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Abstract
We describe and analyze two stochastic methods forℓ1 regularized loss minimization problems,
such as the Lasso. The first method updates the weight of a single feature at each iteration while
the second method updates the entire weight vector but only uses a single training example at
each iteration. In both methods, the choice of feature or example is uniformly at random. Our
theoretical runtime analysis suggests that the stochasticmethods should outperform state-of-the-art
deterministic approaches, including their deterministiccounterparts, when the size of the problem
is large. We demonstrate the advantage of stochastic methods by experimenting with synthetic and
natural data sets.1
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1. Introduction

We present optimization procedures for solving problems of the form:

min
w∈Rd

1
m

m

∑
i=1

L(〈w,xi〉,yi)+λ‖w‖1 , (1)

where(x1,y1), . . . ,(xm,ym) ∈ ([−1,+1]d×Y )m is a sequence of training examples,L : Rd×Y →
[0,∞) is a non-negative loss function, andλ > 0 is a regularization parameter. This generic problem
includes as special cases the Lasso (Tibshirani, 1996), in whichL(a,y) = 1

2(a− y)2, and logistic
regression, in whichL(a,y) = log(1+exp(−ya)).

Our methods can also be adapted to deal with additional boxed constraints ofthe formwi ∈
[ai ,bi ], which enables us to use them for solving the dual problem of Support Vector Machine
(Cristianini and Shawe-Taylor, 2000). For concreteness, we focuson the formulation given in (1).

Throughout the paper, we assume thatL is convex in its first argument. This implies that (1) is a
convex optimization problem, and therefore can be solved using standard optimization techniques,
such as interior point methods. However, standard methods scale poorly with the size of the problem
(i.e., m andd). In recent years, machine learning methods are proliferating in data-laden domains
such as text and web processing in which data sets of millions of training examples or features are

1. An initial version of this work (Shalev-Shwartz and Tewari, 2009) appeared in ICML 2009.
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not uncommon. Since traditional methods for solving (1) generally scale very poorly with the size
of the problem, their usage is inappropriate for data-laden domains. In this paper, we discuss how to
overcome this difficulty using stochastic methods. We describe and analyze two practical methods
for solving (1) even when the size of the problem is very large.

The first method we propose is a stochastic version of the familiar coordinatedescent approach.
The coordinate descent approach for solvingℓ1 regularized problems is not new (as we survey below
in Section 1.1). At each iteration of coordinate descent, a single element ofw is updated. The only
twist we propose here regarding the way one should choose the next feature to update. We suggest
to choose features uniformly at random from the set[d] = {1, . . . ,d}. This simple modification
enables us to show that the runtime required to achieveε (expected) accuracy is upper bounded by

mdβ‖w⋆‖22
ε

, (2)

whereβ is a constant which only depends on the loss function (e.g.,β = 1 for the quadratic loss
function) andw⋆ is the optimal solution. This bound tells us that the runtime grows only linearly
with the size of the problem. Furthermore, the stochastic method we propose is parameter free and
very simple to implement.

Another well known stochastic method that has been successfully applied for loss minimization
problems, is stochastic gradient descent (e.g., Bottou and LeCunn, 2005; Shalev-Shwartz et al.,
2007). In stochastic gradient descent, at each iteration, we pick one example from the training set,
uniformly at random, and update the weight vector based on the chosen example. The attractiveness
of stochastic gradient descent methods is that their runtime do not depend at all on the number of
examples, and can even sometime decrease with the number of examples (see Bottou and Bousquet,
2008; Shalev-Shwartz and Srebro, 2008). Unfortunately, the stochastic gradient descent method
fails to produce sparse solutions, which makes the algorithm both slower andless attractive as
sparsity is one of the major reasons to useℓ1 regularization. To overcome this problem, two variants
were recently proposed. First, Duchi et al. (2008) suggested to replace theℓ1 regularization term
with a constraint of the form‖w‖1 ≤ B, and then to use stochastic gradient projection procedure.
Another solution, which uses the regularization form given in (1), has been proposed by Langford
et al. (2009) and is called truncated gradient descent. In this approach, the elements ofw that cross
0 after the stochastic gradient step are truncated to 0, hence sparsity is achieved. The disadvantage
of both Duchi et al. (2008) and Langford et al. (2009) methods is that, insome situations, their
runtime might grow quadratically with the dimensiond, even if the optimal predictorw⋆ is very
sparse (see Section 1.1 below for details). This quadratic dependence on d can be avoided if one
uses mirror descent updates (Beck and Teboulle, 2003) such as the exponentiated gradient approach
(Littlestone, 1988; Kivinen and Warmuth, 1997; Beck and Teboulle, 2003). However, this approach
again fails to produce sparse solutions. In this paper, we combine the idea of truncating the gradient
(Langford et al., 2009) with another variant of stochastic mirror descent, which is based onp-norm
updates (Grove et al., 2001; Gentile, 2003). The resulting algorithm both produces sparse solutions
and hasÕ(d) dependence on the dimension. We call the algorithm SMIDAS for “StochasticMIrror
Descent Algorithm made Sparse”.

We provide runtime guarantees for SMIDAS as well. In particular, for the logistic-loss and the
squared-loss we obtain the following upper bound on the runtime to achievingε expected accuracy:

O

(
d log(d)‖w⋆‖21

ε2

)

. (3)
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Comparing the above with the runtime bound of the stochastic coordinate descent method given
in (2) we note three major differences. First, while the bound in (2) depends on the number of
examples,m, the runtime of SMIDAS does not depend onmat all. On the flip side, the dependence
of stochastic coordinate descent on the dimension is better both because thelack of the term log(d)
and because‖w⋆‖22 is always smaller than‖w⋆‖21 (the ratio is at mostd). Last, the dependence on1

ε
is linear in (2) and quadratic in (3). Ifε is the same order as the objective value atw⋆, it is possible
to improve the dependence on 1/ε (Proposition 4). Finally, we would like to point out that while the
stochastic coordinate descent method is parameter free, the success of SMIDAS and of the method
of Langford et al. (2009), depends on a careful tuning of a learningrate parameter.

1.1 Related Work

We now survey several existing methods and in particular show how our stochastic twist enables us
to give superior runtime guarantees.

1.1.1 COORDINATE DESCENTMETHODSFOR ℓ1 REGULARIZATION

Following the Gauss-Siedel approach of Zhang and Oles (2001), Genkin et al. (2007) described a
coordinate descent method (called BBR) for minimizingℓ1 regularized objectives. This approach is
similar to our method, with three main differences. First, and most important, at each iteration we
choose a coordinate uniformly at random. This allows us to provide theoretical runtime guarantees.
We note that no theoretical guarantees are provided by Zhang and Oles (2001) and Genkin et al.
(2007). Second, we solely use gradient information which makes our algorithm parameters-free
and extremely simple to implement. In contrast, the Gauss-Siedel approach is more complicated
and involves second order information, or a line search procedure, ora trusted region Newton step.
Last, the generality of our derivation allows us to tackle a more general problem. For example, it
is easy to deal with additional boxed constraints. Friedman et al. (2010) generalized the approach
of Genkin et al. (2007) to include the case of elastic-net regularization. In a series of experiments,
they observed that cyclic coordinate descent outperforms many alternative popular methods such
as LARS (Efron et al., 2004), an interior point method calledl1lognet (Koh et al., 2007), and the
Lasso Penalized Logistic (LPL) program (Wu and Lange, 2008). However, no theoretical guarantees
are provided in Friedman et al. (2010) as well. Our analysis can partially explain the experimental
result of Friedman et al. (2010) since updating the coordinates in a cyclic order can in practice be
very similar to stochastic updates.

Luo and Tseng (1992) established a linear convergence result for coordinate descent algorithms.
This convergence result tells us that after an unspecified number of iterations, the algorithm con-
verges very fast to the optimal solution. However, this analysis is useless indata laden domains as
it can be shown that the initial unspecified number of iterations depends at least quadratically on the
number of training examples. In an attempt to improve the dependence on the size of the problem,
Tseng and Yun (2009) recently studied other variants of block coordinate descent for optimizing
‘smooth plus separable’ objectives. In particular,ℓ1 regularized loss minimization (1) is of this
form, provided that the loss function is smooth. The algorithm proposed by Tseng and Yun (2009)
is not stochastic. Translated to our notation, the runtime bound given in Tseng and Yun (2009) is
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of order2 md2 β‖w⋆‖22
ε . This bound is inferior to our runtime bound for stochastic coordinate descent

given in (2) by a factor of the dimensiond.

1.1.2 COORDINATE DESCENTMETHODSFOR ℓ1 DOMAIN CONSTRAINTS

A different, but related, optimization problem is to minimize the loss,1
m ∑i L(〈w,xi〉,yi), subject

to a domain constraint of the form‖w‖1 ≤ B. Many authors presented a forward greedy selection
algorithm (a.k.a. Boosting) for this problem. We refer the reader to Frank and Wolfe (1956), Zhang
(2003), Clarkson (2008) and Shalev-Shwartz et al. (2010). Theseauthors derived the upper bound
O
(
β‖w⋆‖21/ε

)
on the number of iterations required by this algorithm to find anε-accurate solution.

Since at each iteration of the algorithm, one needs to calculate the gradient ofthe loss atw, the
runtime of each iteration ismd. Therefore, the total runtime becomesO

(
mdβ‖w⋆‖21/ε

)
. Note

that this bound is better than the bound given by Tseng and Yun (2009), since for any vector inRd

we have‖w‖1 ≤
√

d‖w‖2. However, the boosting bound given above is still inferior to our bound
given in (2) since‖w⋆‖1≥ ‖w⋆‖2. Furthermore, in the extreme case we have‖w⋆‖21 = d‖w⋆‖22, thus
our bound can be better than the boosting bound by a factor ofd. Lemma 5 in Appendix A shows
that theiteration bound (not runtime) ofany algorithm cannot be smaller thanΩ(‖w⋆‖21/ε) (see
also the lower bounds in Shalev-Shwartz et al., 2010). This seems to imply thatanydeterministic
method, which goes over the entire data at each iteration, will induce a runtime which is inferior to
the runtime we derive for stochastic coordinate descent.

1.1.3 STOCHASTIC GRADIENT DESCENT ANDM IRROR DESCENT

Stochastic gradient descent (SGD) is considered to be one of the best methods for large scale loss
minimization, when we measure how fast a method achieves a certain generalization error. This
has been observed in experiments (Bottou, Web Page) and also has beenanalyzed theoretically by
Bottou and Bousquet (2008) and Shalev-Shwartz and Srebro (2008).

As mentioned before, one can apply SGD for solving (1). However, SGDfails to produce sparse
solutions. Langford et al. (2009) proposed an elegant simple modificationof the SGD update rule
that yields a variant of SGD with sparse intermediate solutions. They also provide bounds on the
runtime of the resulting algorithm. In the general case (i.e., without assuming lowobjective relative
to ε), their analysis implies the following runtime bound

O

(
d‖w⋆‖22X2

2

ε2

)

, (4)

whereX2
2 = 1

m ∑i ‖xi‖22 is the average squared norm of an instance. Comparing this bound with our
bound in (3), we observe that none of the bounds dominates the other, and their relative performance
depends on properties of the training set and the optimal solutionw⋆. Specifically, ifw⋆ has only
k≪ d non-zero elements and eachxi is dense (sayxi ∈ {−1,+1}d), then the ratio between the
above bound of SGD and the bound in (3) becomesdk log(d) ≫ 1. On the other hand, ifxi has only

k non-zeros whilew⋆ is dense, then the ratio between the bounds can bek
d log(d) ≪ 1. Although the

relative performance is data dependent, in most applications if one prefers ℓ1 regularization overℓ2

2. To see this, note that the iterations bound in Equation (21) of Tseng and Yun (2009) is:β‖w⋆‖2
2

εν , and using Equation
(25) in Section 6, we can set the value ofν to beν = 1/d (since in our case there are no linear constraints). The
complexity bound now follows from the fact that the cost of each iteration isO(d m).
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regularization, he should also believe thatw⋆ is sparse, and thus our runtime bound in (3) is likely
to be superior.3

The reader familiar with the online learning and mirror descent literature will not be surprised
by the above discussion. Bounds that involved‖w⋆‖1 and‖xi‖∞, as in (3), are well known and the
relative performance discussed above was pointed out in the context ofadditive vs. multiplicative
updates (see, e.g., Kivinen and Warmuth, 1997). However, the most popular algorithm for obtaining
bounds of the form given in (3) is the EG approach (Kivinen and Warmuth, 1997), which involves
the exponential potential, and this algorithm cannot yield intermediate sparse solutions. One of the
contributions of this paper is to show that with a different potential, which is called the p-norm
potential, one can obtain the bound given in (3) while still enjoying sparse intermediate solutions.

1.1.4 RECENT WORKS DEALING WITH STOCHASTIC METHODS FORLARGE SCALE

REGULARIZED LOSSM INIMIZATION

Since the publication of the conference version (Shalev-Shwartz and Tewari, 2009) of this paper,
several papers proposing stochastic algorithms for regularized loss minimization have appeared. Of
these, we would like to mention a few that are especially connected to the themes pursued in the
present paper. Regularized Dual Averaging (RDA) of Xiao (2010) uses a running average of all
the past subgradients of the loss function and the regularization term to generate its iterates. He
develops ap-norm RDA method that is closely related to SMIDAS. The theoretical boundsfor
SMIDAS andp-norm RDA are similar but the latter employs a more aggressive truncation schedule
that can potentially lead to sparser iterates.

SMIDAS deals withℓ1 regularization. The Composite Objective MIrror Descent (COMID) al-
gorithm of Duchi et al. (2010) generalizes the idea behind SMIDAS to deal with general regularizers
provided a certain minimization problem involving a Bregman divergence and the regularizer is ef-
ficiently solvable. Viewing the average loss in (1) leads to interesting connections with the area
of Stochastic Convex Optimization that deals with minimizing a convex function given access to
an oracle that can return unbiased estimates of the gradient of the convexfunction at any query
point. For various classes of convex functions, one can ask: What is the optimal number of queries
needed to achieve a certain accuracy (in expectation)? For developmentsalong these lines, please
see Lan (2010) and Ghadimi and Lan (2011), especially the latter since it deals with functions that
are the sum of a smooth and a non-smooth but “simple” (likeℓ1-norm) part. Finally, Nesterov
(2010) has analyzed randomized versions of coordinate descent forunconstrained and constrained
minimization of smooth convex functions.

2. Stochastic Coordinate Descent

To simplify the notation throughout this section, we rewrite the problem in (1) using the notation

min
w∈Rd

≡P(w)
︷ ︸︸ ︷

1
m

m

∑
i=1

L(〈w,xi〉,yi)

︸ ︷︷ ︸

≡C(w)

+λ‖w‖1 . (5)

3. One important exception is the large scale text processing application described in Langford et al. (2009) where the
dimension is so large andℓ1 is used simply because we cannot store a dense weight vector in memory.
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We are now ready to present the stochastic coordinate descent algorithm.The algorithm ini-
tializesw to be0. At each iteration, we pick a coordinatej uniformly at random from[d]. Then,
the derivative ofC(w) w.r.t. the jth element ofw, g j = (∇C(w)) j , is calculated. That is,g j =
1
m ∑m

i=1L′(〈w,xi〉,yi)xi, j , whereL′ is the derivative of the loss function with respect to its first argu-
ment. Simple calculus yields

L′(a,y) =

{

(a−y) for squared-loss
−y

1+exp(ay) for logistic-loss
. (6)

Next, a step size is determined based on the value ofg j and a parameter of the loss function denoted
by β. This parameter is an upper bound on the second derivative of the loss.Again, for our running
examples we have

β =

{

1 for squared-loss

1/4 for logistic-loss
. (7)

If there was no regularization, we would just subtract the step sizeg j/β from the current value of
w j . However, to take into account the regularization term, we further add/subtract λ/β from w j

provided we do not cross 0 in the process. If we do, we let the new valueof w j be exactly 0. This
is crucial for maintaining sparsity ofw. To describe the entire update succinctly, it is convenient to
define the following simple “thresholding” operation:

sτ(w) = sign(w)(|w|− τ)+ =







0 w∈ [−τ,τ]
w− τ w> τ
w+ τ w<−τ

.

Algorithm 1 Stochastic Coordinate Descent (SCD)
let w = 0
for t = 1,2, . . . do

samplej uniformly at random from{1, . . . ,d}
let g j = (∇C(w)) j

w j ← sλ/β(w j −g j/β)
end for

2.1 Efficient Implementation

We now present an efficient implementation of Algorithm 1. The simple idea is to maintain a vector
z∈ R

m such thatzi = 〈w,xi〉. Once we have this vector, calculatingg j on average requiresO(sm)
iterations, where

s= |{(i, j) : xi, j 6=0}|
md (8)

is the average number of non-zeros in our training set. Concretely, we obtain Algorithm 2 for
logistic-loss and squared-loss.
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Algorithm 2 SCD for logistic-loss and squared-loss

let w = 0∈ R
d, z= 0∈ R

m

for t = 1,2, . . . do
samplej uniformly at random from{1, . . . ,d}
let L′ andβ be as defined in (6) and (7)
let g j =

1
m ∑i:xi, j 6=0L′(zi ,yi)xi, j

if w j −g j/β > λ/β then
w j ← w j −g j/β−λ/β

else ifw j −g j/β <−λ/β then
w j ← w j −g j/β+λ/β

else
w j ← 0

end if
∀i s.t. xi, j 6= 0 letzi = zi +ηxi, j

end for

2.2 Runtime Guarantee

The following theorem establishes runtime guarantee for SCD.

Theorem 1 Letw⋆ be a minimizer of(5) where the function C(w) is differentiable and satisfies,

∀w,η, j, C(w+ηej)≤C(w)+η[∇C(w)] j +
β
2η2 . (9)

LetwT denote the weight vectorw at the end of iteration T of Algorithm 1. Then,

E[P(wT)]−P(w⋆) ≤ dΨ(0)
T +1

,

where

Ψ(w) =
β
2
‖w⋆−w‖22+P(w)

and the expectation is over the algorithm’s own randomization.

Proof To simplify the proof, let us rewrite the update asw j ← w j + η j whereη j = sλ/β(w j −
g j/β)−w j . We first show that

η j = argmin
η

(

ηg j +
β
2η2+λ|wt−1, j +η|

)

. (10)

Indeed, ifη is a solution of the above then by optimality conditions, we must have,

0= g j +βη+λρ j ,

whereρ j ∈ ∂|wt−1, j +η|, the sub-differential of the absolute value function atwt−1, j +η. Since
ρ j = sign(wt−1, j +η) if wt−1, j +η 6= 0 and otherwiseρ j ∈ [−1,1], we obtain that:

If η >−wt−1, j ⇒ ρ j = 1 ⇒ η =
−g j−λ

β >−wt−1, j

If η <−wt−1, j ⇒ ρ j =−1 ⇒ η =
−g j+λ

β <−wt−1, j

Elseη =−wt−1, j .
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But, this is equivalent to the definition ofη j and therefore (10) holds.
Define the potential,

Φ(wt) =
1
2‖w

⋆−wt‖22 ,

and let∆t, j = Φ(wt−1)−Φ(wt−1+η jej) be the change in the potential assuming we updatewt−1

using coordinatej. Since 0= g j +βη j +λρ j , we have that,

∆t, j =
1
2‖w

⋆−wt−1‖22− 1
2‖w

⋆−wt−1−η jej‖22
= 1

2(w
⋆
j −wt−1, j)

2− 1
2(w

⋆
j −wt−1, j −η j)

2

= 1
2η2

j −η j(wt−1, j +η j −w⋆
j )

= 1
2η2

j +
g j

β
(wt−1, j +η j −w⋆

j )+
λρ j

β
(wt−1, j +η j −w⋆

j ).

Next, we note that

ρ j(wt−1, j +η j −w⋆
j )≥ |wt−1, j +η j |− |w⋆

j | ,

which yields

∆t, j ≥ 1
2η2

j +
g j

β
(wt−1, j +η j −w⋆

j )+
λ
β
(|wt−1, j +η j |− |w⋆

j |) .

By (9), we have,

C(wt−1+η jej)−C(wt−1)≤ g jη j +
β
2

η2
j ,

and thus

∆t, j ≥
1
β
(C(wt−1+η jej)−C(wt−1))+

g j

β
(wt−1, j −w⋆

j )+
λ
β
(|wt−1, j +η j |− |w⋆

j |) .

Taking expectations (with respect to the choice ofj and conditional onwt−1) on both sides, we get,

E[Φ(wt−1)−Φ(wt) |wt−1] =
1
d

d

∑
k=1

∆t,k

≥ 1
βd

[
d

∑
k=1

(C(wt−1+ηkek)−C(wt−1))+
d

∑
k=1

gk(wt−1,k−w⋆
k)+λ

d

∑
k=1

(|wt−1,k+ηk|− |w⋆
k|)
]

=
1

βd

[
d

∑
k=1

(C(wt−1+ηkek)−C(wt−1))+ 〈∇C(wt−1),wt−1−w⋆)〉+λ
d

∑
k=1

(|wt−1,k+ηk|− |w⋆
k|)
]

≥ 1
βd

[
d

∑
k=1

(C(wt−1+ηkek)−C(wt−1))+C(wt−1)−C(w⋆)+λ
d

∑
k=1

(|wt−1,k+ηk|− |w⋆
k|)
]

=
1
β

[

E[C(wt) |wt−1]−C(wt−1)+
C(wt−1)−C(w⋆)

d
+

λ
d

d

∑
k=1

|wt−1,k+ηk|−
λ‖w⋆‖1

d

]

,
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where the second inequality follows from the convexity ofC. Note that, we have,

E[‖wt‖1 |wt−1] =
1
d

d

∑
k=1

‖wt−1+ηkek‖1

=
1
d

d

∑
k=1

(‖wt−1‖1−|wt−1,k|+ |wt−1,k+ηk|)

= ‖wt−1‖1−
1
d
‖wt−1‖1+

1
d

d

∑
k=1

|wt−1,k+ηk| .

Plugging this above gives us,

βE[Φ(wt−1)−Φ(wt) |wt−1]

≥ E[C(wt)+λ‖wt‖1 |wt−1]−C(wt−1)−λ‖wt−1‖1+
C(wt−1)+λ‖wt−1‖1−C(w⋆)−λ‖w⋆‖1

d

= E[P(wt) |wt−1]−P(wt−1)+
P(wt−1)−P(w⋆)

d
.

This is equivalent to,

E[βΦ(wt−1)+P(wt−1)−βΦ(wt)−P(wt) |wt−1]≥
P(wt−1)−P(w⋆)

d
.

Thus, defining the composite potential,

Ψ(w) = βΦ(w)+P(w) ,

and taking full expectations, we get,

E[Ψ(wt−1)−Ψ(wt)]≥
1
d
E[P(wt−1)−P(w⋆)] .

Summing overt = 1, . . . ,T +1 and realizing thatP(wt) monotonically decreases gives,

E
[

T+1
d (P(wT)−P(w⋆))

]
≤ E

[

1
d

T+1

∑
t=1

(P(wt−1)−P(w⋆))

]

≤ E

[
T+1

∑
t=1

(Ψ(wt−1)−Ψ(wt))

]

= E [Ψ(w0)−Ψ(wT+1)] ≤ E [Ψ(w0)] = Ψ(0) .

The above theorem bounds the expected performance of SCD. We nextgive bounds that hold
with high probability.

Theorem 2 Assume that the conditions of Theorem 1 holds. Then, with probability of atleast1/2
we have that

P(wT)−P(w⋆) ≤ 2dΨ(0)
T +1

.
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Furthermore, for anyδ∈ (0,1), suppose we run SCD r= ⌈log2(1/δ)⌉ times, each time T iterations,
and letw be the best solution out of the r obtained solutions, then with probability of at least1−δ,

P(w)−P(w⋆) ≤ 2dΨ(0)
T +1

.

Proof The random variableP(wT)−P(w⋆) is non-negative and therefore the first inequality follows
from Markov’s inequality using Theorem 1. To prove the second result,note that the probability
that on allr rounds it holds thatP(wT)−P(w⋆) > 2dΨ(0)

T+1 is at most 2−r ≤ δ, which concludes our
proof.

Next, we specify the runtime bound for the case ofℓ1 regularized logistic-regression and squared-
loss. First, Lemma 6 in Appendix B shows that forC as defined in (5), if the second derivative ofL
is bounded byβ then the condition onC given in Theorem 1 holds. Additionally, for the logistic-loss
we haveC(0)≤ 1. Therefore, for logistic-loss, after performing

d(1
4 ‖w⋆‖22+2)

ε

iterations of Algorithm 2 we achieve (expected)ε-accuracy in the objectiveP. Since the average
cost of each iteration issm, wheres is as defined in (8), we end up with the total runtime

smd(1
4 ‖w⋆‖22+2)

ε
.

The above is the runtime required to achieve expectedε-accuracy. Using Theorem 2 the required
runtime to achieveε-accuracy with a probability of at least 1−δ is

smd

(

(1
2 ‖w⋆‖22+4)

ε
+ ⌈log(1/δ)⌉

)

.

For the squared-loss we haveC(0) = 1
m ∑i y

2
i . Assuming that the targets are normalized so that

C(0)≤ 1, and using similar derivation we obtain the total runtime bound

smd

(
(2‖w⋆‖22+4)

ε
+ ⌈log(1/δ)⌉

)

.

3. Stochastic Mirror Descent Made Sparse

In this section, we describe our mirror descent approach forℓ1 regularized loss minimization that
maintains intermediate sparse solutions. Recall that we rewrite the problem in (1) using the notation

min
w∈Rd

≡P(w)
︷ ︸︸ ︷

1
m

m

∑
i=1

L(〈w,xi〉,yi)

︸ ︷︷ ︸

≡C(w)

+λ‖w‖1 . (11)
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Mirror descent algorithms (Nemirovski and Yudin, 1978, Chapter 3) maintain two weight vec-
tors: primalw and dualθ. The connection between the two vectors is via a link functionθ = f (w),
where f : Rd→ R

d. The link function is always taken to be the gradient map∇F of some strictly
convex functionF and is therefore invertible. We can thus also writew = f−1(θ). In our mirror
descent variant, we use thep-norm link function. That is, thejth element off is

f j(w) =
sign(w j) |w j |q−1

‖w‖q−2
q

,

where‖w‖q = (∑ j |w j |q)1/q. Note thatf is simply the gradient of the function12‖w‖2q. The inverse
function is (see, e.g., Gentile, 2003)

f−1
j (θ) =

sign(θ j) |θ j |p−1

‖θ‖p−2
p

, (12)

wherep= q/(q−1).
We first describe how mirror descent algorithms can be applied to the objectiveC(w) without the

ℓ1 regularization term. At each iteration of the algorithm, we first sample a training examplei uni-
formly at random from{1, . . . ,m}. We then estimate the gradient ofC(w) by calculating the vector
v = L′(〈w,xi〉,yi)xi . Note that the expectation ofv over the random choice ofi isE[v] = ∇C(w).
That is,v is an unbiased estimator of the gradient ofC(w). Next, we update the dual vector accord-
ing to θ = θ−ηv. If the link function is the identity mapping, this step is identical to the update of
stochastic gradient descent. However, in our casef is not the identity function and it is important to
distinguish betweenθ andw. The above update ofθ translates to an update ofw by applying the link
functionw = f−1(θ). So far, we ignored the additionalℓ1 regularization term. The simplest way
to take this term into account is by also subtracting fromθ the gradient of the termλ‖w‖1. (More
precisely, since theℓ1 norm is not differentiable, we will use any subgradient of‖w‖1 instead, for
example, the vector whosejth element is sign(w j), where we interpret sign(0) = 0.) Therefore, we
could have redefined the update ofθ to beθ j = θ j −η(v j +λsign(w j)). Unfortunately, as noted in
Langford et al. (2009), this update leads to a dense vectorθ, which in turn leads to a dense vector
w. The solution proposed in Langford et al. (2009) breaks the update intothree phases. First, we
let θ̃ = θ−ηv. Second, we let̂θ = θ̃−ηλsign(θ̃). Last, if in the second step we crossed the zero
value, that is, sign(θ̂ j) 6= sign(θ̃ j), then we truncate thejth element to be zero. Intuitively, the goal
of the first step is to decrease the value ofC(w) and this is done by a (mirror) gradient step, while
the goal of the second and third steps is to decrease the value ofλ‖w‖1. So, by truncatingθ at zero
we make the value ofλ‖w‖1 even smaller.

3.1 Runtime Guarantee

We now provide runtime guarantees for Algorithm 3. We introduce two types of assumptions on
the loss function:

|L′(a,y)| ≤ ρ , (13)

|L′(a,y)|2 ≤ ρL(a,y) . (14)

In the above,L′ is the derivative w.r.t. the first argument and can also be a sub-gradientof L if L is
not differentiable. It is easy to verify that (14) holds for the squared-loss withρ = 4 and that (13)
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Algorithm 3 Stochastic Mirror Descent Algorithm mAde Sparse (SMIDAS)
parameter:η > 0
let p= 2 ln(d) and let f−1 be as in (12)
let θ = 0,w = 0
for t = 1,2, . . . do

samplei uniformly at random from{1, . . . ,m}
let v = L′(〈w,xi〉,yi)xi

(L′ is the derivative ofL. See, for example, (6))
let θ̃ = θ−ηv
let ∀ j,θ j = sign(θ̃ j) max{0, |θ̃ j |−ηλ}
let w = f−1(θ)

end for

holds for the hinge-loss,L(a,y) = max{0,1− ya}, with ρ = 1. Interestingly, for the logistic-loss,
both (13) holds withρ = 1 and (14) holds withρ = 1/2.

Theorem 3 Letw⋆ be a minimizer of(11). Suppose Algorithm 3 is run for T−1 iterations. Denote
the value ofw at the end of iteration t bywt (with w0 = 0) and setwo = wr for r chosen uniformly
at random from0, ...,T−1.

1. If L satisfies(13) then,

E[P(wo)]−P(w⋆)≤ η(p−1)ρ2 e
2 + 1

ηT ‖w
⋆‖21 .

In particular, if we set

η =
‖w⋆‖1

ρ

√

2
(p−1)eT

,

then we have,

E[P(wo)]−P(w⋆)≤ ρ‖w⋆‖1
√

12log(d)
T .

2. If L satisfies(14) then,

E[P(wo)]−P(w⋆)≤
(

1

1− η(p−1)ρe
2

−1

)

P(0)+
‖w⋆‖21

ηT (1− η(p−1)ρe
2 )

.

In particular, if we set

η =
‖w⋆‖21
P(0)T

(√

1+
2P(0)T

(p−1)ρe‖w⋆‖21
−1

)

,

then we have,

E[P(wo)]−P(w⋆)≤ 4‖w⋆‖1
√

6ρ log(d)P(0)
2T

+
12ρ log(d)‖w⋆‖21

T
.

In both cases, the expectation is with respect to the algorithm’s own randomization.
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Proof We first give the proof for the case when (13) holds. Letθt be the value ofθ at the beginning
of iterationt of the algorithm, letvt be the value ofv, and letθ̃t = θt −ηvt . Let wt = f−1(θt) and
w̃t = f−1(θ̃t) where f−1 is as defined in (12). Recall thatf (w) = ∇F(w) whereF(w) = 1

2‖w‖2q.
Consider the Bregman divergence,

∆F(w,w′) = F(w)−F(w′)−〈∇F(w′),w−w′〉
= F(w)−F(w′)−〈 f (w′),w−w′〉 ,

and define the potential,
Ψ(w) = ∆F(w⋆,w) .

We first rewrite the change in potential as

Ψ(wt)−Ψ(wt+1) = (Ψ(wt)−Ψ(w̃t))+(Ψ(w̃t)−Ψ(wt+1)) , (15)

and bound each of the two summands separately.
Definitions of∆F , Ψ and simple algebra yield,

Ψ(wt)−Ψ(w̃t) = ∆F(w⋆,wt)−∆F(w⋆, w̃t)

= F(w̃t)−F(wt)−〈 f (wt)− f (w̃t),w⋆〉+ 〈 f (wt),wt〉−〈 f (w̃t), w̃t〉
= ∆F(w̃t ,wt)+ 〈 f (wt)− f (w̃t), w̃t−w⋆〉 (16)

= ∆F(w̃t ,wt)+ 〈θt − θ̃t , w̃t −w⋆〉
= ∆F(w̃t ,wt)+ 〈ηvt , w̃t−w⋆〉
= ∆F(w̃t ,wt)+ 〈ηvt ,wt−w⋆〉+ 〈ηvt , w̃t−wt〉 . (17)

By strong convexity ofF with respect to theq-norm (see, e.g., Section A.4 of Shalev-Shwartz,
2007), we have

∆F(w̃t ,wt)≥ q−1
2 ‖w̃t −wt‖2q .

Moreover, using Fenchel-Young inequality with the conjugate functionsg(x)= q−1
2 ‖x‖2q andg⋆(x)=

1
2(q−1)‖x‖2p we have

|〈ηvt , w̃t −w⋆〉| ≤ η2

2(q−1)‖vt‖2p+ q−1
2 ‖w̃t −w⋆‖2q .

Plugging these into (17), we get

Ψ(wt)−Ψ(w̃t)≥ η〈vt ,wt −w⋆〉− η2

2(q−1)‖vt‖2p
= η〈vt ,wt −w⋆〉− η2(p−1)

2 ‖vt‖2p .

By convexity ofL, we have,

〈vt ,wt−w⋆〉 ≥ L(〈wt ,xi〉,yi)−L(〈w⋆,xi〉,yi) ,

and therefore

Ψ(wt)−Ψ(w̃t)≥ η(L(〈wt ,xi〉,yi)−L(〈w⋆,xi〉,yi))− η2(p−1)
2 ‖vt‖2p .
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From (13), we obtain that

‖vt‖2p≤
(

‖vt‖∞ d1/p
)2
≤ ρ2d2/p = ρ2e . (18)

Thus,
Ψ(wt)−Ψ(w̃t)≥ η(L(〈wt ,xi〉,yi)−L(〈w⋆,xi〉,yi))− η2 (p−1)ρ2 e

2 . (19)

So far, our analysis has followed the standard analysis of mirror descent (see, e.g., Beck and
Teboulle, 2003). It is a bit more tricky to show that

Ψ(w̃t)−Ψ(wt+1)≥ ηλ(‖wt+1‖1−‖w⋆‖1) . (20)

To show this, we begin the same way as we did to obtain (16),

Ψ(w̃t)−Ψ(wt+1) = ∆F(wt+1, w̃t)+ 〈 f (w̃t)− f (wt+1),wt+1−w⋆〉
= ∆F(wt+1, w̃t)+ 〈θ̃t −θt+1,wt+1−w⋆〉
≥ 〈θ̃t −θt+1,wt+1−w⋆〉
= 〈θ̃t −θt+1,wt+1〉−〈θ̃t −θt+1,w⋆〉 . (21)

Note that sign(wt+1, j) = sign(θt+1, j). Moreover, whenθt+1, j 6= 0 then,

θ̃t, j −θt+1, j = ηλsign(θt+1, j) .

Thus, we have,

〈θ̃t −θt+1,wt+1〉= ∑
j:wt+1, j 6=0

(θ̃t, j −θt+1, j)wt+1, j

= ∑
j:wt+1, j 6=0

ηλsign(θt+1, j)wt+1, j

= ηλ ∑
j:wt+1, j 6=0

sign(wt+1, j)wt+1, j

= ηλ‖wt+1‖1 .

Note that this equality is crucial and does not hold for the Bregman potential corresponding to the
exponentiated gradient algorithm. Plugging the above equality, along with the inequality,

|〈θ̃t −θt+1,w⋆〉| ≤ ‖θ̃t −θt+1‖∞‖w⋆‖1 = ηλ‖w⋆‖1

into (21), we get (20).
Combining the lower bounds (19) and (20) and plugging them into (15), we get,

Ψ(wt)−Ψ(wt+1)≥ η(L(〈wt ,xi〉,yi)−L(〈w⋆,xi〉,yi))

− η2 (p−1)ρ2 e
2 +ηλ(‖wt+1‖1−‖w⋆‖1) .

Taking expectation with respect toi drawn uniformly at random from{1, . . . ,m}, we get,

E[Ψ(wt)−Ψ(wt+1)]≥ ηE[C(wt)−C(w⋆)]− η2 (p−1)ρ2 e
2 +ηλE[‖wt+1‖1−‖w⋆‖1]

= ηE[P(wt)−P(w⋆)]− η2 (p−1)ρ2 e
2 +ηλE[‖wt+1‖1−‖wt‖1] .
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Summing overt = 0, . . . ,T−1, dividing byηT, and rearranging gives,

1
T

T−1

∑
t=0

E[P(wt)]−P(w⋆)≤ η(p−1)ρ2 e
2 + λ

T E [‖w0‖1−‖wT‖1]+ 1
ηT E [Ψ(w0)−Ψ(wT)]

≤ η(p−1)ρ2 e
2 +0+ 1

ηT ∆F(w⋆,0)

= η(p−1)ρ2 e
2 + 1

ηT ‖w
⋆‖2q

≤ η(p−1)ρ2 e
2 + 1

ηT ‖w
⋆‖21 . (22)

Now, optimizing overη gives

1
T

T−1

∑
t=0

E[P(wt)]−P(w⋆)≤ ρ‖w⋆‖1
√

2(p−1)e
T

and this concludes our proof for the case when (13) holds, since for arandomr we haveE[P(wr)] =
1
T ∑T−1

t=0 E[P(wt)].
When (14) holds, instead of the bound (18), we have,

‖vt‖2p≤
(

‖vt‖∞ d1/p
)2
≤ ρL(〈wt ,xi〉,yi)d2/p = ρL(〈wt ,xi〉,yi)e .

As a result, the final bound (22) now becomes,

1
T

T−1

∑
t=0

E[P(wt)]−P(w⋆)≤ η(p−1)ρe
2T

T−1

∑
t=0

E[C(wt)]+
1

ηT ‖w
⋆‖21

≤ η(p−1)ρe
2T

T−1

∑
t=0

E[P(wt)]+
1

ηT ‖w
⋆‖21 .

For the sake of brevity, leta= (p−1)ρe/2 andb= ‖w⋆‖21, so that the above bound can be written
as,

1
T

T−1

∑
t=0

E[P(wt)]−P(w⋆)≤
(

1
1−aη

−1

)

P(w⋆)+
b/(ηT)
1−aη

(23)

≤
(

1
1−aη

−1

)

P(0)+
b/(ηT)
1−aη

.

At this stage, we need to minimize the expression on the right hand side as a function of η. This
somewhat tedious but straightforward minimization is done in Lemma 7 in Appendix B. Using
Lemma 7 (withP= P(0)), we see that the right hand side is minimized by setting

η =
‖w⋆‖21
P(0)T

(√

1+
2P(0)T

(p−1)ρe‖w⋆‖21
−1

)

,

and the minimum value is upper bounded by

4‖w⋆‖1
√

(p−1)ρeP(0)
2T

+
2(p−1)ρe‖w⋆‖21

T
.
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This concludes the proof for the case when (14) holds.

The bound in the above theorem can be improved if (14) holds and the desired accuracy is the
same order asP(w⋆). This is the content of the next proposition.

Proposition 4 Let w⋆ be a minimizer of(11). Suppose Algorithm 3 is run for T− 1 iterations.
Denote the value ofw at the beginning of iteration t bywt and setwo = wr for r chosen uniformly
at random from0, ...,T−1. If L satisfies(14)and we set

η =
2

(p−1)ρe
· K
1+K

,

for some arbitrary K> 0, then we have,

E[P(wo)]≤ (1+K)P(w⋆)+
(1+K)2

K
· 3ρ log(d)‖w⋆‖21

T
.

Proof Pluggingη = K/a(1+K) in (23) gives,

1
T

T−1

∑
t=0

E[P(wt)]−P(w⋆)≤ K P(w⋆)+
(1+K)2

K
· ab

T
.

Recalling thatp= 2log(d), a= (p−1)ρe/2 andb= ‖w⋆‖21 concludes our proof.

4. Experiments

In this section, we provide experimental results for our algorithms on 4 data sets. We begin with a
description of the data sets following by a description of the algorithms we ran on them.

4.1 Data Sets

We consider 4 binary classification data sets for our experiments:DUKE, ARCENE, MAGIC04S, and
MAGIC04D.

DUKE is a breast cancer data set from West et al. (2001). It has 44 examples with 7,129 fea-
tures with a density level of 100%.ARCENE is a data set from the UCI Machine Learning repos-
itory where the task is to distinguish cancer patterns from normal ones based on 10,000 mass-
spectrometric features. Out of these, 3,000 features are synthetic features as this data set was
designed for the NIPS 2003 variable selection workshop. There are 100 examples in this data set
and the example matrix contains 5.4× 105 non-zero entries corresponding to a density level of
54%. The data setsMAGIC04S andMAGIC04D were obtained by adding 1,000 random features to
the MAGIC Gamma Telescope data set from the UCI Machine Learning repository. The original
data set has 19,020 examples with 10 features. This is also a binary classification data set and
the task is to distinguish high-energy gamma particles from background usinga gamma telescope.
Following the experimental setup of Langford et al. (2009), we added 1,000 random features, each
of which takes value 0 with probability 0.95 or 1 with probability 0.05, to create a sparse data set,
MAGIC04S. We also created a dense data set,MAGIC04D, in which the random features took value
−1 or+1, each with probability 0.5. MAGIC04S andMAGIC04D have density levels of 5.81% and
100% respectively.
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4.2 Algorithms

We ran 4 algorithms on these data sets: SCD, GCD, SMIDAS, and TRUNCGRAD. SCD is the
stochastic coordinate descent algorithm given in Section 2 above. GCD is the corresponding deter-
ministic and “greedy” version of the same algorithm. The coordinate to be updated at each iteration
is greedilychosen in a deterministic manner to maximize a lower bound on the guaranteed decrease
in the objective function. This type of deterministic criterion for choosing features is common in
Boosting approaches. Since choosing a coordinate (or feature in our case) in a deterministic manner
involves significant computation in case of large data sets, we expect that the deterministic algo-
rithm will converge much slower than the stochastic algorithm. We also tried thecyclic version of
coordinate descent that just cycles through the coordinates. We foundits performance to be indis-
tinguishable from that of SCD and hence we do not report it here. SMIDAS is the mirror descent
algorithm given in Section 3 above. TRUNCGRAD is the truncated gradient algorithm of Langford
et al. (2009) (In fact, Langford et al., 2009 suggests another way to truncate the gradient. Here,
we refer to the variant corresponding to SMIDAS.) Of these 4, the first two are parameter-free
algorithms while the latter two require a parameterη. In our experiments, we ran SMIDAS and
TRUNCGRAD for a range of different values ofη and chose the one that yielded the minimum value
of the objective function (i.e., the regularized loss). We chose to minimize the (regularized) logistic
loss in all our experiments.

4.3 Results

For each data set, we show two plots. One plot shows the regularized objective function plotted
against the number ofdata accesses, that is, the number of times the algorithm accesses the data
matrix (xi, j). We choose to use this as opposed to, say CPU time, as this is an implementation inde-
pendent quantity. Moreover, the actual time taken by these algorithms will be roughly proportional
to this quantity provided computing features is time consuming. The second plot shows the den-
sity (or ℓ0-norm, the number of non-zero entries) of the iterate plotted against the number of data
accesses. In the next subsection, we use mild regularization (λ = 10−6). Later on, we will show
results for stronger regularization (λ = 10−2).

4.3.1 LESSREGULARIZATION

Figure 1 is for theDUKE data set. It is clear that GCD does much worse than the other three
algorithms. GCD is much slower because, as we mentioned above, it spends alot of time in finding
the best coordinate to update. The two algorithms having a tunable parameterη have roughly the
same performance as SCD. However, SCD has a definite edge if we add upthe time to perform
several runs of these algorithms for tuningη. Note, however, that SMIDAS has better sparsity
properties as compared to TRUNCGRAD and SCD even though their performance measured in the
objective is similar.

Figure 2 is for theARCENEdata set. The results are quite similar to those for theDUKE data set.
SMIDAS is slow for a short while early on but quickly catches up. Again, itdisplays good sparsity
properties.

For the MAGIC data sets, SMIDAS does much better than TRUNCGRAD for the MAGIC04D

data set (where the example vectors are dense). TRUNCGRAD is slightly better for theMAGIC04S

data set (where the example vectors are sparse). This is illustrated in Figure 3. Note that this
behavior is consistent with the bounds (3) and (4) given above. Thesebounds suggest that if the
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Figure 1:DUKE data set; less regularization

Figure 2:ARCENE data set; less regularization

Figure 3:MAGIC04S data set; less regularization
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Figure 4:MAGIC04D data set; less regularization

Figure 5:DUKE data set; more regularization

true solution has lowℓ1 norm, SMIDAS will require fewer iterations than TRUNCGRAD when the
examples are dense. The parameter-free SCD algorithm is slightly worse than the parameter-based
algorithms TRUNCGRAD and SMIDAS onMAGIC04S. For MAGIC04D, its performance is better
than TRUNCGRAD, but slightly worse than SMIDAS. On both data sets, SMIDAS seems to be
doing quite well in terms of sparsity.

4.3.2 MORE REGULARIZATION

As mentioned before, we now present results with a large value of the regularization parameter
(λ = 10−2).

From Figures 5 and 6, we see that SCD outperforms all other algorithms on the DUKE and
ARCENEdata sets. Not only does it get to the minimum objective faster, but it also gets best sparsity.
On both data sets, SMIDAS does better than TRUNCGRAD.

For the MAGIC data sets (Figures 7 and 8), we see a previous phenomenon repeated: SMI-
DAS does better when the features are dense. The coordinate descentalgorithms SCD and GCD
are quicker to reach the minimum onMAGIC04S. The edge, however, seems to be lost on the
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Figure 6:ARCENE data set; more regularization

Figure 7:MAGIC04S data set; more regularization

MAGIC04D data set. In all cases, TRUNCGRAD seems to be unable to keep sparsity of the iterates
as it progresses. This effect is particularly stark in Figure 8, where allthe other algorithms have
density levels of a few tens while TRUNCGRAD has almost no sparsity whatsoever.

4.3.3 PARAMETER VALUES AND SOURCECODE

Two of the algorithms we used above, namely TRUNCGRAD and SMIDAS, have a step-size param-
eterη. In the interest of reproducible research, we report the values ofη used in our experiments
in Table 1. The parameterp of SMIDAS was always⌈2ln(d)⌉, whered is the total number of
features (including non-relevant features). The source code for aC++ implementation of SCD and
SMIDAS can be found athttp://mloss.org (by searching for either “SCD” or “SMIDAS”).
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Figure 8:MAGIC04D data set; more regularization

Data Set,λ SMIDAS TRUNCGRAD

DUKE, 10−6 50 10−1

DUKE, 10−2 10−1 10−2

ARCENE, 10−6 50 10−1

ARCENE, 10−2 10−2 5×10−5

MAGIC04S, 10−6 10−2 5×10−4

MAGIC04S, 10−2 10−4 5×10−5

MAGIC04D, 10−6 5×10−3 10−4

MAGIC04D, 10−2 10−3 10−5

Table 1: Values of the step-size parameterη used in the experiments for SMIDAS and TRUNC-
GRAD
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Appendix A.

Lemma 5 Let ε≤ 0.12. There exists an optimization problem of the form:

min
w∈Rd : ‖w‖1≤B

1
m

m

∑
i=1

L(〈w,xi〉,yi) ,

where L is the smooth loss function L(a,b) = (a− b)2, such that any algorithm which initializes
w = 0 and updates a single element of the vectorw at each iteration, must perform at least B2/16ε
iterations to achieve anε accurate solution.

Proof We denote the number of non-zeros elements of a vectorw by ‖w‖0. Recall that we denote
the average loss byC(w) = 1

m ∑m
i=1L(〈w,xi〉,yi). We show an optimization problem of the form

given above, for which the optimal solution, denotedw⋆, is dense (i.e.,‖w⋆‖0 = d), while anyw for
which

C(w)≤C(w⋆)+ ε

must satisfy‖w‖0 ≥ Ω(B2/ε). This implies the statement given in the lemma since an iteration
bound for the type of algorithms we consider is immediately translated into an upper bound on
‖w‖0.

Let L(a,b) = (a−b)2 and consider the following joint distribution over random variables(X,Y).
First, eachY is chosen at random according toP[Y = 1] = P[Y =−1] = 1

2. Next, each elementj of
X is chosen i.i.d. from{+1,−1} according toP[Xj = y|y] = 1

2 +
1

2B. This definition implies that:

EXj |Y=y[Xj ] =
1
B y

and
VarXj |Y=y[Xj ] = 1− 1

B2 .

Consider the vectorw0 = (B
d , . . . ,

B
d ). We have

E
[
(〈w0,X〉−Y)2]= EYEX|Y=y

[
(〈w0,X〉−y)2]

= EYVarX|Y=y [〈w0,X〉]

= EY
B2

d
VarX1|Y=y [X1]

= EY
B2

d

(
1− 1

B2

)

=
B2−1

d
.
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Now fix somew with ‖w‖0≤ s. We have

µy := EX|Y=y[〈w,X〉] = y
B ∑

j

w j ,

and

E
[
(〈w,X〉−Y)2]= EYEX|Y=y

[
(〈w,X〉−y)2]

= EYVarX|Y=y[〈w,X〉]+ (µy−y)2

If |∑ j w j | ≤ B/2 then(µy−y)2 ≥ 1/4 and thus we obtain from the above thatE
[
(〈w,X〉−Y)2

]
≥

1/4. Otherwise,
√

s∑
j

w2
j ≥∑

j

|w j | ≥ |∑
j

w j | ≥ B/2 ,

and thus we have that

E[(〈w,X〉−Y)2]≥ EYVarX|Y=y [〈w,X〉]

= EY

d

∑
j=1

w2
j VarX1|Y=y [X1]

= EY

d

∑
j=1

w2
j

(
1− 1

B2

)

=
(
1− 1

B2

) d

∑
j=1

w2
j

≥
(
1− 1

B2

)
B2

4s =
B2−1

4s
.

ChooseB≥ 2 andd = 100(B2−1), we have shown that if‖w‖0≤ s then

E[(〈w,X〉−Y)2− (〈w0,X〉−Y)2]≥min
{

0.24, B2

8s

}

=: ε′ .

Now, consider the random variableZ = (〈w,X〉 −Y)2− (〈w0,X〉 −Y)2. This is a bounded ran-
dom variable (because|〈w,x〉| ≤ B) and therefore using Hoeffding inequality we have that with
probability of at least 1−δ over a draw of a training set ofmexamples we have

C(w)−C(w0)≥ ε′−cB2

√

log(1/δ)
m

,

for some universal constantc> 0.
This is true if we first fixw and then draw them samples. We want to establish an inequality

true for anyw in
W := {w ∈ R

d : ‖w‖0≤ s, ‖w‖1≤ B} .
This set has infinitely many elements so we cannot trivially appeal to a union bound. Instead, we
create anε′/16B-cover ofW in the ℓ1 metric. This has sizeN1(W ,ε′/16B) where we have the
crude estimate,

∀ε > 0, N1(W ,ε)≤ ds
(

2Bd
ε

)s

.
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Moreover, if ‖w−w′‖1 ≤ ε′/16B then it is easy to see that|C(w)−C(w′)| ≤ ε′/4. Therefore,
applying a union bound over all vectors in the cover, we obtain that with probability at least 1− δ,
for all suchw ∈W we have

C(w)−C(w0)≥ ε′− ε′/4−cB2

√

logN1(W ,ε′/16B)+ log(1/δ)
m

.

Takingm large enough, we can guarantee that, with high probability, for allw ∈W ,

C(w)−C(w0)≥ ε′/2 .

Finally, we clearly have thatC(w⋆)≤C(w0).
Thus, we have proved the following. GivenB≥ 2 ands, there exist{(xi ,yi)}mi=1 in some dimen-

siond, such that
min

‖w‖1≤B,‖w‖0≤s
C(w)− min

‖w‖1≤B
C(w)≥min

{

0.12, B2

16s

}

.

This concludes the proof of the lemma.

Appendix B.

Lemma 6 Let C be as defined in(5) and assume that the second derivative of L with respect to its
first argument is bounded byβ. Then, for any j∈ [d],

C(w+ηej)≤C(w)+η(∇C(w)) j +
βη2

2 .

Proof Note that, by assumption onL, for anyi, j we have,

L(〈w+ηej ,xi〉,yi) = L(〈w,xi〉+ηxi, j ,yi)

≤ L(〈w,xi〉,yi)+ηL′(〈w,xi〉,yi)xi, j +
βη2 x2

i, j

2

≤ L(〈w,xi〉,yi)+ηL′(〈w,xi〉,yi)xi, j +
βη2

2 ,

where the last inequality follows becausexi, j ∈ [−1,+1]. Adding the above inequalities fori =
1, . . . ,mand dividing bym, we get

C(w+ηej)≤C(w)+
η
m

m

∑
i=1

L′(〈w,xi〉,yi)xi, j +
βη2

2

=C(w)+η(∇C(w)) j +
βη2

2 .

Lemma 7 Let a,b,P,T > 0. The function f: (0,1/a)→ R defined as,

f (η) =
(

1
1−aη

−1

)

P+
b/(ηT)
1−aη
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is minimized at

η⋆ =
b

PT

(√

1+
PT
ab
−1

)

,

and the minimum value satisfies

f (η⋆)≤ 4

√

abP
T

+
4ab
T

.

Proof A little rearranging gives,

f (η) =
1

1
η −a

(

aP+
b

η2T

)

.

This suggests the change of variableC= 1/η and we wish to minimizeg : (a,∞)→ R defined as,

g(C) =
1

C−a

(

aP+
bC2

T

)

.

The expression for the derivativeg′ is,

g′(C) =
b

T(C−a)2

(

C2−2aC− aTP
b

)

.

Settingg′(C) = 0 gives a quadratic equation whose roots are,

a±
√

a2+
aTP

b
.

Choosing the larger root (the smaller one is smaller thana) gives us the minimizer,

C⋆ = a+

√

a2+
aTP

b
.

It is easy to see thatg′(C) is increasing atC⋆ and thus we have a local minima atC⋆ (which is also
global in this case). The minimizerη⋆ of f (η) is therefore,

η⋆ =
1

C⋆
=

b
PT

(√

1+
PT
ab
−1

)

.

Plugging in the value ofC⋆ into g(C), we get,

g(C⋆) =
2

√

1+ PT
ab

(

P+
ab
T

+

√

a2b2

T2 +
abP
T

)

≤ 2
√

1+ PT
ab

(

2P+
2ab
T

)

= 4

√

abP
T

+
a2b2

T2

≤ 4

√

abP
T

+
4ab
T

.

Sinceg(C⋆) = f (η⋆), this concludes the proof of the lemma.
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