Journal of Machine Learning Research 12 (2011) 141-202 Stenh8/09; Revised 7/10; Published 1/11

Training SVMs Without Offset

Ingo Steinwart INGO.STEINWART@MATHEMATIK .UNI-STUTTGART.DE
Institut fur Stochastik und Anwendungen

Fakultat fur Mathematik und Physik

Universitat Stuttgart

Pfaffenwaldring 57

D-70569 Stuttgart, Germany

Don Hush DHUSH@LANL .GOV
ISR-2, Mail Stop B244

Los Alamos National Laboratory

Los Alamos, NM 87545, USA

Clint Scovel JCS@LANL .GOV
CCsS-3, Mail Stop B265

Los Alamos National Laboratory

Los Alamos, NM 87545, USA

Editor: Sathiya Keerthi

Abstract

We develop, analyze, and test a training algorithm for stpyector machine classifiers without
offset. Key features of this algorithm are a new, statidiiicaotivated stopping criterion, new warm
start options, and a set of inexpensive working set selesti@tegies that significantly reduce the
number of iterations. For these working set strategies, stabéish convergence rates that, not
surprisingly, coincide with the best known rates for SVMshwoffset. We further conduct various
experiments that investigate both the run time behaviorthadoerformed iterations of the new
training algorithm. It turns out, that the new algorithm desaignificantly less iterations and also
runs substantially faster than standard training algoritifior SVMs with offset.

Keywords: support vector machines, decomposition algorithms

1. Introduction

Historically, support vector machines (SVMs) were motivated by a georakilticstration of their
linear decision surface in the feature space. This illustration justified thefuse offsetb that
moves the decision surface from the origin. However, in recent yelimsibecome increasingly
evident that this geometrical interpretation has serious flaws, see dmpdg, Steinwart (2003) for
some illustrations, when considering kernels that have a large feature speh as the Gaussian
RBF kernels. In addition, the current approach, see, for examplewstd and Christmann (2008),
for investigating the generalization performance of SVMs for classificataes not suggest that
the offset offers any improvement for such kernels. On the other,hthedSVM optimization
problem with offset imposes more restrictions on solvers than the optimizatidrepn without
offset does. For example, the offset leads to an additional equalityraarisn the dual optimization
problem, which in turn makes it necessary to update at least two dual lesritheach iteration of
commonly used solvers such as sequential minimal optimization (SMO). In additioh solvers

(©2011 Ingo Steinwart, Don Hush and Clint Scovel.

STEINWART, HUSH AND SCOVEL

can only update certain pairs of dual variables, namely the pairs whatsgeugtill satisfies the
equality constraint. Moreover, the offset makes it relatively expensivalculate the duality gap,
see Cristianini and Shawe-Taylor (2000), which may serve as a stopyiiegon for these solvers,
and hence one usually considers upper bounds of this gap such agthero the maximal violating
pair algorithm, see, for example, Lin (2002b).

Despite these issues, research on algorithmic solutions has, with a feptiersesuch as Kec-
man et al. (2005), Vogt (2002) and Huang et al. (2006), so far mastlyded on SVM formulations
with offset. We refer to Lin (2001), Keerthi et al. (2001), Lin (2002ddlish and Scovel (2003), List
and Simon (2004), Fan et al. (2005), List and Simon (2005), Chen @Q46), Hush et al. (2006),
Glasmachers and Igel (2006), List et al. (2007), List and Simon (2&0d the references therein.
One motivation for this focus may be the fact that certain other SVM formukaBach as one-class
SVMs and SVMs for finding the smallest ball enclosing all data points do aawdfset, and hence
these formulations can be dealt with (almost) simultaneously. Moreover, ihatad early on that
for SVMs with offset, the resulting equality constraint in the dual optimizaticobj@m can be
avoided, if the offset is also penalized in the regularizer. The padkag®! by Hsu and Lin (2002)
and Hsu and Lin (2006) implements this idea for the hinge loss, while Marigasard Musicant
(2001) and Fung and Mangasarian (2001) use this idea in conjunctiotiveth margin-based loss
functions.

The goal of this work is to fill the described gap by developing algorithm$Siavs without
offset. As it turns out, these algorithms not only achieve a classificatiamawcthat is comparable
to the one for SVMs with offset, but also run significantly faster. This impnoent is made possi-
ble by a couple of new algorithmic ideas that are not straightforward to impleime8VMs with
offset. Inspired by recent results on the statistical performance of$S¢dt (Steinwart and Christ-
mann, 2008, Chapter 7.4), the first idea is a new stopping criterion, whicbughly speaking, a
clipped duality gap. The second idea is a new working set selection stréteggentioned above,
SMO type approaches for SVMs without offset can, in principle, updatangle dual variable at
each iteration. However, our experiments show that this approach dosad to sufficiently fast
training algorithms, and hence we will describe in detail, how an SMO typepaphrfor two dual
variables works. Of course, such an approach requires a goddngaet selection strategy. To
identify one, we describe and test various strategies that try to find afpdirabvariables whose
update approximately maximizes the gain in the dual objective function. Basiblhese strate-
gies first identifyonedual variable whose update maximizes the gain in the dual objective and then
search for a second variable that matches well to the first variable.\C I first search i®(n),
wheren is the number of samples, while the order for the second search will be dretw&) and
O(n) depending on the particular strategy. Interestingly, we will see that cexanbinationsof
0(1) strategies for finding the second variable need almost as few iterations#s% search over
all pairs. In particular, these combinations essentially need the same numbeaidiiz as some
naturalO(n) strategies for choosing the second dual variable do. Since each itevtios latter
strategies is obviously more expensive, th@) combinations enjoy significantly shorter run times
as will be seen in the experiments.

For solvers using the new stopping criterion and (combinations of) theimgpdet strategies
mentioned above, we further establish theoretical guarantees on themafritbeations performed.
Not surprisingly, it turns out that the analysis without bias is less complicatedthe one for the
offset case, while the resulting guarantees coincide with the best knoavargees for solvers with
offset. Recall that the latter can be obtained by combining the analysisca#lleal rate certifying

142

TRAINING SVMS WITHOUT OFFSET

algorithms, see List and Simon (2005), Hush et al. (2006) and List and'S@2807), with a recent
analysis of the duality gap, see List et al. (2007). Unlike the rate certifgiggrithms for SVMs
with offset, however, our algorithms not only possess these guaramigeslso run significantly
faster than typically implemented training algorithms, as our experimental sebhtarss

We also consider the possibility to initialize the solver with (transformed) prevsmlutions
when working on a grid of hyper-parameters. Here it first turns outttleamissing equality con-
straint gives us more freedom to transform these solutions. We desodhtiest several such trans-
formations ranging from relatively simple to quite complex procedures. laxperiments, we then
see that SVMs without offset profit more from simple warm start initializatitras SVMs with
offset do. In addition, the more complex warm start strategies, whichotdrendirectly imple-
mented for SVMs with offset, lead to further improvements. In particulard&ta sets containing
a few thousand samples, SVMs without offset profit about twice as ntooh & good warm start
strategy than SVMs with offset do. As a result, our SVMs without offget approximately 7
times faster than SVMs with offset on these data sets, if the hyper-pararaetedetermined by a
cross-validation approach.

This work is organized as follows: Section 2 introduces an SMO type algorith SVMs
without offset that performs one dual variable update per iteration. Wifadr describe the new
stopping criterion based on a clipped duality gap as well as several viarnstsategies. Section 3
then generalizes this algorithm to handle two variables at each iterationrticuper, we describe
how to solve the corresponding two dimensional optimization problem exaatisthéfrmore, we
present several working set selection strategies. Section 4 contaittseovetical analysis, while
the experiments can be found in Section 5. Finally, concluding remarksecrubd in Section 6
and an appendix contains detailed data from our experiments.

2. The Basic Algorithm: Optimizing One Coordinate

Throughout this paper, we wrifg? := max{a,min{b,t}}, t € R, b > a, for the clipping operation
that clips a real numbdrwhenever it is outside the intervéd, b]. To introduce SVMs without
offset term, let us consider a training 3et ((X1,y1),---, (%, ¥n)) € (X x {—1,1})" and a function
f : X = R. Then the empirical hinge risk dfis defined by

Rr(f)i= 1 5 WLy 1),

whereL denotes the hinge lodgy,t) := max{0,1—yt}, andw; > 0 is a weight associated to the
sample(x;,y;). For example, in ordinary binary classification we haye=1 for alli = 1,...,n,
whereas in weighted binary classification we have two real numigis> 0 andwneg > 0 such
thatw; = Wpos if yi = 1 andw; = wpeg if yi = —1. In the following, we will exclusively consider
the case of weighted binary classification, which, of course, includesabe of ordinary binary
classification. Now the SVM without offset solves the problem

fr.y € argmink || [} + &1 (f), (1)
whereH is the reproducing kernel Hilbert space (RKHS) of a ketaelhe statistical analysis of

SVMs shows, see (Steinwart and Christmann, 2008, Corollary 5.34)p tieecessary condition for
learning in the sense of universal consistency is the strict positiveitdefss of the kerned. In

143

STEINWART, HUSH AND SCOVEL

the following, we adopt this point of view, partially also because for Ksrtiet fail to be strictly
positive definite the offset may actually improve the learning performarath, theoretically and
practically. In other words, we assume throughout this paper thabthm matrix(k(xi,xj))i”J:1
is strictly positive definite whenever the data poiris...,x, are mutually distinct. Considering
the casen = 1, it is then easy to conclude thiatx,x) > 0 for all x € X, and hence we may and
will additionally assume thak is normalized that is, k(x,x) = 1 for all x € X. Although this
assumption is not really necessary, it makes the description of the algoighificaintly simpler.
In addition, it is satisfied by many popular kernels ¥r= RY such as the Gaussian RBF kernel
k(x,x') := exp(—0?||x—X||2), and the Poisson kernk{x,x') := exp(—c||x—x||2), where in both
casew > 0 is called the width parameter. Furthermore, note that for strictly positivaiteénd
normalized kernels we hav&(x,x')| = 1 if and only if x = X. For the Gaussian and Poisson
kernel, this characterization is, of course, trivial, and in the genesa, gaquickly follows when
considering the case= 2.

To derive an algorithm that produces an approximate solution of (1) sterinltiply the objec-
tive function in (1) by% and introduce slack variables. This leads to the following optimization
problem:

1 n
argmin Po(f,8):=Z||fl3+ S G &
g(f,E) c(f,8) =5l Tl i; i &i

2
st. & >0, i=1...,n, @

&>1-yif(x), i=1,...,n,

whereC; .= Vg'%s if yy =1andG .= "ZV;‘;g otherwise. Analogously to the offset case, see, for example,
(Cristianini and Shawe-Taylor, 2000, p. 107f), one can then showthibalual of this problem is

. 1
gr;ﬂa%%(W(a) := (e,a) — §<G,KO(> (3)

sit. 0<q;i <G, i=1,...,n,

wheree:= (1,...,1) € R" andK is then x n matrix with entrie; j := yiy;Kk(X,xj),i,j =1,...,n.
In addition, the Karush-Kuhn-Tucker (KKT) conditions are

(y.f(X|)+E|—1)G| = 07 i:17"'7n7
C—a)& = 0, i=1...,n

and a solutior* € [0,C] := [0,C4] x - -- x [0,Cy] of (3) yields a solutior{ f*,&*) of (2) by setting
n
= yiark(x,)
20

and¢’ :=max{0,1—yf*(x)}, i =1,...,n. Obviously, (3) is identical to the standard dual SVM
problem besides the missing equality constr&ntt) = 0. Now recall that this equality constraint
makes it necessary to update at least two coordinate values at a time te fadiipility, while in

(3) we can updatsinglecoordinates. Some ideas for such a single direction update will be recalled
in the following subsections to provide the background for working setszeftwo considered in
Section 3.

1. If we have samples witkh = x; for somei # j, the Gram matrix of a strictly positive definite keriels, of course,
no longer strictly positive definite. The algorithmic consequences of thgerghtion will be discussed in detail in
Section 3. Here, we only note that our solver will need a strictly positivaédebut not a strictly positive Gram
matrix.

144

TRAINING SVMS WITHOUT OFFSET

2.1 Working Sets of Size One

To recall the one-dimensional update step, see also (Cristianini anceSkegahor, 2000, p. 131ff),
we define N
ow
W (a) = —(a)=1— aiKii.
f(a) aai() ;1 iKi,j
Moreover, for aro = (ay,...,0,) € R"and an index € {1,... ,_n} we writea\l := a — ajg, where
g denotes thé-th vector of the standard basis ¥, that is,a\! equalsa in all coordinates except
the i-th, where it equals zero. Now basic calculus together Wjth= 1 for normalized kernels
shows that

i > W(a" +6ie) = (o, &) +& — %(a“,Ka“} ~ (e, KaV) — %a?

attains itsglobal maximum overR at

af =1—(g,Ka') =1— ;aiKiJ = OW(a) +a;.
1A

Obviously, ifa; € [0,Ci], the functiona; — W(a\' + aje) also attains its maximum ové®,C;] at

a;. On the other hand, if, for example; > C;, then a simple concavity argument shows that the
function attains its maximum ovéd,Ci] atC;. By this and an analogous consideration in the case
a; < 0 we hence see that the functian— W(O(\i +0jg) attains its maximum ovep, G| at

aPW: = [OW (o) + a5 - 4

The next question is in which coordinatehould we perform the update. A simple and straightfor-
ward approach, see, for example, (Cristianini and Shawe-Tayl06,20 132), is to update for each
coordinate = 1,...,n iteratively. A more advanced idea, see Vogt (2002) and also (Huaalg, et
2006, Chapter 3), is to choose KKT violators for the update, that is, iadita, for a specified
€ > 0, satisfy

a;<CG and DW(a) > €,

or o, >0 and OW(a) < —¢. ()

Obviously, the extreme case of this approach is to look for the indices
igp € argmaXW(a):ai <G},

up
igown € argmin{ W (a) : a; > 0}

and to pick the index of these two candidates whose gradient has thedasgdute value. Another
idea, which is motivated by Glasmachers and Igel (2006), Hush et @6)26lush and Scovel
(2003) and List and Simon (2005), is to choose the coordiriatdose update achieves the largest
improvement for the objective dual valWé(a). In other words, it performs the update in the
direction

i e argi_rIla>r<]W(0(+06)—W(a), (6)
whered; := a"®"— a; denotes the difference between the new and the old valag. dfsing the
following trivial lemma, it is easy to see that Procedure 1 solves (6).

145

STEINWART, HUSH AND SCOVEL

Lemmal Forde Randi=1,...,n we have
W(a+0dg)—W(a)=0-(OW(a)—98/2).
Proof By the symmetry oK we find
(a,Ka) — (o +8g,K(a +8g)) = —28(a,Ke) — 8.

Combining this with(e,a + de)) — (e,a) = d yields the assertion. [|

.....

bestgain— —1
fori=1tondo
a; « [OW(a) +ailg
O o —q;
gain<« 6. (W (a) —9/2)
if gain > bestgairthen
bestgain— gain
i* <
end if
end for

2.2 Stopping Criteria

Several stopping criteria for the SVith offset have been proposed and a straightforward approach
is to adapt one of these. For example, one can stop if08¢h (o) < € andDW; (o) > —g, that

is, if the KKT conditions are satisfied up to some predefined). Another simple idea is to use the
duality gap as a stopping criterion, see, for example, (Cristianini and &fiaylor, 2000, p. 109 &
128). For SVMswithoutoffset this duality gap is of the form

gapa) := <cx,K0(>—<e,O(>+_iCi [OW(a)]g < €, (7)

wheree > 0 does not necessarily have the same value as above.

In this work, however, we consider a little more involved stopping criteriomh igv@ased on
recent results from the statistical analysis of SVMs in Steinwart et al.7(20amely, it was shown
in Steinwart et al. (2007) that afit € H satisfying

IR+ R ([F120) < minA [£13 + Rer(f) +e (8)

for yet another pre-definegl> 0 satisfies the same oracle inequality up ¢ced the true solution
fr. Moreover, a more careful analysis of Steinwart et al. (2007) shbaisthe factor 4 can be
essentially removed, so that for say= 0.001 the learning guarantees for the approximate solution
f* are at most 1% worse than those for the true solutibi),. To develop a stopping criterion from

146

TRAINING SVMS WITHOUT OFFSET

this observation, we denote the minimum of the objective fundgoim (2) by Pz. Moreover, for a
dual pointa € [0,C] we define, as usual, a corresponding primal function by
n

fi= Zlajyjk(xj,)

and its corresponding slack variables§py= max{0,1—vy;f(x)},i =1,...,n. Using 1-y; f(x) =
OW (o) and || f||3 = (a,Ka) as well aP: > W(a) = (g,a) — (a,Ka)/2 and

max{0,1-y[t]*1 } = 1-y[t]*y = [1- 13
forally=+1,t € R, we hence see that (8) is satisfied if

S(@) = (oK) — (o) + 3 GIW(@) < 5. ©

2\

Note that the statistical analysis of Steinwart et al. (2007) also suggesthéheaght hand side
of (7) can be replaced by;, wheree has the same value as in (9). Consequently, the difference
between these two stopping criteria is the fact that (9) consdigredslack variables, which may
be substantially smaller than the unclipped slack variables used in (7). Woreolike the duality
gap stopping criterion for SVMwith offset, see (Cristianini and Shawe-Taylor, 2000, p. 109f), both
(7) and (9) are directly computable since they do not require the offset.

To efficiently computeS(a) we first observe that the first two terms of the updeiaul+ de)
can be easily computed from the first two termsgaf). Indeed, if we write

T(G) = <G7Ka>_<e7a>a
n
E(a) = Y G[OW(a)]3,
2,
then we hav&S(a) =T (a) + E(a), and the calculations in the proof of Lemma 1 immediately show

T(a+dg)=T(a)—8(20W(a) —1-39).

From this it is easy to derive an(n) procedure that updatédV(a) and calculate§(a). Procedure
2 provides pseudocode for this task.

Procedure 2Update[)W(a) in directioni by 6 and calculat&(a)
T(a) « T(a) —3(20W () — 1)
E(a)«0
for j=1tondo
CWj (@) 4+ OWj () — 8K
E(a) E(a) +Gi - [OW(@)]§
end for
S(a) « T(a)+E(a)

Now the basic idea of thedb-svM described in Algorithm 1 is to repeatedly look for the best
directioni* and update in this direction until the stopping criterion (9) is satisfied. Howawoser
look at this algorithm shows that it contains one piece of pseudo-codedkatot been discussed
so far, namely the initialization of the solver. This initialization will be consideretthénfollowing
subsection.

147

STEINWART, HUSH AND SCOVEL

Algorithm 1 1D-SVM solver
initialize a, OW(a), T (a), andS(a) by one of the Procedures from Section 2.3
while S(a) > 4 do
I* < argmax-y. W(a +5e)—-W(a)
3+ [OW: () + i+]S — aj-
O [OWE (0) + ot]S
use Procedure 2 to upddi®V(a) in directioni* by & and calculat&(a)
end while

2.3 Initialization

We also have to decide how to initialibe Of course, there exist various approaches for this task,
and in the following, we describe a few methods we have considered in thks wo

10 & WO: Cold Start With ZerosObviously, the most simple initialization is tleeld starta <— 0.
Procedure 3 provides the pseudocode for this approach, which ioltbeihg we calllo or Wo.

Procedure 3lnitialize by a; <— 0 and computéW(a), S(a), andT (a).
T(a)«0
S(a)«+0
fori=1tondo
aj«0
OWi(a) « 1
S(a) + S(a)+C

end for

11 & W1: Cold Start With Kernel RuleAnother simple cold start is to initialize witdy < C; for
alli=1,...,n. Procedure 4 provides the pseudocode for this approach. In theviiogjowe call
this approachl or wi.

Procedure 4lnitialize by a; < C; and computé]W(a), S(a), andT (a).
T(a)«0
E(a)«0
fori=1tondo
aj < G
OW(a) «+—1
for j=1tondo
OW (a) < OW(a) —C;j - K
end for
T(a) < T(a) -G - OW(a)
E(a) « E(a) +G - [OW(a)]3
end for
S(a) «+ T(a)+E(a)

Obviously, Procedure 3 i9(n), whereas Procedure 4@ n?), and hence the latter seems to be
prohibitive. On the other hand, Procedure 4 basically initializes with theicidsrnel rule, see

148

TRAINING SVMS WITHOUT OFFSET

(Devroye et al., 1996, Chapter 10), and hence its initial training errorlmeasignificantly smaller
than that of Procedure 4. This in turn might lead to a smaller initial stoppingioritealueS(a)
and hence to less iterations of the solver. Of course, here is a lot offay@peculation, and hence
we need to investigate the efficiency of both approaches in the experintémtgever, it is worth
noting that unlike Procedure 3, Procedure 4 cannot be directly implemiemt8§¥Ms with offsets.
In addition, Procedure 4 requires the entire kernel matrix to be computddhemce it may actually
be prohibitive if this matrix does not fit into memory.

W2: Warm Start By Recycling Old SolutioBesides the cold starts mentioned above, there are
also a couple of simplevarm startspossible. To explain these, let us recall that often the hyper-
parameted is chosen by a search over a gfid= {A1,...,Am} of candidate values. Let us assume
that these values are ordered in the foxin> --- > A, and that we train the SVM in the order
A1,...,Am. Then the resulting-dimensional vector€ V..., C(™ defined by

Wpos :
o) {Z;Jn if yi=1

i Whe :
2}\}_2 ifyi=-1

have the propertgzi(” < Ci(j+1> forallj=1,....m—1andi =1,....n. ForCY we can then initialize

with one of the above cold starts. Now observe thatjfor2 the approximate solutiom* obtained
by training withC°'d := Cli- is feasible folC"®" := C()), that is,a* € [0,C"®"]. Consequently, for
j > 2 we can either initialize with a cold start, or with the warm stagt- a*. Obviously, in this
case we can also recydl®V(a) andT (a). In addition, the ratio

Clnew B)\jfl

CIOId - }\j

is independendf i and hence this warm start can be very easily implemented as Proceduss sh

Procedure 5Initialize by a; < o and computéW(a), S(a), andT (a).

S(a) T(0) + G - (S(a”) = T(a"))

W4: Warm Start By Partially Expanding And Partially Recycling Old Solutigkpart from
the simple warm start above there is another conceptionally simple warmastastdfanding box
constraints. Namely, ié* denotes an approximate solution@®® andC°? < C"®¥ this warm start
initializes bya; + o} if af < C°¥ and bya; < C"®"if af = C°. The idea behind this warm start
is thatboundedsupport vectors, that is, indices in

bSV:={j : o} =C%}

may have the tendency to become larger, when the box constraint is Idpsemi& unbounded
support vectors, that is, vectors in

e q. * Id
usv:={j:0<aj <Cy}

may not have this tendency.

The basic idea of an efficient implementation of this warm start method is to avicidating
the gradient from scratch by recycling parts of the gradient f@#. To be more precise, ob-
serve that, for fixed, the sumy ;c,5,07Ki j remains unchanged by the described warm start, while

149

STEINWART, HUSH AND SCOVEL

Procedure 6Initialize bounded SVs by; <— C"*" while keeping the rest unchanged and compute
OW(a), S(a), andT (a).
T(a)«0
E(a)«0
fori=1tondo
if aj = CP! then
aj < Cinew
end if
end for
if 2-#uSV< #bSVthen
fori=1ton do

DVVI() Cold DW() (1 %old)(l ZJEUSVGJKIJ)
T(0) T(a) — ;- OV (@)
E(a) « E(a) + C”eW [OW (a)]5
end for
else
fori=1tondo
[V (@) + OW(a > +(CO —CP) 3 jeps/Ki
T () « T(a) — ;- OW(a)
E(a) « E(a) + " [OW(@)]3
end for
end if

Sa) « T(a)+E(a)

Y jebsv@Ki j is simply multiplied byCleW/C0ld. Recall that the latter ratio is independent adnd
consequently we can update the gradients by either

Cnew
OWi (o)<—1—old<1—DW|<°‘*>— Z aTKi7j>— > ajKi
C . .
1 jeu jeu

foralli=1,...,n, or

OW (a) OW (o) + (C9—CM™®) ' § Kij, i=1,....n,

i€

where in the first formula we used
1- OW(a*) — ES\/GTKH = G]-FKi’j. (20)
j€ jebSV

Note that the first method implicitly recycles;c,s,0jKi ; by (10), while the second method im-
plicitly recyclesy jc s/0jKij. Obviously, depending on the number of bounded and unbounded
support vectors either the first or the second method is more efficienhearue should be chosen.
We decided to pick the first or second method depending on wheth@iS¥ < #bSVor not. This
decision was based on counts of the involved floating point operationtharfdct that in all our
experiments we stored the entire kernel matrix in the memory. However notbdtiamethods

150

TRAINING SVMS WITHOUT OFFSET

require to access some rows of the kernel matrix, and hence there is mbstlikore efficient
cut-off when only parts of the kernel matrix are stored in memory by cachBigce in general,
the costs of computing a row of the kernel matrix depends on data set sfjeatfires, such as its
dimensionality when using Gaussian kernels, there does not seem to esxistdearule of thumb in
this case, though. Consequently, we decided not to analyze this cafidlgaProcedure 6 displays
the corresponding pseudocode for this warm start, which weagalllt is not hard to see, that in
the worst case Procedure 6@%n?), while in the best case it is onl9(n). Since the average case
cannot be easily analyzed, we need to experimentally evaluate whethematiisstart is efficient
or not.

W6: Warm Start By Partially Shrinking And Partially Recycling Old Solutidmet us now as-
sume that we run through thegrid in reverse order. Then we ha@8!d > C"" and hence we

Procedure 7Initialize directions that violate the new box constrainechy— C"*" while keeping
the rest unchanged and compu/(a), S(a), andT (a).
fori=1tondo
if aj > C""then
aj + Clnew
end if
end for
T(a)«0
E(a)«0
if #nuSV< #bSVthen
for i=1tondo

) 1-¢ d'(1_DVVI(G)_ZjenuSVGTKi.j—ZjeanVaTKLj)
a) <) ZJGHUSVGTKL]_ZjeanVC?eWKivj

W (a
W (

(; T(a) —ai - OW(a)
r

Col
(W (a

E(a) « E(a) + " [OW(a)]3
end fo
else
for i=1ltondo
DWW (01) ¢ V(@) + 3 jebsd C — C*M)K |
OW (a) « OW(a)+Zjenb3/(0(T —C{®"Ki;
T(a) < T(a)—a;-OW(a)
E(a) + E(a)+C”eW [OW(a)]5
end for
end if

Sa) « T(a)+E(a)

cannot immediately recycle the old approximate solutién Nonetheless, there is a certain ana-
logue to Procedure 6 possible. Indeed, we can initializa;by o if o <C""and bya; < C"®V

if o > C"®". Again, the corresponding warm start needs some work to find an effioiplemen-
tation that recycles suitable parts of the gradient. In order to explain suechmementation we

151

STEINWART, HUSH AND SCOVEL

split the seuSVinto

nusv = {j:0<aj <C*},
nbSV := {j:C'™"<aj <CMd},

where we note that we use a slight abuse of the lettensdb in this notation. Now note that the
initialization above multiplies altr; € bSV by the factorC[®¥/C9%, while it keeps alla} € nusv
unchanged. Obviously, both update rules make it possible to recyclegiatte gradient. Un-
fortunately, however, foo € nbSV the situation is more complicated and no simple recycling is
possible. Thus, Procedure 7, which displays the correspondingl@sede, is a little more com-
plicated than Procedure 6. Nonetheless, all remarks concerning theitaiiopal requirements of
Procedure 6 also apply to Procedure 7, and the same holds true fotehieatudecides which part
of the gradient is recycled. In the following, we call this approach displéty&rocedure ANG.

W3 & W5: Warm Start By Scaling Old SolutioRinally, there is an easy warm start option that
works regardless of the direction we run through Akerid. Indeed, we can always initialize by
aj < o -CPeW/C99. The Procedure 8 shows the correspondil{g) pseudocode. Depending on
whetherC?'d < CleW or C9!d > CheWwe call this approaciva or W5, respectively.

Procedure 8lnitialize by a; < a; - C1*W/C9'd and computéW(a), S(ar), andT (a).
T(a)«0
E(a)«0
fori=1tondo
Qi %@ -
C?ew

OW(a) < 1— W-(l— W (a))
T(a) « T(a) —a; - WM ()
E(a) + E(a) +CP®"- [OW (a)]5
end for
Sa) «+ T(a)+E(a)

3. Working Sets of Size Two

So far, our algorithm performs an update in one coordinate per iteratiehud._now consider an
algorithm which performs an updatetimo coordinates per iteration. To this end, let us first present
the following, simple lemma that computes the gain of a 2-dimensional update.

Lemma 2 For &, c Randi j=1,...,nwe have
W(a +3ie +8jej) —W(a) =& - (OW(a) — 8i/2) + 8 - (OWj(a) — 8;/2) — &§jKi j .

Proof Applying Lemma 1 twice and using the formuldw;(a + &) = OW;(a) — &K ; we find
the assertion. [|

152

TRAINING SVMS WITHOUT OFFSET

3.1 Solving the Two-Dimensional Problem Exactly

In order to describe an algorithm that updates two variables at each itevegidirst have to in-
vestigate how the two-variable update looks like in detail. To this end, we fix twodnates
i,j €{1,...,n} withi # j and consider the function

(6(;,6(,—) HV\/.’,-(Gi,dj) Z:W(G\i’j +dig +ajej)a

wherea '\ ;= a —ajg — o €; is a fixed vector whoseth andj-th coordinates equal zero. A simple
calculation then shows

. R I S S .
Wi, a)) = (ea™)+a +a;— (" Ka')) —di(e, Ka')) — 6 (e, Ka')
1. X~ ~
—5 (6F +28,K +65) .,

where we use;; = K; j = 1. Consequently, the partial derivatives are given by

oW (G, @) Ly &G

a - .. ~ ~

WailGi8) e gty a ik
aor,- ’

In order to derive the maximum &% j on[0,Ci] x [0,C;] from these derivatives, we need to consider
three different cases.

The Case K; = 1. By setting the above derivatives to zero, we obtain the following system of
linear equations
S
af +aj = 1-

(e, Ka\My,
(e Ka't)

a+a

that have to be satisfied for all global maxilue, aj) € R2 of W j. Now recall that we assumed that
the kernek is strictly positive definite, and therefore we see tgt= 1 impliesx; = x;, and hence

yi =y;j. From this we concludi; , = K; , for all ¢ = 1,....n, and thus we obtain 1 (g,Ka\l1) =

1 (ej,Ka\l}). Consequently\ ; attains its global maximum at every point of the affine subspace

{(of,a}) 1af +of =1—(g,Ka'\)}, (11)

which is a translated version of the anti-diagonal subspéze—a) : o € R}.

Now recall thaty; = y; impliesC; = Cj, and hence we are actually interested in finding a pair
(8;,8;) that maximizedM ; on the squaré0,G?. If 1 — (g, Ka\l)) € [0,2G], it is easy to see that
the subspace (11) intersects the square, and Méncatains the desired maximum at every element
in this intersection. In particulafa;’, o), where

1- <aa Ka\i7j>
2

*

O(i =

is such a pair. Let us now assume that fg, Ka\"/) > 2C,. Then the subspace (11) lies “above”
the squarg0,Ci]2, and sinceéM j is concaveV j then attains its maximum ovéd,Ci]? at a point

153

STEINWART, HUSH AND SCOVEL

of the set of edge$Ci} x [0,G]U[0,Cj] x {G;}. Let us fix a pair(d;,a;) € {C} x [0,C;]. Then we
have

O (i, G ;)

0

and henc&\{ ; attains its maximum ove{GC; } x [0,C] at the cornefC;,C;). Interchanging the roles
of i and j we can thus conclude the ; attains its maximum ove0,GiJ? at (C;,Ci). Since we can
analogously show that, for-1(g,Ka\")) < 0, the function\; ; attains its maximum ove0,Ci)? at
(0,0), we finally find the update rule

= 1—<ej,Ka\‘=j>—6(,- —QiKij=1- (eJ',K(X\i’j)—&j -G >0,

al®:=a"®":= [

1—((—:~.,K0(\i*j>ri [DV\/,(O()+0(i+aj G
J —_—mnmm =

2 0 2 0 .

The Case Kj = —1. In this case, we have = xj, and hencg; = —y;. From this we conclude
Kio = —Kj,forall ¢=1,...,n, and thus we obtaite,Ka\"1) = —(ej;,Ka\"}). Consequently, the
derivatives above reduce to

aVV”'(ai GJ) i ~ ~
LIV = 1 (g, KaV) — &+ @
3G (&,Ka\") —a;+aj,
oW (G, a;) L

j
and from this it is easy to conclude thaf; does not have a global maximum. However, a closer
inspection ofV ; yields the formula

Wi (61, 6) = (eatt) +6i + 6 — %<G\i’j7KG\i’j> — (6 —;)(e,Ka')) - %(di -d;)”,
and hence we see that, for fixBd: R, we have
W j (6,6 +B) = (e a\") 4+ 28; + B — %(a\"j,Ka\i’U +B(e,Ka'y — %BZ.
In other wordsW ; is a affine linear function with positive slope on the affine subspaces
{(6;,6i+B) : @i € R}, BeR,

and thereford\ ; attains its maximum ovel0,Ci] x [0,C;] at a point from the set of edgg€; } x
[0,C;]U[0,Ci] x {C;}. Let us first consider a paffi;,a;) € {C;} x [0,C;]. Then we have

OW,(@i,8;) iy s
— o 1 (g, Ka\) — 84+ G,
aCXj ! J

and henc#\{ ; attains its maximum ove{Ci} x [0,Cj] at (Cj,a7}), where
of = [1— (&), Ka'") +-Cilg = [OWj (@) + 0t — i +Cig'

Moreover, ford := G — a;j and dj := aj —a; we obtain the gain of this update by Lemma 2.
Analogously, we can show thef ; attains its maximum oveb,Ci] x {C;} at(a;,C;), where

0} = [1— (&Ko) +Gjf = [OWh() + 01— +C .

154

TRAINING SVMS WITHOUT OFFSET

Again, the gain of the corresponding update can be computed by Lemmad By @omparing both
gains we can then decide which two-dimensional update yields the largerldercorresponding
update is chosen in the algorithm.

The Case K; # +1. To solve the two dimensional problem in this case we fixxaaR" and
write

Vi = 1—{(g,Ka'l)=1— ; orKie = OW(a) +oi +ajKjj,
£l

Vi = 1-(eKa)=1— 5 a/Kj, = OWj(a) +aj +aiKij.
(#1,]

Using the derivatives of\ ; it is then easy to see thélYf ; attains its global maximum at each
point (o}, a}) that satisfiess = of +ajKij andy; = aj + oK ;. Furthermore, simple algebraic
transformations show

« _ i YiKi

«_ Yi —YiKij
a; =
- 1K

and o’
L

and by re-substituting the definition pfandy; we hence obtain

OW (o) —OW; (a)Ki j

Gi* = Gi + 1—K2.)
e o W) D@k, (12)
aj = aj+ 1-KZ;

for the uniquely determined point at whidhf ; attains its global maximum. Now i(fa;k,a’j“) €
[0,Gi] x [0,Cj] we can simply update bfai'®", a®") := (o', aj). However, if(a;,aj) ¢ [0,G] x
[0,Cj] we have to make further calculations. For examplepfor- G anda € [0,Cj], the function
W ; attains its maximum ovg0,C;| x [0,C;] at a point of the lingC; } x [0,C;] by the concavity of

W ;. Consequently, in this case the update is
(™ o) = (Ci, [OWj(a) + (0 — G)Ki j +aij]g),
that is, we first update thieth coordinate, which leads to the temporary gradient
OW; (@) + (ai = G)Kij,

and then perform a one-dimensional optimization over jthie coordinate. The remaining three
cases where exactly one direction(af, a}) violates the box constraint can be handled analogously.
Finally, let us consider the cases, where both coordinates violate theasnfdor exampleq:” > C
andaj > Cj. In this case, the concavity ¥ ; shows that\ j attains its maximum ove0,Gi] x
[0,Cj] at a point of the sefC;} x [0,Cj]U[0,Gi] x {C;j}. Consequently, we have to temporarily
perform the one-dimensional optimization above twice, namely one overttheoordinate and
one over thg-th coordinate. By computing the resulting gairvéffor both optimizations, we can
then decide which optimization we have to choose for the update. Again rtaniag three cases
can be handled analogously.

155

STEINWART, HUSH AND SCOVEL

Algorithm 2 2D-SVM solver

initialize (o, OW(a), T (a),S(a))

while S(a) > 5 do
select directions® and |*
updaten in the directions* and j*
updatedW(a) in the directions* and j* and calculatd (a) andE(a)
Sa) « T(a)+E(a)

end while

3.2 Selecting a Working Set of Size Two

The 2D-svM-solver displayed in Algorithm 2 is conceptionally very similar to timesvm-solver
presented in Algorithm 1. However, so far we have not addresseddoioose the directioris
and j* in which the2b-svM-solver performs an update. Obviously, several possibilities exists for
this task, and we discuss a few of them in the following.

WSS 0: Choose The Pair Of Directions With Maximal Gai@iven a pair of directionsi, j),
Lemma 2 can be used to compute the gaitWatesulting from the exact two dimensional optimiza-
tion described in Section 3.1. Now one could consider all pairs of direcdodschoose the one
with the largest gain. Of course, in practice this approach is prohibiiives she search is an(n?)
operation, which has to be performed in each iteration. Nonetheless, inssarse this approach
may be viewed as an “optimal” two dimensional strategy, and all subset selsttategies devel-
oped below can be interpreted as low cost approximations to this app@anskequently, we tested
it to get a baseline number of iterations, to which all other subset selectaiagts are compared
to.

WSS 1: 1D-direction With Maximal Gain And Previously Found 1D-directigncareful anal-
ysis of the behavior of thed-svMm-solver shows that it often comes into a regime in which it picks
alternating indices* and j* for a while. In other words, it tries to approximately solve the 2D-
problem in the directions” and j*. In order to avoid this cost-intensive alternating we can look for
the best 1D-directiom and then perform a 2D-update ovérand the 1D-directiony, chosen in
the previous iteration. Conceptionally, this approach is very close to the maxiain procedure
mentioned in Glasmachers and Igel (2006) for SVMs with offset. Therddga of this approach is
that it preserves the low-cost search from tbesvm-solver. On the downside, however, it may not
reduce the number of iterations very effectively.

WSS 2: Two 1D-directions With Maximal Gain From Separate Subsétsother simple way
to preserve the low cost search from ttiesvMm-solver is to split the index sdtl,...,n} into two
parts{1,...,n/2} and{n/2+1,...,n} and search for the 1D-directions with maximal gain over
these two parts separately. In other words, we can choose the diraétansj* by

i* € argmaW(a+oe)—-W(a),

i<n/2

j* € argmaW(a+o6e)—W(a),
i>n/2

whered; is defined as in theD-svM-solver. Clearly, this approach preserves the low cost search
from the 1D-svM-solver, but again it is not clear whether it reduces the number of itesatiery
effectively.

156

TRAINING SVMS WITHOUT OFFSET

WSS 4: 1D-direction With Maximal Gain And A Direction Of A Nearby Sampfet another
approach to preserve the low cost search fromthevmM-solver is to first look for the 1D-direction
i* with maximal gain, and then, in a second step, to pick a diregtiuch thatx;- is close tox;:
with respect to the metric

dk(X,X) := /2= 2k(x, X, x, X € X,

induced by the kernel. Note thatis close tox in this metric, if and only ifk(x,x’) is close to 1.
Consequently, the gradients of the samples close:tare the ones that are most affected by an
update in direction*. Therefore, if these gradients are close to zZegtorethe update, they will
most likely be no longer close to zeafter the update, and hence the corresponding directions will
have a good chance of being chosen in a subsequent iteration. Ixpauimeents, we considered the
k-nearest neighbors af, wherek = 10, and picked the neighbgy- for which the 2D-update in the
directions(i*, j*) yielded the largest gain. Note that, as soon as the directisrfound, it is clear
that one subsequently needs to access‘tiiekernel row for updating the gradient. Therefore, this
working set selection strategy does not require further kernel cotiqgmga Moreover, computing
the 2D-gain ovek candidates is also relatively inexpensivek iemains small. Nonetheless, initial
experiments suggested that searching ovekthearest neighbors only makes sense when the solver
mainly updatesnner support vectors, that is, directiomswith 0 < a; < C;. Consequently, we
implemented a Boolean flag that was recomputed every 10 iterations. In thismadtation, the
flag was set to true, if and only if in at least 5 of the previous 10 iterationpittieed directions

i* and j* both were inner support vectors. We then considered-hearest neighbors only if this
Boolean flag was set, while in the other case we applied the working setiGelstrategywss 1.

WSS x: Combinations Of 1D-direction-based Approachiess easy to see that one can combine
the previous three methods that are based on finding the 1D-direction witimalagain. For
example, in each iteration one can combixgs 1 andwss 2 by computing the 2D-gain of both
methods and pick the one with the larger gain. Obviously, this still preseredswhcost search
from the 1D-svM-solver and only adds little cost for computing the 2D-gain for the two catelida
pairs. Similarly, all three methods can be combined. Combinations of these mmettodalled
WSS x, wherex is the sum of the combined methods. For example, by combinigg 1, WSS 2,
andwss 4 we obtainwSs 7, and by combiningvss 1, WSS 2, WSS 4 with WSS 512 below, we
obtainwss 519 . In the following, we keep this binary numbering system which makes it plessib
to easily describe arbitrary combinations of basic working set selectidegita.

WSS 8: 1D-direction With Maximal Gain And One-step-ahead 1D-directi@nother way to
extend thelD-svM subset selection strategy to two directions is to first look for the 1D-direction
with maximal gain, and then to look for the 1D-directipnwith maximal gain that would be found
after having updated in direction Obviously, this strategy, which we c&liSS 8, is closely related
to WSS 1 in that the update and search routines are partially permuted. Howevas & higher
cost for the search part per iteration, while intuitively it should reducetimeber of iterations.

WSS 16: Maximal Violating Pair. A completely different subset selection strategy is based on
the maximal violating pair (MVP) idea, see Keerthi et al. (2001) and Joaqii@®9). For the SVM
without offset, this means that the péif, j*) is chosen that violates (5) most. In other words, for
both index setgi : a; < Q} and{i: qa; > O} the two indices with the largest, respectively smallest,
gradients are picked, and the final p@ir, j*) consists of the indices that have the gradient with the
largest absolute value among the four candidate directions. In order ton@piehis working set
selection strategy efficiently, the s€is: a; < Ci} and{i: a; > 0} should be kept in memory and

157

STEINWART, HUSH AND SCOVEL

updated in every iteration. This may add some cost per iteration comparedpeetteus working
set selection strategies, while it is unclear how the number of iterations debawared to these
strategies.

WSS 32: 1D-direction With Maximal Gain And Corresponding “Optimal” 2D-directioNone
of the methods introduced so far try to seriously approximate the 2D-ssdigetion strategwss
0, which intuitively picks the best possible pair of indices. The first methotlsbaously strives
for such an approximation i&/SS 32, which first picks the 1D-direction with maximal gain,
and then searches for thé € {1,...,n} such that(i*, j*) maximizes the corresponding 2D-gain.
Obviously, the cost for this search method is significantly higher than tHos€8 1 to WSS 7, but
it is still O(n). On the other hand, the better choiceg(iof j*) may substantially reduce the number
of iterations of theD-svM-solver, and hence it is not a-priori clear hawéS 32 performs compared
to the earlier methods. Finally, note tWagsS 32 is related to the second order working set selection
strategy of Fan et al. (2005), which was proposed for SVMs with bffse

WSS 64: 1D-direction With Maximal Gain And Random “Optimal” 2D-directiotnstead of
considering all pairgi*, j), j = 1,...,n, asWSS 32 does, it may suffice to reduce the search over
the pairs(i*, j), j € J, whered C {1,...,n} is a random subset. In our experiments we considered
the case #=n/5.

WSS 128: 1D-direction With Maximal Gain And Approximately “Optimal” 2D-directio@ne
of the disadvantages @SS 32 is that computing the 2D-gain is quite expensive due to the relatively
large number of branches and floating point operations. One way tesslthis issue is to compute
the 2D-gain inWSs 32 only approximatelywss 128 uses the following approximation: for indices
i andj with K; j = +1 it computes the exact gain, while for the other pairs it first compuitesnd
aj by (12), and then applies the simple clipping operation

ainew . [a*]Q

af® = CHISE
For these newr’s, WSS 128 finally computes the gain by Lemma 2. Clearly, this gain is in general
less than the exact gain, but it still may be a good approximation. In particulaoth o and
aj satisfy the box constraints, then the approximation is actually exact. On thehathd, the
approximation is clearly less expensive, but we expect more iterationsazethfpwss 32.

WSS 256: Random 2D-directions With Maximal GaiAnother way to approximate/Ss 0 is
to considek random pairgi, j), and pick the paifi*, j) that yields the largest exact 2D-gain among
them. InWSS 256 we followed this idea fok := n.

WSS 512: 1D-direction With Maximal Gain And 2D-direction Over Inner S\VAthough the
approximate computation of the 2D-gairWrsS 128 is cheaper than the exact computatiomigs
32, it may still be too expensive. One way to further decrease these costseid bn the observation
that the 2D-gain is given by

1 OW () |OWG (@)[2 — 20 (@)W (@)K
2 1-K

if Kij # £1 andaj andaj computed by (12) satisfy the box constraint&/SS 512 uses this
simplified formula in the following way. Again, it first searches for the 1Dedironi* with maximal
gain. Ifa;- is an inner support vector, s&¢SS 4 for a definition, and the Boolean flag 0fSS 4 is

158

TRAINING SVMS WITHOUT OFFSET

set,WSS 512 searches for the direction
j*€{j:0<aj<CjandK; j # +1}

that optimizes the above formula of the 2D-gain for fixee: i*. Since in some iteration#&/ss
512 reduces to theD-svM-solver we further considered some combinations Ww&s 3, andwss
7 in our experiments. Following the naming convention of combinations mentioréerethese
strategies are calle®ySS 515 andwsSsS 519.

WSS 1024: 1D-direction With Maximal Gain And Random 2D-direction Over Inner SM&e
next subset selection strateg¥SS 1024, is quite similar towSS 512, except that it does not
consider all inner support vectors in the searchjforbut onlyk random inner support vectors. In
our experiments we used tkeéhat equaled 20% of the current number of inner support vectors. In
addition, we initiated the search whenewggr was an inner support vector, that is, the search was
initiatedindependentlpf the Boolean flag oSS 4. Again, in some iteration®/SS 1024 reduces
to the 1D-svM-solver, and hence we further considered some combinationswgth 1, WSS 2,
andWss 4, where again the naming convention above was used.

WSS 2048: Add Random 2D-directions Over Inner SVEhe final subset selection strategy,
WSS 2048, is actually not a subset selection strategy of its own, but only a strategwdinlas in
combination with others. Once one of the previous subset selection steategiepicked a pair
(i*,j*) anda;- has turned out to be an inner support vectegS 2048 considerk random pairs of
inner support vectors, and picks the p@ir, j**) that has largest approximate gain, where the ap-
proximation was computed as\WiSS 512. Then the exact gain ¢f*, j*) and(i**, j**) is computed
and the pair with the larger exact gain was chosen. We considered thischiett@mbination with
WSS 1, WSS 2, andWSS 4, where again the naming convention above was used.

4. Convergence Analysis

In this section we establish an upper bound on the number of iterationstfothea b-svm and the
2D-SVM. Our approach is heavily based on earlier idets/eloped for the analysis of rate-certifying
decomposition algorithms, see, for example, Hush and Scovel (2008ardsSimon (2005), Hush
et al. (2006) and List and Simon (2007), but it may be possible to partiaiyresults on block
coordinate descent algorithms such as the one by Luo and Tseng (@088 analysis, insteatl.

Let us begin by recalling from the first papers mentioned thatottienctional for a vector
a € [0,C] =[0,Cy] x --- x [0,Cy] and an index sdtC {1,...,n} is defined by

o(all) = ~S[l(,l)[é] (OW(a),&—a).
ac(o,
di=a;Vigl

2. Despite this, we decided to include the analysis, siayé: still requires a little work and thus we felt that it was a
bit unfair to the reader to simply say that the analysis is straightforvi@raie thought that it was nice to see how
the relatively complicated techniques for the offset case significantlyli§gmp) our goal was to provide a full and
self-contained work for the proposed algorithm.

3. Note, however, that their results only control the convergenceltmboptimal solution, while for statistical reasons,
we are actually interested in the convergence control of the corresgppdmal sequence. Consequently, their
results are at least not directly applicable.

159

STEINWART, HUSH AND SCOVEL

Since our algorithms are based on gain optimization rather than rate certificaédarther need
they-functional
y(all) = sup W(a)—W(a),
aeloC]
di=0a;Vigl
which expresses the gain in the dual objective function resulting frompéimization over the
directions contained ih To simplify notations, we write(a|i) := o(a|{i}) andy(ali) :=y(al|{i}).
Note that we have
o(ali)= sup (&;—aj)OW(a),
&;€[0,G]

while y(ali) expresses the gain
W (a+ (a"*"—aj)e) —W(a)

of the 1D-update in direction wherea*"is defined by (4). In additiony(a|{i, j}) is the gain
obtained by the update discussed in Section 3.1. Moreovet,#of1,...,n} we write o(a) :=
o(all) andy(a) :=y(a|l), respectively. Note that bothandy are monotonic in, that is, forl C J
we haveo(a|l) < a(alJ) andy(a|l) < y(alJ). Finally, we need the obvious relation

where we recall from Section 2 that € [0,C| denotes a solution of the dual problem (3). In other
words,y(a) expresses the dual sub-optimalitycof

Let us now begin our analysis by presenting two lemmata that establish retapiefetween
these quantities.

Lemma 3 For all a € [0,C] we have

n

o(ali) = o(a) = gap(a),
2
wheregap(a) denotes the duality gap defined in (7). In particular, there exists an index i
{1,...,n} such that

o(ali*) > n~to(a).

This lemma can be easily derived from results in List et al. (2007) and héSimon (2007).
However, in the case of SVMs without offset, its proof is very elementadylence we present it
here for the sake of completeness.

Proof Fori € {1,...,n} itis easy to see that the supremum used to defiogi) is attained at

(13)

5. JG DWW =0
" lo0 if OW(a) <O.

Moreover, the vectom := (01,...,0,) € [0,C] realizes the supremum definioga), and hence we
obtain

io(a“) = i(DW(a), (o —aij)e) = (OW(a),a —a) = a(a).

160

TRAINING SVMS WITHOUT OFFSET

Furthermore, we have

o(a)=(OW(a),a—a) = (a,Ka)—(ea) +io_(i -OW ()

- (a.Ka)~ (ea)+ 3 W],

and therefore we have showrta) = gap(a). The last assertion is a trivial consequence of the first
assertion. [

The second lemma relatega|l) to the gainy(all). For its formulation we need the quantity
Bmax := max-1,..nG.

Lemma4 Forall a € [0,C]and I C {1,...,n} we have

s(all) > y(all) > “<“'>mm{1, olall) }

2 [1°Bfhax

where|l| denotes the cardinality of I.

In a slightly different form, this lemma has been established in, for exampkh ElLal. (2006),
and it was somewhat implicitly used in List and Simon (2007). Again, we ptésgoroof for the
sake of completeness.

Proof Leta; be defined by (13) andl:= ¥ (0 —0)&. ForA € [0, 1], we then haver+Ad € [0,C],
and a calculation analogous to the one in the proof of Lemma 1 yields
A2 A2|1]%B2

— 5 (d,Kd) > Aa(all) - max.

y(all) > W(a+Ad) —W(a) = \{OW(a),d) 5

Now the right hand side is maximized at
N if a(all) > [1/°Biax
1 ~2Brao(all) if o(all) < [1?Bfax-
In the cases(a|l) > |1|?B2,,, we hence find

_ IPBRg _ ofall

Vil = ofall) - = > 25

while in the other case(all) < |I|?B2,,, we obtain

o2(all)
v > >l
@)= Fieez,,

Combining all estimates we then obtain the inequality on the right hand side.
To show the inequality on the left hand side we fixé@r [0,C] such thati; = a; forall i ¢ 1.
Then we have
1,.

W(d)—-W(a) = (OW(a),0 —a) — §<a —a,K(@—a)) < (OW(a),6 —a) < o(all),

161

STEINWART, HUSH AND SCOVEL

and by maximizing the left hand side of this inequality ofiere findy(a|l) < o(all). [|

With these preparations we can now present a preliminary result on ieeggerithms that
have a certain control of their gain.

Proposition 5 Leta(@ a € [0,C] be a sequence of feasible vectors that satisfies
W(a) —wia®) > y(a®|ir), (>0, (14)

where for eacl¥ the index j € {1,...,n} is the one described in Lemma 3, that is, it satisfies
a(a¥]ir) > n~la(a®). Then for all¢ > 1 we have

e o o 52

Moreover, for alle > 0 and all ¢ > ¢, we havey(a¥)) < g, where
2R2 *) _ (0)
le = [Zn Sma’(-‘ +max{0, [annw(a) €W<a)-‘ }

Proof By Lemmas 4 and 3 we find

V(@) =y) =w(a) ~w(al) > v<a<f>\i*
([)||
> 2 min{a 2 T
(”) a(a')
ST {1 Bﬁm}
ya) . y(a®)
on mln{l, ”B%ax }

From this we easily obtain the first assertion.

The second assertion has already been shown in the second panpafdahef the first assertion
of (List and Simon, 2007, Theorem 4), which can be found on the padt2snd 313 of List and
Simon (2007). |

Note that ¥n-rate certifying algorithms considered in List and Simon (2007) clearly yatisf
assumption (14). Moreover, Proposition 5 can also be applied ttseM and2D-SvMm:

Theorem 6 Consider thetb-svMm described in Algorithm 1 or ab-svM in the sense of Algorithm
2 that uses a working set selection strategy whose gain at each iteration lisss than that of the
1D-SvM. Furthermore, assume thatax{Wneg, Wpos} < 1. Then for alle > 0, n> 1, and allA > 0
these algorithms terminate after at most

ez e [)

162

TRAINING SVMS WITHOUT OFFSET

iterations. In particular, in the most likely scenarifie < 1 these algorithms do not need more

iterations than (0)
1 2(W(a*) —=W(a
]l fam 2200

Proof The1D-svM chooses at each iteratidra directioni’; that maximizes the 1D-gaip(a”)|i).
Consequently, we have

W(a“) ~w(a®) = ya®i;) > ya]if),

whereij is the direction described in Lemma 3. In other words, (14) is satisfied foalipsithm,
and from this it is not hard to see that the considem®dvm’s also satisfy assumption (14). Let us

now define
0. o

Fore := h(5;) Proposition 5 together with Lemma 4 then shows that

€
—V=g>vya®) > (€)
h<2)\> e>y(a') >h(o(a'?))
for all £ > ¢¢ and hence we obtai(a”)) < gapa¥) = o(a(?) < £ by the monotonicity of the
functionh. UsingBmax < ﬁ we then obtain the assertion by simple algebraic transformatidis.

Note that the working set selection strategiess 1, WSS 2, WSS 4, WSS 8, WSS 32, WSS 64,
WSS 128, WSS 512, andwss 1024, satisfy the assumptions of Theorem 6. Moreover, the same is
true for all combinations of working set selection strategies that includasttdme of the strategies
listed. Finally, note that the upper bound established in Proposition 5 coifromigulo constants
that come from different working set sizes) with the bounds for ratéfgieg algorithms presented
in List and Simon (2005), Hush et al. (2006) and List and Simon (2000rebVer, the step from
dual e-optimality to primale-optimality considered in the proof of Theorem 6 coincides with the
analysis (List et al., 2007) for SVMs with offset. Consequently, the bqaradented in Theorem 6
equals the best known guarantees for solvers for SVMs with offset.

5. Experiments

The described D-SVM-solver and2D-SVM-solver enjoy nice theoretical properties with respect
to both generalization performance and required training time. Howeveruitidear how tight
these bounds are, so it remains unclear whether the proposed SVMzedison well in practice.
Therefore, we performed several experiments that address theifajloprestions:

1. Which subset selection strategies lead to the smallest number of iteratitiessbiortest run
time? How many more iterations thavss 0 do these strategies perform?

2. How many less iterations needs the stopping criterion (9) compared t@sdashablity gap
(7) and is there also an advantage in terms of run time?

3. How much more efficient is theD-SVM-solver than the technically much easi&y-SVM-
solver?

163

STEINWART, HUSH AND SCOVEL

4. How well does theD-SVM-solver work compared to standard software packages such as
LIBSVM by Chang and Lin (2009)?

5. What is the advantage of warm start initializations when the parametehsegrerformed
over a grid?

To answer these questions we implemented h&VM- and the2D-SVM-solver in C++, and down-
loadedLIBSVM version 2.82 by Chang and Lin (2009). The algorithms were compiled byXBI
gcc version 4.3 with various software and hardware optimizations enabled xpdrenents were
conducted on a computer with INTEL XEON X5355 (2.66 GHz) quad coocegssor and 8GB
RAM under a 64bit version of RedHat Linux Enterprise 4. During allekpents that incorpo-
rated measurements of run time, one core was used solely for the experiarehthe number of
other processes running on the system was minimized. The run time itself wasrettay the C
functionclock() from the librarytime.h. The resulting resolution was 0.01 seconds.

In some preliminary experiments we made a couple of observations thatechtéregdescribed
implementation strategy slightly: First, it turned out that the auto-vectorizatiamaobnly gave
mediocre and sometimes even contradicting results, even if the implementatiotingsiad gcc
4.3's auto-vectorization were strictly followed. Therefore, we decidethémually codeSSE2-
vectorized versions of the most important routines, namely: computinglketioes, searching for
the optimal 1D-direction, updating the gradient, and computing the weightedEgaiof clipped
slack variables. To this end, we used the librammintrin.h together with properly aligned arrays
of doubles® Some of our preliminary experiments not reported here indicated that thigkped
hardware instruction set yields a run time improvement by a factor betweemd.B.8 depending
on the working set selection strategy and the data set. Second, the initainegpts suggested
substantial numerical instabilities on a few data sets when using single floais decided to
use double precision throughout the experiments. Third, we were rdigeggpointed by the run
time behavior of.IBSVM, even when we enabled its shrinking heuristisfter some investigations
we found that the main reason for the disappointing run time performance wdadhthatLIB-
SVM copies kernel rows into the kernel cache, if one uses pre-computeel keatrices, which, as
discussed below, we did throughout the experiments. This copying mieohaasults in a small
number of iterations per second when thBSVM-solver is started on a new parameter point, while
with the kernel cache being filled up during the optimization, the solver starfisrpgéng more it-
erations per second. To ensure a fair comparison, we thus decided tonemleur own version of
LIBSVM'’s solver (without shrinking strategy). As a side effect, this new implememtaiiso ben-
efited from theSSE2 instructions for upgrading the gradient. Unlike the subset selection strateg
of the 1D-SVM-solver, howeverLIBSVM's subset selection strategy, though implementable, does

4. At first glance, this manual approach may seem to be too speciadined, it should clearly be not the goal of this
paper to fine-tune an algorithm to a very specific hardware environr@enthe other hand, a good compiler should
make optimizations with respect to these nowadays standard instructioioh, vave been first introduced bytel in
2001 and have been adopted4iyD in 2003, automatically. Unfortunately, it turned out tgat 4.3 did not do this
optimization reliably. Namely, depending on some minor and apparentlypémdtent changes in other parts of the
code, the most crucial loops where sometimes optimized and sometimeshi® behavior rendered a reasonable
comparison of different algorithms impossible. Therefore, our rabapproach can also be viewed as a compilation
with a more ideal compiler, which in the future is hopefully available.

5. In fact, it turned out that neither the number of iterations nor the runwiatesignificantly affected by the shrinking
heuristic. Corresponding results for the run time are reported in Figure 1

164

TRAINING SVMS WITHOUT OFFSET

x10°

T T T T T T T T T T
—+— New LIBSVM % —+—New LIBSVM —+— New LIBSVM
- LIBSYM WOS #-- LIBSYMWOS - LIBSYMWOS
6l — V- LIBSVMWS Vs 0.
’

=

— Vv LIBSYMWS 4 191~ % LIBSVYMWS

I I
\(o\\a“ . “e\e’?
%‘{, &

Figure 1: Performance of the originaBSVM-solver (WOS: without shrinking; WS: with shrink-
ing) compared to our own implementation of th®SVM-solver. The graphic displays
the average run time in seconds (middle) over the 10 by 10 parameter geitbeéeldater
in this section. Shrinking does not give an advantag¢haparameter grid, while the
newLIBSVM implementation runs in almost all cases significantly faster than the original
LIBSVM .

not benefit from vectorization since not all indices are considered hance the relatively slow
non-serial RAM access of the CPU outweighs the speed improvement 8§ginstructions.

We downloaded all data sets for binary classification ftoB8VM’s homepage whose number
of features did not exceed 1000. We made this cut because havingetiataith a huge number
of features would have required substantial extra effort for implemewtimglgorithms, and this
effort was clearly out of the scope of this paper. In all cases, we thsescaled versions of these
data sets, and if they were not available, we scaled the unscaled datékeitewelp ofLIBSVM's
scaling tool. For data sets that were not split into a training and test setwegaged a random
split that contained approximately 70% training and 30% test samples. Mwordowthe already
split data setsPLICE, SVMGUIDEL, SVMGUIDE3, we decided to first merge the corresponding
training and test set and then generate the random split above. Forgbel#da setsovTYPE and
IJCNN1, we generated random subsets of the two data sets ofisiz90Q0 5000, and then applied
the random split above. Finally, we ignored some versions with larger toaseh of theaXa
andwXA families, namelya5A-A9A, andw4A—w8A because of time and memory constraints.
Moreover, for these two families of data sets we kept the split between gaanic test sets. Table
1 shows the corresponding characteristics of the considered data getfsetowith classification
errors of the fastest version of ta®-SVM andLIBSVM, respectively.

In all our experiments, we consider&efold cross validation with folds randomly generated
from the training set and hyper-parameteendo each taken from a 10 by 10 grid. Since the choice
of this grid has a significant influence on both the training time and the leareifigrmance, special
care is needed here. Despite such care, however, it seems likely ¢éimatbwoice will be subject to
discussion. To pick the parameter grid less heuristically than in previoustigagons, we decided
to use recent statistical insights from Steinwart et al. (2007), which shatasymptoticallygood

165

STEINWART, HUSH AND SCOVEL

training size| test size| dimension| LIBSVM 2D-SVM 2D-SVM (duality gap)| 2D-SVM (fine grid)
SONAR 146 62 60 12.68+4.27 | 12.80+4.04 12.62+3.95 13.21+4.19
HEART 188 82 13 17.58+380 | 17.42+4.39 17.47+ 386 17.94+ 421
LIVER-DISORDERS 248 97 6 29.31+4.00 29.76+ 4.31 28.90+3.94 28.70+ 4.25
IONOSPHERE 248 103 34 5.43+2.16 8.59+ 285 8.33+2.78 8.76+2.97
AUSTRALIAN 484 206 14 14.76+221 | 14.544+2.09 14.77+1.90 14.45+ 224
BREAST-CANCER 493 190 10 3.30+1.06 3.15+1.07 3.13+1.01 3.15+1.02
DIABETES 544 334 8 23.43+2.38 23.68+2.49 23.62+233 23.80+2.41
FOURCLASS 623 239 2 0.09+0.18 0.04+0.14 0.04+0.14 0.08+0.18
GERMAN.NUMER 718 282 24 24.95+227 | 24.84+229 24.93+2.16 25.35+2.10
SVMGUIDE3 892 392 21 16.48+1.70 | 16.60+1.77 16.55+1.74 16.42+1.68
COVTYPE-2000 1392 616 54 24.06+1.60 | 23.92+1.69 24.09+ 1.49 24.144+ 157
IJCNN1-2000 1424 584 33 4.38+0.91 4.38+0.93 4.37+0.96 4.36+0.86
AlA 1605 30956 123 15.78+0.17 | 15.89+0.21 15.75+0.14 16.11+051
SPLICE 2176 999 60 8.68+0.87 8.93+0.88 8.89+0.90 8.79+0.94
A2A 3365 30296 123 15.76+0.30 15.74+0.27 15.76+0.28 15.97+0.44
wilA 2477 47332 300 2.20+0.07 2.18+0.06 2.21+0.07 2.22+0.07
A3A 3185 29336 123 15.57+0.08 | 15.82+0.21 15.55+0.10 15.85+0.22
W2A 3470 46339 300 1.94+0.09 1.95+0.06 1.97+0.06 1.94+0.06
CoOVTYPE-5000 3472 1536 54 20.77+0.88 20.73+0.83 20.74+0.86 20.79+0.81
IJCNN1-5000 3486 1514 33 2.73+0.42 2.70+0.45 2.72+0.41 2.70+0.45
AdA 4781 33780 123 15.52+0.07 | 15.80+0.30 15.58+0.13 15.64+0.14
W3A 4912 44833 300 1.75+0.05 1.75+0.05 1.76+0.05 1.72+0.06
SVMGUIDEL 4959 2130 4 2.97+0.32 3.01+033 2.97+0.32 3.03+0.29
MUSHROOMS 5773 2351 112 0.00+0.01 0.00+0.00 0.00=+0.00 0.00+0.01

Table 1: Characteristics of the considered data sets together with thertest(&rstandard deviations) on 100 random splits. The training
and test set sizes refer to the splits used in the run time experiments. Thdecedalgorithms were theb-SVM with WSS 7, 11-
W4 and clipped duality gap stopping criterion (6th columnSVM (5th column), theD-SVM with WSS 7, 11-W4 and duality gap
stopping criterion (7th column), and anott2&-SVM with WSS 7, 11-W4 and clipped duality gap stopping criterion (8th column).
The hyper-parameters for the first three test error columns werdestley 10-fold cross-validation on the 10 by 10 grid described

in the text, while for the fourth test error column, 10-fold cross-validatiomdiner and larger 25 by 30 grid was used.

166

TRAINING SVMS WITHOUT OFFSET

values ofA ando are contained in the intervale;n~2, 1] and|[c,, csn'/9], respectively, where is

the number of training samplesijs the input dimension, and, ¢,, andcs are arbitrarily specifiable
constants independent nfandd. Based on this result, we considered a geometrically spaced 10
by 10 grid in[10n~2,1] x [0.1,2n%9], that is, the ratio of consecutive grid points was constant.
Here, it is worth mentioning that during the k-fold cross validatlowas internally converted to

C by the formulaC := z(kfkmh to accommodate the fact that thetualtraining set size for k-fold
cross validation is approximate(k — 1)n/k. To empirically validate the quality of this grid with
respect to classification performance we repeated the 10-fold criidatican procedure 100 times
for the fastest versions of t®-SVM andLIBSVM, respectively. We refer to Section 5.1 for an exact
description of the experimental setup. The resulting average classifieatars, which are reported

in Table 1, show that both algorithms achieve comparable classificationperice except on one
small data set, namelyONOSPHERE However, the size of this and some other data sets make it
hard to draw conclusion from the corresponding, reported errotsilevihis experiment showed,
that both algorithms performed equally well on the chosen grid, it doedlpat statements about
the absolute quality of the grid. We therefore conducted a control expefiméth the fastest
version of the2D-SVM on a geometrically spaced 25 by 30 grid[@001n—2, 1] x [0.00520n%/9],

The size and boundaries of this control grid ensured that it was botHisagnly finer and larger
than the 10 by 10 grid. Besides the different grid size, the experimemtal &dlowed that described

in Section 5.1 and the resulting average classification errors are repofitaole 1, too. The results

in this table show that the classification performance is not improved wheg tisnarger grid,
which in turn means that our initial 10 by 10 grid is a good choice.

Like the choice of the grid, the stopping criterion and its threshold value hasignificant
influence of the number of iterations and the run time of an SVM solver. ltnfately, the2D-
SVM andLIBSVM use different stopping criteria, which makes a direct comparison difficiut.
address this problem, we again took a statistical perspective in the sentbethitimate goal when
solving the SVM optimization problem is not numerical but statistical accutaayther words, we
may stop the iterative optimization procedures as soon as we know that theirgnaaccuracy
does not significantly influence the classification performance. Foth&vM and the2D-SVM
we thus used the stopping criterion (9) with= 0.001, while for our version oEIBSVM’s solver
we used, like the originallBSVM, the classical MVP stopping criterion with= 0.001. Here
we note that this was necessary sit@SVM's solver deals with SVMsvith offsetb, and hence
the stopping criterion (9) is no longer applicable. In addition, an appratyianodified stopping
criterion seems to be computationally inefficient, while by (List et al., 2007, Le@ntae MVP
stopping criterion with value = 0.001 also ensures (8) far:= 0.001 andf* instead off*]* .

In other words,LIBSVM’s default value, which we picked throughout our experiments, actually
has a good interpretation in terms of learning. Of course, the differeppisio criteria used raise
the question whether the results reported below are due to differenceswotking set selection
strategy, the different nature of the optimization problemthe stopping criteria. In this regard,
we note that in the experiments withBSVM our goal is to compare thentire 2D-SVM-solver
with a state-of-the-art solver, rather than to, for example, comparedtitfevorking set selection
strategies. For this purpose, it is irrelevant whether the working setteelestrategy, the nature
of the optimization problem, or the different stopping criteria have a stranflaence on the run

6. This control experiment was extremely time-consuming, and heeceeave forced to distribute the runs between
different machines (with different hardware features). For theesagason, it was, unfortunately, infeasible to run
the same control experiment foilBSVM.

167

STEINWART, HUSH AND SCOVEL

time. Nonetheless, it remains an interesting question for future work whsdhesr’'s for SVMs
with offset can also benefit from some of the ideas of the working settsmiestrategies introduced
for the2D-SVM-solver.

In all experiments we pre-computed the kernel matrix in order to avoid thae tbelver-in-
dependent but data set-dependent computations are contained in ahteddpaining times. To
be more precise on the latter dependence, recall that the time needed tatedhgomatrixk
significantly depends on the number of features of the samples and the imA¢iorespecific
internal representation of the samples. For example, we may have two tata B& andR%,
respectively, that generate the same matrixNow assume thad; < dp. Without pre-computing
the kernel matrix, the solver will need significantly more time for the second s#dtawhile the
run times for both data sets will be equal for pre-compufedvioreover, the second data set may
actually consist of samples for which most of the coordinates are zerthidrtase, an internal
data representation likeBSVM'’s that exploits this sparseness may speed up the computation of
both the entir&k and single kernel matrix rows. On the other hand, if the data doesnjoy this
kind of sparseness, a straightforward sample representation by &riypically superior, since it
avoids costly branches, allows sequential RAM access, which, fromxperience, is often 4 times
faster than random access, and makes it possible to use vectorizatime$ez modern processors
such asSSE2 instructions. Last but not least, we observed recently, after the iexgets of this
paper were finished, that the pre-computatiorKoénjoys an almost linear speed-up, when it is
distributed among the cores of modern multi-core processors, while foothputation of single
rows of K the improvement may be significantly less due to the time spend for synchroniZatio
Obviously, these implementation options make it impossible to determine a canontbaldnfier
dealing with the kernel matrix, whether it fits into memory or not. Consequently, by picking
a particular method and including its run time into the measurements, one nédgesgaduces
a bias into the experiments, and hence run time results reported from acfesieh experiments
may be of little value for new, time-critical SVM applications with different datackaracteristic§.

In fact, for such applications all the considerations above need to b&uttartaken into account,
which in turn requires knowledge of the computational complexity of éagividual component.
In other words, for an informed decision one needs to know, amongsptherrun time complexity
of the core solver, which in turn gives another argument for consigl¢hia core solver with pre-
computed matri¥. On the downside, however, this approach is, of course, unrealistianye
data sets whose kernel matrices do not fit into the computers memory. On #réhatid, for all
considered data sets the matricés fit into memaory, and in addition, it turned out that for all data
sets there were parameter regions of the grid where all or basically &drsawere support vectors.
In these regions, the corresponding kernel rows would have beeputed during the optimization,

7. This observation suggests that in the future, the computatiéh which is currently a significant part of the entire
SVM training time, may be significantly less time consuming. This may be in péati¢rue for highly parallel
architectures such as graphical processing units.

8. In an extreme case, including the computation timeéfapens the possibility that a new solver appears to be faster
than existing ones simply because it has a better implementation for compguting

9. Another approach would be &) not pre-comput& andb) exclude the time needed to compute and cache kernel
rows from the reported run time. Unfortunately, this approach is infeabicause of the relatively low resolution
of the time-measuring functions in C.

Yet another approach would be to actually precompltéut to pretend that a cache of a certain size is used. One
could then log cache misses of such a virtual cache. While the latter appmuay actually be the silver bullet for
future work, the idea for it only arose after the reviewers comments,warfortunately, a respective re-design of our
experiments were too costly at that stage.

168

TRAINING SVMS WITHOUT OFFSET

if we had not precomputed the kernel matrices, and consequently, travenghe grid would have
required the solver to compute the kernel matrix anyway. From this poirneaf wur experiments
suggests that training over a grid with medium-sized data sets whose kertnigd stidd fits into
memory, there is no need to implement a caching strategy. In fact, we stromgjlycture that
without pre-computing the kernel matrices, our experiments would hadered computationally
infeasible with one computer only. It is, of course, needless to say, #atttration may change, if
other parameter selection strategies are used, or the data sets are too large

5.1 Comparing Classification Performance

When comparing the standard SVM optimization problem with the version in (bpaply the
first question is, whether the absence of the offset term has an induenthe classification per-
formance. To answer this question we performed on each data setri®ruwoth a version of
the 2D-SVM-solver and our implementation 6fBSVM'’s solver. We performed these experiments,
though we report them first, actually at the very end of our investigatidies way, we could
use for each solver the fastest version. ForabhesVM-solver it turned out, as we will see below,
that this is thewss 7 strategy together withi-w4 initialization, while for theLIBSVM'’s solver we
used, depending on the data set, eithew?2 or 11-W5 initialization. Besides for the data sets of
the AXA andwXA families, we generated for each data set 100 random splits, where aath tr
ing set contained, modulo randomness, 70% of the samples. Moreoveachrof these training
sets the hyper-parameter selection was performed by 10 fold crosati@iicdbver the parameter
grid described above. The test error was then computed on the tesirsef phe split, which,
modulo randomness, contained 30% of the samples. The resulting aviasgjéaation errors are
reported in Table 1. As one quickly observeit8SVM yielded the better classification performance
on the data setdNosPHERE On all other data sets, however, both algorithms performed almost
indistinguishable. Therefore, it seems fair to conclude that the classificagidormance is not
significantly influenced by the absence of the offset.

5.2 Comparisons to the 2D Selection Strategy with Maximal Gain

In our first set of experiments on 2D subset selection strategies, wstigs#ed the number of
iterations needed for the different strategies for selecting working ®etsbaselines were thb-
SVM-solver and theD-SVM strategywss 0, which searches for the pair of indices with maximal
dual gain. Since the latter is computationally very expensive, we decidezbtonly 2-fold cross
validation. In addition, we actually trained only on one of the two folds, thatisapproach is best
described by the training/validation SVM (TV-SVM) of Steinwart and Christmé008). Besides
these modifications, however, we followed the approach outlined eariinllys in all experiments
of this subsection, we initialized ky + O.

Let us now have a closer look at the results that are displayed in Figue$2 Figure 2
compares thaD-SVM, WSS 0 and the simple 2D-modifications of th®-SVM. Not surprisingly,
WSS 0 needs substantially less iterations than its one-dimensional equivales'M, while all
of the simple 2D-modifications perform somewhere in between. More phgciaSs 1 yields
some significant improvement over thB-SVM. For WSS 2 the message is mixed; while on some
data setswsSs 2 performs significantly better, the difference is more marginal on other é&ta s
However, combiningvSS 1 andwsSS 2 into WSS 3 yields a clear overall improvement over both
methods and theéD-SVM. Another combinationwsSs 5 that combineswss 1 with a search over

169

STEINWART, HUSH AND SCOVEL

T
1D-SVM
WSS 0
WSS 1
Q- Wss8
—+—WSS2
0--Wss3
—V WSS5
—6—WSS7

4+

T
V- 1D-SVWM
+-WSS0
% WSS 1
Q- Wss8

—+—Wss2
0--WsSS3

:
V- 1D-SWM
+ WSSO
% Wss1
v] Q- Wss8
7 ——wss2
0 -WSS3

— v ‘WSS5
—6—WSs7

—v WSS5 v
—6—WSs7

Figure 2: Performance of methods based on simple extensions of theatéhstrategy for small

0.22

018

004
x
90“?'

(left), mid-sized (middle), and relatively large data sets (right). The deagibplays the
average number of iterations in thousands for the different methodstliwemtire 10
by 10 parameter grid. All 2D-methods perform better thanithesVM, but the degree
of improvement differs significantlywsSs 2 performs sometimes better and sometimes
substantially worse thawss 1, but combining both methods inWwSsS 3 leads to uni-
form improvements. The same holds fa1SS 5, though with less improvements. The
combinationwss 7 uniformly yields the lowest number of iterations.

T
+--WSS0

—6—WSS7

—+— WSS 32
0 WSS 128
H- WSS 64
9 WSS 256

T T
+-WSS0 +- WSSO

—6—WSs7 —6—WSS7

—+—WSs32 1 18 —+— WSS 32
0--WSS128 0-- WSS 128
- WSS 64 #- WSS 64

o 0 WSS 256 0 WSS 256
07 6 M

08

06

05

04

03

02 L L L L

L L L L L L Il Il Il Il Il Il Il Il
& © S of o 5 5 0 %) 0 0 2 0 2 > @ 2 ‘3 A 0 0 © ‘3
e 05?‘\6 6\90‘68 0 RS \)e“a\\e p a“e\e \o&c\a Qe\“\a « R \,/,LQQ 6/100 S I ¢ P «\Q\S\ée & 6’600 Y“o"“\ P
i A 9 o W o o
o o o ERR 00@;\‘ i o o o

Figure 3: Performance of methods based on approximations of the 2ygtvassS 0 (black). The

graphic displays the average number of iterations in thousands for theediffmethods
over the entire 10 by 10 parameter giiiSS 0 performs uniformly best, but both deter-
ministic strategiesVss 32 andwssS 128, which are basically indistinguishable, closely
follow the performance ofvSS 0. WSS 7 and the hybridvSS 64 still capture most of the
behavior of the previous methods with small advantagesvieg 7, while the complete
randomization performs uniformly worst.

170

TRAINING SVMS WITHOUT OFFSET

: : :
v 1D-SWM v 1D-SVM v 1D-SWM v
o5l + - Wsso + WSS 0 ol +wsso
——WS§ 512 —— WSS 512 ——Wss 512
0 Wss3 v 25[1--0--Wss3 v] 0 Wss3
045 - wss 515 —x WSS 515 71— —wsss15
—o—Wss7 - —o—Wss7 —o—wss7
— v Wss519 — ¥ WsS519 - ¥ Wss519

.
. ‘(39\06
[

.

S (S R)
o ¢ 9 & (© A
o 1 ‘ 0{,\)‘\ oo e @\{,\\@

o »e\’é\ &
W o

Figure 4: Combining methods based on simple 1D-extensionswisth 512, which considers the

approximate gain on inner SVs. The graphic displays the average nuiniberations

in thousands for the different methods over the entire 10 by 10 paranrateMgthout

combiningWss 512 with other methods, it performs quite poorly, while combinigs

512 with WSS 3 to WSS 515 yields an improvement over both methods. In contrast,

combiningWss 512 andWsSS 7 to WSS 519 does not give an improvement oSS 7

as the almost indistinguishable two green lines show.

10 nearest neighbors, also needs substantially less iterationg/gan and thelD-SVM, but the
improvements are less than thosansS 3. However, the combination of allySS 7, does not only
perform uniformly better than all participating methods, but also needs in cagsts only a few
more iterations than the optimalSs 0. Finally, WSS 8, which is a variant ofWSS 1, also reduces
the number of iterations substantially, yet it fails to perform as welv&s 7. Let us now have
a closer look at Figure 3 that shows how the methods based on an apgiorimfathe optimal
WSS 0 perform. Here it turns thavsSs 32, which uses the exact computation of the 2D-gain, and
WSS 128, which uses an approximation of the 2D-gain, perform indistinguishatiyaddition,
they only need a few more iterations thatss 0, and constantly outperforivSs 7, yet the latter
improvement is in most cases only marginal. Finally, the random approates4 andwss 256
do not need less iterations tha&rsS 7, and the complete random approachnss 256 performs
worse than the hybrid strategySS 64. However, by comparing with Figure 2 we see tigS
256 still needs significantly less iterations than ti@ SVM.

Another way to approximately compute the 2D-gain is implemented/$s 512. Figure 4
compares the number of iterations of this method toltesVM, WSS 0, and some combinations
of WSS 512 with simple 2D-extensions of tHED-SVM approach. A closer look at this figure shows
that WSS 512 alone is not a very good alternative to the-SvM, while combinations do yield
significant improvement. However, these improvements are not significaettrthanvss 7.

Finally, let us compare theD-SVM and the optimal 2D strateg¥SS 2 with the MVP approach
of WSS 16 andLIBSVM. Figure 5 shows that the 2D-MVP approachw§sS 16 performs only
slightly better than theD-SVM. In contrast,LIBSVM needs, not surprisingly, substantially less
iterations than theD-SVM, but it fails to perform as well as the simpgSS 3, and the more
complicatedvSS 7.

171

STEINWART, HUSH AND SCOVEL

; : : : : : : : : : : :
v 1D-SWM v 1D-SVM v 1D-5WM v
o5l + - Wsso + WSSO ol wsso
—o—wss7 —o—Wss7 —o—Wss7
kWSS 1 v 25{ 4 WSS1 v — H WSS 1
04r o wss 16 - WSS 16 71| o wss16
——LBSWM - —+—LIBSVM —+—LBSM

.
o “\@x\ “-\e@”’ ;LQQQ eﬂp@ » /@@ o 5‘)\\96 PO \)\(@ & /‘9@ ‘00“\6 o

.
&

> o R §

S '\\c“ CG\M

.
@ o @ ') o o0
o \4 \° (@ g CA
s o

i A
© \ 0
W

Figure 5: LIBSVM and MVP compared to some other approaches. The graphic displaysethe av
age number of iterations in thousands for the different methods over tine 0 by 10
parameter grid. On all data sets considered, the 2D-MVP stratS$/16 has some ad-
vantage over the simpteD-SVM, while LIBSVM often needs substantially less iterations
and performs comparably to theSS 1. However, neither of the methods approach the
close-to-optimal performance @SS 7 or even the optimal performance WSS 0.

5.3 Comparisons of Different 2D Subset Selection Strategies

The experiments of the previous subsection identified some working setieelstrategies that
performed close twSS 0 in terms of iterations. Unlik&/SS 0, all these strategies wer(n), yet
is seems obvious, that their run time may substantially differ. Thereforeptilefthe experiments
in this subsection is to evaluate the working set selection strategies in termgrofithéme. To
this end, we performed the already described 10-fold cross validatiomiaon our data sets and
measured both the number of iterations and the run time. Note that by congitletihquantities
simultaneously, it is possible to decide whether a strategy suffers fromgestamber of iterations
or only from its computational requirements for selecting the working set.elfolfowing, we only
summarize our findings, since Appendix A.1 contains various graphickagdisg our results of this
subsection in detail. In this appendix, we always report the averagéreetents per grid point,
where the average is either taken with respect to all 10 folds and the emdirergjust with respect
to the 10 folds and the grid points whose validation error is close to the minimaatialiderror. The
latter averages are of particular interest, when one does not use grath $er the hyper-parameter
selection, but some other, possibly faster methods, such as the one fili k¢eal. (2007). In
addition, the latter averages are also interesting for grid search, stecewath a search one usually
retrains the SVM on the entire training set with the hyper-parameters tHatiped best in terms
of validation error.

Let us now have a closer look at the results. The first observationkigeees 8 and 9 for
details, is thawss 2, which needs less iterations than the-SVM, does not run substantially
faster. However, this behavior can be relatively easily explained bytietfat in each iteration the
1D-SVM updates the gradients for one direction only, whevgas 2, due to its 2D-nature, performs

172

TRAINING SVMS WITHOUT OFFSET

two such updates per iteration. SimilalySS 8 cannot translate its advantage owsS 1 in terms

of iterations into a substantial advantage in terms of run time. In this case ga ok reveals that,
compared tWssS 1, WSS 8 performs an additional, implicit gradient upgrade when looking for the
second direction. The other results displayed in Figures 8 and 9 confirm our results frgond=2.

In particularWSs 7 not only need the fewest number of iterations, but also runs fastesnosizll
data sets. Finally, Figure 10 reveals, for which hyper-parameters somigireed methods achieve
their speed-up compared WSS 1. In particular, for large values df, WSS 3 andwssS 7 need
only half of the iterations of¥SS 1 andwsSS 5, which indicates that in this regim&yss 2 is

the dominating strategy in the former two combinations. On the other hand, fdnges ofA,

the nearest neighbor strategyss 4 seems to be the dominating working set selection strategy of
WSS 5 andWSS 7, since both methods need substantially less iterations than the metssls
andWsSs 3, which do not include the nearest neighbor strategy. Finally, thesentades in terms

of iterations do translate into almost the same advantage in terms of run time, srawditional
costs of the nearest neighbor strategy only depend on the nliobeonsidered nearest neighbors,
which, in general, is quite small compared to the sample size. Nonetheless itlsmantioning
that for a few hyper-parameter pairs, it is faster not to use the newgigtbor strategy.

Let us now turn to the methods that try to approximate the working set stratélgg optimal
WSS 0. Here, see Figures 11 and 12 for the details, it turns outVisst 32 andwssS 128, whose
required number of iterations were closesii8S 0, have a significant higher run time tharss 7.
Since the number of iterations of these three methods behave quite similariylyttexplanation for
this different run time behavior is the additional cost per iteration for comguw@in(approximate)
2D-gains. This explanation is further confirmed by the fact tN&S 128, which involves the
cheaper approximate 2D-gain has a better run time behavion#tss132, which uses the exact
computation of the 2D-gain. FurthermomSS 64, which computes only a fifth of the 2D-gains
WSS 32 computes, runs substantially faster tWa8S 32, despite the fact the the former needs more
iterations. In this regard, we finally note thatSS 256 runs over-proportionally slowly compared
to, for exampleWsS 128. Most likely, this behavior can be explained by less effective hardware
caching for the random pair selectionES 256. To get a better impression, on how effectives
7 chooses its working sets, let us now have a closer look at the numberatifater of the different
working set selection strategies. The bottom graphics of Figure 11 stadvethlr the entire grid,
WSS 7 only needs 5% to 20% more iterations than the best performisg 32. However, if
one considers only the grid points with small validation error, this good hehbgcomes worse.
Indeed, the bottom graphics of Figure 12 show that for such hypanrpgerswWss 7 typically
needs more than 20% more iterations tN&BS 32, and in some cases even more than 50% more.
Finally, Figure 13 reveals that in particular for small valued @nd flat kernelswsSss 7 requires
substantially more iterations thanss 32. However, at least on the data satMGUIDEL this
worse behavior takes place at grid points that do not need a lot of itesatigway, and hence the
advantage oWSS 32 is marginal.

The next question, which naturally arises from the observations aksowdether the number
of iterations used iWSS 7 can be reduced by combinigSS 7 with some methods that mimic
WSS 32 on the inner support vectors. Here, Figure 11 shows that the numlteratfons can be
reduced by such combinations in a few cases, but this never pays offris t run time, if one
considers the entire grid. On the grid points with small validation error, hekyéve situation is
slightly more involved. Clearly, the combination witiSS 2048 performs worst, yet combining
WSS 7 with WSS 512 or WSS 1024 sometimes yield a shorter run time. Finally, Figure 16 shows

173

STEINWART, HUSH AND SCOVEL

x0?

012

T T T
V- 1D-SWM V- 1D-SVWM V- 1D-SWM

* WSS1 *-- WSS 1 K- WSS 1
—6—WSsS7 —o—Wss7 06 —o—Wss7
25 0O-- WSS 16 0.1 0-- WSS 16 0-- WSS 16

—+—LIBSWM v —+—LIBSWM —+—LIBSWM

008

002

v *

. . . .
J § !
& o 6\‘1)\\3 &* o
o

L : .
5) £ 0 W Y \
\,(f‘) g \0\)‘0\’5’ Qe\“\’b‘\ & /,LQQ /,LQQ > bQQ o 5‘)\\06 P
9

Y
(4
& o

A & @ g @ o
W o g o s

Figure 6: Average run time in seconds per grid pointi8SvM and MVP compared to some other
approaches over the entire 10 by 10 grid. The 2D-MVP approadkiSs 16 is not a
good alternative to th&eD-SVM or even the two-dimensions#SS 7. Moreover,LIBSVM
is significantly slower thakvss 7.

that, at least for the data seVMGUIDE1, the improvements achieved by these combinations are
mainly at grid points that do not require a lot of iterations. On the other hialdo illustrates that
the computational overhead of these combinations is significant.

Finally, let us comparelBSVM with some subset selection strategies such as the MVP approach
of WSS 16 and the overall best performingSs 7. Here, see Figure 6 for a short impression and
Figures 17 to 19 for the details, the most interesting observation is that aithi¢sg 1 andLIBSVM
have comparable behavior in terms of iterations, they substantially diffemrstef their run time.
Because we used our own implementatiorL®SVM's solver, which employed the sanSSE2
optimizations as theD-SVM methods, the only way to explain this behavior is that the subset
selection strategy afiBSVM is significantly more expensive than the simpl8S 1. To understand
the latter, recall thatIBSVM’s strategy is based on computing an approximate 2D-gain, which is
guite expensive as we have seen in Figures 11 and 12 f@DisyYM methodswsSsS 32, WSS 64,

WSS 128, andWSS 256. In addition,LIBSVM's strategy cannot be efficiently vectorized, which is
another disadvantage comparedM8sS 1. Finally, it is interesting to note th&/SS 7 is between 2
and 4 times faster thariBSVM, when the average over all grid points is considered. Moreover, on
the grid points with small cross validation error, the improvement is rarely lessatfactor of 4,
and as Figure 19 illustrates, this is most likely not an artifact caused byatiffeptimal grid points.
Indeed, on some grid point$BSVM needs more than 10 times the run tiWeS 7 requires.

5.4 Influence of the Stopping Criterion

In this subsection, we investigate the influence of the stopping criterionn(8eocomputational
requirements. To this end, we considered the 10-fold cross validati@equce described earlier.
Moreover, in order to save time, we only considered the best performinging set selection
strategy, namelwss 7. For this method, we considered our stopping criterion (9) and the classica

174

TRAINING SVMS WITHOUT OFFSET

duality gap stopping criterion (7), where we set the right hand side of $iofping criteria to be
€/(2\) with € := 0.001. Note that this is exactly the same set-up as in our previous experiments,
and it is not hard to show that for the duality gap (7), this choice again teatie same theoretical
bounds on the generalization performance.

The results of our experiments are summarized in Figures 20 to 22. A quickhoovs that, not
surprisingly, the stopping criterion (9) never leads to more iterations, buirthrovements depend
very much on the data set. Moreover, these smaller number of iterationseglsgfpn terms of
run time, though the effect is less pronounced when we consider the gndira\Ve believe this is
due to the fact that computing (9) is a little more expensive than computing (2§ gimvolves
two instead of just one clipping operations. In this regard, it is interestingt® that theSSE2
instruction set iremmintrin.h makes it possible to avoid expensive branches for the computation
of the clipping by providingmin() andmax() operations. In turn, this results in a relatively cheap
stopping criterion; from some ad-hoc measurements made for a diffargruge, we estimate that
this computation costs about 10% of an entire iteration, though the exact rmareemost likely
hardware dependent. When we only consider the grid points with small tiafidaror, the positive
effect of the clipped duality gap is amplified as Figure 21 shows. The mefasdhis behavior is
illustrated in Figure 22 for thevMGUIDE1 data set. Indeed, this figure shows that for small values
of A, the stopping criterion (9) leads to both substantially less iterations and ishamtéimes,
whereas for largek, the computational requirements for both stopping criteria are essentially the
same. Although uniformly superior, the positive effect of using (9) is thgkly inhomogeneously
distributed over the parameter grid.

5.5 Comparing Different Numbers of Nearest Neighbors

So far we have consider&dSs 7 for 10 nearest neighbors only. Of course, this was a relatively ar-
bitrary choice, and hence it is interesting to investigate how the computatemnalements change
with the number of nearest neighbors. This is the goal of this subsection.

To this end, we again used the 10-fold cross validation procedureiltieg@arlier. Moreover,
we considered the behavior wfSS 7 for N-nearest neighbors, whelke= 5,10, 15, 20,25, 30. Our
first observation was that, fad = 25 andN = 30, there was rarely an improvement in terms of
iterations, but the required run time tended to slightly increase compared to isialleo keep
the figures clean, we hence plotted the resultdNfet 5,10, 15,20, only. Figures 23 and 24 show
thatWwss 7 behaves slightly worse foX = 5, while for largem the behavior over thentiregrid is
essentially indistinguishable. The latter observation mildly changes, if oneongiders the hyper-
parameters with small cross validation error, yet it is unclear to which exténdffect is caused by
possibly different hyper-parameters picked by the different metHodsddition, a detailed look at
Figure 25 does not really clarify the situation, since many of the run times mezhate close to the
finest resolution ofime.h. Consequently, it seems safe to say that, at least in the Mirg#0. . . 20,
the performance oSS 7 is essentially independent b

5.6 Comparing Different Initializations

Let us now investigate the influence of different initialization strategies oradhgputational re-
quirements. To this end, we trained-SvM with WSS 7 and with different combinations of cold
and warm start options on the data sets summarized in Table 1. Moreosgyaweused the 10-fold
cross validation procedure described earlier.

175

STEINWART, HUSH AND SCOVEL

x10°

0.035

T T T
—+—10-W0| —+— 10-W0| —+—10-W|

0.03

0.025

0.02

0015

001

0.005

L L L L L L Il Il Il Il Il Il Il Il
s e 6 S 0 5)
60(@ ‘(\eg(\ OQ‘\@ @ o A o€ ST S N s ‘)\\ge OIS & o
o

.
o]

ge & o o @ E:

¢ P 0 RN P N L

§& v ol ¥ S

Figure 7: Average computational requirements per grid point of more carmpt&lization strate-
gies for thezD-SVM with WSS 7 for small (left), mid-sized (middle), and relatively large
data sets (right). The graphics display the run time in seconds. The cdléhgializa-
tions with zeroslQ- plots) need less iterations but in most cases more run time. In almost
all cases, the more complicated initialization strategies perform better than thie simp
warm start approaches. Overadl;w4, 11-w4, andI0-W6 are the most efficient methods
in terms of run time.

The first observation is, see Figure 26 for details, that initializing with zeheays leads to
less iterations than initializing with a kernel rule. Surprisingly, however, éogiired run time for
both initialization strategies is substantially less different. A closer inspectiaaled® that this
is caused by the fact that the solver initialized with the kernel rule methodl spends most of
its iterations during initialization, that is, most of the iterations counted are frenodter loop of
Procedure 4. Since these iterations do not involve the working set salecttbthe computation
of the stopping criterion, they are relatively cheap compared to the iteraifahe actual solver
described in Algorithm 2. Moreover, Figure 26 shows that the simple w#anh Strategiesv2,
W3, andWs5 do reduce the computational requirements significantly, where in almostsal the
scaling approach ov3 andws performs superior.

Interestingly, the computational requirements can often be further rddiycene of the more
complicated initialization strategi®#®4 andweé as Figure 7 illustrates, see also Figure 27 for more
details. In particular, the combinatiofGw4, 11-W4, andI0-W6 run in most cases faster than the
simple combination0-w3, and overall it seems fair to say thatw4 performs best. However note
that this approach requires access to the entire kernel matrix, andtherammbination-w4 and
10-Ww6 may be the better choice, if storing this matrix is not an option.

We also conducted a control experiment in which the warm start optiorilslaieafor SVMs
with offset are compared. Figure 28, which displays the correspomdsdts, shows that in most
cases scaling bw3 andWws is better than keeping the solution, thatWw&?. This is similar to our
results for SVMs without offset, but a closer look reveals, that the run gaie for SVMs with
offset is both less pronounced and less consistent. In particular ftarther data sets, the gain by

10. For brevity's sake we omitted the display of the corresponding plots.

176

TRAINING SVMS WITHOUT OFFSET

using a warm start for SVMs with offset is about 20%, while for SVMs withoffset it is about
45% even if only the simple warm start optiavt is used. Moreover, the more complex strategies
for SVMs without offset can reduce the run time by about 60% on thesesd#s. Consequently,

it seems fair to say that SVMs without offset benefit substantially more fwanm start strategies
than SVMs with offset do.

Let us finally investigate the effect of some of the initialization strategies féerdifit hyper-
parameter pairs. Here Figure 29 reveals that the warm start optiormmeafmost uniformly
better than the cold start optio®W0. Moreover, the complex warm start strategy achieves a
significant gain for small values &f Since thesa are computationally more demanding than large
values of}, the success a4 can be explained. On the other hand, the strategyiandweé start
with the smallest value df, and hence they do not achieve any improvement mvaro for thisA.
However, they achieve a significant improvement for basically all othielegaofA, which in turn
explains their success. By combining these observations and the fattid¢hatld starto requires
a relatively small number of iterations on medium valuesXpit thus seems promising to use a
hybrid strategy that starts with such a medium value\fand then perform/4 for smallerA and
W6 for larger values. However, investigating such a strategy is out of thygesaf this paper.

6. Conclusions

We have thoroughly investigated SVMs without offset tdrtiat use the hinge loss and Gaussian
kernels. It turned out that these SVMs have convergence ratedassification performance that
are comparable to SVMs with offset, while the absence of the offset giee freedom in the
algorithm design. In particular, we identified three areas, where this atllifieedom results in
faster algorithms:

e Working set selection.In principle, an SMO-type solver for SVMs without offset can update
one variable at each iteration. However, we saw that this approachdoksad to run times
that were shorter than those of an SMO-type solver for SVMs with off§etthen identified
some selection methods for working sets of size two, that modified the searalofking
sets of size one only very slightly. It further turned out that these modifitatiecreased the
number of iterations substantially, and since updating the gradient and toqthe stop-
ping criterion for two variables did not change the costs of an iteration dieetly, these
modification also resulted in a significantly shorter run time. It is further worthtioeing
that the most successful selection strategies for workings sets of sizeemgactually com-
binations of a couple of such simple maodifications. The reason for the lateethaasome
strategies worked particularly well for large values of the regularizataareteiz, while
others worked better for small values)ofThe good combinations then contained both types
of strategies and identified the better one at each iteration automatically.

e Stopping criterion. Another improvement of the run time behavior of our algorithm came
from a new stopping criterion that has a clear justification from recenttstatisnalysis of
SVMs. This stopping criterion, which is essentially a relaxed duality gaggmeads to more
iterations than the classical duality gap stopping criterion, but it often dsedethe number
of iterations. Moreover, its computational costs were almost identical to tifdke classical
duality gap, and hence it often resulted in shorter run times.

177

STEINWART, HUSH AND SCOVEL

e Warm start initializations. SVMs without offset also allow more freedom in the design of
warm start initializations when the hyper-parameters are determined ovat afdiyper-
parameters. We investigated a couple of such initialization methods and saveitiai$
them led to a substantially shorter run time. Moreover, by comparing to sonme start ini-
tializations for SVMs with offset, we observed that SVMs without offsetddé significantly
more from such strategies.

It seems fair to remind the reader that in our experiments we only considatadsets for which
the kernel matrix fit completely in the RAM of a desktop computer. With presamfigurations of,
say up to 8GB RAM, this limits the data set size somewhere between 25,000 &0 3amples.
While such sizes are typically not considered to be extremely large, thegdgloenstitute a decent
challenge for existing off-the-shelf SVM software, if the training time is aneéssvioreover, even
for smaller data sets a fully automated hyper-parameter selection run fos S¥thl offset is, for
some applications, too time intensive. Our new SVM solver yields a signifiedattion in time for
medium-sized data sets, thus opening the applicability of SVMs to such probleains. However,
it seems fair to say that although many data sets actually fall in this range ofssizes other
applications demand processing substantially larger data sets. So faraihseunclear, how well
our new solver performs for such data sets, and since our experinstmtyl was already quite
extensive and expensive, we postpone this question to future researc

Some other directions of future research include the following quest@mnare there cheap
modifications of our 2D-working set selection strategy that identify workietg of larger size for
which the number of iterations and the run time is further redu@&€an some of our ideas be used
or modified for other SVMs, that, for example, use different kernelgaaridss functions?) Can
the run time of the solver be further improved by not only using vectorizati@i$8E instructions
but by also distributing tasks between different cores of a modern gsoce

Appendix A. Detailed Experimental Results

On the following pages, we present more graphics illustrating our expetairferdings. To keep
these graphics in order, we divided the appendix in several subsgctbith follow the order of
the subsections of Sections 5.

178

TRAINING SVMS WITHOUT OFFSET

A.1 Results for the Different Working Set Selection Methods

T
v 1D-SVM
% WSS1
- WSS 8

—A-Wss2

—Xx—WSS3

- -WSS5
—6—WSS7

T
v 1D-SWM
*- WSS1
0 WSS8

-A-Wwss2

—*x—WSS3

— % -WSS5

—6—Wss7

:
v 1D-SVM
% WSS1
0 WSS 8
q -A-Wwss2
—x—WSS3
— % -WSS5
—o—Wwss7 e

. L
& 'S @ S ol o 5 5 %) 0 0 2 0 2 2 (@ 2 2 3% Xy 0 °
o oﬁ“\\e 6\90‘(\% A 9\@\@ &a\)e\e k<>°‘0\05 Qe“‘\a‘\ @\\2 \,’@Q 6/100 IS yc}!“ W g P8 Q“\<\° < e,c,@ w\“‘o‘“ &
o A : 2 W o ® (© \ W
W S o i 9 o
T T T T T T 05 T
V- 1D-SVM X v 1D-SVM
WSS 1 A oas)| o wss1 4
0 WSS 8 i 1 0 Wss8 i
-A-Wss2 D -A-Wss2 . i
—x—Wss3 Lo 0471 —x —wss3 i
¥ -Wss5 ;o 1 ¥ -Wss5 A i
—6—Wss7 | 035H —0—Wss7 / i A

13 . ! ! ! ! ! 11 : . 1 :
* - WSS1 % WSS1 * - WSS1
9 wsss N Losll 0 wsss o o | 0 Wsss 13
12| —x —WsS 3 —x—WSS3 12 —x—WsS3 b
—V -WSS5 — % -WSS5 — % -WSS5
—6—Wss7 B —o—wss7| ¢ ® d i * bi —6—wss7
11 n 11]
x [095 [i
" A ¢
1 B LI SEPES 1 % * / Sy---9 n $ * 5 % * " 4
A 6 T \ o 3 09 ,/ 0 3

05

&

0

&

.
0 6
W\ o
9 C}\‘o

o .
00@1? o

N
o R *
«®
)

9 o 3
ERE go‘m\)

5
A&
o

& o e 0
@ A A\ &
o g §© (©
g o N

&

Figure 8: Average computational requirements per grid point of simple gigteof the 1D-search
strategy over the entire 10 by 10 grid. The graphics display the numberatisies in
thousands (top), the run time in seconds (middle), and the nat&sx/WSS 1 of the run
times (bottom) WSS 7 performs almost uniformly best in both metrics.

179

STEINWART, HUSH AND SCOVEL

30

T T % T T T
v 1D-SVM V- 1D-SVM V- 1D-SVM v
- WSS 1 v % WSS 1 £ WSS1
- Wss8 0 Wss8 v 0 wss8 A
-A- WSS 2 -A-Wss2 A 50H - -A-Wss2 n
X - WSS 3 D« - wss3 I —x—WsS3 I
— % -Wss5 — 7 -Wss5 [-7 -WsS5 o
—o—Wss 7 —e—Wss7 [—6—Wss 7 [
i % [
| | i \
& A / i |

v, 1 \
v X ! i \ ! v
-7 \\ i \ 2 1 \
s
, \
,
,
4 ¥
v Qoo TN
IS
? v . |
0 0
'\ée'b 100 rLQD »
« ‘(\Q\‘ & QQ’/ o
o A B NUI o
T @ O o 03
x10°
6 T T 04 T T T T T 1 T 4
v 1D-SVM v V- 10-SVM s - 1D-SVM ¥
- WSS 1 WSS 1 ki ool Wss1 y
O WSS 8 03510 WSS 8 p 0 Wss8 [
5H-—-A-wss2 v -A- WSS 2 \ -A-Wss2 [
—x-WSS3 —x-WSS3 N 08 —x —wss 3 oy
- ¥ -WsS5 03f - % -WSS5 I -V -Wss5 [
—6—Wss7 ——Wss7 o 07H —e—wss7 [

x '\ e 6 3 0 5 5)
B I A A N g S ,L@Q ,LQQQ »° 6@“ RN S AN G 6@0 & e
& 6\90 o o & \0“‘ ge\ o % o y Y o & ©
o & e ¢ 6“‘“ o o 5‘3‘(\ \lﬂq \\‘\)6
3 0 W ©
T
% WSS1
0 WSS8
81 - wss3
— % -WSS5
71 —e—wss7
6
A
\
5 // \
A
4 SAN
S
/ / Y \
3 v o, A
2
= ~
~ 3
ey APy ¥ 4 L L L L L L L 02 L L L L L L
& g (© o o o o o 0 %) 0 W 2 0 2 P W@ 2 S 39 S 0 © S
o W 09‘!\@ 5\5&6 \/G,()(\c “9\(&‘2‘ ‘g\z"e\ \0\3‘& ge‘«@ ‘(\q\i‘ée V@Q G/,LQ% P CJQQ W W 5‘)\‘0 o W “@-)\QS el e})@ \\‘00“\ o
1 o S AP o N \ °
AR s o " : o

Figure 9: Computational requirements of simple extensions of the 1D-sstatbgy on the grid
points whose cross validation error is not larger than 1.05 the minimal cadisiation
error. The graphics display the average number of iterations in thosigem), the run
time in seconds (middle), and the ratiessS x/WSS 1 of the run times (bottom). Un-
fortunately, for the small data sets, the run time measurements are not Nabbjereln
addition, the set of considered grid points may slightly vary for the diftenesthods,
which in turn may influence the computational requirements and hence tHeg@atthe
bottom left has little informative value. It seems fair to say that ovevedls 7 performs
best in both metrics, but is closely followed WSS 5 in terms of run time.

180

TRAINING SVMS WITHOUT OFFSET

I
- — WSS1p

T I
I — - WsS1
wss3|| Wss 3
— —Wss5 ! — - WsS5H
——Wss7 l 1 ——wss7
| i i
! |
] i '
. 1 i i]
: A
1 1 ! i
I
, | i i
! i i | I !
| b I
I ! : ! : i]
i i . N |
\ '1\ NN RN i \ ‘W\ e !\\ ‘m\ \\\ |
A U \ AR PN RN S PN \
[N B g O T e O A \ R R\
vl o\ L\ \/\)g N PR SV W f
YA\ 1 ! / ! L\ / ! U ! ! !) !
7 8 9 10 1 2 3 4 5 6 7 8 9 10
7 T 5 T T
- - Wss1 ! - — WSS1
o wss3|| 45f i WSS 3]
| — - WSS5 i — -WsS5
| ——Wss7 ar . | —— WSS 7|
]
5 ‘ | 1 38t ! ! , E
I J i i ‘
[I | I
4 | | | i 3r | i J il
i ! i i i i
{ t [258 i I i :]
3t | ! I] / | I i !
/ I ! i ; 2r | i i i i]
, I t ! I i // i j I i " 1
P U R] - [N | P,
S N i [N Py Y R A Vi A Vi it PV T
\ \ \ v \! I ! ! = A \r ! | |
\r \ \ \ \ 1 = = 1 f S ¥ 1)
!) 9
1 _ A N N N L < K ! L
05t g
0 L L L L L L L L L O Il Il Il Il Il Il Il Il Il
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Figure 10: Computational requirements per single grid point of simple extesfdhe 1D-search
strategy for thesvMGUIDEL data set. Each horizontal cell numbered by 1 to 10 cor-
responds to a single kernel parameateand an ordered run through the A6values,
where the left of each cell corresponds to the largeslue, and the right to the small-
est. Analogously, cell 1 corresponds the the largestlue, and cell 10 on the right
corresponds to the smallestvalue. The graphics at the top display the number of it-
erations in thousands (left) and the run time in seconds (right), both adkmgr the
10 folds, forwss 1, WSS 3, WSS 5, WSS 7, andWSS 8. WSS 7 performs almost
uniformly the best in both metrics. However, for lalgewss 3 performs comparable,
while for smallA, WSS 7 is closely followed bywSsS 5. The graphics at the bottom
show the ratio®sSs x/WSS 7, x=1,3,5,7, for the number of iterations (left) and the

run time (right) to illustrate the performance gainiegs 7.

181

STEINWART, HUSH AND SCOVEL

0.05

T

—6—WSS7

—+— WSS 32
4 WSS 64

o WSS 128
Q- WSS 256

T T
—6—Wss7 —6—Wss7
—— WSS 32 —— WSS 32
120 % wsses Tl o wsse 9
o o WSS 128 o 0 WSS 128
S 11l 0 wss2s6 0 0 WSS 256

L
V3

L L L 0.4 L L L L
2 o <@ & o & D 0 W > 0 >
E A . Y L I L S G R
o & S A R @ ¥
o 's s e o P o0 o
W W i o A\
0.015 T 07 T T 35 T
—6—WSS7 —6—WSS7 —6—WSS7
—— WSS 32 —— WSS 32 4 —— WSS 32
- WSS 64 ogll - Wsse4 (|- wsses
o WSS 128 o WSS 128 0 WSS 128
O WSS 256 13 O WSS 256 O WSS 256 ¢
05 251
001
3
3
0005
o
a "
o 13 o n
¢ ®
2 . .
X & e 6 < o 5 5
e @ @ & & 5 o o
0 ¥ SR o NG A (©
\0&\"5\) AT &
W I
125 T 1 T T 1 T T
—o—Wss7 —o—Wss7 x —6—Wss7 .
—— WSS 32 ——wss3R | ——Wss 32
% WSS 64 125 - WSS 64 125 - WSS 64
12 O WSS 128 " 0 WSS128 ; O WSS 128
115
%
114 *
*
1,05
§ 7 7 g g &
0.95 L L L L L L L L L L L 0.95 L L L L L
& i © © o e & d 0 > 0 0 3 0 S 2 @ > o 38 > 0 © @
o & 5\’“6 5% @(\c @ '0“8‘ \\‘G\a @ G ,'LQQ ,’L@ & ,%QQ W W s‘P\\c & * ¢ @ /6“0 & &
R S o o © ¢ W @O @ o 9 o
« \\qe‘ R B i o i 9 o R

Figure 11: Average computational requirements per grid point of methasigion approximations

of the maximal gain strategy’SS 0. The graphics display the number of iterations in
thousands (top), the run time in seconds (middle), and the ratiS x/WSS 32 of

the number of iterations (bottom). AlthoughiSS 7 and the semi-randorwss 64

need slightly more iterations thanSS 32 and WSS 128, their costs per iteration is
substantially less, which results in a significantly shorter run time. The completely
randomwss 256 needs over-proportionally more run time, possibly because of the less
effective hardware cache.

182

TRAINING SVMS WITHOUT OFFSET

055 . 25 . 7 : 5
—o—wss7 —o—Wss7 —6—Wss7

o5l ——wss22 ——wss 2 ——wss
*o WSS 64 # WSS 64 ol wss s
o Wss 128 0 Wss128 ¢ 0 Wss128

0457 ¢ wss 256 29 wss2se] O o] O WSS 256

04 5 *

005

\ e 3 3 5 5
o ‘\eﬁ(& R e 0@(\06 \@\\0‘\ & & @ \@e'b ;LQQQ /10@ M ,6“00 o
o & o & o ¢ @& 9 ¢ \
LA O ERET AN) o
W s N © W
002 : : : : : : 14 . 45 .
—6—WSS7 —6—WSS7 —6—WSS7
0018 —+— WSS 32 —+— WSS 32 —+— WSS 32 0
Ko WSS 64 1oll # wsses 0 1 4] % wsses
O-- WSS 128 0-- WSS 128 0-- WSS 128
0016y ¢ wss 256 0 WSS 256 ast| 0 wss2s
0.014 1 q 0
3
0.012
08
001
19
p)
0008 06
0006
04 [0
0.004 6 [
02 4
0.00:)
% o ‘
3 . 7 X 3 %
9 J £ 5 5
o “ea“ Q‘\e@ s p 5F \@\\o“) 0“6\6 oo \&\‘\éb /@@ /@00 » @“Q R
o o & o @ 9 @ &
@ Ll E AR o
W o LY \
15 : 45 : 22 : : !
—6—WSS7 —6—WSS7 —6—WSS7 %
—+— WSS 32 * —+—WSS32 * —+— WSS 32
L4 5 wsses At WSS 64 4 2 & wsses
0 WSS 128 0--WSS 128 0-- WSS 128

o B # ¥
09 *
08
07
o
o @ o 60«\3‘6 /cﬁ@e‘ 9\‘0\@“ .\090\66 “‘c\ﬁ"s e‘«fﬁ“ Q\M S U GO\ R GO N Q\S\(@ #
o° v\\\e"é\ v\@"ﬁ\ i ’ ¢ v '\\c“\(\\, c,o‘“?e \\"(\“x o Ooqﬂqe ‘0\)5“

Figure 12: Computational requirements of methods based on approximatithesroaximal gain
strategyWss 0 on the grid points whose cross validation error is not larger than 1.05 the
minimal cross validation error. The graphics display the average numiierations in
thousands (top), the run time in seconds (middle), and the natBsx/WSS 32 of the
number of iterations (bottom). For the small data sets, the run time measurengents ar
not very reliable. In addition, the set of considered grid points may slightty for the
different methods, which in turn may influence the computational requirements

183

STEINWART, HUSH AND SCOVEL

T I T I
10F ! —Wss7 | 4t I —Wwss7 |
! - — WSS 32 ! - — WSs32
WSS128H 35l | wss 128
— —WSS 64 e ; — - — WSS 64
N 3k I t 4
t t
] ! ’ ‘
255 i i , f
| 1 ! ’ ! !
Lo ! | h i
1 o2) ! '
1 15 ' ; !
~ Ty A J“ ! [j\ ﬂ\ 1\ \ \
| 1 Y A \ \ \ \
1 O T O \ \ \ U
i | L T T T T S \ \ \ \
| / \/\4 05f_ RV RN R U TR Lt '
A | I \ = -, ’\\1/\\,’\\,/\\//\\/ \\\/\\\
4 N/ ks v - .
L L L a A 4 XDy N N s A RIS SIS
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
16 T T 20 T T T
| ——Wss7 , . ——Wss7
- — WSS 32 181 I Iy \ - — WSS 32 ||
L / I i L - N N /N
14 , , WSS 128 N T A A B R B! wss 128 |
j , - -wssed || Brovc b |- -wsses
- . . \ (] | | T
2t | | . ‘ 1w L vy | | | '
I I ! / b |
I | | i 1) ' | | | ‘
1 / ! /) 12F U Vi \ 1 " o
7 T f / \ | \
Loy | | \ \ \ \ . ‘
vl ' P! |] [| | 10 (; Y vl’ |
08F i i 1 o i P ’
A S i i 8r /]
: v I /
06F v 11 \n ! ‘. I 1. l\ 1 6r / , ! / ! i
(N A A D L U T
" \ \! \ e - Vi) P k.
!) \ v \ . \ \
04F \ Y ! ! \/ \
] 2, 4
02 | | | | | | | | | 0 | | | | | | | | |
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Figure 13: Computational requirements per single grid point of methodsl lo@sapproximations
of the maximal gain strategwSs 0 for the SYMGUIDEL data set. The four graphics
have the same format as the ones in Figure 10. The graphics at the topy displa
number of iterations in thousands (left) and the run time in seconds (righit)alseraged
over the 10 folds, while the graphics at the bottom display the corresppratioswss
x/WSS 7. For some grid pointsWwSS 7 and WSS 32 need approximately the same
number of iterations, while for some other grid poin#sS 7 needs significantly more.
Nonetheless, the run times WSS 32 are substantially worse than thatwts 7.

184

TRAINING SVMS WITHOUT OFFSET

04 . 1 : : : : : 3 :
—o—wss7 —o—Wss7 —o—wss7
+ WSS519 * WSS 519 | + WSS 519
o3l wss 1081 1214 wss 1031 H- WSS 1031
—x ~ WSS 2055 X WSS 2055 X~ WSS 2055
11 s
1
09
08
07
06
05
005 , , , , , , of . , , . . .
& e 3 & o 3 5
& o e‘\e‘ 60‘(@ p g\‘*e 9“ A% -300\0 p R p “@x\ “-\e@“ ,{LQQQ /7,@0 » ,6000 o
o o & o « sq‘(\% 'c““x o o
AN\ ¥ i
x10°
. 01 . o . .
—6—Wss7 —6—Wss7 —6—Wss7 ¥
4 WSS519 * - WSS519 / + WSS519 N
A WSS 1031 L 4 WSS 1031 r 084 wss 1031 TN
25[- — WSS 205 i 011 —x ~Ws5 2055 4 X~ WSS 2055 i N
, ! 07 i
4 ! 1
/ ! 1
2 , 008 r] s h
/ /
h h I
/ / 05 !
006 / — ,
. , 04 i
s\ / !
004 s ! 03 !
, \ / . i
% P =
02 4 T
002 L ¥
[

! , , , , , X .
t e 3 & 0 5 5)
o veo“ Q‘\e‘ R T \@e’b 10“0 ,Lgoﬁ »* @“0 G \,\\oe P R g 6@0 R
o RO ¢ ¢ V¢ y s o ¢
o \/é & S K) & o N o o o R
RSN ¥ \ A
1 T 1 . 14 .
—o—wss7 —o—Wss7 —o—Wss7
+ WSS519 * - WSS519 4 WSS519
15[% - WSS 1031 1o5l| * WSS1031 1135 & wss1031
k4
*
14 13 % + *
12 : 1 + * +
. 4 125
115 —
% : 12
1 ¥ * s B 3 *
11 115 A
11 ® i
* " *
¥ 11 %
105 1 *
X # * *
108
09 ¥
* X
08 L L L L L L 095
& (\ © ' 0 o P %) 0 0 S 0 S @ ? kS kS 0 © S
g 6\3‘@‘ IR o“e\e \“0\05 & @ P U G \&\ée“/ O S L
A & P & © A & o - @ o o
v & o 3 RO i S o o

Figure 14:

Average computational requirements per grid point of combinigag 7 with some
methods that use the formula for the approximate gain on inner SVs overttres Eh
by 10 grid. The graphics display the number of iterations in thousands (t@xun time
in seconds (middle), and the ratiaess x/WSS 7 of the run times (bottom). Although
the combinations need a slightly smaller number of iterations, their additionddeaekr

per iteration leads to longer run times.

185

0.35

STEINWART, HUSH AND SCOVEL

T 1 T 4 T T T T T
—6—WSS7 —6—WSS7 —6—WSS7 /)‘
+- WSS 519 *:- WSS 519 *- WSS 519 i\
4 WSS 1031 14 - WSS 1031 | 4 -+ WSS 1031 | A\
—x — WSS 2085 —x — WSS 2055 X —x — WSS 2055 i M

. . .
0 Q\&@e’b P R R
W @ W
o A N © o
R G B i go‘d i
x10°
. 0045 . ! 14 :
—6—WSS7 i —6—WSS7 * —6—WSS7
45l -+ wss519 ; * WSS519 N i + WSS 519 ¥
* WSS 1031 ; 00411 5 wss 1031 ; > 1ol % wss 1031 i
4 —x — WSS 2055 , —x — WSS 2055 | \ —x — WSS 2055 ;o
; 0035 i |] ;o
7/ ! \ / '
35 , o0 i \ |t h \
/ / \ ! / \
3 / 1 \ ! ! \
x 0025 ! \ sy / !

’ 0.02

0.015

0.01

0.005

Ny %

X g e © of \ 5 5 \) 0
o @ g @ @ @ S
o o % i & 3) X / /
o §° 4 W & o ¢ \ @ y
o ¢ S S 5 @ o o o
W e ¥ §
35 . ! 2 . ! 1 . ! ! ! ! !
—6—WSS7 —6—WSS7 —6—WSS7
* WSS 519 + WSS 519 14l # wsss19 * .
sl * - wss 103 1gll # wss 103 4 WSS 1031 .
13
*
25t 16 12
R
* * * *
2F * %* 14 * 11
i
* * .
150 * 12
% * 08
*
1 & & 08 *
* * 0
7
0s- 08
06
*
*®
+ L + + +- L L L L L e L L L L L L L
0
X & e o o o ° 5 0 0 0) \ ©
o e o o é\a‘)e\e o a“@“ g\i\{;& P NG xcj@ R R Q’“\(@ P o s
o ¢ X - 10" [\) s S © e S 7 N
o - o & NUR \ S N © W
R \)@’& B i ooq\‘l i B o o

Figure 15: Computational requirements of combingS 7 with some methods that use the for-

mula for the approximate gain on inner SVs on the grid points whose crossti@iida
error is not larger than 1.05 the minimal cross validation error. The gramhsplay

the number of iterations in thousands (top), the run time in seconds (middtejhan
ratioswss x/WSS 7 of the run times (bottom). For the small data sets, the run time
measurements are not very reliable. In addition, the set of considededaints may
vary slightly for the different methods, which in turn may influence the contjunal
requirements.

186

TRAINING SVMS WITHOUT OFFSET

~
T

w
T

)
T

-
T

T
—WSS7
—-—WSS519 03r
WSS 1031[]

0.251

021

0.151

T
—Wss7
— —WSS519 A
WSS 1031

11

1.05f

ZSAVMyNkyi

IS

0.95

0.9r

0851

08F

0.75

1 2 3
T 16 T
——Wss7 ——Wss7
- -wssslg || 15¢ — —WSS519 ||
wsswoaf| L WSS 1031
: 1
: 1 13F ! /
\ | 1
i | !
1 ! : 4 l2p ! | /
! ‘ ! i i
‘ i ! 11F ' \
\ 1 1 I
! ' 1 S £ ! T \ y\/(T Lo
i | / \ ST T
' i A | (AR U ’ \\ ! \\/
09f VI . \
1 i (L/ 1 i
! E 08F ,
| 4
07F
1 1 1 1 1 1 1 1 1 1 1
8 9 10 1 2 3 4 5 6 8 9 10

Figure 16: Computational requirements per single grid point of methodsl lmssimple exten-

187

sions of the 1D-search strategy for taeMGUIDEL data set. The four graphics have
the same format as the ones in Figure 10. The graphics at the top displaynbemof
iterations in thousands (left) and the run time in seconds (right), both admagr the
10 folds, while the graphics at the bottom display the corresponding r&tB@sx/WSS

7. Note that for large\ the Boolean flag ofvSS 4 is typically not set to true during
the optimization, and hence all methods reduce/8s 3. Analogously, for larg& and

0, the graphics nicely display the additional costsugS 512 andwsSS 1024. Finally,
the differences in the run time occur on a very low and hard to measure \eveh
explains the fluctuations in the bottom right graphics.

STEINWART, HUSH AND SCOVEL

T
v 1D-SVM

T
v 1D-SWM

T
v 1D-SWM

09 % WSS 1 * - WSS1 # WSS1
—6—WSS7 —6—WSS7 v —6—WSS7
0-- WSS 16 5 0 WSS 16 1 O WSS 16
087 ——LiBsvM v ——LIBSVM v 20 —+—LIBSWM
a
07
o 4 o
06 15
*
05 S 3 v
04
v
03 ¥
v B
02 *
L
L L L L L L L L L L L L L L L L L L
q 3 x 5 5)
o o eﬂ’\\e& 60&@‘ & r A éa“e\e p o p o g\@e’b B I A CO 4 PP “\(\e@ # \00“\9 o
o & ! K \ 0 «§ i« Y ¢ Y o 4 "
ot A o S N o \3 o \(\ W
@ @ B i ooq\‘l i 8) o
x10°
: 012 : 07 :
v - 1D-SWM V- 1D-SWM v 1D-SWM
* - WSS 1 %* WSS1 #- WSS 1
—6—WSS7 —6—WSS7 06 —6—WSS7
25 0 WSS 16 01 0-- WSS 16 - WSS 16
—+—LIBSVM A —+— LIBSVM —+—LIBSVM
s
008
% 006
0.04
002

: X
& S <© $© o 0 5 > %3 0 0 S 0 P (® 3 S 39 S 0 © S
O @ o & o g\"&\@ § o"e\e \)‘&5 e‘“\'b‘\ G A P LA e o ¢ & o & &00‘“ &
o \/6\5 o o & 5 DAt S e o R @ o
W W 9 @ 3 © o «
3 : 45 T 7 T T T T T
V- 1D-SWM V- 1D-SWM v - 1D-SVWM o
% WSS1 *-WSS1 # WSS1 v
—6—WSS7 4H —©—WSS7 4 —6—WSS7
3f o wss16 0 WSS 16 81l o wss16
—+—LIBSVM —+—LIBSVWM —+—LIBSVM

35
25
3t
v
2 25F 5
5
v *
15 * % 2
a
* o * * % v 2
o 15 N * v *
* * I %
X g Py g
L L L L L L L L L L L L L L L L L L
J 6 \ o 3 5)
o 0‘5‘)\\8‘ ‘ 50“\8‘ o @@ 6\7’“& & o Q\;\@% x;p@ PG y@““ R A N “\000\5 2
S 4 N 10") ®
o \Ne‘ “@a‘v o eq\‘\ “c\\“ GON\) .@\“ 94\‘\ 00\‘“? ‘(\Qs

Figure 17: Average computational requirements per grid poimtg$vM and MVP compared to
some other approaches over the entire 10 by 10 grid. The graphicsydisplaumber
of iterations in thousands (top), the run time in seconds (middle), and the xAtiSS
7 of the run times (bottom). The 2D-MVP approachw8gsS 16 is not a good alter-
native to thelD-SVM or even the two-dimension&/SS 7. Moreover, althougwss
1 andLIBSVM perform approximately the same number of iterations, their run time is
significantly different due to the more expensive working set strategyBsfVM.

188

TRAINING SVMS WITHOUT OFFSET

T T T T T T T 6 T T
v 1D-SVM V- 1D-SVM v 1D-SVM v
- WSS 1 v % WSS 1 H WSS 1
—6—Wss7 —6—WSS7 v 1 —6—WSS7 o
0 WSS 16 oo WSS16 50 o Wss16
21| —+—LIBSWM 20 —+— LIBSVM B 1 —+—LIBSVM
a %
15 15
30
1 10 v
v 8
a
05 5 ¥ Q
L L L L L y . ; &
x g e © of o 5 5 0y \) 0 ")
B A I A L P »® W
< P & ¥ ot @ W e N . 1 %
R & e N [© o 9 & @ o
o & z ER AR o
W W ©)
x10°
6 T T 035 T T T T 3 T 1 T
v 1D-SVM v v 1D-SVM v 1D-SVM
% WSS1 +- WSS 1 ool # wss1
—o—Wss7 5 03ll —o—wss7] —e—WsS 7
5o Wss16 v o WSS 16 o WSS 16
—+—LIBSVM —+—LIBSVM 081 ——LIBSWM
025 1 07
06
02
05
015 o
9
01] o3

v

005 5 5 v E
N N 01M
‘ *
i ? ! . i

g 0 0) 2] S 2 (® 3 S 39 S 0 © S
O g?/‘(@ \\\(\e }L““ e/,pﬁ P ,600 W¥ WK 59\\0 o W \)\QB el e’60“ \\‘00‘(\ o

- 3
& [S S 9 ¥ 9
o & RO - (© \ W
A g 9 o0 ¥ s GO\M ¢
12 . 3 . 3 12 .
v 10-5M v 1D-SVM v 10-SVM
WSS 1 *WSS1 WSS 1
—O—WsS7 20 —6—WSS7 | —6—WSS7
w0l o wssi6 o WSS 16 0 5 Wss 16
—+—LIBSVM —+— LIBSVM —+—LIBSVM
v b3
8 . 5

<o

4 v v
10 A
v a
2 o s 9
* o A . 7 N
V Ve e,
@ o 0 %3 0 W S 0 S P (® 3 S 3% S 0 © S
o O ge‘«@ \i\ée /100 /,Lgb P /CJQQ W W 59\\0 o W \)\(\0 el e})@ \\‘00«\ o

iy [\ o 9 o 3 o 9 &
W @ T go“ﬂq i o (,o“vlq o

.
& g © $© o o
o g 50«\3 P
x© & o o

O

Figure 18: Computational requirementsleBSVM and MVP compared to some other approaches
on the grid points whose cross validation error is not larger than 1.05 the nhicrioss
validation error. The graphics display the average number of iteration®usands
(top), the run time in seconds (middle), and the raktgSS 7 of the run times (bot-
tom). Again, for the small data sets, the run time measurements are not vebjerelia
In particular, for the ®NAR data set, the averageeasuredun time forwSs 7 was
0.00 seconds, and hence the corresponding ratios could not be pBésdes that the
conclusions of Figure 17 are confirmed.

189

STEINWART, HUSH AND SCOVEL

T T I
301 : Wss1 H 16h : wss1 |
| ——wss7 | ——Wss7
| J - = LBSW|| g4l | - — LiBsvm]]
25r | | h |
I | |
| J 12+ | | 4
20r ! [R) ! I
I | | 1+ | I | 1
I I | | |
L [! I |] L ! ! | |
15 | I | | 08 | I |
! | | ! ! |
[I | 06F - [! | B
101 I | | | B ! , 1 |
yr ; I I | | 041 ,’ / ! | 4
/ ! ! [I / ! ! I |
I / I | ; ; 02f | g
4 *{/ / I . ; ! j P - _ I -
F = = = 1= = = E = l I N 2
L LN N/ \:\/\\JN\\/\\’ == DN XU N TN T
1 2 4 5 6 7 8 9 10 1 2 3 4 6 7 8 9 10
12 T 16
WSS 1 | WSS 1
. ——WSS7 14} | , —WSS7 |
10F I [— — LIBSYMR ! | — — -LIBSVM
| | | —
| ! 121 | | —
I ! | |
8 | | 1 ! I
I ! 1or I I |
| | ! I
6 / I ! R 18 ! ! I g
| | 1 [| | |
I I ! ! | I
| | ! ! 6 n ! | | ! 7
4 , | | | f E A ; | | |
/N ! l ! | I
[] | I ! 4r I~ / I I |]
ok N / | I ,' i | nN-o I | |
U I ! ! 7 / 1 ok ! I / I ' 4
/ / . v ! ! / / P
= = = = = b= L v N .
0 Il Il Il Il Il Il Il Il 0 Il Il Il Il Il
2 4 5 6 7 8 9 10 1 6 7 8 9 10

Figure 19: Computational requirements per single grid point of methodsl mssimple exten-
sions of the 1D-search strategy an@SVM on thesvMGUIDEL data set. The four
graphics have the same format as the ones in Figure 10. For flatter kengssm
needs less iterations thamSS 7, possibly because it solves a different optimization
problem, however the improvement is small in terms of absolute numbers. Othére o
hand, bothwSs 1 andwssS 7 are less sensitive to smallvalues in regions with high

computational demand.

190

TRAINING SVMS WITHOUT OFFSET

A.2 Results for the two Different Stopping Criteria

04 1

T T T T 4

T T T T
% - Duality gap %+ Duality gap % - Duality gap
—6— Clipped duality gap —6— Clipped duality gap —6— Clipped duality gap
035 % 1]
11
03
1
%
025 08
02 08
07
0.15 *
06
01
05
0.05 L L L L L L 04 L L L L L L 1 L L L L L L
& i (© $© o " o o %3 0 W S] S P (® 3 S 3% S 0 © S
R A U A L R N TGOS R GO U T AN N AN GO R L
U & o R S ¢ & 9 0 & o
o @ @ B & i 9 004'01 o
x10°
14 0.035 T T T T T T 0.1¢ T T T T T T
% Dualty gap % Dualiy gap % Dualty gap
—6— Clipped dualty gap —6— Clipped dualiy gap —6— Clipped dualty gap
12 003 014 ki
1 0025 012
08 0.02 01 b
*
06 0.015 0.08 T
®
04 001 006 . 1
02 0005 004 1
L L L L L L L L L L L L 0,07 L L L L L L
& i © © o 0 o o 0 > 0 0 S 0 2 2 @ > kS 38 > 0 © S
R A A A SN SO R IR N S " A LR O S GO N G AN\ A
AN g - S o R ° «© A
N ‘\\‘e\ o B i o @ 9 60@) A\
1 1.02 T T T T T 105 T T T T T T
% - Duality gap %+ Duality gap - Duality gap
—6— Clipped duality gap 14 —©— Clipped dualiy gap % " * p —©— Clipped duality gap
12 Is * W * * * *
098
11
0.96
s % % * * * *
094
09 092
08 09
088
07
086
06
084
. ;

L L L L 07 L L 1 1
0@

082 L L 1 L
© <l X ! 5 .
& “ea(‘ \1“%‘ 90&@ &‘\ge 5\‘ A o g e e‘ @ Q\i\ée &/'LQQQ . & e g NN 5 Q\\ce RS @5‘66 & . ° ‘00‘“5 o0
\ A & » © D) o © % o N @ N
O & o PN Go@& i o o o

Figure 20: Average computational requirements per grid poin®6 7 with different stopping
criteria. The graphics at the top display the number of iterations in thousantise
2D-SVM with WSS 7, while the graphics in the middle show the corresponding run time
in seconds. The graphics at the bottom display the ratio of run times.

191

STEINWART, HUSH AND SCOVEL

®

T T
% - Duality gap X %+ Duality gap % Duality gap
.45 L8 Clped dualty gzp 2.2} —6— Clipped dualiy gap —6— Clipped duality gap *
8
04 2
7
18
0.35 * *
6
16
03

04
1
015 8
N 08
) *
01 08
0. 05‘ (\‘ L L “ L L 04 L L L L 1 L L L L
e 6 o © 5)
60‘\'6 @ 09\‘\\%‘ 650‘(@ Ga“ce o A &@\@\e o & Qe‘“\ﬁ“ g\i‘ée% \,}LQQQ e}ﬂ@ » ,&,6060 IR L P 9\‘(‘2 P @)\(@ & 6,6@% \\‘00«\5 o
S AN o S N R\ N o s & &
O @ O o i S (’0@1\‘ o

x10°
002

T T T T T T T T T T T T
% Duality gap % Duality gap * % Duality gap
—6— Clipped duality gap * 0,02 —©— Clipped duality gap 1 ot —6— Clipped duality gap

0.018

1 o1

0.016 1
014

0.014
012
0.012

0.01
0.008

0.006

0.004

0.002

&
o

L L L L L L L L L
& i © 5 o & & 0 %) 0 0 S 0 S 2 @ ? o 38 v 0 © S
50“ ‘\ea 59‘\6 0‘(\8 03“0 @ a‘oe,\ “‘0\0 “(\?) \i\ée ,LQQ ’290 > ’6@ W W 59\\0 o W \)\(\e el ,600 00‘(\ o
o9 & ' W & © '3 & @ 2\
N g o [N \ °
NS & B W
\ o o
14 . . ! ! ! ! 1 . .
Dually gap # Duality gap
—o— Clipped dualy gap 1 1|0 Ciper uaity gap
12
09
i " * * * E:
" 08
06 07
04 06
02 05
L L L L L 04 L L L L L L 04 L L L L L
& s © © o 0 > d 0 %) 0] 2 0 2 2 @ > S A S 0 © S
I L g LN L L L " S I P O GO O O N L A
AN e o & © LR o o 9 R
T R o W@ ks o «

Figure 21: Computational requirements/@$s 7 with different stopping criteria on the grid points
whose cross validation error is not larger than 1.05 the minimal cross vatidatior.
Again, the graphics at the top display the number of iterations in thousandbefo
different stopping criteria applied to tl2®-SVM with WSS 7, while the graphics in the
middle show the corresponding run time in seconds. The graphics at thenlmbiplay
the ratio of run times, where we note that for some data sets in the bottom leftigra
the ratio could not be computed since theasuredun time was zero.

192

TRAINING SVMS WITHOUT OFFSET

ok Duality gap 025+ Duality gap
— Clipped duality gap — Clipped duality gap

02t
ol ,
5r 1 o015k
al ,
o 01t

-

3456\/7\/N9\m\

1 2 1 2
14
Duality gap Duality gap
1 V ——Clipped duality gap [| 131 —— Clipped duality gap
09 12r i
11r q
08 B
S VASEAAVE 1
07 B 09l
06F 4 08f b
0.7F B
05F B
061 q
04 1 o5k |
| | | | | | | | | 0.4 | | | | | | | | |
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Figure 22: Computational requirements per single grid point of the two stgupiteria for the
SVMGUIDEL data set. The four graphics have the same format as the ones in Figure 10
The graphics at the top display the number of iterations in thousands (ldftharrun
time in seconds (right), both averaged over the 10 folds, while the gragitics bottom
display the corresponding ratios. The clipped stopping criteria (9) hetgsrall values
of A, whereas for larger values the behavior is basically identical. Again, b
roughness in the bottom right graphic can be explained by the resolutithre dime
measurements. However, the general trend in this graphic is confirmee logtih of
iterations displayed in the bottom left graphic.

193

STEINWART, HUSH AND SCOVEL

A.3 Results for Different Numbers of Nearest Neighbors

04 . : : : : : 13 . : : : : : 4 . : : :
—¢ 5NN ~¢ 5NN —¢ 5NN
—e— 10N —6—10MN —e— 10NN
o5l % 15NN 120 15NN # 15NN
A 20NN A -0 351 A 20NN
11

09r
08
0.7]
0]
0.5]
005 o
& o @ o @ o v - & D o W 2 o >
EASER U %0‘0 & 9\@\\ 2 R K D W
o AT o & 0 AR W n
W o B LA i
5
UL 0035 : , , , , , ou : , . . .
—¢ 5NN —¢ 5NN —¢ 5NN
—©6— 10NN
0.03]
0.025]

0.02

0,015,

0005
.
& & © © o 0 ¢ i o > 0 0
EAR I A RO R SIS
& \,o R & ¢ o) - &
o (e 2 P RN .
W e i
1 . !) ! ! ! 11 . ! ! ! ! ! 11 . ! ! ! !
—& 5NN \ ~¢ 5 ~¢ 5NN
—o—10MN " —o— 10NN —6— 10NN
15H % 15N Y Lopll - *150w * 15NN
-A-20N o -A-20NN 108 -A - 20NN S]
i
\ \
14 i
i | 106« \
1 N 1.06 \ T
" \
13 N I . Sa \
<~ / \ 104 \ o \ {
~ ! ~o ! \ O N \ /
12f sy, N ‘\ NETAINY RN 104 / \ /
. N / _ \
NN \ 4 102 L,/ oA SN A 1) ' ' /!
0 // TN // X \ PEEN) NN \/’ s -4 \ /
- ’ Phe
) S N L0 E WL N\ ot A d [
N / N
p : SN R T TR T == / hY 4 R AT
I \ N 4 \ ¥ M A N AN AR
/ N s:/, . o 1/, S \
0.9, V- _ / 098 \ / :
~ L
A *
0. L L L L L L 0. L L L L L L 098 L L L L
& & © $© o i o & 0 D W 0 S] 2 P (© 2 S A%
o R g & AC @ OF @ e PAR\S IS W W 3¢ Pk o R
A U S AN R s 4 °
AR W o "

&
sq“& W

. .
0 3 V3
W o o
° 5

Figure 23: Average computational requirements per grid pois$ 7 with different number§

of nearest neighbors. The graphics display the number of iterationsusahds (top),

the run time in seconds (middle), and the corresponding ratith¢/ 1ONN of the run
times (bottom). FON > 10, the performance is basically identical.

194

TRAINING SVMS WITHOUT OFFSET

—& -5NN

T
—¢ 5NN
—o— 10NN !

4 15NN \

—& -5NN
—©— 10NN

[[--x 15NN

0.05

. . . .
& o 5@ o o o 5° e
o ¢ 4 & o S @ 3
° T @ @
o o« 5 o
W o
x10°
: ot
— & 5NN h
e \
1
25H - -A— 20NN A

00141

00121

0,006
00041

0002, ~

& A 5@ o° o o & e N
o ¢ N3 & o e @ o &
B w 00059 o 5\,0"’ o o ge“(\
\ \’
W o
14 T 1 r 14 T
—¢ 5NN — o 5NN —& -5NN
—6—10NN —6— 10NN —6— 10NN
12 % - 15NN 12 4 15NN 13 % 15NN 5}\ ?
—A— 20NN & -A- 20NN o- - -A- 20NN K [N
N \ / \
A 11 / 12 S oA
1H—o [e—=— % 9. . PR J \
R 2N , \ \
N '
: i - - X heEN 11 LA ! N\
08 e \ ~ A ' \ .
I ’ U ~ [\ i .
09 % / ' / _ VAR y e
~ 7 \ i RPN [v i A
06 o SN0 VY *
K , \ ! S6s R
N ogf,” A--a v 09 * a vy /
o , s " L«
\
ot VI 08 %
’ 4 N -
2 ’
[J 0sf, 07
/
4 4 L L L 0. L L L L L L s L L L
X N 55 o o 5 > %3 0 0 0 @ 0 <]
R R T P R SO D ST S I SR P G R N <Y S
o & ¥ 6‘90 5\'0 e\)c)\ & o ge‘ § o ‘\‘\,&, Q?’/ o % o R «\%\) Qe/ g 6‘(\‘0
O s ¢ o i B PO

Figure 24: Computational requirements W6S 7 with different numberdN of nearest neighbors

on the grid points whose cross validation error is not larger than 1.05 the nhicrioss
validation error. The graphics display the average number of iterationirsaimds
(top), the run time in seconds (middle), and the corresponding relitig 10NN of the
run times (bottom). The plots suggest that for grid points with good validatian tre
number of nearest neighbors has a stronger influence than for tfegavgrid point, yet
it is unclear to which extend this effect is caused by different hypeapaters picked
by the different methods.

195

STEINWART, HUSH AND SCOVEL

T I ‘\ I
gk ! — — 5NN 1| o5t I - — 5NN |
| — 10NN | — 10NN
1 1 15NN || _ | 15NN
— 20NN | —-—20NN
L I | I
6 ‘ | |
| |
5r [N q
|
b |
| 1
L | |]
3 | ‘ | \
[
| .
2r | | I’ ' 1 | | .
I [| 1 , 0.05F f q
1+ 3 4
| | | | | | | | | | |
1 4 6 7 8 9 10 1 2 4 5 6 7 8 9 10
15 T T 14 T
‘ ~ — 5NN ‘ / -~ BN
14l \ ‘ —omy | ! —— 10NN ||
I I | 15NN : | | 15NN
I | | — —20NN ! | —-—20NN
Br ! ' [12 o ' 1
| | .) I | I
! / I I I
12F ! I I | 1 | ! Lo I
' ! | ! | 11F ; b ! 0 ! 1
11 ; ,’ ' ! ! ! T T !
i ! ! I b e Vi | I\
/, | | } ’v Lo , //\/ ‘;\ " i ”u\“‘ , :U\ \‘ Mk A '1
1 d / ! . | / A SN (T [P RN AR
S : . ; T] 7y \,'\‘ i i !
\ \ \ i L [| | 3 | i
09 s Lo Bt P i P -
\ 0 | \ \ ! i V
08 b 40 ! 1
07 | | | | | | 0.7 | |
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Figure 25: Average computational requirements per grid poiw/®8 7 with different numbers
N of nearest neighbors for ttevMGUIDEL data set. The four graphics have the same
format as the ones in Figure 10. The graphics at the top display the nufriterations
in thousands (left) and the run time in seconds (right), both averagedtavé0 folds,
while the graphics at the bottom display the corresponding ratitdé/ 1ONN. Using 5
nearest neighbors clearly results in a worse performance compareohtplld nearest
neighbors. Moreover, compared kb= 10 the number of iterations can be further re-
duced by using more nearest neighbors, but due to unreliable meastseshthe run
time, it remains somewhat unclear, if this results in significantly shorter run times.

196

TRAINING SVMS WITHOUT OFFSET

A.4 Results for the Different Initialization Strategies

T T T T T T T T T T T T T T T T
—4—10-W0 —4—10-W0 E —4—10-W0 +
+- 1w +- 11wl +- 11w
OTF -0 l0-W2| 4o 0wz 1 700w 1
- 11-W2 + *11-W2 # 11-W2|
a-- 10-W5| 35l 0 10-ws] 0-- 10-W5| n '
06 ——11-w3 + + ——11-W3 6| ——11-w3 1

45

& o 3 o2 & v e 0
o ¢ © & g o\ @ 3 @
2 ¥ o é\%o‘ & o i\ o KO“‘G ge‘“
o A
A . Ne‘ “@a
1 T T T T T T T T T T T 2 T T T T T T
—+— 10-Wo) —+— 10-W0) + —+—10-W0)
+- 11wl + + 11wl + 11wl N
L8[0 10-W2 0 10-w2 L8 o 10-we)]
- 11-We) 251 %+ 11-W2 1 e 11-W2)
- 10-W5 o 10-W5 1610 10-ws +]
140 ——11-wg| —+—11-W3 ——11-W3| n
2 1 14 4
12 *
4
[12

0.2

02 !
& s © o o 0 > d 0 %) 0] S 0 S 2 @ ? S A 2 0 © S
o @ 5\"\8 e @‘\a c}@\\a _ {()“exe “‘o\f’ e‘«\o & /@0 /,LQQ ¥ ,6““ o WK 59\\0 o W R P ,6°° ‘00«\ o
& P e o [[0 RN o R 9 o &

N “qe\ R B i o i 9 o @

Figure 26: Average computational requirements per grid point of simple ingtadiz strategies for
the 2D-SVM with WSS 7. The graphics display the number of iterations in thousands
(top), the run time in seconds (middle), and the ratiegvy/I0-W0 of the run times
(bottom).

197

0.35

STEINWART, HUSH AND SCOVEL

—*— 10-W0|

o

O

5
A

L
]

.
AR

W&

. .
x o
ga“ce @
& o

[

.
@ o
e G
& @°

T
—*— 10-W0|

T
—*—10-W0

Qe‘«@‘\

.
o
\,03“0
o

.
Y
\\5‘@\\

S

5

‘
o®

o
ko\“c\a

0.035

0.03

0.025

0.02

0.015

0.01

0.005

.
¢
o

K

‘
5

A&
o

55
o
A

¢

08

T
—*—10-W0|
— 6 -10-W4

—6—I1-W4
0+ 10-We|
+- 11-W6
0. 10-W5

—+—11-W3]

@Q\&\ée% A
\
e go‘“\}

0
e“‘\0

aq,@ 6@6 0«\5 @W
¢ N\

R
©

Figure 27: Average computational requirements per grid point of morelesrnmitialization strate-

gies for the2D-SVM with WSS 7. The graphics display the number of iterations in thou-

sands (top), the run time in seconds (middle), and the retiag/10-WO0 of the run times
(bottom). Note that, again, the cold start initializations with zeroglots) need less

iterations but in most cases more run time. In almost all cases, the more contplicate

initialization strategies perform better than the simple warm start approaClvesall,
10-W4, 11-W4, andI0-W6 are the most efficient methods in terms of run time.

198

TRAINING SVMS WITHOUT OFFSET

005

02

T
—+—10-W0|
Q- 10-w2

$ ¢ e 6 x 0 5 5)
o @ s@“e‘ e o@‘\c‘e R @& o \@e@ ﬂ«“@ ,'L“QQ & ,6000 L \)\‘@ & }a““o o W
RS SO A R T R S o 9 & &
W @ A W K o
5
art o ‘ 07 :
-\ —*— 10-W0| —*—10-W0|

Q- I0-w2

Q- 10-w2|

. . .
& N ©) o 0 & e %] 0 0 2 0 2 D @ 2 XS XS 0 © V3
EAE G VTV O LV i LAY S S L S T
¢ A e \ & o o RO
W o ¥ 0 i o
1 ; 12 ; 11 ;
——10-Wo) —— 10-Wo) ——10-w0)
0 10-we) 0 0-w2 9 10-we) o ¢
L2 ——o-ws) Lill ——10-ws W — 10w s ;
o 0-ws oo 0-Ws 1) 9 oo 0-Ws
n ¢
5 09 0
a
08 o o o t) 2}
07 s
06
05
a
04 (\‘ L L L L L 05 L L L L L L 04 L L L L L Q
& @ © o2 o o N g) 0 0 2 0 2 2 (@ 2 s 38 'S 0 © (3
o ® os"“e \c}"6 ,c,""\c \35\@\\ (‘;\O“e 0\)‘0\’0 e‘“@ Q“\ée \,’@Q e,'I,QQ i Y@Q ® * & ¢ ¥ g\)\ée ¢ eb@ ‘(\‘00‘(\ ’
S g { REEPC I A o o RR
W o N © W ®

Figure 28: Average computational requirements per grid point of morelearmitialization strate-
gies for theLIBSVM for small (left), mid-sized (middle), and relatively large data sets
(right). The graphics display the number of iterations in thousands (tapjuthtime in
seconds (middle), and the ratikswy/10-w0 of the run times (bottom). Like for SVMs
without offset, using a warm start pays off for this SVM with offset, b ¢fain is less
pronounced.

199

STEINWART, HUSH AND SCOVEL

I
—10-W0
~ - 10-ws|
10-W4
—-—10-W6
\/\j\/\/\/ i
N I‘\ /(/\\ , /\\ ‘ ,/ | /\I
N b
5 10
14 T 25 T
—10-W0 —I0-W0
Lk | — — 10-W5)|| - -10-W5
A) 10-wa | ! 10-wa||
i | — —n-we|| ? ; — — I0-W6
i
1 h‘(i 4 . !
S A O Y N A !
| (e 1 I
i ! | ! | |
[(| 1 | t |]
ogf oy K Lo ‘ j TR ! b
I R | ' | [' I
| I e i ‘ | I i |
oo v P | i i | | |) ‘ ,
06F 1 S 1 ! | | | [4 ! ! ! : ,
I ' \’ N ;T A; | i | i | 1 T = “L' T] i 1 1 | 1
I ! " | [| | [! [y h n !
| el RS N 3 |) il L [|
04F J“ ! Py | f I Vi Lol f /\ N F\]L !'~ ! s [N o 1" 0 /] f
ey ! ! ! \,/\) AN N AVIERY Y AR A R L N 1 ! i
T I I N T 05F My g A N R o S I
02F J 1 i j | I | | / | P “" Ly Yoy | \\/ A /\‘\’ ;! PNy \\; -
IR / AJ I{ 1’ r(// i | it f // If / \;‘ / / U
R Y A B Y S S S SR Y A Y S Y S S S
2 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Figure 29: Computational requirements per single grid point of some initializstiiategies for the

SVMGUIDEL data set. The four graphics have the same format as the ones in Figure 10
The graphics at the top display the number of iterations in thousands (ldftharrun

time in seconds (right), both averaged over the 10 folds, while the gragttios bottom
display the corresponding ratitWx/I0-W0. All warm start strategies perform almost
uniformly better than the cold start optiod-W0. Moreover, note that the strategies
10-W5 and10-W6 start with the smallesk, that is, at the right hand side of each cell,
whereas0-W4 starts with the largesX, that is, on the left hand side of each cell.

200

TRAINING SVMS WITHOUT OFFSET

References

C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector maekirttp://www.csie.
ntu.edu.tw/ -~ cjlin/papers/libsvm.ps.gz , 2009.

P.-H. Chen, R.-E. Fan, and C.-J. Lin. A study on SMO-type decompositithate for support
vector machineslEEE Trans. Neural Network47:893-908, 2006.

N. Cristianini and J. Shawe-TayloAn Introduction to Support Vector MachineSambridge Uni-
versity Press, Cambridge, 2000.

L. Devroye, L. Gyrfi, and G. Lugosi.A Probabilistic Theory of Pattern RecognitiorSpringer,
New York, 1996.

R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using deaater information for
training support vector machined. Mach. Learn. Res6:1889-1918, 2005.

G. Fung and O. L. Mangasarian. Proximal support vector machinefeass In KDD '01: Pro-
ceedings of the Seventh ACM SIGKDD International Conference on [€dgesDiscovery and
Data Mining, pages 77—-86, New York, NY, USA, 2001. ACM.

T. Glasmachers and C. Igel. Maximum-gain working set selection for S\IMdach. Learn. Res.
7:1437-1466, 2006.

C.-W. Hsu and C.-J. Lin. A simple decomposition method for support vectohimag. Mach.
Learn, 46:291-314, 2002.

C.-W. Hsu and C.-J. Lin. BSVMhttp://fwww.csie.ntu.edu.tw/ ~cjlin/lbsvm/ , 2006.

T.-M. Huang, V. Kecman, and |. Koprivakernel Based Algorithms for Mining Huge Data Sets:
Supervised, Semi-supervised, and Unsupervised Lear8ipgnger, Berlin, 2006.

D. Hush and C. Scovel. Polynomial-time decomposition algorithms for suppotbvmachines.
Mach. Learn,51:51-71, 2003.

D. Hush, P. Kelly, C. Scovel, and I. Steinwart. QP algorithms with guardraseeuracy and run
time for support vector machined. Mach. Learn. Res7:733-769, 2006.

T. Joachims. Making large-scale SVM learning practical. In B.&8apf, C. Burges, and A. Smola,
editors,Advances in Kernel Methods — Support Vector Learnagpter 11, pages 169-184. MIT
Press, Cambridge, MA, 1999.

V. Kecman, T.-M. Huang, and M. Vogt. Iterative single data algorithm faining kernel machines
from huge data sets: Theory and performance. In L. Wang, e@tgrport Vector Machines:
Theory and Applicationgages 255-274. Springer Verlag, 2005.

S. Keerthi, V. Sindhwani, and O. Chapelle. An efficient method for graehased adaptation of
hyperparameters in SVM models. Advances in Neural Information Processing Systems 19
pages 673-680. MIT Press, Cambridge, MA, 2007.

201

STEINWART, HUSH AND SCOVEL

S. S. Keerthi, S. K. Shevade, C. Battacharyya, and K. R. K. Murtinprévements to Platt's SMO
algorithm for SVM classifier desigmleural Comput.13:637—-649, 2001.

C. J. Lin. On the convergence of the decomposition method for suppciirnmachines.|IEEE
Trans. Neural Networksl 2:1288-1298, 2001.

C. J. Lin. Asymptotic convergence of an SMO algorithm without any assumgpti@€EE Trans.
Neural Networks13:248-250, 2002a.

C. J. Lin. A formal analysis of stopping criteria of decomposition methodssiqport vector
machineslEEE Trans. Neural Networkd43:248-250, 2002b.

N. List and H.-U. Simon. A general convergence theorem for the decsitign method. IrPro-
ceedings of the 17th Annual Conference on Learning The@ages 363—-377. Springer, Heidel-
berg, 2004.

N. List and H. U. Simon. General polynomial time decomposition algorithms. Be8-David,
J. Case, and A. Maruko, editoRroceedings of the 18th Annual Conference on Learning Theory,
COLT 2005 pages 308-322. Springer, Heidelberg, 2005.

N. List and H. U. Simon. General polynomial time decomposition algorithimglach. Learn. Res.
8:303-321, 2007.

N. List, D. Hush, C. Scovel, and I. Steinwart. Gaps in support vecttmigation. In N. Bshouty
and C. Gentile, editorgroceedings of the 20th Conference on Learning Themages 336—348.
Springer, New York, 2007.

L.Q. Luo and P. Tseng. On the convergence of the coordinate desetimbd for convex differen-
tiable minimization.J. Optimization Theory Appl72:7-35, 1992.

O. L. Mangasarian and D. R. Musicant. Lagrangian support vectonimas.J. Mach. Learn. Res.
1:161-177, 2001.

I. Steinwart. Sparseness of support vector machigdeglach. Learn. Res4:1071-1105, 2003.
I. Steinwart and A. Christmanrsupport Vector MachinesSpringer, New York, 2008.

I. Steinwart, D. Hush, and C. Scovel. An oracle inequality for clippedlaxized risk minimizers.
In B. Scholkopf, J. Platt, and T. Hoffman, editorBdvances in Neural Information Processing
Systems 1Pages 1321-1328. MIT Press, Cambridge, MA, 2007.

M. Vogt. SMO algorithms for support vector machines without bias. Teehn&port, University
of Darmstadt, 2002http://www.rtm.tu-darmstadt.de/ehemalige_mitarbeite t/ ~vogt/
docs/vogt_2002_smowob.pdf

202

