaffected, affected with degree-status zero or newly affecteundi. When
an unaffected factog is eliminated inTi_1, it is eliminated inT," as well, so the resulting clusters
are identical since5_1(g) = G_,(9). So any change tgi(f) due to f’s unaffected neighbors is
replicated inC/ (). On the other hand, by definition we cannot eliminate a factor with degraessta
zero, so they do not pose a problem even if they are affected. Thedsstis a newly affected
neighborg of f in Ti_; with 0i_1(g) = 1. But this case is impossible becauseg i6 eliminated
then we would have markefl as affected iril; via the first rule, or ifg is not eliminated then by
the second rule and the fact tt@{g) = 1, we would have markedl as affected inl;. Therefore
G(f) = G/(f) for all unaffected factors. This implies that clusters of unaffected factre identical
and do not have to be recalculatedljh

Let A{(f) andA{/(f) be the set of neighbors dfin T; andT/, respectively. Proving the second
part of the second claim (i.eN{(f) = A’ (f)) proceeds similarly to that fafi(f) = G(f). The only
difference is the initial round when= 1. In round 1, the update algorithm marks all the factors that
are incident to the added or removed edges as affected, so for dibctedffactors their neighbor
set must be identical i andT;'. |

Using this lemma, we can now prove the correctness of our method to incréijmeptdate a
hierarchical clustering.

Theorem 7 Given a valid hierarchical clustering T, let'& (T{,T,,...,T/") be the updated hierar-
chical clustering, where;T= (F/,E/). Then, T is a valid hierarchical clustering, that is,

o the set M=F'\F/ , is a maximal independent set containing vertices of degree at most two,

and
e T/, is obtained from ;T by applying deferred factor elimination to the factors in. M

Proof Recall that is the set of affected factors marked avific A; be the independent set chosen
by the algorithm. LeB = '\ A be the set of unaffected factors aRd= P, \ F/, ; be the ones that
are eliminated at round The fact thatVl; is a maximal independent set follows from Lemma 6

3168

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

becausaV; = R UM;. Since the update algorithm keeps the decisions made for the unaffected fa
tors, the set of eliminated vertices are preciddly= R UM/ and by Lemma 6M; is a maximal
independent set over degree-one and degree-tWp.iThe update algorithm applies the deferred
factor elimination subroutine on the 9df, so what remains to be shown is the saved valueRfor
are the same as if we eliminate them explicitly. By Lemma 6, the factoRs irave the same set

of clusters around them iy and T, which means that deferred factor elimination procedure will
produce the same result in both elimination trees when unaffected facabrainated. Therefore,
we can reuse the clustersin [|

Theorem 7 shows that our update method correctly modifies the clusteaicethus marginals
can be correctly computed. Note that, by Lemma 3, we also have that the gsiusiter tree also
has logarithmic depth. It remains to show that we can efficiently update thiemhgsitself. We do
this by first establishing a bound on the number of affected nodes in eant.r

Lemma8 Fori=12...,1, let A be the set of affected nodes computed by our algorithm after
inserting or deleting edggf;, f;) in the elimination tree. ThenA| <12

Proof First, we observe that the edgé, fj) defines two connected components, that are either
created or merged, in the elimination tree. Since an unaffected node beatfewed only if it

is adjacent to an affected factor, the set of affected nodes formsreeciau sub-tree throughout
the elimination procedure. For the remained of the proof, we focus on theaent associated
with f;, and show that it has at most six affected nodes. A similar argument capptied to the
component associated wifh, thereby proving the lemma.

For roundi, let B; be the set of affected neighbors of with at least one unaffected ruaigimiol
let Ni be the set of newly affected factors. We claim tf&t < 2 and|N;| < 2 at every round.
This can be proven inductively: assume th&t and [N;| are at most two in round> 0. Rule
1 for marking a factor affected can make only one newly affected fa¢tayusmdi + 1, in which
case itis eliminated, and henft&| cannot increase. Rule 2 for marking a factor affected can make
two newly affected factors, as shown in the example Figure 13. What iwlet shown is that if
|Bi| = 2, then rule 2 cannot create two newly affected factors and niake 2. LetB; = {fa, fp}
and supposd, can force two previously unaffected factors affected in the nextdoor this to
happen, the degree-statusfgfhas to be one in rounid+ 1. However, this cannot becaugemust
have at least three neighbors in bdth; andT/, ;. This is because it has two unaffected neighbors
plus an affected neighbor that is eventually connected to another cteaffiactor througlt,. Note
that Figure 13 hafB;| = 1, so we can increagB;| by one.

We have now established the fact that the number of affected nodesccaasa at most by two
in each round, and it remains to be shown that the number of affected i®demost six in each
connected component.

To prove this, we argue that if there are more than six affected nodes totimected com-
ponent, our algorithm eliminates at least two factors. Since affected riodasa sub-tree that
interacts with the rest of the tree on at most two factors, what remains toba shithat in any tree
with at least four nodes, the size of a maximal independent set over dtles math degree at most
two is at least two. To see this, observe that every tree has two leadd$ilamsize of the tree is at
least four, the distance between these two leaves is at least two or thedtaeskaped. In either
case, any maximal independent set must include at least two nodeisgpttos claim. |

3169

SUMER, ACAR, |HLER AND METTU

Combining the above arguments, we now conclude that a cluster tree cHitieatty updated
if the elimination tree is modified.

Theorem 9 Let G= (X,F) be a factor graph with n nodes arif be the cluster tree obtained using
an elimination tree T. If we insert or delete a single edge from T, it suffices¢ompute Q@ogn)
clusters in to reflect the changes.

Proof Since the number of affected factors is constant at each round by Leram&t@e number
of rounds iSO(logn) by Lemma 3, the result follows. [|

We can easily generalize these results to multiple edge insertions and deletiomssidering
each connected component resulting from a modification separately. diseussed in Section 4.1,
we only need to recalculatg(/log(n/¢)) many clusters wheréis the number of modifications to
the elimination tree. We can now state the running time efficiency of our updaigthafg under
multiple changes to the elimination tree.

Theorem 10 Let G= (X,F) be a factor graph with n nodes antl’ be the cluster tree obtained
using an elimination tree T. If we makeadge insertions or deletions in T, we can recompute the
new cluster tree in @®¢log(n/¢)) time.

5. Maintaining MAP Configurations

The previous sections provide for efficient marginal queries to yseri$ed variables and can be
extended to compute max-marginals when each sum is replaced with max imtiugefer While we
can query each max-marginal, since we do not kagsiori which entries of the MAP configuration
have changed, in the worst case it may take linear time to update the entire dMigucation. In
this section, we show how to use the cluster tree data structure along withteatrersal approach
to efficiently update the entries of the MAP configuration. More preciseia thange to the model
that inducesnchanges to a MAP configuration, our algorithm computes the new MAP ecoafign

in time proportional tanlog(n/m), without requiringa priori knowledge ofmor which entries in a
MAP configuration will change.

5.1 Computing MAP Configurations Using a Cluster Tree

In Section 3, we described how to compute a cluster tree for computing miargpnany given
variable. In this section, we show how this cluster tree can be modified to cempdAP configu-
ration. First, we modify Equation (2) for computing a clustgto be

)\j = maxfj |_| Ak (5)
Vi necr(t)

where?j C X is the set of children variables &f andCr (fj) is the set of children clusters &f in
the cluster-tree. For MAP computations, rather than using boundaries keeusa of the argument
set of clusters. The argument 3§t of a clusterh; is the set of variables; depends on at time it
was created and it is implicitly computed as we perform hierarchical clustering

3170

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

Xy, = {z}
X, X, =0
f2 f3 X)\3 = {y,v}

Xy X, X, =A{z,y}
Xy, = {z,v}
fl /@{ f4 Yy X/\6 _ {w}
(% w A)\6
%@ s /s 3

X)\g X/\5 X/\@

Figure 14: Updating a MAP configuratiorFactorf; is modified and no longer dependsoon the
factor graph (left). We first update the clusters on the path from modiliestecs to the
root, namelyA1 andA,. Then, we check for changes to the MAP configuration using
a top-down traversal in the cluster-tree (right). Hgris assumed to have a different
MAP configuration than before, which requires us to check for changehe MAP
configuration in clusters witk in their argument sets, namely, As. The argument set
for each cluster is annotated in the cluster tree.

We now perform a downward pass, in which we select an optimal coatigarfor the variables
associated with the root of the cluster tree, then at its children, and sowmgDhis downward
pass, as we reach each clustgrwe choose the optimal configurations for its children variatifes
using

Vi =arg n;(axé(x)\j = Xx*,-) f; |_| Ak (6)
AeCr(f)
whered(-) is the Kronecker delta, ensuring thiaf's argument sek,, takes on valueX;j. By
the recursive nature of the computation, we are guaranteed that the opdinf@jurationX;j is
selected before reaching the clustgr This can be proven inductively: assume th@t has an
optimal assignment when the recursion reaches the cligtéife are conditioning oiX,;, which
is the Markov blanket fok, and can therefore optimize the subtrea pindependently. The value
in Equation (6) is thus the optimal configuration fof (which by definition includes the Markov
blanket) for each child clustéy; see Figure 14 for an example.

Theorem 11 Let G be a factor graph with n nodes and T be an elimination tree on G with tree-
width w. The MAP configuration can be computed im@") time.

Proof Computation of the formulas in Equations (5) and (6) ta®éd®") by Lemma 3. Since
the algorithm visits each node twice, once bottom-up using Equation (5) amdtop-down using
Equation (6) the total cost ©(nd®"). [|

5.2 Updating MAP Configurations Under Changes

In this section we show, somewhat surprisingly, that the time required tadeipdslAP configu-
ration after a change to the model is proportional to the number of chamgedsein the MAP

3171

SUMER, ACAR, |HLER AND METTU

configuration, rather than the size of the model. Furthermore, the coptlafing the MAP config-
uration is in the worst case linear in the number of nodes in the factor ggaphring that changes
to model result in no worse cost than computing the MAP from scratch. Thasshat, although
the extent of any changed configurations is not knewamiori, it is identified automatically during
the update process. For the sake of simplicity, we present the casewsdaredify a single factor.
However, with little alteration the algorithm also applies to an arbitrary number dlifioations
both to the factors and to the structure of the model.

Let G = (X,F) be a factor graph an@{ be its cluster tree. Suppose that we modify a factor
f1 € F and letA; be the cluster formed after eliminatirfg. LetA1,A»,...,Ax be the path fronk,
to the rootAk in AH. As in Section 4, we recompute each cluster along the path using Equation (5)
We additionally mark these clusted#ty to indicate that they have been modified. In the top-down
phase we search for changes to and update the optimal configuratitire fohildren variables of
each cluster. Beginning at the root, we move downward along the patkiogdor a MAP change.

At each node, we recompute the optimal MAP configuration for the childraablas and recurse
on any children cluster who is marked as dirty or whose argument setaashle with a changed
MAP configuration.

Figure 14 shows an example of how a MAP configuration changes afsater f(e.g.,f1) is
changed in the factor graph. The bottom-up phase mearksndA, dirty and updates them. The
top-down phase starts at the root and re-computes the optimal configui@tioandy. Assuming
that the configuration fox is changed, the recursion proceeds\@mue to the dirty cluster ansl
due to the modified argument set. X we re-compute the optimal MAP configurations foand
w and assuming nothing has changed, we proceag &md terminate.

We now prove the correctness and overall running time of this procedure

Theorem 12 Suppose that we make a single change to a factor in the input factor graphds,
that a MAP configuration of the new model differs from our previouslresuat most m variables.
Let y = min(1+rm,n), where r is the maximum degree of any node in G. After updating the
cluster tree, the MAP update algorithm can find m variables and their new bbhfgurations in
O(y(1+log(y))d") time.

Proof Suppose that after the modified factor is changed, we update the clustastdescribed in
Section 4. To find the new MAP, we revisit our decision for the configunadfaany variables along
this path.

Consider how we can rule out any changes in the MAP configuration albtaese rooted ak;
in the cluster tree. First, suppose that we have found all changed eatfans above\j. The
decision af}; is based on its children clusters and the configuration of its argument seinef n
of these variables have changed, and no clusters used in calculatimave changed, then the
configuration for all nodes in the subtree roodgdemains valid. Thus, our dynamic MAP update
procedure correctly finds all the changediariables and their new MAP configurations.

Now suppose thamn variables have changed the value they take on in the new MAP configu-
ration. The total number of paths with changed argument set is then armo3tese paths are
of heightO(logn), and every node is checked at most once, ensuring that the total nnodes
visited is at mosO(ong(%)) wherey = min(1+rm,n). Each visit to a clustex; decodes the opti-

mal configuration for its children variabldg using Equation (6). Since we are conditioning on the
argument set, this computation tal@(sd‘w) time. Using arguments as in the proof of Lemma 1,

3172

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

we can show thatVj| < w. Therefore the top-down phase takly/(1+ §)d") time. [|

It is also possible, using essentially the same procedure, to processupdtdes to the input
model. Suppose we modify or its elimination tred by inserting and deleting a total 6edges and
nodes. First, we use the method described in Section 4 to update the cligters.the total number
of nodes recomputed (and hence marked dirty) is guaranteed@(/eg(n/¢)). Note that we also
requireO(¢/logn) time to identify new points of elimination for at moéwariables. Therefore, the
bottom-up phase will tak€©(d®¥¢log(n/¢)) time. The top-down phase works exactly as before
and can check an addition@(rm) paths for MAP changes whera is the number of variables
with changed MAP value andis the maximum degree iG. Therefore the top-down phase takes
O(ylog(§)d") time wherey = min(¢+rm, n).

6. Experiments

In this section, we evaluate the performance of our approach by corgghgrunning times for
building, querying, and updating the cluster-tree data structure agamsi-§écratch or complete)
inference using the standard sum- or max-product algorithms. For tkeegnts, we implemented
our proposed approach as well as the sum- and max-product algorittiPgghion® In our imple-
mentation, all algorithms take the elimination tree as input; when it is not possiblentpute
the optimal elimination tree for a given input, we use a simple greedy method torwctnis (the
algorithm grows the tree incrementally while minimizing width). To evaluate our glgor we
performed experiments with both synthetic data (Section 6.1) and real-wplidaions (Sections
6.2 and 6.3).

First, we evaluate the practical effectiveness of our proposed agiprioy considering syn-
thetically generated graphs to compute marginals (Section 6.1.3) and MARuw®etifins (Sec-
tion 6.1.4). These experiments show that adaptive inference can yieldicgsigh speedups for
reasonably chosen inputs. To further explore the limits of our appreachlso perform a more de-
tailed analysis in which we compute the speedup achievable by our methoddinge tree-width,
dimension, and size parameters. This analysis allows us to better interprehé@@symptotic
bounds derived in the previous sections fare in practice.

Second, we evaluate the effectiveness of our approach for two apiptis in computational
biology. The first application studies adaptivity in the context of using arivHidr the standard
task of protein secondary structure prediction. For this task, we shava AP configuration that
corresponds to the maximum likelihood secondary structure can be maintsn®adtations are
applied to the primary sequence. The second application evaluates saaeipn higher-order
graphical models that are derived from three-dimensional proteirtsteudVe show our algorithm
can efficiently maintain the minimum-energy conformation of a protein as its steughdergoes
changes to local sidechain conformations.

6.1 Experiments with Synthetic Data

For our experiments with synthetically generated data, we randomly gepeoslems consisting
of either tree-structured graphs or loopy graphs and measure thimgttime for the operations
supported by the cluster tree data structure and compare their running tirtied tf the sum-

1. The source code of our implementation can be obtained by contactiagttars.

3173

SUMER, ACAR, |HLER AND METTU

product algorithm. Since we perform exact inference, the sum-ptadiymrithm offers an adequate
basis for comparison.

6.1.1 DaTA GENERATION

For our experiments on synthetically generated data, we randomly geimgrattéstances consist-
ing of either tree-structured graphs or loopy graphs, consistimgvafiables, each of which takes
ond possible values. For tree-structured graphs, we define how a flatbx i < n) depends on
any particular variable; (1 < j < n) through the following distribution:

1 it =i+,
Pr{ f; depends ow; } = p(l—p)! if j=2...,i,
1-Fsop(l—ps if j=1

Here, p is a parameter that when set to 1 results in a linear chain. More generaljyathmeter
p determines how far back a node is connected while growing the randomTrest" node is
expected to connect as far back as ﬁmenode whereg) =i —1/p, due to the truncated geometric
distribution. In our experiments we chope-= .2 andd = 25 when generating trees.

For loopy graphs, we start with a simple Markov chain, where each fdct@pends on vari-
ablesx andx; 1, where 1<i < n. Then for parameterns and p, we add a cycle to this graph as
follows: if i is even and less than- 2(w— 1), with probability p we create a cycle by adding a new
factorg; that depends or andxow-1)- This procedure is guaranteed to produce a random loopy
graph whose width along the chain . .., X, is at mosty; to ensure that the induced width is exactly
w we then discard any created loopy graph with width strictly less thalm our experiments, we
setp = (0.2)%(W-1) so that the maximum width is attained by 20% of the nodes in the chain regard-
less of the width parameter. We use an elimination trek = (F, E) that eliminates the variables
X1,...,X%y in order. More specificallyE includes{(fi, fi.1) :i=1,....,n—1} and any(f;,g;) with
2<i<n-—2(w-—1)thatis selected by the random procedure above. In our experimenisyied
n between 10 and 50000.

For both tree-structured and loopy factor graphs, we generate thesenitthe factors (i.e., the
potentials) by sampling a log-normal distribution, that is, each entry is randcnagen frome?
whereZ is a Gaussian distribution with zero mean and unit variance.

6.1.2 MEASUREMENTS

To compare our approach to sum- and max-product algorithms when tedyind models undergo
changes, we measure the running times for build, update, structurakeyjpda query operations.

To perform inference with a graphical model that undergoes chamgestart by performing an
initial build operation that constructs the cluster-tree data structure on the initial modetheA
model changes, we reflect these changes to the cluster tree by ispdatgoperations that change

the factors, orstructural-updateoperations that change the dependencies in the graph (by insert-
ing/deleting edges) accordingly, and retrieve the updated inferenaksrbyg issuingqueryopera-
tions. We are interested in applications where after an initial build, grapmicdéls undergo many
small changes over time. Our goal therefore is to reduce the update andtiques, at the cost of

a slightly slower initial build operation.

3174

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

f|®—® build ‘ ‘ 10°H e—e build el g 1
10°F = @ sum-product | g g™ ® @ sum-product| Y ol
x—x query 10t H =< query m.:,l. 7777777777 ?
10'H v—v update 3 v—v update n®
&—a restructure | ey o

i i i i
10! 10% 10% 10* 10°

Size
(a) tree-structured factor graphs (b) loopy factor graphs with tree-width 3

Figure 15: Marginalization queries and model updatedle measure the running times for naive
sum-product, building the cluster tree, computing marginal queries, updatitay's,
and restructuring (adding and deleting edges to the elimination tree) fosttiedured
and loopy factor graphs. Building the cluster tree is slightly more expensvegtBingle
execution of sum-product, but subsequent updates and queries enenmue efficient
than recomputing from scratch. For both tree-structured and loopygirapr approach
is about three orders of magnitude faster than sum-product.

6.1.3 MARGINAL COMPUTATIONS

We consider marginal computation and how we can compute marginals ofcagbplodels that un-
dergo changes using the proposed approach. To this end we measurerting-time for the build,
update, structural-update and query operations and compare them tarmkgreduct algorithm.
We consider graphs with tree-width one (trees) and three, with betweandl®0Q000 nodes. For
trees, we sed = 25, and for graphs we sdt= 6.

For the build time, we measure the time to build the cluster tree data structure fbisgyan-
erated for various input sizes. The running-time of sum-product isekbfas the time to compute
messages from leaves to a chosen root node in the factor graph. Taoteoting average time for a
query operation, we take the average time over 100 trials to perform g fjpuexr randomly chosen
marginal. To compute the update time, we take the average over 100 trials of theduied to
change a modify a randomly chosen factor (to a new factor that is rand@nérated). To compute
the average time required for a structural updates (i.e, restructuratioms), we take the average
over 100 trials of the total time required to remove a randomly chosen edg@euhe cluster tree,
and to add the same edge back to the cluster tree.

Figure 15 shows the result of our measurements for tree-structurent tgaphs and loopy
graphs with tree-width 3. We observe that the running time for the build tpesa which con-
structs the initial cluster tree, is comparable to the time required to perform suotngt. Since we
perform exact inference, sum-product is the best we can expeeniergl. We observe that all of
our query and update operations exhibit running times that are logarithmiand are between one

3175

SUMER, ACAR, |HLER AND METTU

08— 7T
i e 020 —=—=—== ST T o T oo oo

0.16 update ' update

014} == max-product | ... - = max-product
E’: 012k g LU0 N e R REREERRE
o <2 :
Q (1 e) 3
é g f : : : s eI
o 0.08f o 010~ P 3‘.’;1;‘?‘77;”?"
g g : : s mgves,.”
8006} 3 : L - PETT
)) : MY YC O R :°

D e eesaTOMEN, :
0.04} 0.05 - . 00".""&':"'. AL EREEE
..A}j:‘“'.: o
0.02f - w !
* \ Il Il Il Il \ Il Il Il Il
O'000 50 100 150 200 250 300 0'000 50 100 150 200 250 300
Changes to MAP configuration Changes to MAP configuration
(a) tree-structured (b) loopy

Figure 16: Updates to MAP configuration¥Ve report the time required to update a MAP configu-
ration after a single change is made to the input model, in both tree-struchddalgy
factor graphs, with 300 variables. Our algorithm takes time that is roughlgrlime
the number of changed entries, unlike the standard max-product algowitiioh takes
time that is linear in the size of the model.

to four orders of magnitude faster than a from-scratch inference withutmepsoduct algorithm.
Update and restructuring operations are costlier than the query opeeipredicted by our com-
plexity bounds on update©(d®¥logn), Theorem 5) and querie®©(d?"logn), Theorem 4). The
overall trend is logarithmic im, and even for small graphs (100-1000 nodes) we observe a fdctor o
10-30 speedup. In the scenario of interest, where we perform an mitidloperation followed by

a large number of updates and queries, these results suggest thataohiewe significant speedups

in practice.

6.1.4 MAP GONFIGURATIONS

We also tested the approach for computing and maintaining MAP configuratsnsutlined in
Section 5. For these experiments we generated factor graphs with tréeenil (trees) and three
comprised oh = 300 variables. For trees, we choase- 25 and for graphs we chooge= 6. We
compute the update time by uniformly randomly selecting a factor and replacingmather factor,
averaging over 100 updates. We compare the update time to the running-tiheerofx-product
algorithm, which computes messages from leaves to a chosen root nodédiattnggraph and then
performs maximization back to the leaves.

Figure 16 show the results of our experiments. For both tree-structndddepy factor graphs,
we observed strong linear dependence between the time required to thedst&P on the number
of changed entries in the MAP configuration. We note that while there isditiauhl logarithmic
factor in the running time, it is likely negligible sinaewas set to be small enough to observe
changes to the entire MAP configuration. Overall, our method of updating Ménfigurations
were substantially faster than computing a MAP configuration from scrateli sases, for both
tree-structured and loopy graphs.

3176

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

speedup

1x

— 5X

J—
Do
o

s

—
(==}
d

20 %

"'!///
SIS
KRS
SRRHKS
KRS
L
XX

100 x

Variable dimension

500

"%égg?" :
s
XXX
XX KX
9e%%

o= O
ol o ! a 1o T

102 10% 104 102 103 104

(a) tree width 2 (b) tree width 3 (c) tree width 4

Figure 17: Speedup Analysig.he regions where we obtain speedup, defined as the ratio of running
time of our algorithm for a single update and query to the running time of stdndar
sum-product, are shown for loopy graphs with widi8 2nd 4 and variable dimensions

2-16.

6.1.5 EFFICIENCY TRADE-OFFS AND CONSTANT FACTORS

Our experiments with the computations of marginals and MAP configuratioms$i¢Be 6.1.3 and
6.1.4) suggest that our proposed approach can lead to efficiencyviempeats and significant
speedups in practice. In this section, we present a more detailed anglgsiadidering a broader
range of graphs and by presenting a more detailed analysis by congidernstant factors and
realized exponents.

For a graph oh nodes with tree-widthv and dimensiord, inference of marginals using sum
product algorithm require®(d"+n) time. With adaptive inference, the preprocessing step takes
O(d*¥n) time whereas updates and queries after unit changes red@&logn) andO(d?"logn)
time respectively. These asymptotic bounds imply that using updates andsjues opposed to
performing inference with sum-product, would yield a speedu@%), whered is the di-
mension (domain size) and andn is the tree-width and the size of the graphical model. In the
case thatl andw can be bounded by constants, this speedup would result in a near liil@aney
increase as the size of the graphical model increases. At what pdimtitmwhat inputs exactly the
speedups materialize, however, depends on the constant factora hiddar asymptotic analysis.
For example in Figure 15, we obtain speedups for nearly all graph&eved.

Speedups for varying input parameters.

To assess further the practical effectiveness of adaptive infererechave measured the perfor-
mance of our algorithm versus sum-product for graphical models geakat random with varying
values ofd, w andn. Specifically, for a giver, w,n we generate a random graphical model as pre-
viously described and measure the average time for ten randomly genepali@ies plus queries,
and compare this to the time to perform from-scratch inference using the xdugp algorithm.
The resulting speedup is defined as the ratio of the time for the from-scrdéchrine to the time
for the random update plus query.

3177

SUMER, ACAR, |HLER AND METTU

Figure 17 illustrates a visualization of this speedup information. For tree-syi@B, 4, we
show the speedup expected for each pair of valnes). Given fixedw,d we expect the speedup
to increase am increases. The empirical evaluation illustrates this trend; for example=ad and
d = 4, we see a five-fold or more speedup starting with input graphsmithl00. As the plots
illustrate, we observe that when the tree-width is 2 or less, as in Figuread@ptive inference is
preferable in many cases even for small graphs. With tree-widths 3 amel dbhtain speedups for
dimensions below 10 and 6 respectively. We further observe that fawea gidth w, we obtain
higher speedups as we reduce the dimensiondlityd as we increase except for small values of
n. Disregarding such small graphs, this is consistent with our theoreticaldso In small graphs
(n < 100) we see higher speedups than predicted because our methostscas® exponential
dependence is often not achieved, a phenomenon we examine in moreslaietihyl

Constant FactorsThe experiments shown in Figures 17 and 15 show that adaptive infecanc
deliver speedups even for modest input sizes. To understand dwgehbetter, it helps to consider
the constant factors hidden in our asymptotic bounds. Taking into actteanbnstant factors, we
can write the dynamic update times with adaptive inferenae,d3"logn+ Balogn, whereay, Ba
are constants dependent on the cost of operations involved. Thieffirai,d?¥logn accounts for
the cost of matrix computations (when computing the cluster functions) atrestshand the term
Balogn accounts for the time to locate and visit the togodes to be updated in the cluster-tree data
structure. In comparison, sum-product algorithm requirgl¥+n + Bsn time for some constants
Os, Bs Which again represent matrix computation at each node and the findingsticlgvof the

nodes. Thus the speedup wouldzggg%_
These bounds suggest that for fixaav, there will be someg beyond which speedups will be

possible. The value afy depends on the relationships between the constants. First, cortstants
andas are similar because they both involve similar matrix operations. Also, the cesBtaand

s are similar because they both involve traversing a tree in memory by followimgeps. Given
this relationship between the constants, if the non-exponential terms dontivatis,3 > o, then

we can obtain speedups even for snmall

Our experiments showing that speedups are realized at relatively nmiogastsizes suggest
that thefs dominate th&s. To test this hypothesis, we measured separately the time required for
the matrix operations. For an example model wits 1000Qw = 3,d = 6, the matrix operations
(the first term in the formulas) consumed roughly half the total tim&:s&conds, compared to47
seconds for the rest of the algorithm. This suggestihate indeed larger than ths. This should
be expected: the constant factor for matrix computation, performed locallinanachine registers,
should be far smaller than the parts of the code that include more random yn&euesses (e.g., for
finding nodes) and likely incur cache misses as well, which on modern maatamebe hundreds
of times slower than register computations.

While this analysis compares the dynamic update times of adaptive inferemparkng the
pre-processing (build) time of our cluster tree data structures (Figyrsutfgests that a similar
case holds. Specifically, in Theorem 2 we showed that the building therditest¢akes in the worst
cased(d®" - n) whereas the standard sum-product ta®éd"+1 . n). Thus the worst-case build time
could bed?" = 622 = 46656 times slower than standard sum-product. In our experiments, this ratio
is significantly lower. For a graph of size 50,000, for example, it is only 3E§ure 15(b) also
shows a modest increase in build time as the input size grows. For exanmmpte HIO, our build
time is about 1.20 slower than performing sum-product. Another 100-fotdase in the size makes

3178

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

11
10

Exponent

= Ot Oy N 00 ©

Size

Figure 18: Cost of cluster computatio.he maximum exponemtduring the computation of clus-
ters, which take®(d®) time, is plotted as a function of the input size. As can be seen, the
exponent starts relatively small and increases to reach the theoretidatmmaxf three
times the tree-width as the graph size increases. Since the cost of compusiteysc
in our algorithm isO(d®), our approach can yield speedup even for small and medium-
sized models. This shows that our worst-case bour@(df) for computing clusters
can be pessimistic, that is, it is not tight except in larger graphs.

our build time about 2.05 slower. As we illustrate in next this section, this is duertbaunds not
being tight in small graphs.

It is also worth noting that the differences between the running times ofy guet update op-
erations are also low in practice, in contrast to the results of Theoremsdl@.aAccording to
Theorems 10 and 4, the query operation could, in the worst-casd! be6® = 216 times faster
than an update operation. However, in practice we see that, for example 400, the queries
are about 2.5 times faster than updates. This gap does increasm@sases, for example, at
n= 50000, queries are about 6.7 times faster than updates; this is again dudtuods not being
tight in small graphs (described in detail next).

Tightness of our bounds in small graphSur experiments with varying sizes of graphs show
some unexpected behavior. For example, contrary to our bound tlthtigrepeedup to increase
as the input size increases, we see in Figure 17 that speedups oceeryfemall graphs (less
than 100 nodes) then disappear as the graph size increases. Tetamddhe reasons for this
we calculated the actual exponential factor in our bounds occurring rimamadomly generated
graphs, by building each cluster-tree and calculating the maximum expeneatintered during
the computation. Figure 18 shows the measurements, which demonstrate 8ratfiographs the
worst case asymptotic bound is not realized because the exponentsesmeih. In other words,
we perform far fewer computations than would be predicted by our veaist-bound. As the graph
size grows, the worst case configurations become increasingly likelyctar,oand the exponent
eventually reaches the bound predicted by our analysis. This suggastsitibounds may be loose
for small graphs, but more accurate for larger graphs, and expléipspeedups are possible even
for small graphs.

3179

SUMER, ACAR, |HLER AND METTU

6.2 Sequence Analysis with Hidden Markov Models

HMMs are a widely-used tool to analyze DNA and amino acid sequencesatlypan HMM is
trained using a sequence with known function or annotations, and nexersegs are analyzed by
inferring hidden states in the resulting HMM. In this context, our algorithmufedating MAP
configuration can be used to study the effect of changes to the modebaerdvations on hidden
states of the HMM. We consider the application of secondary structudicfion from the primary
amino acid sequence of a given protein. This problem has been studésierly (Frishman and
Argos, 1995), and is an ideal setting to demonstrate the benefits of qutivaedaference algorithm.
An HMM for protein secondary structure prediction is constructed by tattie observed variables
to be the primary sequence and setting the hidden variables (i.e., one hialggmes amino acid) to
be the type of secondary structure elemenhélix, -strand, or random coil) of the corresponding
amino acid. Then, a MAP configuration of the hidden states in this model idsrtigegions with
a helix andf3 strands in the given sequence. This general approach has bewd siod refined
(Chu et al., 2004; Martin et al., 2005), and is capable of accuratelyqpireglsecondary structure.
In the context of secondary structure prediction, our algorithm to adgdptipdate the model could
be used in protein design applications, where we make “mutations” to a stagtjngrice so that
the resulting secondary structure elements match a desired topology. @rcamwentionally, our
algorithm could be applied to determine which residues in the primary seqoéaagiven protein
are critical to preserving the native pattern of secondary structure etenitis also worth pointing
out that our approach is fully general and can be used at any apphiedtiere biological sequences
are represented by HMMs (e.g., DNA or RNA sequence, exon-intramshCpG islands) and we
want to study the effects of changes to these sequences.

For our experiments, we constructed an HMM for secondary structegiqgbion by construct-
ing an observed state for each amino acid in the primary sequence, amcesponding hidden
state indicating its secondary structure type. We estimated the model paransatgré00 protein
sequences labeled by the DSSP algorithm (Kabsch and Sander, 498&), annotates a three-
dimensional protein structure with secondary structure types using stigdametric criteria.
Since repeated modification to a protein sequence typically causes smaksipoldhe regions
with a helices and3 strands, we expect to gain significant speedup by using our algorithm. To
test this hypothesis, we compared the time to update MAP configuration in aritlalg against
the standard max-product algorithm. The results of this experiment ag givigure 19(a). We
observed that overall the time to update secondary structure predictemesl®-100 times faster
than max-product. The overall trend of running times, when sorted higiprsize, is roughly loga-
rithmic. In some cases, smaller proteins required longer update times; in Heseseitis likely that
due to the native secondary structure topology, a single mutation inducegtanlember of changes
in the MAP configuration. We also studied the update times for a single pra&eanli hemolysin
(PDB id: 1QQY), with 302 amino acids, as we apply random mutations (seed-i{b)). As in
Section 6.1.4 above, we see that the update time scales linearly with the nundbenges to a
MAP configuration, rather than depending on the size of the primary seque

6.3 Protein Sidechain Packing with Factor Graphs

In the previous section, we considered an application where the input meadel chain-structured
representation of the protein primary sequence. In this section, we eorssidigher-order rep-
resentation that defines a factor graph to model the three-dimensioraustrof protein, which

3180

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

107

Time (sec)

1072 L

) 0.12 ‘
= = max-product 3 |
— log n reference : 0.10

- update 1 *
T e 800,08 3
L

: [} : : .

1 ‘ E 006t

: o)

" : _fgl : :
s B - L
: 0.00 :

Il
10? 103

o

50

i
100

i
150

i
200

i
250

i
300

Protein size

(a) Update runtimes for 400 proteins

Changes to MAP configuration

(b) Update times for protein 1QOY

Figure 19: Secondary structure prediction using HMMA/e applied our algorithm to perform up-
dates in HMMs for secondary structure prediction. For our data set,awegerform
MAP updates about 10-100 faster than max-product, and we see laydogarithmic
trend as the size of the protein increases. For a single prdeiooli hemolysinwe
see that the time required to update the MAP configuration is linear in the nurhber o
changes to the MAP configuration, rather than in the size of the HMM.

essentially defines its biochemical function. Graphical models constructedgiotein structures
have been used to successfully predict structural properties (¥aiamd Weiss, 2002) as well as
free energy (Kamisetty et al., 2007). These models are typically constrbgteaking each node
as an amino acid whose states represent a discrete set of local caidoetalledrotamers(Dun-
brack Jr., 2002), and basing conditional probabilities on a physicaggrienction (e.g., Weiner
et al., 1984 and Canutescu et al., 2003).

The typical goal of using these models is to efficiently compute a maximume-likelificad
minimum-energy) conformation of the protein in its native environment. Our idgoic frame-
work for updating MAP configurations allows us to study, for example, ffexes of amino acid
mutations, and the addition and removal of edges corresponds directiytingillbackbone motion
in the protein. Applications that make use of these kinds of perturbationslamphotein design and
ligand-binding analysis. The common theme of these applications is that, givem@ protein
structure with a known backbone, we wish to characterize the effectsaniges to the underlying
model (e.g., by modifying amino acid types or their local conformations), in tefrireir effect on
a MAP configurations (i.e., the minimum energy conformation of the protein).

For our experiments, we studied the efficiency of adaptively updating fitismal sidechain
conformation after a perturbation to the model in which a random group etls@ns are fixed
to new local conformations. This experiment is meant to mimic a ligand-binding,stuevhich
we would like to test how introducing ligands to parts of the protein structidestathe overall
minimum-energy conformation. For our data set, we took about 60 proteins the SCWRL
benchmark or varying sizes (between 26 and 244 amino acids) andl topcdogy.

3181

SUMER, ACAR, |HLER AND METTU

N
ot " max-product |]
am
v v update mem v
nu " y Y.v ¥
am
apu® v e
OO [veemeeee e an®B vy
v
v

S ..v v v,
b L
= u v

O L 1 L AR W o
GEJ .III.. Vy
= n Lhbhi vy

guum A
102 *"."."'.' """"""""""" E 2 A R R
v
vV v vy M
. v Y v
1075*'V"”v'vv ""
v v v
v vy v

Proteins (ordered by max-product runtime)

Figure 20: Adaptive sidechain packing for protein structurdsor 60 proteins from the SCWRL
benchmark, we compared the time to adaptively update a MAP configuraténsag
max-product. Since this set of proteins have a diverse set of foldstfars graph
structures), we order the inputs by the time taken by max-product. Thdwgpaehieved
by our algorithm varies due to the diversity of protein folds, but on ayecar approach
is 6.88 times faster than computation from scratch.

For each protein, we applied updates to a random group within a selettedise acids (e.g.,
to represent an active site) by choosing a random rotameric state for @4th appropriate pre-
processing (using Goldstein dead-end elimination), we were able to obtainage models with
an induced width of about 5 on average. For the cluster tree corréisigpio each protein we se-
lected a set of 10 randomly chosen amino acids for modification, and exttind average time,
over 100 such trials, to update a MAP configuration and compared it agaimgputing the latter
from scratch. The results of our experiment are given in Figure 2@. tDthe diversity of protein
folds, and thus the resulting factor graphs, we sort the results acgalithe time required for
max-product. We find that our approach consistently outperforms n@dupt, and was on average
6.88 times faster than computation from scratch.

We note that the overall trend for our algorithm versus max-produchniesdat different than
the results in Sections 6.1.4 and 6.2. In those experiments we observed lagdeghmic trend in
running times for our algorithm versus max-product, since the constetarfaverheads (e.qg., for
computing cluster functions) grew as a function of a model size. For agagptiechain packing, it
is difficult to make general statements about the complexity of a particularinpdél with respect
to its size: a small protein may be very tightly packed and induce a very dgnsenmodel, while a
larger protein may be more loosely structured and induce a less dense model.

7. Conclusion

In this paper, we have presented an adaptive framework for perfgrexiact inference that effi-
ciently handles changes to the input factor graph and its associated elimimagoi®ur approach

3182

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

to adaptive inference requires a linear preprocessing step in whiclomatract a cluster-tree data
structure by performing a generalized factor elimination; the cluster treesaifbalanced represen-
tation of an elimination tree annotated with certain statistics. We can then makergrbiteages
to the factor graph or elimination tree, and update the cluster tree in logarithmic tithe size
of the input factor graph. Moreover, we can also calculate any pantiowdaginal in time that is
logarithmic in the size of the input graph, and update MAP configurations in timaestihaughly
proportional to the number of entries in the MAP configuration that areggthhy the update.

As with all methods for exact inference, our algorithms carry a consatuifthat is exponential
in the width of the input elimination tree. Compared to traditional methods, this cariatior is
larger for adaptive inference; however the running time of critical a@p@ms are logarithmic, rather
than linear, in the size of the graph in the common case. In our experimergstatdish that for any
fixed tree-width and variable dimension, adaptive inference is prdéesatdong as the input graph
is sufficiently large. For reasonable values of these input parameterexperimental evaluation
shows that adaptive inference can offer a substantial speedupragigional methods. Moreover,
we validate our algorithm using two real-world computational biology applicattmmcerned with
sequence and structure variation in proteins.

At a high level, our cluster-tree data structure is a replacement for thiéganee in the typical
sum-product algorithm. A natural question, then, is whether our datasteucan be extended
to perform approximate inference. The approach does appear to mable¢éo methods that rely
on approximate elimination (e.g., Dechter, 1998), since these approximasionsaorporated be
into the cluster functions in the cluster tree. Approximate methods that arevieeiratiature (e.g.,
Wainwright et al., 2005a,b and Yedidia et al., 2004), however, may be diffieult, since they
often make a large number of changes to messages in each successivmiter

Another interesting direction is to tune the cluster tree construction basednoputational
concerns. While deferred factor elimination gives rise to a balanced elimintagie, it also incurs
a larger constant factor dependent on the tree width. While our benk&staow that this overhead
can be pessimistic, itis also possible to tune the number of deferred factoraglonsmperformed, at
the expense of increasing the depth of the resulting cluster tree. It weirddsesting to incorporate
additional information into the deferred elimination procedure used to buildiktectree to reduce
this constant factor. For example, we can avoid creating a cluster fuiifcti®run-time complexity
is high (e.qg., its dimension or the domain sizes of its variables are large)rnrgfimstead a cluster
tree that has a greater depth but will yield overall lower costs for quandsipdates.

Acknowledgments

This research was supported in part by gifts from Intel and MicroRefiearch (U. A.) and by
the National Science Foundation through award 11S-1065618 (A. tl)tk@ CAREER award II1S-
0643768 (R. M.).

References

U. Acar, A. T. Ihler, R. R. Mettu, an®. Simer. Adaptive Bayesian inference in general graphs. In
Proceedings of the 24th Annual Conference on Uncertainty in Artificialliggace pages 1-8,
2008.

3183

SUMER, ACAR, |HLER AND METTU

U. A. Acar. Self-Adjusting ComputatiorPhD thesis, Department of Computer Science, Carnegie
Mellon University, May 2005.

U. A. Acar, G. Blelloch, R. Harper, J. Vittes, and M. Woo. Dynamizing statgorithms with
applications to dynamic trees and history independenc&CIM-SIAM Symposium on Discrete
Algorithms (SODA)2004.

U. A. Acar, G. Blelloch, and J. Vittes. An experimental analysis of chargpagation in dynamic
trees. InProc. 7th ACM-SIAM W. on Algorithm Eng. and Exp2805.

U. A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functiopagramming.ACM Trans.
Prog. Lang. Sys28(6):990-1034, 2006.

U. A. Acar, A. T. Ihler, R. R. Mettu, an® Simer. Adaptive Bayesian inference. Auvances in
Neural Information Processing Systems ROT Press, 2007.

U. A. Acar, Guy E. Blelloch, Matthias Blume, Robert Harper, and Karaigivongsan. An ex-
perimental analysis of self-adjusting computati&@M Trans. Prog. Lang. Sys82(1):3:1-3:53,
2009a.

U. A. Acar, A. T. Ihler, R. R. Mettu, an®. Simer. Adaptive updates for maintaining MAP config-
urations with applications to bioinformatics. Rroceedings of the IEEE Workshop on Statistical
Signal Processingpages 413—-416, 2009b.

A. A. Canutescu, A. A. Shelenkov, and R. L. Dunbrack Jr. A grdpery algorithm for rapid
protein side-chain predictiorRrotein Scj 12(9):2001-2014, Sep 2003.

W. Chu, Z. Ghahramani, and D. Wild. A graphical model for protein sdaonstructure prediction.
In Proc. 21st International Conference on Machine Learni2@04.

A. Darwiche.Modeling and Reasoning with Bayesian Netwoi®ambridge, 1st edition, 2009.

A. Darwiche and M. Hopkins. Using recursive decomposition to conselimination orders,
jointrees, and dtrees. [Mrends in Artificial Intelligence, Lecture Notes in,Alages 180-191.
Springer-Verlag, 2001.

R. Dechter. Bucket elimination: A unifying framework for probabilistic irgiece. In M. |. Jordan,
editor,Learning in Graphical Modelspages 75-104. MIT Press, 1998.

A. L. Delcher, A. J. Grove, S. Kasif, and J. Pearl. Logarithmic-time tggland queries in proba-
bilistic networks.J. Artificial Intelligence Resear¢ld:37-59, 1995.

R. L. Dunbrack Jr. Rotamer libraries in the 21st centu®urr Opin Struct BioJ 12(4):431-440,
2002.

D. Frishman and P. Argos. Knowledge-based protein secondarjws&uessignmentProteins:
Structure, Function and Genetica3:566-579, 1995.

M. A. Hammer, U. A. Acar, and Y. Chen. CEAL: a C-based languagsdtiradjusting computation.
In Proceedings of the 2009 ACM SIGPLAN Conference on Programminguage Design and
ImplementationJune 2009.

3184

ADAPTIVE EXACT INFERENCE INGRAPHICAL MODELS

W. Kabsch and C. Sander. Dictionary of protein secondary structpegtern recognition of
hydrogen-bonded and geometrical featuiispolymers22(12):2577-2637, 1983.

H. Kamisetty, E. P. Xing, and C. J. Langmead. Free energy estimates ¢bialpaotein structures
using generalized belief propagation. Rroc. 11th Ann. Int'l Conf. Research in Computational
Molecular Biology pages 366—380, 2007.

K. Kask, R. Dechter, J. Larrosa, and A. Dechter. Unifying clustee-ttecompositions for reasoning
in graphical modelsAtrtificial Intelligence 166:165-193, 2005.

S. Koenig, M. Likhachey, Y. Liu, and David Furcy. Incremental heigisearch in artificial intelli-
gence Atrtificial Intelligence Magazing25:99-112, 2004.

P. Kohliand P. H. S. Torr. Dynamic graph cuts for efficient inferenaearkov random fielddEEE
Transactions on Pattern Analysis and Machine Intelliger®2079-2088, 2007.

N. Komodakis, G. Tziritas, and N. Paragios. Performance vs computbéfficéency for optimiz-
ing single and dynamic mrfs: Setting the state of the art with primal-dual straté€tpesput. Vis.
Image Underst.112:14—-29, October 2008.

F. Kschischang, B. Frey, and H.-A. Loeliger. Factor graphs andutregoduct algorithmIEEE
Trans. Inform. Theory47(2):498-519, February 2001.

S. Lauritzen and D. Spiegelhalter. Local computations with probabilities aphigal structures
and their applications to expert systemisRoyal Stat. Society, Ser, B0:157-224, 1988.

J. Martin, J.-F. Gibrat, and F. Rodolphe. Choosing the optimal hiddendwamiodel for secondary-
structure predictionlEEE Intelligent System&0(6):19-25, 2005.

G. L. Miller and J. H. Reif. Parallel tree contraction and its applicatiorProc. 26th IEEE Symp.
Found. of Comp. Sgipages 487-489, 1985.

V. Namasivayam, A. Pathak, and V. Prasanna. Scalable parallel impldinemitbayesian network
to junction tree conversion for exact inference. Ilformation Retrieval: Data Structures and
Algorithms pages 167-176. Prentice-Hall PTR, 2006.

J. Pearl.Probabilistic Reasoning in Intelligent Systenddorgan Kaufman, San Mateo, 1988.

D. M. Pennock. Logarithmic time parallel Bayesian inference.Ptac. 14th Annual Conf. on
Uncertainty in Artificial Intelligencepages 431-438, 1998.

D. D. Sleator and R. E. Tarjan. A data structure for dynamic tréastnal of Computer and System
Sciences26(3):362—-391, 1983.

M. Wainwright, T. Jaakkola, and A. Willsky. MAP estimation via agreement loypér)trees:
message-passing and linear programming approadii#sE Trans Info Theory51(11):3697—
3717, 2005a.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. A new class of uppaunds on the log
partition function.IEEE Trans Info Theory51(7):2313—-2335, July 2005b.

3185

SUMER, ACAR, |HLER AND METTU

S. J. Weiner, P.A. Kollman, D.A. Case, U.C. Singh, G. Alagona, S. Prafetand P. Weiner. A new
force field for the molecular mechanical simulation of nucleic acids and psotéirAm. Chem.
Soc, 106:765—-784, 1984.

Y. Xia and V. K. Prasanna. Junction tree decomposition for paralleltérference. InlEEE
International Parallel and Distributed Preocessing Symposipages 1-12, 2008.

C. Yanover and Y. Weiss. Approximate inference and protein foldingrac. NIPS pages 84—86,
2002.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free en@@yximations and general-
ized belief propagation algorithms. Technical Report 2004-040, MEBRLy, 2004.

3186

