
Journal of Machine Learning Research 12 (2011) 141-202 Submitted 3/09; Revised 7/10; Published 1/11

Training SVMs Without Offset

Ingo Steinwart INGO.STEINWART@MATHEMATIK .UNI-STUTTGART.DE

Institut für Stochastik und Anwendungen
Fakultät für Mathematik und Physik
Universiẗat Stuttgart
Pfaffenwaldring 57
D-70569 Stuttgart, Germany

Don Hush DHUSH@LANL .GOV

ISR-2, Mail Stop B244
Los Alamos National Laboratory
Los Alamos, NM 87545, USA

Clint Scovel JCS@LANL .GOV

CCS-3, Mail Stop B265
Los Alamos National Laboratory
Los Alamos, NM 87545, USA

Editor: Sathiya Keerthi

Abstract
We develop, analyze, and test a training algorithm for support vector machine classifiers without
offset. Key features of this algorithm are a new, statistically motivated stopping criterion, new warm
start options, and a set of inexpensive working set selection strategies that significantly reduce the
number of iterations. For these working set strategies, we establish convergence rates that, not
surprisingly, coincide with the best known rates for SVMs with offset. We further conduct various
experiments that investigate both the run time behavior andthe performed iterations of the new
training algorithm. It turns out, that the new algorithm needs significantly less iterations and also
runs substantially faster than standard training algorithms for SVMs with offset.
Keywords: support vector machines, decomposition algorithms

1. Introduction

Historically, support vector machines (SVMs) were motivated by a geometrical illustration of their
linear decision surface in the feature space. This illustration justified the useof an offsetb that
moves the decision surface from the origin. However, in recent years ithas become increasingly
evident that this geometrical interpretation has serious flaws, see, for example, Steinwart (2003) for
some illustrations, when considering kernels that have a large feature space such as the Gaussian
RBF kernels. In addition, the current approach, see, for example, Steinwart and Christmann (2008),
for investigating the generalization performance of SVMs for classificationdoes not suggest that
the offset offers any improvement for such kernels. On the other hand, the SVM optimization
problem with offset imposes more restrictions on solvers than the optimization problem without
offset does. For example, the offset leads to an additional equality constraint in the dual optimization
problem, which in turn makes it necessary to update at least two dual variables at each iteration of
commonly used solvers such as sequential minimal optimization (SMO). In addition, such solvers

c©2011 Ingo Steinwart, Don Hush and Clint Scovel.



STEINWART, HUSH AND SCOVEL

can only update certain pairs of dual variables, namely the pairs whose update still satisfies the
equality constraint. Moreover, the offset makes it relatively expensiveto calculate the duality gap,
see Cristianini and Shawe-Taylor (2000), which may serve as a stoppingcriterion for these solvers,
and hence one usually considers upper bounds of this gap such as the one from the maximal violating
pair algorithm, see, for example, Lin (2002b).

Despite these issues, research on algorithmic solutions has, with a few exceptions such as Kec-
man et al. (2005), Vogt (2002) and Huang et al. (2006), so far mostly focused on SVM formulations
with offset. We refer to Lin (2001), Keerthi et al. (2001), Lin (2002a), Hush and Scovel (2003), List
and Simon (2004), Fan et al. (2005), List and Simon (2005), Chen et al.(2006), Hush et al. (2006),
Glasmachers and Igel (2006), List et al. (2007), List and Simon (2007) and the references therein.
One motivation for this focus may be the fact that certain other SVM formulations such as one-class
SVMs and SVMs for finding the smallest ball enclosing all data points do havean offset, and hence
these formulations can be dealt with (almost) simultaneously. Moreover, it wasnoted early on that
for SVMs with offset, the resulting equality constraint in the dual optimization problem can be
avoided, if the offset is also penalized in the regularizer. The packageBSVM by Hsu and Lin (2002)
and Hsu and Lin (2006) implements this idea for the hinge loss, while Mangasarian and Musicant
(2001) and Fung and Mangasarian (2001) use this idea in conjunction withother margin-based loss
functions.

The goal of this work is to fill the described gap by developing algorithms forSVMs without
offset. As it turns out, these algorithms not only achieve a classification accuracy that is comparable
to the one for SVMs with offset, but also run significantly faster. This improvement is made possi-
ble by a couple of new algorithmic ideas that are not straightforward to implement for SVMs with
offset. Inspired by recent results on the statistical performance of SVMs, see (Steinwart and Christ-
mann, 2008, Chapter 7.4), the first idea is a new stopping criterion, which is, roughly speaking, a
clipped duality gap. The second idea is a new working set selection strategy. As mentioned above,
SMO type approaches for SVMs without offset can, in principle, updatea single dual variable at
each iteration. However, our experiments show that this approach does not lead to sufficiently fast
training algorithms, and hence we will describe in detail, how an SMO type approach for two dual
variables works. Of course, such an approach requires a good working set selection strategy. To
identify one, we describe and test various strategies that try to find a pair of dual variables whose
update approximately maximizes the gain in the dual objective function. Basicallyall these strate-
gies first identifyonedual variable whose update maximizes the gain in the dual objective and then
search for a second variable that matches well to the first variable. Clearly, the first search isO(n),
wheren is the number of samples, while the order for the second search will be betweenO(1) and
O(n) depending on the particular strategy. Interestingly, we will see that certaincombinationsof
O(1) strategies for finding the second variable need almost as few iterations as anO(n2) search over
all pairs. In particular, these combinations essentially need the same number of iterations as some
naturalO(n) strategies for choosing the second dual variable do. Since each iterationof the latter
strategies is obviously more expensive, theO(1) combinations enjoy significantly shorter run times
as will be seen in the experiments.

For solvers using the new stopping criterion and (combinations of) the working set strategies
mentioned above, we further establish theoretical guarantees on the number of iterations performed.
Not surprisingly, it turns out that the analysis without bias is less complicatedthan the one for the
offset case, while the resulting guarantees coincide with the best known guarantees for solvers with
offset. Recall that the latter can be obtained by combining the analysis of so-called rate certifying

142



TRAINING SVMS WITHOUT OFFSET

algorithms, see List and Simon (2005), Hush et al. (2006) and List and Simon (2007), with a recent
analysis of the duality gap, see List et al. (2007). Unlike the rate certifyingalgorithms for SVMs
with offset, however, our algorithms not only possess these guarantees, but also run significantly
faster than typically implemented training algorithms, as our experimental section shows.

We also consider the possibility to initialize the solver with (transformed) previous solutions
when working on a grid of hyper-parameters. Here it first turns out that the missing equality con-
straint gives us more freedom to transform these solutions. We describeand test several such trans-
formations ranging from relatively simple to quite complex procedures. In theexperiments, we then
see that SVMs without offset profit more from simple warm start initializationsthan SVMs with
offset do. In addition, the more complex warm start strategies, which cannot be directly imple-
mented for SVMs with offset, lead to further improvements. In particular, fordata sets containing
a few thousand samples, SVMs without offset profit about twice as much from a good warm start
strategy than SVMs with offset do. As a result, our SVMs without offset are approximately 7
times faster than SVMs with offset on these data sets, if the hyper-parameters are determined by a
cross-validation approach.

This work is organized as follows: Section 2 introduces an SMO type algorithm for SVMs
without offset that performs one dual variable update per iteration. We further describe the new
stopping criterion based on a clipped duality gap as well as several warm start strategies. Section 3
then generalizes this algorithm to handle two variables at each iteration. In particular, we describe
how to solve the corresponding two dimensional optimization problem exactly. Furthermore, we
present several working set selection strategies. Section 4 contains our theoretical analysis, while
the experiments can be found in Section 5. Finally, concluding remarks can be found in Section 6
and an appendix contains detailed data from our experiments.

2. The Basic Algorithm: Optimizing One Coordinate

Throughout this paper, we write[t]ba := max{a,min{b, t}}, t ∈ R, b> a, for the clipping operation
that clips a real numbert whenever it is outside the interval[a,b]. To introduce SVMs without
offset term, let us consider a training setT = ((x1,y1), . . . ,(xn,yn)) ∈ (X×{−1,1})n and a function
f : X→ R. Then the empirical hinge risk off is defined by

RL,T( f ) :=
1
n

n

∑
i=1

wiL(yi , f (xi)) ,

whereL denotes the hinge lossL(y, t) := max{0,1− yt}, andwi > 0 is a weight associated to the
sample(xi ,yi). For example, in ordinary binary classification we havewi = 1 for all i = 1, . . . ,n,
whereas in weighted binary classification we have two real numberswpos> 0 andwneg> 0 such
that wi = wpos if yi = 1 andwi = wneg if yi = −1. In the following, we will exclusively consider
the case of weighted binary classification, which, of course, includes thecase of ordinary binary
classification. Now the SVM without offset solves the problem

fT,λ ∈ argmin
f∈H

λ‖ f‖2H + RL,T( f ) , (1)

whereH is the reproducing kernel Hilbert space (RKHS) of a kernelk. The statistical analysis of
SVMs shows, see (Steinwart and Christmann, 2008, Corollary 5.34), that a necessary condition for
learning in the sense of universal consistency is the strict positive definiteness of the kernelk. In

143



STEINWART, HUSH AND SCOVEL

the following, we adopt this point of view, partially also because for kernels that fail to be strictly
positive definite the offset may actually improve the learning performance, both theoretically and
practically. In other words, we assume throughout this paper that theGram matrix(k(xi ,x j))

n
i, j=1

is strictly positive definite whenever the data pointsx1, . . . ,xn are mutually distinct.1 Considering
the casen = 1, it is then easy to conclude thatk(x,x) > 0 for all x ∈ X, and hence we may and
will additionally assume thatk is normalized, that is, k(x,x) = 1 for all x ∈ X. Although this
assumption is not really necessary, it makes the description of the algorithm significantly simpler.
In addition, it is satisfied by many popular kernels onX = R

d such as the Gaussian RBF kernel
k(x,x′) := exp

(

−σ2‖x−x′‖22
)

, and the Poisson kernelk(x,x′) := exp
(

−σ‖x−x′‖2
)

, where in both
casesσ > 0 is called the width parameter. Furthermore, note that for strictly positive definite and
normalized kernels we have|k(x,x′)| = 1 if and only if x = x′. For the Gaussian and Poisson
kernel, this characterization is, of course, trivial, and in the general case, it quickly follows when
considering the casen= 2.

To derive an algorithm that produces an approximate solution of (1) we first multiply the objec-
tive function in (1) by 1

2λ and introduce slack variables. This leads to the following optimization
problem:

argmin
( f ,ξ)

PC( f ,ξ) :=
1
2
‖ f‖2H +

n

∑
i=1

Ci ξi

s.t. ξi ≥ 0, i = 1, . . . ,n,

ξi ≥ 1−yi f (xi) , i = 1, . . . ,n,

(2)

whereCi := wpos

2λn if yi = 1 andCi := wneg

2λn otherwise. Analogously to the offset case, see, for example,
(Cristianini and Shawe-Taylor, 2000, p. 107f), one can then show that the dual of this problem is

max
α∈Rn

W(α) := 〈e,α〉−
1
2
〈α,Kα〉

s.t. 0≤ αi ≤Ci , i = 1, . . . ,n,
(3)

wheree := (1, . . . ,1) ∈ R
n andK is then×n matrix with entriesKi, j := yiy jk(xi ,x j), i, j = 1, . . . ,n.

In addition, the Karush-Kuhn-Tucker (KKT) conditions are
(

yi f (xi)+ξi−1
)

αi = 0, i = 1, . . . ,n,

(Ci−αi)ξi = 0, i = 1, . . . ,n,

and a solutionα∗ ∈ [0,C] := [0,C1]×·· ·× [0,Cn] of (3) yields a solution( f ∗,ξ∗) of (2) by setting

f ∗ :=
n

∑
i=1

yiα∗i k(xi , ·)

andξ∗i := max{0,1− yi f ∗(xi)}, i = 1, . . . ,n. Obviously, (3) is identical to the standard dual SVM
problem besides the missing equality constraint〈y,α〉 = 0. Now recall that this equality constraint
makes it necessary to update at least two coordinate values at a time to ensure feasibility, while in
(3) we can updatesinglecoordinates. Some ideas for such a single direction update will be recalled
in the following subsections to provide the background for working sets ofsize two considered in
Section 3.

1. If we have samples withxi = x j for somei 6= j, the Gram matrix of a strictly positive definite kernelk, is, of course,
no longer strictly positive definite. The algorithmic consequences of this observation will be discussed in detail in
Section 3. Here, we only note that our solver will need a strictly positive kernel, but not a strictly positive Gram
matrix.

144



TRAINING SVMS WITHOUT OFFSET

2.1 Working Sets of Size One

To recall the one-dimensional update step, see also (Cristianini and Shawe-Taylor, 2000, p. 131ff),
we define

∇Wi(α) :=
∂W
∂αi

(α) = 1−
n

∑
j=1

α jKi, j .

Moreover, for anα = (α1, . . . ,αn) ∈ R
n and an indexi ∈ {1, . . . ,n} we writeα\i := α−αiei , where

ei denotes thei-th vector of the standard basis ofR
n, that is,α\i equalsα in all coordinates except

the i-th, where it equals zero. Now basic calculus together withKi,i = 1 for normalized kernels
shows that

α̃i 7→W(α\i + α̃iei) = 〈α\i ,e〉+ α̃i−
1
2
〈α\i ,Kα\i〉− α̃i〈ei ,Kα\i〉−

1
2

α̃2
i

attains itsglobalmaximum overR at

α∗i = 1−〈ei ,Kα\i〉= 1−∑
j 6=i

α jKi, j = ∇Wi(α)+αi .

Obviously, if α∗i ∈ [0,Ci ], the functionαi 7→W(α\i +αiei) also attains its maximum over[0,Ci ] at
α∗i . On the other hand, if, for example,α∗i > Ci , then a simple concavity argument shows that the
function attains its maximum over[0,Ci ] atCi . By this and an analogous consideration in the case
α∗i < 0 we hence see that the functionαi 7→W(α\i +αiei) attains its maximum over[0,Ci ] at

αnew
i := [∇Wi(α)+αi ]

Ci
0 . (4)

The next question is in which coordinatei should we perform the update. A simple and straightfor-
ward approach, see, for example, (Cristianini and Shawe-Taylor, 2000, p. 132), is to update for each
coordinatei = 1, . . . ,n iteratively. A more advanced idea, see Vogt (2002) and also (Huang etal.,
2006, Chapter 3), is to choose KKT violators for the update, that is, indices that, for a specified
ε > 0, satisfy

αi <Ci and ∇Wi(α)> ε ,
or αi > 0 and ∇Wi(α)<−ε . (5)

Obviously, the extreme case of this approach is to look for the indices

i∗up ∈ argmax
{

∇Wi(α) : αi <Ci
}

,

i∗down ∈ argmin
{

∇Wi(α) : αi > 0
}

and to pick the index of these two candidates whose gradient has the largerabsolute value. Another
idea, which is motivated by Glasmachers and Igel (2006), Hush et al. (2006), Hush and Scovel
(2003) and List and Simon (2005), is to choose the coordinatei∗ whose update achieves the largest
improvement for the objective dual valueW(α). In other words, it performs the update in the
direction

i∗ ∈ arg max
i=1,...,n

W(α+δiei)−W(α) , (6)

whereδi := αnew
i −αi denotes the difference between the new and the old value ofαi . Using the

following trivial lemma, it is easy to see that Procedure 1 solves (6).

145



STEINWART, HUSH AND SCOVEL

Lemma 1 For δ ∈ R and i= 1, . . . ,n we have

W(α+δei)−W(α) = δ · (∇Wi(α)−δ/2) .

Proof By the symmetry ofK we find

〈α,Kα〉−〈α+δei,K(α+δei)〉=−2δ〈α,Kei〉−δ2 .

Combining this with〈e,α+δei〉−〈e,α〉= δ yields the assertion.

Procedure 1Calculatei∗ ∈ argmaxi=1,...,n δi · (∇Wi(α)−δi/2)
bestgain← −1
for i = 1 ton do

α∗i ← [∇Wi(α)+αi ]
Ci
0

δ← α∗i −αi

gain← δ · (∇Wi(α)−δ/2)
if gain> bestgainthen

bestgain← gain
i∗← i

end if
end for

2.2 Stopping Criteria

Several stopping criteria for the SVMwith offset have been proposed and a straightforward approach
is to adapt one of these. For example, one can stop if both∇Wi∗up

(α)≤ ε and∇Wi∗down
(α)≥−ε, that

is, if the KKT conditions are satisfied up to some predefinedε > 0. Another simple idea is to use the
duality gap as a stopping criterion, see, for example, (Cristianini and Shawe-Taylor, 2000, p. 109 &
128). For SVMswithoutoffset this duality gap is of the form

gap(α) := 〈α,Kα〉−〈e,α〉+
n

∑
i=1

Ci [∇Wi(α)]∞0 ≤ ε , (7)

whereε > 0 does not necessarily have the same value as above.
In this work, however, we consider a little more involved stopping criterion that is based on

recent results from the statistical analysis of SVMs in Steinwart et al. (2007). Namely, it was shown
in Steinwart et al. (2007) that anf ∗ ∈ H satisfying

λ‖ f ∗‖2H +RL,T([ f
∗]1−1)≤min

f∈H
λ‖ f‖2H + RL,T( f )+ ε (8)

for yet another pre-definedε > 0 satisfies the same oracle inequality up to 4ε as the true solution
fT,λ. Moreover, a more careful analysis of Steinwart et al. (2007) showsthat the factor 4 can be
essentially removed, so that for sayε := 0.001 the learning guarantees for the approximate solution
f ∗ are at most 0.1% worse than those for the true solutionfT,λ. To develop a stopping criterion from

146



TRAINING SVMS WITHOUT OFFSET

this observation, we denote the minimum of the objective functionPC in (2) byP∗C. Moreover, for a
dual pointα ∈ [0,C] we define, as usual, a corresponding primal function by

f :=
n

∑
i=1

α jy jk(x j , ·)

and its corresponding slack variables byξi := max{0,1−yi f (xi)}, i = 1, . . . ,n. Using 1−yi f (xi) =
∇Wi(α) and‖ f‖2H = 〈α,Kα〉 as well asP∗C ≥W(α) = 〈e,α〉−〈α,Kα〉/2 and

max
{

0,1−y[t]1−1

}

= 1−y[t]1−1 = [1−yt]20

for all y=±1, t ∈ R, we hence see that (8) is satisfied if

S(α) := 〈α,Kα〉−〈e,α〉+
n

∑
i=1

Ci [∇Wi(α)]20 ≤
ε

2λ
. (9)

Note that the statistical analysis of Steinwart et al. (2007) also suggests that the right hand side
of (7) can be replaced byε2λ , whereε has the same value as in (9). Consequently, the difference
between these two stopping criteria is the fact that (9) considersclippedslack variables, which may
be substantially smaller than the unclipped slack variables used in (7). Moreover, unlike the duality
gap stopping criterion for SVMswith offset, see (Cristianini and Shawe-Taylor, 2000, p. 109f), both
(7) and (9) are directly computable since they do not require the offset.

To efficiently computeS(α) we first observe that the first two terms of the updatedS(α+ δei)
can be easily computed from the first two terms ofS(α). Indeed, if we write

T(α) := 〈α,Kα〉−〈e,α〉 ,

E(α) :=
n

∑
i=1

Ci [∇Wi(α)]20 ,

then we haveS(α) = T(α)+E(α), and the calculations in the proof of Lemma 1 immediately show

T(α+δei) = T(α)−δ
(

2∇Wi(α)−1−δ
)

.

From this it is easy to derive anO(n) procedure that updates∇W(α) and calculatesS(α). Procedure
2 provides pseudocode for this task.

Procedure 2Update∇W(α) in directioni by δ and calculateS(α)
T(α)← T(α)−δ

(

2∇Wi(α)−1−δ
)

E(α)← 0
for j = 1 ton do

∇Wj(α)← ∇Wj(α)−δKi, j

E(α)← E(α)+Ci · [∇Wi(α)]20
end for
S(α)← T(α)+E(α)

Now the basic idea of the1D-SVM described in Algorithm 1 is to repeatedly look for the best
directioni∗ and update in this direction until the stopping criterion (9) is satisfied. However, a closer
look at this algorithm shows that it contains one piece of pseudo-code thathas not been discussed
so far, namely the initialization of the solver. This initialization will be considered inthe following
subsection.

147



STEINWART, HUSH AND SCOVEL

Algorithm 1 1D-SVM solver
initialize α, ∇W(α), T(α), andS(α) by one of the Procedures from Section 2.3
while S(α)> ε

2λ do
i∗← argmaxi=1,...,nW(α+δiei)−W(α)
δ← [∇Wi∗(α)+αi∗ ]

C
0 −αi∗

αi∗ ← [∇Wi∗(α)+αi∗ ]
C
0

use Procedure 2 to update∇W(α) in directioni∗ by δ and calculateS(α)
end while

2.3 Initialization

We also have to decide how to initializeα. Of course, there exist various approaches for this task,
and in the following, we describe a few methods we have considered in this work.

I0 & W0: Cold Start With Zeros.Obviously, the most simple initialization is thecold startα← 0.
Procedure 3 provides the pseudocode for this approach, which in the following we callI0 or W0.

Procedure 3Initialize by αi ← 0 and compute∇W(α), S(α), andT(α).
T(α)← 0
S(α)← 0
for i = 1 ton do

αi ← 0
∇Wi(α)← 1
S(α)← S(α)+Ci

end for

I1 & W1: Cold Start With Kernel Rule.Another simple cold start is to initialize withαi←Ci for
all i = 1, . . . ,n. Procedure 4 provides the pseudocode for this approach. In the following, we call
this approachI1 or W1.

Procedure 4Initialize by αi ←Ci and compute∇W(α), S(α), andT(α).
T(α)← 0
E(α)← 0
for i = 1 ton do

αi ←Ci

∇Wi(α)← 1
for j = 1 ton do

∇Wi(α)← ∇Wi(α)−Cj ·Ki, j

end for
T(α)← T(α)−Ci ·∇Wi(α)
E(α)← E(α)+Ci · [∇Wi(α)]20

end for
S(α)← T(α)+E(α)

Obviously, Procedure 3 isO(n), whereas Procedure 4 isO(n2), and hence the latter seems to be
prohibitive. On the other hand, Procedure 4 basically initializes with the classical kernel rule, see

148



TRAINING SVMS WITHOUT OFFSET

(Devroye et al., 1996, Chapter 10), and hence its initial training error maybe significantly smaller
than that of Procedure 4. This in turn might lead to a smaller initial stopping criterion valueS(α)
and hence to less iterations of the solver. Of course, here is a lot of roomfor speculation, and hence
we need to investigate the efficiency of both approaches in the experiments.However, it is worth
noting that unlike Procedure 3, Procedure 4 cannot be directly implementedfor SVMswith offsets.
In addition, Procedure 4 requires the entire kernel matrix to be computed, and hence it may actually
be prohibitive if this matrix does not fit into memory.

W2: Warm Start By Recycling Old Solution.Besides the cold starts mentioned above, there are
also a couple of simplewarm startspossible. To explain these, let us recall that often the hyper-
parameterλ is chosen by a search over a gridΛ = {λ1, . . . ,λm} of candidate values. Let us assume
that these values are ordered in the formλ1 > · · · > λm, and that we train the SVM in the order
λ1, . . . ,λm. Then the resultingn-dimensional vectorsC(1), . . . ,C(m) defined by

C( j)
i :=

{ wpos

2λ j n
if yi = 1

wneg

2λ j n
if yi =−1

have the propertyC( j)
i <C( j+1)

i for all j = 1, . . . ,m−1 andi = 1, . . . ,n. ForC(1) we can then initialize
with one of the above cold starts. Now observe that forj ≥ 2 the approximate solutionα∗ obtained
by training withCold :=C( j−1) is feasible forCnew :=C( j), that is,α∗ ∈ [0,Cnew]. Consequently, for
j ≥ 2 we can either initialize with a cold start, or with the warm startα← α∗. Obviously, in this
case we can also recycle∇W(α) andT(α). In addition, the ratio

Cnew
i

Cold
i

=
λ j−1

λ j

is independentof i and hence this warm start can be very easily implemented as Procedure 5 shows.

Procedure 5Initialize by αi ← α∗i and compute∇W(α), S(α), andT(α).

S(α)← T(α∗)+ Cnew
1

Cold
1
· (S(α∗)−T(α∗))

W4: Warm Start By Partially Expanding And Partially Recycling Old Solution.Apart from
the simple warm start above there is another conceptionally simple warm start for expanding box
constraints. Namely, ifα∗ denotes an approximate solution toCold andCold <Cnew this warm start
initializes byαi ← α∗i if α∗i <Cold

i and byαi ←Cnew
i if α∗i =Cold

i . The idea behind this warm start
is thatboundedsupport vectors, that is, indices in

bSV:= { j : α∗j =Cold
j }

may have the tendency to become larger, when the box constraint is loosened, while unbounded
support vectors, that is, vectors in

uSV:= { j : 0< α∗j <Cold
j }

may not have this tendency.
The basic idea of an efficient implementation of this warm start method is to avoid calculating

the gradient from scratch by recycling parts of the gradient fromCold. To be more precise, ob-
serve that, for fixedi, the sum∑ j∈uSVα∗j Ki, j remains unchanged by the described warm start, while

149



STEINWART, HUSH AND SCOVEL

Procedure 6Initialize bounded SVs byαi ←Cnew
i while keeping the rest unchanged and compute

∇W(α), S(α), andT(α).
T(α)← 0
E(α)← 0
for i = 1 ton do

if αi =Cold
i then

αi ←Cnew
i

end if
end for
if 2·#uSV< #bSVthen

for i = 1 ton do
∇Wi(α)←

Cnew
1

Cold
1
·∇Wi(α)+

(

1− Cnew
1

Cold
1

)(

1−∑ j∈uSVα jKi, j
)

T(α)← T(α)−αi ·∇Wi(α)
E(α)← E(α)+Cnew

i · [∇Wi(α)]20
end for

else
for i = 1 ton do

∇Wi(α)← ∇Wi(α)+(Cold
i −Cnew

i )∑ j∈bSVKi, j

T(α)← T(α)−αi ·∇Wi(α)
E(α)← E(α)+Cnew

i · [∇Wi(α)]20
end for

end if
S(α)← T(α)+E(α)

∑ j∈bSVα∗j Ki, j is simply multiplied byCnew
i /Cold

i . Recall that the latter ratio is independent ofi, and
consequently we can update the gradients by either

∇Wi(α)← 1−
Cnew

1

Cold
1

(

1−∇Wi(α∗)− ∑
j∈uSV

α∗j Ki, j

)

− ∑
j∈uSV

α∗j Ki, j

for all i = 1, . . . ,n, or

∇Wi(α)← ∇Wi(α)+(Cold
i −Cnew

i ) ∑
j∈bSV

Ki, j , i = 1, . . . ,n,

where in the first formula we used

1−∇Wi(α∗)− ∑
j∈uSV

α∗j Ki, j = ∑
j∈bSV

α∗j Ki, j . (10)

Note that the first method implicitly recycles∑ j∈bSVα∗j Ki, j by (10), while the second method im-
plicitly recycles∑ j∈uSVα∗j Ki, j . Obviously, depending on the number of bounded and unbounded
support vectors either the first or the second method is more efficient, andhence should be chosen.
We decided to pick the first or second method depending on whether 2·#uSV< #bSVor not. This
decision was based on counts of the involved floating point operations andthe fact that in all our
experiments we stored the entire kernel matrix in the memory. However note thatboth methods

150



TRAINING SVMS WITHOUT OFFSET

require to access some rows of the kernel matrix, and hence there is most likely a more efficient
cut-off when only parts of the kernel matrix are stored in memory by caching. Since in general,
the costs of computing a row of the kernel matrix depends on data set specific features, such as its
dimensionality when using Gaussian kernels, there does not seem to exists asimple rule of thumb in
this case, though. Consequently, we decided not to analyze this case carefully. Procedure 6 displays
the corresponding pseudocode for this warm start, which we callW4. It is not hard to see, that in
the worst case Procedure 6 isO(n2), while in the best case it is onlyO(n). Since the average case
cannot be easily analyzed, we need to experimentally evaluate whether this warm start is efficient
or not.

W6: Warm Start By Partially Shrinking And Partially Recycling Old Solution.Let us now as-
sume that we run through theλ-grid in reverse order. Then we haveCold > Cnew, and hence we

Procedure 7Initialize directions that violate the new box constrained byαi ←Cnew
i while keeping

the rest unchanged and compute∇W(α), S(α), andT(α).
for i = 1 ton do

if αi >Cnew
i then

αi ←Cnew
i

end if
end for
T(α)← 0
E(α)← 0
if #nuSV< #bSVthen

for i = 1 ton do
∇Wi(α)← 1− Cnew

1
Cold

1
·
(

1−∇Wi(α)−∑ j∈nuSVα∗j Ki, j −∑ j∈nbSVα∗j Ki, j
)

∇Wi(α)← ∇Wi(α)−∑ j∈nuSVα∗j Ki, j −∑ j∈nbSVCnew
j Ki, j

T(α)← T(α)−αi ·∇Wi(α)
E(α)← E(α)+Cnew

i · [∇Wi(α)]20
end for

else
for i = 1 ton do

∇Wi(α)← ∇Wi(α)+∑ j∈bSV(C
old
j −Cnew

j )Ki, j

∇Wi(α)← ∇Wi(α)+∑ j∈nbSV(α∗j −Cnew
j )Ki, j

T(α)← T(α)−αi ·∇Wi(α)
E(α)← E(α)+Cnew

i · [∇Wi(α)]20
end for

end if
S(α)← T(α)+E(α)

cannot immediately recycle the old approximate solutionα∗. Nonetheless, there is a certain ana-
logue to Procedure 6 possible. Indeed, we can initialize byαi ← α∗i if α∗i ≤Cnew and byαi ←Cnew

if α∗i >Cnew. Again, the corresponding warm start needs some work to find an efficient implemen-
tation that recycles suitable parts of the gradient. In order to explain such an implementation we

151



STEINWART, HUSH AND SCOVEL

split the setuSVinto

nuSV := { j : 0< α∗j ≤Cnew
j } ,

nbSV := { j : Cnew
j < α∗j <Cold

j } ,

where we note that we use a slight abuse of the lettersu andb in this notation. Now note that the
initialization above multiplies allα∗j ∈ bSVby the factorCnew

1 /Cold
1 , while it keeps allα∗j ∈ nuSV

unchanged. Obviously, both update rules make it possible to recycle partsof the gradient. Un-
fortunately, however, forα∗j ∈ nbSV, the situation is more complicated and no simple recycling is
possible. Thus, Procedure 7, which displays the corresponding pseudocode, is a little more com-
plicated than Procedure 6. Nonetheless, all remarks concerning the computational requirements of
Procedure 6 also apply to Procedure 7, and the same holds true for the rule that decides which part
of the gradient is recycled. In the following, we call this approach displayed in Procedure 7,W6.

W3 & W5: Warm Start By Scaling Old Solution.Finally, there is an easy warm start option that
works regardless of the direction we run through theλ-grid. Indeed, we can always initialize by
αi ← α∗i ·Cnew

1 /Cold
1 . The Procedure 8 shows the correspondingO(n) pseudocode. Depending on

whetherCold
1 <Cnew

1 or Cold
1 >Cnew

1 we call this approachW3 or W5, respectively.

Procedure 8Initialize by αi ← α∗i ·Cnew
1 /Cold

1 and compute∇W(α), S(α), andT(α).
T(α)← 0
E(α)← 0
for i = 1 ton do

αi ←
Cnew

1
Cold

1
·α∗i

∇Wi(α)← 1− Cnew
1

Cold
1
·
(

1−∇Wi(α)
)

T(α)← T(α)−αi ·∇Wi(α)
E(α)← E(α)+Cnew

i · [∇Wi(α)]20
end for
S(α)← T(α)+E(α)

3. Working Sets of Size Two

So far, our algorithm performs an update in one coordinate per iteration. Let us now consider an
algorithm which performs an update intwocoordinates per iteration. To this end, let us first present
the following, simple lemma that computes the gain of a 2-dimensional update.

Lemma 2 For δi ,δ j ∈ R and i, j = 1, . . . ,n we have

W(α+δiei +δ jej)−W(α) = δi · (∇Wi(α)−δi/2)+δ j · (∇Wj(α)−δ j/2)−δiδ jKi, j .

Proof Applying Lemma 1 twice and using the formula∇Wj(α+ δiei) = ∇Wj(α)− δiKi, j we find
the assertion.

152



TRAINING SVMS WITHOUT OFFSET

3.1 Solving the Two-Dimensional Problem Exactly

In order to describe an algorithm that updates two variables at each iteration we first have to in-
vestigate how the two-variable update looks like in detail. To this end, we fix two coordinates
i, j ∈ {1, . . . ,n} with i 6= j and consider the function

(α̃i , α̃ j) 7→Wi, j(α̃i , α̃ j) :=W(α\i, j + α̃iei + α̃ jej) ,

whereα\i, j := α−αiei−α jej is a fixed vector whosei-th and j-th coordinates equal zero. A simple
calculation then shows

Wi, j(α̃i , α̃ j) = 〈e,α\i, j〉+ α̃i + α̃ j −
1
2
〈α\i, j ,Kα\i, j〉− α̃i〈ei ,Kα\i, j〉− α̃ j〈ej ,Kα\i, j〉

−
1
2

(

α̃2
i +2α̃iα̃ jKi, j + α̃2

j

)

,

where we usedKi,i = K j, j = 1. Consequently, the partial derivatives are given by

∂Wi, j(α̃i , α̃ j)

∂α̃i
= 1−〈ei ,Kα\i, j〉− α̃i− α̃ jKi, j ,

∂Wi, j(α̃i , α̃ j)

∂α̃ j
= 1−〈ej ,Kα\i, j〉− α̃ j − α̃iKi, j .

In order to derive the maximum ofWi, j on [0,Ci ]× [0,Cj ] from these derivatives, we need to consider
three different cases.

The Case Ki, j = 1. By setting the above derivatives to zero, we obtain the following system of
linear equations

α∗i +α∗j = 1−〈ei ,Kα\i, j〉 ,

α∗i +α∗j = 1−〈ej ,Kα\i, j〉

that have to be satisfied for all global maxima(α∗i ,α∗j )∈R2 of Wi, j . Now recall that we assumed that
the kernelk is strictly positive definite, and therefore we see thatKi, j = 1 impliesxi = x j , and hence
yi = y j . From this we concludeKi,ℓ = K j,ℓ for all ℓ= 1, . . . ,n, and thus we obtain 1−〈ei ,Kα\i, j〉=
1−〈ej ,Kα\i, j〉. Consequently,Wi, j attains its global maximum at every point of the affine subspace

{

(α∗i ,α
∗
j ) : α∗i +α∗j = 1−〈ei ,Kα\i, j〉

}

, (11)

which is a translated version of the anti-diagonal subspace{(α,−α) : α ∈ R}.
Now recall thatyi = y j impliesCi = Cj , and hence we are actually interested in finding a pair

(α̃i , α̃ j) that maximizesWi, j on the square[0,Ci ]
2. If 1−〈ei ,Kα\i, j〉 ∈ [0,2Ci ], it is easy to see that

the subspace (11) intersects the square, and henceWi, j attains the desired maximum at every element
in this intersection. In particular,(α∗i ,α∗i ), where

α∗i :=
1−〈ei ,Kα\i, j〉

2

is such a pair. Let us now assume that 1−〈ei ,Kα\i, j〉 > 2Ci . Then the subspace (11) lies “above”
the square[0,Ci ]

2, and sinceWi, j is concave,Wi, j then attains its maximum over[0,Ci ]
2 at a point

153



STEINWART, HUSH AND SCOVEL

of the set of edges{Ci}× [0,Ci ]∪ [0,Ci]×{Ci}. Let us fix a pair(α̃i , α̃ j) ∈ {Ci}× [0,Ci ]. Then we
have

∂Wi, j(α̃i , α̃ j)

∂α̃ j
= 1−〈ej ,Kα\i, j〉− α̃ j − α̃iKi, j = 1−〈ej ,Kα\i, j〉− α̃ j −Ci > 0,

and henceWi, j attains its maximum over{Ci}× [0,Ci ] at the corner(Ci ,Ci). Interchanging the roles
of i and j we can thus conclude thatWi, j attains its maximum over[0,Ci ]

2 at (Ci ,Ci). Since we can
analogously show that, for 1−〈ei ,Kα\i, j〉< 0, the functionWi, j attains its maximum over[0,Ci ]

2 at
(0,0), we finally find the update rule

αnew
i := αnew

j :=

[

1−〈ei ,Kα\i, j〉
2

]Ci

0
=

[

∇Wi(α)+αi +α j

2

]Ci

0
.

The Case Ki, j =−1. In this case, we havexi = x j , and henceyi =−y j . From this we conclude
Ki,ℓ = −K j,ℓ for all ℓ = 1, . . . ,n, and thus we obtain〈ei ,Kα\i, j〉 = −〈ej ,Kα\i, j〉. Consequently, the
derivatives above reduce to

∂Wi, j(α̃i , α̃ j)

∂α̃i
= 1−〈ei ,Kα\i, j〉− α̃i + α̃ j ,

∂Wi, j(α̃i , α̃ j)

∂α̃ j
= 1+ 〈ei ,Kα\i, j〉− α̃ j + α̃i ,

and from this it is easy to conclude thatWi, j does not have a global maximum. However, a closer
inspection ofWi, j yields the formula

Wi, j(α̃i , α̃ j) = 〈e,α\i, j〉+ α̃i + α̃ j −
1
2
〈α\i, j ,Kα\i, j〉− (α̃i− α̃ j)〈ei ,Kα\i, j〉−

1
2

(

α̃i− α̃ j
)2
,

and hence we see that, for fixedβ ∈ R, we have

Wi, j(α̃i , α̃i +β) = 〈e,α\i, j〉+2α̃i +β−
1
2
〈α\i, j ,Kα\i, j〉+β〈ei ,Kα\i, j〉−

1
2

β2 .

In other words,Wi, j is a affine linear function with positive slope on the affine subspaces

{(α̃i , α̃i +β) : α̃i ∈ R} , β ∈ R,

and thereforeWi, j attains its maximum over[0,Ci ]× [0,Cj ] at a point from the set of edges{Ci}×
[0,Cj ]∪ [0,Ci ]×{Cj}. Let us first consider a pair(α̃i , α̃ j) ∈ {Ci}× [0,Cj ]. Then we have

∂Wi, j(α̃i , α̃ j)

∂α̃ j
= 1−〈ej ,Kα\i, j〉− α̃ j +Ci ,

and henceWi, j attains its maximum over{Ci}× [0,Cj ] at (Ci ,α∗j ), where

α∗j = [1−〈ej ,Kα\i, j〉+Ci ]
Cj

0 = [∇Wj(α)+α j −αi +Ci ]
Cj

0 .

Moreover, forδi := Ci − αi and δ j := α∗j − α j we obtain the gain of this update by Lemma 2.
Analogously, we can show thatWi, j attains its maximum over[0,Ci ]×{Cj} at (α∗i ,Cj), where

α∗i = [1−〈ei ,Kα\i, j〉+Cj ]
Ci
0 = [∇Wi(α)+αi−α j +Cj ]

Ci
0 .

154



TRAINING SVMS WITHOUT OFFSET

Again, the gain of the corresponding update can be computed by Lemma 2, and by comparing both
gains we can then decide which two-dimensional update yields the larger gain. The corresponding
update is chosen in the algorithm.

The Case Ki, j 6=±1. To solve the two dimensional problem in this case we fix anα ∈ R
n and

write

γi := 1−〈ei ,Kα\i, j〉= 1− ∑
ℓ 6=i, j

αℓKi,ℓ = ∇Wi(α)+αi +α jKi, j ,

γ j := 1−〈ej ,Kα\i, j〉= 1− ∑
ℓ 6=i, j

αℓK j,ℓ = ∇Wj(α)+α j +αiKi, j .

Using the derivatives ofWi, j it is then easy to see thatWi, j attains its global maximum at each
point (α∗i ,α∗j ) that satisfiesγi = α∗i +α∗j Ki, j andγ j = α∗j +α∗i Ki, j . Furthermore, simple algebraic
transformations show

α∗i =
γi− γ jKi, j

1−K2
i, j

and α∗j =
γ j − γiKi, j

1−K2
i, j

,

and by re-substituting the definition ofγi andγ j we hence obtain

α∗i = αi +
∇Wi(α)−∇Wj (α)Ki, j

1−K2
i, j

,

α∗j = α j +
∇Wj (α)−∇Wi(α)Ki, j

1−K2
i, j

(12)

for the uniquely determined point at whichWi, j attains its global maximum. Now if(α∗i ,α∗j ) ∈
[0,Ci ]× [0,Cj ] we can simply update by(αnew

i ,αnew
j ) := (α∗i ,α∗j ). However, if(α∗i ,α∗j ) 6∈ [0,Ci ]×

[0,Cj ] we have to make further calculations. For example, forα∗i >Ci andα∗j ∈ [0,Cj ], the function
Wi, j attains its maximum over[0,Ci ]× [0,Cj ] at a point of the line{Ci}× [0,Cj ] by the concavity of
Wi, j . Consequently, in this case the update is

(αnew
i ,αnew

j ) :=
(

Ci , [∇Wj(α)+(αi−Ci)Ki, j +α j ]
Cj

0

)

,

that is, we first update thei-th coordinate, which leads to the temporary gradient

∇Wj(α)+(αi−Ci)Ki, j ,

and then perform a one-dimensional optimization over thej-th coordinate. The remaining three
cases where exactly one direction of(α∗i ,α∗j ) violates the box constraint can be handled analogously.
Finally, let us consider the cases, where both coordinates violate the constraint, for example,α∗i >Ci

andα∗j > Cj . In this case, the concavity ofWi, j shows thatWi, j attains its maximum over[0,Ci ]×
[0,Cj ] at a point of the set{Ci}× [0,Cj ]∪ [0,Ci ]×{Cj}. Consequently, we have to temporarily
perform the one-dimensional optimization above twice, namely one over thei-th coordinate and
one over thej-th coordinate. By computing the resulting gain ofW for both optimizations, we can
then decide which optimization we have to choose for the update. Again, the remaining three cases
can be handled analogously.

155



STEINWART, HUSH AND SCOVEL

Algorithm 2 2D-SVM solver

initialize
(

α,∇W(α),T(α),S(α)
)

while S(α)> ε
2λ do

select directionsi∗ and j∗

updateα in the directionsi∗ and j∗

update∇W(α) in the directionsi∗ and j∗ and calculateT(α) andE(α)
S(α)← T(α)+E(α)

end while

3.2 Selecting a Working Set of Size Two

The 2D-SVM-solver displayed in Algorithm 2 is conceptionally very similar to the1D-SVM-solver
presented in Algorithm 1. However, so far we have not addressed howto choose the directionsi∗

and j∗ in which the2D-SVM-solver performs an update. Obviously, several possibilities exists for
this task, and we discuss a few of them in the following.

WSS 0: Choose The Pair Of Directions With Maximal Gain.Given a pair of directions(i, j),
Lemma 2 can be used to compute the gain ofW resulting from the exact two dimensional optimiza-
tion described in Section 3.1. Now one could consider all pairs of directionsand choose the one
with the largest gain. Of course, in practice this approach is prohibitive, since the search is anO(n2)
operation, which has to be performed in each iteration. Nonetheless, in somesense this approach
may be viewed as an “optimal” two dimensional strategy, and all subset selection strategies devel-
oped below can be interpreted as low cost approximations to this approach.Consequently, we tested
it to get a baseline number of iterations, to which all other subset selection strategies are compared
to.

WSS 1: 1D-direction With Maximal Gain And Previously Found 1D-direction.A careful anal-
ysis of the behavior of the1D-SVM-solver shows that it often comes into a regime in which it picks
alternating indicesi∗ and j∗ for a while. In other words, it tries to approximately solve the 2D-
problem in the directionsi∗ and j∗. In order to avoid this cost-intensive alternating we can look for
the best 1D-directioni∗ and then perform a 2D-update overi∗ and the 1D-directioni∗old chosen in
the previous iteration. Conceptionally, this approach is very close to the maximum-gain procedure
mentioned in Glasmachers and Igel (2006) for SVMs with offset. The advantage of this approach is
that it preserves the low-cost search from the1D-SVM-solver. On the downside, however, it may not
reduce the number of iterations very effectively.

WSS 2: Two 1D-directions With Maximal Gain From Separate Subsets.Another simple way
to preserve the low cost search from the1D-SVM-solver is to split the index set{1, . . . ,n} into two
parts{1, . . . ,n/2} and{n/2+ 1, . . . ,n} and search for the 1D-directions with maximal gain over
these two parts separately. In other words, we can choose the directionsi∗ and j∗ by

i∗ ∈ arg max
i≤n/2

W(α+δiei)−W(α) ,

j∗ ∈ arg max
i>n/2

W(α+δiei)−W(α) ,

whereδi is defined as in the1D-SVM-solver. Clearly, this approach preserves the low cost search
from the1D-SVM-solver, but again it is not clear whether it reduces the number of iterations very
effectively.

156



TRAINING SVMS WITHOUT OFFSET

WSS 4: 1D-direction With Maximal Gain And A Direction Of A Nearby Sample.Yet another
approach to preserve the low cost search from the1D-SVM-solver is to first look for the 1D-direction
i∗ with maximal gain, and then, in a second step, to pick a directionj∗ such thatx j∗ is close toxi∗

with respect to the metric

dk(x,x
′) :=

√

2−2k(x,x′) , x,x′ ∈ X,

induced by the kernel. Note thatx is close tox′ in this metric, if and only ifk(x,x′) is close to 1.
Consequently, the gradients of the samples close toxi∗ are the ones that are most affected by an
update in directioni∗. Therefore, if these gradients are close to zerobeforethe update, they will
most likely be no longer close to zeroafter the update, and hence the corresponding directions will
have a good chance of being chosen in a subsequent iteration. In our experiments, we considered the
k-nearest neighbors ofx∗i , wherek= 10, and picked the neighborx j∗ for which the 2D-update in the
directions(i∗, j∗) yielded the largest gain. Note that, as soon as the directioni∗ is found, it is clear
that one subsequently needs to access thei∗-th kernel row for updating the gradient. Therefore, this
working set selection strategy does not require further kernel computations. Moreover, computing
the 2D-gain overk candidates is also relatively inexpensive, ifk remains small. Nonetheless, initial
experiments suggested that searching over thek-nearest neighbors only makes sense when the solver
mainly updatesinner support vectors, that is, directionsi with 0 < αi < Ci . Consequently, we
implemented a Boolean flag that was recomputed every 10 iterations. In this re-computation, the
flag was set to true, if and only if in at least 5 of the previous 10 iterations thepicked directions
i∗ and j∗ both were inner support vectors. We then considered thek-nearest neighbors only if this
Boolean flag was set, while in the other case we applied the working set selection strategyWSS 1.

WSS x: Combinations Of 1D-direction-based Approaches.It is easy to see that one can combine
the previous three methods that are based on finding the 1D-direction with maximal gain. For
example, in each iteration one can combineWSS 1 andWSS 2 by computing the 2D-gain of both
methods and pick the one with the larger gain. Obviously, this still preserves the low cost search
from the1D-SVM-solver and only adds little cost for computing the 2D-gain for the two candidate
pairs. Similarly, all three methods can be combined. Combinations of these methods are called
WSS x, wherex is the sum of the combined methods. For example, by combiningWSS 1, WSS 2,
andWSS 4 we obtainWSS 7, and by combiningWSS 1, WSS 2, WSS 4 with WSS 512 below, we
obtainWSS 519 . In the following, we keep this binary numbering system which makes it possible
to easily describe arbitrary combinations of basic working set selection strategies.

WSS 8: 1D-direction With Maximal Gain And One-step-ahead 1D-direction.Another way to
extend the1D-SVM subset selection strategy to two directions is to first look for the 1D-directioni∗

with maximal gain, and then to look for the 1D-directionj∗ with maximal gain that would be found
after having updated in directioni∗. Obviously, this strategy, which we callWSS 8, is closely related
to WSS 1 in that the update and search routines are partially permuted. However, it has a higher
cost for the search part per iteration, while intuitively it should reduce thenumber of iterations.

WSS 16: Maximal Violating Pair.A completely different subset selection strategy is based on
the maximal violating pair (MVP) idea, see Keerthi et al. (2001) and Joachims(1999). For the SVM
without offset, this means that the pair(i∗, j∗) is chosen that violates (5) most. In other words, for
both index sets{i : αi <Ci

}

and{i : αi > 0
}

the two indices with the largest, respectively smallest,
gradients are picked, and the final pair(i∗, j∗) consists of the indices that have the gradient with the
largest absolute value among the four candidate directions. In order to implement this working set
selection strategy efficiently, the sets{i : αi <Ci

}

and{i : αi > 0
}

should be kept in memory and

157



STEINWART, HUSH AND SCOVEL

updated in every iteration. This may add some cost per iteration compared to theprevious working
set selection strategies, while it is unclear how the number of iterations behave compared to these
strategies.

WSS 32: 1D-direction With Maximal Gain And Corresponding “Optimal” 2D-direction.None
of the methods introduced so far try to seriously approximate the 2D-subsetselection strategyWSS
0, which intuitively picks the best possible pair of indices. The first method that seriously strives
for such an approximation isWSS 32, which first picks the 1D-directioni∗ with maximal gain,
and then searches for thej∗ ∈ {1, . . . ,n} such that(i∗, j∗) maximizes the corresponding 2D-gain.
Obviously, the cost for this search method is significantly higher than those of WSS 1 to WSS 7, but
it is still O(n). On the other hand, the better choice of(i∗, j∗) may substantially reduce the number
of iterations of the2D-SVM-solver, and hence it is not a-priori clear howWSS 32 performs compared
to the earlier methods. Finally, note thatWSS 32 is related to the second order working set selection
strategy of Fan et al. (2005), which was proposed for SVMs with offset.

WSS 64: 1D-direction With Maximal Gain And Random “Optimal” 2D-direction.Instead of
considering all pairs(i∗, j), j = 1, . . . ,n, asWSS 32 does, it may suffice to reduce the search over
the pairs(i∗, j), j ∈ J, whereJ⊂ {1, . . . ,n} is a random subset. In our experiments we considered
the case #J = n/5.

WSS 128: 1D-direction With Maximal Gain And Approximately “Optimal” 2D-direction.One
of the disadvantages ofWSS 32 is that computing the 2D-gain is quite expensive due to the relatively
large number of branches and floating point operations. One way to address this issue is to compute
the 2D-gain inWSS 32 only approximately.WSS 128 uses the following approximation: for indices
i and j with Ki, j =±1 it computes the exact gain, while for the other pairs it first computesα∗i and
α∗j by (12), and then applies the simple clipping operation

αnew
i := [α∗i ]

Ci
0 ,

αnew
j := [α∗j ]

Cj

0 .

For these newα’s, WSS 128 finally computes the gain by Lemma 2. Clearly, this gain is in general
less than the exact gain, but it still may be a good approximation. In particular, if both α∗i and
α∗j satisfy the box constraints, then the approximation is actually exact. On the other hand, the
approximation is clearly less expensive, but we expect more iterations compared toWSS 32.

WSS 256: Random 2D-directions With Maximal Gain.Another way to approximateWSS 0 is
to considerk random pairs(i, j), and pick the pair(i∗, j) that yields the largest exact 2D-gain among
them. InWSS 256 we followed this idea fork := n.

WSS 512: 1D-direction With Maximal Gain And 2D-direction Over Inner SVs.Although the
approximate computation of the 2D-gain inWSS 128 is cheaper than the exact computation inWSS
32, it may still be too expensive. One way to further decrease these costs is based on the observation
that the 2D-gain is given by

1
2
·
|∇Wi(α)|2+ |∇Wj(α)|2−2∇Wi(α)∇Wj(α)Ki, j

1−K2
i, j

if Ki, j 6= ±1 andα∗i and α∗j computed by (12) satisfy the box constraints.WSS 512 uses this
simplified formula in the following way. Again, it first searches for the 1D-directioni∗ with maximal
gain. If αi∗ is an inner support vector, seeWSS 4 for a definition, and the Boolean flag ofWSS 4 is

158



TRAINING SVMS WITHOUT OFFSET

set,WSS 512 searches for the direction

j∗ ∈ { j : 0< α j <Cj andKi∗, j 6=±1}

that optimizes the above formula of the 2D-gain for fixedi := i∗. Since in some iterationsWSS
512 reduces to the1D-SVM-solver we further considered some combinations withWSS 3, andWSS
7 in our experiments. Following the naming convention of combinations mentioned earlier, these
strategies are calledWSS 515 andWSS 519.

WSS 1024: 1D-direction With Maximal Gain And Random 2D-direction Over Inner SVs.The
next subset selection strategy,WSS 1024, is quite similar toWSS 512, except that it does not
consider all inner support vectors in the search forj∗, but onlyk random inner support vectors. In
our experiments we used thek that equaled 20% of the current number of inner support vectors. In
addition, we initiated the search wheneverαi∗ was an inner support vector, that is, the search was
initiated independentlyof the Boolean flag ofWSS 4. Again, in some iterationsWSS 1024 reduces
to the1D-SVM-solver, and hence we further considered some combinations withWSS 1, WSS 2,
andWSS 4, where again the naming convention above was used.

WSS 2048: Add Random 2D-directions Over Inner SVs.The final subset selection strategy,
WSS 2048, is actually not a subset selection strategy of its own, but only a strategy that works in
combination with others. Once one of the previous subset selection strategies has picked a pair
(i∗, j∗) andαi∗ has turned out to be an inner support vector,WSS 2048 considersk random pairs of
inner support vectors, and picks the pair(i∗∗, j∗∗) that has largest approximate gain, where the ap-
proximation was computed as inWSS 512. Then the exact gain of(i∗, j∗) and(i∗∗, j∗∗) is computed
and the pair with the larger exact gain was chosen. We considered this method in combination with
WSS 1, WSS 2, andWSS 4, where again the naming convention above was used.

4. Convergence Analysis

In this section we establish an upper bound on the number of iterations for both the1D-SVM and the
2D-SVM. Our approach is heavily based on earlier ideas2 developed for the analysis of rate-certifying
decomposition algorithms, see, for example, Hush and Scovel (2003), List and Simon (2005), Hush
et al. (2006) and List and Simon (2007), but it may be possible to partially use results on block
coordinate descent algorithms such as the one by Luo and Tseng (1992)for the analysis, instead.3

Let us begin by recalling from the first papers mentioned that theσ-functional for a vector
α ∈ [0,C] = [0,C1]×·· ·× [0,Cn] and an index setI ⊂ {1, . . . ,n} is defined by

σ(α|I) := sup
α̃∈[0,C]

α̃i=αi∀i 6∈I

〈

∇W(α), α̃−α
〉

.

2. Despite this, we decided to include the analysis, since:a) it still requires a little work and thus we felt that it was a
bit unfair to the reader to simply say that the analysis is straightforward;b) we thought that it was nice to see how
the relatively complicated techniques for the offset case significantly simplify; c) our goal was to provide a full and
self-contained work for the proposed algorithm.

3. Note, however, that their results only control the convergence to adualoptimal solution, while for statistical reasons,
we are actually interested in the convergence control of the corresponding primal sequence. Consequently, their
results are at least not directly applicable.

159



STEINWART, HUSH AND SCOVEL

Since our algorithms are based on gain optimization rather than rate certification, we further need
theγ-functional

γ(α|I) := sup
α̃∈[0,C]

α̃i=αi∀i 6∈I

W(α̃)−W(α) ,

which expresses the gain in the dual objective function resulting from an optimization over the
directions contained inI . To simplify notations, we writeσ(α|i) := σ(α|{i}) andγ(α|i) := γ(α|{i}).
Note that we have

σ(α|i) = sup
α̃i∈[0,Ci ]

(α̃i−αi)∇Wi(α) ,

while γ(α|i) expresses the gain

W
(

α+(αnew
i −αi)ei

)

−W(α)

of the 1D-update in directioni, whereαnew
i is defined by (4). In addition,γ(α|{i, j}) is the gain

obtained by the update discussed in Section 3.1. Moreover, forI = {1, . . . ,n} we write σ(α) :=
σ(α|I) andγ(α) := γ(α|I), respectively. Note that bothσ andγ are monotonic inI , that is, forI ⊂ J
we haveσ(α|I)≤ σ(α|J) andγ(α|I)≤ γ(α|J). Finally, we need the obvious relation

γ(α) =W(α∗)−W(α) ,

where we recall from Section 2 thatα∗ ∈ [0,C] denotes a solution of the dual problem (3). In other
words,γ(α) expresses the dual sub-optimality ofα.

Let us now begin our analysis by presenting two lemmata that establish relationships between
these quantities.

Lemma 3 For all α ∈ [0,C] we have

n

∑
i=1

σ(α|i) = σ(α) = gap(α) ,

wheregap(α) denotes the duality gap defined in (7). In particular, there exists an index i⋆ ∈
{1, . . . ,n} such that

σ(α|i⋆)≥ n−1σ(α) .

This lemma can be easily derived from results in List et al. (2007) and List and Simon (2007).
However, in the case of SVMs without offset, its proof is very elementary and hence we present it
here for the sake of completeness.
Proof For i ∈ {1, . . . ,n} it is easy to see that the supremum used to defineσ(α|i) is attained at

ᾱi :=

{

Ci if ∇Wi(α)≥ 0

0 if ∇Wi(α)< 0.
(13)

Moreover, the vector̄α := (ᾱ1, . . . , ᾱn) ∈ [0,C] realizes the supremum definingσ(α), and hence we
obtain

n

∑
i=1

σ(α|i) =
n

∑
i=1

〈

∇W(α),(ᾱi−αi)ei
〉

= 〈∇W(α), ᾱ−α〉= σ(α) .

160



TRAINING SVMS WITHOUT OFFSET

Furthermore, we have

σ(α) = 〈∇W(α), ᾱ−α〉 = 〈α,Kα〉−〈e,α〉+
n

∑
i=1

ᾱi ·∇Wi(α)

= 〈α,Kα〉−〈e,α〉+
n

∑
i=1

Ci [∇Wi(α)]∞0 ,

and therefore we have shownσ(α) = gap(α). The last assertion is a trivial consequence of the first
assertion.

The second lemma relatesσ(α|I) to the gainγ(α|I). For its formulation we need the quantity
Bmax := maxi=1,...,nCi .

Lemma 4 For all α ∈ [0,C] and I⊂ {1, . . . ,n} we have

σ(α|I) ≥ γ(α|I) ≥
σ(α|I)

2
min

{

1,
σ(α|I)
|I |2B2

max

}

,

where|I | denotes the cardinality of I.

In a slightly different form, this lemma has been established in, for example, Hush et al. (2006),
and it was somewhat implicitly used in List and Simon (2007). Again, we present its proof for the
sake of completeness.
Proof Let ᾱi be defined by (13) andd :=∑i∈I (ᾱi−αi)ei . Forλ∈ [0,1], we then haveα+λd∈ [0,C],
and a calculation analogous to the one in the proof of Lemma 1 yields

γ(α|I)≥W(α+λd)−W(α) = λ
〈

∇W(α),d
〉

−
λ2

2
〈d,Kd〉 ≥ λσ(α|I)−

λ2|I |2B2
max

2
.

Now the right hand side is maximized at

λ∗ :=

{

1 if σ(α|I)> |I |2B2
max

|I |−2B−2
maxσ(α|I) if σ(α|I)≤ |I |2B2

max.

In the caseσ(α|I)> |I |2B2
max we hence find

γ(α|I)≥ σ(α|I)−
|I |2B2

max

2
>

σ(α|I)
2

,

while in the other caseσ(α|I)≤ |I |2B2
max we obtain

γ(α|I)≥
σ2(α|I)

2|I |2B2
max

.

Combining all estimates we then obtain the inequality on the right hand side.
To show the inequality on the left hand side we fix anα̃ ∈ [0,C] such thatα̃i = αi for all i 6∈ I .

Then we have

W(α̃)−W(α) = 〈∇W(α), α̃−α)−
1
2
〈α̃−α,K(α̃−α)〉 ≤ 〈∇W(α), α̃−α)≤ σ(α|I) ,

161



STEINWART, HUSH AND SCOVEL

and by maximizing the left hand side of this inequality overα̃ we findγ(α|I)≤ σ(α|I).

With these preparations we can now present a preliminary result on iterative algorithms that
have a certain control of their gain.

Proposition 5 Let α(0),α(1), · · · ∈ [0,C] be a sequence of feasible vectors that satisfies

W(α(ℓ+1))−W(α(ℓ))≥ γ(α(ℓ)|i⋆ℓ) , ℓ≥ 0, (14)

where for eachℓ the index i⋆ℓ ∈ {1, . . . ,n} is the one described in Lemma 3, that is, it satisfies
σ(α(ℓ)|i⋆ℓ)≥ n−1σ(α(ℓ)). Then for allℓ≥ 1 we have

γ(α(ℓ+1))≤ γ(α(ℓ))

(

1−
1
2n

min

{

1,
γ(α(ℓ))

nB2
max

})

.

Moreover, for allε > 0 and all ℓ≥ ℓε we haveγ(α(ℓ))≤ ε, where

ℓε :=

⌈

2n2B2
max

ε

⌉

+max

{

0,

⌈

2nln
W(α∗)−W(α(0))

ε

⌉}

.

Proof By Lemmas 4 and 3 we find

γ(α(ℓ))− γ(α(ℓ+1)) =W(α(ℓ+1))−W(α(ℓ)) ≥ γ(α(ℓ)|i⋆ℓ)

≥
σ(α(ℓ)|i⋆ℓ)

2
min

{

1,
σ(α(ℓ)|i⋆ℓ)

B2
max

}

≥
σ(α(ℓ))

2n
min

{

1,
σ(α(ℓ))

nB2
max

}

≥
γ(α(ℓ))

2n
min

{

1,
γ(α(ℓ))

nB2
max

}

.

From this we easily obtain the first assertion.
The second assertion has already been shown in the second part of theproof of the first assertion

of (List and Simon, 2007, Theorem 4), which can be found on the pages312 and 313 of List and
Simon (2007).

Note that 1/n-rate certifying algorithms considered in List and Simon (2007) clearly satisfy
assumption (14). Moreover, Proposition 5 can also be applied to the1D-SVM and2D-SVM:

Theorem 6 Consider the1D-SVM described in Algorithm 1 or a2D-SVM in the sense of Algorithm
2 that uses a working set selection strategy whose gain at each iteration is not less than that of the
1D-SVM. Furthermore, assume thatmax{wneg,wpos} ≤ 1. Then for allε > 0, n≥ 1, and all λ > 0
these algorithms terminate after at most

⌈

2
λεmin{1,2λε}

⌉

+max

{

0,

⌈

2nln
4λ(W(α∗)−W(α(0)))

εmin{1,2λε}

⌉}

162



TRAINING SVMS WITHOUT OFFSET

iterations. In particular, in the most likely scenario2λε ≤ 1 these algorithms do not need more
iterations than

⌈

1
λ2ε2

⌉

+max

{

0,

⌈

2nln
2(W(α∗)−W(α(0)))

ε2

⌉}

.

Proof The1D-SVM chooses at each iterationℓ a directioni∗ℓ that maximizes the 1D-gainγ(α(ℓ)|i).
Consequently, we have

W(α(ℓ+1))−W(α(ℓ)) = γ(α(ℓ)|i∗ℓ)≥ γ(α(ℓ)|i⋆ℓ) ,

wherei⋆ℓ is the direction described in Lemma 3. In other words, (14) is satisfied for thisalgorithm,
and from this it is not hard to see that the considered2D-SVM’s also satisfy assumption (14). Let us
now define

h(σ) :=
σ
2

min

{

1,
σ

n2B2
max

}

, σ > 0.

For ε := h( ε
2λ) Proposition 5 together with Lemma 4 then shows that

h
( ε

2λ

)

= ε≥ γ(α(ℓ))≥ h
(

σ(α(ℓ))
)

for all ℓ ≥ ℓε and hence we obtainS(α(ℓ)) ≤ gap(α(ℓ)) = σ(α(ℓ)) ≤ ε
2λ by the monotonicity of the

functionh. UsingBmax≤
1

2λn we then obtain the assertion by simple algebraic transformations.

Note that the working set selection strategiesWSS 1, WSS 2, WSS 4, WSS 8, WSS 32, WSS 64,
WSS 128, WSS 512, andWSS 1024, satisfy the assumptions of Theorem 6. Moreover, the same is
true for all combinations of working set selection strategies that include at least one of the strategies
listed. Finally, note that the upper bound established in Proposition 5 coincide(modulo constants
that come from different working set sizes) with the bounds for rate certifying algorithms presented
in List and Simon (2005), Hush et al. (2006) and List and Simon (2007). Moreover, the step from
dual ε-optimality to primalε-optimality considered in the proof of Theorem 6 coincides with the
analysis (List et al., 2007) for SVMs with offset. Consequently, the boundpresented in Theorem 6
equals the best known guarantees for solvers for SVMs with offset.

5. Experiments

The described1D-SVM-solver and2D-SVM-solver enjoy nice theoretical properties with respect
to both generalization performance and required training time. However, it isunclear how tight
these bounds are, so it remains unclear whether the proposed SVMs alsoperform well in practice.
Therefore, we performed several experiments that address the following questions:

1. Which subset selection strategies lead to the smallest number of iterations orthe shortest run
time? How many more iterations thanWSS 0 do these strategies perform?

2. How many less iterations needs the stopping criterion (9) compared to standard duality gap
(7) and is there also an advantage in terms of run time?

3. How much more efficient is the2D-SVM-solver than the technically much easier1D-SVM-
solver?

163



STEINWART, HUSH AND SCOVEL

4. How well does the2D-SVM-solver work compared to standard software packages such as
LIBSVM by Chang and Lin (2009)?

5. What is the advantage of warm start initializations when the parameter search is performed
over a grid?

To answer these questions we implemented the1D-SVM- and the2D-SVM-solver in C++, and down-
loadedLIBSVM version 2.82 by Chang and Lin (2009). The algorithms were compiled by LINUX’s
gcc version 4.3 with various software and hardware optimizations enabled. All experiments were
conducted on a computer with INTEL XEON X5355 (2.66 GHz) quad core processor and 8GB
RAM under a 64bit version of RedHat Linux Enterprise 4. During all experiments that incorpo-
rated measurements of run time, one core was used solely for the experiments, and the number of
other processes running on the system was minimized. The run time itself was measured by the C
functionclock() from the librarytime.h. The resulting resolution was 0.01 seconds.

In some preliminary experiments we made a couple of observations that changed the described
implementation strategy slightly: First, it turned out that the auto-vectorization ofgcc only gave
mediocre and sometimes even contradicting results, even if the implementation guidelines of gcc
4.3’s auto-vectorization were strictly followed. Therefore, we decided tomanually codeSSE2-
vectorized versions of the most important routines, namely: computing kernel values, searching for
the optimal 1D-direction, updating the gradient, and computing the weighted sumE(α) of clipped
slack variables. To this end, we used the libraryemmintrin.h together with properly aligned arrays
of doubles.4 Some of our preliminary experiments not reported here indicated that this specialized
hardware instruction set yields a run time improvement by a factor between 1.3and 1.8 depending
on the working set selection strategy and the data set. Second, the initial experiments suggested
substantial numerical instabilities on a few data sets when using single floats, so we decided to
use double precision throughout the experiments. Third, we were ratherdisappointed by the run
time behavior ofLIBSVM, even when we enabled its shrinking heuristic.5 After some investigations
we found that the main reason for the disappointing run time performance was the fact thatLIB-
SVM copies kernel rows into the kernel cache, if one uses pre-computed kernel matrices, which, as
discussed below, we did throughout the experiments. This copying mechanism results in a small
number of iterations per second when theLIBSVM-solver is started on a new parameter point, while
with the kernel cache being filled up during the optimization, the solver starts performing more it-
erations per second. To ensure a fair comparison, we thus decided to implement our own version of
LIBSVM’s solver (without shrinking strategy). As a side effect, this new implementation also ben-
efited from theSSE2 instructions for upgrading the gradient. Unlike the subset selection strategy
of the 1D-SVM-solver, however,LIBSVM’s subset selection strategy, though implementable, does

4. At first glance, this manual approach may seem to be too specialized,since it should clearly be not the goal of this
paper to fine-tune an algorithm to a very specific hardware environment.On the other hand, a good compiler should
make optimizations with respect to these nowadays standard instructions, which have been first introduced byIntel in
2001 and have been adopted byAMD in 2003, automatically. Unfortunately, it turned out thatgcc 4.3 did not do this
optimization reliably. Namely, depending on some minor and apparently independent changes in other parts of the
code, the most crucial loops where sometimes optimized and sometimes not. This behavior rendered a reasonable
comparison of different algorithms impossible. Therefore, our manual approach can also be viewed as a compilation
with a more ideal compiler, which in the future is hopefully available.

5. In fact, it turned out that neither the number of iterations nor the run timewas significantly affected by the shrinking
heuristic. Corresponding results for the run time are reported in Figure 1.

164



TRAINING SVMS WITHOUT OFFSET

0

1

2

3

4

5

6

7
x 10

−3

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
New LIBSVM
LIBSVM WOS
LIBSVM WS

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
New LIBSVM
LIBSVM WOS
LIBSVM WS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
New LIBSVM
LIBSVM WOS
LIBSVM WS

Figure 1: Performance of the originalLIBSVM-solver (WOS: without shrinking; WS: with shrink-
ing) compared to our own implementation of theLIBSVM-solver. The graphic displays
the average run time in seconds (middle) over the 10 by 10 parameter grid described later
in this section. Shrinking does not give an advantage onthis parameter grid, while the
newLIBSVM implementation runs in almost all cases significantly faster than the original
LIBSVM .

not benefit from vectorization since not all indices are considered, and hence the relatively slow
non-serial RAM access of the CPU outweighs the speed improvement of theSSE2 instructions.

We downloaded all data sets for binary classification fromLIBSVM’s homepage whose number
of features did not exceed 1000. We made this cut because having data sets with a huge number
of features would have required substantial extra effort for implementingour algorithms, and this
effort was clearly out of the scope of this paper. In all cases, we used the scaled versions of these
data sets, and if they were not available, we scaled the unscaled data sets with the help ofLIBSVM’s
scaling tool. For data sets that were not split into a training and test set we generated a random
split that contained approximately 70% training and 30% test samples. Moreover, for the already
split data setsSPLICE, SVMGUIDE1, SVMGUIDE3, we decided to first merge the corresponding
training and test set and then generate the random split above. For the large data setsCOVTYPE and
IJCNN1, we generated random subsets of the two data sets of sizesn= 2000,5000, and then applied
the random split above. Finally, we ignored some versions with larger training set of theAXA

and WXA families, namelyA5A–A9A, andW4A–W8A because of time and memory constraints.
Moreover, for these two families of data sets we kept the split between training and test sets. Table
1 shows the corresponding characteristics of the considered data sets together with classification
errors of the fastest version of the2D-SVM andLIBSVM, respectively.

In all our experiments, we consideredk-fold cross validation with folds randomly generated
from the training set and hyper-parametersλ andσ each taken from a 10 by 10 grid. Since the choice
of this grid has a significant influence on both the training time and the learning performance, special
care is needed here. Despite such care, however, it seems likely that every choice will be subject to
discussion. To pick the parameter grid less heuristically than in previous investigations, we decided
to use recent statistical insights from Steinwart et al. (2007), which showthatasymptoticallygood

165



STEINWART, HUSH AND SCOVEL

training
size

testsize
dim

ension
LIB

S
V

M
2D

-S
V

M
2D

-S
V

M
(duality

gap)
2D

-S
V

M
(fine

grid)
S

O
N

A
R

146
62

60
12.68

±
4.27

12.80
±

4.04
12.62

±
3.95

13.21
±

4.19

H
E

A
R

T
188

82
13

17.58
±

3.80
17.42

±
4.39

17.47
±

3.86
17.94

±
4.21

L
IV

E
R

-D
IS

O
R

D
E

R
S

248
97

6
29.31

±
4.00

29.76
±

4.31
28.90

±
3.94

28.70
±

4.25

IO
N

O
S

P
H

E
R

E
248

103
34

5.43
±

2.16
8.59

±
2.85

8.33
±

2.78
8.76

±
2.97

A
U

S
T

R
A

L
IA

N
484

206
14

14.76
±

2.21
14.54

±
2.09

14.77
±

1.90
14.45

±
2.24

B
R

E
A

S
T-C

A
N

C
E

R
493

190
10

3.30
±

1.06
3.15

±
1.07

3.13
±

1.01
3.15

±
1.02

D
IA

B
E

T
E

S
544

334
8

23.43
±

2.38
23.68

±
2.49

23.62
±

2.33
23.80

±
2.41

F
O

U
R

C
L

A
S

S
623

239
2

0.09
±

0.18
0.04

±
0.14

0.04
±

0.14
0.08

±
0.18

G
E

R
M

A
N

.N
U

M
E

R
718

282
24

24.95
±

2.27
24.84

±
2.29

24.93
±

2.16
25.35

±
2.10

S
V

M
G

U
ID

E3
892

392
21

16.48
±

1.70
16.60

±
1.77

16.55
±

1.74
16.42

±
1.68

C
O

V
T

Y
P

E-2
0

0
0

1392
616

54
24.06

±
1.60

23.92
±

1.69
24.09

±
1.49

24.14
±

1.57

IJ
C

N
N1

-2
0

0
0

1424
584

33
4.38

±
0.91

4.38
±

0.93
4.37

±
0.96

4.36
±

0.86

A
1

A
1605

30956
123

15.78
±

0.17
15.89

±
0.21

15.75
±

0.14
16.11

±
0.51

S
P

L
IC

E
2176

999
60

8.68
±

0.87
8.93

±
0.88

8.89
±

0.90
8.79

±
0.94

A
2

A
3365

30296
123

15.76
±

0.30
15.74

±
0.27

15.76
±

0.28
15.97

±
0.44

W
1

A
2477

47332
300

2.20
±

0.07
2.18

±
0.06

2.21
±

0.07
2.22

±
0.07

A
3

A
3185

29336
123

15.57
±

0.08
15.82

±
0.21

15.55
±

0.10
15.85

±
0.22

W
2

A
3470

46339
300

1.94
±

0.09
1.95

±
0.06

1.97
±

0.06
1.94

±
0.06

C
O

V
T

Y
P

E-5
0

0
0

3472
1536

54
20.77

±
0.88

20.73
±

0.83
20.74

±
0.86

20.79
±

0.81

IJ
C

N
N1

-5
0

0
0

3486
1514

33
2.73

±
0.42

2.70
±

0.45
2.72

±
0.41

2.70
±

0.45

A
4

A
4781

33780
123

15.52
±

0.07
15.80

±
0.30

15.58
±

0.13
15.64

±
0.14

W
3

A
4912

44833
300

1.75
±

0.05
1.75

±
0.05

1.76
±

0.05
1.72

±
0.06

S
V

M
G

U
ID

E1
4959

2130
4

2.97
±

0.32
3.01

±
0.33

2.97
±

0.32
3.03

±
0.29

M
U

S
H

R
O

O
M

S
5773

2351
112

0.00
±

0.01
0.00

±
0.00

0.00
±

0.00
0.00

±
0.01

Table
1:

C
haracteristics

ofthe
considered

data
sets

together
w

ith
the

tester
rors

(±
standard

deviations)
on

100
random

splits.
T

he
training

and
testsetsizes

refer
to

the
splits

used
in

the
run

tim
e

experim
ents.

T
he

cons
idered

algorithm
s

w
ere

the2D
-S

V
M

w
ith

W
S

S
7,I1-

W
4

and
clipped

duality
gap

stopping
criterion

(6th
colum

n),
LIB

S
V

M
(5th

colum
n),the2D

-S
V

M
w

ith
W

S
S

7,I1-W
4

and
duality

gap
stopping

criterion
(7th

colum
n),and

another
2D

-S
V

M
w

ith
W

S
S

7,
I1-W

4
and

clipped
duality

gap
stopping

criterion
(8th

colum
n).

T
he

hyper-param
eters

for
the

firstthree
testerror

colum
ns

w
ere

selec
ted

by
10-fold

cross-validation
on

the
10

by
10

grid
described

in
the

text,w
hile

for
the

fourth
testerror

colum
n,10-fold

cross-validation
o

n
a

finer
and

larger
25

by
30

grid
w

as
used.

166



TRAINING SVMS WITHOUT OFFSET

values ofλ andσ are contained in the intervals[c1n−2,1] and[c2,c3n1/d], respectively, wheren is
the number of training samples,d is the input dimension, andc1, c2, andc3 are arbitrarily specifiable
constants independent ofn andd. Based on this result, we considered a geometrically spaced 10
by 10 grid in [10n−2,1]× [0.1,2n1/d], that is, the ratio of consecutive grid points was constant.
Here, it is worth mentioning that during the k-fold cross validationλ was internally converted to
C by the formulaC := k

2(k−1)λn to accommodate the fact that theactual training set size for k-fold
cross validation is approximately(k−1)n/k. To empirically validate the quality of this grid with
respect to classification performance we repeated the 10-fold cross validation procedure 100 times
for the fastest versions of the2D-SVM andLIBSVM, respectively. We refer to Section 5.1 for an exact
description of the experimental setup. The resulting average classificationerrors, which are reported
in Table 1, show that both algorithms achieve comparable classification performance except on one
small data set, namely IONOSPHERE. However, the size of this and some other data sets make it
hard to draw conclusion from the corresponding, reported errors. While this experiment showed,
that both algorithms performed equally well on the chosen grid, it does not allow statements about
the absolute quality of the grid. We therefore conducted a control experiment6 with the fastest
version of the2D-SVM on a geometrically spaced 25 by 30 grid in[0.001n−2,1]× [0.005,20n1/d].
The size and boundaries of this control grid ensured that it was both significantly finer and larger
than the 10 by 10 grid. Besides the different grid size, the experimental setup followed that described
in Section 5.1 and the resulting average classification errors are reportedin Table 1, too. The results
in this table show that the classification performance is not improved when using the larger grid,
which in turn means that our initial 10 by 10 grid is a good choice.

Like the choice of the grid, the stopping criterion and its threshold value havea significant
influence of the number of iterations and the run time of an SVM solver. Unfortunately, the2D-
SVM andLIBSVM use different stopping criteria, which makes a direct comparison difficult.To
address this problem, we again took a statistical perspective in the sense that the ultimate goal when
solving the SVM optimization problem is not numerical but statistical accuracy.In other words, we
may stop the iterative optimization procedures as soon as we know that the remaining inaccuracy
does not significantly influence the classification performance. For the1D-SVM and the2D-SVM
we thus used the stopping criterion (9) withε := 0.001, while for our version ofLIBSVM’s solver
we used, like the originalLIBSVM, the classical MVP stopping criterion withε = 0.001. Here
we note that this was necessary sinceLIBSVM’s solver deals with SVMswith offset b, and hence
the stopping criterion (9) is no longer applicable. In addition, an appropriately modified stopping
criterion seems to be computationally inefficient, while by (List et al., 2007, Lemma8) the MVP
stopping criterion with valueε = 0.001 also ensures (8) forε := 0.001 and f ∗ instead of[ f ∗]1−1.
In other words,LIBSVM’s default value, which we picked throughout our experiments, actually
has a good interpretation in terms of learning. Of course, the different stopping criteria used raise
the question whether the results reported below are due to differences in the working set selection
strategy, the different nature of the optimization problem,or the stopping criteria. In this regard,
we note that in the experiments withLIBSVM our goal is to compare theentire 2D-SVM-solver
with a state-of-the-art solver, rather than to, for example, compare different working set selection
strategies. For this purpose, it is irrelevant whether the working set selection strategy, the nature
of the optimization problem, or the different stopping criteria have a strongerinfluence on the run

6. This control experiment was extremely time-consuming, and hence we were forced to distribute the runs between
different machines (with different hardware features). For the same reason, it was, unfortunately, infeasible to run
the same control experiment forLIBSVM.

167



STEINWART, HUSH AND SCOVEL

time. Nonetheless, it remains an interesting question for future work whethersolver’s for SVMs
with offset can also benefit from some of the ideas of the working set selection strategies introduced
for the2D-SVM-solver.

In all experiments we pre-computed the kernel matrix in order to avoid that these solver-in-
dependent but data set-dependent computations are contained in the reported training times. To
be more precise on the latter dependence, recall that the time needed to compute the matrixK
significantly depends on the number of features of the samples and the implementation-specific
internal representation of the samples. For example, we may have two data sets in R

d1 andRd2,
respectively, that generate the same matrixK. Now assume thatd1≪ d2. Without pre-computing
the kernel matrix, the solver will need significantly more time for the second dataset, while the
run times for both data sets will be equal for pre-computedK. Moreover, the second data set may
actually consist of samples for which most of the coordinates are zero. Inthis case, an internal
data representation likeLIBSVM’s that exploits this sparseness may speed up the computation of
both the entireK and single kernel matrix rows. On the other hand, if the data doesnot enjoy this
kind of sparseness, a straightforward sample representation by arrays is typically superior, since it
avoids costly branches, allows sequential RAM access, which, from our experience, is often 4 times
faster than random access, and makes it possible to use vectorization features of modern processors
such asSSE2 instructions. Last but not least, we observed recently, after the experiments of this
paper were finished, that the pre-computation ofK enjoys an almost linear speed-up, when it is
distributed among the cores of modern multi-core processors, while for the computation of single
rows of K the improvement may be significantly less due to the time spend for synchronization.7

Obviously, these implementation options make it impossible to determine a canonical method for
dealing with the kernel matrixK, whether it fits into memory or not. Consequently, by picking
a particular method and including its run time into the measurements, one necessarily introduces
a bias into the experiments, and hence run time results reported from a seriesof such experiments
may be of little value for new, time-critical SVM applications with different data set characteristics.8

In fact, for such applications all the considerations above need to be carefully taken into account,
which in turn requires knowledge of the computational complexity of eachindividual component.
In other words, for an informed decision one needs to know, among others, the run time complexity
of the core solver, which in turn gives another argument for considering the core solver with pre-
computed matrix.9 On the downside, however, this approach is, of course, unrealistic forlarge
data sets whose kernel matrices do not fit into the computers memory. On the other hand, for all
considered data sets the matricesdid fit into memory, and in addition, it turned out that for all data
sets there were parameter regions of the grid where all or basically all vectors were support vectors.
In these regions, the corresponding kernel rows would have been computed during the optimization,

7. This observation suggests that in the future, the computation ofK, which is currently a significant part of the entire
SVM training time, may be significantly less time consuming. This may be in particular true for highly parallel
architectures such as graphical processing units.

8. In an extreme case, including the computation time forK opens the possibility that a new solver appears to be faster
than existing ones simply because it has a better implementation for computingK.

9. Another approach would be toa) not pre-computeK andb) exclude the time needed to compute and cache kernel
rows from the reported run time. Unfortunately, this approach is infeasible because of the relatively low resolution
of the time-measuring functions in C.
Yet another approach would be to actually precomputeK, but to pretend that a cache of a certain size is used. One
could then log cache misses of such a virtual cache. While the latter approach may actually be the silver bullet for
future work, the idea for it only arose after the reviewers comments, and, unfortunately, a respective re-design of our
experiments were too costly at that stage.

168



TRAINING SVMS WITHOUT OFFSET

if we had not precomputed the kernel matrices, and consequently, trainingover the grid would have
required the solver to compute the kernel matrix anyway. From this point of view, our experiments
suggests that training over a grid with medium-sized data sets whose kernel matrix still fits into
memory, there is no need to implement a caching strategy. In fact, we strongly conjecture that
without pre-computing the kernel matrices, our experiments would have rendered computationally
infeasible with one computer only. It is, of course, needless to say, that the situation may change, if
other parameter selection strategies are used, or the data sets are too large.

5.1 Comparing Classification Performance

When comparing the standard SVM optimization problem with the version in (1), probably the
first question is, whether the absence of the offset term has an influence on the classification per-
formance. To answer this question we performed on each data set 100 runs for both a version of
the2D-SVM-solver and our implementation ofLIBSVM’s solver. We performed these experiments,
though we report them first, actually at the very end of our investigations.This way, we could
use for each solver the fastest version. For the2D-SVM-solver it turned out, as we will see below,
that this is theWSS 7 strategy together withI1-W4 initialization, while for theLIBSVM’s solver we
used, depending on the data set, eitherI1-W2 or I1-W5 initialization. Besides for the data sets of
the AXA andWXA families, we generated for each data set 100 random splits, where each train-
ing set contained, modulo randomness, 70% of the samples. Moreover, oneach of these training
sets the hyper-parameter selection was performed by 10 fold cross-validation over the parameter
grid described above. The test error was then computed on the test set part of the split, which,
modulo randomness, contained 30% of the samples. The resulting average classification errors are
reported in Table 1. As one quickly observes,LIBSVM yielded the better classification performance
on the data set IONOSPHERE. On all other data sets, however, both algorithms performed almost
indistinguishable. Therefore, it seems fair to conclude that the classification performance is not
significantly influenced by the absence of the offset.

5.2 Comparisons to the 2D Selection Strategy with Maximal Gain

In our first set of experiments on 2D subset selection strategies, we investigated the number of
iterations needed for the different strategies for selecting working sets.Our baselines were the1D-
SVM-solver and the2D-SVM strategyWSS 0, which searches for the pair of indices with maximal
dual gain. Since the latter is computationally very expensive, we decided to use only 2-fold cross
validation. In addition, we actually trained only on one of the two folds, that is,our approach is best
described by the training/validation SVM (TV-SVM) of Steinwart and Christmann (2008). Besides
these modifications, however, we followed the approach outlined earlier. Finally, in all experiments
of this subsection, we initialized byα← 0.

Let us now have a closer look at the results that are displayed in Figures 2to 5. Figure 2
compares the1D-SVM, WSS 0 and the simple 2D-modifications of the1D-SVM. Not surprisingly,
WSS 0 needs substantially less iterations than its one-dimensional equivalent1D-SVM, while all
of the simple 2D-modifications perform somewhere in between. More precisely, WSS 1 yields
some significant improvement over the1D-SVM. For WSS 2 the message is mixed; while on some
data sets,WSS 2 performs significantly better, the difference is more marginal on other data sets.
However, combiningWSS 1 andWSS 2 into WSS 3 yields a clear overall improvement over both
methods and the1D-SVM. Another combination,WSS 5 that combinesWSS 1 with a search over

169



STEINWART, HUSH AND SCOVEL

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
1D−SVM
WSS 0
WSS 1
WSS 8
WSS 2
WSS 3
WSS 5
WSS 7

0

0.5

1

1.5

2

2.5

3

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
1D−SVM
WSS 0
WSS 1
WSS 8
WSS 2
WSS 3
WSS 5
WSS 7

0

1

2

3

4

5

6

7

8

9

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
1D−SVM
WSS 0
WSS 1
WSS 8
WSS 2
WSS 3
WSS 5
WSS 7

Figure 2: Performance of methods based on simple extensions of the 1D-search strategy for small
(left), mid-sized (middle), and relatively large data sets (right). The graphic displays the
average number of iterations in thousands for the different methods overthe entire 10
by 10 parameter grid. All 2D-methods perform better than the1D-SVM, but the degree
of improvement differs significantly.WSS 2 performs sometimes better and sometimes
substantially worse thanWSS 1, but combining both methods intoWSS 3 leads to uni-
form improvements. The same holds forWSS 5, though with less improvements. The
combinationWSS 7 uniformly yields the lowest number of iterations.

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
WSS 0
WSS 7
WSS 32
WSS 128
WSS 64
WSS 256

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
WSS 0
WSS 7
WSS 32
WSS 128
WSS 64
WSS 256

0.8

1

1.2

1.4

1.6

1.8

2

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
WSS 0
WSS 7
WSS 32
WSS 128
WSS 64
WSS 256

Figure 3: Performance of methods based on approximations of the 2D strategy WSS 0 (black). The
graphic displays the average number of iterations in thousands for the different methods
over the entire 10 by 10 parameter grid.WSS 0 performs uniformly best, but both deter-
ministic strategiesWSS 32 andWSS 128, which are basically indistinguishable, closely
follow the performance ofWSS 0. WSS 7 and the hybridWSS 64 still capture most of the
behavior of the previous methods with small advantages forWSS 7, while the complete
randomization performs uniformly worst.

170



TRAINING SVMS WITHOUT OFFSET

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
1D−SVM
WSS 0
WSS 512
WSS 3
WSS 515
WSS 7
WSS 519

0

0.5

1

1.5

2

2.5

3

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
1D−SVM
WSS 0
WSS 512
WSS 3
WSS 515
WSS 7
WSS 519

0

1

2

3

4

5

6

7

8

9

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
1D−SVM
WSS 0
WSS 512
WSS 3
WSS 515
WSS 7
WSS 519

Figure 4: Combining methods based on simple 1D-extensions withWSS 512, which considers the
approximate gain on inner SVs. The graphic displays the average number of iterations
in thousands for the different methods over the entire 10 by 10 parameter grid. Without
combiningWSS 512 with other methods, it performs quite poorly, while combiningWSS
512 with WSS 3 to WSS 515 yields an improvement over both methods. In contrast,
combiningWSS 512 andWSS 7 to WSS 519 does not give an improvement overWSS 7
as the almost indistinguishable two green lines show.

10 nearest neighbors, also needs substantially less iterations thanWSS 1 and the1D-SVM, but the
improvements are less than those ofWSS 3. However, the combination of all,WSS 7, does not only
perform uniformly better than all participating methods, but also needs in mostcases only a few
more iterations than the optimalWSS 0. Finally, WSS 8, which is a variant ofWSS 1, also reduces
the number of iterations substantially, yet it fails to perform as well asWSS 7. Let us now have
a closer look at Figure 3 that shows how the methods based on an approximation of the optimal
WSS 0 perform. Here it turns thatWSS 32, which uses the exact computation of the 2D-gain, and
WSS 128, which uses an approximation of the 2D-gain, perform indistinguishably. In addition,
they only need a few more iterations thanWSS 0, and constantly outperformWSS 7, yet the latter
improvement is in most cases only marginal. Finally, the random approachesWSS 64 andWSS 256
do not need less iterations thanWSS 7, and the complete random approach ofWSS 256 performs
worse than the hybrid strategyWSS 64. However, by comparing with Figure 2 we see thatWSS
256 still needs significantly less iterations than the1D-SVM.

Another way to approximately compute the 2D-gain is implemented inWSS 512. Figure 4
compares the number of iterations of this method to the1D-SVM, WSS 0, and some combinations
of WSS 512 with simple 2D-extensions of the1D-SVM approach. A closer look at this figure shows
that WSS 512 alone is not a very good alternative to the1D-SVM, while combinations do yield
significant improvement. However, these improvements are not significantly better thanWSS 7.

Finally, let us compare the1D-SVM and the optimal 2D strategyWSS 2 with the MVP approach
of WSS 16 and LIBSVM. Figure 5 shows that the 2D-MVP approach ofWSS 16 performs only
slightly better than the1D-SVM. In contrast,LIBSVM needs, not surprisingly, substantially less
iterations than the1D-SVM, but it fails to perform as well as the simpleWSS 3, and the more
complicatedWSS 7.

171



STEINWART, HUSH AND SCOVEL

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
1D−SVM
WSS 0
WSS 7
WSS 1
WSS 16
LIBSVM

0

0.5

1

1.5

2

2.5

3

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
1D−SVM
WSS 0
WSS 7
WSS 1
WSS 16
LIBSVM

0

1

2

3

4

5

6

7

8

9

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
1D−SVM
WSS 0
WSS 7
WSS 1
WSS 16
LIBSVM

Figure 5: LIBSVM and MVP compared to some other approaches. The graphic displays the aver-
age number of iterations in thousands for the different methods over the entire 10 by 10
parameter grid. On all data sets considered, the 2D-MVP strategyWSS 16 has some ad-
vantage over the simple1D-SVM, while LIBSVM often needs substantially less iterations
and performs comparably to theWSS 1. However, neither of the methods approach the
close-to-optimal performance ofWSS 7 or even the optimal performance ofWSS 0.

5.3 Comparisons of Different 2D Subset Selection Strategies

The experiments of the previous subsection identified some working set selection strategies that
performed close toWSS 0 in terms of iterations. UnlikeWSS 0, all these strategies wereO(n), yet
is seems obvious, that their run time may substantially differ. Therefore, the goal of the experiments
in this subsection is to evaluate the working set selection strategies in terms of their run time. To
this end, we performed the already described 10-fold cross validation training on our data sets and
measured both the number of iterations and the run time. Note that by considering both quantities
simultaneously, it is possible to decide whether a strategy suffers from its large number of iterations
or only from its computational requirements for selecting the working set. In the following, we only
summarize our findings, since Appendix A.1 contains various graphics displaying our results of this
subsection in detail. In this appendix, we always report the average requirements per grid point,
where the average is either taken with respect to all 10 folds and the entire grid, or just with respect
to the 10 folds and the grid points whose validation error is close to the minimal validation error. The
latter averages are of particular interest, when one does not use grid search for the hyper-parameter
selection, but some other, possibly faster methods, such as the one by Keerthi et al. (2007). In
addition, the latter averages are also interesting for grid search, since after such a search one usually
retrains the SVM on the entire training set with the hyper-parameters that performed best in terms
of validation error.

Let us now have a closer look at the results. The first observation, seeFigures 8 and 9 for
details, is thatWSS 2, which needs less iterations than the1D-SVM, does not run substantially
faster. However, this behavior can be relatively easily explained by the fact that in each iteration the
1D-SVM updates the gradients for one direction only, whereasWSS 2, due to its 2D-nature, performs

172



TRAINING SVMS WITHOUT OFFSET

two such updates per iteration. Similarly,WSS 8 cannot translate its advantage overWSS 1 in terms
of iterations into a substantial advantage in terms of run time. In this case, a closer look reveals that,
compared toWSS 1, WSS 8 performs an additional, implicit gradient upgrade when looking for the
second directionj. The other results displayed in Figures 8 and 9 confirm our results from Figure 2.
In particular,WSS 7 not only need the fewest number of iterations, but also runs fastest on almost all
data sets. Finally, Figure 10 reveals, for which hyper-parameters some combined methods achieve
their speed-up compared toWSS 1. In particular, for large values ofλ, WSS 3 andWSS 7 need
only half of the iterations ofWSS 1 and WSS 5, which indicates that in this regime,WSS 2 is
the dominating strategy in the former two combinations. On the other hand, for small values ofλ,
the nearest neighbor strategyWSS 4 seems to be the dominating working set selection strategy of
WSS 5 andWSS 7, since both methods need substantially less iterations than the methodsWSS 1
andWSS 3, which do not include the nearest neighbor strategy. Finally, these advantages in terms
of iterations do translate into almost the same advantage in terms of run time, since the additional
costs of the nearest neighbor strategy only depend on the numberk of considered nearest neighbors,
which, in general, is quite small compared to the sample size. Nonetheless it is worth mentioning
that for a few hyper-parameter pairs, it is faster not to use the nearestneighbor strategy.

Let us now turn to the methods that try to approximate the working set strategy of the optimal
WSS 0. Here, see Figures 11 and 12 for the details, it turns out, thatWSS 32 andWSS 128, whose
required number of iterations were closest toWSS 0, have a significant higher run time thanWSS 7.
Since the number of iterations of these three methods behave quite similarly, the only explanation for
this different run time behavior is the additional cost per iteration for computing all (approximate)
2D-gains. This explanation is further confirmed by the fact thatWSS 128, which involves the
cheaper approximate 2D-gain has a better run time behavior thanWSS 32, which uses the exact
computation of the 2D-gain. Furthermore,WSS 64, which computes only a fifth of the 2D-gains
WSS 32 computes, runs substantially faster thanWSS 32, despite the fact the the former needs more
iterations. In this regard, we finally note thatWSS 256 runs over-proportionally slowly compared
to, for example,WSS 128. Most likely, this behavior can be explained by less effective hardware
caching for the random pair selection ofWSS 256. To get a better impression, on how effectiveWSS
7 chooses its working sets, let us now have a closer look at the number of iterations of the different
working set selection strategies. The bottom graphics of Figure 11 show that over the entire grid,
WSS 7 only needs 5% to 20% more iterations than the best performingWSS 32. However, if
one considers only the grid points with small validation error, this good behavior becomes worse.
Indeed, the bottom graphics of Figure 12 show that for such hyper-parameters,WSS 7 typically
needs more than 20% more iterations thanWSS 32, and in some cases even more than 50% more.
Finally, Figure 13 reveals that in particular for small values ofλ and flat kernels,WSS 7 requires
substantially more iterations thanWSS 32. However, at least on the data setSVMGUIDE1 this
worse behavior takes place at grid points that do not need a lot of iterations anyway, and hence the
advantage ofWSS 32 is marginal.

The next question, which naturally arises from the observations above,is whether the number
of iterations used inWSS 7 can be reduced by combiningWSS 7 with some methods that mimic
WSS 32 on the inner support vectors. Here, Figure 11 shows that the number ofiterations can be
reduced by such combinations in a few cases, but this never pays off in terms of run time, if one
considers the entire grid. On the grid points with small validation error, however, the situation is
slightly more involved. Clearly, the combination withWSS 2048 performs worst, yet combining
WSS 7 with WSS 512 or WSS 1024 sometimes yield a shorter run time. Finally, Figure 16 shows

173



STEINWART, HUSH AND SCOVEL

0

0.5

1

1.5

2

2.5

3
x 10

−3

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

0

0.02

0.04

0.06

0.08

0.1

0.12

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

Figure 6: Average run time in seconds per grid point ofLIBSVM and MVP compared to some other
approaches over the entire 10 by 10 grid. The 2D-MVP approach ofWSS 16 is not a
good alternative to the1D-SVM or even the two-dimensionalWSS 7. Moreover,LIBSVM
is significantly slower thanWSS 7.

that, at least for the data setSVMGUIDE1, the improvements achieved by these combinations are
mainly at grid points that do not require a lot of iterations. On the other hand,it also illustrates that
the computational overhead of these combinations is significant.

Finally, let us compareLIBSVM with some subset selection strategies such as the MVP approach
of WSS 16 and the overall best performingWSS 7. Here, see Figure 6 for a short impression and
Figures 17 to 19 for the details, the most interesting observation is that although WSS 1 andLIBSVM
have comparable behavior in terms of iterations, they substantially differ in terms of their run time.
Because we used our own implementation ofLIBSVM’s solver, which employed the sameSSE2
optimizations as the2D-SVM methods, the only way to explain this behavior is that the subset
selection strategy ofLIBSVM is significantly more expensive than the simpleWSS 1. To understand
the latter, recall thatLIBSVM’s strategy is based on computing an approximate 2D-gain, which is
quite expensive as we have seen in Figures 11 and 12 for the2D-SVM methodsWSS 32, WSS 64,
WSS 128, andWSS 256. In addition,LIBSVM’s strategy cannot be efficiently vectorized, which is
another disadvantage compared toWSS 1. Finally, it is interesting to note thatWSS 7 is between 2
and 4 times faster thanLIBSVM, when the average over all grid points is considered. Moreover, on
the grid points with small cross validation error, the improvement is rarely less than a factor of 4,
and as Figure 19 illustrates, this is most likely not an artifact caused by different optimal grid points.
Indeed, on some grid pointsLIBSVM needs more than 10 times the run timeWSS 7 requires.

5.4 Influence of the Stopping Criterion

In this subsection, we investigate the influence of the stopping criterion (9) on the computational
requirements. To this end, we considered the 10-fold cross validation procedure described earlier.
Moreover, in order to save time, we only considered the best performing working set selection
strategy, namelyWSS 7. For this method, we considered our stopping criterion (9) and the classical

174



TRAINING SVMS WITHOUT OFFSET

duality gap stopping criterion (7), where we set the right hand side of bothstopping criteria to be
ε/(2λ) with ε := 0.001. Note that this is exactly the same set-up as in our previous experiments,
and it is not hard to show that for the duality gap (7), this choice again leadsto the same theoretical
bounds on the generalization performance.

The results of our experiments are summarized in Figures 20 to 22. A quick look shows that, not
surprisingly, the stopping criterion (9) never leads to more iterations, but the improvements depend
very much on the data set. Moreover, these smaller number of iterations also pay off in terms of
run time, though the effect is less pronounced when we consider the entiregrid. We believe this is
due to the fact that computing (9) is a little more expensive than computing (2), since it involves
two instead of just one clipping operations. In this regard, it is interesting to note that theSSE2
instruction set inemmintrin.h makes it possible to avoid expensive branches for the computation
of the clipping by providingmin() andmax() operations. In turn, this results in a relatively cheap
stopping criterion; from some ad-hoc measurements made for a different purpose, we estimate that
this computation costs about 10% of an entire iteration, though the exact numbers are most likely
hardware dependent. When we only consider the grid points with small validation error, the positive
effect of the clipped duality gap is amplified as Figure 21 shows. The reason for this behavior is
illustrated in Figure 22 for theSVMGUIDE1 data set. Indeed, this figure shows that for small values
of λ, the stopping criterion (9) leads to both substantially less iterations and shorter run times,
whereas for largerλ, the computational requirements for both stopping criteria are essentially the
same. Although uniformly superior, the positive effect of using (9) is thushighly inhomogeneously
distributed over the parameter grid.

5.5 Comparing Different Numbers of Nearest Neighbors

So far we have consideredWSS 7 for 10 nearest neighbors only. Of course, this was a relatively ar-
bitrary choice, and hence it is interesting to investigate how the computational requirements change
with the number of nearest neighbors. This is the goal of this subsection.

To this end, we again used the 10-fold cross validation procedure described earlier. Moreover,
we considered the behavior ofWSS 7 for N-nearest neighbors, whereN = 5,10,15,20,25,30. Our
first observation was that, forN = 25 andN = 30, there was rarely an improvement in terms of
iterations, but the required run time tended to slightly increase compared to smaller N. To keep
the figures clean, we hence plotted the results forN = 5,10,15,20, only. Figures 23 and 24 show
thatWSS 7 behaves slightly worse forN = 5, while for largerN the behavior over theentiregrid is
essentially indistinguishable. The latter observation mildly changes, if one onlyconsiders the hyper-
parameters with small cross validation error, yet it is unclear to which extendthis effect is caused by
possibly different hyper-parameters picked by the different methods.In addition, a detailed look at
Figure 25 does not really clarify the situation, since many of the run times measured are close to the
finest resolution oftime.h. Consequently, it seems safe to say that, at least in the rangeN = 10. . .20,
the performance ofWSS 7 is essentially independent ofN.

5.6 Comparing Different Initializations

Let us now investigate the influence of different initialization strategies on thecomputational re-
quirements. To this end, we trained2D-SVM with WSS 7 and with different combinations of cold
and warm start options on the data sets summarized in Table 1. Moreover, weagain used the 10-fold
cross validation procedure described earlier.

175



STEINWART, HUSH AND SCOVEL

0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
I0−W0
I0−W4
I1−W4
I0−W6
I1−W6
I0−W5
I1−W3

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
I0−W0
I0−W4
I1−W4
I0−W6
I1−W6
I0−W5
I1−W3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
I0−W0
I0−W4
I1−W4
I0−W6
I1−W6
I0−W5
I1−W3

Figure 7: Average computational requirements per grid point of more complex initialization strate-
gies for the2D-SVM with WSS 7 for small (left), mid-sized (middle), and relatively large
data sets (right). The graphics display the run time in seconds. The cold start initializa-
tions with zeros (I0- plots) need less iterations but in most cases more run time. In almost
all cases, the more complicated initialization strategies perform better than the simple
warm start approaches. Overall,I0-W4, I1-W4, andI0-W6 are the most efficient methods
in terms of run time.

The first observation is, see Figure 26 for details, that initializing with zerosalways leads to
less iterations than initializing with a kernel rule. Surprisingly, however, the required run time for
both initialization strategies is substantially less different. A closer inspection revealed10 that this
is caused by the fact that the solver initialized with the kernel rule methodI1-W1 spends most of
its iterations during initialization, that is, most of the iterations counted are from the outer loop of
Procedure 4. Since these iterations do not involve the working set selection and the computation
of the stopping criterion, they are relatively cheap compared to the iterationsof the actual solver
described in Algorithm 2. Moreover, Figure 26 shows that the simple warm start strategiesW2,
W3, andW5 do reduce the computational requirements significantly, where in almost all cases the
scaling approach ofW3 andW5 performs superior.

Interestingly, the computational requirements can often be further reduced by one of the more
complicated initialization strategiesW4 andW6 as Figure 7 illustrates, see also Figure 27 for more
details. In particular, the combinationsI0-W4, I1-W4, andI0-W6 run in most cases faster than the
simple combinationI0-W3, and overall it seems fair to say thatI1-W4 performs best. However note
that this approach requires access to the entire kernel matrix, and hencethe combinationsI0-W4 and
I0-W6 may be the better choice, if storing this matrix is not an option.

We also conducted a control experiment in which the warm start options available for SVMs
with offset are compared. Figure 28, which displays the correspondingresults, shows that in most
cases scaling byW3 andW5 is better than keeping the solution, that is,W2. This is similar to our
results for SVMs without offset, but a closer look reveals, that the run timegain for SVMs with
offset is both less pronounced and less consistent. In particular for thelarger data sets, the gain by

10. For brevity’s sake we omitted the display of the corresponding plots.

176



TRAINING SVMS WITHOUT OFFSET

using a warm start for SVMs with offset is about 20%, while for SVMs without offset it is about
45% even if only the simple warm start optionW5 is used. Moreover, the more complex strategies
for SVMs without offset can reduce the run time by about 60% on these data sets. Consequently,
it seems fair to say that SVMs without offset benefit substantially more fromwarm start strategies
than SVMs with offset do.

Let us finally investigate the effect of some of the initialization strategies for different hyper-
parameter pairs. Here Figure 29 reveals that the warm start options perform almost uniformly
better than the cold start optionI0-W0. Moreover, the complex warm start strategyW4 achieves a
significant gain for small values ofλ. Since theseλ are computationally more demanding than large
values ofλ, the success ofW4 can be explained. On the other hand, the strategiesW5 andW6 start
with the smallest value ofλ, and hence they do not achieve any improvement overI0-W0 for this λ.
However, they achieve a significant improvement for basically all other values ofλ, which in turn
explains their success. By combining these observations and the fact thatthe cold startI0 requires
a relatively small number of iterations on medium values forλ, it thus seems promising to use a
hybrid strategy that starts with such a medium value forλ, and then performsW4 for smallerλ and
W6 for larger values. However, investigating such a strategy is out of the scope of this paper.

6. Conclusions

We have thoroughly investigated SVMs without offset termb that use the hinge loss and Gaussian
kernels. It turned out that these SVMs have convergence rates and classification performance that
are comparable to SVMs with offset, while the absence of the offset givesmore freedom in the
algorithm design. In particular, we identified three areas, where this additional freedom results in
faster algorithms:

• Working set selection.In principle, an SMO-type solver for SVMs without offset can update
one variable at each iteration. However, we saw that this approach doesnot lead to run times
that were shorter than those of an SMO-type solver for SVMs with offset.We then identified
some selection methods for working sets of size two, that modified the search for working
sets of size one only very slightly. It further turned out that these modifications decreased the
number of iterations substantially, and since updating the gradient and computing the stop-
ping criterion for two variables did not change the costs of an iteration dramatically, these
modification also resulted in a significantly shorter run time. It is further worth mentioning
that the most successful selection strategies for workings sets of size twowere actually com-
binations of a couple of such simple modifications. The reason for the latter was that some
strategies worked particularly well for large values of the regularization parameterλ, while
others worked better for small values ofλ. The good combinations then contained both types
of strategies and identified the better one at each iteration automatically.

• Stopping criterion. Another improvement of the run time behavior of our algorithm came
from a new stopping criterion that has a clear justification from recent statistical analysis of
SVMs. This stopping criterion, which is essentially a relaxed duality gap, never leads to more
iterations than the classical duality gap stopping criterion, but it often decreased the number
of iterations. Moreover, its computational costs were almost identical to thoseof the classical
duality gap, and hence it often resulted in shorter run times.

177



STEINWART, HUSH AND SCOVEL

• Warm start initializations. SVMs without offset also allow more freedom in the design of
warm start initializations when the hyper-parameters are determined over a grid of hyper-
parameters. We investigated a couple of such initialization methods and saw that some of
them led to a substantially shorter run time. Moreover, by comparing to some warm start ini-
tializations for SVMs with offset, we observed that SVMs without offset benefit significantly
more from such strategies.

It seems fair to remind the reader that in our experiments we only considereddata sets for which
the kernel matrix fit completely in the RAM of a desktop computer. With present configurations of,
say up to 8GB RAM, this limits the data set size somewhere between 25,000 and 30,000 samples.
While such sizes are typically not considered to be extremely large, they already constitute a decent
challenge for existing off-the-shelf SVM software, if the training time is an issue. Moreover, even
for smaller data sets a fully automated hyper-parameter selection run for SVMs with offset is, for
some applications, too time intensive. Our new SVM solver yields a significant reduction in time for
medium-sized data sets, thus opening the applicability of SVMs to such problem domains. However,
it seems fair to say that although many data sets actually fall in this range of size, some other
applications demand processing substantially larger data sets. So far, it remains unclear, how well
our new solver performs for such data sets, and since our experimentalstudy was already quite
extensive and expensive, we postpone this question to future research.

Some other directions of future research include the following questions:a) Are there cheap
modifications of our 2D-working set selection strategy that identify workingsets of larger size for
which the number of iterations and the run time is further reduced?b) Can some of our ideas be used
or modified for other SVMs, that, for example, use different kernels and/or loss functions?c) Can
the run time of the solver be further improved by not only using vectorization via SSE instructions
but by also distributing tasks between different cores of a modern processor?

Appendix A. Detailed Experimental Results

On the following pages, we present more graphics illustrating our experimental findings. To keep
these graphics in order, we divided the appendix in several subsections, which follow the order of
the subsections of Sections 5.

178



TRAINING SVMS WITHOUT OFFSET

A.1 Results for the Different Working Set Selection Methods

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
1D−SVM
WSS 1
WSS 8
WSS 2
WSS 3
WSS 5
WSS 7

0

1

2

3

4

5

6

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
1D−SVM
WSS 1
WSS 8
WSS 2
WSS 3
WSS 5
WSS 7

0

5

10

15

20

25

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
1D−SVM
WSS 1
WSS 8
WSS 2
WSS 3
WSS 5
WSS 7

0

0.5

1

1.5

2

2.5

3
x 10

−3

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
1D−SVM
WSS 1
WSS 8
WSS 2
WSS 3
WSS 5
WSS 7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
1D−SVM
WSS 1
WSS 8
WSS 2
WSS 3
WSS 5
WSS 7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
1D−SVM
WSS 1
WSS 8
WSS 2
WSS 3
WSS 5
WSS 7

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
WSS 1
WSS 8
WSS 3
WSS 5
WSS 7

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
WSS 1
WSS 8
WSS 3
WSS 5
WSS 7

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
WSS 1
WSS 8
WSS 3
WSS 5
WSS 7

Figure 8: Average computational requirements per grid point of simple extensions of the 1D-search
strategy over the entire 10 by 10 grid. The graphics display the number of iterations in
thousands (top), the run time in seconds (middle), and the ratiosWSS x/WSS 1 of the run
times (bottom).WSS 7 performs almost uniformly best in both metrics.

179



STEINWART, HUSH AND SCOVEL

0

0.5

1

1.5

2

2.5

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
1D−SVM
WSS 1
WSS 8
WSS 2
WSS 3
WSS 5
WSS 7

0

5

10

15

20

25

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
1D−SVM
WSS 1
WSS 8
WSS 2
WSS 3
WSS 5
WSS 7

0

10

20

30

40

50

60

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
1D−SVM
WSS 1
WSS 8
WSS 2
WSS 3
WSS 5
WSS 7

0

1

2

3

4

5

6
x 10

−3

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
1D−SVM
WSS 1
WSS 8
WSS 2
WSS 3
WSS 5
WSS 7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
1D−SVM
WSS 1
WSS 8
WSS 2
WSS 3
WSS 5
WSS 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
1D−SVM
WSS 1
WSS 8
WSS 2
WSS 3
WSS 5
WSS 7

0

1

2

3

4

5

6

7

8

9

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
WSS 1
WSS 8
WSS 3
WSS 5
WSS 7

0

0.5

1

1.5

2

2.5

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
WSS 1
WSS 8
WSS 3
WSS 5
WSS 7

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
WSS 1
WSS 8
WSS 3
WSS 5
WSS 7

Figure 9: Computational requirements of simple extensions of the 1D-searchstrategy on the grid
points whose cross validation error is not larger than 1.05 the minimal cross validation
error. The graphics display the average number of iterations in thousands (top), the run
time in seconds (middle), and the ratiosWSS x/WSS 1 of the run times (bottom). Un-
fortunately, for the small data sets, the run time measurements are not very reliable. In
addition, the set of considered grid points may slightly vary for the different methods,
which in turn may influence the computational requirements and hence the graphic at the
bottom left has little informative value. It seems fair to say that overall,WSS 7 performs
best in both metrics, but is closely followed byWSS 5 in terms of run time.

180



TRAINING SVMS WITHOUT OFFSET

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

14

 

 
WSS 1
WSS 3
WSS 5
WSS 7

1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 
WSS 1
WSS 3
WSS 5
WSS 7

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

 

 
WSS 1
WSS 3
WSS 5
WSS 7

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 

 
WSS 1
WSS 3
WSS 5
WSS 7

Figure 10: Computational requirements per single grid point of simple extensions of the 1D-search
strategy for theSVMGUIDE1 data set. Each horizontal cell numbered by 1 to 10 cor-
responds to a single kernel parameterσ and an ordered run through the 10λ-values,
where the left of each cell corresponds to the largestλ-value, and the right to the small-
est. Analogously, cell 1 corresponds the the largestσ-value, and cell 10 on the right
corresponds to the smallestσ-value. The graphics at the top display the number of it-
erations in thousands (left) and the run time in seconds (right), both averaged over the
10 folds, forWSS 1, WSS 3, WSS 5, WSS 7, andWSS 8. WSS 7 performs almost
uniformly the best in both metrics. However, for largeλ, WSS 3 performs comparable,
while for smallλ, WSS 7 is closely followed byWSS 5. The graphics at the bottom
show the ratiosWSS x/WSS 7, x= 1,3,5,7, for the number of iterations (left) and the
run time (right) to illustrate the performance gain ofWSS 7.

181



STEINWART, HUSH AND SCOVEL

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
WSS 7
WSS 32
WSS 64
WSS 128
WSS 256

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
WSS 7
WSS 32
WSS 64
WSS 128
WSS 256

1

1.5

2

2.5

3

3.5

4

4.5

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
WSS 7
WSS 32
WSS 64
WSS 128
WSS 256

0

0.005

0.01

0.015

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
WSS 7
WSS 32
WSS 64
WSS 128
WSS 256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
WSS 7
WSS 32
WSS 64
WSS 128
WSS 256

0

0.5

1

1.5

2

2.5

3

3.5

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
WSS 7
WSS 32
WSS 64
WSS 128
WSS 256

0.95

1

1.05

1.1

1.15

1.2

1.25

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
WSS 7
WSS 32
WSS 64
WSS 128

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
WSS 7
WSS 32
WSS 64
WSS 128

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
WSS 7
WSS 32
WSS 64
WSS 128

Figure 11: Average computational requirements per grid point of methods based on approximations
of the maximal gain strategyWSS 0. The graphics display the number of iterations in
thousands (top), the run time in seconds (middle), and the ratiosWSS x/WSS 32 of
the number of iterations (bottom). AlthoughWSS 7 and the semi-randomWSS 64
need slightly more iterations thanWSS 32 and WSS 128, their costs per iteration is
substantially less, which results in a significantly shorter run time. The completely
randomWSS 256 needs over-proportionally more run time, possibly because of the less
effective hardware cache.

182



TRAINING SVMS WITHOUT OFFSET

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
WSS 7
WSS 32
WSS 64
WSS 128
WSS 256

0

0.5

1

1.5

2

2.5

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
WSS 7
WSS 32
WSS 64
WSS 128
WSS 256

0

1

2

3

4

5

6

7

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
WSS 7
WSS 32
WSS 64
WSS 128
WSS 256

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
WSS 7
WSS 32
WSS 64
WSS 128
WSS 256

0

0.2

0.4

0.6

0.8

1

1.2

1.4

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
WSS 7
WSS 32
WSS 64
WSS 128
WSS 256

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
WSS 7
WSS 32
WSS 64
WSS 128
WSS 256

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
WSS 7
WSS 32
WSS 64
WSS 128

0.5

1

1.5

2

2.5

3

3.5

4

4.5

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
WSS 7
WSS 32
WSS 64
WSS 128

0.8

1

1.2

1.4

1.6

1.8

2

2.2

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
WSS 7
WSS 32
WSS 64
WSS 128

Figure 12: Computational requirements of methods based on approximations of the maximal gain
strategyWSS 0 on the grid points whose cross validation error is not larger than 1.05 the
minimal cross validation error. The graphics display the average number ofiterations in
thousands (top), the run time in seconds (middle), and the ratiosWSS x/WSS 32 of the
number of iterations (bottom). For the small data sets, the run time measurements are
not very reliable. In addition, the set of considered grid points may slightly vary for the
different methods, which in turn may influence the computational requirements.

183



STEINWART, HUSH AND SCOVEL

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

 

 
WSS 7
WSS 32
WSS 128
WSS 64

1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

3

3.5

4

 

 
WSS 7
WSS 32
WSS 128
WSS 64

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

 
WSS 7
WSS 32
WSS 128
WSS 64

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

 

 
WSS 7
WSS 32
WSS 128
WSS 64

Figure 13: Computational requirements per single grid point of methods based on approximations
of the maximal gain strategyWSS 0 for the SVMGUIDE1 data set. The four graphics
have the same format as the ones in Figure 10. The graphics at the top display the
number of iterations in thousands (left) and the run time in seconds (right), both averaged
over the 10 folds, while the graphics at the bottom display the corresponding ratiosWSS
x/WSS 7. For some grid points,WSS 7 and WSS 32 need approximately the same
number of iterations, while for some other grid points,WSS 7 needs significantly more.
Nonetheless, the run times ofWSS 32 are substantially worse than that ofWSS 7.

184



TRAINING SVMS WITHOUT OFFSET

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
WSS 7
WSS 519
WSS 1031
WSS 2055

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
WSS 7
WSS 519
WSS 1031
WSS 2055

1

1.5

2

2.5

3

3.5

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
WSS 7
WSS 519
WSS 1031
WSS 2055

0

0.5

1

1.5

2

2.5

3
x 10

−3

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
WSS 7
WSS 519
WSS 1031
WSS 2055

0

0.02

0.04

0.06

0.08

0.1

0.12

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
WSS 7
WSS 519
WSS 1031
WSS 2055

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
WSS 7
WSS 519
WSS 1031
WSS 2055

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
WSS 7
WSS 519
WSS 1031

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
WSS 7
WSS 519
WSS 1031

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
WSS 7
WSS 519
WSS 1031

Figure 14: Average computational requirements per grid point of combiningWSS 7 with some
methods that use the formula for the approximate gain on inner SVs over the entire 10
by 10 grid. The graphics display the number of iterations in thousands (top), the run time
in seconds (middle), and the ratiosWSS x/WSS 7 of the run times (bottom). Although
the combinations need a slightly smaller number of iterations, their additional overhead
per iteration leads to longer run times.

185



STEINWART, HUSH AND SCOVEL

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
WSS 7
WSS 519
WSS 1031
WSS 2055

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
WSS 7
WSS 519
WSS 1031
WSS 2055

0.5

1

1.5

2

2.5

3

3.5

4

4.5

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
WSS 7
WSS 519
WSS 1031
WSS 2055

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
WSS 7
WSS 519
WSS 1031
WSS 2055

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
WSS 7
WSS 519
WSS 1031
WSS 2055

0

0.2

0.4

0.6

0.8

1

1.2

1.4

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
WSS 7
WSS 519
WSS 1031
WSS 2055

0

0.5

1

1.5

2

2.5

3

3.5

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
WSS 7
WSS 519
WSS 1031

0.8

1

1.2

1.4

1.6

1.8

2

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
WSS 7
WSS 519
WSS 1031

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
WSS 7
WSS 519
WSS 1031

Figure 15: Computational requirements of combiningWSS 7 with some methods that use the for-
mula for the approximate gain on inner SVs on the grid points whose cross validation
error is not larger than 1.05 the minimal cross validation error. The graphics display
the number of iterations in thousands (top), the run time in seconds (middle), and the
ratiosWSS x/WSS 7 of the run times (bottom). For the small data sets, the run time
measurements are not very reliable. In addition, the set of considered grid points may
vary slightly for the different methods, which in turn may influence the computational
requirements.

186



TRAINING SVMS WITHOUT OFFSET

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

 

 
WSS 7
WSS 519
WSS 1031

1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

0.25

0.3

 

 
WSS 7
WSS 519
WSS 1031

1 2 3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

 

 
WSS 7
WSS 519
WSS 1031

1 2 3 4 5 6 7 8 9 10

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

 

 
WSS 7
WSS 519
WSS 1031

Figure 16: Computational requirements per single grid point of methods based on simple exten-
sions of the 1D-search strategy for theSVMGUIDE1 data set. The four graphics have
the same format as the ones in Figure 10. The graphics at the top display the number of
iterations in thousands (left) and the run time in seconds (right), both averaged over the
10 folds, while the graphics at the bottom display the corresponding ratiosWSS x/WSS
7. Note that for largeλ the Boolean flag ofWSS 4 is typically not set to true during
the optimization, and hence all methods reduce toWSS 3. Analogously, for largeλ and
σ, the graphics nicely display the additional costs ofWSS 512 andWSS 1024. Finally,
the differences in the run time occur on a very low and hard to measure level,which
explains the fluctuations in the bottom right graphics.

187



STEINWART, HUSH AND SCOVEL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

0

1

2

3

4

5

6

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

0

5

10

15

20

25

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

0

0.5

1

1.5

2

2.5

3
x 10

−3

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

0

0.02

0.04

0.06

0.08

0.1

0.12

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

0.5

1

1.5

2

2.5

3

3.5

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

1

1.5

2

2.5

3

3.5

4

4.5

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

1

2

3

4

5

6

7

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

Figure 17: Average computational requirements per grid point ofLIBSVM and MVP compared to
some other approaches over the entire 10 by 10 grid. The graphics display the number
of iterations in thousands (top), the run time in seconds (middle), and the ratiosx/WSS
7 of the run times (bottom). The 2D-MVP approach ofWSS 16 is not a good alter-
native to the1D-SVM or even the two-dimensionalWSS 7. Moreover, althoughWSS
1 andLIBSVM perform approximately the same number of iterations, their run time is
significantly different due to the more expensive working set strategy ofLIBSVM.

188



TRAINING SVMS WITHOUT OFFSET

0

0.5

1

1.5

2

2.5

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

0

5

10

15

20

25

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

0

10

20

30

40

50

60

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

0

1

2

3

4

5

6
x 10

−3

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

0

2

4

6

8

10

12

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

0

5

10

15

20

25

30

35

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

0

2

4

6

8

10

12

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
1D−SVM
WSS 1
WSS 7
WSS 16
LIBSVM

Figure 18: Computational requirements ofLIBSVM and MVP compared to some other approaches
on the grid points whose cross validation error is not larger than 1.05 the minimal cross
validation error. The graphics display the average number of iterations in thousands
(top), the run time in seconds (middle), and the ratiosx/WSS 7 of the run times (bot-
tom). Again, for the small data sets, the run time measurements are not very reliable.
In particular, for the SONAR data set, the averagemeasuredrun time forWSS 7 was
0.00 seconds, and hence the corresponding ratios could not be plotted.Besides that the
conclusions of Figure 17 are confirmed.

189



STEINWART, HUSH AND SCOVEL

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

30

 

 
WSS 1
WSS 7
LIBSVM

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

 
WSS 1
WSS 7
LIBSVM

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

 

 
WSS 1
WSS 7
LIBSVM

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

 

 
WSS 1
WSS 7
LIBSVM

Figure 19: Computational requirements per single grid point of methods based on simple exten-
sions of the 1D-search strategy andLIBSVM on theSVMGUIDE1 data set. The four
graphics have the same format as the ones in Figure 10. For flatter kernels, LIBSVM
needs less iterations thanWSS 7, possibly because it solves a different optimization
problem, however the improvement is small in terms of absolute numbers. On the other
hand, bothWSS 1 andWSS 7 are less sensitive to smallλ values in regions with high
computational demand.

190



TRAINING SVMS WITHOUT OFFSET

A.2 Results for the two Different Stopping Criteria

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
Duality gap
Clipped duality gap

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
Duality gap
Clipped duality gap

1

1.5

2

2.5

3

3.5

4

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
Duality gap
Clipped duality gap

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
Duality gap
Clipped duality gap

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
Duality gap
Clipped duality gap

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
Duality gap
Clipped duality gap

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
Duality gap
Clipped duality gap

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
Duality gap
Clipped duality gap

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
Duality gap
Clipped duality gap

Figure 20: Average computational requirements per grid point ofWSS 7 with different stopping
criteria. The graphics at the top display the number of iterations in thousandsfor the
2D-SVM with WSS 7, while the graphics in the middle show the corresponding run time
in seconds. The graphics at the bottom display the ratio of run times.

191



STEINWART, HUSH AND SCOVEL

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
Duality gap
Clipped duality gap

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
Duality gap
Clipped duality gap

1

2

3

4

5

6

7

8

9

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
Duality gap
Clipped duality gap

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−3

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
Duality gap
Clipped duality gap

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
Duality gap
Clipped duality gap

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
Duality gap
Clipped duality gap

0

0.2

0.4

0.6

0.8

1

1.2

1.4

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
Duality gap
Clipped duality gap

0.4

0.5

0.6

0.7

0.8

0.9

1

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
Duality gap
Clipped duality gap

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
Duality gap
Clipped duality gap

Figure 21: Computational requirements ofWSS 7 with different stopping criteria on the grid points
whose cross validation error is not larger than 1.05 the minimal cross validation error.
Again, the graphics at the top display the number of iterations in thousands for the
different stopping criteria applied to the2D-SVM with WSS 7, while the graphics in the
middle show the corresponding run time in seconds. The graphics at the bottom display
the ratio of run times, where we note that for some data sets in the bottom left graphic
the ratio could not be computed since themeasuredrun time was zero.

192



TRAINING SVMS WITHOUT OFFSET

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

 

 
Duality gap
Clipped duality gap

1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

0.25

 

 
Duality gap
Clipped duality gap

1 2 3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
Duality gap
Clipped duality gap

1 2 3 4 5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

 

 
Duality gap
Clipped duality gap

Figure 22: Computational requirements per single grid point of the two stopping criteria for the
SVMGUIDE1 data set. The four graphics have the same format as the ones in Figure 10.
The graphics at the top display the number of iterations in thousands (left) and the run
time in seconds (right), both averaged over the 10 folds, while the graphicsat the bottom
display the corresponding ratios. The clipped stopping criteria (9) helps for small values
of λ, whereas for larger values the behavior is basically identical. Again, someof the
roughness in the bottom right graphic can be explained by the resolution ofthe time
measurements. However, the general trend in this graphic is confirmed by the ratio of
iterations displayed in the bottom left graphic.

193



STEINWART, HUSH AND SCOVEL

A.3 Results for Different Numbers of Nearest Neighbors

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
5 NN
10 NN
15 NN
20 NN

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
5 NN
10 NN
15 NN
20 NN

1

1.5

2

2.5

3

3.5

4

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
5 NN
10 NN
15 NN
20 NN

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
5 NN
10 NN
15 NN
20 NN

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
5 NN
10 NN
15 NN
20 NN

0.02

0.04

0.06

0.08

0.1

0.12

0.14

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
5 NN
10 NN
15 NN
20 NN

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
5 NN
10 NN
15 NN
20 NN

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
5 NN
10 NN
15 NN
20 NN

0.98

1

1.02

1.04

1.06

1.08

1.1

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
5 NN
10 NN
15 NN
20 NN

Figure 23: Average computational requirements per grid point ofWSS 7 with different numbersN
of nearest neighbors. The graphics display the number of iterations in thousands (top),
the run time in seconds (middle), and the corresponding ratiosxNN/10NN of the run
times (bottom). ForN≥ 10, the performance is basically identical.

194



TRAINING SVMS WITHOUT OFFSET

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
5 NN
10 NN
15 NN
20 NN

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
5 NN
10 NN
15 NN
20 NN

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
5 NN
10 NN
15 NN
20 NN

0

0.5

1

1.5

2

2.5

3
x 10

−3

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
5 NN
10 NN
15 NN
20 NN

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
5 NN
10 NN
15 NN
20 NN

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
5 NN
10 NN
15 NN
20 NN

0

0.2

0.4

0.6

0.8

1

1.2

1.4

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
5 NN
10 NN
15 NN
20 NN

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
5 NN
10 NN
15 NN
20 NN

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
5 NN
10 NN
15 NN
20 NN

Figure 24: Computational requirements forWSS 7 with different numbersN of nearest neighbors
on the grid points whose cross validation error is not larger than 1.05 the minimal cross
validation error. The graphics display the average number of iterations in thousands
(top), the run time in seconds (middle), and the corresponding ratiosxNN/10NN of the
run times (bottom). The plots suggest that for grid points with good validation error the
number of nearest neighbors has a stronger influence than for the average grid point, yet
it is unclear to which extend this effect is caused by different hyper-parameters picked
by the different methods.

195



STEINWART, HUSH AND SCOVEL

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

 

 
5 NN
10 NN
15 NN
20 NN

1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

0.25

 

 
5 NN
10 NN
15 NN
20 NN

1 2 3 4 5 6 7 8 9 10
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

 

 
5 NN
10 NN
15 NN
20 NN

1 2 3 4 5 6 7 8 9 10
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

 

 
5 NN
10 NN
15 NN
20 NN

Figure 25: Average computational requirements per grid point ofWSS 7 with different numbers
N of nearest neighbors for theSVMGUIDE1 data set. The four graphics have the same
format as the ones in Figure 10. The graphics at the top display the number of iterations
in thousands (left) and the run time in seconds (right), both averaged overthe 10 folds,
while the graphics at the bottom display the corresponding ratiosxNN/10NN. Using 5
nearest neighbors clearly results in a worse performance compared to using 10 nearest
neighbors. Moreover, compared toN = 10 the number of iterations can be further re-
duced by using more nearest neighbors, but due to unreliable measurements of the run
time, it remains somewhat unclear, if this results in significantly shorter run times.

196



TRAINING SVMS WITHOUT OFFSET

A.4 Results for the Different Initialization Strategies

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
I0−W0
I1−W1
I0−W2
I1−W2
I0−W5
I1−W3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
I0−W0
I1−W1
I0−W2
I1−W2
I0−W5
I1−W3

0

1

2

3

4

5

6

7

8

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
I0−W0
I1−W1
I0−W2
I1−W2
I0−W5
I1−W3

0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
I0−W0
I1−W1
I0−W2
I1−W2
I0−W5
I1−W3

0

0.01

0.02

0.03

0.04

0.05

0.06

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
I0−W0
I1−W1
I0−W2
I1−W2
I0−W5
I1−W3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
I0−W0
I1−W1
I0−W2
I1−W2
I0−W5
I1−W3

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
I0−W0
I1−W1
I0−W2
I1−W2
I0−W5
I1−W3

0

0.5

1

1.5

2

2.5

3

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
I0−W0
I1−W1
I0−W2
I1−W2
I0−W5
I1−W3

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
I0−W0
I1−W1
I0−W2
I1−W2
I0−W5
I1−W3

Figure 26: Average computational requirements per grid point of simple initialization strategies for
the 2D-SVM with WSS 7. The graphics display the number of iterations in thousands
(top), the run time in seconds (middle), and the ratiosIx-Wy/I0-W0 of the run times
(bottom).

197



STEINWART, HUSH AND SCOVEL

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
I0−W0
I0−W4
I1−W4
I0−W6
I1−W6
I0−W5
I1−W3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
I0−W0
I0−W4
I1−W4
I0−W6
I1−W6
I0−W5
I1−W3

0

0.5

1

1.5

2

2.5

3

3.5

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
I0−W0
I0−W4
I1−W4
I0−W6
I1−W6
I0−W5
I1−W3

0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
I0−W0
I0−W4
I1−W4
I0−W6
I1−W6
I0−W5
I1−W3

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
I0−W0
I0−W4
I1−W4
I0−W6
I1−W6
I0−W5
I1−W3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
I0−W0
I0−W4
I1−W4
I0−W6
I1−W6
I0−W5
I1−W3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
I0−W0
I0−W4
I1−W4
I0−W6
I1−W6
I0−W5
I1−W3

0.4

0.5

0.6

0.7

0.8

0.9

1

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
I0−W0
I0−W4
I1−W4
I0−W6
I1−W6
I0−W5
I1−W3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
I0−W0
I0−W4
I1−W4
I0−W6
I1−W6
I0−W5
I1−W3

Figure 27: Average computational requirements per grid point of more complex initialization strate-
gies for the2D-SVM with WSS 7. The graphics display the number of iterations in thou-
sands (top), the run time in seconds (middle), and the ratiosIx-Wy/I0-W0 of the run times
(bottom). Note that, again, the cold start initializations with zeros (I0-plots) need less
iterations but in most cases more run time. In almost all cases, the more complicated
initialization strategies perform better than the simple warm start approaches.Overall,
I0-W4, I1-W4, andI0-W6 are the most efficient methods in terms of run time.

198



TRAINING SVMS WITHOUT OFFSET

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
I0−W0
I0−W2
I0−W3
I0−W5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
I0−W0
I0−W2
I0−W3
I0−W5

1

2

3

4

5

6

7

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
I0−W0
I0−W2
I0−W3
I0−W5

0

0.5

1

1.5

2

2.5

3
x 10

−3

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
I0−W0
I0−W2
I0−W3
I0−W5

0

0.02

0.04

0.06

0.08

0.1

0.12

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
I0−W0
I0−W2
I0−W3
I0−W5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
I0−W0
I0−W2
I0−W3
I0−W5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

sonar
heart

ionosphere

live
r−diso

rders

breast−
cancer

austr
alian

diabetes

fourcla
ss

 

 
I0−W0
I0−W2
I0−W3
I0−W5

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

germ
an

svm
guide3

ijcn
n1−2000

covty
pe−2000

a1a

ijcn
n1−5000

w1a
w2a

 

 
I0−W0
I0−W2
I0−W3
I0−W5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

splice a2a
w3a

svm
guide1

a3a

covty
pe−5000

mushrooms
a4a

 

 
I0−W0
I0−W2
I0−W3
I0−W5

Figure 28: Average computational requirements per grid point of more complex initialization strate-
gies for theLIBSVM for small (left), mid-sized (middle), and relatively large data sets
(right). The graphics display the number of iterations in thousands (top), the run time in
seconds (middle), and the ratiosIx-Wy/I0-W0 of the run times (bottom). Like for SVMs
without offset, using a warm start pays off for this SVM with offset, but the gain is less
pronounced.

199



STEINWART, HUSH AND SCOVEL

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

 

 
I0−W0
I0−W5
I0−W4
I0−W6

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

 

 
I0−W0
I0−W5
I0−W4
I0−W6

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 
I0−W0
I0−W5
I0−W4
I0−W6

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

 

 
I0−W0
I0−W5
I0−W4
I0−W6

Figure 29: Computational requirements per single grid point of some initializationstrategies for the
SVMGUIDE1 data set. The four graphics have the same format as the ones in Figure 10.
The graphics at the top display the number of iterations in thousands (left) and the run
time in seconds (right), both averaged over the 10 folds, while the graphicsat the bottom
display the corresponding ratiosI0-Wx/I0-W0. All warm start strategies perform almost
uniformly better than the cold start optionI0-W0. Moreover, note that the strategies
I0-W5 and I0-W6 start with the smallestλ, that is, at the right hand side of each cell,
whereasI0-W4 starts with the largestλ, that is, on the left hand side of each cell.

200



TRAINING SVMS WITHOUT OFFSET

References

C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines. http://www.csie.
ntu.edu.tw/ ˜ cjlin/papers/libsvm.ps.gz , 2009.

P.-H. Chen, R.-E. Fan, and C.-J. Lin. A study on SMO-type decomposition methods for support
vector machines.IEEE Trans. Neural Networks, 17:893–908, 2006.

N. Cristianini and J. Shawe-Taylor.An Introduction to Support Vector Machines. Cambridge Uni-
versity Press, Cambridge, 2000.

L. Devroye, L. Gÿorfi, and G. Lugosi.A Probabilistic Theory of Pattern Recognition. Springer,
New York, 1996.

R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for
training support vector machines.J. Mach. Learn. Res., 6:1889–1918, 2005.

G. Fung and O. L. Mangasarian. Proximal support vector machine classifiers. In KDD ’01: Pro-
ceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 77–86, New York, NY, USA, 2001. ACM.

T. Glasmachers and C. Igel. Maximum-gain working set selection for SVMs.J. Mach. Learn. Res.,
7:1437–1466, 2006.

C.-W. Hsu and C.-J. Lin. A simple decomposition method for support vector machines. Mach.
Learn., 46:291–314, 2002.

C.-W. Hsu and C.-J. Lin. BSVM.http://www.csie.ntu.edu.tw/ ˜ cjlin/bsvm/ , 2006.

T.-M. Huang, V. Kecman, and I. Kopriva.Kernel Based Algorithms for Mining Huge Data Sets:
Supervised, Semi-supervised, and Unsupervised Learning. Springer, Berlin, 2006.

D. Hush and C. Scovel. Polynomial-time decomposition algorithms for support vector machines.
Mach. Learn., 51:51–71, 2003.

D. Hush, P. Kelly, C. Scovel, and I. Steinwart. QP algorithms with guaranteed accuracy and run
time for support vector machines.J. Mach. Learn. Res., 7:733–769, 2006.

T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and A. Smola,
editors,Advances in Kernel Methods – Support Vector Learning, chapter 11, pages 169–184. MIT
Press, Cambridge, MA, 1999.

V. Kecman, T.-M. Huang, and M. Vogt. Iterative single data algorithm for training kernel machines
from huge data sets: Theory and performance. In L. Wang, editor,Support Vector Machines:
Theory and Applications, pages 255–274. Springer Verlag, 2005.

S. Keerthi, V. Sindhwani, and O. Chapelle. An efficient method for gradient-based adaptation of
hyperparameters in SVM models. InAdvances in Neural Information Processing Systems 19,
pages 673–680. MIT Press, Cambridge, MA, 2007.

201



STEINWART, HUSH AND SCOVEL

S. S. Keerthi, S. K. Shevade, C. Battacharyya, and K. R. K. Murthy. Improvements to Platt’s SMO
algorithm for SVM classifier design.Neural Comput., 13:637–649, 2001.

C. J. Lin. On the convergence of the decomposition method for support vector machines.IEEE
Trans. Neural Networks, 12:1288–1298, 2001.

C. J. Lin. Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Trans.
Neural Networks, 13:248–250, 2002a.

C. J. Lin. A formal analysis of stopping criteria of decomposition methods forsupport vector
machines.IEEE Trans. Neural Networks, 13:248–250, 2002b.

N. List and H.-U. Simon. A general convergence theorem for the decomposition method. InPro-
ceedings of the 17th Annual Conference on Learning Theory, pages 363–377. Springer, Heidel-
berg, 2004.

N. List and H. U. Simon. General polynomial time decomposition algorithms. In S.Ben-David,
J. Case, and A. Maruko, editors,Proceedings of the 18th Annual Conference on Learning Theory,
COLT 2005, pages 308–322. Springer, Heidelberg, 2005.

N. List and H. U. Simon. General polynomial time decomposition algorithms.J. Mach. Learn. Res.,
8:303–321, 2007.

N. List, D. Hush, C. Scovel, and I. Steinwart. Gaps in support vector optimization. In N. Bshouty
and C. Gentile, editors,Proceedings of the 20th Conference on Learning Theory, pages 336–348.
Springer, New York, 2007.

L.Q. Luo and P. Tseng. On the convergence of the coordinate descentmethod for convex differen-
tiable minimization.J. Optimization Theory Appl., 72:7–35, 1992.

O. L. Mangasarian and D. R. Musicant. Lagrangian support vector machines.J. Mach. Learn. Res.,
1:161–177, 2001.

I. Steinwart. Sparseness of support vector machines.J. Mach. Learn. Res., 4:1071–1105, 2003.

I. Steinwart and A. Christmann.Support Vector Machines. Springer, New York, 2008.

I. Steinwart, D. Hush, and C. Scovel. An oracle inequality for clipped regularized risk minimizers.
In B. Scḧolkopf, J. Platt, and T. Hoffman, editors,Advances in Neural Information Processing
Systems 19, pages 1321–1328. MIT Press, Cambridge, MA, 2007.

M. Vogt. SMO algorithms for support vector machines without bias. Technical report, University
of Darmstadt, 2002.http://www.rtm.tu-darmstadt.de/ehemalige_mitarbeite r/ ˜ vogt/
docs/vogt_2002_smowob.pdf .

202


