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Abstract

We describe a new objective for graph-based semi-supéngsgning based on minimizing the
Kullback-Leibler divergence between discrete probapititeasures that encode class membership
probabilities. We show how the proposed objective can beiefffily optimized using alternating
minimization. We prove that the alternating minimizatiologedure converges to the correct op-
timum and derive a simple test for convergence. In additiesshow how this approach can be
scaled to solve the semi-supervised learning problem onlaege data sets, for example, in one
instance we use a data set with oveP $@mples. In this context, we propose a graph node or-
dering algorithm that is also applicable to other graphebasemi-supervised learning approaches.
We compare the proposed approach against other standarégeenvised learning algorithms
on the semi-supervised learning benchmark data sets (@dhapeal., 2007), and other real-world
tasks such as text classification on Reuters and WebKB, kpa®mne classification on TIMIT
and Switchboard, and linguistic dialog-act tagging on Déand Switchboard. In each case, the
proposed approach outperforms the state-of-the-artlyl, as¢ show that our objective can be gen-
eralized into a form that includes the standard squaremt-krss, and we prove a geometric rate of
convergence in that case.

Keywords: graph-based semi-supervised learning, transductiveeinée, large-scale semi-supervised
learning, non-parametric models

1. Introduction

In many applications, annotating training data is time-consuming, costly, te@dindsrror-prone.
For example, training an accurate speech recognizer requires largambwell annotated speech
data (Evermann et al., 2005). In the case of document classificationtBonét search, it is not
feasible to accurately annotate sufficient number of web-pages foataljjaries of interest. The
process of training classifiers with small amounts of labeled data and rbldtivge amounts of
unlabeled data is known as semi-supervised learning (SSL). SSL lenfsdtseuseful technique
in many machine learning applications as one only needs to annotate small ambdata for
training models.

While SSL may be used to solve a variety of learning problems, such as oigsterd re-
gression, in this paper we address only the semi-supervised classifipatiolem—henceforth,
SSL will refer to semi-supervised classification. Examples of SSL algorithohsda self-training
(Scudder, 1965) and co-training (Blum and Mitchell, 1998). A thorosigivey of SSL algorithms
is given in Seeger (2000), Zhu (2005b), Chapelle et al. (2007) ditweBand Zhu (2008). SSL
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is also related to the problem tfansductive learningVladimir, 1998). In general, a learner is
transductive if it is designed only for a closed data set, where the tastregealed at training time.

In practice, however, transductive learners can be modified to hangéen data (Sindhwani et al.,
2005; Zhu, 2005b). Chapelle et al. (2007, Chapter 25) gives a iscession on the relationship
between SSL and transductive learning.

Graph-based SSL algorithms are an important sub-class of SSL techitigidnave received
much attention in the recent past (Zhu, 2005b; Chapelle et al., 2007 diher assumes that the
data (both labeled and unlabeled) is embedded within a low-dimensional mah#blshay be rea-
sonably expressed by a graph. Each data sample is representedtskanva weighted graph with
the weights providing a measure of similarity between vertices. Most grapbebSSL algorithms
fall under one of two categories — those that use the graph structurestiddpbels from labeled to
unlabeled samples (Szummer and Jaakkola, 2001; Zhu and Ghahran@®a) 20d those that op-
timize a loss function based on smoothness constraints derived from fite @lam and Chawla,
2001; Zhu et al., 2003; Joachims, 2003; Belkin et al., 2005; Cordwrexash Jaakkola, 2003; Tsuda,
2005). In some cases, for example, label propagation (Zhu and &haht, 2002a) and the har-
monic functions algorithm (Zhu et al., 2003; Bengio et al., 2007), it canhosvs that the two
categories optimize a similar loss function (Zhu, 2005a; Bengio et al., 2007).

A large number of graph-based SSL algorithms attempt to minimize a loss functomsth
inherently based on squared-loss (Zhu et al., 2003; Bengio et al.; 26@¢hims, 2003). While
squared-loss is optimal under a Gaussian noise model, it is not optimal ingh@telassification
problems. Another potential drawback in the case of some graph-b&eal@rithms (Blum and
Chawla, 2001; Joachims, 2003) is that they assume binary classificatisratas thus require the
use of sub-optimal (and often computationally expensive) approackbsas one vs. rest to solve
multi-class problems. While it is often argued that the use of binary classifithi a one vs. rest
framework performs as well as true multi-class solutions (Rifkin and Kla@@@4), our results on
SSL problems suggest otherwise (see Section 7.2.2).

Further, there is a lack of principled approaches to incorporate laloespn graph-based SSL
algorithms. Approaches such @ass mass normalizatiofCMN) andlabel biddingare used as a
post-processing step rather than being tightly integrated with the inferéhceahd Ghahramani,
2002a). In this context, it is important to distinguish label priors from badgmiors. Balance priors
are used in some algorithms such as Joachims (2003) and discouragerthdcsevhere all the
unlabeled samples are classified as belonging to a single class (i.e., ardégsakition). Balance
priors impose selective pressure collectively on the entire set of resaltswers. Label priors, on
the other hand, select the more desirable configuration for each aimslivedually without caring
about properties of the overall set of resulting answers. In additiony88L algorithms, such as
Joachims (2003) and Belkin et al. (2005), are unable to hdal&d uncertainty where there may
be insufficient evidence to justify only a single label for a labeled sample.

Another area for improvement over previous work in graph-based(8&i SSL in general) is
the lack of algorithms that scale to very large data sets. SSL is based orthis@that unlabeled
data is easily obtained, and adding large quantities of unlabeled data leadsdeathperformance.
Thus practical scalability (e.g., parallelization), is important to apply SSL ifhgos on large real-
world data sets. Collobert et al. (2006) and Sindhwani and Keert@ig)2@iscuss the application
of TSVMs to large-scale problems. Delalleau et al. (2005) suggests arithig for improving the
induction speed in the case of graph-based algorithms. Karlen et aB)(20@e a graph transduc-
tion problem with 650,000 samples. To the best of our knowledge, the tayggsh-based problem
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solved to date had about 900,000 samples (includes both labeled andleshldd) (Tsang and
Kwok, 2006). Clearly, this is a fraction of the amount of unlabeled dataatlisposal. For exam-
ple, on the Internet alone, we create 1.6 billion blog posts, 60 billion emails, 2 mihotos and
200,000 videos every day (Tomkins, 2008). In general, graphdaSe algorithms that use matrix
inversion (Zhu et al., 2003; Belkin et al., 2005) or eigen-based matrigrdposition (Joachims,
2003) do not scale very easily.

In Subramanya and Bilmes (2008), we proposed a new frameworkdphgvased SSL that in-
volves optimizing a loss function based on Kullback-Leibler divergentd(oetween probability
measures defined for each graph vertex. These probability measgedahe class membership
probabilities. The advantages of this new convex objective are: (a)atisally amenable to multi-
class ¢ 2) problems; (b) it can handle label uncertainty; and (c) it can integragesp Furthermore,
the use of probability measures allows the exploitation of other well-defirmedifuns of measures,
such as entropy, to improve system performance. Subramanya and Bi0@& &lso showed how
the proposed objective can be optimized using alternating minimization (AM)zZ&sa&nd Tus-
nady, 1984) leading to simple update equations. This new approach tolgaapd SSL was shown
to outperform other state-of-the-art SSL algorithms for the documentahdpage classification
tasks. In this paper we extend the above work along the following lines —

1. We prove that AM on the proposed convex objective for grapled&SL converges to the
global optima. In addition we derive a test for convergence that dae®qoire the compu-
tation of the objective.

2. We compare the performance of the proposed approach againststateof-the-art SSL
approaches, such as manifold regularization (Belkin et al., 2005), patyeagation (Zhu and
Ghahramani, 2002a), and spectral graph transduction (Joachin®), @0@ variety of tasks
ranging from synthetic data sets to SSL benchmark data sets (Chapelle2603). to real-
world problems such as phone classification, text classification, web-qasgsification and
dialog-act tagging.

3. We propose a graph node ordering algorithm that is cache cogmizdmhakes obtaining a
linear speedup with a parallel symmetric multi-processor (SMP) implementationlikedye
As a result, the algorithms are able to scale to very large data sets. The niedeg al-
gorithm is quite general and can be applied to graph-based SSL algoriticinas Zhu and
Ghahramani (2002a); Zhu et al. (2003). In one instance, we solM@Lap&blem over a
graph with 120 million vertices (which is quite a bit more than the previous lagiestof
900,000 vertices). A useful byproduct of this experiment isstmi-supervised switchboard
transcription project(S3TP) which consists of phone level annotations of$katchboard-
| corpus generated in a semi-supervised manner (see Section 8.1, Swaand Bilmes,
2009).

4. We propose a graph-based SSL objective using Bregman divergerSection 9.1. This
objective generalizes previously proposed approaches such aptapagation (Zhu and
Ghahramani, 2002a), the harmonic functions algorithm (Zhu et al., 26@8yjuadratic cost
criterion (Bengio et al., 2007) and our proposed approach. This thlgezan potentially be
optimized using AM which portends well for solving general learning proisiever objects
for which a Bregman divergence can be defined (Tsuda et al., 2005).

3313



SUBRAMANYA AND BILMES

5. A specific case of the Bregman divergence form is the standardestjloss based objective,
and we prove a geometric rate of convergence in this case in Appendix F

6. We discuss a principled approach to integrating label priors into thegedpobjective (see
Section 9.2).

7. We also show how our proposed objective can be extended to dirgpts (see Sec-
tion 9.3).

2. Graph Construction

Let Dy = {(x;,ri)}._, be the set of labeled sampleB, = {xi}!if‘H the set of unlabeled samples
andD = {7, D,}. Herer; is an encoding of the labeled data and will be explained shortly. We are
interested in solving the transductive learning problem, that is, givethe task is to predict the
labels of the samples i), (for inductive see Section 7.4). We are given an undirected weighted
graphG = (V,E), where the vertices (nodeg)= {1,...,m} (m= | +u) are the data points i®
and the edgek CV x V. LetV =V UV, whereV, is the set of labeled vertices aNd the set of
unlabeled verticesG may be represented via a matvikreferred to as the weight or affinity matrix.
There are many ways of constructing the graph. In some applications, it vegatnatural
result of relationship between the sample@infor example, consider the case where each vertex
represents a web-page and the edges represent the links betwepagesb In other cases, such as
the work of Fei and Changshui (2006), the graph is generated grpgng an operation similar to
local linear embedding (LLE) but constraining the LLE weights to be nagatiee. In a majority of
the applications, including those considered in this paper, we use ksheaighbor (NN) graphs.
In our case here, we make use of symmetric k-NN graphs and so the eilgiew; = [W];; is
given by

i]

W — sim(x;, Xj) if j€X(i)orie X(j)
1700 otherwise

where K (i) is the set of k-NN ofx; (|%(i)| =k, Vi) and sin{x;,x;) is a measure of similarity
betweerx; andx; (which are represented by nodesdj). Itis assumed that the similarity measure
is symmetric, that is, sifix,y) = sim(y,X). Further sinfx,y) > 0. Some popular similarity measures
include

_ kx5 _ Xi, X
simix, xg) =5 or sims, ) = cos ) =
{ J

where|| x; ||2 is the /> norm, and(x;,X;) is the inner product ok; andx;. The first similarity
measure is a radial-basis function (RBF) kernel of wintpplied to the squared Euclidean distance
while the second is cosine similarity. Choosing the correct similarity measur& arel crucial
steps in the success of any graph-based SSL algorithm as it determirgegphe At this point,
graph construction “is more of an art, than science” (Zhu, 2005a) aad &ctive research area
(Alexandrescu and Kirchhoff, 2007b). The choicevdfdepends on a number of factors such as,
whethery; is continuous or discrete and characteristics of the problem at hand.isélessl more
about the choice d#V in the context of the appropriate problem in Section 7.
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3. Proposed Approach for Graph-based Semi-Supervised Leamg

For eachi € V andj € \{, we define discrete probability measum@sandr; respectively over the
measurable spad&’,9"). That is, for each vertex in the graph, we define a meaguaad for all
the labeled vertices, in addition to thps we also defing; (recall, Dy = {(xi,ri)}gzl). Here? is
the o-field of measurable subsets of Y and-YN (the set of natural numbers) is the discrete space
of classifier outputs. Thu¥ | = 2 yields binary classification whilgr| > 2 yields multi-class. As
we only consider classification problems hgreandr; are in essence multinomial distributions and
so pi(y) represents the probability that the sample represented by veredrngs to clasy. We
assume that there is at least one labeled sample for every class. Note tbhjettive we propose
is actually more general and can be easily extended to other learningrpeogileh as regression.

The{r;}i’s represent the labels of the supervised portion of the training datararteaved in
one of the following ways: (a) ¥;is the single supervised label for inpytthenr;(y) = &(y = Vi),
which means that; gives unity probability fory equaling the labey;? (b) if § = {§\”,...,9\"},

t <|Y| is asetof possible outputs for input;, meaning an object validly falls into all of the
corresponding categories, we $gly) = (1/k)d(y € ¥;) meaning that; is uniform over only the
possible categories and zero otherwise; (c) if the labels are somehuisigaan the form of a set
of non-negative scores, or even a probability distribution itself, we jeist; $0 be equal to those
scores (possibly) normalized to become a valid probability distribution. A®ea®en, the’s can
handle a wide variety of inputs ranging from the most certain case whengla sput yields a
single output to cases where there isuacertaintyassociated with the output for a given input. It
is important to distinguish between the classical multi-label problem and thef use@rtainty in
rj. In our case, if there are two non-zero outputs during training agya),rj(y2) > 0,y1,y2 € Y,

it does not imply that the inputj necessarily possesses the properties of the two corresponding
classes. Rather, this means that there is uncertainty regarding truthearseé:\a discrete probability
measure over the labels to represent this uncertainty.

As p;j andr; are discrete probability measures, we have hai (y) = 1, pi(y) > 0, yyri(y) =1,
andri(y) > 0. In other wordsp; andr; lie within a|Y|-dimensional probability simplex which we
represent using\y| and sop;,ri €Ay (henceforth denoted as). Also pP= (py,...,Ppm) €A™
denotes the set of measures to be learned, &, ...,r) €' are the set of measures that are
given. Here,AmﬁA >< .x A (mtimes). Finally letu be the uniform probability measure on
(Y,9), that is,u(y) = v V y € Y. In other wordsy evenly distributes all the available probability
mass across all pOSSIbJe assignments.

Consider the optimization proble#, : mln CKL(p) where

GeL(p ZLDKL illpi) +u21 WIJDKL pil|p;) — ZLH Pi).
jeN(i)

HereH(p) = — 3, p(y)logp(y) is the Shannon entropy @fandDg_(pi||q;) is the KLD between
measureg; andq; and is given byDg (p|d) = ¥ p(Y) Iog%. (W, V) are hyper-parameters whose
choice we discuss in Section 7. Given a veiteX/, A(i) denotes the set of neighbors of the vertex

in the graph corresponding t; and thugA((i)| represents vertess degree.

Lemmal If p,v,wij >0, Vi, j then Gk (p) is convex.
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Proof This follows asDk.(pi||g;) is convex in the paifp;,q;), negative entropy is convex (Cover
and Thomas, 1991), and we have a non-negative weighted combinatonwax functions. B

The goal of the above objective is to find the best set of meagyithat attempt to: 1) agree
with the labeled date; wherever it is available (the first term @k ); 2) agree with each other when
they are close according to a graph (the second graph-regularizeintek, ); and 3) be smooth in
some way (the last term igik ). In essence, SSL on a graph consists of finding a labelin@for
that is consistent with both the labels providedZinand the geometry of the data induced by the
graph. In the following we discuss each of the above terms in detalil.

The first term ofCk will penalize the solutiorp;,i € {1,...,1}, when it is far away from the
labeled training data@), but it does not insist thap; = rj, as allowing for deviations from, can
help especially with noisy labels (Bengio et al., 2007) or when the graphtisnegly dense in
certain regions. As explained above, our framework allows for the whsee supervised training
is uncertain or ambiguous.

The second term ofk, penalizes a lack of consistency with the geometry of the data and can
be seen as a graph regularizer.wif is large, we prefer a solution in whigh and p; are close
in the KLD sense. One question about the objective relates to the asymmetirie aBKLD (i.e.,

Dk (p||a) # DkL(q||p)) (see Section 9.3 for a discussion about this issue in the directed grsah ca

Lemma 2 While KLD is asymmetric, given an undirected grapjthe second term in the proposed
objective,CkL(p), is inherently symmetric.

Proof As we have an undirected grapy is symmetric, that iswj; = wj and for every
Wij Dk (pi[[pj), we also havevi Dy (pj||pi)- u

The last term encourages eaghto be close to the uniform distribution (i.e., a maximum en-
tropy configuration) if not preferred to the contrary by the first two termhis acts as a guard
against degenerate solutions commonly encountered in graph-bas€BI8®Land Chawla, 2001,
Joachims, 2003). For example, consider the case where a part ofaghte igralmost completely
disconnected from any labeled vertex—that is, a “pendant” graph coempoithis occurs some-
times in the case of k-NN graphs. In such situations the third term ensutefi¢haodes in this
disconnected region are encouraged to yield a uniform distribution, valigitessing the fact that
we do not know the labels of these nodes based on the nature of the dviapé generally, we
conjecture that by maximizing the entropy of egghthe classifier has a better chance of producing
high entropy results in graph regions of low confidence (e.g., close tcettisidn boundary and/or
low density regions). This overcomes a common drawback of a large nurhiséaite-of-the-art
classifiers (e.g., Gaussian mixture models, multi-layer perceptrons, Gaussieels) that tend to
be confident even in regions far from the decision boundary.

Finally, while the second graph-regularizer term encourages higbgnsolutions for nodes
that have high entropy neighbors, the graph regularizer alone is ieaffito yield high-entropy
solutions in other cases where it may be desirable. For example, considanacted pendant
component that is “separated” from the rest of the graph by labelegsrtbdt have the same value.
We can view this as a “lolly-pop” component, where the base of the stem iethlit the rest of
the stem and the round portion of the lolly-pop are unlabeled. In suchfeyagation, the optimum
configuration will set the label of all nodes to be equal to the labels of the Stkere can be cases,
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however, where more uncertainty should be expressed about sugeariass of unlabeled nodes
distantly situated from the nearest labeled node. The last term in the objatitws a solution
where uncertainty is encouraged when a node is geodesically verytdistanany label.

We conclude this section by summarizing some of the highlights and featuresfohimework:

1.

Manifold assumption{k, uses the “manifold assumption” for SSL (see chapter 2 in Chapelle
et al., 2007)—it assumes that the input data may be reasonably embeddid amithv-
dimensional manifold which in turn can be represented by a graph.

. Naturally multiclass: As the objective is defined in terms of probability distributions over

integers rather than just integers (or real-valued relaxations of intdgachims, 2003; Zhu
et al., 2003), the framework generalizes in a straightforward manner to chags-problems.
As aresult, all the parameters are estimated jointly (compare to one vs.pesaelpes which
involve solving|Y | independent classification problems).

. Label uncertainty:The objective is capable of handling uncertainty in the labels (encoded

usingr;) (Pearl, 1990). We present an example of this in the scenario of tesifadation in
Section 7.3.

Ability to incorporate priors:Priors can be incorporated by either

(a) minimizing the KLD between an agglomerative measure and a prior, th@t,i§) =
CkL(p) + KDk (pol|p) wherep'can for example be the arithmetic or geometric mean
overp;’s or

(b) minimizing the KLD betweerp; and the priorpy. First note thatCk. (p) may be re-
written asCiL(p) = S|, Dk (rillpi) + Ky ;Wi Dk (pil|pj) +V ¥i Dke (il |u) whereu
is uniform measure. This follows & (pi||u) = —H(pi) + const. Now if we replace
the uniform measuray, in the above bypg then we are asking for eagh to be close to
po. Even more generally, we may replace the uniform measure by a distingtpiier
distribution for each vertex.

While the former is more global, in the latter case, the prior effects each vaedexdually.
Also, the global prior is closer to the balance prior used in the case ofithigarlike spectral
graph transduction (Joachims, 2003). In both of the above casegdhiérg objective re-
mains convex. It is also important to point out that using one of the aboe® miat preclude
us from using the other. We consider this to be a unique feature of owoagpas we can
incorporate both the balance and label priors simultaneously.

. Directed graphs:The proposed objective can be used with directed graphs without any mod

ification (see Section 9.3).

3.1 Solving®«L

As (kL is convex and the constraints are lineBg, is a convex programming problem (Bertsekas,
1999). However®x does not admit a closed form solution because the gradiefit,dp) w.r.t.
pi(y) is of the form ki pi(y)logpi(y) + kopi(y) + ks (k1, ko, ks are constants). Further, optimizing
the dual of B« requires solving a similar equation. One of the reasons#katdoes not admit

a closed form solution is because we are optimizing w.r.t. to both variables inDa Khus, we
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are forced to use one of the numerical convex optimization techniques (Bwy Vandenberghe,
2006) such as barrier methods (a type of interior point method, or IPkBmalty methods (e.g., the
method of multipliers (Bertsekas, 1999)). In the following we explain how ntetfanultipliers
(MOM) with quadratic penalty may be used to soilg . We choose a MOM based solver as it has
been shown to be more numerically stable and has similar rates of convergether gradient
based convex solvers (Bertsekas, 1999).

It can be shown that the update equationsgidy) for solving Z«. using MOM are given by
(see appendix A for details)

+
M | oDy (1) <0LCKL(|O,/\>>
pl (y) [ ! (y) 0 Pi (y) {p:p(nfl) N=AM-1) c=c(n-1) 1

wheren = 1,..., is the iteration indexa(™1 is the learning rate which is determined using the
Armijo rule (Bertsekas, 1999)x]* = max(x,0) and
aLCKL (p’ /\) |: WiePj (y) :| i (y)
— = = Wej(1+logpi(y) —logpj - - o(e<I
oply) M 2 |ei(l+logmi(y) —logpi(y)) - = = | — e <)

Jen(i)

+v(logpi(y) +1) +Ai +2c(1- Y pi(y)).-
y

In the above\ = {A;} are the Lagrange multipliers ards the MOM coefficient (see appendix A).
While the MOM-based approach to solvifgy, is simple to derive, it has a number of draw-
backs:

1. Hyper(Extraneous)-ParametersSolving %« using MOM requires the careful tuning of a
number of extraneous parameters including, the learning egteviich is obtained using
the Armijo rule which has 3 other parameters, MOM penalty parametestopping criteria
(Q), and penalty update parameteysad ). In general, in the interest of scalability, it is
advantageous to have as few tuning parameters in an algorithm as passiaeially in the
case of SSL where there is relatively little labeled data available to “hold outidein cross
validation tuning. The success of MOM based optimization depends on tatilcaming
of all the 7 extraneous parameters (this is in additiop @ndv, the hyper-parameters in
the original objective). This is problematic as settings of these paramet¢ngdithgood
performance on a particular data set have no generalization guaram&sstion 7.2.1, we
present an analysis that shows sensitivity of MOM to the settings of theampters.

2. Convergence guaranteegior most problems, MOM lacks convergence guarantees. Bert-
sekas (1999) only provides a proof of convergence for cases whe— o, a condition
rarely satisfied in practice.

3. Computational cost:The termination criteria for the MOM based solver 8¢ requires
that one compute the value of the objective function for every iteration lgadimcreased
computational complexity.

4. Lack of intuition in update equation¥Vhile the update equations fpr(y) are easy to obtain,
they lack an intuitive explanation.
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As stated above, there are other alternatives for numerical optimizati@neéx functions. In
particular, we could use an IPM for solvirf, but barrier methods also have their own drawbacks
(e.g., each step involves solvimglinear equations). It is important to point out that we are not
arguing against the use of gradient based approaches in genénalyaseen quite successful for
training multi-layer perceptrons, hidden conditional random fields, armhsehere the objective
is inherently non-convex. Sometimes even when the objective is convaxg@ekto rely on MOM
or IPM for optimization like in our case in Section 9.2. However®as is a convex optimization
problem, in this paper we explore and prefer other techniques for its optiarizehich do not have
the aforementioned drawbacks.

4. Alternating Minimization (AM)

Given a distance functiod(p,q) between objectp € P,q € Q where?, Q are sets, consider the
problem finding thep, g that minimizesd(p,q). Sometimes solving this problem directly is hard,
and in such cases the method of alternating minimization (AM) lends itself as ebieaboal for
efficient optimization. AM refers to the case where we alternately minim{peq) with respect to

p while qis held fixed and then vice-versa, that is,

p™ = argmind(p,q"Y) andg™ = argmind(p'"”,q).
pe?P geQ

Figure 1 illustrates the two steps of AM over two convex sets. We start withiaal iarbitrary

Qo € Q which is held fixed while we minimize w.r.® € P which leads tdP;. The objective is
then held fixed w.r.tP at P = P; and minimized oveQ € Q and this leads t®@;. The above is
then repeated witl; playing the role 0fQg and so on until (in the best of cases) convergence. The
Expectation-Maximization (EM) (Dempster et al., 1977) algorithm is an exanigioMoreover,

the above objective over two variables can be extended to an objectimevariables. In such cases
n— 1 variables are held fixed while the objective is optimized with respect to theemnaining
variable and the procedure iterates in a similar round-robin fashion.

An AM procedure might or might not have the following properties: 1) aadisfrm solution
to each of the alternating minimization steps of AM; 2) convergence to a fihatiGn, and 3)
convergence to a correct minimum afp, q). In some cases, even when there is no closed-form
solution to the direct minimization af(p,q), each step of AM has a closed form solution. In other
cases, however (see Corduneanu and Jaakkola, 2003), on¢hahbasteps of AM do not have
closed form solutions.

Depending ord(p,q) and on the nature @, Q, an AM procedure might never converge. Even
when AM does converge, it might not converge to the true correct mininfuhmq). In general,
certain conditions need to hold for AM to converge to the correct solutiomeSapproaches, such
as Cheney and Goldstien (1959), Zangwill (1969) and Wu (1983)oretie topological properties
of the objective and the space over which it is optimized, while others suCkiasar and Tusnady
(1984) use geometrical arguments. Still others (Gunawardena, 2881 sombination of the
above.

In this paper, we take thmformation geometnapproach proposed by Csiszar and Tusnady
(1984) where the so-callegtpoints property5-pp) is fundamental to determining whether AM on
an objective converges to the global optima. 5-pp is defined as follows:
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Start with Qg € Q

Py = argmin d(P, Q)
P

Q1= arg(r;ﬂn d(Py,Q)

P> = argmin d(P, Q1)
P

Q2= arg(gnin d(P2,Q)

P3 = argmin d(P, Q2)
P

Figure 1: Alternating Minimization

PeP,vQ,Qo

Py = argmin d(P, Qq)
P
Q1= arggwin d(P1,Q)

Figure 2: lllustration of the 5-point property

Definition 3 If P, Q are convex sets of finite measures, given a divergefpgqd p< P, q€ Q,
then the 5-pp is said to hold fore P if V g,qp € Q we have

d(p,q) +d(p,do) > d(p,qr) +d(p1,h)

where p € argmind(p,go) and q € argmind(p1,q).
pe? geQ

Figure 2 shows an illustration of 5-pp. Here we start with s@pe Q, P; = argmind(P, Qo)
Pe®
andQ; = argmind(P1,Q). 5-pp is said hold fod(P,Q) if for any P €  and anyQ € Q, the sum
cQ

of the Ienthhs of the red lines is greater than or equal to the sum of the lesfgties blue lines in
Figure 2. Here the lengths are measured using the objettiR€)). Csiszar and Tusnady (1984)
have shown that the 5-pp holds for alivhend(p,q) = Dk (p||9).

So now the question is whether our proposed objecfiydp) can be optimized using AM and
whether it converges to the correct optimum. This is the topic of discussion irettiesection.
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4.1 Graph-based SSL using AM

‘P« cannot be solved using AM and so we reformulate it in a manner amenable td #évfollow-
ing are the desired properties of such a reformulation —

1. The new (reformulated) objective should be a valid graph-based:@&8tion.
2. AM on the reformulated objective should converge to the global optimutmbbjective.

3. The optimal solution in the case of the origingk() and reformulated problem should be
identical.

4. Each step of the AM process should have a closed form and easilyutainig solution.

5. The resulting algorithm should scale to large data sets.

In this section, we formulate an objective that satisfies all of these proper@iensider the
following reformulated objective —

Pup : mm Cvp(p, ) where

Cvr(p,0) D (rillop) + 1 {iDkL(pillaj) — H(pi)
Z Z,EN 1

where for each vertexin G, we define a third discrete probability measgrever the measurable

spacegY, ), w; = [W']J W' =W +aly, A (i) = {i}UA((i) anda > 0. Here they's play a sim-

ilar role as thepi's and can potentially be used to obtain a final classification result (aggmisy.
Thus, it would seem that we now have two classification results for eanplsa- one the most
likely assignment according tp; and another given byg;. However, Gyp includes terms of the
form (w; + a)Dk.(pi||ai) which encouragey; andg; to be close to each other. Thaswhich is a
hyper-parameter, plays an important role in ensuringphat g;, v i. It should be clear that

argminCy. (p) = lim argminGup(p, q).
pean A= b gean
In the following we will show that there exists a finitesuch that at a miniman;(y) = qi(y) V i,y
(henceforth we will denote this as eithar=q; Vi or p= Q).

We note that the new objectiv@p(p, q) can itself be seen as an intrinsically valid SSL criterion.
While the first term encourageg for the labeled vertices to be close to the labglsthe last term
encourages higher entrops. The second term, in addition to acting as a graph regularizer, also
acts as a glue between this andg's.

A natural question that arises at this point is why we choose this particararfor Gyp and
not other alternatives. First note thaH (p;) = Dk (pi||u) + const wherai is the uniform measure.
KLD is a function of two variables (say the left and the right).dap, the p's always occur on the
left hand side while the's occur on the right. Recall that the reas@qn did not admit a closed
form solution is because we were attempting to optimize w.r.t. both the variableslibaTus
going from (k. to Gup accomplishes two goals — (a) it makes optimization via AM possible, and
(b) as we see shortly, it leads to closed form updates. Next we adteegaestion of whether AM
on Cup converges to the correct optimum.
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Lemma 4 If w,v,w; > 0V, j then Gup(p,q) is convex.

Proof This follows asDg (p||q) is convex in the pair, and we have a weighted sum of convex
functions with non-negative weights. |

The previous lemma guarantees that any local minimum is a global minimum. Thiheerém
gives the powerful result that the AM procedure on our objeatiye is guaranteed to converge to
the true global minimum ofup.

Theorem 5 (Convergence of AM onCp, see appendix B)If
p™ = argminGup(p,q"Y), o = argminGup(p™,q) and 4% (y) > 0¥y € Y, vithen
peam qeam
() Cup(p,a) + Gup(,0') > Gur(p,d™) + cwr(p™,q) for all p,g €A™, and
(b) lim Gwp(p"™,q™) = infp geam Gup(p, Q).

Next we address the issue of showing that the solutions obtained in thefctds= original
and reformulated objectives are the same. We already know thatsifeo then we have equality,
but we are interested in obtaining a finite lower-boundocior which this is still the case. In the
below, we letGup(p, d; {W; = 0};) be the objectiveiup shown with the weight matrix parameterized
with w; = 0 for all i, and we letGup(p,q;a) be the objective function shown with a particular
parameterized value @f. For the proof of the next lemma and the two theorems that follow, see
appendix C.

Lemma 6 We have that
pg]elngMP(paq;V\/ii =0) < min Ge(p).

Theorem 7 Given any AB,ScA™ (i.e., A= [ay,...,a], B=[b1,...,by], S=[s1,...,5]) such
that a(y),bi(y),s(y) > 0, Vi,y and A# B (i.e., not all a(y) = bi(y)) then there exists a finite
such that

Gwr(AB) > Gur(SS) = GkL(S).

The above theorem states that there exists a finiteat ensuregivp(p,q) evaluated on any
positive p # q will be larger than anyk, (-). This is a stronger statement than we need, since we
are interested only in what happens at the objective functions’ minima.dllbe/ing theorem does
just this.

Theorem 8 (Equality of Solutions of k. and Gyp) Let
p = argminCk.(p) and (pg, d5) = argminCup(p, q; &)
peam p,geam

for an arbitrary & > O wherep§ = (pig, -, Pya) @ndag = (di4, -+ ,0ng)- Then there exists a
finite @ such that at convergence of AM, we have that p; = qj. Further, it is the case that if
Pg 7 d5. then
CkL(P) — Gue(P5: d5; @ = 0)

M3 Do (Pgll0is)

o>
and if p§ = qf thend > &.
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We note that the above theorem guarantees the existence of afthégequates the minimum
of (kL and Gup but it does not say how to find it since we do not know the true optimuitef
Nevertheless, if we use ansuch that we end up with* = g* (or in practice, approximately so)
then we are assured that this is the true optimuntigr.

As mentioned above, AM is not always guaranteed to have closed fodategat each step,
but in our case closed form updates may be achieved. The AM updateg\(pendix E for the
derivation) are given by

o y) = P T loga"™ Y (y)}
| Syexply ¥ Wi |0gq§”f1>(y)}
) = VB0 <D0, W, B ()
| 8(i <1)+uy;w

wherey; = v+l W

Thus, Cup satisfies all the desired properties of the reformulation. In addition, it igpaissible
to derive a test for convergence that does not require that one terguvalue ofup(p,q) (i.€.,
evaluate the objective).

Theorem 9 (Test for convergence, see Appendix Dif {(p",q™)}=_, is generated by AM afiip(p, q)

A

andCiwe(p*,a") = inf  Cive(P.d) then

>

ur(P™, ™) — Gup(p,q") < (3(i < 1) +di)Bi,

) 4" )
Bi = logsup——=", dj =y wj.
|

y g (Y

While a large number of optimization procedures resort to computing the eliatite objective
function with n (iteration index), in this case we have a simple check for convergenas. tast
does not require that one compute the value of the objective function whiche computationally
expensive especially in the case of large graphs. Table 1 summarizelvédmtages of the proposed
AM approach to solvinghyp over that of using MOM to directly solvé,. We also provide an
empirical comparison of these approaches in Section 7.2.1. Hencefertiefer to the process of
using AM to solvePyp asmeasure propagatio(MP).

5. Squared-Loss Formulation

In this section, we show how the popular squared-loss objective mayelfited over measures.
We then discuss its relationship to the proposed objective. Consider the @iomiproblemPsq:
IorQiAljn Csq(p) where

| m m
ColP) =Y IIri—p[*+ Wi [ pi—pi 240y Il pi—ul?
i; | | I;]G%(I) ! | J i; I

and| p||°= Sy p?(y). Psqcan also be seen as a multi-class extension aftiaglratic cost criterion
(Bengio et al., 2007) or as a variant of one of the objectives in Zhu drahfamani (2002b).
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] Criteria \ MOM \ AM
Iterative YES YES
Learning Rate Armijo Rule None
Number of Hyper-parameters 7 1 (o)
Test for Convergence Requires Tuning Automatic
Update Equations Not Intuitive Intuitive and easily Parallelized

Table 1. There are two ways to solving the proposed objective, namelgpfhdar numerical op-
timization tool method of multipliers (MOM), and the proposed approach basedter-
nating minimization (AM). This table compares the two approaches on variontsfr

Lemma 10 (Relationship betweenk; and (sg) We have that

Csq(p)
> — .
GeL(p) > l0g4 mvlog|Y|

Proof By Pinsker's inequality we have thaDg (p||q) > (1/Iog4)(zy]p(y) — q(y)\)2 >
(1/10og4) 3, |p(y) — a(y)|?. As aresult

Gee(p) =y Dko(ril|pi) + 1 wi; Dk (pil|pj) — H(pi)
Zi Z‘JGN Z

m
= i;DKL(rini) +H'lee%_ wij D (pil pj) +Vi;DKL(IOiHU) —mvlog|Y]|

1 | m m
> Y Iri—pl+ wij [ pi—pj I +v Y [l pi—ulf?| —mwlog|Y|
log4 [|Zl S i;je%(i) R i; |

_ Csqlp)
log4

—mvlog|Y].
|

Psq can be reformulated as the following equivalent optimization prolReg: JQer‘n Csalp)

where
Csq(p) = Tr((Sp—r')(Sp—r)T) +2uTr(Lpp") +VTr((p—u)(p—u)T),

(9 v2(( 3 verwmer

1n € RMis a column vector of 1's, ant] is thel x | identity matrix. HereL £ D — W is the
unnormalized graph Laplaciab,is a diagonal matrix given bg; = [D]; = 5 ;Wij. Csqis convex if
K v > 0 and, as the constraints that ensurerpare linear, we can make use of the KKT conditions
(Bertsekas, 1999) to show that the solutiorPis given by

21

p=(S+2uL +vly)~ [Sr+vu+ le ndd |
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The above closed-form solution involves inverting a matrix of size m. Henceforth we refer to
the above closed form solution @&q asSQ-Loss-JC stands for closed form). Returning to the
original formulation, using Lagrange multipliers, setting the gradient to zedosalving for the
multipliers we get the update fq’s to be

., Y3 <I
(y) = 5

) +vu(y) +pz i p" Y (y)

P <1)+Vv+u3;wij @

Heren is the iteration index. It can be shown th&tp— p (Bengio et al., 2007). In the following
we refer to the iterative method of solvirigsg asSQ-Loss-I There has not been any work in the
past addressing the rate at whicfp— p in the case of SQ-Loss-l. We address this issue in the
following but first we define the rate of convergence of a sequence.

Definition 11 (Rate of Convergence Bertsekas, 1999Det {x,} be a convergent sequence such
that x, — 0. It is said to have a linear rate of convergence if either

X <gn"Vvn orIimsupA <n
n—o  Xn—1

wheren € (0,1) and g> 0.

As “geometric” rate of convergence is a more appropriate descriptioneticonvergence, we use
this term in the paper.

Theorem 12 (Rate of Convergence for SQ-Loss, see Appendix ¥
(@ v>0,and
(b) W has at least one non-zero off-diagonal element in every row\{i/@s irreducible)

then the sequence of updates given in Equation 1 has a geometric ratevefgence for all i and
y.

Thus we have that(® — p very quickly. It is interesting to consider a reformulationdat, in
a manner similar t@up (see Section 4.1), as we do next.

5.1 AM Amenable Formulation of Psq

Consider the following reformulation afsq

| n n
Coqpa) =S IIri—ai |+ Wi I pi—ai [P+vS I pi—ul?.
sQ i; I I i; je%(i) N I : iZ\ I

This form is amenable to AM and can be shown to satisfy 5-pp. Further ttietegpfor two steps
of AM have a closed form solution and are given by

S0y V)T W, a" ()
| v + ZJ V\/” Y
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()8 < 1) +py;wipi" (y)
(i < 1)+ 3w '

q"(y) =

We call this method5Q-Loss-AMIt is important to point out that for solvin@sg, one always
resorts to either SQ-Loss-I or SQ-Loss-C depending on the nature pfablem. We will be using
SQ-Loss-AM in the next section to provide more insights into the relationshipees ?«. and

fPSQ.

6. Connections to Other Approaches

In this section we explore connections between our proposed appaodcbther previously pro-
posed SSL algorithms.

6.1 Squared-Loss Based Algorithms

A majority of previously proposed graph-based SSL algorithms (Zhu €@03; Joachims, 2003;
Belkin et al., 2005; Bengio et al., 2007) are based on minimizing squarsdiothe following we
refer to the squared-loss based SSL algorithm proposed in Zhu aruasmeani (2002a) as label
propagation (LP) (this is the standard version of label propagationTade 2), the algorithm in
Zhu et al. (2003) as the harmonic functions algorithms (HF). Also QC derib&equadratic cost
criterion (Bengio et al., 2007). While the objectives used in the case MlERNd QC are similar in
spirit to ourCsq, there are some important differences. In the case of both HF and Q@hjdative
is defined over the reals whereas in our casgis defined over discrete probability measures. This
leads to two important benefits — (a) it allows easy generalization to multi-clabgeprs, (b) it
allows us to exploit well-defined functions of measures in order to improMenpeance. Further,
both the HF and LP algorithms do not have guards against degenerdterso(ue., the third term
in Csg). QC, on the other hand, employs a regularizer similar to the third terdydgbut QC is
limited to only two-class problems (for multi-class problems one resorts to onests. Both the LP
and HF algorithms optimize the same objective but LP uses a iterative solutionkfigenploys
the closed form solution (it has been shown that LP converges to the sogitien by HF Zhu,
2005a). QC is a generalization of HF and has been shown to outperf¢Barigio et al., 2007).
Our squared-loss formulatiosg, is a generalization of QC for multi-class problems and as we
show in Section 7.2.2, it outperforms QC. Thus, to compare against sijlesebased objectives,
we simply use our formulatiodse.

Table 2 summarizes the update equations in the case of some of the gregteBasalgorithms.
It is interesting to compare the update equations for SQ-Loss-AM andtM&nlbe seen that the
update equations faj(y) in the case of SQ-Loss-AM and MP are the same. In the case of MP, the
pi(y) update may be re-written as

(n) (y) = [ (qﬁn’” (Y))uw'j

i = n_
Sy (o Y )"

W ”

Thus, while squared loss makes use of a weighted arithmetic-mean, MPweggh#ed geometric-
mean to update;(y). In other words, while squared-error leads to additive updates, thefd_D
leads to multiplicative updates.
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Algorithm Update Equation(s)

 exp{f 5w loga)" Y (v)}

W
pl ( ) Zyexp{% Zj V\/ij Iogq(jn—l)(y)}
MP (W ri(Y)5(i§|)+usz’ji pgn)(y)
g (y) = 6(i§|)+u§jw/ji
Yi=Vv+ MZJ Wij

= (S+2uL + Vi) [3+vu+ TR
L£D-W, [D]; = 3w

- - (n) ()3 <) +vu(y)+py  wii pi" Y (y)
SQ-Loss-| p(y) = AT e

) y) vu(y) -+ W ol D (y)

SQ-Loss-C

SQ-Loss-AM P VEEW,
o (y) = O rus, P )
' B(i<l)+Huy ;W)
Lp o™ ) = DB HAE=D5, w M)

6(i§|)+6(i>|)zjwij

Table 2: A summary of update equations for various graph-based SSiithlgs. MP stands for
our proposed measure propagation approach, SQ-Loss-C, SJ-laosl SQ-Loss-AM
represent the closed-form, iterative and alternative-minimization badetioss for the
objective based on squared-error. LP is label propagation (ZhGhatiramani, 2002a).
In all casegt andv are hyper-parameters.

Spectral graph transduction (SGT) (Joachims, 2003) is an approxioiat®s to the NP-hard
norm-cut problem. The use of norm-cut instead of a mincut (as in Blum aawia, 2001) ensures
that the number of unlabeled samples in each of the cuts is more balancedre§@res that
one compute the eigen-decomposition oha m matrix which can be challenging for very large
data sets. Manifold regularization (Belkin et al., 2005) proposes a gefiamework in which
a parametric loss function that is defined over the labeled samples and larizgli by graph
smoothness term defined over both the labeled and unlabeled samples. thWWHess function
satisfies certain conditions, it can be shown that the representer theppéies and so the solution is
a weighted sum over kernel computations. Thus the goal of the learringgy is to discover these
weights. When the parametric loss function is based on least squarepptbach is referred to as
Laplacian regularized least squar¢sapRLS) (Belkin et al., 2005) and when the loss function is
based on hinge loss, the approach is callaplacian support vector machin@sapSVM)) (Belkin
et al., 2005). In the case of LapRLS, the weights have a closed fornicgolhich involves
inverting am x m matrix while in the case of LapSVM, optimization techniques used for SVM
training may be used to solve for the weights. In general, it has beenvelsirat LapRLS and
LapSVM give similar performance (see Chapter 11 in Chapelle et al., 200%¥ery important
to point out here that while LapSVM minimizes hinge loss (over the labeled sajnptdch is
considered more appropriate than squared loss for classification ajple igggularizer is still based
on squared error.
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So is there a reason to prefer KLD based loss over squared-errthis context we quote two
relevant statements from Bishop (1995)

1. Page 226: In fact, the sum-of-squares error function is not the most appropriatelfms-
sification problems. It was derived from maximum likelihood on the assumpiti@aussian
distributed target data. However, the target values for a I-of-c codingsehare binary, and
hence far from having a Gaussian distribution.

2. Page 235: Minimization of the cross-entropy error function tends to result in similartreéa
errors on both small and large target values. By contrast, the sunopadires error function
tends to give similar absolute errors for each pattern, and will therefore Igikge relative
errors for small output values. This suggests that the cross-entmopryfanction is likely to
perform better than sum-of-squares at estimating small probabilities.

While the above quotes were made in the context of a multi-layered percépttd?), they apply
to learning in general. While squared-error has worked well in the cheegeession problems
(Bishop, 1995}, for classification, it is often argued that squared-loss is not the optirtedion and
alternative loss functions such as the cross-entropy (Bishop, 18g%tic (Ng and Jordan, 2002),
hinge-loss (Vladimir, 1998) have been proposed. When attempting to neetsudissimilarity
between measures, KLD is said to be asymptotically consistent w.r.t. the undeplpbability
distributions (Bishop, 1995). The second quote above furthers theicdavor of adopting KLD
based loss as it is based on relative error rather absolute error asdastef squared-error. In
addition, KLD is an ideal measure for divergence of probability distribstias it has description-
length consequences (coding with the wrong distribution will lead to longsarifion bit length
than necessary). Most importantly, as we will show in Section 7, MP outprasf the squared-
error basedPsg on a number of tasks. We also present further empirical comparisons# the
objectives in Section 7.2.4.

We would like to note that Wang et al. (2008) proposed a graph-baskdalg8rithm that
also employs alternating minimization style optimization. However, it is inherentlyreddass
based which MP outperforms (see Section 7). Further, they do noiderov state convergence
guarantees and one side of their updates is not only not in the closadHort also it approximates
an NP-complete optimization problem.

6.2 Information Regularization (Corduneanu and Jaakkola, 2003)

The information regularization (IR) (Corduneanu and Jaakkola, 28ig8yithm also makes use of
a KLD based loss for SSL but is different from our proposed apgraafollowing ways

1. IR is motivated from a different perspective. Here the input spadévided into regions
{R} which may or may not overlap. For a given poijitc R, IR attempts to minimize the
KLD betweenpj(y|x;) andpr (y), the agglomerative distribution for regidt. The intuition
behind this is that, if a particular sample is a member of a region, then its postesbbeu
similar to the posterior of the other members. Given a graph, one can defggoa to be
a vertex and its neighbors thus making IR amenable to graph-based SSardaneanu and
Jaakkola (2003), the agglomeration is performed by a simple averagitigr{atic mean).

1. Assuming a Gaussian noise model in a regression problem leads lijeative based on squared-loss.
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2. While IR suggests (without proof of convergence) the use of ANbfitimization, one of the
steps of the optimization does not admit a closed-form solution. This is a seytaatical
drawback especially in the case of large data sets.

3. It does not make use of a entropy regularizer. But as our resolig e entropy regularizer
leads to much improved performance.

Tsuda (2005) (hereafter referred to as PD) is an extension of tHgdRtam to hyper-graphs where
the agglomeration is performed using the geometric mean. This leads to closedditions in
both steps of the AM procedure. However, like IR, PD does not makefusentropy regularizer.
Further, the update equation for one of the steps of the optimization in thefcBB8e(Equation 13
in Tsuda, 2005) is actually a special case of our update equatign(igrand may be obtained by
settingw;; = 1/2. Further, our work here can be easily extended to hyper-grapasSgction 9.3).

7. Results

Table 3 lists the data sets that we use in this paper. These corpora coma flimerse set of
domains, including image processing (handwritten digit recognition), ridturguage processing
(document classification, webpage classification, dialog-act taggimgjs@eech processing (phone
classification). The sizes vary from= 400 (BCI) to the largest data set, Switchboard, which has
120 million samples. The number of classes vary fidfth= 2 to |Y| = 72 in the case of Dihana.
The goal is to show that the proposed approach performs well on bothamlaarge data sets,
for binary and multi-class problems. Further, in each case we comparestfegrpance of MP
against the state-of-the-art algorithm for that task. Each data setdshlosin detail in the relevant
sections.

7.1 Synthetic 2D Two-Moon Data Set

In order to understand the advantages of MP over other state-ofit&&h algorithms, we eval-
uated their performance on the synthetic 2D two-moon data set. This is a lulaasjfication
problem. We compare against SQ-Loss-| (see Section 5), LapRLSiiBalkl., 2005), and SGT
(Joachims, 2003). For all approaches, we constructed a symmetrizgl fPaph using an RBF
kernel. In the case of LapRLS and SGT, the hyper-parameter valuesseein accordance to the
recipe in Belkin et al. (2005) and Joachims (2003) respectively. Indke of MP, we sgi = 0.2,

v =0.001 anda = 1.0. For SQ-Loss-I, we sgt= 0.2 andv = 0.001. These values were found to
give reasonable performance for most data sets.

We used three different types of labelings: (a) two labeled samples facmaass, (b) 4 sam-
ples from one class and 1 sample from the other class, and (c) 10 samgnestie class and 1
sample from the other class. While the first represents the ‘balances’tbas is, equal number of
labeled samples from the two classes, the others are ‘imbalanced’ conditioother words, (b)
and (c) are representative of cases where the distribution over thedazenples is not reflective of
the underlying distribution over the classes (there are equal numbempfesin each class). The
results for each of the different labeling are shown in Figure 3. Thiecismn shows the results
obtained using SQ-Loss-I, the second column shows the results of IS3gRé third is SGT and
the fourth (last) column is MP. The following observations can be made fresetlesults
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Data Set || m | 1Y | Hn(po) | Task \
2D Two-Moon 500 2 1 Synthetic
BCI 400 2 1 Brain Computer Interface
USPS 1500 2 0.7 HandWritten Digits
Digitl 1500 2 1 Synthetic
COIL 1500 6 1 Image Recognition
Text 1500 2 1 Newsgroups Newswireg
OPT-Digits 1797 10 1 HandWritten Digits
Reuters-21578 9603 10 0.8 Document Classification
WebKB 8282 4 0.9 Webpage Classification
Dihana 23,500 72 0.8 Dialog-Act Tagging
Switchboard-DA|| 185,000 | 18 0.6 Dialog-Act Tagging
TIMIT 1.4 million | 48 0.9 Phone Classification
Switchboard || 120 million | 53 0.8 Phone Classification

Table 3: List of Data Sets we used to compare the performance of varisusalgorithms.
Hn(po) = H(po)/log|Y| is the normalized entropy of the prior and a value of 1 indi-
cates a perfectly balanced data set while values closer to 0 imply imbalartbe.dase of
the Switchboard data sedy(po) was computed over the STP data (see Section 8.1).

Figure 3: Results on the 2D two-moon data set. Each row shows resulifféoet labelings and
in each case the labeled points are shown in “black”. The first columnsshesults
obtained using SQ-Loss-I, the second column results were obtaineduspRy.S, SGT
was used for the third column and the last column shows the results in thefddBe o
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1. MP is able to achieve perfect classification in the first two cases, aedtésly perfect (2
errors) in the third case.

2. In the balanced case (first row), all approaches achieve petéessification. Here, all ap-
proaches are able to correctly learn the nature of the manifold.

3. In the imbalanced cases (second and third rows), all three othevambyas (SQ-Loss-I,
LapRLS, and SGT) fail to correctly classify a significant portion of sampl€his is not
surprising and has been observed by others in the past (see Figwéahdnet al., 2008).

4. Finally, in the case of SQ-Loss-I, we tried using class mass normaliz&idi) (Zhu and
Ghahramani, 2002a) as a post-processing step. While the results didamatecin the bal-
anced case, CMN in fact resulted in worse error rate performance imthedanced cases.
Note that Figure 3 for SQ-Loss-I does not include CMN.

7.2 Results on Benchmark SSL Data Sets

We also evaluated the performance of MP on a number of benchmark S&lseta including,
USPS, Text, Digitl, BCI, COIL and Opt-Digits. All the above data sets, withetkeeption of
Opt-Digits (obtained from the UCI machine learning repository), came fintp/www.kyb.
tuebingen.mpg.de/ssl-book . Digitl is a synthetic data set, USPS is a handwritten digit recog-
nition task, BCI involves classifying signals obtained from a brain computerface, COIL is a
part of the Columbia object image recognition library and involves classifyijgcts using images
taken at different orientations. Text involves classifying IBM vs. thet fer documents taken from
the top 5 categories in comp.* newswire. Opt-Digits is also a handwritten digigretton task. We
note that most of these data sets are perfectly balanced (see TablatBerfetails may be found
in Chapelle et al. (2007).

We compare MP against four other algorithms: 1) k-nearest neighi®oBgiectral Graph Trans-
duction (SGT) (Joachims, 2003); 3) Laplacian Regularized Leastr8gflaapRLS) (Belkin et al.,
2005); and 4)Psq solved using SQ-Loss-I. Here k-nearest neighbors is the fullyrsigesl ap-
proach, while others are graph-based SSL approaches. We usstdritiard features supplied with
the corpora without any further processing. For the graph-bageaghes we constructed sym-
metrized k-NN graphs using an RBF kernel. We discuss the choikaid the width of the kernel
shortly. For each data set, we generated transduction sets with differaber of labeled samples,
| € {10,20,50,80,100, 150}. In each case, we generated 11 different transduction sets. Tirsefirs
was used to tune the hyper-parameters which were then held fixed oventheing sets. In the
case of thek-nearest neighbors approach, we tried {1,2,4,5,10, 20, 30,40,50, 70,90,100,120,
140,150,160,180,200}. For the graph-based approaches, k (for the k-NN graph) wad tuméhe
first transduction set over the following values {2,5,10,50,100,200 m}. The optimal width of
the RBF kernelg, in the case of SQ-Loss-I, SGT and MP was determined over the folloveing s
0 € {ga/3:ac {2,3,---,10}} whereg, is the average distance between each sample andf' its
nearest neighbor over the entire data set (Bengio et al., 2007).

In the case of LapRLS, we followed the setup described in Section 21.Zhaybelle et al.
(2007). Here, as per the recipe in Joachims (2003), the optiwals determined in a slightly differ-
ent manner—we tried € {%, %, %, 0o, 200,400,800} Whereoy is the average norm of the feature
vectors. In addition the hyper-parametgksr (see Belkin et al., 2005) associated with LapRLS
were tuned over the following valuegs € {1e-6, 1le-4, 1le-2, 1, 190 € {0, 1le—4, 1le-2, 1, 100,
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USPS Digitl
| 10 [ 20 | 50 | 80 | 100 150 || 10 [ 20 | 50 | 80 | 100 | 150
kNN [[80.0] 80.4] 90.7| 92.7] 93.6] 94.9][ 67.6| 79.5] 90.2| 93.2| 91.2] 95.2
SGT | 86.2|87.9] 94.0| 95.7| 96.0| 97.0 92.1| 93.6] 96.2 | 97.1| 97.4| 97.7
LapRLS || 83.9| 86.9| 93.7 | 94.7| 95.4| 95.9| 92.4 | 95.3| 95.7| 96.2| 97.1| 97.4
SQ-Loss-1| 81.4 | 82.0| 93.6| 95.8| 95.2| 95.2 | 91.2| 94.9| 96.9| 96.6 | 97.2| 97.1
MP | 88.1| 90.4] 93.9] 95.0| 96.2| 96.8 | 92.1| 95.1| 96.1| 97.4| 97.4| 97.8

BCI Text
| 10 [ 20 [ 50 | 80 [ 100 [ 150 | 10 [ 20 | 50 | 80 | 100 | 150
kNN |[48.5] 52.4] 53.3| 50.6| 53.1| 535 60.2] 64.2| 71.6 | 72.4] 72.3| 745
SGT | 49.7| 50.4| 52.2| 52.4| 53.6 | 54.5| 70.4| 70.9| 73.1| 769 77.0| 78.1
LapRLS || 53.3| 53.4] 52.7 | 53.6 | 53.9| 56.1 || 68.2| 69.1| 71.2 | 73.4| 74.2| 76.2
SQ-Loss-1[| 51.0 | 51.3[ 50.7 | 53.2| 53.3| 53.1| 67.9] 72.0| 74.1| 76.8| 76.8| 76.6
MP || 53.0] 53.2| 52.8| 53.9| 54.0| 57.0| 70.3| 72.6| 73.0| 75.9| 75.4| 77.9

ColL OPT
| 10 [ 20 | 50 [ 80 | 100 150 || 10 [ 20 | 50 | 80 | 100 | 150
kNN [[345]53.9]66.9] 77.9] 79.2[ 835] 79.6] 83.9] 85.5] 90.5] 92.0] 93.8
SGT [ 40.1]61.2| 78.0| 885 89.0| 89.9 | 90.4[ 90.6| 91.4| 94.7 | 97.4| 97.4
LapRLS | 49.2| 61.4| 78.4| 80.1| 84.5| 87.8 | 89.7| 91.2| 92.3| 96.1| 97.6| 97.3
SQ-Loss-1|| 48.9 63.0| 81.0| 87.5| 89.0| 90.9 | 92.2| 90.2 | 95.9| 97.2| 97.3| 97.7
MP | 47.7| 65.7| 785 89.6 | 90.2| 91.1 90.6 | 90.8| 94.7| 96.6 | 97.0| 97.1

Table 4. Comparison of accuracies for different number of labeled lssripacross USPS, Digitl,
BCI, Text, COIL and Opt-Digits data sets. In each column, the best peirfigr system
and all approaches that are not significantly different at the 0.001 (@veording to the
difference of proportions significance test) are shown bold-faced.

le4, 1e6. Also, as per Belkin et al. (2005), we set=5 in the case of Text data set apd= 2
for all the other data sets. In the case of SGT, the search was@av¢B8000, 3200, 3400, 3800,
5000, 100000 (Joachims, 2003). Finally, the trade-off parametgrandv (associated with both
MP and SQ-Loss-I) were tuned over the following sqiss {1e-8, 1le-6, 1le—4, 1e-2,0.1, 1}10
andv € {1e-8, 1le-6, le—4, 1e-2, §.1In the case of SQ-Loss-I, the results were obtained after
the application of CMN as a post-processing step as this has been showrbeméficial to the
performance on benchmark data sets (Chapelle et al., 2007). For Mfitiakzed p° such that
all assignments had non-zero probability mass as this is a required conditiconfvergence and
seta = 1. As LapRLS and SGT assume binary classification problems, resultssfondhi-class
data sets (COIL and OPT) were obtained using one vs. rest.

The mean accuracies over the 10 transduction sets (i.e., excluding theeddiou tuning the
hyper-parameters) for each corpora is shown in Table 4. The folloalisgrvations may be made
from these results

1. As expected, for all approaches, an increase in number of lalsiggles leads to increased
accuracy.
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USPS] Text | Digitl | BCI | COIL | Opt-Digits
LP-3 | 77.2 | 65.1| 70.1 |51.5| 31.3 | 812
MOM | 88.1 | 70.3| 91.4 | 53.0| 46.1 | 91.2
MP | 88.2 | 70.3| 92.1 | 53.0| 47.7 | 93.4
MOM’ | 81.1 | 67.6| 79.4 |51.7| 41.2 | 90.4

Table 5: Comparison of performance of MOM and MP. Results are in aciasfor theé = 10 case.
We also show the results obtained after three iterations of LP (LP-3) (@hGhahramani,
2002a) as this was used to initialize MOM. MOBte the results obtained using the MOM
setup with a small change in the setting of the hyper-parameters.

2. MP performs best in 15 out of the 36 cases, SQ-Loss is best in 1df tut 36 cases, SGT
in 8 out of the 36 cases and LapRLS in 7 out of the 36 cases. In 13 e$ aasvhich MP
was not the best, it was not significantly different compared to the winveecharacterize an
improvement as being significant if it is significant at the 0.001 level adngtd a difference
of proportions significance test).

3. It can be seen that SGT does best in the case of the Text corpasrfajority of the values
of I, while MP is the best in a majority of the cases in the COIL and BCI data set$.0S8-
does best in the case of OPT. Thus in the case of the two multi-class datthedtgptrue
multi-class approaches perform better than the SSL approaches tluateuge. rest.

4. We also tried SQ-Loss-C and SQ-Loss-AM for solving the squaresiased objective and
in a majority of the cases the performance was the same as SQ-Loss-lehcates, the
difference was insignificant. It should however be noted that usindg.&3-C to solve large
problems can be rather difficult.

5. While there are no silver bullets in SSL (Zhu, 2005b), our MP algorithtperforms other
approaches in a majority of the cases. We would like to point out the diverfditye data sets
used in the above experiment.

6. Finally note that while we have a used a simple approach to hyper-para®ietetion, there
are other ways of choosing them such as Goldberg and Zhu (2009)

7.2.1 MPvs. MOM

In this section we compare the results obtained from using MP against relktadieed by directly
optimizing the original objective(k, (henceforth we refer to this as MOM). As explained in Sec-
tion 3.1, implementing MOM requires the careful tuning of a number optimizatiotectlayper-
parameters (in addition fpandv). After extensive experimentation, we found that settjng,0.25,
B =5 andZ =1e—6 gave reasonable results. Further, as MOM is gradient basénitinlezed p?
(see Section 3.1) to the distributions obtained after 3 iterations of the laljgmabton algorithm
described in Zhu and Ghahramani (2002a) (henceforth referresiliB-&).

Table 5 shows average accuracies over all transduction sdts-faf (the trends were similar
for other values of) in the case of the corpora described in the previous section for (&) I(IP-
MOM (c) MP, and (d) MOM. In the case of MON] we changed the values of the optimization
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related hyper-parametersye= 0.2 and 3 = 3. The goal here is to show the sensitivity of MOM
to the exact settings of the hyper-parameter values. The following @ismrs can be made from
these results

1. MOM outperforms LP-3. This implies MOM is able to learn over and beyordstt of
distributions that result from 3 iterations of LP.

2. In the case of USPS, Digitl, COIL, Opt-Digits, MP outperforms MOM.tkeir, the per-
formance gap between MP and MOM grows with the size of the data set. MFicagily
outperforms MOM at the 0.0001 level in the case of the Opt-Digits. This migimhsirpris-
ing because when we have thédtp g* in the case of MP, the results obtained using MOM
cannot be any worse than those obtained using MP (because the @bijgctimvex). We con-
jecture that this is because MOM involves using a penalty parami8té¢nat tends to increase
with n leading to slow convergence. This is more likely to happen in the neighbdfqo
(Bertsekas, 1999). As a result MOM is terminated when the rate of thegehafrg™ falls
below some and so it is possible that the objective has not attained the optimal value. In the
case of MP, on the other hand, no such issues exist. Further we hastef@r teonvergence
(see Theorem 9).

3. The results obtained in the case of MOdWlow that this approach can be very sensitive to the
settings of the hyper-parameters. While it may be possible to tune the varioi idlated
hyper-parameters in the case of small data sets, it is much less feasible aséhefdarge
data sets.

7.2.2 ONE VS. RESTAGAINST TRUE MULTI-CLASS

It is often argued binary classifiers when used within a one vs. rasefm@rk perform at least as
well as true multi-class solutions (Rifkin and Klautau, 2004). In this secti@test this claim in
the context of SSL. We make use of the two multi-class data sets, COIL andD@R3. Figure 4
shows a comparison of the performancefaf, (solved using SQ-Loss-C) and QC (Bengio et al.,
2007). Even though SQ-Loss-I converges to SQ-Loss-C, in thisveasised SQ-Loss-C as the size
of the data set is small. As QC can handle only binary classification probleeggghlts for QC
were generated using one vs. rest. Note that SQ-Loss-C is simply the éwsesolution ofPsq
which is the multi-class extension of the QC objective. In the case of both fireaghes, (a) the
graph was generated by using an RBF kernel over the Euclidean dist@)ave used the closed
form solution, and (c) hyper-parameter search was done over exaethame set of values. It can
be seen that SQ-Loss-C outperforms QC in all cases. As the objecterésth inherently based
on squared-error, the performance improvement in going from QRsdas likely becausePsqis a
true multi-class objective, that is, all the parameters are estimated jointly.

7.2.3 BFFECTS OFENTROPY REGULARIZATION

We also wish to explore the effects of the entropy regularizer. We ran $itig) ihe same setup
described in Section 7.2 but with= 0. The results in the= 10 case are shown in Table 6. Similar
trends were observed in the case of other valuds df can be seen that entropy regularization
leads to improved performance in the case of all data sets. We moreoeesdmwv this trend in the
other data sets (results not reported herein). The entropy regulanizeurages solutions closer to
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Figure 4: Comparison of the one vs. rest approach against true mukliatéssifier. Figures show
accuracy (in %) vs. Number of Labeled Sampladdr (a)-left COIL and (b)-right OPT-
DIGITS data sets. SQ-Loss-I is the solution to a true multi-class objective Witile
makes use of one vs. rest approach for multi-class problems.

USPS] Text | Digitl | BCI | COIL | Opt-Digits
MP(v=0)| 857 | 70.0| 91.7 |51.1| 452 | 895
MP 88.2 | 70.3| 92.1 | 53.0| 47.7 | 93.4

Table 6: Comparison of performance of MP with and without0) entropy regularization. Re-
sults are in accuracies for the= 10 case.

the uniform distribution, and we mentioned above that this helps to retaintaimtgrin portions
of graph very isolated from label information. To explain why this could leadctualimproved
performance, however, we speculate that the entropy term is benégicihe same reason as that
of maximum entropy estimation—except for evidence to the contrary, wddipoefer solutions
that are as indifferent as possible.

7.2.4 ENSITIVITY OF MP AND SQ-Loss| Too

In this section, we examine the effects of change in hyper-parametergsaedtirthe performance
of Psq (solved using SQ-Loss-1) and MP. In particular, we look at the effefotarying the width of
the RBF kernel used to generate the weighted graph. Figure 5 shauts mstained for thé = 50
case in the USPS and Opt-Digits data sets (in each case the vatuat dfie mode of each curve
is its optimal value). It can be seen that in the case of both the data setsrfitvenamce variation

is larger in the case of SQ-Loss-I while MP is more robust to the value dfote that in the case
of Opt-Digits, at the optimal value far, SQ-Loss-I outperforms MP. Similar trends were observed
in the case of other data sets. As the choice of hyper-parameters in anrisS$L, we prefer
approaches that are more robust to the value of the hyper-paraméterselieve the robustness
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Figure 5: Figures showing the variation of accuracy with change in the \iajltbf the RBF kernel.
The left figure was generated using the USPS data set forhe0 case while the right
figure was generated using the Opt-Digits data set fot thé&0 case. The vertical lines
(blue for SQ-Loss-I and red for MP) depict tbagiven by the algorithm described in the
previous section.

of MP is due to the fact that it is inherently based on KLD which is more suitedl&ssification
compared to squared error.

7.3 Text Classification

Text classification involves automatically assigning a given document tocarfixeber of semantic
categories. Each document may belong to one, many, or none of theriedegfpgeneral, text clas-
sification is anulti-classproblem (more than 2 categories). Training fully-supervised text classifi
requires large amounts of labeled data whose annotation can be exp@hsinais et al., 1998). As

a result there has been interest is using SSL techniques for text ckt#sifi¢Joachims, 1999,
2003). However past work in semi-supervised text classification Hiesl ngrimarily on one vs.
rest approaches to overcome the inherent multi-class nature of thismproMe compare our algo-
rithm (MP) with other state-of-the-art text categorization algorithms, nanga)ySVM (Joachims,
1999); (b) Transductive-SVM (TSVM) (Joachims, 1999); (c) SmddGraph Transduction (SGT)
(Joachims, 2003); and (d)sq solved using SQ-Loss-I. Apart from MP, SGT and SQ-Loss-I are
graph-based algorithms, while SVM is fully-supervised (i.e., it does noemak of any of the un-
labeled data). As shown by the results in Joachims (2003), SGT outperfither SSL algorithms
for this task. Thus we choose to compare against SGT. We implemented S¥WMSAM using
SVM Light(Joachims, 2002) and SGT usilg§>T Light(Joachims, 2004). In the case of SVM,
TSVM and SGT we trainedlY | classifiers (one for each class) in a one vs. rest manner precisely
following Joachims (2003). We used two real-world data sets: (a) Re21&88 and (b) WebKB.

In the following we discuss the application of the above algorithms to theseetata s
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7.3.1 REUTERS 21578

We used the “ModApte” split of the Reuters-21578 data set collectedtinerReuters newswire in
1987 (Lewis et al., 1987). The corpus has 9,603 training (not to baisedfwith?D) and 3,299 test
documents (which represent,). Of the 135 potential topic categories only the 10 most frequent
categories are used (Joachims, 1999). Categories outside the 10 egosinfrwere collapsed into
one class and assigned a label “other”. For each documerthe data set, we extract features
Xi in the following manner: stop-words are removed followed by the removaheé and infor-
mation about inflection (i.e., stemming) (Porter, 1980). We then compute TH&tkres for each
document (Salton and Buckley, 1987). We constructed symmetrized krbphg with weights
generated using cosine similarity between TFIDF features generateglamer above.

For this task Y= { earn acg moneygrain, crude trade interest ship wheat corn, average.
For SQ-Loss-I and MP, we use the output spate-Y U { other }. For documents ir) that are
labeled with multiple categories, we initializeto have equal non-zero probability for each such
category. For example, if documeinis annotated as belonging to clasgeacq grain, wheat,
thenr;(acg) = ri(grain) = ri(whea) = 1/3. Note that there might be other (non-uniform) ways of
initializing r; (e.g., using word counts).

We created 21 transduction sets by randomly sampliofgcuments from the standard Reuters
training set with the constraint that each of 11 categories (top 10 categuiikthe classther) are
represented at least once in each set. These samples congtituddl algorithms used the same
transduction sets. In the case of SGT, SQ-Loss-I and MP, the firstination set was used to tune
the hyper-parameters which we then held fixed for all the remaining 2@iatisn sets. For all the
graph-based approaches, we ran a searchkogef2, 10, 50, 100, 250, 500, 1000, 2000} (note
k = mrepresents a fully connected graph, i.e., a clique). In addition, in theot&ée, we seth = 2
for all experiments, and we ran a search qver{1e-8, 1e—4, 0.01, 0.1, 1, 10, 3j0&ndv € {1e-8,
le—6, 1le—4, 0.01, O}1In the case of SGT, the search was aver{3000, 3200, 3400, 3800, 5000,
10000G¢ (Joachims, 2003).

We report precision-recall break even point (PRBEP) results on ,2@893est documents in
Table 7. PRBEP has been a popular measure in information retrievale(geeRaghavan et al.,
1989). It is defined as that value for which precision and recall anale®esults for each category
in Table 7 were obtained by averaging the PRBEP over the 20 transduet®n Bhe final row
“average” was obtained by macro-averaging (average of avgrages optimal value of the hyper-
parameters in case of SQ-Loss-I was 100; in case of MFx =100Q pu=1e-4 v =1e—4; andin
the case of SGTk = 100, ¢ = 3400. The results show that MP outperforms the state-of-the-art on
6 out of 10 categories and is competitive in 3 of the remaining 4 categorietheFit significantly
outperforms all other approaches in case of the macro-averages. $itihificantly better at the
0.001 level over its nearest competitor (SGT) according to a differengeportions significance
test.

Figure 6 shows the variation of “average” PRBEP (last row in Table @)nagthe number of
labeled documents$); For each value df, we tuned the hyper-parameters over the first transduction
set and used these values for all the other 20 sets. Figure 6 also shrowbags (& standard
deviation) for all the experiments. As expected, the performance of aliffpeoaches improves
with increasing number of labeled documents. Once again in this case, iBrfoums the other
approaches for all values bf
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Category| SVM | TSVM | SGT | SQ-Loss-I| MP
earn 91.3| 954 | 904 96.3 97.9
acq 67.8 | 76.6 | 91.9 90.8 97.2
money | 41.3 | 60.0 | 65.6 57.1 73.9
grain 56.2 | 68.5 | 431 33.6 41.3
crude | 409 | 83.6 | 65.9 74.8 55.5
trade | 29.5| 34.0 | 36.0 56.0 47.0

interest | 35.6 | 50.8 | 50.7 47.9 78.0
ship 325 | 46.3 | 49.0 26.4 39.6
wheat | 479 | 444 | 59.1 58.2 64.3
corn 41.3 | 33.7 | 51.2 55.9 68.3

| average| 48.9 | 59.3 | 60.3] 59.7 |66.3]

Table 7: P/R Break Even Points (PRBEP) for the top 10 categories in thieRalata set with
| =20 andu = 3299. All results are averages over 20 randomly generated trangductio
sets. The last row is the macro-average over all the categories.
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Figure 6: Average PRBEP over all classes vs. number of labeled dotsif)efor Reuters data set

7.3.2 WEBKB COLLECTION

World Wide Knowledge Base (WebKB) is a collection of 8282 web pagesradatgrom four aca-
demic domains. The web pages in the WebKB set are labeled using two wiifferlychotomies.
The first is according to topic and the second is according to web domaourlexperiments we
only considered the first polychotomy, which consists of 7 categotimsse departmentfaculty,
project staff, student andother. Following Nigam et al. (1998) we only use documents from cat-
egoriescourse departmentfaculty, projectwhich gives 4199 documents for the four categories.
Each of the documents is in HTML format containing text as well as otherrrdton such as
HTML tags, links, etc. We used both textual and non-textual information nstcoct the feature
vectors. In this case we did not use either stop-word removal or stemmihisdsas been found
to hurt performance on this task (Nigam et al., 1998). As in the case of ¢hé&F data set we
extracted TFIDF features for each document and constructed thie gsap cosine similarity.
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Figure 7: Average PRBEP over all classes vs. number of labeled dotsifjgor WebKB collec-
tion.

Class | SVM | TSVM | SGT | SQ-Loss-I| MP
course| 46.5 | 439 | 29.9 45.0 67.6
faculty | 145 | 31.2 | 429 40.3 42.5
project | 158 | 17.2 | 17.5 27.8 42.3
student| 15.0 | 245 | 56.6 51.8 55.0

| average| 23.0 | 29.2 | 36.8] 412 [519]

Table 8: P/R Break Even Points (PRBEP) for the WebKB data setlwitd8 andu = 3148. All
results are averages over 20 randomly generated transduction setdasTiow is the
macro-average over all the classes

As in Bekkerman et al. (2003), we created four roughly-equal rangiartitions of the data set.
In order to obtair?, we first randomly choose a split and then samplegdcuments from that split.
The other three splits constitutg,. We believe this is more realistic than sampling the labeled
web-pages from a single university and testing web-pages from the wthesrsities (Joachims,
1999). This method of creating transduction sets allows us to better evaleatgetieralization
performance of the various algorithms. Once again we create 21 trdiosdsets and the first set
was used to tune the hyper-parameters. Further, we ran a searctheveaame grid as used in
the case of Reuters. We report precision-recall break even pdRBEP) results on the 3,148 test
documents in Table 8. For this task, we found that the optimal value of the-pgpemeter were:
in the case of SQ-Loss-k = 1000; in case of AMk = 1000,u = le-2,v = le—4; and in case
of SGT,k = 100,c = 3200. Once again, MP significantly outperforms the state-of-the-al{se
are significant at the 0.0001 level). Figure 7 shows the variation of PRB&mumber of labeled
documentsl and was generated in a similar fashion as in the case of the Reuters data set.
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7.4 TIMIT Phone Recognition

The TIMIT corpus of read speech was designed to provide speeatataacoustic-phonetic stud-
ies and for the development and evaluation of automatic speech recogyisi@ms (Zue et al.,
1990). TIMIT contains broadband recordings of 630 speakerigbt enajor dialects of American
English, each reading ten phonetically rich sentences. The corpus iadlotealigned phonetic
transcriptions and has standard training (3896 utterances) and tésit{@eances) sets. For hyper-
parameter tuning, as TIMIT does not define a development set, we a¢reatewith 50 TIMIT
utterances (independent of the training and test sets). In the pastT Hd48 been used almost
exclusively to evaluate the performance of supervised learning algor{tHaiberstadt and Glass,
1997; Somervuo, 2003). Here, we use it to evaluate SSL algorithms hy fsaitions of the stan-
dard TIMIT training set obtained by random sampling. This simulates thewhsea only small
amounts of data are labeled. We compare the performance of MP agatradt tha

(a) ¢ regularized 2-layer multi-layered perceptron (MLP) (Bishop, 199&%], a
(b) Psqsolved using SQ-Loss-I.

Recall that, while MLPs are fully-supervised, SQ-Loss-I and MP ath goaph-based SSL algo-
rithms. We choosé, regularized MLPs as they have been shown to beat SVMs for the phone
classification task (Li and Bilmes, 2006).

To obtain the acoustic observationg,the signal was first pre-emphasized=£ 0.97) and then
windowed using a Hamming window of size 25ms at 100Hz. We then extractatlt8equency
cepstral coefficients (MFCCs) (Lee and Hon, 1989) from these wieddeatures. Deltas were
appended to the above resulting in 26 dimensional features. As phosdictd®n performance
is improved by context information, we appended each frame with 3 fraroestfie immediate
left and right contexts and used these 182 dimensional feature vestampus to the classifier.
These features were used to construct a symmetrized 10-NN grapltheventire training and
development sets. This graph had 1,382,342 vertices. The weightvandyi

wij = sim(x;, Xj) = exp{—(xi — x;) "= (xi —x;)}

whereZ is the covariance matrix computed over the entire TIMIT training set. We follav th
standard practice of mapping the original set of 61 phones in TIMIT dow8 phones for modeling
(IY| = 48) and then a further mapping to 39 phones for scoring (Lee and 13980)1

For each approach the hyper-parameters were tuned on the devetgahley running an ex-
tensive search. In the case of the MLP, the hyper-parameters incledaithber of hidden units
and the regularization coefficient. For MP and SQ-Loss-I, the hypearpeters were tuned over
the following setqu € {1e-8, 1e—4, 0.01, O}landv € {1e-8, 1le-6, 1le—4, 0.01, §.1We found
that settingn = 1 in the case of MP ensured thatgq at convergence. As both MP and SQ-Loss-I
are transductive, in order to measure performance on an indepdaadesét, we induce the labels
using the Nadaraya-Watson estimator, that is, given an input safphat we wish to classify, the
output is given by

. R Y jeacx) SIM(X, Xj) Pj (Y)
y = argmaxp(y) whereply) = — ,
yey ) W) Zjeﬂ\[(i)gm(xaxj)
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Figure 8: Phone Accuracy (PA) on the TIMIT development set (left) &MIT NIST core eval-
uation/test set (right). The x-axis shows the percentage of standisid Tiaining data

that was treated as being labeled.

A(X) is the set of nearest neighbors %fin the training data (i.e., all the samples over which
the graph was constructed) apflis the converged value gdj. In our experiments we have that
[AL(%)| = 50.

The left plot in Figure 8 shows the phone classification results on the ThdiElopment set
while the right plot shows the results on the NIST Core test set. The y-bBriwssphone ac-
curacy (PA) which represents the percentage of frames correctlyifdasand the x-axis shows
the fraction f of the training set that was treated as being labeled. We show resultfs dor
{0.0050.05,0.1,0.25,0.3}. Note that in each case we use the same graph, that is, only the set
of labeled vertice¥, changes depending dn The following observations may be made from these

results:

1. MP outperforms the SQ-Loss-I objective for all cases .of his lends further weight to the
claim that KLD based loss is more suitable for classification problems.

2. When little labeled training data is available, both SQ-Loss-I and MP sigmilfjoautperform
the MLP. For example when 0.5% of the training set is labeled, the PA in theotd&e was
52.3% while in the MLP gave a PA of 19.6%. This is not surprising as the MleR dot make
use of the unlabeled data. It remains to be tested if semi-supervised MLIAgréutalkin

et al., 2009) would reduce or reverse this difference.

3. Even when 10% of the original TIMIT training set is used, MP givesafabout 60% and
outperforms both the MLP and SQ-Loss-l.

4. ltis interesting to note that an MLP trained using the entire training set (it@aditt00% of
the labeled samples) resulted in a PA of 63.1%. But using about 30% of taisMiB gives a

PA of about 62.4%.
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Bigram | Trigram
SQ-Loss-I| 75.6% | 76.9%
MP 81.0% | 81.9%

Table 9: Dialog-Act Tagging Accuracy results on the Dihana Corpu® rébults are for the case
of classifying user turns. The baseline DA accuracy was 76.4% {(MartHinarejos et al.,

2008)

5. We also found that for larger valuesfofe.g., atf = 1), the performances of MLP and MP did
not differ significantly. But those are more representative of the sigset training scenarios
which is not the focus here.

6. A comparison of the curves for MP with and without entropy regulariratiastrates the
importance of the graph-regularizer (second terngdn and Gup).

7.5 Dialog-Act Tagging

Discourse patterns in natural conversations and meetings are well kndigators of interesting
and useful information about human conversational behavior. Dialtsg(B&\) which reflect the
functions that utterances serve in discourse are one type of sucmpai&tecting and understand-
ing dialog act patterns can provide benefit to systems such as automatih spemgnition, machine
translation and general natural language processing (NLP). In tties@ve present dialog-act tag-
ging results on two tasks: (a) Dihana, and (b) SWB.

7.5.1 DHANA DA TAGGING

Dihana is a Spanish dialog corpus. It is composed of 900 task-orienteduter-human spoken
dialogs collected via a train reservation system. Typical topics include timetédres, and services
offered on trains. The size of the vocabulary is 823 words. Dihanaa@sired from 225 different
speakers (153 male and 72 female). On average, each dialog consistagser turns and 10
system turns, with an average of 7.7 words per user turn. The cogsusitee tasks which include
classifying the DAs of the (a) user turns, (b) system turns, and (c) ®¢h and system turns.
Each of these tasks has training, test and development sets setumfdrcbeks validation. As the
system turns are more structured compared to the user turns, the tasksifiyalg user turns is
more challenging. For more information, see Niagtz-Hinarejos et al. (2008).

Here we compare the performance of MP against that of SQ-Loss-hdtblM-based DA
tagging system described in Maméz-Hinarejos et al. (2008). We extracted two sets of features
from the text: (a) bigram TFIDF and (b) trigram TFIDF (Salton and Bugkl®87). We constructed
symmetrized k-NN graphs using each of the above features making ussinésimilarity. The
graphs were defined over the training, test and development sets faskttbat involved classifying
user turns. The hyper-parameters were tuned kvef2,10,20,50,100}, p € {1e-8, 1e-4, 0.01,
0.1, 1, 10, 100 andv € {1e-8, 1e-6, 1le—4, 0.01, §.bn the development set. In the case of MP,
we found that setting = 2 gave p= q at convergence.

The DA tagging results averaged over the 5-folds for the Dihana ce@mgushown in Table 9.
Unlike previous experiments, in this case, we treat the entire training seiraslbbeled, whereas
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Bigram | Trigram
SQ-Loss-I| 79.1% | 81.3%
MP 83.2% | 85.6%

Table 10: Dialog-Act Tagging Accuracy results on the Switchboard DApG®. The baseline DA
accuracy was 84.2% (Ji and Bilmes, 2005)

the test set is unlabeled. This simulates the case when SSL algorithms arforusegervised
learning but in a transductive manner (i.e., the test set is assumed to b givee HMM-based
DA tagger which was trained on the same set gave an accuracy of 76t48n be seen from
Table 9 that MP outperforms both SQ-Loss-I and the HMM based taggeitlirthe bigram-TFIDF
and trigram-TFIDF cases. We conjecture that the performance improvehitP over HMM is

due to two reasons: (a) MP is a discriminative model while the HMM was trainadyenerative
fashion, (b) as MP is transductive, it is able to exploit the knowledge ajtaygh over the test set.

7.5.2 SNITCHBOARD DA TAGGING

The goal of the Switchboard discourse language modeling project wastiade the utterances
in the Switchboard-1 (SWB) training set with their corresponding dis@macss (Jurafsky and Ess-
Dykema, 1997). SWB is a collection of telephone conversations (see $&ctip Every utterance
in a each conversation was given one of the 42 different dialog ac{segsrable 2 in Jurafsky and
Ess-Dykema, 1997). For our work here we only use the 11 most fnégags. This covers more
than 86% of all the utterances in SWB. These utterances were split into gatt@nelopment and
test sets containing 180314, 5192 and 4832 utterances respectively.

As in the case of Dihana, we generated both bigram and trigram TFIDiéseand constructed
graphs in the manner described above. Here we compare the perforofaiéeand SQ-Loss-
| against the performance of a parametric dynamic Bayesian Network JEHN makes use of a
hidden back-off model (Ji and Bilmes, 2005). The DBN, however, nigdef only bigram features.
The hyper-parameters were tuned oker {2,10,20}, p € {1e-8, 1e—4, 0.01, 0.1, 1, 10, Z0and
v € {1le-8, 1le-6, 1le—4, 0.01, §.@n the development set. In the case of MP, we found that setting
o = 2 ensured that p- g at convergence.

The test set DA tagging accuracy is shown in Table 10. We see that wdasentrigram TFIDF
features, MP outperforms the bigram DBN. More importantly, it perfornttebéhan SQ-Loss-I in
all cases.

8. Parallelism and Scalability to Large Data Sets

In this section we discuss how MP can be scaled to very large data setsseWWeeuSwitchboard
| (SWB) data set which is a collection of about 2,400 two-sided telephoneecsations among
543 speakers (302 male, 241 female) from all areas of the United Staidfé@et al., 1992). A
computer-driven system handled the calls, giving the caller appropeeteded prompts, selecting
and dialing another person (the callee) to take part in a conversatiorduotng a topic for discus-
sion and recording the speech from the two subjects into separate thantiethe conversation
was finished. SWB is very popular in the speech recognition community arsgdsalmost ubig-
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uitously for the training of large vocabulary conversational speeabgrétion systems (Evermann
et al., 2005; Subramanya et al., 2007) and consists of about 300df@peech data.

In order to construct a graph using the SWB data, we exact featurethe following manner—
the wave files were first segmented and then windowed using a Hamming wofdsize 25ms at
100Hz. We then extracted 13 perceptual linear prediction (PLP) ciesfficfrom these windowed
features and appended both deltas and double-deltas resulting in a 3%idinaémeature vector.
As phone classification performance is improved by context, we usedaané frontext window (3
frames in the past and 3 in the future) yielding a 273 dimensindlhis procedure resulted in 120
million samples.

Due to the large sizen= 120M of the SWB data set, it is not currently feasible to generate the
graph using the conventional brute-force search whig(is?). Nearest neighbor search is a well
researched problem with many approximate solutions. A large number ¢ibsaldo this problem
are based on variations of the cladsittreedata structure (Friedman et al., 1977). Here we make
use of the Approximate Nearest Neighbor (ANN) library (bte//www.cs.umd.edu/ ~mount/
ANN/) (Arya and Mount, 1993; Arya et al., 1998). It constructs a modifiediea of the kd-tree
data structure which is then used to query the NNs. The query procpseaethat one specify an
error term., and guarantees that

d(x;, AL(xi)) <1ie
d(x;, A6 (1))
where A(x;) is a function that returns the actual NN xfwhile Ag(x;) returns the approximate
NN. Larger values of improve the speed of the nearest neighbor search at the cost chegdaor
more details about the algorithm, see Arya and Mount (1993); Arya e1298). In our case we
constructed a symmetrized 10-NN graph vath 2.0.

Next we describe how MP can be parallelized on a shared-memory symmettigrougessor
(SMP). The update equations in the case of MP are amenable to a parallehempddion and also to
further optimizations that lead to a near linear speedup. In the MP updatatpi(see Section 3),
we see that one set of measures is held fixed while the other set is updtiedtvany required
communication amongst set members, so there is no write contention. This immeylieliddya
T-threaded implementation where the graph is evanfyartitioned and each thread operates over
only a sizem/T = (I +u)/T subset of the graph nodes.

We used the graph constructed using the SWB data above and ran a timing 46 core
symmetric multiprocessor with 128GB of RAM, each core operating at 1.6GMe.varied the
numberT of threads from 1 (single-threaded) up to 16, in each case runningafidgtes of MP (i.e.,

3 each of p and g updates). Each experiment was repeated 10 times amehsured the minimum
CPU time over these 10 runs. CPU time does not include the time taken to loadrdatares
from disk. The speedup fdar threads is typically defined as the ratio of time taken for single thread
to time taken fofT threads. The solid (black) line in Figure 9(a) represents the ideal adseér
speedup), that is, when usifighreads results in a speeduplofThe pointed (green) line shows the
actual speedup of the above procedure, typically less than ideal duertgpincess communication
and poor shared L1 and/or L2 microprocessor cache interaction. Wked, the speedup (green)

is close to ideal, but for increasifdgthe algorithm increasingly falls away from the ideal case. Note
that in the figure (and henceforth) we refer to the green pointed lingpasc¢h temporal ordering’

as the nodes in the graph are ordered based on the sequence in whicbdinein the utterance.
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Our contention is that the sub-linear speedup is due to the poor cachizamgm of the al-
gorithm. At a given point in time, suppose threbd {1,...,T} is operating on nod&. The
collective set of neighbors that are being used by tAetieeads argU,_; A((it)} and this, along
with nodeSJthl{it} (and all memory for the associated measures), constitute the cumeking
set The working set should be made as small as possible to increase the dhailtfit in any
shared machine caches, but this becomes decreasingly lik@lyraseases since the working set
is monotonically increasing witfi. Our goal, therefore, is for the nodes that are being simultane-
ously operated on to have a large amount of neighbor overlap thus minimizngpttking set size.
Viewed as the optimization problem, we must find a partifdn Vs, . . ., V1) 0f V that minimizes
MaXjc(1,..m/T) | Uvey; AL(V)|. With such a partition, we may also order the subsets so that the neigh-
bors ofV; would have maximal overlap with the neighbors\vif;. We then schedule thE nodes
in'Vj to run simultaneously, and schedule Wesets successively.

Algorithm 1: Graph Node Ordering Algorithm Pseudocode, SMP Case

Input: A GraphG = (V,E)

Result A node ordering, by when they are marked.

Select an arbitrary node;

while There are unselected nodes remaindi
Select an unselectadc A?(v) that maximize$A (v) N AL(V)|. If the intersection is
empty, select an arbitrary unseleciéd,
Mark V' as selected.; Il Vv is next node in the order
VeV,

Of course, the time to produce such a partition cannot dominate the time to rulgdiichan
itself. Therefore, we propose a simple fast node ordering procédigerithm 1) that can be run
once before the parallelization begins. The algorithm orders the node#si successive nodes are
likely to have a high amount of neighbor overlap with each other and, bygitrdty, with nearby
nodes in the ordering. It does this by, given a nedehoosing another nodé (from amongst
v's neighbors’ neighbors, meaning the neighbors/sfneighbors) that has the highest neighbor
overlap. We need not search¥lhodes for this, since anything other thasneighbors’ neighbors
has no overlap with the neighbors wf Given such an ordering, th# thread operates on nodes
{t,t+m/T t+2m/T,...}. If the threads proceed synchronously (which we do not enforee) th
set of nodes being processed at any time instan{are jm/T,2+ jm/T,...,T + jm/T}. This
assignment is beneficial not only for maximizing the set of neighbors bé&imgtaneously used,
but also for successive chunksihodes since once a chunkDfnodes have been processed, it is
likely that many of the neighbors of the next chunklohodes will already have been pre-fetched
into the caches. With the graph represented as an adjacency list, antireatdhbor indices sorted,
our algorithm isO(mk®) in time and linear in memory since the intersection between two sorted
lists may be computed i@(k) time. This is typically even better tha®mlogm) sincek® < logm
for largem.

We ordered the SWB graph nodes, and ran timing tests as explained abloe#eCPU time
required for the node ordering step is included in each run along with the dméR. The results
are shown in Figure 9(a) (pointed red line) where the results are muddr ¢tosleal, and there are
no obvious diminishing returns like in the unordered case. Running timesvareig Figure 9(b).
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Figure 9: (a) speedup vs. number of threads for the SWB graph é&#®i$7). The process was

run on a 128GB, 16 core machine with each core at 1.6GHz. (b) Thel &Rlatimes

in seconds on dog scalevs. number of threads for with and without ordering cases.

“Random” corresponds to the case where we choose a random uedetecle rather

than the one with maximum overlap (see Algorithm 1).

Moreover, the ordered case showed better performance even ifagla threadT = 1. Note that
since we made use of speech data to generate the graph, it is alreadliyatai-ordered by
time. This is because human speech is a slowly changing signal, so the modesponding to
consecutive frames are similar, and can be expected to have similar naighberefore, we expect
our “baseline” speech graph to be better than an arbitrary order, anmibht be encountered in a
different application domain. In order to measure performance for arhitrarily ordered graphs,
we took the original graph and reordered uniformly at random (a unifoode shuffle). We ran
timing experiments on the resulting graph and the results are shown in FigarédRaadom”. As
can be seen, there is indeed a benefit from the speech order, ating riglahis random baseline,
our node ordering heuristic improves machine efficiency quite significantly.

We conclude this section by noting that (a) re-ordering may be considepgd-processing
(offline) step, (b) the SQ-Loss algorithm may also be implemented in a multi-#ieadnner and
this is supported by our implementation, (c) our re-ordering algorithm isrgeaed fast and can be
used for any graph-based algorithm where the iterative updates iegrargpde are a function of its
neighbors (i.e., the updates are harmonic w.r.t. the graph Zhu et al., 2603))awvhile the focus
here was on parallelization across different processors on a Si#|ar approach also applies for
distributed processing across a network with a shared disk (Bilmes andrSaitya, 2011).

8.1 Switchboard Phonetic Annotation

In this section we consider how MP can be used to annotate the SWB dataesetl tRat SWB

consists of 300 hours of speech with word-level transcriptions. litiaddless reliable phone level
annotations generated in an automatic manner by a speech recognizer wiitizara error rate are
also available (Deshmukh et al., 1998). T®witchboard Transcription Proje¢STP) (Greenberg,
1995) was undertaken to accurately annotate SWB at the phonetic aruesidgheels. One of the
goals was that such data could then be used to improve the performanmevefsational speech
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Figure 10: Phone Accuracy vs. Percentage of switchboard (SWBJ)ninig data. STP portion of
SWB was excluded. Phone Accuracy was measured on the STP datathBlotehen
all the Switchboard | data was added, the resulting graphilBadnillion vertices. The
dashed black line shows the performance of a MLP measured usirgi6o case
over the same training, development and test sets as MP and LP.

recognition systems. As the task was time-consuming, costly, and erme;poly 75 minutes of
speech segments selected from different SWB conversations westatethat the phone level and
about 150 minutes annotated at the syllable level. Having access to suithtaons for all of SWB
could be useful for large vocabulary speech recognition reseamtisgeech science research in
general. Thus, this an ideal real-world task for SSL.

For our experiments here we only make use of the phonetic labels ignorirsgltable anno-
tations. Our goal here is two-fold: (a) treat the phonetically annotatetbpasf STP as labeled
data and use it to annotate all of SWB in STP style, that is, at the phoneticyl@iding the S3TP
corpus and (b) show that our approach scales to very large data sets.

We randomly split the 75 minute phonetically annotated part of STP into thre@setsach for
training, development and testing containing 70%, 10% and 20% of the dtactevely (the size
of the development set is considerably smaller than the size of the trainin@Bistprocedure was
repeated 10 times (i.e., we generated 10 different training, developmeénestinsets by random
sampling). In each case, we trained a phone classifier using the traitingised the hyper-
parameters on the development set and evaluated the performance @t He. tin the following,
we refer to SWB that is not a part of STP 889VB-STPWe added the unlabeled SWB-STP data
in stages. The percentage of unlabeled data included, 0%, 2%, 5%, 10%, 25%, 40%, 60%, and
100% of SWB-STP. We ran both MP and SQ-Loss-I in each case. \8#&00%, there were about
120 million nodes in the graph. As far as we know, this is by far the larggsiifbut two orders of
magnitude) size graph ever reported for an SSL procedure.

We constructed graphs using the STP datasthaf (unlabeled) SWB-STP data following the
recipe described in the previous section. For all the experiments hersegleausymmetrized 10-
NN graph ance = 2.0. The labeled and unlabeled points in the graph changed based on training
development and test sets used. In each case, we ran both the MP-ailnd$&Qbjectives. For each
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set, we ran a search ovee {1e-8, 1e—4, 0.01, O}landv € {1e-8, 1e-6, 1le—4, 0.01, §.for both
the approaches. The best value of the hyper-parameters werendyass on the performance on
the development set and the same value was used to measure the acouhaciest set. The mean
phone accuracy over the different test sets (and the standard des)ati® shown in Figure 10 for
the different values of. We would like to point out that our results $=0% outperform the state-
of-the-art. As a reference, at=0%, an/, regularized MLP with a 9 frame context window gave
a mean phone accuracy of 37.2% and standard deviation of 0.83 (nothithktL P was trained
fully-supervised). Phone classification in the case of conversatipegict is a much harder task
compared to phone classification of read speech (Morgan, 200an kecseen that MP outperforms
SQ-Loss-l in all cases. More importantly, we see that the performantieeo8TP data improves
with the addition of increasing amounts of unlabeled data, and MP seems tbajétibenefit with
this additional unlabeled data, although even SQ-Loss-I has not ik#uh@oint where unlabeled
data starts becoming harmful (Nadler et al., 2010).

9. Discussion

In this section, we discuss possible extensions of the proposed approac

9.1 Generalizing Graph-based Learning via Bregman Divergence

Given a strictly convex real-valued functigna— R, the Bregman divergend,(1 ||2) between
two measuregii, Yo €A is given by Lafferty et al. (1997)

Bo(Wa||W2) £ Q(W1) — O(W2) — (VO(W2), W1 — Wa).

It can be shown that a number of popular distance measures, suclcladesn distance, KLD,
Itakura-Satio distance are special cases of Bregman divergenner{@aet al., 2005). Consider
the optimization problenfzr: miAn (Csr(p) where

peam

| m m
Cor(P) = 3 Bo(tillm) +13 %(_)Wichp(pﬂpj)"‘V_ZB(p(piHU)-
1= 1= je I 1=

WhenB(p||g) is convex in the paifp,q) (Banerjee et al., 2005)gr is also convex. Clearlygris

a valid graph-based learning objective and it can be seen that it ¢ieasm@bjectives based on both
squared loss@(= 3 p?(y)) and KLD based lossg(= Yy P(y)logp(y)). While in the case graph
Laplacian-based techniques, one can generate a large family of iegrddy iterating the Lapla-
cian or taking various transformations of its spectrum to create new wagsasuring smoothness
on the graph, here in the Bregman case, the same can be achieved bgiffisiagt¢'s.

The graph regularizer is central to any graph-based SSL algorithntharelare two factors that
effect this regularizer: (a) the graph weights and (b) the loss functed to measure the disparity
between the distributions. In the cases we have discussed thus far,dffierioson has been either
based on squared-error or KLD. Further, while there have beert®ih the past to learn the graph
(and thus the graph weights) (Zhu and Ghahramani, 2002a; Zhangean@Q06; Zhu et al., 2005;
Alexandrescu and Kirchhoff, 2007a), to the best of our knowlettgee has been no efforts directed
towards learning the loss function. So the natural question is whether s to learrp jointly
with p?
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One simple idea would be to spt= 5, (A p?(y) + (1—A)p(y) logp(y)) which leads to a combi-
nation of the popular squared loss and proposed KLD based loss wbgettienceforth we refer to
this asCgr(p,A)). We then need to leark jointly with p. However, directly minimizingigg w.r.t.
both p and\ will always leads to\* = 1 as KLD is lower bounded by squared loss (by Pinsker’s
inequality). Thus other criteria such as those based on minimizing the leavewrerror (Zhang
and Lee, 2006) or minimum description length may be required. There mighbalsther con-
vex parametrization of. This would amount to learning the loss function while the actual graph
weights are held fixed.

While we have defined Bregman divergence over simplices, they ardlacjuide general and
can be defined over other general sets of objects such as vectorsioem@ suda et al., 2005). This
can be used to solve general learning problems using alternating-minimizsitigreureformulation
similar to the one suggested in Section 4. We believe that this is another contribfitbar work
here as our proposed objective, and the use of alternating-minimizatidiciergfy optimize it are
in fact very general and can be used to solve other learning problesuddet al., 2005).

9.2 Incorporating Priors

As discussed in Section 1, there are two types of priors in SSL—labekpaitadt balance priors.
They are useful in the case of imbalanced data sets. We have seen thatl®4R sensitive to
imbalance compared to other graph-based SSL approaches (seeulke irethe cases of two-
moon, USPS, Reuters, TIMIT and SWB data sets). However, in casedreine imbalance, even
the performance of MP might suffer and so we show how to modify ourqeeg objective to

handle both the above priors in a principled manner. Label priors afalwgeen the underlying

data set is imbalanced. For example, in the case of phone classificationesdteof the nature

of human speech and language production, some classes of sounds tecdr at a higher rate
compared to others. Clearly ignoring such domain knowledge can hdiorpemnce particularly in

the case of SSL where labeled data is sparse. On the other hand, lalarcare useful to prevent
degenerate solutions. An extreme example of a degenerate solution walldibbeled samples
being classified as belonging to the same class when the underlying dates seuhiform prior.

This can occur due to a number of reasons such as, (a) improperagmagtnuction, (b) improperly
sampled labeled data, that is, the case where a majority of the labeled sanmpéeB@m one class
(similar to the scenario discussed in the case of the 2D two-moon data set).

Label Priors: This is more akin to the classical integration of priors within a Bayesian learn-
ing setting. There has been some work in the past directed towards intggpatins for para-
metric (non-graph-based) SSL (Mann and McCallum, 2007). In the chgeaph-based SSL,
class mass normalization (CMN) (Zhu and Ghahramani, 2002a; Bengio 20@F) and label bid-
ding (Zhu and Ghahramani, 2002a), are the two approaches that bameubed to-date. How-
ever, these are applicable only after the inference process hasrgetyveln other words, they
represent ways in which the posteriors may be influenced so that thegavprobability mass
over all the posteriors for a given class matches that given by the plimally, like in gen-
eral Bayesian learning, it is imperative that the priors are tightly integratdd the inference
process rather than influencing the results at a later point. Our propdgective can be ex-
tended to incorporate label priors. We first remind the readerdkafp) may be re-written as
GeL(p) = 311Dk (ril|pi) + 1 jWiiDkL (pil|pj) +V i Dk (pil|u) whereu is uniform measure.
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Now consider minimizing over gA™

|
Ga(P) = 3 Dru (rillpi) +15 wi D (pillpy) v 3 D (i IPo).
i= ] T

The above objective is convex and the last term encourageggtche close tgg without actually
insisting thatp;(y) = po(y) V i,y. Itis possible to reformulate the above objective as

|
Gup(p Q) = 'ZLDKL(rini) +HZV\/ijDKL(piHCIj) +VZDKL(pinO)-
i= 1] ]

which can be easily solved using AM. Further each of the update equdtamsa closed form
solution. This represents the case where the prior effects each véaeeryd(i.e., a more local
influence) .

Balance Priors:There has been some work in graph-based SSL for incorporatingciegiaors.
SGT (Joachims, 2003) which is an approximation to the NP-hard norm obtgon attempts to
incorporate priors by influencing the nature of the final cut. But thexetirer drawbacks associated
with SGT such as computational complexity. We can incorporate a balancetetmobjective by
first definingp(y) as the agglomerative measure over all preeand then minimizing

Ci(p) = CkL(p) + KDk (pol|P)

wherepo(y) is the prior probability that ¥=y. The above retains the nice convexity properties of
the original objective. There are many ways of definlguch as,

B) = 1 5 pY) or BY) O[] B0+

The first case above represents the arithmetic mean while the second oageéothetric mean.
Here the prior only indirectly influences the individyas, that is, viap. Unfortunately, this form
cannot be optimized in the closed form using alternating-minimization. HowthefiMOM ap-
proach proposed in Section 3.1 or IPMs or any other numerical corptaxiaation approach may
be used to solve the above problem.

9.3 Directed Graphs

In some applications, the graphs are directed in nature. Examples includetéheet (a vertex
might represent a web-page and directed links for hyper-links betwages), or a graph repre-
senting the routes taken by a delivery system. In such applications thesefig information that
is expressed by the direction of the connection between two vertices. Whit®wd convert any
given directed graph into an undirected one, SSL algorithms in this casklshaloit the informa-
tion in the directed links. Thus far we have been using symmetrized k-NNgréoit without the
symmetrization step, k-NN graphs are not necessarily symmetric.

As KLD is an asymmetric measure of dissimilarity between measures, our gapbgective
can very easily be extended to work for directed graphs. Note that, as caffe of an undirected
graph, a directed graph can also be represented as a Matitiat here the matrix is asymmetric.
There has been some work on graph-based SSL using directed .gfeghexample, Zhou et al.
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(2005), use a squared-loss based objective on directed graphmlidiee that this may not be ideal,
as squared error is symmetric and as a result it might be difficult to fully é@xpie information
encoded by the directed links. An asymmetric measure of dissimilarity wouldehbgtier chance
of correctly representing the problem of SSL on directed graphs.

It turns our thatGyp may be modified for directed graphs. We assume thatisfa NN of i
then there is a directed arrow franto j. There are in fact two scenarios that one needs to consider.
Given a nodé €V, let A/" (i) be the set of nodes that have directed edges that lead into vertex
Consider the following objective

CMP) p,q ZDKL ||p| +HZLJ€N W|JDKL leQJ ZlH pi).

In this case, for nodg the second term in the above objective encourggdse be close to the

g's of all its neighbors A’™ (i). In other words, the above form expresses the rule “each vertex
should resemble its neighbors but not necessarily vice-versa.” In a simélaner we can define

a complementary form—Ilen((°“(i) be the set of nodes which are on the other end of out-going
links from node € V. Consider minimizing

Cl\(/IP) (p,q) = ZIDKL il pi) ‘lel wij Dkc (pillgj) — ZH pi)-
JeNout)

This form encourages, “the neighbors of a vertex should resembleribbunecessarily vice-versa.”

Both C,\(A%l)(p, Q) andC,\(,,'?f)(p, g) can be efficiently optimized using our alternating-minimization
(the update equations are similar to MP). In a similar manner as the aboveyjeative can also
be easily extended to hyper-graphs.

9.4 Connections to Entropy Minimization (Grandvalet and Bengio, 200b

Entropy Minimization uses the entropy of the unlabeled data as a regulatigker eptimizing a
parametric loss function over the labeled data. The loss function hereeis lgyw

I+u

|
C(©) = *Zlogp(yi!xi;@)w_ ZlH(Yi\Xa;@)

whereH (Y;|X;; ©) is the Shannon entropy of the probability distributioty; |x;; ©). While both our
proposed approach and entropy minimization make use of the Shannopyeasr@ regularizer,
there are several important differences between the two approaches:

1. entropy minimization is not graph-based,
2. entropy minimization is parametric whereas our proposed approach-jganametric

3. the objective in case of entropy minimization is not convex, whereas icasg we have a
convex formulation with simple update equations and convergence gussante

4. most importantly, entropy minimization attempts to minimize entropy while the proposed
approach aims to maximize entropy. While this may seem a triviality, it has significan
sequences on the optimization problem.
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It is however possible to derive an interesting relationship between tipeged objective and
entropy minimization. Consider

| n
CKL(p):_ZlDKL illpi) +HZW|JDKL(p|HpJ) ;H(pi)

i,J=1

|
g_leKL(rin. uZW.JZp. y)logpj(y
1=

i,J=1

aswij,v,H(p;) > 0. Consider a degenerate graph in whigh=8(i = j Ai > ) then

| n
CKL(p)S_ZDKL(rini))—u; > pi(y)logpi(y

n

|
= i(y)logri(y) —ri(y) logpi H(pi
;;(r (y)logri(y) —ri(y) ogp(y)>+ui_z+1 (pi)
| n
—ZZri(yﬂogpi(yHu H(pi).

i=1y i=T+1

Settingwi; = 8(i = j Ai > |) amounts to not using a graph regularizer. If we assume hard labels
(i.e.,H(rj) = 0) and that eacly; is parameterized by, s&, then we can rewrite the above as

IN

n

|
GkL(p) < —_leog Pi(Yi8) + 1 Z H(pi;6).
1= i=+1

Now if all the 6; were tied to a singl® then we have that

GL(p) < — zilogp. y.,9)+u H(pi;0)

=l+1

which is equal to the entropy minimization objective. Thus entropy minimization mininaizes-
convex upper bound on a special case of our proposed loss fundda is perhaps one of the
reasons why graph-based approaches outperform entropy minimipatioranifold-like data sets
(see chapter 21 in Chapelle et al., 2007).

9.5 Rate of Convergence of MP

Recall that in Section 5 we showed that the rate of convergence of S@HLis geometric (linear).
Here we empirically compare the rate of convergence of MP and SQiL&8kile we have so
far been unable to derive theoretical bounds on the convergencef fdfé our empirical analysis
shows that MP convergences faster than SQ-Loss-I. The difficukmscated with analyzing the
rate of convergence of MP are mostly due to the non-linear nature of ttedeupquation fopi(”) (y).

We ran both MP and SQ-Loss-I to convergence on a number of datalsstdtam a variety of
domains (see Table 3). For both algorithms we measured

w_ V-

oo @
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Figure 11: Plots showing the rate of convergence of MP and SQ-Liosth case of the Text and
USPS corpora. The x-axis represents iteration index and the y-axisfraaevergence,
(" (see Equation 2).

and the plots of these quantities are shown in Figure 11 (similar trends wsseveld in the case of
other data sets). In the aboeijs the appropriate objective (i.&p in case of MP and’sqin the
case of SQ-Loss-I) and* is thecorrespondingoptimum value. While we have a standard test for
convergence in the case of MP (see Theorem 9), for the purposesngiarison against SQ-Loss-I
here, we use the following criteria: in either case we say that the algoritsnedraverged if the
rate of change of the parameters falls below 0.5%. Figure 11 shows thabhrges faster in
comparison to SQ-Loss-1. Based on these results, we make the follownjgctare:

Conjecture 13 MP has a geometric convergence rate, if not better.

Finally a note on how to set. Recalla is the hyperparameter that ensures thatgpin the final
solution in the case of MP. Recall that in theorem 8, we have shown thatelests a finite value
of a such that p= g*. In practice, we found that setting= 2 ensures the equality of p and g at
convergence. As expected, we also found that increasiegds to a slower rate of convergence in
practice.

10. Conclusions

In this paper we presented a objective based on KLD for graph-t&SkedWe have shown how the
objective can be efficiently solved using alternating-minimization. In additienskowed that the
sequence of updates has a closed form solution and that it convetthesctarrect optima. We also
derived a test for convergence of the iterative procedure that miute®quire the computation of
the objective. A version of the squared-error graph-based SSkttotgalefined over measures was
also presented. In this context we showed that squared-error leasreetic rate of convergence.
Our results show that MP is able to outperform other state-of-the-gohgrased SSL algo-
rithms on a number of tasks from diverse set of domains ranging froechge natural language
to image processing. We have also shown how our algorithm can be scaleny large data sets.
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Appendix A. Solving Pk using Method of Multipliers

The first step in the application of MOM to sol&, is the construction of the augmented La-
grangian function foCi . (p) which is given by

n n 2

e M) = o)+ 3 (1= 5 ) +o3 (1-3 po)

i= Y i= Y
whereA = {A1,...,Ay} are the Lagrange multipliers armd> O is the penalty parameter. Recall
that we requirey, pi(y) = 1, Vi and thatpi(y) > 0, ¥ i,y. Notice that the objectivéc, (p,A) only
penalizes deviations from the equality constraints. In order to ensurththattequality constraints

in P« are met we make use of tlggadient projection metho(Bertsekas, 1999). Thus the update
equation is given by

+
M) — | oDy -1 (fﬂcl(p, A) ) _
P (Y) [p. (v) ) ) e v ann )

Heren=1,..., is the iteration indexa("~Y is the learning rate, anj] * = max(x, 0). Determining
an appropriate learning rate is often one of the biggest challengesasdowith the application
of gradient descent based optimization approaches. We use the ArmijBartsekas, 1999) to
compute the learning rate, It can be shown that

0Le(PN) _ < [y YR
(Y —ujzl[we,(lﬂogpl(y) log pj(y))

_Wiepj<yq _ri(y) Se <)+

pi(y) pi(y)
v(logpi(y) +1) + A +2c(1— S pi (y))-
v

Under MOM, the update equation for the Lagrange multipliers is
A® Z A=Y - <Z oD y) — 1)
y

and the penalty parameter is updated using

{1 )

¢ otherwise

whereTi(”) = (1— Sy pi(n> (y))z. Intuitively, the above update rule for the penalty parameter increases

its value only if the constraint violation is not decreased by a fagtmrer the previous iteration.
The iterative procedure terminates when

Lcl(p(”_1>,/\(”_1)) —lcl(p(”),/\(”)) <z
Lcl(p(n—l)j/\(n—l))
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Appendix B. Proof of Convergence

In this section we show that AM odyp converges to the correct optimum. We first show that
the three-and-four points properties (to be defined shortly) hold3gr which then implies that
the five-points property holds fafyp. We note that our proof is inspired by Csiszar and Tusnady
(1984).

Definition 14 If P, Q are convex sets of finite measures, given a divergefipey pe P, g€ Q,
then the “three points property” (3-pp) is said to hold forq®? if ¥ ,q© € Q we have

3(p,pM) +d(p,q?) < d(p,q?) where p¥ € argmind(p,q®) and
peP

3(p,p) : P x P — R* is arbitrary andd(p, p) =
Lemma 15 Gup(p,q) satisfies the 3-pp.

Proof Let

8(p,pY) £ Z WD (pil[pY),  F(t) 2 Gur(p",d?)
i,j=1
where pt) = (1—t)p+tpM, 0<t <1and thusp,t) (1- t)p|+tp|< . As f(t) attains its minimum
att =1, f( )g f(t), V0<t§1andso

F(1)—f(t)
-]t <O 3)

We have that
(t)

Zlygrlog—ﬂiz zp. |og—+vzlye pi(”'ng‘T

where we ignore the argumeyin every measure for brevity (e.g;,is ri(y)). Using the above in
Equation 3 and taking the limit as— 1, we get

( n 1
, p
(e f 25 v i) B e
(1) (t)
(a) p (t) Pi
=M lim (p lo log —= >
IJ 1 Z( [ 1-t\" q qﬁ
(1) p,() (t) p.()
+v;ye lim T3 <p. log—— —p;" log—— )
® % (p”log > +v <p log )>
=1 2( I ZYGZ( at I =1
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where (a) follows as bothpI >Iogq and p, )Iog are convex irt, and thus the terms within

the summations are difference quotlents of convex functions which arenrasing. As a result
we can use the monotone convergence theorem (MCT) (see page&iemh6 in H.L.Royden,
1988) to exchange the limit with the summations. Findby follows from the definition of the
derivative. Note thata) can also be explained via the dominated convergence theorem (DCT) (see

page 84 proposition 6 in H.L.Royden, 1988)q1?>( y) > 0, VY, j then there existg < c such that

ptY Iog —p"

above WhICh |mpI|es that the DCT can be used to distribute the limits within the summattons. T

we have that
0>|.,lZV\/ a(p( log <t> +v (p”lg )
1] ; at 1 Zy; at | »
p( ) p(l) (1) p( )
=H ( log—— — pilog—— > +V (p log — pilog— >
|;E1 2; ql) | q E%;g; I |

Iog 4@ < y because the difference of two finite real numbers is always bounded

i,]=1
IO.
]

The last equation follows agyey(pi(l) —pi) = 0. As a result we have that

(1)

1)
P e P
o>pusS w < )Iog ! plog >+v <p Iog — pilog—— >
|;£1 Ij;g; q() | |§;;2; I

J

n 1)
~ 3 WD (o) +v 5 D (R - (uzw.,;p.log ”Zye p.logp')

i,=1 i=1
From the definition otup(p,q) we have that
n n
ny wi,-DKupf”Hq}O))+v_leKL<p§”||u> Cip(p ZDKL rillg®)
i,=1 i=
Using the above we get
0> Gue(p™,q ZDKL 119%) (u > Wi }yp. Iog 21 pilog pl >> (4)
i,=1 ye
Consider

(1)

p Pi P
lo ' lo log—; +10 !
;p. g zp. g Zp.( gq() 9

) =Dw(pile”) - D (Pt
]

Similarly

(1)

;p. Iog = 2p. Iog = zp.(log P+ log pl'o
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Using the above two equations in Equation 4 we have that

0> Cue(p™.1%)~ 3 Dre (1114~ 3 w4 (Dwe ()~ ) )

i,]=1

—V_i <DKL(IOiHU) — Do (pilIp| ))
(@)

> Gwp(p,d) — Gue(p,d) + 1 Z D (pil[p™)
i,)=1
= Gwp(P™, @) — Gur(p,a?) +8(p,p')

where(a) follows asv > 0 andDKL(pini(l)) > 0. [ ]
Thus we have show that 3-pp holds @yip.

Definition 16 If P, Q are convex sets of finite measures, given a divergefipay p< P, g€ Q,
then the “four points property” (4-pp) is said to hold forgQ if V p, pl) € P we have

d(p,q™) < &(p, p) +d(p,0q)

where ¢ € argmind(pV, q) and3(p, p¥) should match the definition &t .,.) used in 3-pp.
qeQ

Lemma 17 Cup(p,q) satisfies the 4-pp.

Proof Let

g(t) £ cur(p®,qY)
where ¢) = (1— t)q+tq( ), 0<t<1andthug = (1—t)g +tq” andq®? is as defined above.
Also recall tha(p, pV)) £ My g W DKL(pi||pi(1)). The proof for this lemma proceeds in a man-

ner similar to the proof of lemma 15. It should be clear tj&j achieves its minimum at= 1 and
as a result we have that

®)

and

(1)

ziy;r Iog G H Z W 2'0' Iog—+vzye PV 1og P
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Using the above in Equation 5 and passing it to the limit we get

e 1 ST
L"l(Zl (s r"og “‘ZW'J Z/l—t Yieg G 0 Pre <>)>
g J ql

= lim rlog rlog
z;[ o

|
9 p”
i rilo + W, ( )l ' )]
55 [l Xﬂﬂ;uzh” o).
. n " (1)
_ r A W 4
i;yez(l izlye qi(l)ql ui-,Jzzl ”yez( g u' le GZ( J)qJ

+ w lim ()Io p'—)— Do p,( )
uz .,2 4 gq() P gq()
j j

J 1

where(a) once again follows from using DCT. This is becaudg (p,q"), Gup(p,q) < « (else
4-pp trivially holds) and agwup(p,q) is the sum of all positive terms, it implies each term is finite

and thus bounded above. Algo) follows from the definition of the derivative. As a result we have
that

[ [ r n (1)
0> i+ —g-uy Wy p
i;y; | 'Zlye qi(l) i l'liqzzl N ez(pl lJ| jzl ez( J
(1)

R A P R ©

i,]=1 j

Now consider

Gup(p.0) — CMP(pa q®)
Pi pi
= ri Iog —rilog—= >—HJ Wj (p' log—=—pi |09>
Zly; < i q | Z—]_ ij yez( i qj ( q51>
= rlog +p plog w{; Dicc (pillp!™
zyez( | Z Z( { z [ i

i,]=1 i,]=1

Thus we have that

Gup(p,0) — Gue(p,d™) + 5(p p)

- Zly;r ilog—— g +ul levx/” 2( P Iog
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Using the variational inequality log(x) > (1— x) in the above we get

Gup(p,q) — Gur(p,qY) +8(p,p)

aip”
SRUCEORPRPLICE
S W ;y;q?l MZ%;ZLM

i,]=1

@
>0

where(a) follows from Equation 6. [ |

Which implies 4-pp holds fotyp.
Theorem 18 Cup(p,q) satisfies the 5-pp.

Proof Follows asGup(p,q) satisfies both 3-pp and 4-pp. |

Theorem 5 (Convergence of AM orCyp) If
p™ = argminGup(p, g™ Y), o = argminGup(p™,q) and d%(y) >0V ye Y, Vithen
peam qeam
(@) Cup(p,a) + Gup(P,P') > Gur(p,a™) + cwp(p",q) for all p,g €™, and
(b) lim Cp(p™,q"™) = infpqesm Cp (P, 0)-

Proof (a) follows as a result of Theorem 1&) is the direct result ofa) and theorem 3 in Csiszar

and Tusnady (1984). |

Appendix C. Equality of Solutions
Lemma 19 If p=q= p then we have thatup(p,p) = CkL(D)-

Proof Follows from the definitions ofk. and Gup. [ ]

Lemma 6 We have that

pggglm Gup(p, a;wj = 0) < FgQIADn CkL(p).-
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Proof Follows from the observation that

min Ge(p) = min _Gue(P,0;wj =0) > min_Cup(p,diw; =0Vi)

peam p,gea™,p=q

The last step follows since the unconstrained minimum can never be largethi@onstrained
minimum. |

Theorem 7 Given any AB,SeA™ (i.e., A= [ay,...,am], [b yooosBml, S=[s1,...,5m|) such
that a(y),bi(y),s(y) > 0, V i,y and A# B (i.e., not all a(y) bi(y)) then there exists a finite
such that

Cvp(A,B) > Gup(S S) = GkL(S).

Proof First

| n n
Cwp(A,B) = ‘ZLDKL(riHbi) -I-H_Z Wi; Dk (&|[bj) _V.ZLH(ai)
= N =

| n n
=_ZLDKL(riHbi)+u§l % WijDKL(aiHbj)—V_ZiH(a)
= S1ieN0) i=
+ u_i(Wii + o) Dk (ai|bi)

and so we want

ZlDKL if|b) -I-HZ > wijDke (ai|[bj) ZLH
169\6

+ U_Zl(Wii +a)Dke (ai|[bi) — Gur(S,S) > 0

which holds if
. Gup(S9 - 3 i—1 De (rillbi) — i ; wij Dk (ai][bj) + v 3iH(a)
B uyi De (ail[bi)
_ Gup(SS) — Gup(ABia=0) _ Gi(S — Gur(A B =0)
Ky i Dk (ail[bi) Wy Dk (ai|by)

Theorem 8 (Equality of Solutions of (k. and Gup) Let

p = argminCi.(p) and (pg,d5) = argminGup(p, d;a)

peam p,geam
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for an arbitrary o = & > O wherepg = (Pig, ", Pya) @ndg§ = (A1, »dng)- Then there exists
a finite @ such that at convergence of AM, we have that p; = q. Further, it is the case that if
P; # 05, then

CkL(P) — Gur(Pg, 05,0 =0)

a>
T UYL Dku(pigllgis)

and if p§ = qf thend > &.

Proof First if p; = g4, this means the minimum of the unconstrained versiof asulted in
equality, and since this also considers all solutions whete g, and since bothtk. and Gup
are strictly convex, we must hav@up(pg,05:;a) = Gke(p). Also, since for anyp # q we have
Cup(p,9;8) > Cup(p,q;8) wheneverd > &, then for alld > &, Gup(pl, a5 6) = Gk (P). Next if
P; # %, then from Theorem 7 we have that if

CkL(P) — Gup(Pg, d5:a = 0)
MY Dri(piglldrs)

0> q >

we are guaranteed tha} p- g3, thereby making the first case applicable. |

Appendix D. Test for Convergence

Theorem 9 (Test for Convergence)lf {(p,q™)}* , is generated by AM ofGup(p,q) and

A

Cup(p",a") = inf _Gur(p,q) then

S

Gup(P™,d™) — Gup(p",0") < S (3(i < 1) +di)Bi,

I=
Q)
Biélogsup%, dj:IZWij-

y g ()
Proof As Cup(p,q) satisfies the 5-pp we have that

Gup(p,0) + Gue(p, ™) > Gue(p,a™) + Gur(p™,q")  Vp,q€ P.

Rearranging the terms we have that

Aup(P™, ™) — Gup(p,q) < Gup(P,d™ V) — Gup(p,g™).

As the above holds for all,pg € P, it follows that
Gur(P™,d™) — Gur(p*,q") < Gur(P", 9" Y) — Gue(p*,q™).
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Now

| (n)(

(”)(
Gup(p*, ™YY — Gup(p*,q™) Z_r.lw
I

y) q y)
+ I ]
Dy Z_lw‘ 2 il Iy

)

I q ()
= ri I _
i;E [09 " y)

n)
aplogy

| a" (y)
=5 |
i; 0og S;Jp [qi(n_l) (y)

m (n)
= Zl(é(i < I)+di)logsu q, (y)
i= y q| (y)

(n
m q; " (¥)
+HY wij Ep [Iog(J 5 ]
i,J=1 qj (y)

)
m a” (y)
+u'S wi sup|log—2 ]
.?l‘y[ a" ()

%Rw]
a" )

+u2wﬂwwd

where(a) follows asE(f(x)) < supf(x) and recald; = 3;w;.

Appendix E. Update Equations forp™ and g™

The Lagrangian (ignoring the non-negativity constraints) for sol\éierlg @is(p, ") is given by

:i_ilDKL (rillop) +u Z Wi D ( leqJ ZLH Pi +ZA (Zp. )

i,]=1

whereA = {A1,...,Aq}. As KKT conditions apply (since we have a convex optimization problem),
we have that ) L(p,A) = 0 and pc A" at the optimal solution. Solving the above we have

logpi(y) = —

Recalloj =v+Uy; Wi'j , Bi(nfl) (Y) = —V+UT; W;j (Iogq%”fl} (y)—1). Using the above in Equation 7

leads to the dual problem i which admits a closed form solution given by

gy )

) Bl
A — _ My — L ooy e
i =ajlog Zexp ai = p (y)= Zexp i
y

(n—1)

Clearlyp” (y) > 0, V1i,y.
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The update for § may be obtained by constructing the Lagrangian for the optimization prob-
lem q@iﬂCMp(p(n)yq) which is given by

| n n
£(6.N) = 3 Dr(rl0) +1 5wk (B ) v 5 H(H")

i,|]=1
+3N(FTa0)-1)+ T oaw
] y Ly

whereA = {Ay,...,An,011,...,0qy| }- In this case KKT conditions require that, y £(d,\) =0,
Syai(y) —1Vy, oyai(y) = 0Vi,ysolving which yields

()30 < 1)+ wip™ (y)
- 8(i <) +uyjw; '

Appendix F. Convergence Rate of SQ-Loss

Lemma 21 (Linear Rate of Convergence, see page 64 in Bertsekd999) If {x,} is a convergent
sequence such that x> 0 and », > 0V n, then ¥ is said to converge linearly if

limsup Xn
n—o Xn-1

<n

wheren € (0,1).
Theorem 11 (Geometric Rate of Convergence for SQ-Losdf

(@ v>0,and

(b) W has at least one non-zero off-diagonal element in every row\{ias irreducible)
then the sequence of updates

)+ vu(y) +pywi p" Y (y)
F<1)+V+ 1Y wj

(n) . ri(y)é(i <l

has a linear (geometric) rate of convergence for all i and y.

Proof
The updates can re-written in matrix form as

dm=%8+wm+uD]l(ﬂ+\)Lmvr+demD>

Y|
6 0" (0mr )
S N :
<0 0 Otm-1)xv|
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[Dli = ¥ jWij, Imx|y| is @ matrix of all 1's of sizem x |Y | andOy_i)«v| is similarly defined to be
matrix of all 0’s . It can be shown that'h — p* and so we have that
v

p* = [S+Vlpm+uD]* (r’+ V]

Ty +qu*>.
As aresult
p" —p* = [S+VIm+uD] " (P (p" Y —p"))

which implies that

1P —p* [|=[| [S+VIm-+1D]~* (W (p" Y —p7)) |
where|| A || is the 2-norm (Euclidean norm) of the matAx Thus

1™ = | =I| [S+Vim+HD] (W (p™ —p")) |

< U [S+VIm+uD] W || [ p" Y —p |

and so

p" —p' -
o < Wl (S vl D) W

Letz £ ﬁ8+ﬁlm+D and so

| p"=Y —p* || ~

It should be clear thd is a diagonal matrix.

The Perron-Frobenius theorem states that given any irreducible madtigh that; > 0 and
gjj are real then

min 2 aij < Amax(A) < miax; aj

whereAmax(A) represents the maximum eigenvalue/of If we apply the above theorem to the
matrix D~1W, then we have thatma(D~*W) = 1. If we apply the same t@—1W, then we have
that

Wij

minz ij
D4 23(i < 1)+ ¥+ 3 wik

(i §I)+ﬁ+zkwik’

< AmadZ'W) < maxy s
1 =
I

But we have that

z >k Wik =1 0

and so ifv > 0 then we have that
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As aresult
Wij

min : < Amax(Z7IW) < 1.
i zﬁé(usnﬁﬂkwik* madZ W)

In addition we also have that; wi; > 0 for alli and so
0 < Amax(Z7W) < 1.

As aresult

| Z7 MW = 3/ Amax(ZIW)TZW) =/ Aman(Z2W)* = Anan(Z W),
The above implies that

| p™ —p* ||

limsup | < || Z7W ||= Amax(Z71W).

nse || PTY —p* |

As 0< Amax(Z~1W) < 1, we have that) has a linear rate of convergence.
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