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Abstract

Reports of experiments conducted with an Inductive LogimgPamming system rarely describe
how specific values of parameters of the system are arrivechah constructing models. Usu-
ally, no attempt is made to identify sensitive parametensl, those that are used are often given
“factory-supplied” default values, or values obtainedrirsome non-systematic exploratory anal-
ysis. The immediate consequence of this is, of course, thatiot clear if better models could
have been obtained if some form of parameter selection atithisption had been performed.
Questions follow inevitably on the experiments themsehsgecifically, are all algorithms being
treated fairly, and is the exploratory phase sufficientlyladefined to allow the experiments to be
replicated? In this paper, we investigate the use of paersetection and optimisation techniques
grouped under the study of experimental design. Screemdgesponse surface methods deter-
mine, in turn, sensitive parameters and good values foethasameters. Screening is done here
by constructing a stepwise regression model relating thigywf an ILP system’s hypothesis to its
input parameters, using systematic combinations of valfiegput parameters (technically speak-
ing, we use a two-level fractional factorial design of thpuhparameters). The parameters used
by the regression model are taken to be the sensitive pagesriet the system for that application.
We then seek an assignment of values to these sensitive @@m@anthat maximise the utility of
the ILP model. This is done using the technique of consingcai local “response surface”. The
parameters are then changed following the path of steepeshtauntil a locally optimal value is
reached. This combined use of parameter selection andmessorface-driven optimisation has
a long history of application in industrial engineeringdats role in ILP is demonstrated using
well-known benchmarks. The results suggest that computatioverheads from this preliminary
phase are not substantial, and that much can be gained, thottpooving system performance and
on enabling controlled experimentation, by adopting vestiablished procedures such as the ones
proposed here.
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1. Introduction

We are concerned in this paper with Inductive Logic Programming (ILPhguily as a tool for
constructing models. Specifications of the appropriate use of a tool, its teatidganalysis of
benefits and drawbacks over others of a similar nature are matters fargimeer concerned with
its routine day-to-day use. Much of the literature on the applications of ## o date, been once-
off demonstrations of either the model construction abilities of a specificraysteof the ability
of ILP systems to represent and use complex domain-specific relationBhitkd and Muggleton,
1995; Dzeroski, 2001). It is not surprising, therefore, that theseldeen little reported on practical
issues that arise with the actual use of an ILP system.

Assuming some reasonable solution has been found to difficult practmalepns like the ap-
propriateness of the representation, choice of relevant “backdimowledge”, poor user-interfaces,
and efficiency, we are concerned here with a substantially simpler issue. Like all model-yildin
methods, an ILP system’s performance is affected by values assigngulitgparameters (the term
is used here in the sense understood by the computer scientist, and rtatigtigian). For exam-
ple, the model constructed by an ILP system may be affected by the maxirgti lgfrclauses, the
minimum precision allowed for any clause in the theory, the maximum number ofvagables
that could appear in any clause, and so. The ILP practitioner is immediatefisonted with two
guestions: (a) Which of these parameters are relevant for the partappécation at hand?; and
(b) What should their values be in order to get a good model? In an indussttalg, an engineer
confronted with similar questions about a complex system—a chemical plaekdorple—would
try to perform some form of sensitivity analysis to determine an answer targd)follow it with an
attempt to identify optimal values for the parameters identified. As it standsriexgntal applica-
tions of ILP usually have not used any such systematic approach. Typjgaameters are given
"factory-supplied” default values, or values obtained from a limited itigaon of performance
across a few pre-specified values. The immediate consequence of tlasitdgmot clear if better
models could have been obtained if some form of parameter selection and aptmisad been
performed. A measure of the unsatisfactory state of affairs is obtainedrsidering whether it
would be acceptable for a chemical engineer to take a similar approachattberpting to identify
optimal operating conditions to maximise the yield of his plant.

Here take up the questions of screening and optimisation of parameteityydivitie the only
restrictions being that parameter and goodness values are quantitatateia. nThe methods we
use have origins in optimising industrial processes (Box and Wilson, 1&%d been developed
under the broad area concerned with the design and analysis of expexibis area is concerned
principally with discovering something about a black-box system by degigietiberate changes
to the system’s input variables, and analysing changes in its output se=spbime representation of
a system is usually as shown in Figure 1(a) (from Montgomery, 200% pftcess being modelled
transforms some input into an output that is characterised a measurgiaseg The system
has some controllable factors, and some uncontrollable ones and the baalexperiment could
be to answer questions like: which of the controllable factors are most mtifli®ny; and what
levels should these factors be foto reach an optimal value. The relevance of the setting to the ILP
problem we are considering here will be evident in Section 2.

1. In Srinivasan (2001a), experience gained from applications®tdLproblems in biochemistry were used to extract
some guiding principles of relevance to these problems for any ILP apiplic
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SCREENING AND OPTIMISATION FORILP
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Figure 1: Model of a system used in experimental design (from Montggrae05). The process
can be a combination of systems, each modelled by some input-output behaviou

There are a wide variety of techniques developed within the area ofimqrgal design: we
will be concentrating here on some of the simplest, based around the usgre$sion models.
Specifically, using designed variations of input variables, we will use@nése linear regression
strategy to identify variables most relevant to the ILP system’s outputmespa his resulting linear
model, or response surface, is then used to change progressivegtubs of the relevant variables
until a locally optimal value of the output is reached. We demonstrate this agpempirically on
some ILP benchmarks.

The rest of this paper is organised as follows. Section 2 describes lalmacview of ILP
systems that we adopt in this paper. Section 3 describes work in ILP abobénger area of Machine
Learning related to the goals of this paper. Section 4 describes detailfioigees from the field of
experimental design that are relevant to the paper. Section 5 deséirktesyo empirical studies.
The studies demonstrate how, for a given set of inputs, parametensuyesed selection using
designed experiments yields a better model than simply using default valupsrforming an
exhaustive combination of pre-determined values for parameters. Téeyl@monstrate how, if
inputs are changed, then both the set of relevant parameters and thes van change. These
experiments are then followed up with others that use six other well-knowchbeark data sets.
The results confirm the findings from the primary investigation; and also dsimade the relevance
of this work to the controlled comparisons of ILP systems. Section 6 corsthdgaper. The paper
is accompanied by two appendices that provide standard material from thaulieeconcerned with
the construction of linear models, and with specific aspects of the optimisatioodnetked here.

2. An ILP System as a Black-Box

Inductive Logic Programming (ILP) has been largely characterised bylagses of programs. The
first, predictive ILP, has been concerned with constructing discrimmatiodels (sets of rules; or
first-order variants of classification or regression trees) for distihgugsaccurately amongst two
sets of examples (“positive” and “negative”), or more generally, arabaegamples classified into
one of several classes. The second category of ILP progranwjpte® ILP, has been concerned
with generative models of relationships that hold amongst the backgrawmdddge and examples.
This latter category includes programs that identifies logical constraintsatease (DeRaedt and
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Bruynooghe, 1992) and more recently, programs that capture compdbalglistic relationships
amongst objects (the area of statistical relational learning: see Getodraskar, 2007).

While much effort has been invested in clarifying, in the form of a spetifioawhat constitutes
different kinds ILP systems (see, for example Muggleton and Raed4,) 1®othis paper, we take
an engineer’s view. In this, an ILP implementation is simply a machine learning giyitem that,
given some inputs—in usual ILP terminology, background knowledgeeaathples—and settings
for parameters, some of which are under the control of the engineeluges an output model by
performing some form of optimisation (see Figure 2). For example, manyy&tess that explore
the space of alternatives imposed by the inverse entailment setting prapddedgleton (1995)
could be seen as performing a form of discrete optimisation, using somexaipption to a branch-
and-bound search procedure. The task of the system engineer i tlugre the parameters under
his or her control to enable the system to return the best performiaimc8rinivasan (2001b), for
example, it is demonstrated how widely varying performance can be obtaynearying a single
parameter (the minimum accuracy of clauses found in a search).

Relevant parameters

| |

Background
—= Model
ILP System =
Examples Y (Utlity y)

P

Irrelevant parameters/
Built—in settings

Figure 2: An system engineer’s view of an ILP system. We are assumieghn “Background”
includes syntactic and semantic constraints on acceptable models. “Built-in sktting
are the result of decisions made in the design of the ILP system. An example is th
optimisation function used by the system.

The immediate difficulty is, of course, that it is usually impractical to examine th&esys
performance by enumerating every possible combination of values footimliable parameters.
With ILP systems there are two further difficulties. First, it may often not benknbeforehand
which parameters are actually relevant to system for the problem beingdsdlthe system Aleph
(Srinivasan, 1999) provides perhaps the most clear instance of geskigure 3. Second, mod-
els constructed, and hence system performance, can vary even ipai$ iand parameters have
fixed values: for example, the system may use a search strategy that esapleyrandom choices
(Zelezny et al., 2002 provides an example of such a strategy).

2. This is different to improving the optimisation procedure performethbysystem itself. Rather, it is concerned with
enabling the existing optimisation procedure find better results, usuallydmgaig the space of alternatives in some
principled manner. It is beyond the engineer’s remit to alter either thersysinputs or its optimisation criterion as
a means of improving system performance.
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1. The following parameters can affect the size of the search space:
i, clauselength, nodes, minpos, mnacc,
noi se, explore, best, openlist, splitvars.

2. The following parameters affect the type of search:
search, evalfn, refine, sanplesize.

3. The follow ng paranmeters have an effect on the speed of execution:
caching, lazy_negs, proof_strategy, depth,
l azy_on_cost, lazy_on_contradiction, searchtine, prooftine.

4. The follow ng paranmeters alter the way things are presented to the user:
print, record, portray hypothesis, portray search,
portray literals, verbosity,

5. The fol l owing paraneters are concerned with testing theories:
test_pos, test_neg, train_pos, train_neg.

Figure 3: A categorisation of some of the parameters of the ILP system Alepioduced from
Srinivasan, 1999). Not all of these are relevant to every problengls®lved.

3. Related Work on Parameter Screening and Optimisation

Within ILP, no significant attention has been paid to the problem of paran@esgrsng or optimi-
sation. Reports in the literature rarely contain any discussion of sensitiaengters of the system
or their values. Of 100 experimental studies reported in papers prddsgtigeen 1998 and 2008
to the principal conference in the area, none attempt any form of sngefem relevant parameters.
17 describe settings for some pre-selected parameters—usually ome-pdrormance estimates
obtained during an enumerative search over some small set of posdilds (ihat is, effectively
using the wrapper approach of Kohavi and John, 1995). 38 repurgever, mention values as-
signed tosomeparameters, without elucidating how these values were reached (@siatsahese
were just the default values provided by the system). The work in Ssaivé2001b) can be seen as
addressing the question of optimal values for several input parametaesshat indirectly by first
constructing an “operating characteristic curve” that describes tHerpence of an ILP system
across a range of values for the relevant parameters. While no methap@spd for identifying
the parameters themselves, the characteristic curve provides a way oflypsiehecting amongst
models, provided model goodness is restricted to a specific class (thastofuactions that are
linear in the error-rates). . Since each model is obtained from a partmuiaination of values for
relevant parameters, we are able to identify the values that resulted inghebeel for the task.
The procedure is somewhat reminiscent of putting the cart before tke timyugh, requiring us to
identify all models on the characteristic curve first.

Turning to the broader literature in ML, we have not been able to uncawereports explic-
itly concerned with screening for relevant parameters. There haweveo, been some reports of
techniques for optimal assignment for a set of relevant parametergid3@000) is most closely
related to the optimisation goals of this paper, in that it presents a methodologtirtose several
parameters (Bengio and the following papers call them hyperparantetavsjd confusion with the
statistical term), based on the computation of the gradient of a model selett#ion expressed in
terms of the parameters. The main restriction is that this criterion must be a koomtmuous and
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differentiable function of the parameters (almost) everywhere. While Besgiomes a training cri-
terion that is quadratic in the parameters, Keerthi et al. (2006) predast method for computing
the gradient of a validation function with respect to parameters for a r@ih§¥M models. Their
method only needs a single linear system of equations to be solved. Urfi@tiyit is not possible
to directly adapt these methods to ILP systems. In almost all ILP settings, thegraniterion
cannot be even expressed in closed form, let alone being a diffedenéiath continuous function
of the parameters. That is, what can be done at best is to treat thedtd?rsis a black box (as we
have done in the previous section) and empirically observe variations irsfisnee to changes in
the values of the parameters.

Methods have been developed that use such empirically observedsesyo direct the assign-
ment of values to relevant parameters. The seminal work in Kohavi dmd(1995) introduced the
“wrapper” approach to parameter optimisation, in which responses frvth system are used to
direct a heuristic search through combinations of possible values foatiaengters. For tractabil-
ity, these values are discretisadpriori, and approach essentially performs a sub-optimal search
through a finite space of what are calledevel full-factorial designs in this paper (tlkerefers to
the number of discrete values: more on such designs in the next sectiahjs paper, we use a
exhaustive search through such a space as a baseline for compaydsost a gradient-based opti-
misation method. The results from the exhaustive search clearly repegsepper-bound on the
results achievable by any heuristic search through the same space.

The work described in Baz et al. (2007) is concerned with determinirgnpeter values that
minimise the computation time of mixed integer linear programming (MILP) systems. Agveth
ILP systems we consider here, the MILP solvers have many parameitrsioxclear relationships
known amongst them; and the objective function cannot be expressedlased form function
of these parameters. Their approach is to select an initial set of valuéiseftnyperparameters
using some sampling design. The response of the MILP solver is then ahtiiom which a ML
system is used to construct a model relating the response to parameter vidiiemodel is then
used to suggest new values for some subset of the parameters. Fpiex@the model used is a
regression tree, then the parameters used in the top 2 levels of the trebditeaf 2 is arbitrary,
but no method is proposed for automating this choice) are selected and ealdsids of values
obtained for the parameters (the exact procedure of how this is doné étaborated upon). The
set that results in the best performance is returned. This work carebeasea case of exhaustive
enumeration of responses inkdevel full factorial design, followed by a single stagead hoc
non-linear regression-based parameter screening and optimisation.

The problem of screening and tuning of parameters to optimise a systefoepance has been
studied extensively in areas of industrial engineering, using resulttnettérom the design and
analysis of experiments. It is our intention in this paper to investigate the afipficH techniques
developed in these areas to ILP, and we summarise some of the relevaméctea

4. Design and Analysis of Experiments

The area broadly concerned with the design of experiments (DOE) déhlslevising deliberate
variations in the values of input variables,factors and analysing the resulting variations in a set
of one or more output, aiesponsevariables. The objectives of conducting such experiments are
usually: (a) Understand how variation or uncertainty in input valuestffine output value. The
goal here is the construction of robust systems in which a system’s outpffected minimally
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by external sources of variation; and (b) Maximise (or minimise) a systeenfegmance. In turn,
these raise questions like the following: which factors are important foedponse variables; what
values should be given to these factors to maximise (or minimise) the valuesrefsiiense vari-
ables; what values should be give to the factors in order that variabilityeinesponse is minimal,
and so on.

In this paper, we will restrict ourselves to a single response variablghenednalysis of ex-
perimental designs by multiple regression. It follows, therefore, thatreeestricted in turn to
guantitative factors only. Further, by “experimental design” we will meathing more than a se-
lection of points from the factor-space, in order that a statistically souataeship between the
factors and the response variable can be obtained. Each factocdenbination will constitute an
experiment, and a design will therefore require us to specify the expdsraad, if necessary, the
number of replications of each experiment.

4.1 Screening using Factorial Designs

We first consider designs appropriate for screening. By this, we meeididg which of a set of
potentially relevant factors are really important, statistically speaking. Tin@l approach adopted
is what is termed a 2-level factorial design. In this, each factor is takemue just two levels
(encoded as “-1” and “+1”, say)and the effect observed on the response variable of changing the
levels of each factor. It is evident that wittfactors, this will result in Eexperiments, each of which
may need to be repeated in case there is some source of random variatiemgagonse variable.
For example, with two factors, conducting &fll factorial design will result in a table such as the
one shown in Figure 4

We are then able to construct a regression model relating the respoiad®esto the factors:

y = bo + b1x3 + boxz + bsxiXo.

The model describes the effect of each fagigrand interactive effeot;x, of the two factors on
y.# Itis usual also to add “centre points” to the design in the form of experinteat®btain values
for y for x; = 0 andx, = 0. The results of these experiments will not contribute to estimation of the
coefficients, » 3 (since thex; are all 0s), but allows us to obtain a better estimate for the valbg of
Further, it is also the case that with a 2-level full factorial design only lieffacts can be estimated
(that is, the effect of terms like cannot be obtained: in generah'8 order polynomial will require
n+ 1 levels for each factor). In this paper, we will use the coefficients ofegesssion model to
guide the screening of parameters: that is, parameters with coefficienificaigtly different from
0 will be taken to be relevant (more on this in Appendix A).

Clearly, the number of experiments required in a full factorial designtitatesa substantial
computational burden, especially as the nhumber of factors increasesidégrhowever, the role
these experiments play in the regression model. Some are necessaryniatieg the effects of
each factor (that is, the coefficients xaf X2, X3, ...: usually called the “main effects”), others for
estimating the coefficients for two-way interactions (the coefficientgxf, x1xs, ...) , others for
three-way interactions{x»xs, . ..) and so on. However, in a screening stage, all that we wish to do
is to identify the main effects. This can usually be done with fewer than'tlesj@eriments needed

3. One way to achieve the coded valuef a factorX is as follows. LetX~ andX™ be the minimum and maximum
values ofX (these are pre-specified). Then- W
4. Interaction effects happen if the effect of a factor, Xapn the response depends on the level of another fagtor
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Expt. | Factor | Factor | Response
X1 X2 y
El -1 -1
E2 -1 +1
E3 +1 -1
E4 +1 +1
(@)

(b)

Figure 4: (a) A 2-level full factorial design for two factors; and (lgraphical representation of the
design.

for a full factorial design withk factors. The result is a 2-level “fractional” factorial design. Figure
5 below illustrates a 2-level fractional factorial design for 3 factors tis&ts half the number of
experiments to estimate the main effects (from Steppan et al., 1998).

Expt. | X1 | X2 | X3 | VY Expt. | X1 | X2 | X3 | VY
El |-1]-1|-1]... E2 | -1]-1)|+1
E2 | -1]-1]+1]... E3 | -1|+1]| -1
E3 | -1 |+1]-1]... ES | +1] -1 -1
E4 | -1 | +1|+1 ... E8 | +1 | +1 | +1

E5 |+1]-1]| -1
E6 | +1| -1 | +1
E7 | +1|+1| -1
E8 | +1|+1|+1

Figure 5: A full 2-level factorial design for 3 factors (left) and a “hfsiction” design (right).

The experiments in the fractional design have been selected sg¥amt = +1. Closer ex-
amination of the table on the right will make it clear that the following equalities adtbfor this
table: x1 = XoX3; Xo = X1X3; andxz = X1Xo. That is, main effects and interaction terms are con-
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founded with each other. This has some direct implications when construetingssion models
using the fractional table. In effect, instead of the full regression model:

y = b+ b1X1 + boXo + baxs + baXiXo + bsXy X3 + beXoXa

we are reduced to obtaining the following model:

y = bo -+ b (X1 + XoX3) + b5 (X2 4+ X1X3) + b3 (X3 4 X1%2).

In fact, a regression program will be unable, for example, to distingueshetiression model above
from this one:

y= bo—i—b/]{Xl—f— /2/X2—‘r gX3
or even this:

/1! i
1 X1+ 03

y=ho+ X2 + b5 X1%0.

Theb{” andb!” will differ from the b{ by a factor of 2, but this will not change the model’s fit of the
data, since the corresponding independent variables in the regressiation would be halvec{
instead ofx; + xox3 and so on). Thus, the price for fractional experiments is thereforewtavill

in general, be unable to distinguish the effects of all the terms in the fullssigremodel. However,
if it is our intention—as it is in the screening stage—only to estimate the main effeats (nodels
are also called “first-order” models), then we can ignore interactiorsKgpire 6). Main effects
can be estimated with a table that is a fraction required by the full factoriegrdder example, the
half fraction in Figure 5 is sufficient to obtain a regression equation withhgsmain effectsy, x,
andxs.®

Figure 6: A surface with a “twist” arising from interactions between the facfieft) and a planar
approximation that ignores this twist (right). For the purpose of estimating the ma
effects, the surface on the right is adequate, as it showsthets a much bigger effect
thanx; on the responsg(we are assuming here thatandx, represent coded values on
the same scale).

5. This is apparent from the fact thatlistinct data points are needed to fit a regression modelvighms. Thus, when
fitting a model with jusii, x», andxz, we need 4 data points.

635



SRINIVASAN AND RAMAKRISHNAN

More details on fractional designs are provided in Appendix B. We us¢etttiques and
results described there to direct the screening of factors by focusiadinear model that contains
the main effects only:

y = bo+ b1xq +boxo + - - - 4 by

Depending on the number of factors, this can be done with a fractionghsesf “Resolution I1I” or
above (see Appendix B). Standard tests of significance can be pedan each of the coefficients
by, by, ..., bk to screen factors for relevance (the null and alternative hypothessschncase are
Ho : by = 0 andH; : by # 0). In fact, this test is the basis for inclusion or exclusion of factors by
stepwise regression procedures (see Appendix A). Using sucltedane would naturally return a
model with only the relevant factors (the use of stepwise regression ithelgoeferred method for
sensitivity analysis suggested at the end of the extensive survey in lekabn2006).

4.2 Optimisation Using the Response Surface

Suppose screening in the manner just described yields a keelgvant factors from a original set

of nfactors (which we will denote here asg xo, ..., X for convenience). We are now in the position
of describing the functional relationship between the expected value oéspense variable and

the relevant factors, by the “response surface”.

E(y) = f (X1, X2, - -+, X)-

Usually, f is taken to be some low-order polynomial, either a first-order model involunhgthe
main effectsxy, xo, ... (recall that if stepwise regression procedure is used at the screstaigeg,
then this is the model that would be obtained):

k
y="Dbo+ ) bix
2°

or a second-order model involving quadratic terms k§e<, ... and linear interaction terms like
X1X2,X1X3, . ...

k k k
y=Dbo+ Zlbixi + Zlbiix'2+ ZLZbinin.
i= i= i=1]>1

Clearly, if first-order models are adequate (this can be checked byadysanof how well the
model fits the data: see Appendix A) then much of the effort expended isctieening stage can
be re-used (for example, we can use the model constructed by stepgisssion as the response
surface model). A second-order model, on the other hand, will requirerenents involving addi-
tional levels for each factor, and some effort has been invested in thauiteron determining these
levels. Since first-order models are all that are used in this paper, wat goirsue this further here,
and refer the reader to a standard text like Montgomery (2005) for neted <l

The principal approach adopted in optimising using the response siusfaceequential one.
First, a local approximation to the true response surface is construsied, a first-order model.
Next, factors are varied along a path that improves the response themoostdn this in a moment).
Experiments are conducted along this direction and the correspondpanees obtained until no
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further increase in the response is observed. At this point, a new fitet-cesponse surface is
constructed, and the process repeated until it is evident that a fiest+o@hel is inadequate (or no
more increases are possible). If the fit of the first-order model is @oorpre detailed model is
then obtained—usually a second-order model, using additional levelsdimr§—and its stationary
point obtained. The basic idea is illustrated in Figure 7 (from Montgomeg5Y0

X2

Path of steepest ascent

Contour of first—order response surface

X

Figure 7: Sequential optimisation of the response surface using the pstepkst ascent. A first-
order response surface is obtained in the shaded region. The famdien changed to
move along a direction that gives the maximum increase in the responsde/ariab

Now, we can view the respongeo be given by a scalar fielfl that at each pointy, x,, ..., Xk
gives the responsé(xi, X, ...,X). Then, from standard vector calculus, the gradient at the
point gives the direction in which the response will change most quickly {¢h&he direction of

steepest ascent: see Appendix B). This gradient, usually defidtgd given by(g—xfl, i)
The sequential optimisation of the response surface just describedaswalculating the gradient
of the first-order model at the centre, or origin, of the experimental d€sjg=x, =--- =0). For a
model of the formf (xq, ..., X) = bo+biXs +- - - +byx, Of is simply(bs,...,bx). For convenience,
let us takeb; to have the largest absolute value. Then, along the directianfp& unit change in
x1 will result in a change ob,/b; units of xz, bs/b; units of x3 and so on. Sequential response
optimisation proceeds by starting at the origin and increasingtladong Of until increases in
the responsg is observed. Each such increase results in a new experiment to benmeatf¢see

Figure 8, for an example with 3 factors).

4.3 Screening and Optimisation for ILP

We are now in a position to put together the material in the previous sectiongdarstee fully a
procedure for screening and optimisation of parameters for an ILPnsyste

SO: Screen quantitative parameters using a two-level fractional factos#ajmleand optimise val-
ues using the response surface.
ScreenFrac Screen for relevant parameters using the following steps:

Sl. Decide on a set af quantitative parameters of the ILP system that are of potential
relevance. These are the factgrén the sense just described. Take some quantita-
tive summary of the model constructed by the system—for example, some estimate
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Expt. | Factor | Factor | Factor | Response

X1 X2 X3 y
E9 0 0 0
E0 [ 3 23 28
1 1

E11 | 25 | 28 | 235
E12 | 35 | 325 | 35
1 1

Figure 8: Sequential experiments that obtain new valuey foy moving in the direction of the
gradient tdbg + byx; + boXo + baxs. Experiments E1-E8 are as in Figure 5.

of its predictive accuracy—as the response varigijlee will assume here that we
wish to maximise the response).

Decide on on two levels (“low” and “high” values) for each of the fastorhese
are then coded as1.

3. Devise a two-level fractional factorial design of Resolution Il oi@g and obtain

values ofy for each experiment (or replicates of valueygif so required).

. Construct a first-order regression model to estimate the role of the niaatsef

ony. Retain only those factors that are important, by examining the magnitude and
significance of the coefficients of thxein the regression model (alternatively, only
those factors found by a stepwise regression procedure are retageedppendix

A).

OptimiseRSM Optimise values of relevant parameters using the following steps:

O1.

o2.

O3.

O4.

Construct a first-order response surface using the relevantgamnly (this is not
needed if stepwise regression was used at the screening stage).adieqaate
model is obtained, then return the combination of factor-values that gavmette

response at the screening stage. Otherwise go to Step O2.

Progressively obtain new values fpby changing the relevant parameters along
the gradient to the response surface. Stop when no increagesdrobserved.

If needed, construct a new first-order response surfaceisiétinface is adequate,
then return to Step O2. Otherwise, go to Step O4.

If needed, construct a second-order response surfacetnReguoptimum values
of the relevant factors using the second-order surface, or frotasheet of values

from Step02.’

6. In practice, this is taken to mean that no increases have been abfmrgeme number of consecutive experimental

runs: the so-

called “k-in-a-row” stopping rule.

7. We note that the use of gradient ascent in this manner is only capafitediofy local maxima iny values. A
guestion is raised about what is to be done if the local maximum found in trisien idower than a response value
known already—for example, from an experiment from the screestiage. A modification would be return the
combination of factor-values that give the bgstalue obtained over all experiments. This would be at variance with

standard response-surface optimisation, and we do not considee.it he
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We contrast OptimiseRSM with the multi-level full factorial design below, whiak been used
on a few occasions within the ILP literature:

OptimiseFact Optimise values of relevant parameters using the following steps:

O1'. Decide on on multiple levels for each of the relevant factors.

02'. Deuvise a full factorial design by combing each of the levels of the facigainst those
of the others. For each such combination, obtain valugsfof each experiment (or
replicates of values of, if so required).

03'. Select the combination of values that yielded the highest value(iwfcluding those
obtained at the screening stage).

This procedure, a multi-level full factorial design, is the basis of the peafpased optimisation
method in Kohavi and John (1995), recast in the terminology of experitgedggn. A simplified
analysis gives us some feel of the complexityof. SO conducts some fraction of 2xperiments in
the ScreenFracstage, followed by those conducted in OptimiseRSM. Suppose we alwagiaaton
a 2 P-fractional design at the screening stage, and that this stage resultsnoracharn variables
being selected as relevant. Further, let each round of sequential opimisansist o experiments
in Step O2. Let there bm such rounds of sequential optimisation, each followed by a new first-
order model in Step O3 (since there areariables, building this model will require an additional
r+1 experiments). Finally a second-order model is constructed (Step €¥g,aicentral composite
design. Then the total number of experiments conducteéd{hig: 2" P (screening) +ms(sequential
optimisation) +(m— 1)(r + 1) (new first-order models) +r2+ 1 (second-order model). In the case
that only one round of sequential experimentation is performed (that4s,1) and no additional
first- or second-order models are constructed, the number of expesimsesimply 2P +s. Itis
evident that a procedursO’ that employsScreenFradollowed by OptimiseFactwould always
perform 2-P 4" experiments (assuming, for simplicity, that all relevant factors are takeavi h
levels during the optimisation stage). This is no more thar® 2-1".

Clarification is needed on the following additional questions:

1. What is to be done if a first-order model cannot be constructed in tkersng stage? The
usual approach in response-surface methodology is then to examioeralsader response
surface. We take the position in this paper that none of the parametespaadly relevant,
and simply assign them their default values.

2. Is the value of the response variable obtained after optimisation a gbwatesof the per-
formance of the ILP system? We distinguish here between the following twiorpemce
estimates: (a) The estimate of the ILP system’s accuracydigdtg parameter optimisation;
and (b) The estimate of the ILP systems’s accuratgr parameter optimisation. Clearly, if
(a) and (b) are the same, we run the risk that the value obtained will betianigijz estimate
of the ILP system’s accuracy. We attempt to minimise this by ensuring that the tstima
is not, in any manner influenced by the estimate (a) (details are in Section 5v@) b&lor
clarity, we will call estimate (a) the experimental performance of the ILP systed esti-
mate (b) it’s final performance. Of course, overuse of an estimate—etheiperimental
or otherwise—can result in overfitting: especially as the number of expetamiecrease.
That is, we will sooner or later find an experiment that “looks good” simpglglance. By
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employing a gradient ascent method, we are clearly attempting to minimise the namber
experiments by moving along the direction of maximum change. Experimentareadf
overfitting usually also comes to light by increasing the number of data setdiah the
procedure is tested (see Section 5.4).

3. What is to be done if the local maximum reached, either by optimising thenssysurface
or in the multi-level factorial design is not unique? That is, a number ofreiffieparameter
settings return a maximal value, and we take all of these as being equally liKedyfinal
performance values will thus be the average of the final performarinesvérom each of
these settings.

5. Empirical Evaluation

We will first briefly state the aims of the experimental evaluation. Descriptibtteeanaterials and
our experimental methodology will follow. We will finally present detailed expental results.

51 Aims

Our aim here is to demonstrate the utility of the screening and optimisation precg&duhat we
have described in Section 4.3 (that ) is ScreenFradollowed by OptimiseRSM We assess
this utility by comparing the ILP system when it empld$® against the performance of the sys-
tem when it uses one of following alternative®Befault, in which no screening or optimisation
is performed and default values provided for all parameters are ased30’, in which screen-
ing is performed as 8O, but a multi-level full factorial design is used for optimisation (that is,
SO’ is ScreenFradollowed by O ptimiseFac). Specifically, we intend to investigate the following
conjectures:

C1l. Using SO is better than usin@efault; and

C2. UsingSO is better than usin§O’.

In both cases, “better” is short-form for stating that an ILP system thet$0 has better final
performance; or in the case of ties, requires fewer experiments thaldheative.

5.2 Materials

In this section we explain (i) the two datasets, (ii) the systems for experimesgigirdand ILP and
(i) the hardware employed in our experiments.

5.2.1 DOMAINS

The investigation is conducted first on the well-studied ILP biochemicall@nubconcerned with
identifying mutagenic and carcinogenic chemicals. Although we will extend itt@atether data sets
used in the literature, we have selected to focus on these problems fiesttsdigaconstitute perhaps
the most commonly used inputs for demonstrating the performance of ILRvsstéhe data have
been described extensively elsewhere (for example, see King et@6.fd9mutagenesis; and King
and Srinivasan, 1996 for carcinogenesis) and we refer the réadeese reports for details. For
each application, the input to an ILP can vary depending on the baakgjinformation used. We
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investigate the conjectur€d andC2 with minimal and maximal amount of background knowledge
contained in these benchmarks. That is:

Mutagenesis. We consider background information in the sets MO and M0-M4, descripbbn
which are reproduced below from Srinivasan (2001b):

MO. Molecular description at the atomic level. This includes the atom and linrdwe, the
partial charges on atoms, and arithmetic constraints (equalities and inequaiitiese
are 5 predicates in this group;

M1. Structural properties identified by experts as being related to mutagetniity. These
are: the presence of three or more benzene rings, and membership is afatam-
pounds called acenthrylenes. There are 2 predicates in this group;

M2. Chemical properties identified by experts as being related to mutageivityaalong
with arithmetic constraints (equalities and inequalities) The chemical properictha
energy level of the lowest unoccupied molecular orbital (“LUMO”) in tleenpound,
an artificial property related to this energy level (see Debnath et al.,),188d the
hydrophobicity of the compound. There are 6 predicates in this group;

M3. Generic planar groups. These include generic structures likeehenings, methyl
groups.etc, and predicates to determine connectivity amongst such groups. Tieere a
14 predicates in this group; and

M4. Three-dimensional structure. These include the positions of indiVetoms, and con-
straints on distances between atom-pairs. There are 2 predicates in tips gro

Carcinogenesis. We consider background information in the sets CO and C0—-C3, descsifion
which reproduced below, once again from Srinivasan (2001b):

CO0. Molecular description at the atomic level. This is similar to MO above and is iisedp
of 5 predicates;

C1. Toxicity properties identified by experts as being related to carcinogetivity, and
arithmetic constraints. These are an interpretation of the descriptions iry Asttb
Tennant (1991), and are contained within the definitions of 5 predicates;

C2. Short-term assays for genetic risks. These includé&#imonellaassay, in-vivo tests
for the induction of micro-nuclei in rat and mouse bone maretev The test results are
simply “positive” or “negative” depending on the response and aredawby a single
predicate definition; and

C3. Generic planar groups. These are similar to M3 above, extendedpre@idate defini-
tions.

We will henceforth refer to background knowledge with the definitions in(M8pectively, C0)
asBmin and with the definitions in MO—M4 (respectively, CO—C3)Bagux

5.2.2 ALGORITHMS AND MACHINES

Experimental design and regression models for screening and thesesparface are constructed
by the procedures made available by the authors of Steppan et al. (I988)LP system used in
all experiments will be Aleph (Srinivasan, 1999). The programs areuted on a IBM Thinkpad
(T43p), equipped with an Intel 2 GHz Pentium processor with 1 gigabyteofom access memory.
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5.3 Method

Our method for the preliminary experiments is straightforward:

For each problem (Mutagenesis and Carcinogenesis) and eachfleaekground knowledge
(Bmin andBmay):

1. Construct a model with the ILP system using default values for allnpetexs of the
ILP system. Call this modeL P+Default.

2. Select a set af quantitative parameters of the ILP system as being potentially relevant.
Use the procedur8creenFraalescribed in Section 4.3 to screen this set using a frac-
tional factorial design of Resolution Ill or higher. Let this result in a aletelevant
variablesk.

3. Use the procedur@ptimiseRSMn Section 4.3 to obtain values for variablesRnAll
other parameters of the ILP system are left at their default values.ti@ona model
using the ILP system with this set of values. Call this mdd€?+SO.

4. Decide od levels for each variable iR and use the procedu@ptimiseFactn Section
4.3 to obtain values for the variablesRn All other parameters of the ILP system are left
at their default values. Construct a model using the ILP system with thif satues.
Call this model L P+SO’.

5. Compare the performance of the ILP system when it produces astcedph of
| L P+Default, ILP+SO, andlLP+SO’ (see the details below).

We follow the preliminary experiments with experiments on additional data setsvimén
additional ILP system. The following details concerning the preliminary éxyats are relevant:

1. Since the tasks considered here are binary classification taskstfibrenamce of the ILP sys-
tem in all experiments will be taken to be the classification accuracy of the rmpoathliced
by the system. By this we mean the usual measure computed fromZac2oss-tabulation
of actual and predicted classes of instances. We would like the finarpexhce measure
to be as unbiased as possible by the experimental estimates obtained duirmgation.
One way is to use a technique of “double” or nested cross-validatiort. ig,ithe final per-
formance value is obtained usitkgfold cross-validation (the “outer” cross-validation) and
experimental performance values during optimisation is the average dahaiffinner”) k-
fold cross-validation using each of the training data sets from the outes-gadidation. This
procedure is computationally expensive. We adopt a simpler alternatieausey a 10-fold
cross-validation estimate for the final estimate; and for the experimental estimatase
the average of holdout (“validation” set) estimates on each of the trainitagseé#s from the
outer cross-validation. Thus, the test data in each of the outer crbdatien folds are not
available to the ILP system when performing parameter optimisation.

2. We have no general prescription for the selection of the initial satpaframeters (Step 2).
We postpone a discussion of this limitation to Section 5.4. For our experimentawee h
selected four parameter€, the maximum number of literals in any acceptable clause con-
structed by the ILP systenNodes the maximum number of nodes explored in any single
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search conducted by the ILP systdwinacc the minimum accuracy required of any accept-
able clause; aniinpos the minimum number of positive examples to be entailed by any
acceptable clauseC andNodesare directly concerned with the search space explored by
the ILP systemMinaccandMinposare concerned with the quality of results returned (they
are equivalent to “precision” and “support” used in the data mining liteeatu/Ve propose

to examine a two-level fractional factorial design, using the levels sh@lowb(the column
“Default” refers to the default values for the factors assigned by thetAtystem, and:-1
refers to the coded values of the factors):

Factor Levels
Default | Low (—1) | High (+1)
C 4 4 8
Nodes | 5000 5000 10000
Minacc +1 0.75 0.90
Minpos 1 5 10

3. We use a Resolution IV design, that comprises of a randomised prgsentfahe following
8 experiments (recall the full factorial design will require=2 16 experiments):

Expt. | C | Nodes| Minacc | Minpos | Accuracy
El | -1| -1 -1 -1
E2 | -1| -1 +1 +1
E3 | -1| +1 -1 +1
E4 | -1| +1 +1 -1
ES5 |+1| -1 -1 +1
E6 |+1| -1 +1 -1
E7 |+1| +1 -1 -1
E8 | +1| +1 +1 +1

This design was obtained using the software tools for experimental desigded with Step-
pan et al. (1998). The “Accuracy” column is the experimental performaitained for each
task, and for each of the two sets of background knowledge in orderders the four vari-
ables for relevance. Additional experiments, and correspondingiengeal performance
values, will be needed in Step 3 to obtain values of the relevant paramsiegsiue response
surface. We restrict ourselves to constructing just one first-ordegssion model for screen-
ing, using the stepwise regression procedure provided by the auftiiesppan et al. (1998).
This model is taken to approximate the local response surface: we thegegdrto change
levels of factors along the normal to this surface in the manner describadurerB. Ex-
periments are stopped once a maximal value for the response variable wgefbly three
consecutive runs that yield responses that are no higher.

In the event that all four parameters chosen are relevant, the sibfaofing parameter values
using a multi-level full factorial design (Step 5) would require condudtfrexperiments. We

will take | = 5, which means that, in the worst case, no more than 625 experiments will be
conducted to obtain modéL P+SO’. Inspired by the choices made for a so-called “Central
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Composite” (or CC) design (Montgomery, 2005), we will take the (codeai$eto be 0;+1,
and++/2.

5. Comparisons of models will be done on the basis of their final perforenasitimates (see
(1) above) (parameter values are obtained from the experimental esjiratése event of
ties, then the model requiring fewer experiments will be preferred. Thatrisodel is repre-
sented by the paifA, E) (denoting estimated accuracy and number of experiments required
to identify the model). Comparisons are then based on the usual definitidexatagraphic
ordering on such tuples.

Further, since it is of particular relevance to ILP practitioners, we alsddestatistical dif-
ferences between the accuracie$loP+SO andlL P+ Default using results on six additional data
sets used in the ILP literature, and separately, by using two differensysiems. The relevant
statistical test is the Wilcoxon signed-rank test (Siegel, 1956). This is ga@metric test of the
null hypothesis that there is no significant difference between the medidormance of a pair
of algorithms. The test works by ranking the absolute value of the diffeenbserved in perfor-
mance of the pair of algorithms. Ties are discarded and the ranks areitle@nsggns depending
on whether the performance of the first algorithm is higher or lower tharoftthe second. If the
null hypothesis holds, the sum of the signed ranks should be approxinfatélize probabilities
of observing the actual signed rank sum can be obtained by an exadatian (if the number of
entries is less than 10), or by using a normal approximation. We note thabitiygacing a pair of
algorithms using the Wilcoxon test is equivalent to determining if the area tinel@OC curves of
the algorithms differ significantly (Hand, 1997).

5.4 Results and Discussion

We present first the results concerned with screening for relevetatréa Figure 9 show responses
from the ILP system for the preliminary experiments conducted for scrgersing the fractional
design described under “Methods”. The sequence of experimentwiiogdhis stage for optimising
relevant parameter values using: (a) the response surface; amdn{ldji-level full factorial design
are in Figures 10 and 11. Finally, a comparison of the three proceduirgDefault, L P+SO, and
ILP+S0O’ is in Figure 12. ltis this last tabulation that is of direct relevance to the @rpatal aims
of this paper, and we note the following: (1) Although no experimentationaslee for the use of
default values, the model obtained wilthP+Default usually has the lowest predictive accuracies
(the exception is Carcinogenesis, Wihin);2 (2) The classification accuracy bf P+SO is never
lower than that of any of the other methods; (3) When the classificatiomaaies ofl L P+SO and
ILP+SO’ are comparable, the number of experiments needed by the former is lower.

Taken together, these observations proyidma facieevidence for the conjectures made at the
outset of this section, namely:

C1. Using SO is better than usin@efault; and

C2. UsingSO0 is better than usin§O'.

8. We recall that no adequate first-order regression model was ebtiin CarcinogenesiBfin), resulting in default
values for all parameters. Both P+SO andILP+SO’ suffer because of the experiments needed for the screening
stage.
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Expt. | C | Nodes| Minacc | Minpos | Acc Expt. | C | Nodes| Minacc | Minpos | Acc
E1l -1 -1 -1 -1 0.793 El -1 -1 -1 -1 0911
E2 -1 -1 +1 +1 0.644 E2 -1 -1 +1 +1 0.870
E3 -1 +1 -1 +1 0.763 E3 -1 +1 -1 +1 0.899
E4 -1 +1 +1 -1 0.669 E4 -1 +1 +1 -1 0.899
E5 +1 -1 -1 +1 0.757 E5 +1 -1 -1 +1 0.899
E6 +1 -1 +1 -1 0.728 E6 +1 -1 +1 -1 0.905
E7 +1 +1 -1 -1 0.787 E7 +1 +1 -1 -1 0.905
E8 +1 +1 +1 +1 0.669 E8 +1 +1 +1 +1 0.876

(a) MutagenesisBmin) (b) MutagenesisBmax)
Acc= 0.726— 0.049Minacc— 0.018Minpos Acc= 0.896— 0.009Minpos— 0.008 Minacc

Expt. | C | Nodes| Minacc | Minpos | Acc Expt. | C | Nodes| Minacc | Minpos | Acc
E1l -1 -1 -1 -1 0.464 El -1 -1 -1 -1 0.572
E2 -1 -1 +1 +1 0.461 E2 -1 -1 +1 +1 0.595
E3 -1 +1 -1 +1 0.444 E3 -1 +1 -1 +1 0.507
E4 -1 +1 +1 -1 0.447 E4 -1 +1 +1 -1 0.576
E5 +1 -1 -1 +1 0.457 E5 +1 -1 -1 +1 0.585
E6 +1 -1 +1 -1 0.451 E6 +1 -1 +1 -1 0.526
E7 +1 +1 -1 -1 0.467 E7 +1 +1 -1 -1 0.523
E8 +1 +1 +1 +1 0.461 E8 +1 +1 +1 +1 0.546

(c) CarcinogenesiBin) (d) CarcinogenesiBnax
No adequate model Acc= 0.554— 0.028 Minacc

Figure 9: Screening results (procedBereenFradn Section 4.3). Acc refers to the estimated
accuracy of the model. The regression model is built using the “Autofit” ogirovided
in Steppan et al. (1998). This essentially implements the stepwise regresstaayre
described in Appendix A.Accrefers to the experimental (validation-set) performance
of the ILP system. Note that no adequate model is obtained in (c), meaninthéhat
coefficients of all variables have values that are statistically insignificarhid case, no
further optimisation is performed, and all parameters are left at their idlg&dues.

We now turn to some broader implications of these results, enumerated inobigrousness
to current ILP practice:

1. The results suggest that default levels for factors need not yigilapmodels for all prob-
lems, or even when the same problem is given different inputs (hererafitf background
knowledge). This means that using ILP systems just based on defawsJahparameters—
the accepted practice at present—can give misleading estimates of thedpestse possible
from the system. This is illustrated in Figure 13, which shows estimated acesi@t other
data sets reported in the literature that also use the Aleph system with deftugs Yor all
parameters (these data sets have been used widely: see, for exampleghget al., 2006
and Muggleton et al., 2008). Taken with our previous results for the muésgeand carcino-
genesis data (we will only use tiBg,4x results, as these are the results used in the literature),
we are now able to make some statements of statistical significance. Figurewls} aloross
the 8 data sets, differences between the optimised and default models. obabipty of
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Expt. Coded Values Natural Values Acc Expt. Coded Values Natural Values Acc
Minacc | Minpos | Minacc | Minpos Minpos | Minacc | Minpos | Minacc
E9 0 0 0.83 8 0.769 E9 0 0 8 0.83 0.899
E10 —0.50 —0.18 0.79 7 0.793 E10 —0.50 —0.42 7 0.79 0.899
E11l -1 —0.36 0.75 7 0.781 E11 -10 —-0.84 5 0.76 0.911
E12 —1.50 —0.54 0.71 6 0.781 E12 —1.50 —1.26 4 0.73 0.899
E13 —2.00 —-0.72 0.67 6 0.692 E13 —2.00 —1.68 3 0.70 0.893
E14 —2.50 —2.10 2 0.67 0.751
(a) MutagenesisBmin) (b) MutagenesisBmax)

Expt. | Coded Value| Natural Value | Acc
Minacc Minacc
E9 0 0.83 0.553
E10 —0.50 0.79 0.572
Ell -1 0.75 0.595
E12 —-1.50 0.71 0.582
E13 —2.00 0.67 0.592
E14 —2.50 0.63 0.598
E15 —3.00 0.60 0.605
E16 —3.50 0.56 0.609
E17 —4.00 0.52 0.539
E18 —4.50 0.49 0.539
E19 —3.50 0.45 0.539

(c) CarcinogenesiBay)

Figure 10: Optimisation using the response surface (procedptamiseRSMn Section 4.3). In
each case, the response surface used is the first-order regnessiehfound by step-
wise regression at the screening stage (shown in Figure 9). Paraeretersied along
the path of steepest ascent of experimental performance values fesgitnse variable.
Experiments are stopped once a maximal value for the response variatilevietl by
three consecutive runs that yield responses that are no higher. tiduisation is per-
formed for CarcinogenesiBfin) since no adequate first-order response surface was
found.

obtaining these results, under the hypothesis that the optimised and defeeltlpres have
equivalent performance (correctly, that the median difference betthegr accuracies is 0)
is 0.02. In fact, since our research hypothesis is evidently directional dt@atracy of op-
timised models is higher than that of “default models”), the one-tailed probabilif/01
is more appropriate. Some readers would perhaps prefer only to rasi ith&iances where
the optimised model was substantially higher. If we take “substantially higheriean “2
standard errors or more”, then the optimised model is substantially highethbatefault
model in 6 out of the 8 cases (the two mutagenesis data sets are eliminateddrigspond-
ing Wilcoxon probabilities are now.05 (two-tailed) and @25 (one-tailed). The statistical
evidence in favour of the optimised models therefore appears to be sighifieehaps even
highly so.
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Expt. Coded Values Natural Values Acc Expt. Coded Values Natural Values Acc
Minacc | Minpos | Minacc | Minpos Minacc | Minpos | Minacc | Minpos
E9 —141 —1.41 0.72 4 0.793 E9 —1.41 —1.41 0.72 4 0.883
E10 —-1.41 -1 0.72 5 0.793 E10 —-141 -1 0.72 5 0.911
E1l —1.41 0 0.72 8 0.769 Ell —1.41 0 0.72 8 0.905
E12 —141 +1 0.72 10 0.763 E12 —1.41 +1 0.72 10 0.899
E13 —1.41 +1.41 0.72 12 0.769 E13 —-141 +1.41 0.72 12 0.864
E14 -1 —141 0.75 4 0.793 E1l4 -1 —1.41 0.75 4 0.899
E15 -1 -1 0.75 5 0.793 E15 -1 -1 0.75 5 0.911
E16 -1 0 0.75 8 0.763 E16 -1 0 0.75 8 0.905
E17 -1 +1 0.75 10 0.763 E17 -1 +1 0.75 10 0.899
E18 -1 +1.41 0.75 12 0.769 E18 -1 +1.41 0.75 12 0.864
E19 0 —141 0.82 4 0.799 E19 0 —1.41 0.82 4 0911
E20 0 -1 0.82 5 0.793 E20 0 -1 0.82 5 0911
E21 0 0 0.82 8 0.769 E21 0 0 0.82 8 0.899
E22 0 +1 0.82 10 0.775 E22 0 +1 0.82 10 0.899
E23 0 +1.41 0.82 12 0.787 E23 0 +1.41 0.82 12 0.864
E24 +1 —-1.41 0.90 4 0.746 E24 +1 —-141 0.90 4 0.905
E25 +1 -1 0.90 5 0.669 E25 +1 -1 0.90 5 0.899
E26 +1 0 0.90 8 0.645 E26 +1 0 0.90 8 0.882
E27 +1 +1 0.90 10 0.645 E27 +1 +1 0.90 10 0.870
E28 +1 +1.41 0.90 12 0.662 E28 +1 +1.41 0.90 12 0.858
E29 +141 —141 0.93 4 0.698 E29 +1.41 —-141 0.93 4 0.899
E30 +1.41 -1 0.93 5 0.639 E30 +1.41 -1 0.93 5 0.888
E31 +1.41 0 0.93 8 0.592 E31 +1.41 0 0.93 8 0.864
E32 +1.41 +1 0.93 10 0.598 E32 +1.41 +1 0.93 10 0.858
E33 +1.41 +1.41 0.93 12 0.598 E33 +1.41 +1.41 0.93 12 0.858
(a) MutagenesisBmin) (b) MutagenesisBmax)
Expt. | Coded Value| Natural Value | Acc
Minacc Minacc
E9 —1.41 0.72 0.586
E10 -1 0.75 0.595
E1l 0 0.83 0.553
E12 +1 0.90 0.516
E13 +1.41 0.93 0.526

(c) CarcinogenesiBay)

Figure 11: Optimisation by using a multi-level full factorial design (proceddptimiseFactin

Section 4.3). In each case, relevant factors are those obtaineddanisgg (Figure 9).
A 5-level full factorial design is then used to find the best values fortifestors, using
experimental performance values for the response variable.
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Procedure (Accuracy,Expts.)
Mutagenesis Carcinogenesis
Bmin Bmax Bmin Bmax
ILP+Default | (0.755+0.0310) (0.846+0.0260) | (0.510+0.0280)  (0.504+0.028 0)
ILP+SO (0.803+0.02913) (0.883+0.02314) | (0.510+0.0288) (0.591+0.027,19)
ILP+SO’ (0.787+0.030,33)  (0.883+0.02333) | (0.510+0.0288) (0.579+0.027,13)

Figure 12: Comparison of procedures, based on their final perfamparsing the parameter val-
ues obtained from optimising experimental performance. The entries sdrewli®-fold
cross-validation estimates and the number of experiments needed to obtajptithe o
mised value. There is no unbiased estimator of variance for the crossti@ticbsti-
mates (Bengio and Grandvalet, 2004): the standard error reporteshBited using the
approximation in Breiman et al. (1984).

2. The screening results suggest that as inputs change, so canvhacelef factors (for exam-
ple, when the background changes frBm), to Bmaxin Carcinogenesidvliinaccbecomes a a
relevant factor). Further evidence for this comes from the “DSSTax4 det (see Figure 15).
This means that a once-off choice of relevant factors across alibp®$sputs can lead to
sub-optimal performances from the system for some inputs.

3. Screening, as proposed here, still requires identification of an iretiaf variables as factors
to be varied (here, these wete Nodes MinaccandMinpog. While the set can have any
number of elements (all quantitative of course, for the techniques hemedpgicable), the
choice of these elements remains in the hands of the practitioner using thgstiebhs Some
element of human expertise of this kind appears unavoidable (and indemen desirable,
to prevent pointless experimentation). Additional assistance in the fornchifdimg, with
each ILP system, a set of potentially sensitive parameters, could betdhghea

4. Optimisation, as proposed here, requires the selection of an appecgigp-size and spec-
ification of a stopping criterion for a sequential search conducted alengrtdient to the
response surface. We have followed the prevalent practice in therfagitkly, obtaining the
step-size by a process of a binary search over the intgdydl, and using a K-in-a-row”
stopping rule (that is, stopping the searck dteps yield no improvement in response). Other
techniques exist, and are described in Appendix B.

5. Even if a set of relevant factors are available for a given input, a tewki full factorial
design can be an expensive method to determine appropriate levels. @mw;edrformance
may still be sub-optimal. The results here suggests that experimental stualiesl thoc
discretisation followed by exhaustive combinations of the different disdegels of relevant
parameters may not yield the best results.

Finally, a controlled comparison default, SO and SO’ has required us to enforce that the
ILP system used is the same in all experiments. In practice, we are ofteesietein controlled
comparisons of a different kind, namely, the performances of diftdtgh systems. The results
here suggest equipping each ILP system with the proce80reould enable a controlled com-
parison of best-case performances: a practice which has hithertceantduopted by empirical
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Data I L P+Default ILP+SO
Mut(42) 0.857+0.054 | 0.857+0.054
Alz (Amine) 0.714+0.017 | 0.8024+0.015
Alz (Tox) 0.7924+0.014 | 0.8724+0.011
Alz (Acetyl) 0.527+0.014 | 0.7744+0.011
Alz (Memory) | 0.5514+0.020 | 0.674+0.019
DSSTox 0.647+0.020 | 0.7314+0.018

Figure 13: Estimated accuracies for the Aleph system from some additiateakdts used in the
literature (Muggleton et al., 2008; Landwehr et al., 2006). The data setssad in
comparative experiments (“System X versus Aleph”) that use defattihge for all
parameters of Aleph. Accuracy estimates for such models are in the columece
“ILP+Default” (although these exact values do not concern us hegenote that dif-
ferences, if any, to accuracies reported in the literature can be attritauthiflerences
in the cross-validation splits used). The column headed “ILP+SO” ar¢é pedor-
mance estimates obtained using Aleph with 8@ procedure described in the paper,
and the method used in the preliminary experiments. Standard errors araias
before. The DSSTox background information differ slightly in Muggletbale(2008)
and Landwehr et al. (2006) and the models here use the variant fragglbtan et al.

(2008).
Data ILP+Default | ILP+SO A Signed Rank
Carcin 0.504 0.591 0.089 +4
Mut (188) 0.846 0.883 0.037 +1
Mut(42) 0.857 0.857 0 -
Alz (Amine) 0.714 0.802 0.088 +5
Alz (Tox) 0.792 0.872 0.080 +2
Alz (Acetyl) 0.527 0.774 0.247 +7
Alz (Memory) 0.551 0.674 0.123 +6
DSSTox 0.647 0.731 0.084 +3

Figure 14: Absolute differences in accurdkpetween the procedurés P+SO andl L P+Default,
and their signed ranks (eliminating ties). The Wilcoxon probability of obtsgrtiie
signed ranks under the null hypothesis that median differences ar8.02i§0.01 for a
directional test).

| L P+Default
0.647+0.020
0.631+0.020

ILP+ SO
0.731+0.018
0.631+0.020

Data
DSSTox (Muggleton et al., 2008
DSSTox (Landwehr et al., 2006)

Figure 15: Estimated accuracies for the Aleph system for two variants 6D®8Tox” problem.
The data sets in the two variants use slightly different background informagisulting
in different accuracies for both default and optimised models. Screesdndis are also
different in the two casesMinacc andC are relevant in DSSTox (Muggleton et al.,
2008); but none of the parameters are relevant in DSSTox (Landsethy 2006).
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Data Toplog+Default | Toplog+SO A Signed Rank

Carcin 0.641 0.623 0.018 -2

Mut (188) 0.840 0.867 0.027 +35
Mut(42) 0.881 0.881 0 -

Alz (Amine) 0.704 0.704 0 -

Alz (Tox) 0.672 0.699 0.027 +35

Alz (Acetyl) 0.640 0.635 0.005 -1

Alz (Memory) 0.526 0.653 0.127 +5
DSSTox 0.618 0.618 0 -

Figure 16: Absolute differences in accurady between the procedure3oplog+SO and
Toplog+Default, and their signed ranks (eliminating ties). Once again, we differences,
if any, to accuracies reported in the literature can be attributed to diffeseincthe
cross-validation splits used. Although the sum of the signed ranR%¥ i€ in favour of
Toplog+S0O, the evidence is not statistically significant (thapis- 0.05)

ILP studies, but whose value is self-evident. Of course, screenidgpimmisation experiments
would have to be conducted for each system in turn, since the factovamete one system (and
its levels) would typically have no relation to those of any of the others. We #ltesthis in
Figures 16—-17. The former shows results of applying the procesDréo a recently proposed
ILP system (Toplog) on the data sets we have considered thus famé&arascreening and op-
timisation proceeds for a different set of parameters to those used fph:Alge have used the
parameterdMax literals_in_hypothesigequivalent to the paramet€rin the Aleph experiments),
Max_singletonsin_hypothesisExampleinflation, andMinpos (which has the same meaning as
Minposin the Aleph experiments). The choice of these parameters was basedrarséhim data
files provided with the Toplog program. It is evident from Figure 16 thatethie an improve-
ment in performance after usir@D (the overall sum of signed ranks is in favour of Topl&§»
although the differences are not statistically significant. This statisticahtaetwithstanding, Fig-
ure 17 shows the perils of not comparing like-with-like. Figure 17(a) shibvat having subject both
Toplog and Aleph to the same procedure for screening and optimisationtisat), we find no
significant difference in their performance. On the other hand, Figtfe) 5hows that performing
screening and optimisation on one (Aleph), but not the other (Toplog)eeal to misleading results
(that the performance of Aleph is significantly better than Toplog).

6. Concluding Remarks

As an ILP system moves from being a prototype for demonstrating a pfecdncept to being a
tool for regular data analysis, it moves into the province of engineeririge réquirements of a
system in this latter world are significantly more stringent than in the formeustabss is needed,
of course, as are mechanisms that facilitate ease of use, recoveryaitoras, and so on. It also
becomes no longer adequate simply to demonstrate that a werdieé constructed in some novel
manner, requiring instead that the model constructed is as good as pémsibgven set of inputs
(by this we mean primarily the background knowledge and examples). Bdbie®bvious benefit
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Data Toplog+SO | Aleph+SO A Signed Rank
Carcin 0.623 0.591 0.032 -4
Mut (188) 0.867 0.883 0.016 +1
Mut(42) 0.881 0.857 0.024 -3
Alz (Amine) 0.704 0.802 0.070 +5
Alz (Tox) 0.699 0.872 0.173 +8
Alz (Acetyl) 0.635 0.774 0.139 +7
Alz (Memory) 0.653 0.674 0.021 +2
DSSTox 0.618 0.731 0.113 +6
(@)

Data Toplog+Default | Aleph+SO A Signed Rank
Carcin 0.641 0.591 0.050 -3
Mut (188) 0.840 0.883 0.043 +2
Mut(42) 0.881 0.857 0.024 -1
Alz (Amine) 0.704 0.802 0.098 +4
Alz (Tox) 0.672 0.872 0.200 +8
Alz (Acetyl) 0.640 0.774 0.134 +6
Alz (Memory) 0.526 0.674 0.148 +7
DSSTox 0.618 0.731 0.113 +5

(b)

Figure 17: (a) Absolute differences in accurafy between the procedure&leph+SO and
Toplog+SO, and their signed ranks (eliminating ties). Although the sum of the signed
ranks is in favour of Aleph$0 (+22), the evidence is not statistically significant (that
is p > 0.05). (b) Absolute differences in accuraftypetween the procedurédeph+SO
and Toplog+Default, and their signed ranks (eliminating ties). The sum of the signed
ranks is in favour of Aleph$0 (+28), is now statistically significanip(= 0.05 for a
non-directional testp = 0.025 for a directional test). Performing the comparison (b)
instead of (a) can result in the misleading conclusion that the Aleph systdarms
significantly better than Toplog on these data sets.

to the modelling problem being addressed, it ensures that the perforrofice systems can
be assessed in a meaningful manner. Here, we have taken a systeeeesgipproach to this
problem by identifying a set of critical parameters of the system, and thgimgahese to improve
performance. The principal tools we have used are those developled tine umbrella of design
and analysis of experiments. Our principal contribution here is to showttese tools can be used
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to develop better models with ILP systems. To the best of our knowledge, this fisst timé any
such formal framework has been employed for this purpose in ILP.

There are a number of ways in which the work here can be extendedifu@h the conceptual
front, we have concentrated on the simplest forms of designed experi(aemtstimes called “clas-
sical” DOE). Substantial effort has been expended in developingmesitper than the fractional
factorial designs used here. Response surface optimisation could\aseimore complex mod-
els than the simple first-order models used here. Both options could yield tzitéts than those
obtained here. On the experimental front, our emphasis has been omaledrstudy of fractional-
factorial screening and response-surface optimisation, using weiedtid® benchmarks. There
are clearly many other data sets studied within ILP that could benefit fromingilise techniques
proposed. We have also modelled system performance by its estimatedcyccclearly other
measures may be of interest (for example, some combination of the acamdaomplexity of
models, in the MDL sense). Finally, it is evident from our results in Figuréha? there are wider
implications of the results here to the work on the comparative study of IL®rags and to the
development of ILP systems as tools for data analysis. Indeed, nothstricte the procedures
here just to ILP, and the same comments apply to many other machine learrtemmsyAlthough
outside the scope of this paper, these directions are clearly of some ingegraaal worth pursuing.
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Appendix A. A Noteon Linear Regression Models

In this section we provide details of regression models that are of relevarthis paper. All these
details can be obtained in any textbook on statistical modelling: we reprodercenre simply for
completeness.

Given a response variabjeand variablesy, X, . .., Xk, a regression model expresses a relation-
ship betweely and thex; as follows:

y= f(X1,X,...,%) +€

where f denotes a systematic functional relationship betweand thex;, ande denotes random
variation iny that is unrelated to thg (usually called theerror). Usually f is specified as some
mathematical function (for example, a polynomial in #eande by a probability density function
(PDF). The PDF fok is taken to have mean 0 and standard deviationormally the distribution
is also taken to be Gaussian. Thus, in a slightly lop-sided way, for a geteof salues for the
X, it is easier to think of a random value being chosensfand then constanft(xs, ..., xx) being

9. At the time of going to press, we have become aware of a recent pgpdanssen andiffnkranz (2010) with a
motivation very similar to this paper (although not applied to ILP). The ectian between the work reported there
and that in this paper, especially in the context of ILP, would be worth figagig further.
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added to give the final value gf From this is evident that will have a PDF with mean given by
E(y)=E(f(X1,...,X)+€) = f(X1,...,X) +E(€) = f(X1,...,%)); and standard deviatiam Thus,
the regression function effectively specifies the expected, or meae, @ ly given thex. “Linear
regression” refers to the case when the functional relationship is a geation of the form:

f(x1,..,%) = Bo+ B1iXe + - - - + PrXk-

Here, “linear” refers to being linear in the coefficief{s So, the following is also a case of linear
regression:

f(X1,. ., %) = Bo+ BuXa + - - + Bk + B 1Xs + - + BatXe + Baky 1XaXo + -

To differentiate between these kinds of equation, we denote the formemiiitth only contain
termsxy, Xo, . .. as first-order function; and equations of the latter kind which containrgtiacand
interaction terms as a second-order function.

In general, assuming we knew the form bffor example, that it was a first-order function,
with errors following a Gaussian distribution with zero mean and variartyeand which of the
X were functionally related ty, we still need to be able to obtain values of fherom a set of
observations, or data points, giving values for the relexamind the corresponding values yf
Actually, the best we are able to do is obtain estimatd,offhich we will denote here &%, along
with some statistical statement on these estimates. The result is a regressitéin mode

Y =bo+bixs +boxo+---.

Thus, with each data poift we have an associated “residual” given by difference between the va
yk for that data point, and the valyg dbtained from the regression model. The usual approach for
obtaining the estimatds is the method of least squares, that attempts to minimise the sum of
squares of the residuals. The details can be found in any standard sthtigstibook (for example,
Walpole and Myers, 1978).

We now turn to the first of our assumptions, namely, that of the form of thetifon. The validity
of this assumption can be tested by examining how well the model fits the obsdatee and, if
used for prediction, estimating how well it will predict response valuesew diata. The degree
of model fit is obtained by examining the residuals and calculating first thetsiattisignificance
of model. This tests the null hypothesity : bg = by = --- = by = 0 (that is, there is no linear
relationship betweepand any of theg). Specifically, the quantity:

~ SSRk
~ SSEH(N-1—K)

F

is calculated, where whel®SErefers to the sum of squared residua@'i(1 (yk—yk))z, N being
the number of data points); arf®@5Ris the sum of squares of deviations of the model’s response
from the mean responsng(y—y))z). F is known to follow the F-distribution wittk,N — 1 —k
degrees of freedom (Walpole and Myers, 1978). So, the hypotHgsian be rejected at some level
of significancen, if the F-value obtained is greater than the value tabulateB,fK—1—«.

Assuming the null hypothesis is rejected, a quantity that is often used to qutratilegree of
fit is the thecoefficient of determination
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SSE
R=1-557

whereSSTis similar toSSRbeing the sum of squares of deviations of the observed respomse fro
the mean responsgtl (yk—y))z). A little arithmetical manipulation will shovBSR+ SSE=
SST, and therefore:

SSR
R =St

Thus,R? is the proportion of the variation in“explained” by the model. Clearh8SR< SSTand
therefore 0< R? < 1. In general, adding more terms to the regression model will only inciRase
as the model tends to overfit the data. A quantity that takes overfitting intoiacisathe “adjusted”
coefficient of determination:

R =1 iR

If there is a substantial difference betweFéQnanngdj, then the model is taken to be overfitting the
data.

While R? or Rﬁdj denote how well the regression model fits the observed data, it doeavet h
anything to say on the model’s performance on new data. An estimate of ttietjwe power of
the model is obtained by performing a resampling exercise by leaving dubé#weN data points,
and obtaining the corresponding residual based on the model condtwititehe remainindN — 1
points. This is used to calculate a coefficient of determination for prediéﬁpela. Since we will
not be using regression models for prediction in this paper, we will natguthis further here.

Assumptions about the form of the regression model tacitly include assumatimut the er-
rors, namely that they are independent, identically distributed Gaussiialesrwith zero mean
and variances?. The validity of these assumptions are normally checked by visual testph&ra
of the residual against the predicted response should show no spetiém; and normal quantile-
guantile plots of the residuals should be a straight line (Jain, 1991).

We turn now to the second major assumption, namely that the factors of re¢esas known
before obtaining the model. This requirement can now be relaxed, sinaeavable to also test the
hypothesis that each of the coefficiebtsare individually equal to zero (the earlier test of signifi-
cance simply tested thatl of theb; were zero: rejection of that hypothesis could still meameof
the b were zero). This test allows us to eliminate as irrelevant all those factarsendoefficients
are not significantly different from zero. In fact, the test forms thasbfas a “greedy” procedure
that examines the stepwise addition and removal of factors. We reprduig@plementation de-
scribed in Srinivasan (2001b) of this procedure in Figure 18. It isnabto start procedure with
| = 0. Although it is not guaranteed to find the most relevant subset of faetodsn the worst case,
the number of subsets examined can be exponentjdl|ithe method has been found to work well
in practice. Restricted variants of the method are also popfdarard selectiorstarts withl = 0
and dispenses with the exclusion steps (Steps 6-7 in Figurda&yward eliminatiorstarts with
I =V and dispenses with the inclusion steps (Steps 4-5 in in Figure 18). Bothtgagieamine no
more tharO(|V|?) subsets.
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Fin, Fout) : Given a set of potential regressor variable@actors in this paper); an initial

subset of variablesC V; and minimum values of thE statistic that a variable must achieve
to enter F,) or remain Eyy) in the regression equation, returns a sulssetV identified by
a stepwise variable selection procedure.

1.

2
3.
4

o

\l

10.

Figure 18

i=0

.S=1,V=V\I

Increment

. Letvi, be the single best variableVfy_; that can be included (that is, on inclusion, gives

the greatest increase in the coefficient of determination)
If f(Vin|S—1) > FnthenS=S_3U{vin}; otherwiseS=5_;

. Letvgt be the single best variable 8that can be excluded (that is, on exclusion, gives

the greatest increase in the coefficient of determination)

If § = S_1 then returnS; otherwise continue
Vi=V\S§
Goto Step 3

. A stepwise variable selection procedure for multiple linear seigme (reproduced from
Srinivasan, 2001b). The coefficient of determination (often denogé®fpdenotes the
proportion of total variation in the dependent variable that is explained éyfitted
model. Given a model formed with the set of variab¥est is possible to compute the
observed change iR? due to the addition of some variable The probability that the
true value of this change is 0 can be obtained from a use oF tettistic (Walpole
and Myers, 1978). The functiof(v|X) returns the value of thE distribution under
the null hypothesis that there is no changeRby adding variables to those inX.
The threshold$y, andFy; thus specify acceptable probability levels for the inclusion
(and exclusion) of variables. It is evident tHat > Foyt in order to avoid the same
variable from repeatedly being included and excluded. A correct impl&tien of
svg...) also requires sample data and the appropriate regression function tvizkepr
as parameters. We have ignored these here for simplicity.

Appendix B. A Note on Constructing and Optimising Response Surfaces

In this section we describe some issues that are relevant to construaingtamising response sur-
faces. Specifically, we are concerned with: (1) A procedure forimibga fractional experimental
design that is suitable for estimating the main effects using the regressi@dpreaescribed just
previously; (2) The search procedure along the gradient to thensspurface.
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B.1 Fractional Factorial Designs

We begin by assuming that we havenain effects and that the response surface is approximated by
a first-order model with main effects only. That is, we are required to estikratecoefficients in

a linear model. This requires at le&st 1 data points, and we simply reproduce a recipe described
in Jain (1991) that produces a suitable two-level fractional factorsibde

1. Two-level fractional designs are obtained by dividing the full faetadesign ofk factors
by some number®2(1 < p < k). It is common to refer to such a design as®a”design.
Thus, we want to reduce the number of experiments frbto Zome number*2P such that
2P > (k4 1). Thatis,p = |k—log(k+1)]. Select anyk — p factors and construct a two-
level full factorial design with these factors. Clearly, this will contiin p columns (one for
each factor). Next, extend this table with columns containing all producisctdris. Thus,
suppose we initially hakl= 4 factors A, B,C, D say), and wanted to construct &2 factorial
design (that isp = 1). We commence by selecting- p = 3 factors A B,C) say, and first
construct the following table (this example is from Jain, 1991):

Expt. | A | B | C | AB| AC | BC| ABC
El |-1|-1|-1|+1|+1 | +1| -1
E2 | -1|-1|+1|+1|-1]-1] +1

E3 |-1|+1|-1|-1|+1|-1| +1
E4 | -1|+1|+1|-1|-1|+1| -1
ES |+1|-1|-1|-1|-1|+1| +1

E6 | +1|-1|+1|-1|+1| -1 -1
E7 |+1|+1|-1|+1|-1|-1| -1

E8 | +1|+1 | +1 | +1 | +1|+1| +1

It should be evident that the resulting table will contafn®?— 1 columns.

2. From the P —1— (k— p) “product” columns on the right of this table, selgctolumns
and rename them with thefactors not selected in the step above. For example, if we select
the ABC column and replace it with:
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Expt. | A | B | C |AB/AC|BC| D
El |-1|-1|-1|+1|+1|+1]| -1

E2 | -1|-1|+1|+1|-1|-1|+1
ES |-1|+1|-1|-1|+4+1|-1]+1
E4 | -1 +41|+1|-1|-1|+1| -1

ES |+1|-1|-1|-1|-1|+1|+1
E6 |+1| -1 |+1|-1|+1|-1] -1
E7 |+1|+1|-1|+1|-1|-1| -1

E8 | +1 | +1 | +1 | +1 |+ | +1| +1

This design will allow us to estimate the main effeét8,C,D, as well as the interactions
AB,AC andBC. However (by construction) it will be impossible to distinguish between the
effect of D and that ofABC. the two effects are said to m®nfoundedand the terms said to
bealiased These are not the only effects that are confounded, and it carrified¢hat each
main effect is confounded with a three-way interactién= BCD and so on), and that each
two-way interaction is confounded with other two-way interactiohS £ BD and so on). If

we are only interested in estimating main effects, then, provided we can atisantleree-
way interaction effects are negligible, then a table containing just theX@&iC, D columns
above would be adequate. That is, the fractional design is:

Expt. | A| B| C | D

E1l |-1|-1|-1|-1
E2 | -1|-1|+1|+1
E3 | -1|+1|-1|+1

E4 | -1|+1 | +1| -1
ES |+1|-1|-1|+1
E6 | +1|-1|+1| -1

E7 |+1|+1 | -1| -1
E8 | +1|+1 | +1|+1

The reader will recognise this as the design used to estimate main effects mpire [ is
clear that the choice of replacing t#C column withD was an arbitrary one (as indeed,
was the choice oh, B,C in the first place): we could, for example, have elected to replace
the AB column withD. Thus, there are severat? fractional factorial designs that could
have been devised. The difference lies in the assumptions that need tovimadestimating

657



SRINIVASAN AND RAMAKRISHNAN

main effects: in general, it is considered better to confound main effectshigtter order
interactions, as these are assumed to be smaller. That is, a design tlaihcsif with AB
will probably yield poorer estimates of the effectdfthan one that confound3 with ABC.

Some additional points are in order:

1. The column vectors in the two-level full and fractional factorial desiggttisfy some proper-
ties: (a) The sum of each column is zero; (b) The sum of products &f @gamn is zero;
and (c) The sum of squares of each column is equal to the number afiregpés. These
properties result in some advantages in computing the main effects: se&Rin. (

2. In a fractional design some factor combination, usually calfiestity and denoted by,
contains 1 in all rows. Such a combination is calledgbeeratorfor the design. For example,
| = ABCDis the generator for the design above.

3. Two-level fractional factorial designs are categorised by ttesiolution The resolutiorR
of a fractional factorial design can be computed as the smallest numbactofd that are
confounded with the generatbr In the 2~ design above terms withis confounded with
just one factor combinatiolABCD). Thus the resolution of the design is 4. Resolutions are
normally denoted by Roman numeral subscripts. Thus, the fractionalndieskggure 5 is
a Z‘\jl design (Montgomery, 2005). In Resolution Il designs, main effects lasead with
other main effects. In Resolution Il designs, main effects are aliased vithtwo-factor
interactions, and two-factor interactions may be aliased with each otheredal®Rion 1V
designs, main effects are not aliased with each other or with two-factoadtitems, but two-
factor interactions may be aliased with each other. In Resolution V designsniy aliasing
that occurs is between two- and three-factor interactions, and so on.

4. Two desirable properties relating resolution and linear models with twbfesters 1) are
those of orthogonality and rotatability. Orthogonal designs result in minintanee when
estimating coefficients, and both full factorial designs and fractionagdssn which main
effects are not aliased with each other (that is, Resolution 11l or moeereown to be orthog-
onal for first-order models (Montgomery, 2005). Rotatability conceamgmmce in prediction
across the factor space. Designs that yield predictions whose vadaaeges symmetrically
from the centre of the factor space are said to be rotatable. That is,rtarcgof prediction
at points equidistant from the centre of the factor space should be the anue again,
full factorial designs and fractional designs of Resolution Ill or maee ratatable designs
for first-order models. Rotatable designs for models with higher order teéms, ...) will
require additional experiments (we will describe these in the following séction

5. In general, if there is a variation in responseven for fixed values of the factors, then
we will need to perform several replicates of each experiment, and attempodel the
average responsg Also, to ensure that there is no dependency in the response variable
across experiments, we may need to run the experiments in a randomised \Gedavill
ignore this aspect here, and assume a single replicate for each exge@mnerconsequence
of the latter assumption is that factor levels need to be spread out widelys(thatwo-level
experiments, the difference between values correspondird tand+1 should be as large
as possible), so that effect estimates are reliable (see Montgomery, 2005
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It is evident from from these points that increasing the resolution will allesvabnstruction
of models that contain more terms from the full factorial model. Thus, with Résn Ill and IV
designs, it will only be possible to obtain models that contain the main effecsdfder mod-
els). With a Resolution V model, a model with both main effects and two-way intensccan
be obtained. Rotatable designs also provide some theoretical guaramtesestimates, both of
coefficients and the response, on these models.

B.2 Gradient Ascent

The primary device used in the paper is to seek local improvements in thensegploy making
small movements in the direction of the gradient to a response surfaceafl¢veate for gradient
ascent can be found in any text on optimization: we present a versien(fiem Bronson and
Naadimuthu, 1982) for completeness. Let us suppose that the resuofesee is given by a scalar
field f defined on points that are some subseflbf and whose value§(xi,Xo,...,X) we denote
using a vector notation as(X). We wish to determine a point« for which f(xx) is a (local)
maximum.

From the vector calculus, it is known that for any fixed poirgnd a unit vectolJ, the rate of
change off (X) atx in the direction ol is given by f |x_x - U, wheref is ak-dimensional vector

of partial derivatives given bf%, g—)fz, e g—xfk> and- denotes the inner, or scalar product of a pair
of vectors. For vectora andb the inner product- b is given by|a||b|cos, wheref is the angle
between the vectomandb. With some slight abuse of notation, the rate of changg(¥f) atx in

the direction olU is:
Of |x—x - U = |Of||U|coB = |Of|cod.

The rate of change is therefore greatest whe e- 1, or8 = 0. That is,U is in the same direction
of Of. Thus, of all non-unit vector displacements of sizBom the pointx, the rate of change of
f(x) will be greatest for the vect@Uf|x (since this vector is clearly along the direction[of).
Further, the best value &fwill be the one that maximisef§x + 80 f x).

B.2.1 S ARCHALONG THE GRADIENT

In order to use the differential calculus to obtain a valué tiat maximises (x + 00 f|x) in any
interval, the function has to be known analytically and the resulting equatiostdtionary points
f’(x+00f|x) = 0 should be solvable algebraicly. In our case, we do not know the funadfiorm of

f: the first-order response surface is simply a local approximatidrthat ceases to be appropriate
after some value ad. We therefore have to adopt some form of search for an appropéhte ofd.

The simplest of these—and widely used in response surface methoddefiNedjer et al., 2000)—

is the enumerative search we have used in the paper, along with a “ksin*a&topping rule (that is,
the search terminates whksteps yield no improvement). Improved versions have been suggested
in the literature. The enumerative search could be improved by using beqiegrgtial search tech-
niques (for example, a three-point interval search, or a Fibonaaitse In fact, this search itself
can be posed as an optimisation problem. In Fu (1994) data from experipsgfdemed along the
gradient are used to construct a higher order polynomial functionspiorese values in terms of
0. For example, with 3 data points alohy obtained from step sizes &f= &;, 0,03, and corre-
sponding response valugs= y1,Y», Y3 it will be possible to obtain least-squares estimates for the
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Expt. ] Acc
E9 0.0 0.769
E10 | —-05 0.793
E12 -15 0.781
E13 —-20 0.692

Acc=0.763—0.1175— 0.075%?
0" =-0.78

Figure 19: Data from steps of the gradient ascent used to estimate a poli/negnéssion model
relating responsedco to step-sized). The data shown here are from Figure 10(a). The
“optimal” value &* is obtained using standard techniques from the differential calculus
applied to this model.

aj iny = 0o+ 018+ 0,8%. The optimal value fod can then be easily estimated from this function,
aso* = %1 (wherea; anday are the least-squares estimatesipfanday). We illustrate this in
Figure 19 below, that uses data points from the gradient ascent stejguie EO. The procedure,
although not perfect, is reasonably good: the step size estimatég) results in an actual response
value of 0787 (the regression model predict809).

Other techniques have been proposed as improvements on gradiet, selaich we do not
elaborate further here. We refer the reader to Safizadeh and Sigii®%9é) for descriptions and

pointers to these.
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