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Abstract

In this article, we propose a family of efficient kernels for large graphs with discrete node la-
bels. Key to our method is a rapid feature extraction scheme based on the Weisfeiler-Lehman test
of isomorphism on graphs. It maps the original graph to a sequence of graphs, whose node at-
tributes capture topological and label information. A family of kernels can be defined based on this
Weisfeiler-Lehman sequence of graphs, including a highly efficient kernel comparing subtree-like
patterns. Its runtime scales only linearly in the number of edges of the graphs and the length of
the Weisfeiler-Lehman graph sequence. In our experimentalevaluation, our kernels outperform
state-of-the-art graph kernels on several graph classification benchmark data sets in terms of accu-
racy and runtime. Our kernels open the door to large-scale applications of graph kernels in various
disciplines such as computational biology and social network analysis.
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1. Introduction

Graph-structured data is becoming more and more abundant: examples are social networks, protein
or gene regulation networks, chemical pathways and protein structures,or the growing body of
research in program flow analysis. To analyze and understand this data, one needs data analysis
and machine learning methods that can handle large-scale graph data sets.For instance, a typical
problem of learning on graphs arises in chemoinformatics: In this problem one is given a large set
of chemical compounds, represented as node- and edge-labeled graphs, that have a certain function
(e.g., mutagenicity or toxicity) and another set of molecules that do not have this function. The task
then is to accurately predict whether a new, previously unseen molecule willexhibit this function
or not. A common assumption made in this problem is that molecules with similar structurehave
similar functional properties. The problem of measuring the similarity of graphs is therefore at the
core of learning on graphs.

There exist many graph similarity measures based on graph isomorphism or related concepts
such as subgraph isomorphism or the largest common subgraph. Possiblythe most natural measure
of similarity of graphs is to check whether the graphs are topologically identical, that is, isomor-
phic. This gives rise to a binary similarity measure, which equals 1 if the graphs are isomorphic,
and 0 otherwise. Despite the idea of checking graph isomorphism being so intuitive, no efficient
algorithms are known for it. The graph isomorphism problem is in NP, but hasbeen neither proven
NP-complete nor found to be solved by a polynomial-time algorithm (Garey and Johnson, 1979,
Chapter 7).

Subgraph isomorphism checking is the analogue of graph isomorphism checking in a setting
in which the two graphs have different sizes. Unlike the graph isomorphismproblem, the problem
of subgraph isomorphism has been proven to be NP-complete (Garey andJohnson, 1979, Section
3.2.1). A slightly less restrictive measure of similarity can be defined based onthe size of the largest
common subgraph in two graphs, but unfortunately the problem of finding thelargest common
subgraph of two graphs is NP-complete as well (Garey and Johnson, 1979, Section 3.3).

Besides being computationally expensive or even intractable, similarity measures based on
graph isomorphism and its variants are too restrictive in the sense that graphs have to be exactly
identical or contain large identical subgraphs in order to be deemed similar bythese measures.
More flexible similarity measures, based on inexact matching of graphs, have been proposed in the
literature. Graph comparison methods based on graph edit distances (Bunke and Allermann, 1983;
Neuhaus and Bunke, 2005) are expressive similarity measures respecting the topology, as well as
node and edge labels of graphs, but they are hard to parameterize and involve solving NP-complete
problems as intermediate steps. Another type of graph similarity measures, optimal assignment
kernels (Fr̈ohlich et al., 2005), arise from finding the best match between substructures of graphs.
However, these kernels are not positive semidefinite in general (Vert, 2008).

Recently proposed group theoretical approaches for representing graphs, the skew spectrum
(Kondor and Borgwardt, 2008) and the graphlet spectrum (Kondor et al., 2009) can also be used
for defining similarity measures on graphs that are computable in polynomial time.However, the
skew spectrum is restricted to unlabeled graphs, while the graphlet spectrum can be difficult to
parameterize on general labeled graphs.

Graph kernels have recently evolved into a rapidly developing branch oflearning on struc-
tured data. They respect and exploit graph topology, but restrict themselves to comparing substruc-
tures of graphs that are computable in polynomial time. Graph kernels bridgethe gap between
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graph-structured data and a large spectrum of machine learning algorithmscalled kernel methods
(Scḧolkopf and Smola, 2002), that include algorithms such as support vector machines, kernel re-
gression, or kernel PCA (see Hofmann et al., 2008, for a recent review of kernel algorithms).

Informally, a kernel is a function of two objects that quantifies their similarity. Mathematically, it
corresponds to an inner product in a reproducing kernel Hilbert space (Scḧolkopf and Smola, 2002).
Graph kernels are instances of the family of so-called R-convolution kernels by Haussler (1999).
R-convolution is a generic way of defining kernels on discrete compound objects by comparing all
pairs of decompositions thereof. Therefore, a new type of decompositionof a graph results in a new
graph kernel.

Given a decomposition relationR that decomposes a graph into any of its subgraphs and the
remaining part of the graph, the associated R-convolution kernel will compare all subgraphs in two
graphs. However, thisall subgraphskernel is at least as hard to compute as deciding if graphs are
isomorphic (G̈artner et al., 2003). Therefore one usually restricts graph kernels to compare only
specific types of subgraphs that are computable in polynomial runtime.

1.1 Review of Graph Kernels

Before we review graph kernels from the literature, we clarify our terminology. We define a graphG
as a triplet(V,E, ℓ), whereV is the set of vertices,E is the set of undirected edges, andℓ : V → Σ is
a function that assigns labels from an alphabetΣ to nodes in the graph.1 The neighbourhoodN (v)
of a nodev is the set of nodes to whichv is connected by an edge, that isN (v) = {v′|(v,v′) ∈ E}.
For simplicity, we assume that every graph hasn nodes,medges, and a maximum degree ofd. The
size ofG is defined as the cardinality ofV.

A walk is a sequence of nodes in a graph, in which consecutive nodes are connected by an
edge. A path is a walk that consists of distinct nodes only. A(rooted) subtreeis a subgraph of
a graph, which has no cycles, but a designated root node. A subtree of G can thus be seen as a
connected subset of distinct nodes of G with an underlying tree structure. The height of a subtree is
the maximum distance between the root and any other node in the subtree. Just as the notion of walk
extends the notion of path by allowing nodes to be equal, the notion of subtrees can be extended
to subtree patterns(also calledtree-walks, Bach, 2008), which can have nodes that are equal (see
Figure 1). These repetitions of the same node are then treated as distinct nodes, such that the pattern
is still a cycle-free tree. Note that all subtree kernels compare subtreepatternsin two graphs, not
(strict) subtrees.

Several different graph kernels have been defined in machine learning which can be categorized
into three classes: graph kernels based on walks (Kashima et al., 2003; Gärtner et al., 2003) and
paths (Borgwardt and Kriegel, 2005), graph kernels based on limited-size subgraphs (Horv́ath et al.,
2004; Shervashidze et al., 2009), and graph kernels based on subtree patterns (Ramon and Gärtner,
2003; Mah́e and Vert, 2009).

The first class, graph kernels on walks and paths, compute the number ofmatching pairs of
random walks (resp. paths) in two graphs. The standard formulation of the random walk kernel,
based on the direct product graph of two graphs, is computable inO(n6) for a pair of graphs (G̈artner
et al., 2003). However, the same problem can be stated in terms of Kronecker products that can
be exploited to bring down the runtime complexity toO(n3) (Vishwanathan et al., 2010). For a

1. An extension of this definition and of our results to graphs with discrete edge labels is straightforward, but omitted
for clarity of presentation.
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Figure 1: A subtree pattern of height 2 rooted at the node 1. Note the repetitions of nodes in the
unfolded subtree pattern on the right.

computer vision application, Harchaoui and Bach (2007) have proposed a dynamic programming-
based approach to speed up the computation of the random walk kernel, but at the cost of considering
walks of fixed size. Suard et al. (2005) and Vert et al. (2009) present other applications of random
walk kernels in computer vision. Mahé et al. (2004) have proposed extensions of marginalized
graph kernels (Kashima et al., 2003) for a chemoinformatics application: here the authors relabel
vertices of graphs using the Morgan index (Morgan, 1965), which increases the specificity of labels
by augmenting them with information on the number of walks starting at a node, and thereby also
helps reduce the runtime, as fewer vertices will match. The shortest path kernel by Borgwardt and
Kriegel (2005) counts pairs of shortest paths having the same source and sink labels and the same
length in two graphs. The runtime of this kernel scales asO(n4).

The second class, graph kernels based on limited-size subgraphs, includes kernels based on so-
calledgraphlets, which represent graphs as counts of all types of subgraphs of sizek ∈ {3,4,5}.
There exist efficient computation schemes for these kernels based on sampling or exploitation of
the low maximum degree of graphs (Shervashidze et al., 2009), but theseapply to unlabeled graphs
only. Cyclic pattern kernels (Horváth et al., 2004) count pairs of matching cyclic patterns in two
graphs. Computing this kernel for a general graph is unfortunately NP-hard, however there exist
special cases where the kernel can be efficiently computed. The kernel, recently proposed by Costa
and De Grave (2010), can also be classified in this category: It counts identical pairs of rooted
subgraphs containing nodes up to a certain distance from the root, the roots of which are located at
a certain distance from each other, in two graphs.

The first kernel from the third class, subtree kernels, was defined byRamon and G̈artner (2003).
Intuitively, to compare graphsG and G′, this kernel iteratively compares all matchings between
neighbours of two nodesv from G andv′ from G′. In other words, for all pairs of nodesv from
G andv′ from G′, it counts all pairs of matching substructures in subtree patterns rooted atv and
v′. The runtime complexity of the subtree kernel for a data set ofN graphs isO(N2n2h 4d). For a
detailed description of this kernel see Section 3.2.2.

The subtree kernels by Mahé and Vert (2009) and Bach (2008) refine the Ramon-Gärtner kernel
for applications in chemoinformatics and hand-written digit recognition. Both Mah́e and Vert (2009)
and Bach (2008) propose to considerα-ary subtrees with at mostα children per node. This restricts
the set of matchings to matchings of up toα nodes, but the runtime complexity is still exponential
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in this parameterα, which both papers describe as feasible on small graphs (with approximately 20
nodes on average) with many distinct node labels.

It is a general limitation of all the aforementioned graph kernels that they scale poorly to large,
labeled graphs with more than 100 nodes: In the worst case, none of themscale better thanO(n3).
The efficient comparison of large, labeled graphs remained an unsolvedchallenge for almost a
decade. We present a general definition of graph kernels that encompasses many previously known
graph kernels, and instances of which are efficient to compute for both unlabeled and discretely
labeled graphs with thousands of nodes next. Moreover, in terms of prediction accuracy in graph
classification tasks its instances are competitive with or outperform other state-of-the-art graph ker-
nels.

The remainder of this article is structured as follows. In Section 2, we describe the Weisfeiler-
Lehman isomorphism test that our main contribution is based on. In Section 3, we describe what
we call the Weisfeiler-Lehman graphs and our proposed general graph kernels based on them, fol-
lowed by some examples. In Section 4, we compare these kernels to each other, as well as to a set
of five other state-of-the-art graph kernels. We report results on kernel computation runtime and
classification accuracy on graph benchmark data sets. Section 5 summarizes our contributions.

2. The Weisfeiler-Lehman Test of Isomorphism

Our graph kernels use concepts from the Weisfeiler-Lehman test of isomorphism (Weisfeiler and
Lehman, 1968), more specifically its 1-dimensional variant, also known as “naive vertex refine-
ment”. Assume we are given two graphsG and G′ and we would like to test whether they are
isomorphic. The 1-dimensional Weisfeiler-Lehman test proceeds in iterations, which we index byi
and which comprise the steps given in Algorithm 1.

The key idea of the algorithm is to augment the node labels by the sorted set ofnode labels of
neighbouring nodes, and compress these augmented labels into new, short labels. These steps are
then repeated until the node label sets ofG andG′ differ, or the number of iterations reachesn.
See Figure 2, a-d, for an illustration of these steps (note however, that the two graphs in the figure
would directly be identified as non-isomorphic by the Weisfeiler-Lehman test, as their label sets are
already different in the beginning).

Sorting the set of multisets allows for a straightforward definition and implementation of f for
the compression of labels in step 4: one keeps a counter variable forf that records the number
of distinct strings thatf has compressed before.f assigns the current value of this counter to a
string if an identical string has been compressed before, but when one encounters a new string, one
increments the counter by one andf assigns its value to the new string. The sorted order of the
set of multisets guarantees that all identical strings are mapped to the same number, because they
occur in a consecutive block. However, note that the sorting of the set of multisets is not required
for defining f . Any other injective mapping will give equivalent results. The alphabetΣ has to be
sufficiently large forf to be injective. For two graphs,|Σ|= 2n suffices.

The Weisfeiler-Lehman algorithm terminates after step 4 of iterationi if {l i(v)|v∈V} 6= {l i(v′)|
v′ ∈ V ′}, that is, if the sets of newly created labels are not identical inG andG′. The graphs are
then not isomorphic. If the sets are identical aftern iterations, it means that eitherG andG′ are
isomorphic, or the algorithm has not been able to determine that they are not isomorphic (see Cai
et al., 1992, for examples of graphs that cannot be distinguished by this algorithm or its higher-
dimensional variants). As a side note, we mention that the 1-dimensional Weisfeiler-Lehman al-
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Algorithm 1 One iteration of the 1-dim. Weisfeiler-Lehman test of graph isomorphism
1: Multiset-label determination

• For i = 0, setMi(v) := l0(v) = ℓ(v). 2

• For i > 0, assign a multiset-labelMi(v) to each nodev in G andG′ which consists of the
multiset{l i−1(u)|u∈N (v)}.

2: Sorting each multiset
• Sort elements inMi(v) in ascending order and concatenate them into a stringsi(v).
• Add l i−1(v) as a prefix tosi(v) and call the resulting stringsi(v).

3: Label compression
• Sort all of the stringssi(v) for all v from G andG′ in ascending order.
• Map each stringsi(v) to a new compressed label, using a functionf : Σ∗ → Σ such that

f (si(v)) = f (si(w)) if and only if si(v) = si(w).
4: Relabeling

• Setl i(v) := f (si(v)) for all nodes inG andG′.

gorithm has been shown to be a valid isomorphism test for almost all graphs (Babai and Kucera,
1979).

Note that in Algorithm 1 we used the same node labeling functionsℓ, l0, . . . , lh for bothG and
G′ in order not to overload the notation. We will continue using this notation throughout the paper
and assume without loss of generality that the domain of these functionsℓ, l0, . . . , lh is the set of all
nodes in our data set of graphs, which corresponds toV ∪V ′ in the case of Algorithm 1.

2.1 Complexity

The runtime complexity of the 1-dimensional Weisfeiler-Lehman algorithm withh iterations is
O(hm). Defining the multisets in step 1 for all nodes is anO(m) operation. Sorting each mul-
tiset is anO(m) operation for all nodes. This efficiency can be achieved by using counting sort,
which is an instance of bucket sort, due to the limited range of the elements of themultiset. The
elements of each multiset are a subset of{ f (si(v))|v ∈ V}. For a fixedi, the cardinality of this
set is upper-bounded byn, which means that we can sort all multisets inO(m) by the following
procedure: We assign the elements of all multisets to their corresponding buckets, recording which
multiset they came from. By reading through all buckets in ascending order,we can then extract
the sorted multisets for all nodes in a graph. The runtime isO(m) as there areO(m) elements in the
multisets of a graph in iterationi. Sorting the resulting strings is of time complexityO(m) via radix
sort (see Mehlhorn, 1984, Vol. 1, Section II.2.1). The label compression requires one pass over all
strings and their characters, that isO(m). Hence all these steps result in a total runtime ofO(hm)
for h iterations.

2.2 Link with Subtree Patterns

Note that the compressed labelsl i(v) correspond to subtree patterns of heighti rooted atv (see
Figure 1 for an illustration of subtree patterns).

2. For unlabeled graphs, node labelsM0(v) := l0(v) can be initialized with letters corresponding one to one to node
degrees|N (v)|.
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3. The General Weisfeiler-Lehman Kernels

In this section, we first define the Weisfeiler-Lehman graph sequence and the general graph kernels
based on them. We then present three instances of this kernel, the Weisfeiler-Lehman subtree kernel
(Section 3.2), the Weisfeiler-Lehman edge kernel (Section 3.3), and the Weisfeiler-Lehman shortest
path kernel (Section 3.4).

3.1 The Weisfeiler-Lehman Kernel Framework

In each iterationi of the Weisfeiler-Lehman algorithm (see Algorithm 1), we get a new labelingl i(v)
for all nodesv. Recall that this labeling is concordant inG andG′, meaning that if nodes inG andG′

have identical multiset labels, and only in this case, they will get identical new labels. Therefore, we
can imagine one iteration of Weisfeiler-Lehman relabeling as a functionr((V,E, l i)) = (V,E, l i+1)
that transforms all graphs in the same manner. Note thatr depends on the set of graphs that we
consider.

Definition 1 Define theWeisfeiler-Lehman graphat height i of the graph G= (V,E, ℓ) = (V,E, l0)
as the graph Gi = (V,E, l i). We call the sequence of Weisfeiler-Lehman graphs

{G0,G1, . . . ,Gh}= {(V,E, l0),(V,E, l1), . . . ,(V,E, lh)},

where G0 = G and l0 = ℓ, theWeisfeiler-Lehman sequenceup to height h of G.

G0 is the original graph,G1 = r(G0) is the graph resulting from the first relabeling, and so on. Note
that neitherV, nor E ever change in this sequence, but we define it as a sequence of graphs rather
than a sequence of labeling functions for the sake of clarity of definitions that follow.

Definition 2 Let k be any kernel for graphs, that we will call thebase kernel. Then the Weisfeiler-
Lehman kernel with h iterations with the base kernel k is defined as

k(h)WL(G,G′) = k(G0,G
′
0)+k(G1,G

′
1)+ . . .+k(Gh,G

′
h), (1)

where h is the number of Weisfeiler-Lehman iterations and{G0, . . . ,Gh} and{G′
0, . . . ,G

′
h} are the

Weisfeiler-Lehman sequences of G and G′ respectively.

Theorem 3 Let the base kernel k be any positive semidefinite kernel on graphs. Then the corre-

sponding Weisfeiler-Lehman kernel k(h)
WL is positive semidefinite.

Proof Let φ be the feature mapping corresponding to the kernelk:

k(Gi ,G
′
i) = 〈φ(Gi),φ(G′

i)〉.

We have
k(Gi ,G

′
i) = k(r i(G), r i(G′)) = 〈φ(r i(G)),φ(r i(G′))〉.

Let us define the feature mappingψ(G) asφ(r i(G)). Then we have

k(Gi ,G
′
i) = 〈ψ(G),ψ(G′)〉,
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hencek is a kernel onG andG′ andk(h)WL is positive semidefinite as a sum of positive semidefinite
kernels.

This definition provides a framework for applying all graph kernels that take into account dis-
crete node labels to different levels of the node-labeling of graphs, from the original labeling to
more and more fine-grained labelings for growingh. This enriches the set of extracted features.
For example, while the shortest path kernel counts pairs of shortest paths with the same distance
between identically labeled source and sink nodes on the original graphs,it will count pairs of
shortest paths with the same distance between the roots of identical subtree patterns of height 1 on
Weisfeiler-Lehman graphs withh= 1.

For some base kernels one might be able to exploit the fact that the graph structure does not
change over the Weisfeiler-Lehman sequence to do some computations only once instead of repeat-
ing it h times. One example of such a base kernel is the shortest path kernel: As shortest paths in
a graphG are the same as shortest paths in corresponding Weisfeiler-Lehman graphs Gi , we can
precompute them. One should bear in mind that for graph kernelsk that depend on the size of
the alphabet of node labels, computingk(Gi ,G′

i) will accordingly get increasingly expensive, or, in
some cases, cheaper, as a function of growingi.

Note that it is possible to put nonnegative real weightsαi onk(Gi ,G′
i), i = {0,1, . . . ,h}, to obtain

a more general definition of the Weisfeiler-Lehman kernel:

k(h)WL(G,G′) = α0k(G0,G
′
0)+α1k(G1,G

′
1)+ . . .+αhk(Gh,G

′
h).

In this case,k(h)WL will still be positive semidefinite, as a positive linear combination of positive
semidefinite kernels.

3.1.1 NOTE ON COMPUTING WEISFEILER-LEHMAN KERNELS IN PRACTICE

In the inductive learning setting, we compute the kernel on the training set ofgraphs. For any
test graph that we subsequently need to classify, we have to map it to the feature space spanned
by original and compressed labels occurred in the training set. For this purpose, we will need to
maintain record of the data structures that hold the mappingsl i(v) := f (si(v)) for each iterationi
and each distinctsi(v). This requiresO(Nmh) memory in the worst case.

In contrast, in the transductive setting, where the test set is already known, we can compute
the kernel matrix on the whole data set (training and test set) without having tokeep the mappings
mentioned above.

3.2 The Weisfeiler-Lehman Subtree Kernel

In this section we present the Weisfeiler-Lehman subtree kernel (Shervashidze and Borgwardt,
2009), which is a natural instance of Definition 2.

Definition 4 Let G and G′ be graphs. DefineΣi ⊆ Σ as the set of letters that occur as node labels
at least once in G or G′ at the end of the i-th iteration of the Weisfeiler-Lehman algorithm. LetΣ0

be the set of original node labels of G and G′. Assume allΣi are pairwise disjoint. Without loss of
generality, assume that everyΣi = {σi1, . . . ,σi|Σi |} is ordered. Define a map ci : {G,G′}×Σi → N

such that ci(G,σi j ) is the number of occurrences of the letterσi j in the graph G.
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The Weisfeiler-Lehman subtree kernel on two graphs G and G′ with h iterations is defined as:

k(h)WLsubtree(G,G′) = 〈φ(h)
WLsubtree(G),φ(h)

WLsubtree(G
′)〉, (2)

where

φ(h)
WLsubtree(G) = (c0(G,σ01), . . . ,c0(G,σ0|Σ0|), . . . ,ch(G,σh1), . . . ,ch(G,σh|Σh|)),

and

φ(h)
WLsubtree(G

′) = (c0(G
′,σ01), . . . ,c0(G

′,σ0|Σ0|), . . . ,ch(G
′,σh1), . . . ,ch(G

′,σh|Σh|)).

That is, the Weisfeiler-Lehman subtree kernel counts commonoriginal and compressed labels
in two graphs. See Figure 2 for an illustration.

Theorem 5 The Weisfeiler-Lehman subtree kernel on a pair of graphs G and G′ can be computed
in time O(hm).

Proof This follows directly from the definition of the Weisfeiler-Lehman subtree kernel and the
runtime complexity of the Weisfeiler-Lehman test, as described in Section 2.

The following theorem shows that (2) is indeed a special case of the general Weisfeiler-Lehman
kernel (1).

Theorem 6 Let the base kernel k be a function counting pairs of matching node labels intwo
graphs:

k(G,G′) = ∑
v∈V

∑
v′∈V ′

δ(ℓ(v), ℓ(v′)),

whereδ is the Dirac kernel, that is, it is1 when its arguments are equal and0 otherwise. Then

k(h)WL(G,G′) = k(h)WLsubtree(G,G′) for all G,G′.

Proof It is easy to notice that for eachi ∈ {0,1, . . . ,h} we have

∑
v∈V

∑
v′∈V ′

δ(l i(v), l ′i (v
′)) =

|Σi |

∑
j=1

ci(G,σi j )ci(G
′,σi j ).

Adding up these sums for alli ∈ {0,1, . . . ,h} gives usk(h)WL(G,G′) = k(h)WLsubtree(G,G′).

3.2.1 COMPUTING THE WEISFEILER-LEHMAN SUBTREE KERNEL ON MANY GRAPHS

To compute the Weisfeiler-Lehman subtree kernel onN graphs, we propose Algorithm 2, which
improves over the naive,N2-fold application of the kernel from Definition 4. We now process all
N graphs simultaneously and conduct the steps given in Algorithm 2 on each graphG in each ofh
iterations.

As before,Σ is assumed to be sufficiently large to allowf to be injective. In the case ofN graphs
andh iterations, aΣ of sizeNn(h+1) suffices.
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Figure 2: Illustration of the computation of the Weisfeiler-Lehman subtree kernel with h = 1 for
two graphs. Here{1,2, . . . ,13} ∈ Σ are considered as letters. Note that compressed
labels denote subtree patterns: For instance, if a node has label 8, this means that there
is a subtree pattern of height 1 rooted at this node, where the root has label 2 and its
neighbours have labels 3 and 5.

One way of implementingf is to sort all neighbourhood strings using radix sort, as done in step
4 in Algorithm 1. The resulting complexity of this step would be linear in the sum of the size of
the current alphabet and the total length of strings, that isO(Nn+Nm) = O(Nm). An alternative
implementation off would be by means of a perfect hash function.
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Algorithm 2 One iteration of the Weisfeiler-Lehman subtree kernel computation onN graphs

1: Multiset-label determination
• Assign a multiset-labelMi(v) to each nodev in G which consists of the multiset
{l i−1(u)|u∈N (v)}.

2: Sorting each multiset
• Sort elements inMi(v) in ascending order and concatenate them into a stringsi(v).
• Add l i−1(v) as a prefix tosi(v).

3: Label compression
• Map each stringsi(v) to a compressed label using a hash functionf : Σ∗ → Σ such that

f (si(v)) = f (si(w)) if and only if si(v) = si(w).
4: Relabeling

• Setl i(v) := f (si(v)) for all nodes inG.

Theorem 7 For N graphs, the Weisfeiler-Lehman subtree kernel with h iterations on allpairs of
these graphs can be computed in O(Nhm+N2hn).

Proof Naive application of the kernel from Definition 4 for computing anN×N kernel matrix
would require a runtime ofO(N2hm). One can improve upon this runtime complexity by computing

φ(h)
WLsubtreeexplicitly for each graph and only then taking pairwise inner products.

Step 1, the multiset-label determination, still requiresO(Nm). Step 2, the sorting of the elements
in each multiset, can be done via a joint bucket sort (counting sort) of all strings, requiringO(Nn+
Nm) time.

The effort of computingφ(h)
WLsubtreeon allN graphs inh iterations is thenO(Nhm), assuming that

m> n. To get all pairwise kernel values, we have to multiply all feature vectors,which requires a
runtime ofO(N2hn), as each graphG has at mosthn non-zero entries inφ(h)

WLsubtree(G). In Section
4.1, we empirically show that the first termNhmdominates the overall runtime in practice.

While our Weisfeiler-Lehman subtree kernel matches neighbourhoods ofnodes in a graph ex-
actly, one could also think of other strategies of comparing node neighbourhoods, and still retain
the favourable runtime of our graph kernel. In research that was published in parallel to ours, Hido
and Kashima (2009) present such an alternative kernel based on node neighbourhoods which uses
hash functions and logical operations on bit-representations of node labels and which also scales
linearly in the number of edges. The Morgan index (Morgan, 1965) is another way of summarizing
information contained in the neighbourhood of a node, and has been usedby Mah́e et al. (2004) in
the context of graph kernels.

3.2.2 THE RAMON-GÄRTNER SUBTREE KERNEL

Description. The first subtree kernel on graphs was defined by Ramon and Gärtner (2003). The
Ramon-G̈artner subtree kernel with subtree heighth compares all pairs of nodes from graphsG=
(V,E, ℓ) andG′ = (V ′,E′, ℓ) by iteratively comparing their neighbourhoods:

k(h)RG(G,G′) = ∑
v∈V

∑
v′∈V ′

kRG,h(v,v
′),
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where

kRG,h(v,v
′) =

{

δ(ℓ(v), ℓ(v′)), if h= 0
λvλv′δ(ℓ(v), ℓ(v′))∑R∈M (v,v′) ∏(w,w′)∈RkRG,h−1(w,w′), if h> 0,

δ is an indicator function that equals 1 if its arguments are equal, 0 otherwise,λv andλv′ are weights
associated with nodesv andv′, and

M (v,v′) =
{

R⊆N (v)×N (v′)
∣

∣(∀(u,u′),(w,w′) ∈ R : u= w⇔ u′ = w′)

∧(∀(u,u′) ∈ R : ℓ(u) = ℓ(u′))
}

. (3)

Said differently,M (v,v′) is the set of exact matchings of subsets of the neighbourhoods ofv
andv′. Each elementR of M (v,v′) is a set of pairs of nodes from the neighbourhoods ofv ∈ V
andv′ ∈V ′ such that nodes in each pair have identical labels and no node is containedin more than
one pair. Thus, intuitively,kRG iteratively considers all matchingsM (v,v′) between neighbours of
two identically labeled nodesv from G andv′ from G′. Taking the parametersλv andλv′ equal to a
single parameterλ results in weighting each pattern byλ raised to the power of the number of nodes
in the pattern.

Complexity. The runtime complexity of the subtree kernel for a pair of graphs isO(n2h4d),
including a comparison of all pairs of nodes (n2), and a pairwise comparison of all matchings in
their neighbourhoods inO(4d), which is repeated inh iterations.h is a multiplicative factor, not an
exponent, since one can implement the subtree kernel via dynamic programming, starting withk1

and computingkh from kh−1. For a data set ofN graphs, the resulting runtime complexity is then in
O(N2n2h4d).

3.2.3 LINK TO THE WEISFEILER-LEHMAN SUBTREE KERNEL

The Weisfeiler-Lehman subtree kernel can be defined in a recursive fashion which elucidates its
relation to the Ramon-G̈artner kernel.

Theorem 8 The kernel k(h)rec defined as

k(h)rec(G,G′) =
h

∑
i=0

∑
v∈V

∑
v′∈V ′

krec,i(v,v
′), (4)

where

krec,i(v,v
′) =







δ(ℓ(v), ℓ(v′)), if i = 0
krec,i−1(v,v′)maxR∈M (v,v′) ∏(w,w′)∈Rkrec,i−1(w,w′), if i > 0 andM 6= /0

0, if i > 0 andM = /0,
(5)

δ is the indicator function again, and

M (v,v′) =
{

R⊆N (v)×N (v′)
∣

∣

∣
|R|= |N (v)|= |N (v′)|

∧ (∀(u,u′),(w,w′) ∈ R : u= w⇔ u′ = w′)∧ (∀(u,u′) ∈ R : ℓ(u) = ℓ(u′))
}

, (6)

is equivalent to the Weisfeiler-Lehman subtree kernel k(h)
WLsubtree.
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In other words,M (v,v′) is the set of exact matchings of the neighbourhoods ofv andv′. It is
nonempty only in the case where the neighbourhoods ofv andv′ have exactly the same size and the
multisets of labels of their neighbours{ℓ(u)|u∈N (v)} and{ℓ(u′)|u′ ∈N (v′)} are identical. Note
thatkrec,i(v,v′) only takes binary values: it evaluates to 1 if the subtree patterns of heighti rooted at
v andv′ are identical, and to 0 otherwise.

Proof We prove this theorem by induction overh.
Induction initialisationh= 0:

k(0)WLsubtree= 〈φ(0)
WLsubtree(G),φ(0)

WLsubtree(G)〉=
|Σ0|

∑
j=1

c0(G,σ0 j)c0(G
′,σ0 j) =

= ∑
v∈V

∑
v′∈V ′

δ(ℓ(v), ℓ(v′)) = k(0)rec,

whereΣ0 is the initial alphabet of node labels andc0(G,σ0 j) is the number of occurrences of the

letterσ0 j as a node label inG. The equality follows from the definitions ofk(h)rec andk(h)WLsubtree.

Induction steph→ h+1: Assume thatk(h)WLsubtree= k(h)rec. Then

k(h+1)
rec = ∑

v∈V
∑

v′∈V ′

krec,h+1(v,v
′)+

h

∑
i=0

∑
v∈V

∑
v′∈V ′

krec,i(v,v
′) = (7)

=
|Σh+1|

∑
j=1

ch+1(G,σh+1, j)ch+1(G
′,σh+1, j)+k(h)WLsubtree= k(h+1)

WLsubtree, (8)

where the equality of (7) and (8) follows from the fact thatkrec,h+1(v,v′) = 1 if and only if the labels
and neigbourhoods ofv andv′ are identical, that is, iff (sh+1(v)) = f (sh+1(v′)).

Theorem 8 highlights the following differences between the Weisfeiler-Lehman and the Ramon-
Gärtner subtree kernels: In Equation (4), Weisfeiler-Lehman considersall subtrees up to heighth,
whereas the Ramon-Gärtner kernel looks at subtrees of exactly heighth. In Equations (5) and (6),
the Weisfeiler-Lehman subtree kernel checks whether the neighbourhoods ofv andv′ match exactly,
while the Ramon-G̈artner kernel considers all pairs of matching subsets of the neighbourhoods of
v andv′ in Equation (3). In our experiments, we examine the empirical differences between these
two kernels in terms of runtime and prediction accuracy on classification benchmark data sets (see
Section 4.2).

3.3 The Weisfeiler-Lehman Edge Kernel

The Weisfeiler-Lehman edge kernel is another instance of the Weisfeiler-Lehman kernel framework.
In the case of graphs with unweighted edges, we consider the base kernel that counts matching pairs
of edges with identically labeled endpoints (incident nodes) in two graphs. In other words, the base
kernel is defined as

kE = 〈φE(G),φE(G
′)〉,

whereφE(G) is a vector of numbers of occurrences of pairs(a,b), a,b ∈ Σ, which represent or-
dered labels of endpoints of an edge inG. Denoting(a,b) and(a′,b′) the ordered labels of end-
points of edgese ande′ respectively, andδ the Dirac kernel,kE can equivalently be expressed as
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∑e∈E ∑e′∈E′ δ(a,a′)δ(b,b′). If the edges are weighted by a functionw that assigns weights, the
base kernelkE can be defined as∑e∈E ∑e′∈E′ δ(a,a′)δ(b,b′)kw(w(e),w(e′)), wherekw is a kernel
comparing edge weights.

Following (1), we have

k(h)WL edge= kE(G0,G
′
0)+kE(G1,G

′
1)+ . . .+kE(Gh,G

′
h).

3.3.1 NOTE ON COMPUTATIONAL COMPLEXITY

If the edges are not weighted or labeled, the number of possible edge features in each iteration
equals the number of distinct ordered pairs(a,b), that is, |Σi |(|Σi |+1)

2 . It is easy to notice by looking
at the Algorithm 1 that for eachi ∈ {0, . . . ,h−1}, we have|Σi | ≤ |Σi+1|. Therefore, if we compute
the edge kernel by first explicitly computingφE(G) for eachG in the data set, the computation will
become increasingly expensive in each iterationi of the Weisfeiler-Lehman relabeling.

If edges are weighted and we use any general kernel to compare their weights, computing the
feature map explicitly may not be possible or practical any more. In this case,the kernel can be
computed by comparing edges pairwise in each pair of graphs. Assuming that the kernel on a pair
of weights can be computed inO(1), this results inO(N2m2) operations per Weisfeiler-Lehman
iteration.

Computing the feature map explicitly can also become problematic if the alphabet size gets pro-
hibitively large. In this case, one can either compute the kernel via pairwisecomparisons of edges in
each pair of graphs as above (O(N2m2) per iteration), or via the construction of the explicit feature
map for each pair of graphs separately, potentially yielding smaller alphabetsΣi than considering
the whole data set ofN graphs at once.

3.4 The Weisfeiler-Lehman Shortest Path Kernel

Another example of the general Weisfeiler-Lehman kernels that we consider is the Weisfeiler-
Lehman shortest path kernel. Here we use a node-labeled shortest pathkernel (Borgwardt and
Kriegel, 2005) as the base kernel.

In the particular case of graphs with unweighted edges, we consider the base kernelkSP of the
form kSP(G,G′) = 〈φSP(G),φSP(G′)〉, whereφSP(G) (resp.φSP(G′)) is a vector whose components
are numbers of occurrences of triplets of the form(a,b, p) in G (resp.G′), wherea,b∈ Σ are ordered
endpoint labels of a shortest path andp∈ N0 is the shortest path length.

According to (1), we have

k(h)WL shortest path= kSP(G0,G
′
0)+kSP(G1,G

′
1)+ . . .+kSP(Gh,G

′
h).

3.4.1 NOTE ON COMPUTATIONAL COMPLEXITY

Computing shortest paths between all pairs of nodes in a graph can be done in O(n3) using the
Floyd-Warshall algorithm. Consequently, forN graphs, the complexity is ofO(Nn3). This step
does not have to be repeated for every Weisfeiler-Lehman iteration, as the topology of a graph does
not change across the Weisfeiler-Lehman sequence. In case edges are not weighted, shortest paths
are determined in terms of geodesic distance and path lengths are integers. Denote the number of
distinct shortest path lengths occurring in the data set of graphs asP.
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Let us first consider the Dirac (δ) kernel on the shortest path lengths, which means that the
similarity of two paths in two graphs equals 1 if they have exactly the same length and identically
labeled endpoints and 0 otherwise. Then, in iterationi of the Weisfeiler-Lehman relabeling, we can
bound the number of features, triplets(a,b, p) wherea,b∈ |Σi | are ordered start and end node labels
andp∈N0 the shortest path length, by|Σi |(|Σi |+1)

2 P. As |Σi | ≤ |Σi+1| for eachi ∈ {0, . . . ,h−1}, if we
compute the shortest path kernel by first explicitly computingφSP(G) for eachG in the data set, the
computation will get increasingly expensive in each iteration, as in the case of edge kernels (Section
3.3).

Similarly to the Weisfeiler-Lehman edge kernel, in a more general setting wherewe do not
assume that edges are unweighted and use any kernel (not necessarily the Dirac kernel) on shortest
path lengths, or if the alphabet size gets prohibitively large, computing the feature map explicitly
may become impossible or difficult. In this case, we can compute the kernel by comparing shortest
path lengths pairwise in two graphs. Therefore, the runtime of computingkSP(Gi ,G′

i) will not
depend oni any more. It will scale asO(n4) for each pair of graphs as we have to compare all pairs
of theO(n2) shortest path lengths, andO(N2n4) for the whole data set.

3.5 Other Weisfeiler-Lehman Kernels

In a similar fashion, we can plug other base graph kernels into our Weisfeiler-Lehman graph kernel
framework. As node labels are the only aspect that differentiate Weisfeiler-Lehman graphs at dif-
ferentresolutions(determined by the number of iterations), a clear requirement that the base kernel
has to satisfy for the Weisfeiler-Lehman kernel to make sense is to exploit the labels on nodes. A
non-exhaustive list of possible base kernels not mentioned in previous sections includes the labeled
version of the graphlet kernel (Shervashidze et al., 2009), the random walk kernel (G̈artner et al.,
2003; Vishwanathan et al., 2010), and the subtree kernel by Ramon andGärtner (2003).

4. Experiments

In this section, we first empirically study the runtime behaviour of the Weisfeiler-Lehman subtree
kernel on synthetic graphs (Section 4.1). Next, we compare the Weisfeiler-Lehman subtree kernel,
the Weisfeiler-Lehman edge kernel, and the Weisfeiler-Lehman shortest path kernel to state-of-
the-art graph kernels in terms of kernel computation runtime and classification accuracy on graph
benchmark data sets (Section 4.2).

4.1 Runtime Behaviour of Weisfeiler-Lehman Subtree Kernel

Here we experimentally examine the runtime performance of the Weisfeiler-Lehman subtree kernel.

4.1.1 METHODS

We empirically compared the runtime behaviour of our two variants of the Weisfeiler-Lehman sub-
tree (WL) kernel. The first variant computes kernel values pairwise inO(N2hm). The second variant
computes the kernel values inO(Nhm+N2hn) on the data set simultaneously. We will refer to the
former variant as the “pairwise” WL, and the latter as “global” WL.
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Figure 3: Runtime in seconds for kernel matrix computation on synthetic graphs using the pair-
wise (red, dashed) and the global (green, solid) computation schemes for the Weisfeiler-
Lehman subtree kernel (Default values: data set sizeN = 10, graph sizen= 100, subtree
heighth= 4, graph densityc= 0.4).

4.1.2 EXPERIMENTAL SETUP

We assessed the behaviour on randomly generated graphs with respectto four parameters: data set
sizeN, graph sizen, subtree heighth and graph densityc. The density of an undirected graph ofn
nodes without self-loops is defined as the number of its edges divided byn(n−1)/2, the maximal
number of edges. We kept 3 out of 4 parameters fixed at their default values and varied the fourth
parameter. The default values we used were 10 forN, 100 forn, 4 forh and 0.4 for the graph density
c. In more detail, we variedN in range{10,100,1000}, n in {100,200, . . . ,1000}, h in {2,4,8} and
c in {0.1,0.2, . . . ,0.9}.

For each individual experiment, we generatedN graphs withn nodes, and inserted edges ran-
domly until the number of edges reached⌊cn(n−1)/2⌋. We then computed the pairwise and the
global WL kernel on these synthetic graphs. We report CPU runtimes in seconds in Figure 3, as
measured in Matlab R2008a on an Apple MacPro with 3.0GHz Intel 8-Core with 16GB RAM.

4.1.3 RESULTS

Empirically, we observe that the pairwise kernel scales quadratically with data set sizeN. Interest-
ingly, the global kernel scales linearly withN for the considered range ofN. TheN2 sparse vector
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multiplications that have to be performed for kernel computation with global WL do not domi-
nate runtime here. This result on synthetic data indicates that the global WL kernel has attractive
scalability properties for large data sets.

When varying the number of nodesn per graph, we observe that the runtime of both WL kernels
scales quadratically withn, and the global WL is much faster than the pairwise WL for large graphs.
This agrees with the fact that our kernels scale linearly with the number of edges per graph,m, which
is 0.4n(n−1)

2 in this experiment.
We observe a different picture for the heighth of the subtree patterns. The runtime of both

kernels grows linearly withh, but the global WL is more efficient in terms of runtime.
Varying the graph densityc, both methods show again a linearly increasing runtime, although

the runtime of the global WL kernel is much lower than the runtime of the pairwise WL.
Across all different graph properties, the global WL kernel from Section 3.2.1 requires less

runtime than the pairwise WL kernel from Section 3.2. Hence the global WL kernel is the variant
of our Weisfeiler-Lehman subtree kernel that we use on the following graph classification tasks.

4.2 Graph Classification

We compared the performance of the WL subtree kernel, the WL edge kernel and the WL shortest
path kernel to several other state-of-the-art graph kernels in terms ofruntime and classification
accuracy on graph benchmark data sets.

4.2.1 DATA SETS

We employed the following data sets in our experiments: MUTAG, NCI1, NCI109, ENZYMES and
D&D. MUTAG (Debnath et al., 1991) is a data set of 188 mutagenic aromatic andheteroaromatic
nitro compounds labeled according to whether or not they have a mutagenic effect on the Gram-
negative bacteriumSalmonella typhimurium. NCI1 and NCI109 represent two balanced subsets
of data sets of chemical compounds screened for activity against non-small cell lung cancer and
ovarian cancer cell lines, respectively (Wale and Karypis, 2006, andhttp://pubchem.ncbi.nlm.
nih.gov). ENZYMES is a data set of protein tertiary structures obtained from Borgwardt et al.
(2005) consisting of 600 enzymes from the BRENDA enzyme database (Schomburg et al., 2004).
In this case the task is to correctly assign each enzyme to one of the 6 EC top-level classes. D&D
is a data set of 1178 protein structures (Dobson and Doig, 2003). Eachprotein is represented by a
graph, in which the nodes are amino acids and two nodes are connected byan edge if they are less
than 6Ångstroms apart. The prediction task is to classify the protein structures into enzymes and
non-enzymes. Note that nodes are labeled in all data sets.

Figure 4 shows the distributions of node numbers, edge numbers, and degrees in these data sets.
All of these data sets, as well as Matlab scripts for computing kernels used inour experiments,

can be downloaded fromhttp://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/.

4.2.2 EXPERIMENTAL SETUP

On these data sets, we compared our Weisfeiler-Lehman subtree, Weisfeiler-Lehman edge, and
Weisfeiler-Lehman shortest path kernels to the Ramon-Gärtner kernel (λ = 1), as well as to several
state-of-the-art graph kernels for large graphs. Due to the large number of graph kernels in the
literature, we could not compare to every single graph kernel, but to representative instances of the
major families of graph kernels.

2555



SHERVASHIDZE, SCHWEITZER, VAN LEEUWEN, MEHLHORN AND BORGWARDT

10
0

10
1

10
2

10
3

0

0.05

0.1
MUTAG

N
od

es

10
0

10
1

10
2

10
3

10
4

0

0.05

0.1

E
dg

es

1 5 10 15 20
0

0.1

0.2

0.3

0.4

D
eg

re
es

10
0

10
1

10
2

10
3

0

0.05

0.1
NCI1

10
0

10
1

10
2

10
3

10
4

0

0.05

0.1

1 5 10 15 20
0

0.1

0.2

0.3

0.4

10
0

10
1

10
2

10
3

0

0.05

0.1
ENZYMES

10
0

10
1

10
2

10
3

10
4

0

0.05

0.1

1 5 10 15 20
0

0.1

0.2

0.3

0.4

10
0

10
1

10
2

10
3

0

0.05

0.1
D&D

10
0

10
1

10
2

10
3

10
4

0

0.05

0.1

1 5 10 15 20
0

0.1

0.2

0.3

0.4

Figure 4: The rows illustrate the distributions of node number, edge number,and degree in data sets
MUTAG, NCI1, ENZYMES and D&D. We omitted NCI109, as its node number, edge
number, and degree distributions are similar to those of NCI1.

From the family of kernels based on walks, we compared our new kernels tothe fast geometric
random walk kernel by Vishwanathan et al. (2010) that counts common labeled walks, and to the
p-random walk kernel that compares random walks up to lengthp in two graphs (a special case of
random walk kernels Kashima et al., 2003; Gärtner et al., 2003).

From the family of kernels based on limited-size subgraphs, we chose an extension of the
graphlet kernel by Shervashidze et al. (2009) that counts common induced labeled connected sub-
graphs of size 3.

From the family of kernels based on paths, we compared to the shortest pathkernel by Borg-
wardt and Kriegel (2005) that counts pairs of labeled nodes with identical shortest path length.

Note that whenever possible, we used fast computation schemes based onexplicitly computing
the feature map (similar to that in Algorithm 2) before taking the inner product, inorder to speed up
kernel computation. In particular, we used this technique for computing shortest path and graphlet
kernels. For connected 3-node graphlet kernels it is rather intuitive to imagine the explicit feature
map: First, we have only 4 types of different graphlets with 3 nodes. Second, for each type of
graphlet we can determine the number of possible labelings of the three nodes as a function of the
size of the node label alphabet. In the case of the shortest path kernel, the explicit feature map may
or may not exist. In our experiments, as edges were not weighted, we used the number of edges in a
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path as a measure of its length. Moreover, we used the Dirac kernel on shortest path distances. This
allowed us to explicitly compute the feature map corresponding to the shortest path kernel for each
graph in all data sets. We were able to compute the explicit feature maps corresponding to the WL
edge and WL shortest path up to and includingh= 3 andh= 2 respectively on all data sets except
the largest one, D&D (which also has the largest original node label alphabet), because of the large
number of compressed labels. In the case of this data set, we used the pairwise edge (resp. shortest
path) comparison scheme described in Sections 3.3 and 3.4.

We performed 10-fold cross-validation of C-Support Vector Machine Classification using LIB-
SVM (Chang and Lin, 2001), using 9 folds for training and 1 for testing. Allparameters of the
SVM were optimised on the training data set only. To exclude random effectsof fold assignments,
we repeated the whole experiment 10 times. We report average prediction accuracies and standard
deviations in Tables 1 and 2.

We choseh for our Weisfeiler-Lehman subtree kernel by cross-validation on the training data
set forh∈ {0,1, . . . ,10}, which means that we computed 11 different WL subtree kernel matrices
in each experiment. In the case of the WL edge and WL shortest path kernels, h was chosen by
cross-validation forh∈ {0,1,2,3} andh∈ {0,1,2} respectively. We reported the total runtime of
these computations (not the average per kernel matrix).

Note that all kernel matrices in Table 2 which needed more than 3 days to be computed on
one machine were computed on a cluster by distributing different blocks of the kernel matrix to be
computed to different nodes. The reported runtime is the sum of the runtimes required to obtain
each block.

Proceeding in the same fashion as in the case of the Weisfeiler-Lehman subtree kernel, we
computed the Ramon-G̈artner subtree and Weisfeiler-Lehman shortest path kernels forh∈ {0,1,2}
and thep-random walk kernel forp ∈ {1, . . . ,10}. We computed the random walk kernel forλ
chosen from the set{10−2,10−3, . . . ,10−6} for smaller data sets and did not observe a large variation
in the resulting accuracy. For this reason and because of the relatively high runtime needed to
compute this kernel on larger data sets (see Table 2), we setλ as the largest power of 10 smaller
than the inverse of the squared maximum degree in the data set.

4.2.3 RESULTS

In terms of runtime, the Weisfeiler-Lehman subtree kernel could easily scaleup even to graphs with
thousands of nodes. On D&D, subtree-patterns of height up to 10 were computed in 11 minutes,
while no other comparison method could handle this data set in less than half an hour. The shortest
path kernel, the WL edge kernel and the WL shortest path kernel were competitive to the WL
subtree kernel on smaller graphs (MUTAG, NCI1, NCI109, ENZYMES), but on D&D their runtime
degenerated to more than 23 hours for the shortest path kernel, to 3 daysfor the WL edge kernel,
and to more than a year for the WL shortest path kernel. The Ramon and Gärtner kernel was
computable on MUTAG in approximately 40 minutes, but it finished computation in more than a
month on ENZYMES and the computation took even longer time on larger data sets.The random
walk kernel was competitive on MUTAG and ENZYMES in terms of runtime, but took more than
a week on each of the NCI data sets and more than a month on D&D. The fact that the random
walk kernel was competitive on the smallest of our data sets, MUTAG, is not surprising, as on this
data set one could also afford using kernels with exponential runtime, such as the all paths kernel
(Gärtner et al., 2003). The graphlet kernel was faster than our WL subtree kernel on MUTAG and
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Method/Data Set MUTAG NCI1 NCI109 ENZYMES D & D

WL subtree 82.05 (±0.36) 82.19 (± 0.18) 82.46 (±0.24) 52.22 (±1.26) 79.78 (±0.36)
WL edge 81.06 (±1.95) 84.37 (±0.30) 84.49 (±0.20) 53.17 (±2.04) 77.95 (±0.70)

WL shortest path 83.78 (±1.46) 84.55 (±0.36) 83.53 (±0.30) 59.05 (±1.05) 79.43 (±0.55)
Ramon & G̈artner 85.72 (±0.49) 61.86 (±0.27) 61.67 (±0.21) 13.35 (±0.87) 57.27 (±0.07)

p-random walk 79.19 (±1.09) 58.66 (±0.28) 58.36 (±0.94) 27.67 (±0.95) 66.64 (±0.83)
Random walk 80.72 (±0.38) 64.34 (±0.27) 63.51 (± 0.18) 21.68 (±0.94) 71.70 (±0.47)

Graphlet count 75.61 (±0.49) 66.00 (±0.07) 66.59 (±0.08) 32.70 (±1.20) 78.59 (±0.12)
Shortest path 87.28 (±0.55) 73.47 (±0.11) 73.07 (±0.11) 41.68 (±1.79) 78.45 (±0.26)

Table 1: Prediction accuracy (± standard deviation) on graph classification benchmark data sets

the NCI data sets, and about a factor of 3 slower on D&D. However, this efficiency came at a price,
as the kernel based on size-3 graphlets turned out to lead to poor accuracy levels on four data sets.

Data Set MUTAG NCI1 NCI109 ENZYMES D & D

Maximum # nodes 28 111 111 126 5748
Average # nodes 17.93 29.87 29.68 32.63 284.32

# labels 7 37 38 3 82
Number of graphs 188 4110 4127 600 1178

WL subtree 6” 7’20” 7’21” 20” 11’0”
WL edge 3” 1’5” 58” 11” 3 days

WL shortest path 2” 2’20” 2’23” 1’3” 484 days
Ramon & G̈artner 40’6” 81 days 81 days 38 days 103 days

p-random walk 4’42” 5 days 5 days 10’ 4 days
Random walk 12” 9 days 9 days 12’19” 48 days

Graphlet count 3” 1’27” 1’27” 25” 30’21”
Shortest path 2” 4’38” 4’39” 5” 23h 17’2”

Table 2: CPU runtime for kernel computation on graph classification benchmark data sets

On NCI1, NCI109, ENZYMES and D&D, the kernels from the Weisfeiler-Lehman framework
reached the highest accuracy. While on NCI1, NCI109, and D&D the results of all three WL
kernels were competitive with each other, on ENZYMES the WL shortest pathkernel dramatically
improved over the other two WL kernels. On D&D the shortest path and graphlet kernels yielded
similarly good results, while on NCI1 and NCI109 the Weisfeiler-Lehman subtree kernel improved
by more than 8% the best accuracy attained by other methods. On MUTAG, theWL kernels reached
the third, the fourth and the fifth best accuracy levels among all methods considered.

The labeled size-3 graphlet kernel achieved low accuracy levels, except on D&D. The random
walk and thep-random walk kernels, as well as the Ramon-Gärtner kernel, were less competitive to
kernels that performed the best on data sets other than MUTAG.

It is worth mentioning that in the case of WL edge and WL shortest path kernels, the values 2
and 3 ofh were almost always chosen by the cross-validation procedure, meaningthat the kernels
comparing edges and shortest paths on Weisfeiler-Lehman graphs of positive height systematically
improved the accuracy of the base kernel (corresponding toh= 0).
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To summarize, the WL subtree kernel turned out to be competitive in terms of runtime on all
smaller data sets, fastest on the large protein data set, and its accuracy levels were competitive on
all data sets. The WL edge kernel performed slightly better than the WL subtree kernel on three out
of five data sets in terms of accuracy. The WL shortest path kernel achieved the highest accuracy
level on two out of five data sets, and was competitive on the remaining data sets.

5. Conclusions

We have defined a general framework for constructing graph kernelson graphs with unlabeled or
discretely labeled nodes. Instances of our framework include a fast subtree kernel that combines
scalability with the ability to deal with node labels. Our kernels are competitive in terms of accu-
racy with state-of-the-art kernels on several classification benchmarkdata sets, even reaching the
highest accuracy level on four out of five data sets. Moreover, in terms of runtime on large graphs,
instances of our kernel outperform other kernels, even the efficientcomputation schemes for random
walk kernels (Vishwanathan et al., 2010) and graphlet kernels (Shervashidze et al., 2009) that were
recently developed.

Our new kernels open the door to applications of graph kernels on large graphs in bioinformatics,
for instance, protein function prediction via detailed graph models of proteinstructure on the amino
acid level, or on gene networks for phenotype prediction. An exciting algorithmic question for
further studies will be to consider kernels on graphs with continuous or high-dimensional node
labels and their efficient computation.
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