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Abstract

Over the last few years, two different notions of positivdidee (pd) kernels—universal and
characteristic—have been developing in parallel in machéaening: universal kernels are pro-
posed in the context of achieving the Bayes risk by kernekbeclassification/regression algo-
rithms while characteristic kernels are introduced in thitext of distinguishing probability mea-
sures by embedding them into a reproducing kernel HilbeatsgRKHS). However, the relation
between these two notions is not well understood. The maitribotion of this paper is to clarify
the relation between universal and characteristic kerfoglpresenting a unifying study relating
them to RKHS embedding of measures, in addition to clargytimeir relation to other common
notions of strictly pd, conditionally strictly pd andtegrally strictly pdkernels. Foradial kernels
onRY, all these notions are shown to be equivalent.

Keywords: kernel methods, characteristic kernels, Hilbert spaceegiiings, universal kernels,
strictly positive definite kernels, integrally strictly gitive definite kernels, conditionally strictly
positive definite kernels, translation invariant kernedalial kernels, binary classification, homo-
geneity testing

1. Introduction

Kernel methods have been popular in machine learning and pattern arfiahytbisir superior per-
formance on a wide spectrum of learning tasks. They are broadly eb&blés an easy way to
construct nonlinear algorithms from linear ones, by embedding data padiatsigher dimensional
reproducing kernel Hilbert spaces (RKHSs) (8i&lopf and Smola, 2002; Shawe-Taylor and Cris-
tianini, 2004). In the regularization approach to learning (Evgeniou e2@D0), it is well known
that kernel-based algorithms (for classification/regression) generadigartherepresenter theorem
(Kimeldorf and Wahba, 1970; Sélkopf et al., 2001) and learn a function in a RKHS that has the
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representation,

f:=S cik(-,x), 1)
J.E%n i X]

whereN, := {1,2,...,n}, k: X x X — R is a symmetric positive definite (pd) kernel on some
arbitrary spaceX and {c; : j € Ny} C R are parameters typically obtained from training data,
{Xj : ] € Npn} € X. As noted in Micchelli et al. (2006), one can ask whether the functian, (1)
approximates any real-valued target function arbitrasigll as the number of summands increases
without bound. This is an important question to consider because if thecaisaffirmative, then
the kernel-based learning algorithm candemsistenin the sense that for any target functidi,
the discrepancy between(which is learned from the training data) aftdgoes to zero (in some
appropriate sense) as the sample size goes to infinity. Since the linear Kkit,od : x € X} is
dense in the RKHSH associated witlk (Aronszajn, 1950), and assuming that the kernel-based
algorithm makesf “converge to an appropriate function” iK asn — oo, the above question of
approximatingf* arbitrarily well by f in (1) asn goes to infinity is equivalent to the question of
whetherH is rich enough to approximate arfy arbitrarily well (such an RKHS is referred to as a
universal RKHS and the corresponding kernel as a universaéReiDepending on the choice ¥f
the choice of target function space and the type of approximation, varaisns of universality—
c-universality (Steinwart, 2001)c-universality (Micchelli et al., 2006; Caponnetto et al., 2008),
Co-universality (Carmeli et al., 2010; Sriperumbudur et al., 2010a)lgadniversality (Steinwart
and Christmann, 2008; Carmeli et al., 2010)—have been proposedaratterized in literature.
Recently, a seemingly related (to universality) notion of characteristiekbas been proposed
and characterized (Fukumizu et al., 2004, 2008, 2009; Gretton et al7; iperumbudur et al.,
2008, 2009, 2010b), which has found applications in testing for honastygiGretton et al., 2007),
independence (Gretton et al., 2008), conditional independence rtizket al., 2008), to find the
most predictive subspace in regression (Fukumizu et al., 2004), etmakg given the set of all
Borel probability measures defined on the topological spa@measurable and bounded kerikel,
is said to be characteristic if

P /x K(-,x)dP(x), 2

is injective, that is|P is embedded to a unique elemefitk(-,x) dP(x) in 7. The motivation to
consider such an embedding is that it provides a powerful and straigiatfd method of dealing
with higher-order statistics of random variables, which has been exploithé above mentioned
applications. Gretton et al. (2007) related characteristic and universals by showing that K is
c-universal—see Section 2 for the definition—then it is characteristic. Besids result, not much
is known or understood about the relation between universal andatbéstic kernels.

The main contribution of this paper is to clarify the relation between univarshkcharacteris-
tic kernels by presenting a unifying study relating them to RKHS embedding asunes (Suquet,
2009), in addition to clarifying their relation to other common notions of strictlyqmehditionally
strictly pd andntegrally strictly pdkernels, which extends our preliminary study in Sriperumbudur
et al. (2010b, Section 3.4). This is done by first reviewing all the existirgacterizations for uni-
versal and characteristic kernels, which is then used to clarify not oalyeflation between them
but also their relation to other notions of pd kernels (see Section 3). Sia@xi$ting characteri-
zations do not explain the complete relationship between all these varioussiotipd kernels, we
raise open questions in Section 3 about the relationships to be clarifiedy areithen addressed in
Section 4 by deriving new results. In particular, in Section 4, we estableshethtion between (a)
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Co-universality and RKHS embedding of finite signed Borel measures,niogrsal and integrally
strictly pd kernels, (c) characteristic and conditionally strictly pd kernedis(dpall the above men-
tioned notions when the pd kernelriadial on RY. A summary of the relation between all these
notions of pd kernels is shown in Figure 1, which shows the equivalegiveekn these notions for
radial kernels orR9. Supplementary results are collected in appendices. Throughout tbe pap
assumeX to be a Polish spacethe reason for which is discussed in the paragraph following (3).

In the following section, we introduce the notation and collect all definitions @ha used
throughout the paper.

2. Definitions and Notation

Let X be a topological spac€(X) denotes the space of all continuous real-valued function$.on
Cy(X) is the space of all bounded, continuous real-valued functions.oRor a locally compact
Hausdorff space (examples incluté, infinite discrete sets, topological manifolds, etX),f €
C(X) is said tovanish at infinityif for every € > 0 the set{x: |f(x)| > €} is compac® The class
of all continuousf on X which vanish at infinity is denoted &(X). The space€;(X) andCy(X)
are endowed with the uniform norr; ||y defined ag| f ||y := supcx | f(X)| for f € Co(X) C Cyp(X).

Radon measureA signed Radon measugeon a Hausdorff spack is a Borel measure oK
satisfying

(i) W(C) < o for each compact subsgtc X,
(i) u(B) =sup{K(C)|C c B, Ccompac} for eachB in the Borelo-algebra ofX.

pis said to be finite if|p|| := W] (X) < o, where|| is the total-variation oft. M/ (X) denotes the
space of all finite Radon measuresXnvhile Mp(X) denotes the space of all finite signed Radon
measures oX. The space of all Radon probability measures is denotétdX) := {pe M/ (X) :
M(X) = 1}. Forp e Mp(X), the support ofiis defined as

supg M) = {x € X|for any open sdtl such thak € U, |p|(U) # O}. (3)

Mpc(X) denotes the space of all compactly supported finite signed Radon measdie8Ve refer
the reader to Berg et al. (1984, Chapter 2) for a general refemantiee theory of Radon measures.
If X is a Polish space, then by Ulam’s theorem, every finite Borel measure isiRaddley, 2002,
Theorem 7.1.4). Therefore, for the simplicity of not requiring to distinglistween Borel and
Radon measures, throughout the paper, we as3utodoe a Polish space.

Positive definite (pd), strictly pd, conditionally strictly pd and integrally strictly pdsymmet-
ric functionk : X x X — R is called positive definite (pdyésp. conditionally pd) if, for alln € N
(resp. N> 2),dy,...,0, € R (resp.with z?:lo(j =0) and allxg, ..., x, € X, we have

n
Z G|ij(X|,Xj)ZO. 4)
l,]=1

1. Atopological spacéX, 1) is called a Polish space if the topologyas a countable basis and there exists a complete
metric definingt. An example of a Polish spacel®' endowed with its usual topology.

2. LCH spaces have a rich supply of continuous functions that vaniside.compact sets—see Tietze extension theo-
rem (Folland, 1999, Theorem 4.34).
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Furthermorek is said to be strictly pdrésp conditionally strictly pd) if, for mutually distinct
X1,.-.,%n € X, equality in (4) only holds foo; =--- =0, =0.
A measurable, symmetric and bounded kerkés,said to be integrally strictly pd if

//X K(x,y) dp(X) di(y) > 0,V e Mp(X)\{0}.

This definition is a generalization d@fitegrally strictly positive definite functioren RY (Stewart,
1976, Section 6):ffzs k(x,y) f(x) f (y)dxdy> 0 for all f € L?(RY), which is the strictly positive
definiteness of the integral operator given by the kernel.

c-, cC-, @- and Ly-universal kernelsA continuous pd kerneéd on a compact Hausdorff spaxe
is calledc-universal if the RKHSH induced byk is dense irC(X) w.r.t. the uniform norm, that is,
for every functiong € C(X) and alle > 0, there exists afi € H such that|f —g||, < € (Steinwart,
2001).

A continuous pd kernek on a Hausdorff spack is said to becc-universal if the RKHSH
induced byk is dense irC(X) endowed with the topology of compact convergence, that is, for any
compact se¥ C X, for anyg € C(Z) and alle > 0, there exists affi € 3|z such that|f —g||u <,
whereH|z ;= {f|z : f € H} is the restriction ofH to Z and f|z is the restriction off to Z (Carmeli
et al., 2010; Sriperumbudur et al., 2010a).

A pd kernel,k is said to be ap-kernel if it is bounded wittk(-,X) € Co(X), VX € X, whereX
is a locally compact Hausdorff (LCH) space. ch-kernel on an LCH spaceX is said to becy-
universal if the RKHSH induced byk is dense irCy(X) w.r.t. the uniform norm (Carmeli et al.,
2010; Sriperumbudur et al., 201C%).

A measurable and bounded kerrletlefined on a Hausdorff space,is said to be_,-universal
if the RKHS, H induced byk is dense irLP(X, u) w.r.t. thep-norm defined as

I1loi= (| 10oPabtn)

for all Borel probability measureg, defined orX and somep € [1,»). HereLP(X, u) is the Banach
space ofp-integrabley-measurable functions oXi (Steinwart and Christmann, 2008).

We would like to stress that in the above definitions of universality, the agsumsnk ensure
that the associated RKH% is continuously included in the target space. Steinwart and Christmann
(2008, Lemma 4.28) showed thiais bounded and(-,x) is continuous for alk € X (X being a
topological space) if and only if everfye H is bounded and continuous. In addition, the inclusion
id : H — Cp(X) is continuous. Similarly, by modifying the proof of Lemma 4.28 in Steinwart and
Christmann (2008), it can be easily shown tk@ bounded and(-,x) € Cy(X), Vx € X (X being
an LCH space) if and only if every € K is in Co(X), and the inclusion id H — Cy(X) can be
shown to be continuous (also see Carmeli et al., 2010, Proposition 2.B)w&teand Christmann
(2008, Theorem 4.26) showed thakifs measurable and bounded on a measurable sfatteen

3. Note thatcc-universality (esp. euniversality) deals wittkX being a non-compactdsp. compact) Hausdorff space,
whereagy-universality requireX to be an LCH space. Whil& being Hausdorff ensures that it has an abundance of
compact subsets (as requireccimuniversality), the stronger condition &f being an LCH space ensures that it has
an abundance of continuous functions that vanish outside compagssetfotnote 2). In addition, this choice of
X being an LCH space ensures the existence of topological d@g|(Xf) through the Riesz representation theorem,
which is required in the characterizationa@funiversality. See Proposition 2 in Section 4 for details.
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H consists ofp-integrable (w.r.t. any Borel probability measugg, functions and the inclusion
id : H — LP(X,p) is continuous for some € [1, ).

Characteristic kernel: A bounded measurable kerndd,is said to be characteristic i —
Jx k(-,x) dp(x) is injective, wherguis a Borel probability measure ot

Translation invariant and Radial kernels d&: A pd kernel,k : RY x RY — R is said to be
translation invariant ik(x,y) = W(x—Y), wherey is a pd function. Ik is bounded and continuous,
then by Bochner’s theorem (Wendland, 2005, Theorem §.8)C,(R) is the Fourier transform of
A e M (RY), that is,

)= | e VOGN (w), x € RY. (5)

A bounded continuous kernéd,is said to be radial oiR? x RY if there existsv € M} ([0,))

such that

kxy) = [ ePVEdv(t), xye R (6)
[0,0)

It is easy to see that a radial kernel is also bounded translation invamieRf (see Appendix
A). Examples of radial kernels include the Gaussian kerk@ed,y) = e—GHX—yH%, o > 0; inverse
multiquadricsk(x,y) = (c+ ||x—Y||3)®, B > d/2, etc.

A continuous pd kernel is said to be translation invarianf8n= [0,2m)¢ if k(x,y) = W((x—
Y)modar), Wherey € C(T) is such that

W) = 3 Ag(me " xeT, (7

nezd
with Ay : Z9 — R, Ay(—n) = Ay(n) ands cz0 Ap(n) < oo

3. Relation Between Various Notions of Positive Definite Kerals Based on Known
Characterizations

In this section, we review existing results on the characterization of wal@nd characteristic
kernels, which are then used to clarify not only the relation between theraldm their relation
to other notions like strictly pd, conditionally strictly pd and integrally strictly pdneds. In Sec-
tion 3.1, we discuss various notions of universality, review all their existhmyacterizations and
then summarize the relation between them. In Section 3.2, we discuss and susrtimarilation
between characteristic and universal kernels based on their exisangctérizations. The relation
of universal and characteristic kernels to strictly pd, conditionally striailapd integrally strictly
pd kernels are summarized in Section 3.3. Since the existing characteriziiong explain the
complete relationship between all these various notions of pd kernelsjseequestions at the end
of each subsection that need to be addressed to obtain a complete urtiegstd the relationships
between all these notions. A summary of the relationships between varitaasof pd kernels
based on the existing characterizations is shown in Figure 1.

Before proceeding further, we would like to highlight a possible confufiat can raise while
comparing these various notions of pd kernels. Suppose we would likentpasecy-universal
vs. characteristic kernels, that is, (a) Ispauniversal kernel characteristic? (b) Is the converse true?
While (a) is a valid question, answering (b) trivially yields that characterisgitels are notp-
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(4) integrally

(A) integrally L,-universal <=——=> . .
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®) / N
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(¥) \
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conditionally strictly pd
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& Y€ Cp(RY N LYRY) 0

O

Figure 1: Summary of the relations between various families-éernels: The implications shown
without any reference are based on the review of existing results étiers3) while the
ones with a reference are based on new results derived in Section ddthrasses the
open questions (A)—(G). The implications which are still open are shown‘®ith
X'is an LCH space[l The implications shown hold for any compact Hausdorff space,
X. WhenX =T andk is continuous and translation invariant @r—see (7)—therk
being characteristic implies it is strictly pd, which is showndas0 The implications
shown hold for bounded continuous translation invariant kerneR%asee (5). Ify €
Co(RY) NLL(RY), then the implication shown a#] holds, that is, strictly pd kernels are
cc-universal. Otherwise, it is not clear whether the implication hold€Radial kernels
onR%—see (6).
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universal. This is becauseneed not be ay-kernel for it to be characteristfc Therefore, to make
a non-trivial comparison between characteristic agdiniversal kernels, it is important that we
assumek to be acp-kernel before answering the questions in (a) and (b). In extendisigghsoning
for the non-trivial comparison of any two notions of pd kernels, it is impurta assume that
satisfies the strongest possible condition. Therefore, in order torprasmncise summary of the
relationships between these various notions, in Figure 1, we adstovi® acy-kernel—this is the
strongest condition to be satisfied in order to compare all these notionskefpels.

3.1 Relation Between Various Notions of Universality

As mentioned before, a universal kernel is such that its correspgpmRKHS, H is rich enough
to approximate any target function (belonging to some target space) elpitvall. Therefore,
depending on the choice of, the choice of target space and the type of approximation, various
notions of universality—€, cc, co andLP—have been proposed. In the following, we review the ex-
isting characterizations for all these notions of universal kernelsandsrize the relation between
them.

c-universality: Steinwart (2001) proposed the notionmiiniversality, whereirK is a compact
metric space witlC(X) being the target space aftfibeing dense i€(X) w.r.t. the uniform norm.
By applying the Stone-Weierstral3 theorem (Folland, 1999, Theoren), &ébnwart (2001, The-
orem 9) provided sufficient conditions for a kernel todaniversal—a continuous kernéd,on a
compact metric spac is c-universal if the following hold: (ak(x,x) > 0, Yx € X, (b) there exists
an injective feature mag@ : X — /¢ of k with ®(x) = {®(X) }ney and (c) spafid, : n € N} is an
algebra—using which the Gaussian kernel is shown to-briversal on every compact subset of
RY. Micchelli et al. (2006, Proposition 1) relateeliniversality to the injective RKHS embedding
of finite signed Borel measures by showing thét c-universal if and only if

p [ K0 AU, e My(X), (®)

iS injective.

cc-universality: One limitation in the notion of universality considered by Steinwart (2001) is
that X is assumed to be compact, which excludes many interesting spaces, sRktraag infi-
nite discrete sets. To overcome this limitation, Carmeli et al. (2010, DefinitionThdgrem 4.3)
and Sriperumbudur et al. (2010a) introduced the notioncainiversality which can handle non-
compact Hausdorff spaces, Carmeli et al. (2010, Proposition 2.3, Theorems 4.3 and 4.4) showed
that a bounded continuous pd kernlelis cc-universal if and only if the following embedding is
injective for alll € Mpc(X) and somep € [1,):

fn—>/xk(-,x)f(x)du(x), f e LP(X, ). ©)

In addition, Carmeli et al. (2010, Remark 4.1) showed thaeingcc-universal is equivalent to it
being universal in the sense of Micchelli et al. (2006) and Caponniedio(@008): for any compact
Z C X,the seK(Z) :=spark(-,y) :y € Z} is dense ifC(Z) in the uniform norm, which is shown by

4. Letk; be a characteristic kernel @ Defineky(x,y) =1 if x=y € R andkz(x,y) = 0 if x#y € R. Clearlyk; is not
continuous and therefokg + k; is not acy-kernel, even ik; is aco-kernel. However, it is easy to verify thkt + ko
is characteristic.
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Micchelli et al. (2006, Proposition 1) to be equivalent to the following endbeglbeing injective:

p [ KX d0, e Mo(2). (10)

Since (10) holds for any compagtC X, the universality in the sense of Micchelli et al. and Capon-
netto et al. is equivalent to the following embedding being injective:

w/k X) d(X), 1 € Mpe(X). (11)

Therefore,k being cc-universal is equivalent to the injectivity of (11)—in Section 4, we pnése
a more direct proof of this result (see Remark 3). It is clear from thenitiefis of c- and cc-
universality that these notions are equivalent wieis compact, which also follows from their
characterizations in (8) and (11).

As special cases, Micchelli et al. (2006, Propositions 14, Theorgrshbived that a translation
invariant kernel ofRY is cc-universal if suppA) is a uniqueness sub8etf CY, while a radial kernel
onRY is cc-universal if and only if supfv) # {0}—see (5) and (6) for the definitions 6fandv.
Using these characterizations, many popular kernelR%are shown to bec-universal (Micchelli
et al., 2006, Section 4): Gaussian, LaplacBs#, 1-spline, sinc kernel, etc.

Co-universality: Although cc-universality solves the limitation of-universality by handling
non-compack, the topology of compact convergence consideregtinniversality is weaker than
the topology of uniform convergence, that is, a sequence of fun¢t{dps C C(X) converging to
f € C(X) in the topology of uniform convergence ensures that they convergeeitogiology of
compact convergence but not vice-versa. So, the natural questish i whether we can charac-
terizeH that are rich enough to approximate aftyon non-compacX in a stronger sense, that is,
uniformly, by someg € H. Carmeli et al. (2010, Definition 2.2, Theorem 4.1) and Sriperumbudur
et al. (2010a) answered this through the notiogfiniversality, whereirX is an LCH space with
Co(X) being the target space afttibeing dense i€y(X) w.r.t. the uniform norm (note that a notion
of universality that is stronger thag-universality can be defined by choosiigo be a Hausdorff
spacel,(X) to be the target space afitibeing dense il€,(X) w.r.t. the uniform norm. However,
this notion of universality does not enjoy a nice characterizatiocyamiversality—see (12) and
(13) for the characterization @f-universality—and therefore, we did not include it in our study of
relationships between various notions of pd kernels. See Appendixdefails).

Carmeli et al. (2010, Theorem 4.1) showed thag-&ernelk is co-universal if and only if it is
Lp-universal, which by Proposition 2.3 and Theorem 4.2 of Carmeli et @LQRis equivalent to
the injectivity of the following embedding for gli € Mp(X) and somep € [1,):

f|—>/k X) dp(x), f € LP(X, ). (12)

We provide an alternate characterizationdgtuniversality in Section 4 (see Proposition 2) thid
co-universal if and only if the following embedding is injective:

p [ X0 dH0. e Mo(X). (13)

5. A subsetS of CY is a uniqueness set if an entire function ©ft vanishes or then it is everywhere zero ofi?.
Non-empty interior is sufficient for a set to be a uniqueness set.
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As a special case, Carmeli et al. (2010, Proposition 5.6) showed treatsdation invariank on
RY is co-universal if and only if sup@\) = RY. Examples ofp-universal kernels oY include the
Gaussian, Laplaciamy . 1-spline, inverse multiquadrics, Mah class, etc.

Summary:The following statements summarize the relation between various notions efuniv
sality, which are depicted in Figure 1.

e C- andcc-universality are related to the injective RKHS embedding of finite signe@IBor
measures, as shown in (8) and (11).

e Forcp-kernels defined on an LCH spak¥ecy-universality impliescc-universality, which fol-
lows from (9) and (12). The converse is however not true as a bawwdinuous translation
invariantco-kernel onRY is co-universal if and only if supf\) = RY while (SupgA))° # 0
is sufficient forcc-universality, wheré\’ represents the interior @.

e WhenX is compact, thew-, cc- andcy-universality are equivalent.
e For an LCH spac, acop-kernel isco-universal if and only if it isLp-universal.
o If kis a radial kernel oiRY, thenk is cc-universal if and only if supfw) # {0}.

Open questionsThe following relationships need to be clarified, which we do in Section 4.

(A) As mentioned in the summarg; andcc-universality are related to the injective RKHS em-
bedding of finite signed Borel measures. However, the relation betegeeniversality and
the injective RKHS embedding of finite signed Borel measures as showB)its(fhot clear,
which we clarify in Section 4.1.

(B) Forcp-kernels defined on an LCH spaXdthat is not compact), it is clear from the summary
that cp-universality impliescc-universality. Is there a case for whick-universality implies
Co-universality? We address this in Section 4.3.

(C) While cc-universality is characterized for radial kernels &f, the characterization afp-
universality for radial kernels is not known. In Section 4.3, we prodddaracterization of
co-universality for radial kernels oR® and then establish the relation betwegniversality
andcc-universality for such kernels.

3.2 Relation Between Characteristic and Universal Kernels

In this section, we comprehensively clarify the relation between variotisnsoof universality and
characteristic kernels, based on already existing characterizatioolsai@cteristic kernels and the
results summarized in Section 3.1 for universal kernels.

c-universal kernels vs. Characteristic kerne@retton et al. (2007) related universal and char-
acteristic kernels by showing thatkfis c-universal, then it is characteristic. In our preliminary
study in Sriperumbudur et al. (2010b, Section 3.4), we showed that theise is not true: as
an example, a translation invariant kerrlebn T¢ x T% is characteristic if and only i(0) > 0,
Ay(n) > 0,Vn e Z4 while it is universal if and only if\y(n) > 0, Vn € Z¢.

cc-universal kernels vs. Characteristic kernels:wdversal kernels on a non-compact Haus-
dorff space need not be characteristic: for example, a bounded gousirtranslation invariant
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kernel onRY is cc-universal if (supdA))° # 0 (see the summary of Section 3.1) while it is char-
acteristic if and only if supf\) = RY (Sriperumbudur et al., 2008, Theorem 7). Although, this
example shows that a bounded continuous translation invariant keri mncc-universal if it is
characteristic, it is not clear whether such a relation holds on a gemgralompact Hausdorff space
(not necessarilRY). The following example shows that continuous kernels that are chesdicte
on non-compact Hausdorff spacéalso need not bec-universal.

Example 1 Let X = N. Define Kx,y) = 8y, X,y € X\{1}, k(x,1) = 0 for any xe X, whered
represents the Kronecker delta. Suppose fii € Mpc(X)\{0}, whered; represents the Dirac
measure at j. Thety k(-,x)du(x)||3; = |Ik(-,1)||5 = k(1,1) = 0, which means there existsqu
Mpc(X)\{0} such thatf, k(-,x)dpu(x) = 0, that is, (11) is not injective and therefore k is not cc-
universal. However, k is characteristic as we show below.

LetP andQ be probability measures on X such tffat= 3 oy pjdj, Q = ¥ jenj0; With pj >
0,g9; > Oforall j e Nandy jcy pj = Y jendj = 1. Consider

2 2
8= | [keodE- 0wl =]y ¢i-apke.n, = 5 (-a)pi-aki.)
je ,J€

H
= (P—a)’k(L1)+2(p1—aq) Y (Pi—apk(j, D)+ 5 (p—a)(p—a)k(i,l)
jeNT{1} |jem{L)
= Y (r-a)*
jeNT{1}

Suppose B= 0, which means p=qj, Vj € N\{1}. Sincey jcy Pj = ¥ jenqj = 1, we have p=q
and soP = Q, that is, (2) is injective and therefore k is characteristic.

Co-universal kernels vs. Characteristic kerneRukumizu et al. (2008, 2009) have shown that
a measurable and bounded kertkdk characteristic if and only t#H + R (the direct sum of{ and
R is defined asH + R := {f +c: f € H, c € R}) is dense inLP(X,P) for all P € M;"(X) and
for somep € [1,»). Using this, it is easy to see thatdf is dense irLP(X,P) for all P € M] (X)
and for somep € [1,»), thenk is characteristic. Based on the results summarized in Section 3.1,
it is clear that for an LCH spac, if k is co-universal, which meank is Lp-universal, therfi
is dense irLP(X,P) for all P € M (X) and for somep € [1,) and therefore is characteristic. In
Section 4, we provide an alternate proof for this relation betwsgaeimiversal and characteristic
kernels by answering (A). Clearly, the converse is not true, thatdg:kernel that is characteristic
need not becp-universal (see Proposition 4 and footnote 8). However, for bedrmbntinuous
translation invariant kernels di9, the converse is true, that is, a translation invarégrternel that
is characteristitis alsoco-universal. This is because of the fact that a translation invarianekern
onRY is characteristic if and only if sugp) = RY (Sriperumbudur et al., 2008, Theorem 7), which
is also the same characterization summarized in Section 3c}-fomiversal kernels.

Summary:The following statements summarize the relation between universal andtehaa
tic kernels, which are depicted in Figure 1.

6. Letk(x,y) = W(x—y) be a bounded continuous translation invariant kerneRBnwhich by Bochner’s theorem is
of the form in (5). Suppos# € Ll(Rd). Then by the Fourier inversion theorem (Dudley, 2002, TheorerdQ A.
has a densityp w.r.t. the Lebesgue measure such that Ll(Rd). Therefore, since) is the Fourier transform of
{), by the Riemann-Lebesgue lemma (Rudin, 1991, Theorem.5)Co(RRY), that is,k is acy-kernel. Most of the
well-known characteristic kernels satisfy the conditionpof L(RY) and therefore arep-kernels. This means, for
all practical purposes, we can assume bounded continuous tranghetoant kernels to beg-kernels.
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e For cp-kernels defined on an LCH spack, Ly-universals co-universal=- characteristic.
But in generalgy-kernels that are characteristic need notgeniversal. However, for trans-
lation invariant kernels o9, co-universaks> characteristic.

e WhenX is compactgc-universal=- characteristic but not vice-versa.

e For translation invariant kernels &, characteristie>- cc-universal but not vice-versa. How-
ever, on general hon-compact Hausdorff spaces, continuonglkehat are characteristic
need not bec-universal.

Open questionsThe following relationship need to be clarified, which we do in Section 4.

(D) While the relation between universal and characteristic kernels tadtamslation invariant
onRRY is clear (see the summary above), the characterization of characteribtig-aniversal
kernels that are radial oRY is not known and therefore the relation between characteristic
and universal kernels that are radialRfis not clear. We address this in Section 4.3.

3.3 Relation of Universal and Characteristic Kernels to Strictly PD,Integrally Strictly PD
and Conditionally Strictly PD Kernels

In this section, we relate characteristic kernels and various notionswarsal kernels to strictly pd,
integrally strictly pd and conditionally strictly pd kernels. Before that, we surir@dhe relation
between strictly pd, integrally strictly pd and conditionally strictly pd kernelsSiiperumbudur
etal. (2010b, Section 3.4), we showed that integrally strictly pd kernelstectly pd. The converse
is not true, which follows from Steinwart and Christmann (2008, Propos#i60, Theorem 4.62).
However, ifX is a finite set, thek being strictly pd also implies it is integrally strictly pd. From the
definitions of strictly pd and conditionally strictly pd kernels, it is clear that igthtrpd kernel is
conditionally strictly pd but not vice-versa.

Universal kernels vs. Strictly pd kernel€armeli et al. (2010, Corollary 4.3) showed that
cc-universal kernels are strictly pd, which meagsuniversal kernels are also strictly pd (@s
universal= cc-universal from Section 3.1). This means, whérs compact Hausdorf-universal
kernels are strictly pd, which matches with the result in Steinwart and Christ(2808, Definition
4.53, Proposition 4.54, Example 4.11).

Conversely, a strictly pdyg-kernel on an LCH space need notdpeuniversal. This follows from
Theorem 4.62 in Steinwart and Christmann (2008) which shows that tkiste a bounded strictly
pd kernelk onX := NU{0} with k(-,x) € Co(X), ¥x € X such thak is notL ,-universal (which from
the summary of Section 3.1 mednis notcg-universal). Similarly, wheiX is compact, the converse
is not true, that is, continuous strictly pd kernels need not-beiversal which follows from the
results due to Dahmen and Micchelli (1987) and Pinkus (2004) for T&gorels (Steinwart and
Christmann, 2008, Lemma 4.8, Corollary 4.57)—refer to Steinwart and t@tams (2008, Section
4.7, p. 161) for more details. Therefore, it is evident that a continuous strictly pd kernel is in
general notcc-universal on an Hausdorff space. However, for translation iaméikernels that
are continuous, bounded and integrableRsh that is,k(x,y) = W(x—y), x,y € RY, wherey ¢

7. Another example of continuous strictly pd kernels that arecagtiversal is as follows. Using the technique in the
proof of Theorem 14 of Sriperumbudur et al. (2010b), it can bevshibiat a continuous translation invariant kernel
onT x T is c-universal if and only ifAy(n) > 0, Vn € Z. Therefore, by Theorem 8 (see Appendix B), a strictly pd
kernel onT need not be-universal.

2399



SRIPERUMBUDUR, FUKUMIZU AND LANCKRIET

Co(RY NLY(RY), strictly pd impliescc-universality. This follows from Theorem 6.11 and Corollary
6.12 of Wendland (2005) that if € Co(RY) N LY(RY) is strictly pd, then(supdA))° # 0, which
from the summary of Section 3.1 meakss cc-universal. Similarly, when the kernel is radial on
RY, then strictly pd kernels am-universal. This follows from Theorem 7.14 of Wendland (2005),
which shows that a radial kernel @&f' is strictly pd if and only if supfv) # {0}, and thereforec-
universal (from the summary of Section 3.1). On the other hand, Wherfinite, all these notions
of universal and strictly pd kernels are equivalent, which follows fitbin result due to Carmeli
et al. (2010, Corollary 4.3) that-universal and strictly pd kernels are the same wXés finite.

Characteristic kernels vs. Strictly pd kernesince characteristic kernels that ase and trans-
lation invariant onRY are equivalent tag-universal kernels (see the summary of Section 3.2), it
is clear that they are strictly pd. However, the converse is not true:xomple, the sinc-squared
kernel,k(x,y) = W onR, which has sup@\) = [-0,0] C Ris strictly pd (Wendland, 2005,
Theorem 6.11), while it is not characteristic. Based on Example 1, it cahdan that in gen-
eral, characteristic kernels on a non-compact space (not nece®¥riheed not be strictly pd:
in Example 1Kk is characteristic but is not strictly pd because far,...,a,) = (1,0,...,0) and
(X1, %) = (1,...,n), we haves|_; ajajk(x, ;) = agk(1,1) +2a1 3 |_,ajk(j,1) + 3] _,a = 0.
Note that Example 1 holds everXfis a compact subset &f. Therefore, wheiX is compact Haus-
dorff, a characteristic kernel need not be strictly pd. However, tordiation invariant kernels on
T, a characteristic kernel is also strictly pd, while the converse is not tuieurfizu et al. (2009,
Theorem 8) and Sriperumbudur et al. (2010b, Theorem 14) hawenstiatk on T x T is charac-
teristic if and only ifAy(0) > 0, Ay(n) > 0, Vn € Z\{0}, which by Theorem 8 (see Appendix B) is
strictly pd, while the converse is clearly not true.

Characteristic kernels vs. Integrally strictly pd kernellst Sriperumbudur et al. (2009, The-
orem 4) and Sriperumbudur et al. (2010b, Theorem 7), we haversttwat integrally strictly pd
kernels are characteristic, while the converse in general is not Wieenk is bounded continuous
and translation invariant oRY, however the converse holds, which is due to the fact thiatisf
characteristic, then supf) = RY (Sriperumbudur et al., 2008, Theorem 7), which ensureskitsat
integrally strictly pd.

Summary:The following statements summarize the relation of universal and chartictkes
nels to strictly pd, integrally strictly pd and conditionally strictly pd kernels, whiod depicted in
Figure 1.

e C-, CC- andcp-universal kernels are strictly pd and are therefore conditionally stpcklyvhile
the converse in general is not true. Whérs finite, thenc-, cc- andcp-universal kernels are
equivalent to strictly pd kernels.

e Bounded, continuous, integrable, strictly pd translation invariant keomd$ arecc-universal.
Radial kernels oiRY are strictly pd if and only if they arec-universal.

e For a general non-compact Hausdorff space, characteristiclkeraed not be strictly pd and
vice-versa. However, bounded continuous translation invarianekeomRY or T that are
characteristic are strictly pd but the converse is not true.

8. By Example 1, itis clear that far= 6, € Mp(X)\{0}, [fx k(x,y) dpu(x) dp(y) = k(1,1) = 0, whered; represents the
Dirac measure at 1. Therefokes not integrally strictly pd but is characteristic.
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¢ Integrally strictly pd kernels are characteristic. Though the conversgtisue in general, it
holds if the kernel is bounded, continuous and translation invariafon

Open questionsThe following questions need to be clarified, which is done in Section 4.

(E) While the relation of universal kernels to strictly pd and conditionally #yried kernels is
clear from the above summary, the relation between universal and ityesgrigtly pd kernels
is not known, which we establish in Section 4.2.

(F) WhenX is a finite set, it is easy to see that characteristic and conditionally strictly pd ker
nels are equivalent (see Section 4.4). However, their relationship islesnt for a general
measurable space, which we clarify in Section 4.4.

(G) As summarized above, radial kernelsRfhare strictly pd if and only if they arec-universal.
However, the relation between all the other notions of pd kernejsuriversal, characteris-
tic, strictly pd and integrally strictly pd—is not known, which is addressed ttiGe 4.3.

4. Relation Between Various Notions of Positive Definite Kerals: New Results

In this section, we address the open questions, (A)—(G) mentioned in $8ctiounderstand the
complete relationship between various notions of positive definite kernels.

4.1 co-universality and RKHS Embedding of Measures

As mentioned in Section 3.1, Micchelli et al. (2006) have established the retaftmuniversality
and cc-universality to injective RKHS embedding of finite signed Borel measurdsswn in (8)
and (11)—through a simple application of the Hahn-Banach theorem (ss®dm 1). The fol-
lowing result (also see Suquet, 2009, Remark 1.1) in Proposition 2 pogideeasure embedding
characterization—shown in (13)—fap-universality, which is also obtained as a simple applica-
tion of the Hahn-Banach theorem, and therefore addresses the ggsioqun (A). Before we state
Proposition 2, we present the Hahn-Banach theorem, which we quateRtmlin (1991, Theorem
3.5 and the remark following Theorem 3.5).

Theorem 1 (Hahn-Banach) Suppose A is a subspace of a locally convex topological vector space
Y. Then Ais denseinY if and only if A= {0}, where

AL :={TecY :¥xcA T(x)=0}.

The following result, which presents a necessary and sufficient condiidk to be co-universal
hinges on the above theorem, where we chdosebe the RKHSH andY to beCy(X) for which
Y’ is known through the Riesz representation theorem (Folland, 1999r8theb17).

Proposition 2 (cp-universality and RKHS embedding of measures)Suppose X is an LCH space
with the kernel, k being bounded anf,k) € Co(X), ¥x € X. Then k is g-universal if and only if
the embedding,

po [ K duO0), me Mo(X). (14)

is injective.
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Proof By definition,k is co-universal ifH is dense irCo(X). We now invoke Theorem 1 to charac-

terize the denseness®fin Co(X), which means we need to consider the difgX) := (Co(X))’ of

Co(X). By the Riesz representation theorem (Folland, 1999, Theorem T®) = My(X) in the

sense that there is a bijective linear isometry T, from My(X) ontoC;(X), given by the natural

mapping,Tu(f) = [y fdp f € Co(X). Therefore, by Theorem I is dense irCo(X) if and only

if HLi={peMpy(X):VfeXH, [y fdu=0}={0}. From Lemma 7 (see Appendix B), we have
L ={peMp(X): [ k(-,x)du(x) = 0} and therefore the result follows from Theorem 1. W

Remark 3 (a) When X is compact, {{X) coincides with €X), and therefore the result in (14)
matches with the one in (8), derived by Micchelli et al. (2006).

(b) The characterization of cc-universality, shown in (11) can also be tyrebtained as a
simple application of Theorem 1, wherein the proof is similar to that of Pstjpm 2 except that
we need to consider the dual ofXC) endowed with the topology of compact convergence (a locally
convex topological vector space) to characterize the densenéd$sro€(X). It is known (Hewitt,
1950) that C(X) = Mp(X) in the sense that there is a bijective linear isometr [T, from Myc(X)
onto C(X), given by the natural mapping, () = [, fdp, f € C(X). The rest of the proof is
verbatim with My(X) replaced by Mc(X).

(c) Comparing (14) and (2), it is clear thabeuniversal kernels are characteristic while the
converse is not true, which matches with the result in Section 3.2.

4.2 Relation Between Universal Kernels and Integrally Strictly PD Kenels

In this section, we address the open question (E) through the followindf rekich shows that
co-kernels are integrally strictly pd if and only if they azguniversal.

Proposition 4 (co-universal and integrally strictly pd kernels) Suppose the assumptions in Propo-
sition 2 hold. Then, agkernel, k is g-universal if and only if it is integrally strictly pd, that is,

] [ K6xy) dhix duty) > 0, Y€ Mo(X)\ {0} (15)

Proof (<) Suppose is notco-universal. By Proposition 2, there existe Mp(X)\{0} such that
Jx k(-,x)dp(x) = 0, which implies|| [y k(-,x) du(X)||sc = 0. This means

0= ( [ K0du, [ Kexdux)) @ [ [ kocy) duix) duty).
3 X
that is,k is not integrally strictly pd, wherée) follows from Lemma 7 (see Appendix B). Therefore,

if (15) holds, therk is co-universal.
(=) Suppose there existsc Mp(X)\{0} such that/ [y k(x,y) du(x) dpu(y) = 0, that is,

X) d(X)

_0:>/k Ydu(x) =

Therefore, the embedding in (14) is not injective, which by Proposition Ziésmphatk is not co-
universal. Therefore, K is cp-universal, therk satisfies (15). |
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4.3 Radial Kernels onR¢

In this section, we address the open questions (B), (C), (D) and (Ghdaying that all the notions
of universality and characteristic kernels are equivalent to strictly packe

Proposition 5 (All notions are equivalent for radial kernels onRY) Suppose k is radial ofR?.
Then the following conditions are equivalent.

(2) suprv) # {0}.

(b) kis integrally strictly pd.
(c) kis @-universal.

(d) kis cc-universal.

(e) kis strictly pd.

() kis characteristic.

Proof Note that(b) < (c) follows from Proposition 4(c) = (d) from (11) and (13) andd) < (e)
from Micchelli et al. (2006, Proposition 14) and Wendland (2005, Téeo7.14). Theorem 7.14 in
Wendland (2005) also ensures tli@t=- (a). Now, we show(a) = (b). To do this, we first derive
an intermediate result. Suppgses the Fourier transform qf defined asi(w) = [zq evV-10'xdy(x),
then for anyp defined as in (5), we have

[ wo-yduauy) = [ [[ eV A @) duxduy)
R R
_ / / e Vo) / e/~ B dy) dA(w)
Rd Rd
= [, MA@ dA(w)
_ /R ()P dA(w). (16)

Consider/ [pa K(x,y) du(x) dp(y) with k as in (6), given by
Bi= [ [ koeyyduduy) = [/ [ e vt dux duy)

/0oo [//Rd e“‘ygdu(x)dp(y)] dv()

/Ow (m-El)d/z [/Rd Iﬁ(w)lze‘% dw} dv(t)
1 llool3

[ | [ e Vv de. a7)

where Fubini’s theorem is invoked (&) and(#), while we used (16) iri), where we se)(x) =
e tIXIE with dA(w) = (4mt)~9/2e19I2/4 dew, Since suppw) # {0}, the inner integral in (17) is
positive for everyw € RY and soB > 0, which meang is integrally strictly pd.

—
*
=

Il

>
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We now prove thatc) < (f). (c) = (f) follows from Section 3.2. To prove the converse, we
need to prove that ik is notcg-universal, then it is not characteristic.Kis notcgy-universal, then
we have supfv) = {0}, which means the kernel is a constant function®Shx R and therefore
not characteristic. [

4.4 Relation Between Characteristic and Conditionally Strictly PD Kerrels

In this section we address the open question (F) which is about the relatibaracteristic kernels
to conditionally strictly pd kernels.

As shown in Section 3.3, although the relation between universal andtiooadly strictly
pd kernels straightforwardly follows from universal kernels beinicthyr pd, which in turn are
conditionally strictly pd, such an implication is not possible in the case of cteisiic kernels as
they are not in general strictly pd (see Example 1). However, the follovaaglt establishes the
relation between characteristic and conditionally strictly pd kernels.

Proposition 6 If k is characteristic, then it is conditionally strictly pd.

Proof Supposek is not conditionally strictly pd. This means for some> 2 and for mutually
distinctxq, ..., X, € X, there exists{oq}?:1 # 0 with Z?:laj =0 such thagﬂj:1a|ajk(>q,xj) =0.
Definel :={j:a;>0},P:=B 1yc;0;8; andQ:= —B 5., a;5;, wheref:= ¥, q;. Itis
easy to see thdt andQ are distinct Borel probability measures ¥nThen, we have

2
=p?
X

n n

= [372 z ajajk(x,xj) =0.
K |,]:l

| [kexde- 009

ajk(- %))
1

J:
So, there exisP # Q such thatf, k(-,x) d(IP —Q)(x) = 0, that is k is not characteristic. [ |

The converse to Proposition 6 in general is however not true: we shiow&ection 3.3 that strictly
pd kernels are conditionally strictly pd but need not be characteristicamoomitionally strictly pd
kernels need not have to be characteristic. In the following, we presamicrete example to show
the same—a similar example is used to prove Theorem 4.62 in Steinwart anth@imrs(2008),
which shows thatgy-kernels that are strictly pd need not&euniversal.

Example 2 Let X=NU{0}. Define K0,0) = ¥ nen b2, k(m,n) = &mnand kn, 0) = by, for mn > 1,
where{bn}n>1 C (0,1) and ¥ ,enbn = 1. Let n> 2 anda := (ao, ..., d,) € R be a vector with
o # Osuch thaty {_ya; = 0. Consider

n n n
B:i= Y ajajk(l,j) = agk(0,0)+2% ajaok(j,0)+ § aaik(l, j)

n n n
2 T p2 2_ 42T p2
= ag ) bj+2a0 ) ajbj+ 3 af=ag ) bj+ 3 aj(20ebj +aj).
JjeN =1 =1 JEN j=1

If ag =0, then B= Z?:lo(jz > 0 since we assumear#£ 0. Supposely # 0. Then

n
B>af 5 bJZ+Za}‘(2aobj+a’j‘), (18)
JEN =1
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where

n n
(a3,...,0p5) = argmin{ Z a;j(200bj+aj) : Zai = —0(0} . (19)
=1 =

Note that(aj,...,ay) is unique as the objective in (19) is strictly convex, which is minimized over
a convex set. To solve (19), let us consider the Lagrangian, given as

L(ag,...,0n,A) ZG (200bj +a) (ZGJ+G0>

whereA > 0. Differentiating L w.r.t. aj and setting it to zero yieldaj = (A —2agbj)/2. Since

z?:lo(’j*:—(xo, we have\ = M , Where a= ZJ 10bj. Substituting foA |n(x , we have

" ao(a—l—nbj)

af=—— jEeN,.
] n 9 J € n
Substituting foij in (18) gives
B>a0%b2 op@a—17 —a%be:a% S b+ PRSI Y
= j=n+1 n

Consequently, we havexB0 in any case, and therefore k is conditionally strictly pd. In the follow-
ing, we however show that k is not characteristic.
LetP =& andQ = y_; b;d;. ClearlyP # Q. Consider

| fxcnae-@w], = [0~ 3 ke

jeN
= k(0,0)-2 k(j,0b;+ 3 K(lI,j)bib;
JEN I,JEN

= %bf—zj;’b,ﬂ%bﬁz

This implies the embedding in (2) is not injective and therefore k is not ctearstic.

WhenX is finite, then the converse to Proposition 6 holds, that is, conditionally stridtkepnels
are characteristic, which is shown as follows. Xet N,. Suppose is conditionally strictly pd,
that is, for anyn > 2, (ay,...,0n) # (0,...,0) with ZTzlaj =0, and all distinctxy, ..., %, € X,
we havey|';_;aiajk(x,xj) > 0. LetI:={j:a; >0}. DefineP:= B1Yic;a;d; andQ =
—B 154, a;8;, whereB:= 3. a;j andP # Q. Then

|/ de- e

and thereforék is characteristic.

2

=p? Zouorkl >

H l,]=1
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5. Conclusions

In this work, we have presented a unified study to explain the relation betwaeersal kernels,
characteristic kernels and RKHS embedding of measures: while chigtctkernels are related
to the injective RKHS embedding of Borel probability measures, the urgv&esnels are related
to the injective RKHS embedding of finite signed Borel measures. We shihaetbr all practical
purposes (e.g., Gaussian kernel, Laplacian kernel, etc.), the notichsuafcteristic and universal
kernels are equivalent. In addition, we also explored their relation tousather notions of positive
definite (pd) kernels: strictly pd, integrally strictly pd and conditionally strictly As an example,
we showed all these notions to be equivalent (except for conditionaibtlgtpd) in the case of
radial kernels orRY. We would like to note that while this study assumes the kernel to be real-
valued, all the results extend verbatim to the case of complex-valuedkemseell.

This unified study shows that certain families of kernels, for example, dexdicontinuous
translation invariant kernels di“ and radial kernels oY, are interesting for practical use, since
the disparate notions of universal and characteristic kernels seermtideofor these families. On
the other hand, it may not give a guide regarding which kernel shouldéd given a problem.
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Appendix A. Radial Kernels are Translation Invariant on RY
Let k be radial onR? x R%. Definek(x,y) = W(X—Y) := figw) e tI¥lEdy(t), x,y € RY, where
v € M, ([0,)). Since

e tvIB — [ e V10w 4 ) /2 [0IB/4 gy
Rd

we have(X) = [po €V ©p(w) dw, where
®w) = / (dmt)~9/2e- 191/ gy (t).
[0,00)

It is easy to check thap(w) > 0, Vw € RY andg € L1(RY). Thereforey satisfies (5), which means
k is a bounded continuous translation invariant kerneR8n

Appendix B. Supplementary Results

For completeness, we present the following supplementary result, whigirigpée generalization
of the technique used in the proof of Theorem 3 in Sriperumbudur etG08{2
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Lemma 7 Let k be a measurable and bounded kernel on a measurable spaug] tH be its
associated RKHS. Then, for any=fH and for any finite signed Borel measure, J,

[ 100dm0 = [ £k = (£, [ KCx) dhix)

Proof LetT,:J{ — R be a linear functional defined dg[f] := [y f (x)du(x). It is easy to show

that .
Tl stk ] < o

ITall = supr
[fllsc = VX

Therefore,T,, is a bounded linear functional di. By the Riesz representation theorem (Folland,
1999, Theorem 5.25), there exists a uniaye= H such thafl,[f] = (f,Ay)s for all f € H. Set
f =Kk(-,u) for someu € X, which impliesA, = [y k(-,x) dpu(x) and the result follows. [ |

The following result in Theorem 8 characterizes strictly pd kernel&'pwhich we quote from
Menegatto (1995). Before we state the result, we introduce some notationattral numberm
andnand a sef of integersm+nA:= {j € Z| j = m+na a € A}. An increasing sequende, } of
nonnegative integers is said to pp@meif it is not contained in any set of the formNU poNU - - - U

pnN, whereps, p2, . . ., Pn are prime numbers. Any infinite increasing sequence of prime numbers is
a trivial example of a prime sequence. We wiii@:= {0,1,...,n}.

Theorem 8 (Menegatto 1995)Let ¢ be a pd function orT of the form in (7). LetN := {|n| :
Ay(n) >0,n€ Z} c NU{0}. Theny is strictly pd ifN has a subset of the forof* (b +c¢NP),
inwhich{b }U{c} c Nand{c } is a prime sequence.

Appendix C. cy-universality

As mentioned in Section 2, the definition af-universality deals witHH being dense irCo(X)
w.r.t. the uniform norm, wher¥ is an LCH space. Although the notion @f-universality addresses
limitations associated with botty andcc-universality, it only approximates a subsetGyiX), that
is, it cannot deal with functions i6(X)\Co(X). This limitation can be addressed by considering a
larger class of functions to be approximated.

To this end, one can consider a notion of universality that is strongercfianiversality: a
bounded continuous kerndk,is said to bec,-universal if its corresponding RKHS{ is dense
in Cyp(X), the space of bounded continuous functions on a topological sgaemte thatCo(X) C
Cy(X)). This notion ofcy-universality may be more applicable in learning theory thaaniversality
as the target functionf* can belong taC,(X) (which is a more natural assumption) instead of it
being restrained t€(X) (note thatCy(X) only contains functions that vanish at infinity). Similar
to Proposition 2, the following theorem provides a necessary and soffioomadition fork to be
Cp-universal. Before we state the result, we need some definitions.

A set functionis a function defined on a family of sets, and has valugs-in, +|. A set func-
tion p defined on a family of sets is said to bénitely additiveif 0 € T, u(0) = 0 andp(U_,A) =
311 (A, for every finite family{Ay,...,An} of disjoint subsets of such that)]_ A € 1. A field
of subset®f a setX is a non-empty familyZ, of subsets oK such thatd € X, X € Z, and for all
ABe€ Z, we haveAUB € X andB\A € X. An additive set functiop defined on a fiel& of subsets
of a topological spac¥ is said to baegular if for eachA € > ande > 0, there exist®8 € >~ whose
closure is contained iA and there exist€ € Z whose interior containé such thaj(D)| < € for
everyD € X with D :=C\B.
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Proposition 9 (cy,-universality and RKHS embedding of set functions) Suppose X is a normal
topological space and Ma(X) is the space of all finitely additive, regular, bounded set functions
defined on the field generated by the closed sets of X. Then, a bount#tlious kernel, K is
cp-universal if and only if the embedding,

po [ KR HE Mo (X), (20)
is injective.
Proof The proof is very similar to that of Proposition 2, wherein we idenf@y(X)) = Mpa(X)
such thafl € (Cp(X))" andp € Mpa(X) satisfyT(f) = [ fdp, f € Cp(X) (Dunford and Schwartz,

1958, p. 262). Heres represents the isometric isomorphism. The rest of the proof is verbatim with
Mp(X) replaced byMpa(X). [ |

Note thatM;»a(X) does not contain any measure—though a set functidyin(X) can be extended
to a measure—as measures are countably additive and definemfielch Sinceuin Proposition 9

is not a measure but a finitely additive set function defined on a field, itislear how to deal with
the integral in (20). Due to the technicalities involved in dealing with set funstithe analysis of
Cp-universality and its relation to other notions considered in Section 3 is rent @léhough it is an
interesting problem to be resolved because of its applicability in learningytheor
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