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Abstract
Over the last few years, two different notions of positive definite (pd) kernels—universal and
characteristic—have been developing in parallel in machinelearning: universal kernels are pro-
posed in the context of achieving the Bayes risk by kernel-based classification/regression algo-
rithms while characteristic kernels are introduced in the context of distinguishing probability mea-
sures by embedding them into a reproducing kernel Hilbert space (RKHS). However, the relation
between these two notions is not well understood. The main contribution of this paper is to clarify
the relation between universal and characteristic kernelsby presenting a unifying study relating
them to RKHS embedding of measures, in addition to clarifying their relation to other common
notions of strictly pd, conditionally strictly pd andintegrally strictly pdkernels. Forradial kernels
onRd, all these notions are shown to be equivalent.
Keywords: kernel methods, characteristic kernels, Hilbert space embeddings, universal kernels,
strictly positive definite kernels, integrally strictly positive definite kernels, conditionally strictly
positive definite kernels, translation invariant kernels,radial kernels, binary classification, homo-
geneity testing

1. Introduction

Kernel methods have been popular in machine learning and pattern analysisfor their superior per-
formance on a wide spectrum of learning tasks. They are broadly established as an easy way to
construct nonlinear algorithms from linear ones, by embedding data points into higher dimensional
reproducing kernel Hilbert spaces (RKHSs) (Schölkopf and Smola, 2002; Shawe-Taylor and Cris-
tianini, 2004). In the regularization approach to learning (Evgeniou et al.,2000), it is well known
that kernel-based algorithms (for classification/regression) generally invoke therepresenter theorem
(Kimeldorf and Wahba, 1970; Schölkopf et al., 2001) and learn a function in a RKHS that has the
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representation,
f := ∑

j∈Nn

c jk(·,x j), (1)

whereNn := {1,2, . . . ,n}, k : X ×X → R is a symmetric positive definite (pd) kernel on some
arbitrary space,X and {c j : j ∈ Nn} ⊂ R are parameters typically obtained from training data,
{x j : j ∈ Nn} ⊂ X. As noted in Micchelli et al. (2006), one can ask whether the function,f in (1)
approximates any real-valued target function arbitrarilywell as the number of summands increases
without bound. This is an important question to consider because if the answer is affirmative, then
the kernel-based learning algorithm can beconsistentin the sense that for any target function,f ⋆,
the discrepancy betweenf (which is learned from the training data) andf ⋆ goes to zero (in some
appropriate sense) as the sample size goes to infinity. Since the linear hull of{k(·,x) : x ∈ X} is
dense in the RKHS,H associated withk (Aronszajn, 1950), and assuming that the kernel-based
algorithm makesf “converge to an appropriate function” inH asn → ∞, the above question of
approximatingf ⋆ arbitrarily well by f in (1) asn goes to infinity is equivalent to the question of
whetherH is rich enough to approximate anyf ⋆ arbitrarily well (such an RKHS is referred to as a
universal RKHS and the corresponding kernel as a universal kernel). Depending on the choice ofX,
the choice of target function space and the type of approximation, variousnotions of universality—
c-universality (Steinwart, 2001),cc-universality (Micchelli et al., 2006; Caponnetto et al., 2008),
c0-universality (Carmeli et al., 2010; Sriperumbudur et al., 2010a) andLp-universality (Steinwart
and Christmann, 2008; Carmeli et al., 2010)—have been proposed and characterized in literature.

Recently, a seemingly related (to universality) notion of characteristic kernel has been proposed
and characterized (Fukumizu et al., 2004, 2008, 2009; Gretton et al., 2007; Sriperumbudur et al.,
2008, 2009, 2010b), which has found applications in testing for homogeneity (Gretton et al., 2007),
independence (Gretton et al., 2008), conditional independence (Fukumizu et al., 2008), to find the
most predictive subspace in regression (Fukumizu et al., 2004), etc. Formally, given the set of all
Borel probability measures defined on the topological spaceX, a measurable and bounded kernel,k
is said to be characteristic if

P 7→
∫

X
k(·,x)dP(x), (2)

is injective, that is,P is embedded to a unique element,
∫

X k(·,x)dP(x) in H. The motivation to
consider such an embedding is that it provides a powerful and straightforward method of dealing
with higher-order statistics of random variables, which has been exploitedin the above mentioned
applications. Gretton et al. (2007) related characteristic and universalkernels by showing that ifk is
c-universal—see Section 2 for the definition—then it is characteristic. Besides this result, not much
is known or understood about the relation between universal and characteristic kernels.

The main contribution of this paper is to clarify the relation between universaland characteris-
tic kernels by presenting a unifying study relating them to RKHS embedding of measures (Suquet,
2009), in addition to clarifying their relation to other common notions of strictly pd,conditionally
strictly pd andintegrally strictly pdkernels, which extends our preliminary study in Sriperumbudur
et al. (2010b, Section 3.4). This is done by first reviewing all the existing characterizations for uni-
versal and characteristic kernels, which is then used to clarify not only the relation between them
but also their relation to other notions of pd kernels (see Section 3). Since the existing characteri-
zations do not explain the complete relationship between all these various notions of pd kernels, we
raise open questions in Section 3 about the relationships to be clarified, which are then addressed in
Section 4 by deriving new results. In particular, in Section 4, we establish the relation between (a)
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c0-universality and RKHS embedding of finite signed Borel measures, (b) universal and integrally
strictly pd kernels, (c) characteristic and conditionally strictly pd kernels and (d) all the above men-
tioned notions when the pd kernel isradial on Rd. A summary of the relation between all these
notions of pd kernels is shown in Figure 1, which shows the equivalence between these notions for
radial kernels onRd. Supplementary results are collected in appendices. Throughout the paper, we
assumeX to be a Polish space,1 the reason for which is discussed in the paragraph following (3).

In the following section, we introduce the notation and collect all definitions that are used
throughout the paper.

2. Definitions and Notation

Let X be a topological space.C(X) denotes the space of all continuous real-valued functions onX.
Cb(X) is the space of all bounded, continuous real-valued functions onX. For a locally compact
Hausdorff space (examples includeRd, infinite discrete sets, topological manifolds, etc.),X, f ∈
C(X) is said tovanish at infinityif for every ε > 0 the set{x : | f (x)| ≥ ε} is compact.2 The class
of all continuousf onX which vanish at infinity is denoted asC0(X). The spacesCb(X) andC0(X)
are endowed with the uniform norm,‖ ·‖u defined as‖ f‖u := supx∈X | f (x)| for f ∈C0(X)⊂Cb(X).

Radon measure:A signed Radon measureµ on a Hausdorff spaceX is a Borel measure onX
satisfying

(i) µ(C)< ∞ for each compact subsetC⊂ X,

(ii) µ(B) = sup{µ(C) |C⊂ B,Ccompact} for eachB in the Borelσ-algebra ofX.

µ is said to be finite if‖µ‖ := |µ|(X) < ∞, where|µ| is the total-variation ofµ. M+
b (X) denotes the

space of all finite Radon measures onX while Mb(X) denotes the space of all finite signed Radon
measures onX. The space of all Radon probability measures is denoted asM+

1 (X) := {µ∈ M+
b (X) :

µ(X) = 1}. Forµ∈ Mb(X), the support ofµ is defined as

supp(µ) = {x∈ X | for any open setU such thatx∈U, |µ|(U) 6= 0}. (3)

Mbc(X) denotes the space of all compactly supported finite signed Radon measureson X. We refer
the reader to Berg et al. (1984, Chapter 2) for a general referenceon the theory of Radon measures.
If X is a Polish space, then by Ulam’s theorem, every finite Borel measure is Radon (Dudley, 2002,
Theorem 7.1.4). Therefore, for the simplicity of not requiring to distinguishbetween Borel and
Radon measures, throughout the paper, we assumeX to be a Polish space.

Positive definite (pd), strictly pd, conditionally strictly pd and integrally strictly pd: A symmet-
ric functionk : X×X → R is called positive definite (pd) (resp. conditionally pd) if, for alln∈ N

(resp. n≥ 2), α1, . . . ,αn ∈ R (resp.with ∑n
j=1 α j = 0) and allx1, . . . ,xn ∈ X, we have

n

∑
l , j=1

αl α jk(xl ,x j)≥ 0. (4)

1. A topological space(X,τ) is called a Polish space if the topologyτ has a countable basis and there exists a complete
metric definingτ. An example of a Polish space isRd endowed with its usual topology.

2. LCH spaces have a rich supply of continuous functions that vanish outside compact sets—see Tietze extension theo-
rem (Folland, 1999, Theorem 4.34).
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Furthermore,k is said to be strictly pd (resp. conditionally strictly pd) if, for mutually distinct
x1, . . . ,xn ∈ X, equality in (4) only holds forα1 = · · ·= αn = 0.

A measurable, symmetric and bounded kernel,k is said to be integrally strictly pd if

∫ ∫
X

k(x,y)dµ(x)dµ(y)> 0,∀µ∈ Mb(X)\{0}.

This definition is a generalization ofintegrally strictly positive definite functionson Rd (Stewart,
1976, Section 6):

∫∫
Rd k(x,y) f (x) f (y)dxdy> 0 for all f ∈ L2(Rd), which is the strictly positive

definiteness of the integral operator given by the kernel.
c-, cc-, c0- and Lp-universal kernels:A continuous pd kernelk on a compact Hausdorff spaceX

is calledc-universal if the RKHS,H induced byk is dense inC(X) w.r.t. the uniform norm, that is,
for every functiong∈C(X) and allε > 0, there exists anf ∈H such that‖ f −g‖u ≤ ε (Steinwart,
2001).

A continuous pd kernelk on a Hausdorff spaceX is said to becc-universal if the RKHS,H
induced byk is dense inC(X) endowed with the topology of compact convergence, that is, for any
compact setZ ⊂ X, for anyg∈C(Z) and allε > 0, there exists anf ∈H|Z such that‖ f −g‖u ≤ ε,
whereH|Z := { f |Z : f ∈H} is the restriction ofH to Z and f |Z is the restriction off to Z (Carmeli
et al., 2010; Sriperumbudur et al., 2010a).

A pd kernel,k is said to be ac0-kernel if it is bounded withk(·,x) ∈ C0(X), ∀x ∈ X, whereX
is a locally compact Hausdorff (LCH) space. Ac0-kernel on an LCH space,X is said to bec0-
universal if the RKHS,H induced byk is dense inC0(X) w.r.t. the uniform norm (Carmeli et al.,
2010; Sriperumbudur et al., 2010a).3

A measurable and bounded kernel,k defined on a Hausdorff space,X is said to beLp-universal
if the RKHS,H induced byk is dense inLp(X,µ) w.r.t. thep-norm, defined as

‖ f‖p :=

(∫
X
| f (x)|pdµ(x)

)1/p

,

for all Borel probability measures,µ, defined onX and somep∈ [1,∞). HereLp(X,µ) is the Banach
space ofp-integrableµ-measurable functions onX (Steinwart and Christmann, 2008).

We would like to stress that in the above definitions of universality, the assumptions onk ensure
that the associated RKHS,H is continuously included in the target space. Steinwart and Christmann
(2008, Lemma 4.28) showed thatk is bounded andk(·,x) is continuous for allx ∈ X (X being a
topological space) if and only if everyf ∈H is bounded and continuous. In addition, the inclusion
id : H→Cb(X) is continuous. Similarly, by modifying the proof of Lemma 4.28 in Steinwart and
Christmann (2008), it can be easily shown thatk is bounded andk(·,x) ∈C0(X), ∀x∈ X (X being
an LCH space) if and only if everyf ∈ H is in C0(X), and the inclusion id :H → C0(X) can be
shown to be continuous (also see Carmeli et al., 2010, Proposition 2.2). Steinwart and Christmann
(2008, Theorem 4.26) showed that ifk is measurable and bounded on a measurable spaceX, then

3. Note thatcc-universality (resp. c-universality) deals withX being a non-compact (resp. compact) Hausdorff space,
whereasc0-universality requiresX to be an LCH space. WhileX being Hausdorff ensures that it has an abundance of
compact subsets (as required incc-universality), the stronger condition ofX being an LCH space ensures that it has
an abundance of continuous functions that vanish outside compact sets(see footnote 2). In addition, this choice of
X being an LCH space ensures the existence of topological dual ofC0(X) through the Riesz representation theorem,
which is required in the characterization ofc0-universality. See Proposition 2 in Section 4 for details.
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H consists ofp-integrable (w.r.t. any Borel probability measure,µ) functions and the inclusion
id : H→ Lp(X,µ) is continuous for somep∈ [1,∞).

Characteristic kernel: A bounded measurable kernel,k is said to be characteristic ifµ 7→∫
X k(·,x)dµ(x) is injective, whereµ is a Borel probability measure onX.

Translation invariant and Radial kernels onRd: A pd kernel,k : Rd ×Rd → R is said to be
translation invariant ifk(x,y) = ψ(x−y), whereψ is a pd function. Ifk is bounded and continuous,
then by Bochner’s theorem (Wendland, 2005, Theorem 6.6),ψ ∈Cb(R

d) is the Fourier transform of
Λ ∈ M+

b (R
d), that is,

ψ(x) =
∫
Rd

e−
√
−1xT ω dΛ(ω), x∈ Rd. (5)

A bounded continuous kernel,k is said to be radial onRd ×Rd if there existsν ∈ M+
b ([0,∞))

such that

k(x,y) =
∫
[0,∞)

e−t‖x−y‖2
2 dν(t), x,y∈ Rd. (6)

It is easy to see that a radial kernel is also bounded translation invarianton Rd (see Appendix
A). Examples of radial kernels include the Gaussian kernel,k(x,y) = e−σ‖x−y‖2

2, σ > 0; inverse
multiquadrics,k(x,y) = (c+‖x−y‖2

2)
−β, β > d/2, etc.

A continuous pd kernel is said to be translation invariant onTd := [0,2π)d if k(x,y) = ψ((x−
y)mod2π), whereψ ∈C(Td) is such that

ψ(x) = ∑
n∈Zd

Aψ(n)e
√
−1xTn, x∈ Td, (7)

with Aψ : Zd → R+, Aψ(−n) = Aψ(n) and∑n∈Zd Aψ(n)< ∞.

3. Relation Between Various Notions of Positive Definite Kernels Based on Known
Characterizations

In this section, we review existing results on the characterization of universal and characteristic
kernels, which are then used to clarify not only the relation between them but also their relation
to other notions like strictly pd, conditionally strictly pd and integrally strictly pd kernels. In Sec-
tion 3.1, we discuss various notions of universality, review all their existingcharacterizations and
then summarize the relation between them. In Section 3.2, we discuss and summarize the relation
between characteristic and universal kernels based on their existing characterizations. The relation
of universal and characteristic kernels to strictly pd, conditionally strictly pd and integrally strictly
pd kernels are summarized in Section 3.3. Since the existing characterizationsdo not explain the
complete relationship between all these various notions of pd kernels, we raise questions at the end
of each subsection that need to be addressed to obtain a complete understanding of the relationships
between all these notions. A summary of the relationships between various notions of pd kernels
based on the existing characterizations is shown in Figure 1.

Before proceeding further, we would like to highlight a possible confusion that can raise while
comparing these various notions of pd kernels. Suppose we would like to comparec0-universal
vs. characteristic kernels, that is, (a) Is ac0-universal kernel characteristic? (b) Is the converse true?
While (a) is a valid question, answering (b) trivially yields that characteristickernels are notc0-
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➊
➋

➌
➍

Figure 1: Summary of the relations between various families ofc0-kernels: The implications shown
without any reference are based on the review of existing results (see Section 3) while the
ones with a reference are based on new results derived in Section 4 thataddresses the
open questions (A)–(G). The implications which are still open are shown with“?”. ➊

X is an LCH space.➋ The implications shown hold for any compact Hausdorff space,
X. WhenX = T andk is continuous and translation invariant onT—see (7)—thenk
being characteristic implies it is strictly pd, which is shown as♣. ➌ The implications
shown hold for bounded continuous translation invariant kernels onRd—see (5). Ifψ ∈
Cb(R

d)∩L1(Rd), then the implication shown as (♠) holds, that is, strictly pd kernels are
cc-universal. Otherwise, it is not clear whether the implication holds.➍ Radial kernels
onRd—see (6).
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universal. This is becausek need not be ac0-kernel for it to be characteristic.4 Therefore, to make
a non-trivial comparison between characteristic andc0-universal kernels, it is important that we
assumek to be ac0-kernel before answering the questions in (a) and (b). In extending this reasoning
for the non-trivial comparison of any two notions of pd kernels, it is important to assume thatk
satisfies the strongest possible condition. Therefore, in order to present a concise summary of the
relationships between these various notions, in Figure 1, we assumek to be ac0-kernel—this is the
strongest condition to be satisfied in order to compare all these notions of pdkernels.

3.1 Relation Between Various Notions of Universality

As mentioned before, a universal kernel is such that its corresponding RKHS,H is rich enough
to approximate any target function (belonging to some target space) arbitrarily well. Therefore,
depending on the choice ofX, the choice of target space and the type of approximation, various
notions of universality—c, cc, c0 andLp—have been proposed. In the following, we review the ex-
isting characterizations for all these notions of universal kernels and summarize the relation between
them.

c-universality:Steinwart (2001) proposed the notion ofc-universality, whereinX is a compact
metric space withC(X) being the target space andH being dense inC(X) w.r.t. the uniform norm.
By applying the Stone-Weierstraß theorem (Folland, 1999, Theorem 4.45), Steinwart (2001, The-
orem 9) provided sufficient conditions for a kernel to bec-universal—a continuous kernel,k on a
compact metric space,X is c-universal if the following hold: (a)k(x,x)> 0, ∀x∈ X, (b) there exists
an injective feature mapΦ : X → ℓ2 of k with Φ(x) = {Φn(x)}n∈N and (c) span{Φn : n∈ N} is an
algebra—using which the Gaussian kernel is shown to bec-universal on every compact subset of
Rd. Micchelli et al. (2006, Proposition 1) relatedc-universality to the injective RKHS embedding
of finite signed Borel measures by showing thatk is c-universal if and only if

µ 7→
∫

X
k(·,x)dµ(x), µ∈ Mb(X), (8)

is injective.
cc-universality:One limitation in the notion of universality considered by Steinwart (2001) is

that X is assumed to be compact, which excludes many interesting spaces, such asRd and infi-
nite discrete sets. To overcome this limitation, Carmeli et al. (2010, Definition 4.1,Theorem 4.3)
and Sriperumbudur et al. (2010a) introduced the notion ofcc-universality which can handle non-
compact Hausdorff spaces,X. Carmeli et al. (2010, Proposition 2.3, Theorems 4.3 and 4.4) showed
that a bounded continuous pd kernel,k is cc-universal if and only if the following embedding is
injective for allµ∈ Mbc(X) and somep∈ [1,∞):

f 7→
∫

X
k(·,x) f (x)dµ(x), f ∈ Lp(X,µ). (9)

In addition, Carmeli et al. (2010, Remark 4.1) showed thatk beingcc-universal is equivalent to it
being universal in the sense of Micchelli et al. (2006) and Caponnetto et al. (2008): for any compact
Z⊂X, the setK(Z) := span{k(·,y) : y∈Z} is dense inC(Z) in the uniform norm, which is shown by

4. Letk1 be a characteristic kernel onR. Definek2(x,y) = 1 if x= y∈R andk2(x,y) = 0 if x 6= y∈R. Clearlyk2 is not
continuous and thereforek1+k2 is not ac0-kernel, even ifk1 is ac0-kernel. However, it is easy to verify thatk1+k2
is characteristic.
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Micchelli et al. (2006, Proposition 1) to be equivalent to the following embedding being injective:

µ 7→
∫

Z
k(·,x)dµ(x), µ∈ Mb(Z). (10)

Since (10) holds for any compactZ ⊂ X, the universality in the sense of Micchelli et al. and Capon-
netto et al. is equivalent to the following embedding being injective:

µ 7→
∫

X
k(·,x)dµ(x), µ∈ Mbc(X). (11)

Therefore,k beingcc-universal is equivalent to the injectivity of (11)—in Section 4, we present
a more direct proof of this result (see Remark 3). It is clear from the definitions of c- and cc-
universality that these notions are equivalent whenX is compact, which also follows from their
characterizations in (8) and (11).

As special cases, Micchelli et al. (2006, Propositions 14, Theorem 17) showed that a translation
invariant kernel onRd is cc-universal if supp(Λ) is a uniqueness subset5 of Cd, while a radial kernel
onRd is cc-universal if and only if supp(ν) 6= {0}—see (5) and (6) for the definitions ofΛ andν.
Using these characterizations, many popular kernels onRd are shown to becc-universal (Micchelli
et al., 2006, Section 4): Gaussian, Laplacian,B2l+1-spline, sinc kernel, etc.

c0-universality: Although cc-universality solves the limitation ofc-universality by handling
non-compactX, the topology of compact convergence considered incc-universality is weaker than
the topology of uniform convergence, that is, a sequence of functions, { fn} ⊂C(X) converging to
f ∈ C(X) in the topology of uniform convergence ensures that they converge in the topology of
compact convergence but not vice-versa. So, the natural question toask is whether we can charac-
terizeH that are rich enough to approximate anyf ⋆ on non-compactX in a stronger sense, that is,
uniformly, by someg∈H. Carmeli et al. (2010, Definition 2.2, Theorem 4.1) and Sriperumbudur
et al. (2010a) answered this through the notion ofc0-universality, whereinX is an LCH space with
C0(X) being the target space andH being dense inC0(X) w.r.t. the uniform norm (note that a notion
of universality that is stronger thanc0-universality can be defined by choosingX to be a Hausdorff
space,Cb(X) to be the target space andH being dense inCb(X) w.r.t. the uniform norm. However,
this notion of universality does not enjoy a nice characterization asc0-universality—see (12) and
(13) for the characterization ofc0-universality—and therefore, we did not include it in our study of
relationships between various notions of pd kernels. See Appendix C fordetails).

Carmeli et al. (2010, Theorem 4.1) showed that ac0-kernelk is c0-universal if and only if it is
Lp-universal, which by Proposition 2.3 and Theorem 4.2 of Carmeli et al. (2010) is equivalent to
the injectivity of the following embedding for allµ∈ Mb(X) and somep∈ [1,∞):

f 7→
∫

X
k(·,x) f (x)dµ(x), f ∈ Lp(X,µ). (12)

We provide an alternate characterization forc0-universality in Section 4 (see Proposition 2) thatk is
c0-universal if and only if the following embedding is injective:

µ 7→
∫

X
k(·,x)dµ(x), µ∈ Mb(X). (13)

5. A subsetS of Cd is a uniqueness set if an entire function onCd vanishes onS then it is everywhere zero onCd.
Non-empty interior is sufficient for a set to be a uniqueness set.
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As a special case, Carmeli et al. (2010, Proposition 5.6) showed that a translation invariantk on
Rd is c0-universal if and only if supp(Λ) =Rd. Examples ofc0-universal kernels onRd include the
Gaussian, Laplacian,B2l+1-spline, inverse multiquadrics, Matérn class, etc.

Summary:The following statements summarize the relation between various notions of univer-
sality, which are depicted in Figure 1.

• c- and cc-universality are related to the injective RKHS embedding of finite signed Borel
measures, as shown in (8) and (11).

• Forc0-kernels defined on an LCH spaceX, c0-universality impliescc-universality, which fol-
lows from (9) and (12). The converse is however not true as a bounded continuous translation
invariantc0-kernel onRd is c0-universal if and only if supp(Λ) = Rd while (supp(Λ))◦ 6= /0
is sufficient forcc-universality, whereA◦ represents the interior ofA.

• WhenX is compact, thenc-, cc- andc0-universality are equivalent.

• For an LCH spaceX, ac0-kernel isc0-universal if and only if it isLp-universal.

• If k is a radial kernel onRd, thenk is cc-universal if and only if supp(ν) 6= {0}.

Open questions:The following relationships need to be clarified, which we do in Section 4.

(A) As mentioned in the summary,c- andcc-universality are related to the injective RKHS em-
bedding of finite signed Borel measures. However, the relation betweenc0-universality and
the injective RKHS embedding of finite signed Borel measures as shown in (13) is not clear,
which we clarify in Section 4.1.

(B) Forc0-kernels defined on an LCH spaceX (that is not compact), it is clear from the summary
thatc0-universality impliescc-universality. Is there a case for whichcc-universality implies
c0-universality? We address this in Section 4.3.

(C) While cc-universality is characterized for radial kernels onRd, the characterization ofc0-
universality for radial kernels is not known. In Section 4.3, we providea characterization of
c0-universality for radial kernels onRd and then establish the relation betweenc0-universality
andcc-universality for such kernels.

3.2 Relation Between Characteristic and Universal Kernels

In this section, we comprehensively clarify the relation between various notions of universality and
characteristic kernels, based on already existing characterizations forcharacteristic kernels and the
results summarized in Section 3.1 for universal kernels.

c-universal kernels vs. Characteristic kernels:Gretton et al. (2007) related universal and char-
acteristic kernels by showing that ifk is c-universal, then it is characteristic. In our preliminary
study in Sriperumbudur et al. (2010b, Section 3.4), we showed that the converse is not true: as
an example, a translation invariant kernel,k onTd ×Td is characteristic if and only ifAψ(0) ≥ 0,
Aψ(n)> 0, ∀n∈ Zd

+ while it is universal if and only ifAψ(n)> 0, ∀n∈ Zd.
cc-universal kernels vs. Characteristic kernels: cc-universal kernels on a non-compact Haus-

dorff space need not be characteristic: for example, a bounded continuous translation invariant
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kernel onRd is cc-universal if(supp(Λ))◦ 6= /0 (see the summary of Section 3.1) while it is char-
acteristic if and only if supp(Λ) = Rd (Sriperumbudur et al., 2008, Theorem 7). Although, this
example shows that a bounded continuous translation invariant kernel onRd is cc-universal if it is
characteristic, it is not clear whether such a relation holds on a general non-compact Hausdorff space
(not necessarilyRd). The following example shows that continuous kernels that are characteristic
on non-compact Hausdorff space,X also need not becc-universal.

Example 1 Let X = N. Define k(x,y) = δxy, x,y ∈ X\{1}, k(x,1) = 0 for any x∈ X, whereδ
represents the Kronecker delta. Suppose µ= δ1 ∈ Mbc(X)\{0}, whereδ j represents the Dirac
measure at j. Then‖∫X k(·,x)dµ(x)‖2

H
= ‖k(·,1)‖2

H
= k(1,1) = 0, which means there exists µ∈

Mbc(X)\{0} such that
∫

X k(·,x)dµ(x) = 0, that is, (11) is not injective and therefore k is not cc-
universal. However, k is characteristic as we show below.

LetP andQ be probability measures on X such thatP = ∑ j∈N p jδ j , Q = ∑ j∈Nq jδ j with pj ≥
0,q j ≥ 0 for all j ∈ N and∑ j∈N p j = ∑ j∈Nq j = 1. Consider

B :=
∥

∥

∥

∫
X

k(·,x)d(P−Q)(x)
∥

∥

∥

2

H

=
∥

∥

∥ ∑
j∈N

(p j −q j)k(·, j)
∥

∥

∥

2

H

= ∑
l , j∈N

(pl −ql )(p j −q j)k(l , j)

= (p1−q1)
2k(1,1)+2(p1−q1) ∑

j∈N\{1}
(p j −q j)k( j,1)+ ∑

l , j∈N\{1}
(p j −q j)(pl −ql )k( j, l)

= ∑
j∈N\{1}

(p j −q j)
2.

Suppose B= 0, which means pj = q j , ∀ j ∈ N\{1}. Since∑ j∈N p j = ∑ j∈Nq j = 1, we have p1 = q1

and soP=Q, that is, (2) is injective and therefore k is characteristic.

c0-universal kernels vs. Characteristic kernels:Fukumizu et al. (2008, 2009) have shown that
a measurable and bounded kernel,k is characteristic if and only ifH+R (the direct sum ofH and
R is defined asH+R := { f + c : f ∈ H, c ∈ R}) is dense inLp(X,P) for all P ∈ M+

1 (X) and
for somep∈ [1,∞). Using this, it is easy to see that ifH is dense inLp(X,P) for all P ∈ M+

1 (X)
and for somep ∈ [1,∞), thenk is characteristic. Based on the results summarized in Section 3.1,
it is clear that for an LCH space,X, if k is c0-universal, which meansk is Lp-universal, thenH
is dense inLp(X,P) for all P ∈ M+

1 (X) and for somep∈ [1,∞) and therefore is characteristic. In
Section 4, we provide an alternate proof for this relation betweenc0-universal and characteristic
kernels by answering (A). Clearly, the converse is not true, that is, ac0-kernel that is characteristic
need not bec0-universal (see Proposition 4 and footnote 8). However, for bounded continuous
translation invariant kernels onRd, the converse is true, that is, a translation invariantc0-kernel that
is characteristic6 is alsoc0-universal. This is because of the fact that a translation invariant kernel
onRd is characteristic if and only if supp(Λ) =Rd (Sriperumbudur et al., 2008, Theorem 7), which
is also the same characterization summarized in Section 3.1 forc0-universal kernels.

Summary:The following statements summarize the relation between universal and characteris-
tic kernels, which are depicted in Figure 1.

6. Let k(x,y) = ψ(x− y) be a bounded continuous translation invariant kernel onRd, which by Bochner’s theorem is
of the form in (5). Supposeψ ∈ L1(Rd). Then by the Fourier inversion theorem (Dudley, 2002, Theorem 9.5.4), Λ
has a density,̂ψ w.r.t. the Lebesgue measure such thatψ̂ ∈ L1(Rd). Therefore, sinceψ is the Fourier transform of
ψ̂, by the Riemann-Lebesgue lemma (Rudin, 1991, Theorem 7.5),ψ ∈C0(R

d), that is,k is ac0-kernel. Most of the
well-known characteristic kernels satisfy the condition ofψ ∈ L1(Rd) and therefore arec0-kernels. This means, for
all practical purposes, we can assume bounded continuous translationinvariant kernels to bec0-kernels.
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• For c0-kernels defined on an LCH space,X, Lp-universal⇔ c0-universal⇒ characteristic.
But in general,c0-kernels that are characteristic need not bec0-universal. However, for trans-
lation invariant kernels onRd, c0-universal⇔ characteristic.

• WhenX is compact,c-universal⇒ characteristic but not vice-versa.

• For translation invariant kernels onRd, characteristic⇒ cc-universal but not vice-versa. How-
ever, on general non-compact Hausdorff spaces, continuous kernels that are characteristic
need not becc-universal.

Open questions:The following relationship need to be clarified, which we do in Section 4.

(D) While the relation between universal and characteristic kernels that are translation invariant
onRd is clear (see the summary above), the characterization of characteristic and c0-universal
kernels that are radial onRd is not known and therefore the relation between characteristic
and universal kernels that are radial onRd is not clear. We address this in Section 4.3.

3.3 Relation of Universal and Characteristic Kernels to Strictly PD,Integrally Strictly PD
and Conditionally Strictly PD Kernels

In this section, we relate characteristic kernels and various notions of universal kernels to strictly pd,
integrally strictly pd and conditionally strictly pd kernels. Before that, we summarize the relation
between strictly pd, integrally strictly pd and conditionally strictly pd kernels. InSriperumbudur
et al. (2010b, Section 3.4), we showed that integrally strictly pd kernels are strictly pd. The converse
is not true, which follows from Steinwart and Christmann (2008, Proposition 4.60, Theorem 4.62).
However, ifX is a finite set, thenk being strictly pd also implies it is integrally strictly pd. From the
definitions of strictly pd and conditionally strictly pd kernels, it is clear that a strictly pd kernel is
conditionally strictly pd but not vice-versa.

Universal kernels vs. Strictly pd kernels:Carmeli et al. (2010, Corollary 4.3) showed that
cc-universal kernels are strictly pd, which meansc0-universal kernels are also strictly pd (asc0-
universal⇒ cc-universal from Section 3.1). This means, whenX is compact Hausdorff,c-universal
kernels are strictly pd, which matches with the result in Steinwart and Christmann (2008, Definition
4.53, Proposition 4.54, Example 4.11).

Conversely, a strictly pdc0-kernel on an LCH space need not bec0-universal. This follows from
Theorem 4.62 in Steinwart and Christmann (2008) which shows that there exists a bounded strictly
pd kernel,k onX :=N∪{0} with k(·,x)∈C0(X), ∀x∈X such thatk is notLp-universal (which from
the summary of Section 3.1 meansk is notc0-universal). Similarly, whenX is compact, the converse
is not true, that is, continuous strictly pd kernels need not bec-universal which follows from the
results due to Dahmen and Micchelli (1987) and Pinkus (2004) for Taylorkernels (Steinwart and
Christmann, 2008, Lemma 4.8, Corollary 4.57)—refer to Steinwart and Christmann (2008, Section
4.7, p. 161) for more details.7 Therefore, it is evident that a continuous strictly pd kernel is in
general notcc-universal on an Hausdorff space. However, for translation invariant kernels that
are continuous, bounded and integrable onRd, that is,k(x,y) = ψ(x− y), x,y ∈ Rd, whereψ ∈

7. Another example of continuous strictly pd kernels that are notc-universal is as follows. Using the technique in the
proof of Theorem 14 of Sriperumbudur et al. (2010b), it can be shown that a continuous translation invariant kernel
onT×T is c-universal if and only ifAψ(n) > 0, ∀n∈ Z. Therefore, by Theorem 8 (see Appendix B), a strictly pd
kernel onT need not bec-universal.
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Cb(R
d)∩L1(Rd), strictly pd impliescc-universality. This follows from Theorem 6.11 and Corollary

6.12 of Wendland (2005) that ifψ ∈ Cb(R
d)∩ L1(Rd) is strictly pd, then(supp(Λ))◦ 6= /0, which

from the summary of Section 3.1 meansk is cc-universal. Similarly, when the kernel is radial on
Rd, then strictly pd kernels arecc-universal. This follows from Theorem 7.14 of Wendland (2005),
which shows that a radial kernel onRd is strictly pd if and only if supp(ν) 6= {0}, and thereforecc-
universal (from the summary of Section 3.1). On the other hand, whenX is finite, all these notions
of universal and strictly pd kernels are equivalent, which follows fromthe result due to Carmeli
et al. (2010, Corollary 4.3) thatcc-universal and strictly pd kernels are the same whenX is finite.

Characteristic kernels vs. Strictly pd kernels:Since characteristic kernels that arec0- and trans-
lation invariant onRd are equivalent toc0-universal kernels (see the summary of Section 3.2), it
is clear that they are strictly pd. However, the converse is not true: for example, the sinc-squared

kernel,k(x,y) = sin2(σ(x−y))
(x−y)2 onR, which has supp(Λ) = [−σ,σ](R is strictly pd (Wendland, 2005,

Theorem 6.11), while it is not characteristic. Based on Example 1, it can beshown that in gen-
eral, characteristic kernels on a non-compact space (not necessarilyRd) need not be strictly pd:
in Example 1,k is characteristic but is not strictly pd because for(a1, . . . ,an) = (1,0, . . . ,0) and
(x1, . . . ,xn) = (1, . . . ,n), we have∑n

l , j=1al a jk(xl ,x j) = a2
1k(1,1)+2a1∑n

j=2a jk( j,1)+∑n
j=2a2

j = 0.
Note that Example 1 holds even ifX is a compact subset ofN. Therefore, whenX is compact Haus-
dorff, a characteristic kernel need not be strictly pd. However, for translation invariant kernels on
T, a characteristic kernel is also strictly pd, while the converse is not true: Fukumizu et al. (2009,
Theorem 8) and Sriperumbudur et al. (2010b, Theorem 14) have shown thatk onT×T is charac-
teristic if and only ifAψ(0)≥ 0, Aψ(n)> 0, ∀n∈ Z\{0}, which by Theorem 8 (see Appendix B) is
strictly pd, while the converse is clearly not true.

Characteristic kernels vs. Integrally strictly pd kernels:In Sriperumbudur et al. (2009, The-
orem 4) and Sriperumbudur et al. (2010b, Theorem 7), we have shown that integrally strictly pd
kernels are characteristic, while the converse in general is not true.8 Whenk is bounded continuous
and translation invariant onRd, however the converse holds, which is due to the fact that ifk is
characteristic, then supp(Λ) = Rd (Sriperumbudur et al., 2008, Theorem 7), which ensures thatk is
integrally strictly pd.

Summary:The following statements summarize the relation of universal and characteristic ker-
nels to strictly pd, integrally strictly pd and conditionally strictly pd kernels, whichare depicted in
Figure 1.

• c-, cc- andc0-universal kernels are strictly pd and are therefore conditionally strictlypd, while
the converse in general is not true. WhenX is finite, thenc-, cc- andc0-universal kernels are
equivalent to strictly pd kernels.

• Bounded, continuous, integrable, strictly pd translation invariant kernelsonRd arecc-universal.
Radial kernels onRd are strictly pd if and only if they arecc-universal.

• For a general non-compact Hausdorff space, characteristic kernels need not be strictly pd and
vice-versa. However, bounded continuous translation invariant kernels onRd or T that are
characteristic are strictly pd but the converse is not true.

8. By Example 1, it is clear that forµ= δ1 ∈ Mb(X)\{0},
∫∫

X k(x,y)dµ(x)dµ(y) = k(1,1) = 0, whereδ1 represents the
Dirac measure at 1. Thereforek is not integrally strictly pd but is characteristic.
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• Integrally strictly pd kernels are characteristic. Though the converse is not true in general, it
holds if the kernel is bounded, continuous and translation invariant onRd.

Open questions:The following questions need to be clarified, which is done in Section 4.

(E) While the relation of universal kernels to strictly pd and conditionally strictly pd kernels is
clear from the above summary, the relation between universal and integrally strictly pd kernels
is not known, which we establish in Section 4.2.

(F) WhenX is a finite set, it is easy to see that characteristic and conditionally strictly pd ker-
nels are equivalent (see Section 4.4). However, their relationship is notclear for a general
measurable space, which we clarify in Section 4.4.

(G) As summarized above, radial kernels onRd are strictly pd if and only if they arecc-universal.
However, the relation between all the other notions of pd kernels—c0-universal, characteris-
tic, strictly pd and integrally strictly pd—is not known, which is addressed in Section 4.3.

4. Relation Between Various Notions of Positive Definite Kernels: New Results

In this section, we address the open questions, (A)–(G) mentioned in Section 3 to understand the
complete relationship between various notions of positive definite kernels.

4.1 c0-universality and RKHS Embedding of Measures

As mentioned in Section 3.1, Micchelli et al. (2006) have established the relation of c-universality
andcc-universality to injective RKHS embedding of finite signed Borel measures—shown in (8)
and (11)—through a simple application of the Hahn-Banach theorem (see Theorem 1). The fol-
lowing result (also see Suquet, 2009, Remark 1.1) in Proposition 2 provides a measure embedding
characterization—shown in (13)—forc0-universality, which is also obtained as a simple applica-
tion of the Hahn-Banach theorem, and therefore addresses the open question in (A). Before we state
Proposition 2, we present the Hahn-Banach theorem, which we quote from Rudin (1991, Theorem
3.5 and the remark following Theorem 3.5).

Theorem 1 (Hahn-Banach) Suppose A is a subspace of a locally convex topological vector space
Y. Then A is dense in Y if and only if A⊥ = {0}, where

A⊥ := {T ∈Y′ : ∀x∈ A, T(x) = 0}.

The following result, which presents a necessary and sufficient condition for k to bec0-universal
hinges on the above theorem, where we chooseA to be the RKHS,H andY to beC0(X) for which
Y′ is known through the Riesz representation theorem (Folland, 1999, Theorem 7.17).

Proposition 2 (c0-universality and RKHS embedding of measures)Suppose X is an LCH space
with the kernel, k being bounded and k(·,x) ∈C0(X), ∀x∈ X. Then k is c0-universal if and only if
the embedding,

µ 7→
∫

X
k(·,x)dµ(x), µ∈ Mb(X), (14)

is injective.
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Proof By definition,k is c0-universal ifH is dense inC0(X). We now invoke Theorem 1 to charac-
terize the denseness ofH in C0(X), which means we need to consider the dualC′

0(X) := (C0(X))′ of
C0(X). By the Riesz representation theorem (Folland, 1999, Theorem 7.17),C′

0(X) = Mb(X) in the
sense that there is a bijective linear isometryµ 7→ Tµ from Mb(X) ontoC′

0(X), given by the natural
mapping,Tµ( f ) =

∫
X f dµ, f ∈ C0(X). Therefore, by Theorem 1,H is dense inC0(X) if and only

if H⊥ := {µ∈ Mb(X) : ∀ f ∈H,
∫

X f dµ= 0} = {0}. From Lemma 7 (see Appendix B), we have
H

⊥ = {µ∈ Mb(X) :
∫

X k(·,x)dµ(x) = 0} and therefore the result follows from Theorem 1.

Remark 3 (a) When X is compact, C0(X) coincides with C(X), and therefore the result in (14)
matches with the one in (8), derived by Micchelli et al. (2006).

(b) The characterization of cc-universality, shown in (11) can also be directly obtained as a
simple application of Theorem 1, wherein the proof is similar to that of Proposition 2 except that
we need to consider the dual of C(X) endowed with the topology of compact convergence (a locally
convex topological vector space) to characterize the denseness ofH in C(X). It is known (Hewitt,
1950) that C′(X) = Mbc(X) in the sense that there is a bijective linear isometry µ7→ Tµ from Mbc(X)
onto C′(X), given by the natural mapping, Tµ( f ) =

∫
X f dµ, f ∈ C(X). The rest of the proof is

verbatim with Mb(X) replaced by Mbc(X).
(c) Comparing (14) and (2), it is clear that c0-universal kernels are characteristic while the

converse is not true, which matches with the result in Section 3.2.

4.2 Relation Between Universal Kernels and Integrally Strictly PD Kernels

In this section, we address the open question (E) through the following result which shows that
c0-kernels are integrally strictly pd if and only if they arec0-universal.

Proposition 4 (c0-universal and integrally strictly pd kernels) Suppose the assumptions in Propo-
sition 2 hold. Then, a c0-kernel, k is c0-universal if and only if it is integrally strictly pd, that is,

∫ ∫
X

k(x,y)dµ(x)dµ(y)> 0, ∀µ∈ Mb(X)\{0}. (15)

Proof (⇐ ) Supposek is notc0-universal. By Proposition 2, there existsµ∈ Mb(X)\{0} such that∫
X k(·,x)dµ(x) = 0, which implies‖∫X k(·,x)dµ(x)‖H = 0. This means

0=
〈

∫
X

k(·,x)dµ(x),
∫

X
k(·,x)dµ(x)

〉

H

(e)
=

∫ ∫
X

k(x,y)dµ(x)dµ(y),

that is,k is not integrally strictly pd, where(e) follows from Lemma 7 (see Appendix B). Therefore,
if (15) holds, thenk is c0-universal.

(⇒ ) Suppose there existsµ∈ Mb(X)\{0} such that
∫∫

X k(x,y)dµ(x)dµ(y) = 0, that is,
∥

∥

∥

∥

∫
X

k(·,x)dµ(x)

∥

∥

∥

∥

H

= 0 ⇒
∫

X
k(·,x)dµ(x) = 0.

Therefore, the embedding in (14) is not injective, which by Proposition 2 implies thatk is notc0-
universal. Therefore, ifk is c0-universal, thenk satisfies (15).
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4.3 Radial Kernels onRd

In this section, we address the open questions (B), (C), (D) and (G) byshowing that all the notions
of universality and characteristic kernels are equivalent to strictly pd kernels.

Proposition 5 (All notions are equivalent for radial kernels onRd) Suppose k is radial onRd.
Then the following conditions are equivalent.

(a) supp(ν) 6= {0}.

(b) k is integrally strictly pd.

(c) k is c0-universal.

(d) k is cc-universal.

(e) k is strictly pd.

(f) k is characteristic.

Proof Note that(b)⇔ (c) follows from Proposition 4,(c)⇒ (d) from (11) and (13) and(d)⇔ (e)
from Micchelli et al. (2006, Proposition 14) and Wendland (2005, Theorem 7.14). Theorem 7.14 in
Wendland (2005) also ensures that(e)⇒ (a). Now, we show(a)⇒ (b). To do this, we first derive
an intermediate result. Suppose ˆµ is the Fourier transform ofµ defined as ˆµ(ω) =

∫
Rd e

√
−1ωTxdµ(x),

then for anyψ defined as in (5), we have
∫ ∫

Rd
ψ(x−y)dµ(x)dµ(y) =

∫ ∫ ∫
Rd

e−
√
−1(x−y)T ω dΛ(ω)dµ(x)dµ(y)

=
∫ ∫

Rd
e−

√
−1xT ω dµ(x)

∫
Rd

e
√
−1yT ω dµ(y)dΛ(ω)

=
∫
Rd

µ̂(ω)µ̂(ω)dΛ(ω)

=
∫
Rd

|µ̂(ω)|2 dΛ(ω). (16)

Consider
∫∫

Rd k(x,y)dµ(x)dµ(y) with k as in (6), given by

B :=
∫ ∫

Rd
k(x,y)dµ(x)dµ(y) =

∫ ∫
Rd

∫ ∞

0
e−t‖x−y‖2

2 dν(t)dµ(x)dµ(y)

(⋆)
=

∫ ∞

0

[∫ ∫
Rd

e−t‖x−y‖2
2 dµ(x)dµ(y)

]

dν(t)

(♣)
=

∫ ∞

0

1

(4πt)d/2

[∫
Rd

|µ̂(ω)|2e−
‖ω‖2

2
4t dω

]

dν(t)

(♠)
=

∫
Rd

|µ̂(ω)|2
[∫ ∞

0

1

(4πt)d/2
e−

‖ω‖2
2

4t dν(t)
]

dω, (17)

where Fubini’s theorem is invoked in(⋆) and(♠), while we used (16) in(♣), where we setψ(x) =
e−t‖x‖2

2 with dΛ(ω) = (4πt)−d/2e−‖ω‖2
2/4t dω. Since supp(ν) 6= {0}, the inner integral in (17) is

positive for everyω ∈ Rd and soB> 0, which meansk is integrally strictly pd.
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We now prove that(c)⇔ ( f ). (c)⇒ ( f ) follows from Section 3.2. To prove the converse, we
need to prove that ifk is notc0-universal, then it is not characteristic. Ifk is notc0-universal, then
we have supp(ν) = {0}, which means the kernel is a constant function onRd ×Rd and therefore
not characteristic.

4.4 Relation Between Characteristic and Conditionally Strictly PD Kernels

In this section we address the open question (F) which is about the relation of characteristic kernels
to conditionally strictly pd kernels.

As shown in Section 3.3, although the relation between universal and conditionally strictly
pd kernels straightforwardly follows from universal kernels being strictly pd, which in turn are
conditionally strictly pd, such an implication is not possible in the case of characteristic kernels as
they are not in general strictly pd (see Example 1). However, the followingresult establishes the
relation between characteristic and conditionally strictly pd kernels.

Proposition 6 If k is characteristic, then it is conditionally strictly pd.

Proof Supposek is not conditionally strictly pd. This means for somen ≥ 2 and for mutually
distinctx1, . . . ,xn ∈ X, there exists{α j}n

j=1 6= 0 with ∑n
j=1 α j = 0 such that∑n

l , j=1 αl α jk(xl ,x j) = 0.
DefineI := { j : α j > 0}, P := β−1 ∑ j∈I α jδx j andQ :=−β−1 ∑ j /∈I α jδx j , whereβ := ∑ j∈I α j . It is
easy to see thatP andQ are distinct Borel probability measures onX. Then, we have

∥

∥

∥

∥

∫
X

k(·,x)d(P−Q)(x)

∥

∥

∥

∥

2

H

= β−2

∥

∥

∥

∥

∥

n

∑
j=1

α jk(·,x j)

∥

∥

∥

∥

∥

H

= β−2
n

∑
l , j=1

αl α jk(xl ,x j) = 0.

So, there existP 6=Q such that
∫

X k(·,x)d(P−Q)(x) = 0, that is,k is not characteristic.

The converse to Proposition 6 in general is however not true: we showed in Section 3.3 that strictly
pd kernels are conditionally strictly pd but need not be characteristic and so conditionally strictly pd
kernels need not have to be characteristic. In the following, we presenta concrete example to show
the same—a similar example is used to prove Theorem 4.62 in Steinwart and Christmann (2008),
which shows thatc0-kernels that are strictly pd need not bec0-universal.

Example 2 Let X=N∪{0}. Define k(0,0) = ∑n∈Nb2
n, k(m,n) = δmn and k(n,0) = bn for m,n≥ 1,

where{bn}n≥1 ⊂ (0,1) and∑n∈Nbn = 1. Let n≥ 2 andα := (α0, . . . ,αn) ∈ Rn+1 be a vector with
α 6= 0 such that∑n

j=0 α j = 0. Consider

B :=
n

∑
l , j=0

αl α jk(l , j) = α2
0k(0,0)+2

n

∑
j=1

α jα0k( j,0)+
n

∑
l , j=1

αl α jk(l , j)

= α2
0 ∑

j∈N
b2

j +2α0

n

∑
j=1

α jb j +
n

∑
j=1

α2
j = α2

0 ∑
j∈N

b2
j +

n

∑
j=1

α j(2α0b j +α j).

If α0 = 0, then B= ∑n
j=1 α2

j > 0 since we assumedα 6= 0. Supposeα0 6= 0. Then

B≥ α2
0 ∑

j∈N
b2

j +
n

∑
j=1

α∗
j (2α0b j +α∗

j ), (18)
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where

(α∗
1, . . . ,α

∗
n) = argmin

{

n

∑
j=1

α j(2α0b j +α j) :
n

∑
j=1

α j =−α0

}

. (19)

Note that(α∗
1, . . . ,α∗

n) is unique as the objective in (19) is strictly convex, which is minimized over
a convex set. To solve (19), let us consider the Lagrangian, given as

L(α1, . . . ,αn,λ) =
n

∑
j=1

α j(2α0b j +α j)−λ
( n

∑
j=1

α j +α0

)

,

whereλ ≥ 0. Differentiating L w.r.t. α j and setting it to zero yieldsα∗
j = (λ− 2α0b j)/2. Since

∑n
j=1 α∗

j =−α0, we haveλ = 2α0(a−1)
n , where a:= ∑n

j=1b j . Substituting forλ in α∗
j , we have

α∗
j =

α0(a−1−nbj)

n
, j ∈ Nn.

Substituting forα∗
j in (18) gives

B≥ α2
0 ∑

j∈N
b2

j +
α2

0(a−1)2

n
−α2

0

n

∑
j=1

b2
j = α2

0

∞

∑
j=n+1

b2
j +

α2
0(∑

n
j=1b j −1)2

n
> 0.

Consequently, we have B> 0 in any case, and therefore k is conditionally strictly pd. In the follow-
ing, we however show that k is not characteristic.

LetP= δ0 andQ= ∑n
j=1b jδ j . ClearlyP 6=Q. Consider

∥

∥

∥

∫
X

k(·,x)d(P−Q)(x)
∥

∥

∥

2

H

=
∥

∥

∥
k(·,0)− ∑

j∈N
k(·, j)b j

∥

∥

∥

2

H

= k(0,0)−2 ∑
j∈N

k( j,0)b j + ∑
l , j∈N

k(l , j)bl b j

= ∑
j∈N

b2
j −2 ∑

j∈N
b2

j + ∑
j∈N

b2
j = 0.

This implies the embedding in (2) is not injective and therefore k is not characteristic.

WhenX is finite, then the converse to Proposition 6 holds, that is, conditionally strictly pd kernels
are characteristic, which is shown as follows. LetX = Nn. Supposek is conditionally strictly pd,
that is, for anyn ≥ 2, (α1, . . . ,αn) 6= (0, . . . ,0) with ∑n

j=1 α j = 0, and all distinctx1, . . . ,xn ∈ X,
we have∑n

l , j=1 αl α jk(xl ,x j) > 0. Let I := { j : α j > 0}. DefineP := β−1 ∑ j∈I α jδ j andQ :=
−β−1 ∑ j /∈I α jδ j , whereβ := ∑ j∈I α j andP 6=Q. Then

∥

∥

∥

∥

∫
k(·,x)d(P−Q)(x)

∥

∥

∥

∥

2

H

= β−2
n

∑
l , j=1

αl α jk(l , j)> 0

and thereforek is characteristic.

2405



SRIPERUMBUDUR, FUKUMIZU AND LANCKRIET

5. Conclusions

In this work, we have presented a unified study to explain the relation between universal kernels,
characteristic kernels and RKHS embedding of measures: while characteristic kernels are related
to the injective RKHS embedding of Borel probability measures, the universal kernels are related
to the injective RKHS embedding of finite signed Borel measures. We showedthat for all practical
purposes (e.g., Gaussian kernel, Laplacian kernel, etc.), the notions ofcharacteristic and universal
kernels are equivalent. In addition, we also explored their relation to various other notions of positive
definite (pd) kernels: strictly pd, integrally strictly pd and conditionally strictly pd. As an example,
we showed all these notions to be equivalent (except for conditionally strictly pd) in the case of
radial kernels onRd. We would like to note that while this study assumes the kernel to be real-
valued, all the results extend verbatim to the case of complex-valued kernels as well.

This unified study shows that certain families of kernels, for example, bounded continuous
translation invariant kernels onRd and radial kernels onRd, are interesting for practical use, since
the disparate notions of universal and characteristic kernels seem to coincide for these families. On
the other hand, it may not give a guide regarding which kernel should beused given a problem.
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Appendix A. Radial Kernels are Translation Invariant on Rd

Let k be radial onRd ×Rd. Definek(x,y) = ψ(x− y) :=
∫
[0,∞)e−t‖x−y‖2

2 dν(t), x,y ∈ Rd, where
ν ∈ M+

b ([0,∞)). Since

e−t‖x−y‖2
2 =

∫
Rd

e−
√
−1(x−y)T ω(4πt)−d/2e−‖ω‖2

2/4t dω,

we haveψ(x) =
∫
Rd e−

√
−1xT ωφ(ω)dω, where

φ(ω) =
∫
[0,∞)

(4πt)−d/2e−‖ω‖2
2/4t dν(t).

It is easy to check thatφ(ω)≥ 0, ∀ω ∈ Rd andφ ∈ L1(Rd). Thereforeψ satisfies (5), which means
k is a bounded continuous translation invariant kernel onRd.

Appendix B. Supplementary Results

For completeness, we present the following supplementary result, which is asimple generalization
of the technique used in the proof of Theorem 3 in Sriperumbudur et al. (2008).
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Lemma 7 Let k be a measurable and bounded kernel on a measurable space, Xand letH be its
associated RKHS. Then, for any f∈H and for any finite signed Borel measure, µ,∫

X
f (x)dµ(x) =

∫
X
〈 f ,k(·,x)〉Hdµ(x) =

〈

f ,
∫

X
k(·,x)dµ(x)

〉

H

.

Proof Let Tµ : H → R be a linear functional defined asTµ[ f ] :=
∫

X f (x)dµ(x). It is easy to show
that

‖Tµ‖ := sup
f∈H

|Tµ[ f ]|
‖ f‖H

≤
√

sup
x∈X

k(x,x)‖µ‖< ∞.

Therefore,Tµ is a bounded linear functional onH. By the Riesz representation theorem (Folland,
1999, Theorem 5.25), there exists a uniqueλµ ∈ H such thatTµ[ f ] = 〈 f ,λµ〉H for all f ∈ H. Set
f = k(·,u) for someu∈ X, which impliesλµ =

∫
X k(·,x)dµ(x) and the result follows.

The following result in Theorem 8 characterizes strictly pd kernels onT, which we quote from
Menegatto (1995). Before we state the result, we introduce some notation. For natural numbersm
andn and a setA of integers,m+nA := { j ∈Z | j = m+na, a∈ A}. An increasing sequence{cl} of
nonnegative integers is said to beprimeif it is not contained in any set of the formp1N∪ p2N∪· · ·∪
pnN, wherep1, p2, . . . , pn are prime numbers. Any infinite increasing sequence of prime numbers is
a trivial example of a prime sequence. We writeN0

n := {0,1, . . . ,n}.

Theorem 8 (Menegatto 1995)Let ψ be a pd function onT of the form in (7). LetN := {|n| :
Aψ(n) > 0, n∈ Z} ⊂ N∪{0}. Thenψ is strictly pd ifN has a subset of the form∪∞

l=0(bl + clN
0
l ),

in which{bl}∪{cl} ⊂ N and{cl} is a prime sequence.

Appendix C. cb-universality

As mentioned in Section 2, the definition ofc0-universality deals withH being dense inC0(X)
w.r.t. the uniform norm, whereX is an LCH space. Although the notion ofc0-universality addresses
limitations associated with bothc- andcc-universality, it only approximates a subset ofC(X), that
is, it cannot deal with functions inC(X)\C0(X). This limitation can be addressed by considering a
larger class of functions to be approximated.

To this end, one can consider a notion of universality that is stronger thanc0-universality: a
bounded continuous kernel,k is said to becb-universal if its corresponding RKHS,H is dense
in Cb(X), the space of bounded continuous functions on a topological space,X (note thatC0(X) ⊂
Cb(X)). This notion ofcb-universality may be more applicable in learning theory thanc0-universality
as the target function,f ⋆ can belong toCb(X) (which is a more natural assumption) instead of it
being restrained toC0(X) (note thatC0(X) only contains functions that vanish at infinity). Similar
to Proposition 2, the following theorem provides a necessary and sufficient condition fork to be
cb-universal. Before we state the result, we need some definitions.

A set functionis a function defined on a family of sets, and has values in[−∞,+∞]. A set func-
tion µ defined on a familyτ of sets is said to befinitely additiveif /0 ∈ τ, µ( /0) = 0 andµ(∪n

l=1Al ) =

∑n
l=1µ(Al ), for every finite family{A1, . . . ,An} of disjoint subsets ofτ such that∪n

l=1Al ∈ τ. A field
of subsetsof a setX is a non-empty family,Σ, of subsets ofX such that/0 ∈ Σ, X ∈ Σ, and for all
A,B∈ Σ, we haveA∪B∈ Σ andB\A∈ Σ. An additive set functionµ defined on a fieldΣ of subsets
of a topological spaceX is said to beregular if for eachA∈ Σ andε > 0, there existsB∈ Σ whose
closure is contained inA and there existsC ∈ Σ whose interior containsA such that|µ(D)| < ε for
everyD ∈ Σ with D :=C\B.
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Proposition 9 (cb-universality and RKHS embedding of set functions)Suppose X is a normal
topological space and Mrba(X) is the space of all finitely additive, regular, bounded set functions
defined on the field generated by the closed sets of X. Then, a bounded continuous kernel, k is
cb-universal if and only if the embedding,

µ 7→
∫

X
k(·,x)dµ, µ∈ Mrba(X), (20)

is injective.

Proof The proof is very similar to that of Proposition 2, wherein we identify(Cb(X))′ ∼= Mrba(X)
such thatT ∈ (Cb(X))′ andµ∈ Mrba(X) satisfyT( f ) =

∫
X f dµ, f ∈Cb(X) (Dunford and Schwartz,

1958, p. 262). Here,∼= represents the isometric isomorphism. The rest of the proof is verbatim with
Mb(X) replaced byMrba(X).

Note thatMrba(X) does not contain any measure—though a set function inMrba(X) can be extended
to a measure—as measures are countably additive and defined on aσ-field. Sinceµ in Proposition 9
is not a measure but a finitely additive set function defined on a field, it is not clear how to deal with
the integral in (20). Due to the technicalities involved in dealing with set functions, the analysis of
cb-universality and its relation to other notions considered in Section 3 is not clear, although it is an
interesting problem to be resolved because of its applicability in learning theory.
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