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Abstract

We describe and analyze two stochastic method€foegularized loss minimization problems,
such as the Lasso. The first method updates the weight of ke $emjure at each iteration while
the second method updates the entire weight vector but @dg a single training example at
each iteration. In both methods, the choice of feature omgika is uniformly at random. Our
theoretical runtime analysis suggests that the stochagtibods should outperform state-of-the-art
deterministic approaches, including their deterministianterparts, when the size of the problem
is large. We demonstrate the advantage of stochastic methyoexperimenting with synthetic and
natural data sets.
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1. Introduction

We present optimization procedures for solving problems of the form:

l m
min = § L i),Yi) +A 1
miy 2 L(wx). ) +Niwl @)

where(x1,1), ..., (Xm,Ym) € ([—1,+1]9 x 9)™is a sequence of training examplés,RY x 9 —
[0,0) is a non-negative loss function, akd- 0 is a regularization parameter. This generic problem
includes as special cases the Lasso (Tibshirani, 1996), in whely) = %(a—y)z, and logistic
regression, in which.(a,y) = log(1+ exp(—ya)).

Our methods can also be adapted to deal with additional boxed constrathis fmirmw;
[a,bi], which enables us to use them for solving the dual problem of SuppatoiM&lachine
(Cristianini and Shawe-Taylor, 2000). For concreteness, we fogtise formulation given in (1).

Throughout the paper, we assume th& convex in its first argument. This implies that (1) is a
convex optimization problem, and therefore can be solved using stanpi@mization techniques,
such as interior point methods. However, standard methods scale pdatbripevsize of the problem
(i.e., mandd). In recent years, machine learning methods are proliferating in dad¢a-Baimains
such as text and web processing in which data sets of millions of training éesuopfeatures are

1. An initial version of this work (Shalev-Shwartz and Tewari, 2009)eswpd in ICML 2009.
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not uncommon. Since traditional methods for solving (1) generally scayepearly with the size
of the problem, their usage is inappropriate for data-laden domains. Irejhés,we discuss how to
overcome this difficulty using stochastic methods. We describe and analgzaaetical methods
for solving (1) even when the size of the problem is very large.

The first method we propose is a stochastic version of the familiar cooradlaatent approach.
The coordinate descent approach for solingegularized problems is not new (as we survey below
in Section 1.1). At each iteration of coordinate descent, a single elemanisaipdated. The only
twist we propose here regarding the way one should choose the aéxtgdo update. We suggest
to choose features uniformly at random from the [sét= {1,...,d}. This simple modification
enables us to show that the runtime required to actdide&pected) accuracy is upper bounded by

madp |w*||3
€

: 2)

wheref is a constant which only depends on the loss function (B.g:,1 for the quadratic loss
function) andw* is the optimal solution. This bound tells us that the runtime grows only linearly
with the size of the problem. Furthermore, the stochastic method we propaamimsegier free and
very simple to implement.

Another well known stochastic method that has been successfully apptikcs$ minimization
problems, is stochastic gradient descent (e.g., Bottou and LeCunn, 8B8kv-Shwartz et al.,
2007). In stochastic gradient descent, at each iteration, we pick amepdx from the training set,
uniformly at random, and update the weight vector based on the choaempkx The attractiveness
of stochastic gradient descent methods is that their runtime do not depath@m@the number of
examples, and can even sometime decrease with the number of examplest{se@Bd Bousquet,
2008; Shalev-Shwartz and Srebro, 2008). Unfortunately, the stbchgradient descent method
fails to produce sparse solutions, which makes the algorithm both slowelessdittractive as
sparsity is one of the major reasons to éseegularization. To overcome this problem, two variants
were recently proposed. First, Duchi et al. (2008) suggested toceetii@/, regularization term
with a constraint of the fornfiw||; < B, and then to use stochastic gradient projection procedure.
Another solution, which uses the regularization form given in (1), has Ipgoposed by Langford
et al. (2009) and is called truncated gradient descent. In this appth@cblements ofv that cross
0 after the stochastic gradient step are truncated to 0, hence sparsitjeigegic The disadvantage
of both Duchi et al. (2008) and Langford et al. (2009) methods is thadpime situations, their
runtime might grow quadratically with the dimensidneven if the optimal predictow* is very
sparse (see Section 1.1 below for details). This quadratic dependeniceam be avoided if one
uses mirror descent updates (Beck and Teboulle, 2003) such agptheeetiated gradient approach
(Littlestone, 1988; Kivinen and Warmuth, 1997; Beck and Teboulle, 2a88)vever, this approach
again fails to produce sparse solutions. In this paper, we combine thefitteaaating the gradient
(Langford et al., 2009) with another variant of stochastic mirror ddsedrich is based op-norm
updates (Grove et al., 2001; Gentile, 2003). The resulting algorithm lbotlupes sparse solutions
and hag€)(d) dependence on the dimension. We call the algorithm SMIDAS for “StocHdstior
Descent Algorithm made Sparse”.

We provide runtime guarantees for SMIDAS as well. In particular, for tiyesta-loss and the
squared-loss we obtain the following upper bound on the runtime to achieeixgected accuracy:

* (|2
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Comparing the above with the runtime bound of the stochastic coordinatenti@sethod given
in (2) we note three major differences. First, while the bound in (2) dependthe number of
examplesm, the runtime of SMIDAS does not dependiorat all. On the flip side, the dependence
of stochastic coordinate descent on the dimension is better both becalesektbéthe term logd)
and becausgw* |3 is always smaller thafiw*|| (the ratio is at most). Last, the dependence gn

is linear in (2) and quadratic in (3). ¢fis the same order as the objective valuavatit is possible
to improve the dependence ofl(Proposition 4). Finally, we would like to point out that while the
stochastic coordinate descent method is parameter free, the succésaSand of the method
of Langford et al. (2009), depends on a careful tuning of a lean@tegparameter.

1.1 Related Work

We now survey several existing methods and in particular show how azhvasttic twist enables us
to give superior runtime guarantees.

1.1.1 GOORDINATE DESCENTMETHODSFOR /1 REGULARIZATION

Following the Gauss-Siedel approach of Zhang and Oles (2001),iGehkl. (2007) described a
coordinate descent method (called BBR) for minimiziagegularized objectives. This approach is
similar to our method, with three main differences. First, and most importantchtiesation we
choose a coordinate uniformly at random. This allows us to provide thearaiittime guarantees.
We note that no theoretical guarantees are provided by Zhang and2DI&E) @nd Genkin et al.
(2007). Second, we solely use gradient information which makes ouritaigoparameters-free
and extremely simple to implement. In contrast, the Gauss-Siedel approacheisomoplicated
and involves second order information, or a line search procedueeirosted region Newton step.
Last, the generality of our derivation allows us to tackle a more generblgmo For example, it
is easy to deal with additional boxed constraints. Friedman et al. (20b@yajezed the approach
of Genkin et al. (2007) to include the case of elastic-net regularizatioa.skries of experiments,
they observed that cyclic coordinate descent outperforms many aerpajpular methods such
as LARS (Efron et al., 2004), an interior point method callétognet (Koh et al., 2007), and the
Lasso Penalized Logistic (LPL) program (Wu and Lange, 2008). iewyao theoretical guarantees
are provided in Friedman et al. (2010) as well. Our analysis can partigilpiexthe experimental
result of Friedman et al. (2010) since updating the coordinates in a cydér oan in practice be
very similar to stochastic updates.

Luo and Tseng (1992) established a linear convergence resultdatinate descent algorithms.
This convergence result tells us that after an unspecified number dfdterathe algorithm con-
verges very fast to the optimal solution. However, this analysis is uselesddaniaden domains as
it can be shown that the initial unspecified number of iterations dependssatjigadratically on the
number of training examples. In an attempt to improve the dependence ondlad iz problem,
Tseng and Yun (2009) recently studied other variants of block codediescent for optimizing
‘smooth plus separable’ objectives. In particulé&r,regularized loss minimization (1) is of this
form, provided that the loss function is smooth. The algorithm proposedsbydand Yun (2009)
is not stochastic. Translated to our notation, the runtime bound given irgEs&hYun (2009) is
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of ordef M This bound is inferior to our runtime bound for stochastic coordinate désce
given in (2) by a factor of the dimensiah

1.1.2 GOORDINATE DESCENTMETHODSFOR /1 DOMAIN CONSTRAINTS

A different, but related, optimization problem is to minimize the Ior%% L({(w,Xi),Yi), subject

to a domain constraint of the forfjw||; < B. Many authors presented a forward greedy selection
algorithm (a.k.a. Boosting) for this problem. We refer the reader to Fradk\olfe (1956), Zhang
(2003), Clarkson (2008) and Shalev-Shwartz et al. (2010). Taeg®rs derived the upper bound
O (B|lw*[|2/€) on the number of iterations required by this algorithm to find-@ecurate solution.
Since at each iteration of the algorithm, one needs to calculate the gradigwt lolss atv, the
runtime of each iteration imd. Therefore, the total runtime becomégmdp|jw*||2/¢). Note
that this bound is better than the bound given by Tseng and Yun (20089, fer any vector ifR®

we have||w||; < v/d|w|.. However, the boosting bound given above is still inferior to our bound
given in (2) since|w*||; > ||w*||2. Furthermore, in the extreme case we hiwe||2 = d||w*||3, thus

our bound can be better than the boosting bound by a factdr bémma 5 in Appendix A shows
that theiteration bound (not runtime) ofiny algorithm cannot be smaller tha®(||w*||2/¢) (see
also the lower bounds in Shalev-Shwartz et al., 2010). This seems to implgrheeterministic
method, which goes over the entire data at each iteration, will induce a runtiioh 18 inferior to

the runtime we derive for stochastic coordinate descent.

1.1.3 SOCHASTIC GRADIENT DESCENT ANDMIRROR DESCENT

Stochastic gradient descent (SGD) is considered to be one of the bbstdsiéor large scale loss
minimization, when we measure how fast a method achieves a certain genienalezaor. This
has been observed in experiments (Bottou, Web Page) and also haanlagéered theoretically by
Bottou and Bousquet (2008) and Shalev-Shwartz and Srebro (2008)

As mentioned before, one can apply SGD for solving (1). However, &@&$to produce sparse
solutions. Langford et al. (2009) proposed an elegant simple modificatithe SGD update rule
that yields a variant of SGD with sparse intermediate solutions. They als@prbounds on the
runtime of the resulting algorithm. In the general case (i.e., without assumingd@aetive relative
to €), their analysis implies the following runtime bound

o(d”""*”%Xz?) , @)

g2

whereX? = %zi |xi||3 is the average squared norm of an instance. Comparing this bound with our
bound in (3), we observe that none of the bounds dominates the otteheanrelative performance
depends on properties of the training set and the optimal solatforSpecifically, ifw* has only

k < d non-zero elements and eaghis dense (say; € {—1,+1}9), then the ratio between the
above bound of SGD and the bound in (3) becorﬁgﬁd—) > 1. On the other hand, K; has only

k non-zeros whilev* is dense, then the ratio between the bounds c <L Although the
relative performance is data dependent, in most applications if one pfef@gularization over,

2. To see this, note that the iterations bound in Equation (21) of Tsenguam@909) is:%\:”%, and using Equation
(25) in Section 6, we can set the valuewofo bev = 1/d (since in our case there are no linear constraints). The
complexity bound now follows from the fact that the cost of each iterati@(dsm).
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regularization, he should also believe thdtis sparse, and thus our runtime bound in (3) is likely
to be superiof.

The reader familiar with the online learning and mirror descent literature wilbasurprised
by the above discussion. Bounds that involNied |1 and||xi||«, as in (3), are well known and the
relative performance discussed above was pointed out in the contasltlitive vs. multiplicative
updates (see, e.g., Kivinen and Warmuth, 1997). However, the mastgpapgorithm for obtaining
bounds of the form given in (3) is the EG approach (Kivinen and Warmi887), which involves
the exponential potential, and this algorithm cannot yield intermediate spaus®ss. One of the
contributions of this paper is to show that with a different potential, which igadtdhe p-norm
potential, one can obtain the bound given in (3) while still enjoying sparsenietfiate solutions.

1.1.4 RECENTWORKSDEALING WITH STOCHASTIC METHODS FORLARGE SCALE
REGULARIZED LOSSMINIMIZATION

Since the publication of the conference version (Shalev-Shwartz amdriT&009) of this paper,
several papers proposing stochastic algorithms for regularized loss nationihave appeared. Of
these, we would like to mention a few that are especially connected to the thensegg in the
present paper. Regularized Dual Averaging (RDA) of Xiao (20X®sua running average of all
the past subgradients of the loss function and the regularization term ¢oagerits iterates. He
develops ap-norm RDA method that is closely related to SMIDAS. The theoretical bodiods
SMIDAS andp-norm RDA are similar but the latter employs a more aggressive truncatiedsieh
that can potentially lead to sparser iterates.

SMIDAS deals with?; regularization. The Composite Objective Mlrror Descent (COMID) al-
gorithm of Duchi et al. (2010) generalizes the idea behind SMIDAS tbwiageneral regularizers
provided a certain minimization problem involving a Bregman divergence andefularizer is ef-
ficiently solvable. Viewing the average loss in (1) leads to interesting ctionsowith the area
of Stochastic Convex Optimization that deals with minimizing a convex functiomgaeeess to
an oracle that can return unbiased estimates of the gradient of the domation at any query
point. For various classes of convex functions, one can ask: Wha gptimal number of queries
needed to achieve a certain accuracy (in expectation)? For developaimrgsthese lines, please
see Lan (2010) and Ghadimi and Lan (2011), especially the latter sineal# @ith functions that
are the sum of a smooth and a non-smooth but “simple” (fikeorm) part. Finally, Nesterov
(2010) has analyzed randomized versions of coordinate descamidonstrained and constrained
minimization of smooth convex functions.

2. Stochastic Coordinate Descent
To simplify the notation throughout this section, we rewrite the problem in (bpuse notation

=P(w)

min %_ZIL((WaXi%yi)H\llWlll : (5)

weRd

=C(w)

3. One important exception is the large scale text processing applicasorilgkdl in Langford et al. (2009) where the
dimension is so large ard is used simply because we cannot store a dense weight vector in memory

1869



SHALEV-SHWARTZ AND TEWARI

We are now ready to present the stochastic coordinate descent algofitteralgorithm ini-
tializesw to be0. At each iteration, we pick a coordinajeuniformly at random fromjd]. Then,
the derivative ofC(w) w.r.t. the jth element ofw, g; = (OC(w));, is calculated. That isg; =
Lsm L'({w,xi),yi)x. j, whereL’ is the derivative of the loss function with respect to its first argu-
m Zi=1 XA VAP )
ment. Simple calculus yields

a—-y for squared-loss
L'(ay) = {( ) (6)

ﬁ%’(ay) for logistic-loss -
Next, a step size is determined based on the valgg ahd a parameter of the loss function denoted
by B. This parameter is an upper bound on the second derivative of theigam, for our running
examples we have

(7)

b= 1 for squared-loss
~)1/4 for logistic-loss

If there was no regularization, we would just subtract the stepgizé from the current value of
w;. However, to take into account the regularization term, we further aduéswh /B from w;
provided we do not cross 0 in the process. If we do, we let the new wélwe be exactly 0. This

is crucial for maintaining sparsity ef. To describe the entire update succinctly, it is convenient to
define the following simple “thresholding” operation:

0 we [—T1,T]
Se(W) = Signw) (W 1) = dw—T w>T
W4T w<-—T

Algorithm 1 Stochastic Coordinate Descent (SCD)
letw=0
fort=1,2,...do
samplej uniformly at random fron{1,...,d}
letg; = (LC(w));
Wj < S/p(Wj —9;/B)
end for

2.1 Efficient Implementation

We now present an efficient implementation of Algorithm 1. The simple idea is tatanaia vector
z € R™ such thatz, = (w, ;). Once we have this vector, calculatiggon average requireéd(sm)
iterations, where

{(,J) : %,j 70} (8)

S= md

is the average number of non-zeros in our training set. Concretely, veenoblgorithm 2 for
logistic-loss and squared-loss.

1870



STOCHASTIC METHODS FOR{1-REGULARIZED LOSSMINIMIZATION

Algorithm 2 SCD for logistic-loss and squared-loss
letw=0€cRY,z=0eRM
fort=1,2,...do
samplej uniformly at random fron{1,...,d}
let L’ andf be as defined in (6) and (7)
letgj = & Six, 0L (z,Y1)%
if wj —g;/B>A/Bthen
Wj =W —gj/B—A/B
else ifw; —g; /B < —A/B then
wj < w;—gj/B+A/B
else
wj <0
end if
Vist.xj#0letz =z +nx
end for

2.2 Runtime Guarantee

The following theorem establishes runtime guarantee for SCD.

Theorem 1 Letw* be a minimizer of5) where the function @) is differentiable and satisfies,
ww,n, j, C(w+nel) < Cw) +n[0Cw)]; + §n? €)

Letwt denote the weight vectar at the end of iteration T of Algorithm 1. Then,

_ dw(0)

E[P(wr) ~P(w') < T

where 8
Ww) =5 [[w* — w3+ P(w)
and the expectation is over the algorithm’s own randomization.

Proof To simplify the proof, let us rewrite the update &g «— wj +n; wheren;j = s p(wj —
gj/B) —wj. We first show that

N :arg:}min(ng,drgn2+)\\wt_17j+n\) . (10)
Indeed, ifn is a solution of the above then by optimality conditions, we must have,

0=gj+Bn+Apj,

wherep; € 0|w_1 j + 1|, the sub-differential of the absolute value functionmat, j +1n. Since
Pj = sign(W_1,j +n) if wi_1 j +n # 0 and otherwis@; € [—1, 1], we obtain that:

—gi-A
fn>-w_1j; = pj=1= n:g’—B>—wt,17j
fn<-w_1j = pj=-1= n:gJT+<—wt,17j

Elsen = —w_1 .
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But, this is equivalent to the definition qf; and therefore (10) holds.
Define the potential,

(W) = 5[|w — w3,

and letA; j = ®(wi—1) — P(We_q + r],-ej) be the change in the potential assuming we update
using coordinatg. Since 0= gj + Bn;j +Apj, we have that,

Bej = 3IW—Weg[[F — 5w — w1 —n;el3

3 (W} —We—j)® = 3 (W] —We—1j —nj)?
:%nlz Nj(We—1,j+nj— )
ol ApPj *
:%r]]?_FEJ(WFLJ—}—r]J—WJ*)—FTJ(Wt—l,j-H]j—Wj).

Next, we note that
Pj(We—1,j +Nj—Wj) > [We—1j +nj| — [Wj],
which yields

Au>2n,+%‘(Wt1,j+m—W,*) B(’W‘ LN = W)

By (9), we have,
C(Wt—1+r]jej) —C(w_1) < gjn;j+ gnf )

and thus

é(C(th-H‘]jej)—C(th)) %(Wt 1) —Wj)+ (|Wt 1j+Njl—Wjl) .

Taking expectations (with respect to the choicg ahd conditional onv;_;) on both sides, we get,

Dy >

[EEN

HMQ-

E[CD(Wt,]_)—CD(Wt) |Wt,1] = a A k

d

d
(Cwe—1 +Nk€) —C(We—1)) + Y Gk(We1k—Wi) +A Y (Weork+ Nk — \Wﬁl)]
K=1 K=1

v
Mea

I
=~ 'm‘ 'm‘ 'm‘
ok ol alF

Mo

T
=~
Il
=

d
(C(We—1+Nk€) = C(We-1)) + (OC(We-1) W1 = W) + A S ([Wh-r+ k| — |W§!)]
&

T
=~
Il
=

d d
2 (C(We—1 +Ni€) = C(Wi-1)) +C(Wi-1) —C(W") +A 3 (W + Nl \Wkl)]
[K=1 &
_ x d *
= = |E[C(w) [wi—1] —C(wi-1) + C(th)d cw) +% Z [We—1k + Nk — MV; Hl] )
K=1
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where the second inequality follows from the convexityCofNote that, we have,

[we—1+ Nke|1

Mea

Elllwella [we—1] =

M
]

([IWe-1ll1 — We—1| + [We—1k+ Nk])

ol Qalp
=%

T
o

el - Siwealt S S g
= [We-alls = 5 Iwe-al2 dk;Wt—l,k Nk| -

Plugging this above gives us,

BE[®(Wi—1) — P(W) | Wi—_1]
(We—1) + AfWe—1[]1 — C(W*) — Allw*||1
d

C
> B[C(we) +Allwe 1 [We—1] = C(We-1) =MW1 +

P(wi_1) — P(w*) .

=E[P(W) [wi—1] — P(We_1) + d

This is equivalent to,

P(w—1) — P(w*)
g .

E[BP(Wt-—1) +P(w_1) — BP(We) — P(w) [wy—1] >
Thus, defining the composite potential,
W(w) = BP(w) +P(w) ,

and taking full expectations, we get,

E[Ww 1) ~W(w)] > SEPW 1)~ P(w")]

Summing ovet = 1,..., T + 1 and realizing tha®(w;) monotonically decreases gives,

T+1
E [T3H(P(wr) —P(W"))] <E | 3 i(P(Wt—l) - P(W*))]
T1
<E tZi(‘“(wt—l) —W(w))

=E[W(wo) —W(wri1)] < E[¥(wo)] = W(0).
|

The above theorem bounds the expected performance of SCD. Wginexiounds that hold
with high probability.

Theorem 2 Assume that the conditions of Theorem 1 holds. Then, with probabilitylefsitl,/2
we have that

P(wt) —P(W") < 2_?_1(?) :
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Furthermore, for any € (0,1), suppose we run SCD= [log,(1/d)] times, each time T iterations,
and letw be the best solution out of the r obtained solutions, then with probability obatle- d,

2d¥(0)
P(w) —P(w*) < .
(w) ~P(w) < S
Proof The random variablB(wt)—P(w*) is non-negative and therefore the first inequality follows
from Markov’s inequality using Theorem 1. To prove the second resate that the probability
that on allr rounds it holds thalP(wt) — P(w*) > 2d%0) is at most 2" < &, which concludes our

T+1
proof. |

Next, we specify the runtime bound for the caséaegularized logistic-regression and squared-
loss. First, Lemma 6 in Appendix B shows that @as defined in (5), if the second derivativelof
is bounded by then the condition o€ given in Theorem 1 holds. Additionally, for the logistic-loss
we haveC(0) < 1. Therefore, for logistic-loss, after performing

d(z[w[5+2)
€

iterations of Algorithm 2 we achieve (expecteddaccuracy in the objective. Since the average
cost of each iteration ism wheresis as defined in (8), we end up with the total runtime

smd( [w*3+2)
A

The above is the runtime required to achieve expeetadcuracy. Using Theorem 2 the required
runtime to achieve-accuracy with a probability of at least-1d is

smd (W + [Iog(l/é)}) .

For the squared-loss we ha@0) = %ziyiz. Assuming that the targets are normalized so that
C(0) < 1, and using similar derivation we obtain the total runtime bound

* (|2
eGS0

Iog(l/?Sﬂ) |

3. Stochastic Mirror Descent Made Sparse

In this section, we describe our mirror descent approacli;foegularized loss minimization that
maintains intermediate sparse solutions. Recall that we rewrite the problejrusirfd the notation

=P(w)

min é_iL“Win)?yi)Jr}\HWHl . (11)

weRd

=C(w)
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Mirror descent algorithms (Nemirovski and Yudin, 1978, Chapter 3) miaimteo weight vec-
tors: primalw and dualB. The connection between the two vectors is via a link funcéienf (w),
wheref : R — RY. The link function is always taken to be the gradient ni#p of some strictly
convex functionF and is therefore invertible. We can thus also write= f~1(8). In our mirror
descent variant, we use tipenorm link function. That is, thgth element off is

sign(w;) [w;|91
2
Iwlq

fj(w) =

)

where[|w|q = (3 lwj|9)%/9, Note thatf is simply the gradient of the functio%ﬂw”é. The inverse
function is (see, e.g., Gentile, 2003)

sign(6;) |8;|P~*
frie) = 2OOVGIT (12)
181[p
wherep=q/(q—1).

We first describe how mirror descent algorithms can be applied to the olj€¢t) without the

/1 regularization term. At each iteration of the algorithm, we first sample a traixagglei uni-
formly at random from{1,...,m}. We then estimate the gradient@fw) by calculating the vector
v = L'((w,X;),yi) X . Note that the expectation efover the random choice ofs E[v] = OC(w).
That is,v is an unbiased estimator of the gradien€o#). Next, we update the dual vector accord-
ing to® = 6 —nv. If the link function is the identity mapping, this step is identical to the update of
stochastic gradient descent. However, in our dasenot the identity function and it is important to
distinguish betweef andw. The above update @ftranslates to an updatewfby applying the link
functionw = f~1(8). So far, we ignored the additioné regularization term. The simplest way
to take this term into account is by also subtracting f@the gradient of the termv||w/||;. (More
precisely, since thé; norm is not differentiable, we will use any subgradient|of||; instead, for
example, the vector whogéh element is sigfw; ), where we interpret sigf) = 0.) Therefore, we
could have redefined the updatefoo be®; = 8; — n(v; +Asign(w;j)). Unfortunately, as noted in
Langford et al. (2009), this update leads to a dense véctahich in turn leads to a dense vector
w. The solution proposed in Langford et al. (2009) breaks the updat¢hrge phases. First, we
let® = 8—nv. Second, we leb =8 —nAsign(8). Last, if in the second step we crossed the zero
value, that is, sigféj) #* sign(éj), then we truncate thigh element to be zero. Intuitively, the goal
of the first step is to decrease the value€Coiv) and this is done by a (mirror) gradient step, while
the goal of the second and third steps is to decrease the valigwfi. So, by truncatin® at zero
we make the value of||w/||; even smaller.

3.1 Runtime Guarantee
We now provide runtime guarantees for Algorithm 3. We introduce two typessumptions on
the loss function:
IL'(ay)| P, (13)
L@yP < pL@y). (14)

In the abovel’ is the derivative w.r.t. the first argument and can also be a sub-gradienit L is
not differentiable. It is easy to verify that (14) holds for the squdosg-withp = 4 and that (13)

<
<
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Algorithm 3 Stochastic Mirror Descent Algorithm mAde Sparse (SMIDAS)
parametern > 0
let p=2In(d) and letf ! be as in (12)
let6=0,w=0
fort=1,2,...do
samplei uniformly at random from{1,...,m}
letv =L'({w,Xi),Yi) Xi
(L' is the derivative of.. See, for example, (6))
letd=6—nv
letV,0; = sign(8;) max{0,|8;| —nA}
letw = f~1(6)
end for

holds for the hinge-losg,(a,y) = max{0,1—ya}, with p = 1. Interestingly, for the logistic-loss,
both (13) holds withp = 1 and (14) holds witlp = 1/2.

Theorem 3 Letw* be a minimizer o{11). Suppose Algorithm 3 is run forF 1 iterations. Denote
the value ofw at the end of iteration t by (with wo = 0) and setw, = w, for r chosen uniformly
at random from0,..., T — 1.

1. If L satisfieq13) then,

o 2 "
E[P(wo)] — P(w*) < M-8 L w2

N = [[w* (|1 2
p (p—1)eT’

E[P(Wo)] — P(W*) < p|w*[| 1/ 2299)

In particular, if we set

then we have,

2. If L satisfieq14) then,

1

* |2
E[P(wo)] —P(w*) < (j[—”(pzl)pe_l> P(0) + [wlT

r]T (1_ n(p;l)pe) '

In particular, if we set
w12 2P0 T
n= 1+ -1,
PO)T (P—1)pefw3

6plog(d)P(0) , 12plog(d) w3
2T T '

then we have,

E[P(wo)] —P(W") < 4flw"[|
In both cases, the expectation is with respect to the algorithm’s own randtomz
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Proof We first give the proof for the case when (13) holds. &dte the value 06 at the beginning
of iterationt of the algorithm, lew; be the value of/, and Ietet 6 —nv;. Letw; = f~ 1(et) and
Wi = f71(8;) wheref~1 is as defined in (12). Recall thétw) = OF (w) whereF (w) = 3 [w]|2,
Consider the Bregman divergence,

A (w, W) =F(w) — F(W) — (OF (W),w —w)
=F(w)—FW)—(f(w),w-w),

and define the potential,
WY(w) = A (W5, w) .

We first rewrite the change in potential as
Ww) — P(Wep1) = (W(wp) — W(W)) + (W) — W(Weia)) (15)

and bound each of the two summands separately.
Definitions ofAg, W and simple algebra yield,

l-IJ(Wt) — qJ(\TVt) =/ (W*,Wt) —AF (W*,\Tvt)

F
=F (W) — F(w) — (f(wp) — (W), W) + (F (W), we) — (F (W), W)

= Ap (Wi, W) + (F(wg) — (W), Wy —w™) (16)
= Ag (Wi, W) + (6 — B, il — w*)

= Ap (We, W) + (NVe, Wy —W™)

= Ap (Wi, W) + (NVe, We — W) + (NVe, W — W) a7)

By strong convexity ofF with respect to thej-norm (see, e.g., Section A.4 of Shalev-Shwartz,
2007), we have
D (W, We) > 952 e — w5

Moreover, using Fenchel-Young inequality with the conjugate functigxs= q%l ||XH§ andg*(x) =
251 IXI[5 we have

[NV, Wi — W[ < 5575 HVtH2+ 2V — w7 -
Plugging these into (17), we get
W(wp) — YW ) > n(ve, wg —w*) — Hvt
= N{Ve, Wy —W*) — %HWH% :
By convexity ofL, we have,
(Ve We — W) > L((We, Xi), ¥i) — LOW™, %), i)
and therefore

Wwe) — W) > n(L((wexi), %) — LW i), v1)) — 52w 2.
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From (13), we obtain that
2
Ivel2 < (Ivellwd®?)” < p?d?P = pZe. (18)
Thus, , ,
W(we) — W) > n(L((We, i), ¥) — LW, i), i) — esbete (19)

So far, our analysis has followed the standard analysis of mirror degms e.g., Beck and
Teboulle, 2003). It is a bit more tricky to show that

W(W) — W(Wesa) = NA(lIWegallz — Iw2) - (20)
To show this, we begin the same way as we did to obtain (16),
W(W) — W(Wey1) = B (We 1, We) + (F (W) — F(Wep1), Wepr — W)
= Ar (W1, W) + (6 — By, W1 — W)

> <§t — 0Bty W1 — Wt)
= (Bt — B2, Wit1) — (B — B, W) . (21)

Note that Sigfw;+1,j) = Sign(6+1 ;). Moreover, wher®;, 1 ; # 0 then,

Bt,j — Bty1,j =NASIgN(Bry1j) -

Thus, we have,

(B — B 1, Wiy 1) = > (Bt} — B j)Wep,j
JWe1,j#0

— Z NASIgN(Bc1 j)Wri1, |
JWey1,j#0

=nA Z SIgN(We11,j) W41,
JWep1,j7#0

=NA||wWepaf1 .

Note that this equality is crucial and does not hold for the Bregman potebtia@sponding to the
exponentiated gradient algorithm. Plugging the above equality, along withehaatity,

(Bt — B2, W) < 18 — st W[l = NA W 2

into (21), we get (20).
Combining the lower bounds (19) and (20) and plugging them into (15),eie g

W(we) —W(wepg) > n(L((We, i), ¥i) — LW, i), Y1)
— DO A (Wl — W) -
Taking expectation with respect talrawn uniformly at random fronfl1, ..., m}, we get,
E[W(w) — W(Wi11)] > nEC(W) — C(w")] — TEZHEE 4 nAR|we |1 — w2
= NE[P(w) — P(w")] — T V0% | q\E|lwy 1|1 — [wil] -
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Summing ovet =0,..., T —1, dividing bynT, and rearranging gives,

N

£3 EIPOO] - POW) < M (il o)+ oy B (o) — Wi )
3 n

IN

—1 2 2
n(p 2)P e"_qiTHW*Hq

—1)p? "
< MBI W (22)

Now, optimizing ovem gives

2(p—21e

T-1
T 3 BP(w)]—PWw) < plwlay/ =

and this concludes our proof for the case when (13) holds, sinceémummr we haveE[P(w;)]| =
1¢T-1
T Yi—o E[P(wy)].

When (14) holds, instead of the bound (18), we have,

2
HVtH2 < <||VtH°°d1/p) < pL(<Wt7Xi>7Yi)d2/p = pL(<Wt7Xi>7Yi)e'

As a result, the final bound (22) now becomes,
T-1

T-1
F 3 EIPMW)] - P(w) < MBS 5 EICWO] + i [

T-1
< PP 3 BIPw))+ g '
t=l
For the sake of brevity, let= (p— 1)pe/2 andb = ||w*||2, so that the above bound can be written
as,

1 —
1-an

1) P(W*) + bl/ f”aTn) (23)

1 b/(nT)
< (1_an —1) P(0)+m.

At this stage, we need to minimize the expression on the right hand side ast@rfiuof . This
somewhat tedious but straightforward minimization is done in Lemma 7 in AppendiisiBig
Lemma 7 (withP = P(0)), we see that the right hand side is minimized by setting

w2 2POT
1= PO)T (\/1+ (p—1)pe|w|? 1) |

and the minimum value is upper bounded by

(p—1)peP(0)  2(p—1) pellw||2
2T T ’

lTilE[P(Wt)] _PWw) < (
T2, :

4llwl1
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This concludes the proof for the case when (14) holds. |

The bound in the above theorem can be improved if (14) holds and thedesicuracy is the
same order aB(w*). This is the content of the next proposition.

Proposition 4 Let w* be a minimizer of(11). Suppose Algorithm 3 is run for F 1 iterations.
Denote the value off at the beginning of iteration t by, and setw, = w; for r chosen uniformly
at random fronD, ..., T — 1. If L satisfieg14) and we set

2 K
p—1)pe 1+K’

r] e
(
for some arbitrary K> 0, then we have,

(1+K)? 3plog(d) w3
K T '

E[P(wo)] < (1+K)P(w") +

Proof Pluggingn = K/a(1+K) in (23) gives,

T-1 2
1 — *) < vy, (1+K) .EP
T t; E[P(w)] — P(W") < KP(w*) + K =

Recalling thatp = 2log(d), a= (p— 1)pe/2 andb = ||w*||? concludes our proof. [ |

4. Experiments

In this section, we provide experimental results for our algorithms on 4 déta /e begin with a
description of the data sets following by a description of the algorithms werraimemn.

4.1 Data Sets

We consider 4 binary classification data sets for our experimemtse, ARCENE, MAGIC04s, and
MAGIC04D.

DUKE is a breast cancer data set from West et al. (2001). It has 44 examiphe7, 129 fea-
tures with a density level of 100¥ARCENE is a data set from the UCI Machine Learning repos-
itory where the task is to distinguish cancer patterns from normal onesl loas&Q000 mass-
spectrometric features. Out of theseP@0 features are synthetic features as this data set was
designed for the NIPS 2003 variable selection workshop. There @&exXdmples in this data set
and the example matrix contains45< 10° non-zero entries corresponding to a density level of
54%. The data set8aGICc04s andMAGIC 04D were obtained by adding Q00 random features to
the MAGIC Gamma Telescope data set from the UCI Machine LearningiteposThe original
data set has 1920 examples with 10 features. This is also a binary classification datadet an
the task is to distinguish high-energy gamma particles from background agjagmnma telescope.
Following the experimental setup of Langford et al. (2009), we adde@Lrandom features, each
of which takes value 0 with probability.95 or 1 with probability 005, to create a sparse data set,
MAGIC04s. We also created a dense data setG1c 04D, in which the random features took value
—1 or+1, each with probability . MAGIC04s andMAGIC04D have density levels of.81% and
100% respectively.
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4.2 Algorithms

We ran 4 algorithms on these data sets: SCD, GCD, SMIDAS, auNTGRAD. SCD is the
stochastic coordinate descent algorithm given in Section 2 above. GC® ¢stresponding deter-
ministic and “greedy” version of the same algorithm. The coordinate to baeghdaeach iteration
is greedilychosen in a deterministic manner to maximize a lower bound on the guaranteedssdec
in the objective function. This type of deterministic criterion for choosinguiess is common in
Boosting approaches. Since choosing a coordinate (or feature im®elyio a deterministic manner
involves significant computation in case of large data sets, we expect éhdetbrministic algo-
rithm will converge much slower than the stochastic algorithm. We also triedyiti version of
coordinate descent that just cycles through the coordinates. We fisuperformance to be indis-
tinguishable from that of SCD and hence we do not report it here. SMI X the mirror descent
algorithm given in Section 3 above RUNCGRAD is the truncated gradient algorithm of Langford
et al. (2009) (In fact, Langford et al., 2009 suggests another waytaate the gradient. Here,
we refer to the variant corresponding to SMIDAS.) Of these 4, the firetave parameter-free
algorithms while the latter two require a paramaierin our experiments, we ran SMIDAS and
TRUNCGRAD for a range of different values gfand chose the one that yielded the minimum value
of the objective function (i.e., the regularized loss). We chose to minimizeegelérized) logistic
loss in all our experiments.

4.3 Results

For each data set, we show two plots. One plot shows the regularizediabjemction plotted
against the number afata accesseghat is, the number of times the algorithm accesses the data
matrix (x ;). We choose to use this as opposed to, say CPU time, as this is an implementation inde
pendent quantity. Moreover, the actual time taken by these algorithms wibligdaky proportional

to this quantity provided computing features is time consuming. The secondhplesghe den-

sity (or £g-norm, the number of non-zero entries) of the iterate plotted against theemwhbdata
accesses. In the next subsection, we use mild regularizatien1Q°). Later on, we will show
results for stronger regularizatiok £ 10°2).

4.3.1 LESSREGULARIZATION

Figure 1 is for theDUKE data set. It is clear that GCD does much worse than the other three
algorithms. GCD is much slower because, as we mentioned above, it spend§time in finding

the best coordinate to update. The two algorithms having a tunable parayrteee roughly the
same performance as SCD. However, SCD has a definite edge if we atld time to perform
several runs of these algorithms for tuning Note, however, that SMIDAS has better sparsity
properties as compared tRUNCGRAD and SCD even though their performance measured in the
objective is similar.

Figure 2 is for theaARCENE data set. The results are quite similar to those footbee data set.
SMIDAS is slow for a short while early on but quickly catches up. Agaidisplays good sparsity
properties.

For the MAGIC data sets, SMIDAS does much better th&wNCGRAD for the MAGIC04D
data set (where the example vectors are dense)NTGRAD is slightly better for thewAGICc04s
data set (where the example vectors are sparse). This is illustrated ire BguXote that this
behavior is consistent with the bounds (3) and (4) given above. Thmseds suggest that if the
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Figure 5:DUKE data set; more regularization

true solution has low; norm, SMIDAS will require fewer iterations tharRUNCGRAD when the
examples are dense. The parameter-free SCD algorithm is slightly worsththparameter-based
algorithms TRUNCGRAD and SMIDAS onMmAGIc04s. For MAGIC04D, its performance is better
than TRUNCGRAD, but slightly worse than SMIDAS. On both data sets, SMIDAS seems to be
doing quite well in terms of sparsity.

4.3.2 MORE REGULARIZATION

As mentioned before, we now present results with a large value of théaregtion parameter
(A =1072).

From Figures 5 and 6, we see that SCD outperforms all other algorithmsearuke and
ARCENEdata sets. Not only does it get to the minimum objective faster, but it also ggttsgarsity.
On both data sets, SMIDAS does better thauNcGRAD.

For the MAGIC data sets (Figures 7 and 8), we see a previous phenomepeated: SMI-
DAS does better when the features are dense. The coordinate dagmeithms SCD and GCD
are quicker to reach the minimum amaGic04s. The edge, however, seems to be lost on the
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Figure 7:MAGIC04s data set; more regularization

MAGIC04D data set. In all cases,RUNCGRAD seems to be unable to keep sparsity of the iterates
as it progresses. This effect is particularly stark in Figure 8, wherthalbther algorithms have
density levels of a few tens whileRUNCGRAD has almost no sparsity whatsoever.

4.3.3 RARAMETER VALUES AND SOURCE CODE

Two of the algorithms we used above, nameRUNCGRAD and SMIDAS, have a step-size param-
etern. In the interest of reproducible research, we report the valugsusied in our experiments
in Table 1. The parametqy of SMIDAS was always|2In(d)|, whered is the total number of
features (including non-relevant features). The source codeG@sramplementation of SCD and
SMIDAS can be found dit t p: / / ml oss. or g (by searching for either “SCD” or “SMIDAS").
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Figure 8:MAGIC04D data set; more regularization

Data Set) | SMIDAS | TRUNCGRAD |
DUKE, 10°© 50 101
DUKE, 102 101 102
ARCENE, 1076 50 101
ARCENE, 102 102 5x10°°
MAGIC04s, 1076 102 5x 104
MAGIC04s, 102 104 5x10°°
MAGIC04D, 106 | 5x10°3 104
MAGIC04D, 102 103 10°°

Table 1: Values of the step-size parametaused in the experiments for SMIDAS anakUNC-
GRAD
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Appendix A.

Lemma 5 Lete < 0.12 There exists an optimization problem of the form:

. 1nn
min — Y L((wW,%),Vi) ,
weRd : HWHJ.SB mi; (< I> yl)

where L is the smooth loss functiofialb) = (a— b)?, such that any algorithm which initializes
w = 0 and updates a single element of the veetaat each iteration, must perform at least A.6e
iterations to achieve anm accurate solution.

Proof We denote the number of non-zeros elements of a vectoy ||w||o. Recall that we denote

the average loss b@(w) = 5™ L ((w,x;),yi). We show an optimization problem of the form

m
given above, for which the optimal solution, denoted is dense (i.e|w*||o = d), while anyw for

which
C(w) <C(w")+¢€

must satisfy|w|jo > Q(B?/¢). This implies the statement given in the lemma since an iteration
bound for the type of algorithms we consider is immediately translated into arr bpped on
wllo.

LetL(a,b) = (a—b)? and consider the following joint distribution over random varialghsy).
First, eachY is chosen at random accordinglfy = 1] = P[Y = —1] = 3. Next, each elemerjtof
X is chosen i.i.d. fron{+1,—1} according tdP[X; = y|y] = 5 + 55. This definition implies that:

Ex;v=y[Xj] = ly

and
Vary y_y[Xj] =1- 2 .

Consider the vectong = (2,..., ). We have

E [((wo,X) —Y)?] = EyExy_y [((Wo,X) —¥)?]
= Eyval’x‘yzy [<WQ, XH
BZ
= Ey —-Vary, jy—y [X4]

d

BZ
:EYg(l—é)
_B-1
==
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Now fix somew with ||w||o <'s. We have
Hy == Exy—y[(W, X)] :%z
]
and

E [((w,X) = Y)?] = ByExpy—y [((W,X) —y)?]
= EyVaryy—y[(w,X)] + (by—y)?
If |3 wj| < B/2 then(py —y)? > 1/4 and thus we obtain from the above tiaft((w,X) —Y)?] >

1/4. Otherwise,
[sY W= |wil =Y w=>B/2,
] ] ]

E[({w,X) = Y)?] = EyVaryy—y[{w,X)]

and thus we have that

d
= EY Z vvJZVarxl‘Y:y [X]_]
=1

d
~B YW
=1
L d
&) Y W
=1
. B?-1
(1_7)% 4s

ChooseB > 2 andd = 100(B? — 1), we have shown that {fw||o < sthen
EK@wX>—YYL—«WmX>—Yf]Zrmn{0248é}::d.

Now, consider the random variabfe= ((w,X) —Y)2 — ((wo,X) —Y)2. This is a bounded ran-
dom variable (becausgw,x)| < B) and therefore using Hoeffding inequality we have that with
probability of at least *- d over a draw of a training set ofi examples we have

log(1/d
C(w) —C(wp) > € —cB? g(m/) ,
for some universal constaat> O.
This is true if we first fixw and then draw then samples. We want to establish an inequality
true for anyw in
= {weR’: [wlo<s, w1 <B}.

This set has infinitely many elements so we cannot trivially appeal to a uniomdbdnstead, we
create are’/16B-cover of W in the ¢; metric. This has sizé\j(W,€'/16B) where we have the
crude estimate,

Ve >0, Ao (W )<d5<2§d>
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Moreover, if ||[w —w'||; < €/16B then it is easy to see thi€(w) — C(W')| < € /4. Therefore,
applying a union bound over all vectors in the cover, we obtain that withglmtity at least 1- 3,
for all suchw € W we have

Clw) —Clwo) = &/ —&//4— ce? | 9N W-/168) £ oa(1/8)

Takingm large enough, we can guarantee that, with high probability, fow al/,
C(w) —C(wp) >€'/2.

Finally, we clearly have thaZ(w*) < C(wp).
Thus, we have proved the following. Given> 2 ands, there exis{ (x;,y;) }i"; in some dimen-
siond, such that

w)— min C(w)zmin{O.lz,%s} .

min C(w)
IWll1<B;[wllo<s Iwl1<B

This concludes the proof of the lemma. |

Appendix B.

Lemma 6 Let C be as defined ifb) and assume that the second derivative of L with respect to its
first argument is bounded B Then, for any g [d],

Cw-+nel) < C(w)+n(0cw)); + B .
Proof Note that, by assumption dn for anyi, j we have,

L((w+nel,xi),y)

L((W,Xi) +NXi j,Yi)
(<W’Xi>’yi) +nL,(<W,Xi>,yi)Xi,j + BnZZX%j

<L
< LW, %), yi) +nL" ((w,Xi),yi) % | + ng ’

where the last inequality follows becausg € [-1,+1]. Adding the above inequalities for=
1,...,mand dividing bym, we get

. m
Clw+nel) < Cw)+ 13 L'(W.x). W%, + B
=

— C(w) +n(CCw)); + B .

Lemma 7 Letab,P T > 0. The function f (0,1/a) — R defined as,

fﬁ)—(ljzn—l>P+?@ZQ
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is minimized at

., b [ PT
n _PT< 1+ab—1>,

and the minimum value satisfies

Proof A little rearranging gives,

This suggests the change of variaBle- 1/n and we wish to minimizg : (a,) — R defined as,

1 bC?
9C) =z=a <ap+ T) '
The expression for the derivatiggis,

g(C) = T(CbW <02 2aC— alp) .

Settingg'(C) = 0 gives a quadratic equation whose roots are,

/ TP
a+ a2+aT.

Choosing the larger root (the smaller one is smaller #jagives us the minimizer,

/ TP
C=a+ a2+aT.

It is easy to see thaf (C) is increasing a€* and thus we have a local minima@t (which is also
global in this case). The minimizer of f(n) is therefore,

. 1 b / PT

Plugging in the value of* into g(C), we get,

2 ab a2h? abP
g(C*):<P++ +>
T T2 T
1+ 5L

<2 ()
PT T

Sinceg(C*) = f(n*), this concludes the proof of the lemma. [ |
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