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Abstract

In this article, we propose a family of efficient kernels farde graphs with discrete node la-
bels. Key to our method is a rapid feature extraction schemsedon the Weisfeiler-Lehman test
of isomorphism on graphs. It maps the original graph to a eecgl of graphs, whose node at-
tributes capture topological and label information. A finaif kernels can be defined based on this
Weisfeiler-Lehman sequence of graphs, including a higfflgient kernel comparing subtree-like
patterns. Its runtime scales only linearly in the numberdges of the graphs and the length of
the Weisfeiler-Lehman graph sequence. In our experimaviuation, our kernels outperform
state-of-the-art graph kernels on several graph clasifithenchmark data sets in terms of accu-
racy and runtime. Our kernels open the door to large-scadkcagions of graph kernels in various
disciplines such as computational biology and social ngtwoalysis.
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1. Introduction

Graph-structured data is becoming more and more abundant: examplesiat@stworks, protein
or gene regulation networks, chemical pathways and protein structurése growing body of
research in program flow analysis. To analyze and understand thisod@taeeds data analysis
and machine learning methods that can handle large-scale graph datacsdtstance, a typical
problem of learning on graphs arises in chemoinformatics: In this probienisogiven a large set
of chemical compounds, represented as node- and edge-labeléd,ghegt have a certain function
(e.g., mutagenicity or toxicity) and another set of molecules that do not hesviitittion. The task
then is to accurately predict whether a new, previously unseen moleculexhibit this function
or not. A common assumption made in this problem is that molecules with similar strinctuee
similar functional properties. The problem of measuring the similarity of graptherefore at the
core of learning on graphs.

There exist many graph similarity measures based on graph isomorphistatedreoncepts
such as subgraph isomorphism or the largest common subgraph. Pdssitigst natural measure
of similarity of graphs is to check whether the graphs are topologically idénti is, isomor-
phic. This gives rise to a binary similarity measure, which equals 1 if the graphisomorphic,
and 0 otherwise. Despite the idea of checking graph isomorphism beingu#ivé) no efficient
algorithms are known for it. The graph isomorphism problem is in NP, bubbas neither proven
NP-complete nor found to be solved by a polynomial-time algorithm (Garey amalsdn, 1979,
Chapter 7).

Subgraph isomorphism checking is the analogue of graph isomorphisrkirttpéc a setting
in which the two graphs have different sizes. Unlike the graph isomorppistiiem, the problem
of subgraph isomorphism has been proven to be NP-complete (Garelphnsgon, 1979, Section
3.2.1). A slightly less restrictive measure of similarity can be defined basteeaize of the largest
common subgraph in two graphs, but unfortunately the problem of findindatgest common
subgraph of two graphs is NP-complete as well (Garey and Johnsp®, $6ction 3.3).

Besides being computationally expensive or even intractable, similarity nesabased on
graph isomorphism and its variants are too restrictive in the sense théisgnape to be exactly
identical or contain large identical subgraphs in order to be deemed simildrelsg measures.
More flexible similarity measures, based on inexact matching of graphes ldesan proposed in the
literature. Graph comparison methods based on graph edit distance® (@uwhkllermann, 1983;
Neuhaus and Bunke, 2005) are expressive similarity measures tingpe topology, as well as
node and edge labels of graphs, but they are hard to parameterizevaivé golving NP-complete
problems as intermediate steps. Another type of graph similarity measures, logpgsignment
kernels (Féhlich et al., 2005), arise from finding the best match between subsisatfigraphs.
However, these kernels are not positive semidefinite in general (\388)2

Recently proposed group theoretical approaches for represemiphgy the skew spectrum
(Kondor and Borgwardt, 2008) and the graphlet spectrum (Kontat.,e2009) can also be used
for defining similarity measures on graphs that are computable in polynomial Eimwever, the
skew spectrum is restricted to unlabeled graphs, while the graphlet wpecén be difficult to
parameterize on general labeled graphs.

Graph kernels have recently evolved into a rapidly developing brandbaofing on struc-
tured data. They respect and exploit graph topology, but restrict teessto comparing substruc-
tures of graphs that are computable in polynomial time. Graph kernels kheéggap between
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graph-structured data and a large spectrum of machine learning algodties kernel methods
(Schdlkopf and Smola, 2002), that include algorithms such as support vectirimes, kernel re-
gression, or kernel PCA (see Hofmann et al., 2008, for a receietwvexf kernel algorithms).

Informally, a kernel is a function of two objects that quantifies their similaritgtMd@matically, it
corresponds to an inner product in a reproducing kernel Hilbedss(Zclidlkopf and Smola, 2002).
Graph kernels are instances of the family of so-called R-convolutioreleby Haussler (1999).
R-convolution is a generic way of defining kernels on discrete compoujettisioy comparing all
pairs of decompositions thereof. Therefore, a new type of decomposfteograph results in a new
graph kernel.

Given a decomposition relatioR that decomposes a graph into any of its subgraphs and the
remaining part of the graph, the associated R-convolution kernel will aoergdl subgraphs in two
graphs. However, thiall subgraphskernel is at least as hard to compute as deciding if graphs are
isomorphic (Girtner et al., 2003). Therefore one usually restricts graph kernelsnipare only
specific types of subgraphs that are computable in polynomial runtime.

1.1 Review of Graph Kernels

Before we review graph kernels from the literature, we clarify our tertogyo We define a grapG
as a triplet'VV,E, ¢), whereV is the set of vertices; is the set of undirected edges, ahd/ — X is
a function that assigns labels from an alphabé nodes in the graph.The neighbourhood\(v)
of a nodev is the set of nodes to whichis connected by an edge, thati§(v) = {V|(v,V) € E}.
For simplicity, we assume that every graph hasdesmedges, and a maximum degreedofThe
size of G is defined as the cardinality bf.

A walk is a sequence of nodes in a graph, in which consecutive nodesoanected by an
edge. A path is a walk that consists of distinct nodes only{robted) subtrees a subgraph of
a graph, which has no cycles, but a designated root node. A sulft@ean thus be seen as a
connected subset of distinct nodes of G with an underlying tree strudtihesheight of a subtree is
the maximum distance between the root and any other node in the subtteses thesnotion of walk
extends the notion of path by allowing nodes to be equal, the notion of ssilmiaeebe extended
to subtree patterngalso calledree-walks Bach, 2008), which can have nodes that are equal (see
Figure 1). These repetitions of the same node are then treated as distiest sach that the pattern
is still a cycle-free tree. Note that all subtree kernels compare subditéernsin two graphs, not
(strict) subtrees.

Several different graph kernels have been defined in machine lgavhich can be categorized
into three classes: graph kernels based on walks (Kashima et al., 2868e6Get al., 2003) and
paths (Borgwardt and Kriegel, 2005), graph kernels based on limitedssbgraphs (Hoath et al.,
2004; Shervashidze et al., 2009), and graph kernels based oaesphtterns (Ramon anda@ner,
2003; Male and Vert, 2009).

The first class, graph kernels on walks and paths, compute the numbeatcifing pairs of
random walks (resp. paths) in two graphs. The standard formulatioreafitidom walk kernel,
based on the direct product graph of two graphs, is computakiéty for a pair of graphs (Grtner
et al., 2003). However, the same problem can be stated in terms of Kemngidducts that can
be exploited to bring down the runtime complexity@n?) (Vishwanathan et al., 2010). For a

1. An extension of this definition and of our results to graphs with discraje &bels is straightforward, but omitted
for clarity of presentation.
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Figure 1: A subtree pattern of height 2 rooted at the node 1. Note thétiepe of nodes in the
unfolded subtree pattern on the right.

computer vision application, Harchaoui and Bach (2007) have prdmsignamic programming-
based approach to speed up the computation of the random walk ketraglthmicost of considering
walks of fixed size. Suard et al. (2005) and Vert et al. (2009) mtesther applications of random
walk kernels in computer vision. Méhet al. (2004) have proposed extensions of marginalized
graph kernels (Kashima et al., 2003) for a chemoinformatics application: the authors relabel
vertices of graphs using the Morgan index (Morgan, 1965), whicleas®s the specificity of labels
by augmenting them with information on the number of walks starting at a nodehareby also
helps reduce the runtime, as fewer vertices will match. The shortest paitl by Borgwardt and
Kriegel (2005) counts pairs of shortest paths having the same sauwiicgirk labels and the same
length in two graphs. The runtime of this kernel scale®a#).

The second class, graph kernels based on limited-size subgraphdemkkrnels based on so-
calledgraphlets which represent graphs as counts of all types of subgraphs ok iZ8,4,5}.
There exist efficient computation schemes for these kernels basednptirgpor exploitation of
the low maximum degree of graphs (Shervashidze et al., 2009), butappleto unlabeled graphs
only. Cyclic pattern kernels (Hoath et al., 2004) count pairs of matching cyclic patterns in two
graphs. Computing this kernel for a general graph is unfortunately@g- however there exist
special cases where the kernel can be efficiently computed. Thd,kewently proposed by Costa
and De Grave (2010), can also be classified in this category: It coussiddl pairs of rooted
subgraphs containing nodes up to a certain distance from the root, tseofaghich are located at
a certain distance from each other, in two graphs.

The first kernel from the third class, subtree kernels, was defin&hbyon and @rtner (2003).
Intuitively, to compare graph& and G/, this kernel iteratively compares all matchings between
neighbours of two nodeg from G andV from G'. In other words, for all pairs of nodesfrom
G andV from G/, it counts all pairs of matching substructures in subtree patterns rooteanat
V. The runtime complexity of the subtree kernel for a data sét gfaphs isO(N?n?h 49). For a
detailed description of this kernel see Section 3.2.2.

The subtree kernels by Matand Vert (2009) and Bach (2008) refine the Rama@nti@r kernel
for applications in chemoinformatics and hand-written digit recognition. Bathé\dnd Vert (2009)
and Bach (2008) propose to consideary subtrees with at mostchildren per node. This restricts
the set of matchings to matchings of upataodes, but the runtime complexity is still exponential
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in this parametea, which both papers describe as feasible on small graphs (with approkirgate
nodes on average) with many distinct node labels.

It is a general limitation of all the aforementioned graph kernels that thdg poarly to large,
labeled graphs with more than 100 nodes: In the worst case, none obtiaenbetter tha®(n®).
The efficient comparison of large, labeled graphs remained an unsohaiénge for almost a
decade. We present a general definition of graph kernels that eassagpmany previously known
graph kernels, and instances of which are efficient to compute for boéheled and discretely
labeled graphs with thousands of nodes next. Moreover, in terms atpoedaccuracy in graph
classification tasks its instances are competitive with or outperform otheiodttite-art graph ker-
nels.

The remainder of this article is structured as follows. In Section 2, we ithesitre Weisfeiler-
Lehman isomorphism test that our main contribution is based on. In Sectioa 8escribe what
we call the Weisfeiler-Lehman graphs and our proposed generai geapels based on them, fol-
lowed by some examples. In Section 4, we compare these kernels to eaglasthell as to a set
of five other state-of-the-art graph kernels. We report results omekeomputation runtime and
classification accuracy on graph benchmark data sets. Section 5 sunsoanz®ntributions.

2. The Weisfeiler-Lehman Test of Isomorphism

Our graph kernels use concepts from the Weisfeiler-Lehman test of ipbmm (Weisfeiler and
Lehman, 1968), more specifically its 1-dimensional variant, also knowmais€e' vertex refine-
ment”. Assume we are given two grap@sand G’ and we would like to test whether they are
isomorphic. The 1-dimensional Weisfeiler-Lehman test proceeds in itesatidrich we index by
and which comprise the steps given in Algorithm 1.

The key idea of the algorithm is to augment the node labels by the sortedrsad@fabels of
neighbouring nodes, and compress these augmented labels into neviakséls: These steps are
then repeated until the node label set€Gfnd G’ differ, or the number of iterations reaches
See Figure 2, a-d, for an illustration of these steps (note however, thavthgraphs in the figure
would directly be identified as hon-isomorphic by the Weisfeiler-Lehman teshedr label sets are
already different in the beginning).

Sorting the set of multisets allows for a straightforward definition and implementatib for
the compression of labels in step 4: one keeps a counter variabletfat records the number
of distinct strings thaff has compressed beford. assigns the current value of this counter to a
string if an identical string has been compressed before, but whemoparers a new string, one
increments the counter by one ahdssigns its value to the new string. The sorted order of the
set of multisets guarantees that all identical strings are mapped to the samernbedause they
occur in a consecutive block. However, note that the sorting of thef setithisets is not required
for defining f. Any other injective mapping will give equivalent results. The alphableas to be
sufficiently large forf to be injective. For two graph&| = 2n suffices.

The Weisfeiler-Lehman algorithm terminates after step 4 of iteratiofl; (v)|v e V} # {l;(V)]|
vV € V'}, that is, if the sets of newly created labels are not identic& endG'. The graphs are
then not isomorphic. If the sets are identical aftaterations, it means that eith€ andG' are
isomorphic, or the algorithm has not been able to determine that they areonmarjzhic (see Cai
et al., 1992, for examples of graphs that cannot be distinguished byldgoistlam or its higher-
dimensional variants). As a side note, we mention that the 1-dimensionaléiMaidfehman al-
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Algorithm 1 One iteration of the 1-dim. Weisfeiler-Lehman test of graph isomorphism
1: Multiset-label determination
e Fori =0, setM;(v) := lo(V) = £(v). ?
e Fori > 0, assign a multiset-lab#;(v) to each node in G andG’ which consists of the
multiset{li_1(u)|ju € A(v)}.
2: Sorting each multiset
e Sort elements iM;(v) in ascending order and concatenate them into a s§{ng
e Addli_1(v) as a prefix tcs (v) and call the resulting string(v).
3: Label compression
e Sort all of the strings; (v) for all vfrom G andG’ in ascending order.
e Map each stringi(v) to a new compressed label, using a functfor®* — X such that
f(s(v)) = f(s(w)) if and only if 5(v) = s (w).
4: Relabeling
e Setli(v) := f(s(v)) for all nodes inG andG'.

gorithm has been shown to be a valid isomorphism test for almost all gr8aitsi(and Kucera,
1979).

Note that in Algorithm 1 we used the same node labeling functiols. . ., |, for both G and
G’ in order not to overload the notation. We will continue using this notation throuigthe paper
and assume without loss of generality that the domain of these funétigns ., |, is the set of all
nodes in our data set of graphs, which corresponds i/’ in the case of Algorithm 1.

2.1 Complexity

The runtime complexity of the 1-dimensional Weisfeiler-Lehman algorithm Wwiiterations is
O(hm). Defining the multisets in step 1 for all nodes is @(m) operation. Sorting each mul-
tiset is anO(m) operation for all nodes. This efficiency can be achieved by usingttmusort,
which is an instance of bucket sort, due to the limited range of the elements wiultiset. The
elements of each multiset are a subse{ bfs(v))|v € V}. For a fixedi, the cardinality of this
set is upper-bounded hy, which means that we can sort all multisetsOtm) by the following
procedure: We assign the elements of all multisets to their correspondikgtbuecording which
multiset they came from. By reading through all buckets in ascending asecan then extract
the sorted multisets for all nodes in a graph. The runtin@®(is) as there ar®(m) elements in the
multisets of a graph in iteratian Sorting the resulting strings is of time complex@ym) via radix
sort (see Mehlhorn, 1984, \Vol. 1, Section I1.2.1). The label comjesequires one pass over all
strings and their characters, thatd$m). Hence all these steps result in a total runtimégfim)
for h iterations.

2.2 Link with Subtree Patterns

Note that the compressed labéls/) correspond to subtree patterns of heigihvoted atv (see
Figure 1 for an illustration of subtree patterns).

2. For unlabeled graphs, node lab®g(v) := lp(v) can be initialized with letters corresponding one to one to node

degreeg AL(V)].
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3. The General Weisfeiler-Lehman Kernels

In this section, we first define the Weisfeiler-Lehman graph sequentthargeneral graph kernels
based on them. We then present three instances of this kernel, the Welsébilean subtree kernel
(Section 3.2), the Weisfeiler-Lehman edge kernel (Section 3.3), andeisfaier-Lehman shortest
path kernel (Section 3.4).

3.1 The Weisfeiler-Lehman Kernel Framework

In each iteration of the Weisfeiler-Lehman algorithm (see Algorithm 1), we get a new labéliug

for all nodesv. Recall that this labeling is concordant@andG’, meaning that if nodes i® andG’
have identical multiset labels, and only in this case, they will get identical nesidaTherefore, we
can imagine one iteration of Weisfeiler-Lehman relabeling as a functidhE, li)) = (V,E,li11)
that transforms all graphs in the same manner. Notertlo#pends on the set of graphs that we
consider.

Definition 1 Define théWeisfeiler-Lehman grapht height i of the graph G= (V,E,¢) = (V,E, lo)
as the graph G= (V,E, ;). We call the sequence of Weisfeiler-Lehman graphs

{GOa Gla LR Gh} — {(Va Ev IO)a (Vu Ev |1)7 LR (V7 E) Ih)}7
where G = G and b = ¢, theWeisfeiler-Lehman sequencg to height h of G.

G is the original graphG; = r(Gp) is the graph resulting from the first relabeling, and so on. Note
that neitheV, nor E ever change in this sequence, but we define it as a sequence of gatipér
than a sequence of labeling functions for the sake of clarity of definitiaigdhow.

Definition 2 Let k be any kernel for graphs, that we will call tbase kernelThen the Weisfeiler-
Lehman kernel with h iterations with the base kernel k is defined as

K (G, G) = K(Go, Gy) +k(G1,G) + ...+ K(Gn, G, (1)

where h is the number of Weisfeiler-Lehman iterations &8¢l ...,Gn} and{Gy,...,G}} are the
Weisfeiler-Lehman sequences of G arideSpectively.

Theorem 3 Let the base kernel k be any positive semidefinite kernel on grapten tiia corre-
sponding Weisfeiler-Lehman kerné{ﬂ)Lkis positive semidefinite.

Proof Let ¢ be the feature mapping corresponding to the keknel
k(Gi,G) = (9(Gi), 9(G)))-

We have _ ‘ _ _
k(Gi,G) =k(r'(G),r'(G) = (¢(r'(G)), o(r'(G)).
Let us define the feature mappiggG) as@(r'(G)). Then we have

k(Gi,Gi) = (W(G), w(G)),
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hencek is a kernel orG andG’ and w)l_ is positive semidefinite as a sum of positive semidefinite
kernels.
|

This definition provides a framework for applying all graph kernels thiad tato account dis-
crete node labels to different levels of the node-labeling of graphs) the original labeling to
more and more fine-grained labelings for growimg This enriches the set of extracted features.
For example, while the shortest path kernel counts pairs of shortest withthe same distance
between identically labeled source and sink nodes on the original griaph, count pairs of
shortest paths with the same distance between the roots of identical swuditeragpof height 1 on
Weisfeiler-Lehman graphs with= 1.

For some base kernels one might be able to exploit the fact that the graptusdrdoes not
change over the Weisfeiler-Lehman sequence to do some computationsioalinstead of repeat-
ing it h times. One example of such a base kernel is the shortest path kerneloreassipaths in
a graphG are the same as shortest paths in corresponding Weisfeiler-Lehmdrs @apve can
precompute them. One should bear in mind that for graph kekn#iat depend on the size of
the alphabet of node labels, computk{@si, G/) will accordingly get increasingly expensive, or, in
some cases, cheaper, as a function of growing

Note that it is possible to put nonnegative real weightsnk(G;,G/), i ={0,1,...,h}, to obtain
a more general definition of the Weisfeiler-Lehman kernel:

KV (G, G') = agk(Go, Gp) + a1K(Gy, Gy) + ... + ank(Gh, Gh).

In this case,lq(,\r,')L will still be positive semidefinite, as a positive linear combination of positive
semidefinite kernels.

3.1.1 NoTE ONCOMPUTING WEISFEILER-LEHMAN KERNELS IN PRACTICE

In the inductive learning setting, we compute the kernel on the training sgtaphs. For any
test graph that we subsequently need to classify, we have to map it to theefepace spanned
by original and compressed labels occurred in the training set. For thiegeirwe will need to
maintain record of the data structures that hold the mappifgs:= f(s(v)) for each iteration
and each distinc (v). This requireD(Nmh memory in the worst case.

In contrast, in the transductive setting, where the test set is alreadynkwesvcan compute
the kernel matrix on the whole data set (training and test set) without havkegfothe mappings
mentioned above.

3.2 The Weisfeiler-Lehman Subtree Kernel

In this section we present the Weisfeiler-Lehman subtree kernel (&teédze and Borgwardt,
2009), which is a natural instance of Definition 2.

Definition 4 Let G and Gbe graphs. Defing; C Z as the set of letters that occur as node labels
at least once in G or Gat the end of the i-th iteration of the Weisfeiler-Lehman algorithm. Jget
be the set of original node labels of G and Gssume alk; are pairwise disjoint. Without loss of
generality, assume that evely = {0i1,..., 05} is ordered. Define a map ¢{G,G'} xZj =+ N
such that G, gjj) is the number of occurrences of the lettgy in the graph G.
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The Weisfeiler-Lehman subtree kernel on two graphs G dniitB h iterations is defined as:

h h h
k\(/\/)l_subtreéGv G/) = <(R(N)LsubtreéG) ) (R(N)LsubtreéG,))v 2)
where
h
(R(N)LsubtreéG) = (€o(G,001); - --,Co(G, 00\20\)7 -++,€n(G,0n1),- -, Cn(G, oh\ih\))v
and

h
(R(N)LsubtreéG/) = (CO(le 001); -+ CO(G/> 0-0|Zo\)> SRR Ch(le Ona), - - 7Ch(G,7 O-h\Zh\))'

That is, the Weisfeiler-Lehman subtree kernel counts comaniginal and compressed labels
in two graphs. See Figure 2 for an illustration.

Theorem 5 The Weisfeiler-Lehman subtree kernel on a pair of graphs G dnth®be computed
in time Qthm).

Proof This follows directly from the definition of the Weisfeiler-Lehman subtreenkeand the
runtime complexity of the Weisfeiler-Lehman test, as described in Section 2. [ |

The following theorem shows that (2) is indeed a special case of theal&Neisfeiler-Lehman
kernel (1).

Theorem 6 Let the base kernel k be a function counting pairs of matching node labdigoin
graphs:
k(G,G) = 2 S(L(v), £(V)),
vev vev/

whered is the Dirac kernel, that is, it id when its arguments are equal aBdotherwise. Then
h h

K (G,G) = kI 1 edG,G) for all G,G'.

Proof It is easy to notice that for eadte {0,1,...,h} we have

|Zi]

VGZ/V%// 3(li(v),l{(V)) = JZlCi(Gﬂij )& (G, aij).

Adding up these sums for dl {0,1,..., h} gives usk{ (G,G') = k\(,\'})LsubtregG,G’). |

3.2.1 GOMPUTING THE WEISFEILER-LEHMAN SUBTREE KERNEL ONMANY GRAPHS

To compute the Weisfeiler-Lehman subtree kerneNographs, we propose Algorithm 2, which
improves over the naivé\2-fold application of the kernel from Definition 4. We now process all
N graphs simultaneously and conduct the steps given in Algorithm 2 on eaph@ in each ofh
iterations.

As before 2 is assumed to be sufficiently large to alldvto be injective. In the case df graphs
andh iterations, & of sizeNn(h+ 1) suffices.
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1st iteration

Given labeled graphs G and G Result of steps 1 and 2: multiset-label determination and sorting
P2 LA B2
O ® @ 3 @113 G245 @135 G245
ONRO o @ ., C4a> 4D CAa> @3>,
G G G G
a b
Ist iteration Ist iteration
Result of step 3: label compression Result of step 4: relabeling
14 — 6 3245 —
23 — 41135 — 1N
235 —— 8 41235 —— 12
245 — 9 5234 —— 13

End of the 1st iteration
Feature vector representations of G and G’

¢’ (G)=(21,1,1,1,201011,01)

WLsubtree

(1) _
G = (1,21,1,1,1,1,0,1,1,0,1,7)
Counts of Counts of
original compressed
node labels node labels
O ne_ (D M N
kWLS“b”"'G(G’G )_<¢WLsubtree(G)’ ¢WLsubtree(G )>_1 1 :

e

Figure 2: lllustration of the computation of the Weisfeiler-Lehman subtreeekevith h = 1 for
two graphs. Herd1,2,...,13} € X are considered as letters. Note that compressed
labels denote subtree patterns: For instance, if a node has label 8, tins thaathere
is a subtree pattern of height 1 rooted at this node, where the root hrelamd its

neighbours have labels 3 and 5.

One way of implementing is to sort all neighbourhood strings using radix sort, as done in step
4 in Algorithm 1. The resulting complexity of this step would be linear in the sum efsthe of
the current alphabet and the total length of strings, th&(l8n+ Nm) = O(Nm). An alternative
implementation off would be by means of a perfect hash function.
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Algorithm 2 One iteration of the Weisfeiler-Lehman subtree kernel catagion onN graphs
1: Multiset-label determination
e Assign a multiset-labe¥l; (v) to each node in G which consists of the multiset
{lia(u)lue A(V)}.
2: Sorting each multiset
e Sort elements itM;(v) in ascending order and concatenate them into a s§{ng
e Addli_1(v) as a prefix tcs (v).
3: Label compression
e Map each stringi(v) to a compressed label using a hash funcfiorr* — X such that
f(s(v)) = f(si(w)) ifand only if 5 (v) = si(w).
4: Relabeling
e Setli(v) := f(s(v)) for all nodes inG.

Theorem 7 For N graphs, the Weisfeiler-Lehman subtree kernel with h iterations opaas of
these graphs can be computed itNBIm-+ N2hn).

Proof Naive application of the kernel from Definition 4 for computing ldn< N kernel matrix
would require a runtime dd(N2hm). One can improve upon this runtime complexity by computing
ﬁ{subtreeexplicitly for each graph and only then taking pairwise inner products.

Step 1, the multiset-label determination, still requigslm). Step 2, the sorting of the elements
in each multiset, can be done via a joint bucket sort (counting sort) of mlgstrrequiringO(Nn+
Nm) time.

The effort of computinmsc)l_subtreeon allN graphs irhiterations is thef©(Nhm), assuming that
m > n. To get all pairwise kernel values, we have to multiply all feature vectengh requires a
runtime ofO(N2hn), as each grap has at moshn non-zero entries iﬂ)LsubtreéG)' In Section
4.1, we empirically show that the first tedlthmdominates the overall runtime in practice. MW

While our Weisfeiler-Lehman subtree kernel matches neighbourhoonisdefs in a graph ex-
actly, one could also think of other strategies of comparing node neightrmdshand still retain
the favourable runtime of our graph kernel. In research that was pellis parallel to ours, Hido
and Kashima (2009) present such an alternative kernel based emeahbourhoods which uses
hash functions and logical operations on bit-representations of nodks labd which also scales
linearly in the number of edges. The Morgan index (Morgan, 1965) ithenavay of summarizing
information contained in the neighbourhood of a node, and has beemudé¢dhe et al. (2004) in
the context of graph kernels.

3.2.2 THE RAMON-GARTNER SUBTREE KERNEL

Description. The first subtree kernel on graphs was defined by Ramon &@nth& (2003). The
Ramon-Grtner subtree kernel with subtree heigitompares all pairs of nodes from grapghs-
(V,E,¢) andG' = (V',E’,¢) by iteratively comparing their neighbourhoods:

KI(G.G)) = > 3 kean(wV),
Ve cV/
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where

B 3(£(v),L(V)), ifh=0
ran(v V) = { MAB(U(Y), (V) Srentu) M) crkran-1(ww), i h>0,

dis an indicator function that equals 1 if its arguments are equal, 0 otheiwiaadA,, are weights
associated with nodasandVv/, and

MV = {Rg N (V) x (V)| (V(u,U), ww) € R:u=we U =w)
ACY(u,U) € R: £(u) :E(u’))}. 3)

Said differently, M (v,V') is the set of exact matchings of subsets of the neighbourhoods of
andV. Each elemenR of M (v,V) is a set of pairs of nodes from the neighbourhoods efV
andv € V' such that nodes in each pair have identical labels and no node is coritameck than
one pair. Thus, intuitivelykrg iteratively considers all matching® (v,V') between neighbours of
two identically labeled nodesfrom G andv from G'. Taking the parameteds, andA, equal to a
single parametex results in weighting each pattern hyaised to the power of the number of nodes
in the pattern.

Complexity. The runtime complexity of the subtree kernel for a pair of graphd(is’h4d),
including a comparison of all pairs of node®), and a pairwise comparison of all matchings in
their neighbourhoods i®(4%), which is repeated ih iterations.h is a multiplicative factor, not an
exponent, since one can implement the subtree kernel via dynamic progrgnstairiing withk;
and computind, from k,_1. For a data set dfl graphs, the resulting runtime complexity is then in
O(N?n?h4%).

3.2.3 UNK TO THE WEISFEILER-LEHMAN SUBTREE KERNEL

The Weisfeiler-Lehman subtree kernel can be defined in a recuish®oh which elucidates its
relation to the Ramon-&tner kernel.

Theorem 8 The kernel FQ% defined as

h
KEL(G,G') = ; ; Kreci (V,V), (4)
i=0ve cV’/

where
O(L(v),L(V)), ifi=0
krec,i(vv\/) = { kl’eC.,ifl(Vv\/) ma)ﬁ?eM(v,v’) H(WN\/)GR krec,ifl(WN\/)a ifi >0and M a 0 (5)
0, ifi>0andM =0,
0 is the indicator function again, and
M (vv) ={RC N(W) x N(V)| IRl = [ (W)] = | A(V)]
AV(u ), (ww)eRiu=we U =w)A(V(uU) eR:4(u) = E(u/))}, (6)

is equivalent to the Weisfeiler-Lehman subtree kerﬁ]@}fbtree
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In other words, M (v,V') is the set of exact matchings of the neighbourhoods afdV. It is
nonempty only in the case where the neighbourhoodsaoidv have exactly the same size and the
multisets of labels of their neighboufg(u)|u € AL(v)} and{¢(U)|U € A(V)} are identical. Note
thatkeeci (v, V') only takes binary values: it evaluates to 1 if the subtree patterns of heigbted at
vandV are identical, and to O otherwise.

Proof We prove this theorem by induction over
Induction initialisationh = 0:

[Zol
0 0 0
k\(N)Lsubtree: <(R(/\/)Lsubtree£G)v(R(/\/)LsubtreéG)> - 2100(67 GOj)Co(G,,O'oj) =
J:

=3 Y (L), (V) = ket,
VEV VeV
whereX is the initial alphabet of node labels ang(G, oo;) is the number of occurrences of the

letterap; as a node label its. The equality follows from the definitions 6ol andk\(,\,h)l_Subtree

Induction stegh — h+1: Assume thak\(,\r,’)Lsubtree: kﬁ,?% Then
(h+1) i
ec = = krec,h+l<V7\/) + kreC,i(V7\/) = (7)
veZ/ ev’ i;v; eV’
|zh+1‘ , (h) (h+1)
- z Ch+1(G70h+1yj)Ch+l(G 70h+1,j) + I(WLsubtree: Lsubtree (8

=1

where the equality of (7) and (8) follows from the fact thatn.1(v,V') = 1 if and only if the labels
and neigbourhoods ofandV are identical, that is, if (Sh+1(V)) = f(Shta(V)). [ |

Theorem 8 highlights the following differences between the Weisfeileraghand the Ramon-
Gartner subtree kernels: In Equation (4), Weisfeiler-Lehman consadlessibtrees up to heigi,
whereas the Ramon&gner kernel looks at subtrees of exactly heightn Equations (5) and (6),
the Weisfeiler-Lehman subtree kernel checks whether the neighbmislodv andv' match exactly,
while the Ramon-@rtner kernel considers all pairs of matching subsets of the neightadstof
v andV in Equation (3). In our experiments, we examine the empirical differenetgden these
two kernels in terms of runtime and prediction accuracy on classificatiorhbsark data sets (see
Section 4.2).

3.3 The Weisfeiler-Lehman Edge Kernel

The Weisfeiler-Lehman edge kernel is another instance of the Weisliglantan kernel framework.
In the case of graphs with unweighted edges, we consider the bas¢ tkextrcounts matching pairs
of edges with identically labeled endpoints (incident nodes) in two graptasther words, the base
kernel is defined as

ke = (¢e(G), ¢(G)),

where@:(G) is a vector of numbers of occurrences of pdasb), a,b € X, which represent or-
dered labels of endpoints of an edgeGn Denoting(a,b) and (&, b’) the ordered labels of end-
points of edge® and€ respectively, an® the Dirac kernelkg can equivalently be expressed as
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Seck Sece 0(a,@)0(b,b'). If the edges are weighted by a functianthat assigns weights, the
base kerneke can be defined aSq.g S ece 0(a,a)d(b, b')ky(W(e),w(€)), whereky is a kernel
comparing edge weights.

Following (1), we have

Kol edge= ke (Go. Gb) + ke(G1, GY) + ... + ke (Gn, Gf).

3.3.1 NoTE ON COMPUTATIONAL COMPLEXITY

If the edges are not weighted or labeled, the number of possible ediyeefean each iteration
equals the number of distinct ordered pdash), that is,w. It is easy to notice by looking
at the Algorithm 1 that for eache {0,...,h— 1}, we haveZ;| < |Z;1|. Therefore, if we compute
the edge kernel by first explicitly computing (G) for eachG in the data set, the computation will
become increasingly expensive in each iteratiohthe Weisfeiler-Lehman relabeling.

If edges are weighted and we use any general kernel to compare ighits; computing the
feature map explicitly may not be possible or practical any more. In this dasdwernel can be
computed by comparing edges pairwise in each pair of graphs. Assumirtgeheernel on a pair
of weights can be computed @(1), this results inO(N2n?) operations per Weisfeiler-Lenman
iteration.

Computing the feature map explicitly can also become problematic if the alphabeetiszpro-
hibitively large. In this case, one can either compute the kernel via paiceisparisons of edges in
each pair of graphs as abov@({N’n?) per iteration), or via the construction of the explicit feature
map for each pair of graphs separately, potentially yielding smaller alphap#tan considering
the whole data set df graphs at once.

3.4 The Weisfeiler-Lehman Shortest Path Kernel

Another example of the general Weisfeiler-Lehman kernels that we amisidhe Weisfeiler-
Lehman shortest path kernel. Here we use a node-labeled shortedtepa¢h (Borgwardt and
Kriegel, 2005) as the base kernel.

In the particular case of graphs with unweighted edges, we consideasieekierneksp of the
form ksp(G,G') = (@sp(G), psp(G')), wheregsp(G) (resp.@sp(G')) is a vector whose components
are numbers of occurrences of triplets of the fg¢ayb, p) in G (resp.G’), wherea, b € X are ordered
endpoint labels of a shortest path gmd Ny is the shortest path length.

According to (1), we have

k\(I\rl])l_ shortest path— ksp(Go, G()) + ksp(Ga, Gél) + ...+ ksp(Ghn, G;])

3.4.1 NoTE ON COMPUTATIONAL COMPLEXITY

Computing shortest paths between all pairs of nodes in a graph can berdoxn®) using the
Floyd-Warshall algorithm. Consequently, fidr graphs, the complexity is dd(Nr®). This step
does not have to be repeated for every Weisfeiler-Lehman iteratiorg égpblogy of a graph does
not change across the Weisfeiler-Lehman sequence. In case edgex @eighted, shortest paths
are determined in terms of geodesic distance and path lengths are integamte the number of
distinct shortest path lengths occurring in the data set of grapBs as
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Let us first consider the Dirad®) kernel on the shortest path lengths, which means that the
similarity of two paths in two graphs equals 1 if they have exactly the same lendtidamntically
labeled endpoints and 0 otherwise. Then, in iteraitiohthe Weisfeiler-Lehman relabeling, we can
bound the number of features, triplégsb, p) wherea, b € |Z;| are ordered start and end node labels
andp € Ny the shortest path length, @WP As || < |Zj44] foreachi € {0,...,h—1}, ifwe
compute the shortest path kernel by first explicitly computpgg( G) for eachG in the data set, the
computation will get increasingly expensive in each iteration, as in the ¢askge kernels (Section
3.3).

Similarly to the Weisfeiler-Lehman edge kernel, in a more general setting wirergo not
assume that edges are unweighted and use any kernel (not niégéissddirac kernel) on shortest
path lengths, or if the alphabet size gets prohibitively large, computing #teréemap explicitly
may become impossible or difficult. In this case, we can compute the kernehlyyazing shortest
path lengths pairwise in two graphs. Therefore, the runtime of compltip@si,G}) will not
depend ori any more. It will scale a®(n*) for each pair of graphs as we have to compare all pairs
of theO(n?) shortest path lengths, ag{Nn*) for the whole data set.

3.5 Other Weisfeiler-Lehman Kernels

In a similar fashion, we can plug other base graph kernels into our Weistfeitenan graph kernel
framework. As node labels are the only aspect that differentiate Werskeiteman graphs at dif-
ferentresolutiong(determined by the number of iterations), a clear requirement that the bass k
has to satisfy for the Weisfeiler-Lehman kernel to make sense is to exploitit@ks lan nodes. A
non-exhaustive list of possible base kernels not mentioned in prewatisrss includes the labeled
version of the graphlet kernel (Shervashidze et al., 2009), thenanealk kernel (Grtner et al.,
2003; Vishwanathan et al., 2010), and the subtree kernel by Ramagatiter (2003).

4. Experiments

In this section, we first empirically study the runtime behaviour of the Weisfeidtiman subtree
kernel on synthetic graphs (Section 4.1). Next, we compare the Weidfeitanan subtree kernel,
the Weisfeiler-Lenman edge kernel, and the Weisfeiler-Lehman shodéstkpernel to state-of-
the-art graph kernels in terms of kernel computation runtime and classifiatzuracy on graph
benchmark data sets (Section 4.2).

4.1 Runtime Behaviour of Weisfeiler-Lehman Subtree Kernel

Here we experimentally examine the runtime performance of the Weisfeilendekubtree kernel.

4.1.1 METHODS

We empirically compared the runtime behaviour of our two variants of the Vileisteehman sub-
tree (WL) kernel. The first variant computes kernel values pairwi€¥Mfhm). The second variant
computes the kernel values @ Nhm-+ N2hn) on the data set simultaneously. We will refer to the
former variant as the “pairwise” WL, and the latter as “global” WL.
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Figure 3: Runtime in seconds for kernel matrix computation on synthetic graging the pair-
wise (red, dashed) and the global (green, solid) computation schentes fd/eisfeiler-
Lehman subtree kernel (Default values: data setHizel0, graph sizeén = 100, subtree
heighth = 4, graph densitg = 0.4).

4.1.2 BEXPERIMENTAL SETUP

We assessed the behaviour on randomly generated graphs with tesfoectparameters: data set
sizeN, graph sizen, subtree heightt and graph densitg. The density of an undirected graphrof
nodes without self-loops is defined as the number of its edges dividathby1)/2, the maximal
number of edges. We kept 3 out of 4 parameters fixed at their defduéissand varied the fourth
parameter. The default values we used were 10Ifdr00 forn, 4 for h and Q4 for the graph density
c. In more detail, we varietll in range{10,100,1000}, nin {100,200,...,1000}, hin {2,4,8} and
cin {0.1,0.2,...,0.9}.

For each individual experiment, we generabédraphs withn nodes, and inserted edges ran-
domly until the number of edges reachjgzh(n — 1) /2]. We then computed the pairwise and the
global WL kernel on these synthetic graphs. We report CPU runtimescomds in Figure 3, as
measured in Matlab R2008a on an Apple MacPro with 3.0GHz Intel 8-Core WHBIRAM.

4.1.3 RESULTS

Empirically, we observe that the pairwise kernel scales quadratically withsgé sizeN. Interest-
ingly, the global kernel scales linearly with for the considered range df. TheN? sparse vector
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multiplications that have to be performed for kernel computation with global \WInat domi-
nate runtime here. This result on synthetic data indicates that the global Welkes attractive
scalability properties for large data sets.

When varying the number of nodager graph, we observe that the runtime of both WL kernels
scales quadratically with, and the global WL is much faster than the pairwise WL for large graphs.
This agrees with the fact that our kernels scale linearly with the numbegesguker graphm, which
is 0.4@ in this experiment.

We observe a different picture for the heighof the subtree patterns. The runtime of both
kernels grows linearly witl, but the global WL is more efficient in terms of runtime.

Varying the graph densitg, both methods show again a linearly increasing runtime, although
the runtime of the global WL kernel is much lower than the runtime of the pairwise W

Across all different graph properties, the global WL kernel fronctea 3.2.1 requires less
runtime than the pairwise WL kernel from Section 3.2. Hence the global Wiekés the variant
of our Weisfeiler-Lehman subtree kernel that we use on the followinghgctassification tasks.

4.2 Graph Classification

We compared the performance of the WL subtree kernel, the WL edgelkerd the WL shortest
path kernel to several other state-of-the-art graph kernels in termsndme and classification
accuracy on graph benchmark data sets.

4.2.1 DaTA SETS

We employed the following data sets in our experiments: MUTAG, NCI1, NGIENZYMES and
D&D. MUTAG (Debnath et al., 1991) is a data set of 188 mutagenic aromatihatetoaromatic
nitro compounds labeled according to whether or not they have a mutagéstt @i the Gram-
negative bacteriunsalmonella typhimurium NCI1 and NCI109 represent two balanced subsets
of data sets of chemical compounds screened for activity againstmaih-cell lung cancer and
ovarian cancer cell lines, respectively (Wale and Karypis, 2006h&ingt / / pubchem nchi . nl m
ni h. gov). ENZYMES is a data set of protein tertiary structures obtained from Barget al.
(2005) consisting of 600 enzymes from the BRENDA enzyme datababerf8eirg et al., 2004).
In this case the task is to correctly assign each enzyme to one of the 6 EQ¢bpkesses. D&D
is a data set of 1178 protein structures (Dobson and Doig, 2003). [iEatdin is represented by a
graph, in which the nodes are amino acids and two nodes are connecad:bge if they are less
than 6Angstroms apart. The prediction task is to classify the protein structuresrimjones and
non-enzymes. Note that nodes are labeled in all data sets.

Figure 4 shows the distributions of node numbers, edge numbers, amtdéythese data sets.

All of these data sets, as well as Matlab scripts for computing kernels usen axperiments,
can be downloaded fromit t p: // m ch. i s. t uebi ngen. npg. de/ M tar bei ter/ N no/ W./ .

4.2.2 BEXPERIMENTAL SETUP

On these data sets, we compared our Weisfeiler-Lehman subtree, Weisétiltean edge, and

Weisfeiler-Lehman shortest path kernels to the Ramantter kernelX = 1), as well as to several

state-of-the-art graph kernels for large graphs. Due to the large eruaftgraph kernels in the

literature, we could not compare to every single graph kernel, but teseptative instances of the
major families of graph kernels.

2555



SHERVASHIDZE, SCHWEITZER, VAN LEEUWEN, MEHLHORN AND BORGWARDT

MUTAG NCI1 ENZYMES D&D
0.1 0.1 0.1 0.1
(%)
(O]
'8 0.05 0.05 0.05 0.05
- L J
0 0 1 2 3 0 0 1 2 3 0 0 1 - 2 3 0 0 1 Mi““ 3
10° 100 10° 10 10° 100 10° 10 10° 100 10° 10 10° 100 10° 10
0.1 0.1 0.1 0.1
)
(]
[&))
S 0.05 0.05 0.05 0.05
N l "
0 0 1 2 3 4 0 0 1 2 3 4 0 0 .]‘.‘ 2 3 4 0 0 1 Zm 3 4
10° 10" 10° 10° 10 10° 10" 10° 10° 10 10° 10" 10° 10° 10 10° 10" 10° 10° 10
N 04 0.4 0.4 0.4
]
%;03 0.3 0.3 0.3
o 02 0.2 0.2 0.2
0O o1 0.1 0.1 0.1
0 0 0 0
1 5 10 15 2

0 1 5 10 15 20 1 5 10 15 20 1 5 10 15 20

Figure 4: The rows illustrate the distributions of node number, edge nuarbdegree in data sets
MUTAG, NCI1, ENZYMES and D&D. We omitted NCI109, as its node numbeged
number, and degree distributions are similar to those of NCI1.

From the family of kernels based on walks, we compared our new kerntiie fast geometric
random walk kernel by Vishwanathan et al. (2010) that counts commeteldlwvalks, and to the
p-random walk kernel that compares random walks up to lepgthtwo graphs (a special case of
random walk kernels Kashima et al., 2003r@er et al., 2003).

From the family of kernels based on limited-size subgraphs, we chosetans@sn of the
graphlet kernel by Shervashidze et al. (2009) that counts commoneddabeled connected sub-
graphs of size 3.

From the family of kernels based on paths, we compared to the shortestgrati by Borg-
wardt and Kriegel (2005) that counts pairs of labeled nodes with idésticatest path length.

Note that whenever possible, we used fast computation schemes basealiotly computing
the feature map (similar to that in Algorithm 2) before taking the inner produotder to speed up
kernel computation. In particular, we used this technique for computingesttgpath and graphlet
kernels. For connected 3-node graphlet kernels it is rather intuitive tgiimahe explicit feature
map: First, we have only 4 types of different graphlets with 3 nodes. risedor each type of
graphlet we can determine the number of possible labelings of the thres asdefunction of the
size of the node label alphabet. In the case of the shortest path kemekglicit feature map may
or may not exist. In our experiments, as edges were not weighted, Weheseumber of edges in a
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path as a measure of its length. Moreover, we used the Dirac kernebaestipath distances. This
allowed us to explicitly compute the feature map corresponding to the shoatedternel for each
graph in all data sets. We were able to compute the explicit feature mapspmmdéng to the WL
edge and WL shortest path up to and including 3 andh = 2 respectively on all data sets except
the largest one, D&D (which also has the largest original node label ladphdecause of the large
number of compressed labels. In the case of this data set, we used this@auge (resp. shortest
path) comparison scheme described in Sections 3.3 and 3.4.

We performed 10-fold cross-validation of C-Support Vector Machilassification using LIB-
SVM (Chang and Lin, 2001), using 9 folds for training and 1 for testing. paliameters of the
SVM were optimised on the training data set only. To exclude random efieétdéd assignments,
we repeated the whole experiment 10 times. We report average predictioraeies and standard
deviations in Tables 1 and 2.

We choseh for our Weisfeiler-Lehman subtree kernel by cross-validation on theirigadata
set forh € {0,1,...,10}, which means that we computed 11 different WL subtree kernel matrices
in each experiment. In the case of the WL edge and WL shortest pathisernveas chosen by
cross-validation foh € {0,1,2,3} andh € {0, 1,2} respectively. We reported the total runtime of
these computations¢tthe average per kernel matrix).

Note that all kernel matrices in Table 2 which needed more than 3 days tonmeuted on
one machine were computed on a cluster by distributing different block® d&deiimel matrix to be
computed to different nodes. The reported runtime is the sum of the runtegased to obtain
each block.

Proceeding in the same fashion as in the case of the Weisfeiler-Lehmaresbtnel, we
computed the Ramon-dBtner subtree and Weisfeiler-Lehman shortest path kernetts£di0, 1, 2}
and thep-random walk kernel fop € {1,...,10}. We computed the random walk kernel for
chosen from the s¢tLl0~2, 1073, ...,107°} for smaller data sets and did not observe a large variation
in the resulting accuracy. For this reason and because of the relatighlyrintime needed to
compute this kernel on larger data sets (see Table 2), wk agtthe largest power of 10 smaller
than the inverse of the squared maximum degree in the data set.

4.2.3 REsuLTs

In terms of runtime, the Weisfeiler-Lehman subtree kernel could easily gpaeen to graphs with
thousands of nodes. On D&D, subtree-patterns of height up to 10 wenpwted in 11 minutes,
while no other comparison method could handle this data set in less than halfiaThe shortest
path kernel, the WL edge kernel and the WL shortest path kernel veenpetitive to the WL
subtree kernel on smaller graphs (MUTAG, NCI1, NCI109, ENZY Mg} on D&D their runtime
degenerated to more than 23 hours for the shortest path kernel, to Bodalys WL edge kernel,
and to more than a year for the WL shortest path kernel. The Ramon andeG kernel was
computable on MUTAG in approximately 40 minutes, but it finished computation ire rtih@an a
month on ENZYMES and the computation took even longer time on larger datal$stsandom
walk kernel was competitive on MUTAG and ENZYMES in terms of runtime, boktmore than
a week on each of the NCI data sets and more than a month on D&D. The fatihéh@ndom
walk kernel was competitive on the smallest of our data sets, MUTAG, isumptising, as on this
data set one could also afford using kernels with exponential runtimk,agithe all paths kernel
(Gartner et al., 2003). The graphlet kernel was faster than our WLesuktzrnel on MUTAG and
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| Method/Data Sef| MUTAG [ NCI1 | NCI109 | ENZYMES [[D&D |
WL subtree]| 82.05 (-0.36) || 82.19 (= 0.18) [ 82.46 (£0.24) [| 52.22 (-1.26)[| 79.78 (-0.36)
WL edge | 81.06 ¢-1.95) || 84.37 (-0.30) || 84.49 (£0.20) | 53.17 (-2.04) || 77.95 (-0.70)
WL shortest path| 83.78 (-1.46) || 84.55 (0.36) | 83.53 (-0.30) | 59.05 (-1.05) || 79.43 (£0.55)
Ramon & Girtner|| 85.72 (£0.49) || 61.86 (-0.27) | 61.67 (-0.21) || 13.35 (£0.87) || 57.27 ¢-0.07)
p-random walk|| 79.19 (£1.09) || 58.66 (-0.28) | 58.36 (-0.94) || 27.67 (£0.95) || 66.64 (-0.83)
Random walk|| 80.72 (-0.38) || 64.34 (:0.27) || 63.51 ¢- 0.18) | 21.68 (-0.94) | 71.70 (£0.47)
Graphlet count| 75.61 (0.49) || 66.00 (-0.07) || 66.59 (-0.08) || 32.70 (1.20) || 78.59 (-0.12)
Shortest path| 87.28 (-0.55) || 73.47 (£0.11) || 73.07 (-0.11) || 41.68 (-1.79) || 78.45 (-0.26)

Table 1: Prediction accuracy-(standard deviation) on graph classification benchmark data sets

the NCI data sets, and about a factor of 3 slower on D&D. However, thigsezfcy came at a price,
as the kernel based on size-3 graphlets turned out to lead to pooaegtewrels on four data sets.

| Data Set| MUTAG | NCI1 || NCI109 || ENZYMES| D&D |
Maximum # nodes 28 111 111 126 5748
Average # nodeg§ 17.93 29.87 29.68 32.63 284.32
# labels 7 37 38 3 82
Number of graphs| 188 4110 4127 600 1178
WL subtree 6" 7'20" 721" 20" 11'0”
WL edge 3" 1’5" 58" 11” 3 days
WL shortest path 2" 2'20" 2'23" 13" 484 days
Ramon & Gartner| 40'6” 81 days| 81 days| 38days 103 days
p-random walk|| 4'42” 5days | 5days 10’ 4 days
Random walk 12" 9days | 9days 12'19” 48 days
Graphlet count 3" 127" 127" 25" 30'21”
Shortest path 2" 4'38" 4'39” 5” 23h 17'2"

Table 2: CPU runtime for kernel computation on graph classification bern&hata sets

On NCI1, NCI109, ENZYMES and D&D, the kernels from the Weisfeilehb®an framework
reached the highest accuracy. While on NCI1, NCI109, and D&D theltsesf all three WL
kernels were competitive with each other, on ENZYMES the WL shortestkeaittel dramatically
improved over the other two WL kernels. On D&D the shortest path and tbkérnels yielded
similarly good results, while on NCI1 and NCI109 the Weisfeiler-Lehman selkernel improved
by more than 8% the best accuracy attained by other methods. On MUTA®/Ltkernels reached
the third, the fourth and the fifth best accuracy levels among all method#derad.

The labeled size-3 graphlet kernel achieved low accuracy levelspera D&D. The random
walk and thep-random walk kernels, as well as the Ramoar@er kernel, were less competitive to
kernels that performed the best on data sets other than MUTAG.

It is worth mentioning that in the case of WL edge and WL shortest path leetthe values 2
and 3 ofh were almost always chosen by the cross-validation procedure, mehaintpe kernels
comparing edges and shortest paths on Weisfeiler-Lehman graphsitfgbeight systematically
improved the accuracy of the base kernel (correspondihgH®).
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To summarize, the WL subtree kernel turned out to be competitive in termstifeion all
smaller data sets, fastest on the large protein data set, and its accurdsyvengeecompetitive on
all data sets. The WL edge kernel performed slightly better than the WLesuk#rnel on three out
of five data sets in terms of accuracy. The WL shortest path kernelvachibe highest accuracy
level on two out of five data sets, and was competitive on the remaining data se

5. Conclusions

We have defined a general framework for constructing graph keomeigaphs with unlabeled or
discretely labeled nodes. Instances of our framework include a fasesukernel that combines
scalability with the ability to deal with node labels. Our kernels are competitive insteff accu-
racy with state-of-the-art kernels on several classification benchdeeksets, even reaching the
highest accuracy level on four out of five data sets. Moreover, mg@f runtime on large graphs,
instances of our kernel outperform other kernels, even the efficeenputation schemes for random
walk kernels (Vishwanathan et al., 2010) and graphlet kernels (8l@dze et al., 2009) that were
recently developed.

Our new kernels open the door to applications of graph kernels on leaghgin bioinformatics,
for instance, protein function prediction via detailed graph models of pretainture on the amino
acid level, or on gene networks for phenotype prediction. An excitingrigtgoic question for
further studies will be to consider kernels on graphs with continuous drdiigensional node
labels and their efficient computation.
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