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Abstract
A sequencex1, . . . ,xn, . . . of discrete-valued observations is generated according tosome unknown
probabilistic law (measure)µ. After observing each outcome, one is required to give conditional
probabilities of the next observation. The realizable caseis when the measureµ belongs to an ar-
bitrary but known classC of process measures. The non-realizable case is whenµ is completely
arbitrary, but the prediction performance is measured withrespect to a given setC of process mea-
sures. We are interested in the relations between these problems and between their solutions, as
well as in characterizing the cases when a solution exists and finding these solutions. We show that
if the quality of prediction is measured using the total variation distance, then these problems coin-
cide, while if it is measured using the expected average KL divergence, then they are different. For
some of the formalizations we also show that when a solution exists it can be obtained as a Bayes
mixture over a countable subset ofC . We also obtain several characterization of those setsC for
which solutions to the considered problems exist. As an illustration to the general results obtained,
we show that a solution to the non-realizable case of the sequence prediction problem exists for the
set of all finite-memory processes, but does not exist for theset of all stationary processes. It should
be emphasized that the framework is completely general: theprocesses measures considered are
not required to be i.i.d., mixing, stationary, or to belong to any parametric family.

Keywords: sequence prediction, time series, online prediction, realizable sequence prediction,
non-realizable sequence prediction

1. Introduction

A sequencex1, . . . ,xn, . . . of discrete-valued observations (wherexi belong to a finite setX ) is gen-
erated according to some unknown probabilistic law (measure). That is,µ is a probability measure
on the spaceΩ = (X∞,B) of one-way infinite sequences (hereB is the usual Borelσ-algebra).
After each new outcomexn is revealed, one is required to predict conditionalprobabilitiesof the
next observationxn+1 = a, a∈ X , given the pastx1, . . . ,xn. Since a predictorρ is required to give
conditional probabilitiesρ(xn+1 = a|x1, . . . ,xn) for all possible historiesx1, . . . ,xn, it defines itself
a probability measure on the spaceΩ of one-way infinite sequences. In other words, a probability
measure onΩ can be considered both as a data-generating mechanism and as a predictor.

Therefore, given a setC of probability measures onΩ, one can ask two kinds of questions about
C . First, does there exist a predictorρ whose forecast probabilities converge (in a certain sense) to
theµ-conditional probabilities, if an arbitraryµ∈ C is chosen to generate the data? Here we assume
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that the “true” measure that generates the data belongs to the setC of interest, and would like to
construct a predictor that predicts all measures inC . The second type of questions is as follows:
does there exist a predictor that predicts at least as well as any predictor ρ ∈ C , if the measure that
generates the data comes possibly from outside ofC? Thus, here we consider elements ofC as
predictors, and we would like to combine their predictive properties, if this is possible. Note that in
this setting the two questions above concern the same object: a setC of probability measures onΩ.

Each of these two questions, the realizable and the non-realizable one, have enjoyed much
attention in the literature; the setting for the non-realizable case is usually slightlydifferent, which
is probably why it has not (to the best of the author’s knowledge) been studied as another facet of
the realizable case. The realizable case traces back to Laplace, who hasconsidered the problem of
predicting outcomes of a series of independent tosses of a biased coin. That is, he has considered
the case when the setC is that of all i.i.d. process measures. Other classical examples studied are
the set of all computable (or semi-computable) measures (Solomonoff, 1978), the set ofk-order
Markov and finite-memory processes (e.g., Krichevsky, 1993) and the set of all stationary processes
(Ryabko, 1988). The general question of finding predictors for an arbitrary given setC of process
measures has been addressed in Ryabko and Hutter (2007, 2008); Ryabko (2010a); the latter work
shows that when a solution exists it can be obtained as a Bayes mixture over acountable subset
of C .

The non-realizable case is usually studied in a slightly different, non-probabilistic, setting. We
refer to Cesa-Bianchi and Lugosi (2006) for a comprehensive overview. It is usually assumed that
the observed sequence of outcomes is an arbitrary (deterministic) sequence; it is required not to give
conditional probabilities, but just deterministic guesses (although these guesses can be selected us-
ing randomisation). Predictions result in a certain loss, which is required to be small as compared to
the loss of a given set of reference predictors (experts)C . The losses of the experts and the predictor
are observed after each round. In this approach, it is mostly assumed that the setC is finite or count-
able. The main difference with the formulation considered in this work is that werequire a predictor
to give probabilities, and thus the loss is with respect to something never observed (probabilities,
not outcomes). The loss itself is not completely observable in our setting. In thissense our non-
realizable version of the problem is more difficult. Assuming that the data generating mechanism is
probabilistic, even if it is completely unknown, makes sense in such problems as, for example, game
playing, or market analysis. In these cases one may wish to assign smaller loss to those models or
experts who give probabilities closer to the correct ones (which are never observed), even though
different probability forecasts can often result in the same action. Aiming atpredicting probabilities
of outcomes also allows us to abstract from the actual use of the predictions(for example, making
bets) and thus from considering losses in a general form; instead, we can concentrate on those forms
of loss that are more convenient for the analysis. In this latter respect, theproblems we consider
are easier than those considered in prediction with expert advice. (However, in principle, noth-
ing restricts us to considering the simple losses that we chose; they are just aconvenient choice.)
Noteworthy, the probabilistic approach also makes the machinery of probability theory applicable,
hopefully making the problem easier. A reviewer suggested the following summary explanation of
the difference between the non-realizable problems of this work and prediction with expert advice:
the latter is prequential (in the sense of Dawid, 1992), whereas the formeris not.

In this work we consider two measures of the quality of prediction. The firstone is the total
variation distance, which measures the difference between the forecastand the “true” conditional
probabilities of all future events (not just the probability of the next outcome). The second one is
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expected (over the data) average (over time) Kullback-Leibler divergence. Requiring that predicted
and true probabilities converge in total variation is very strong; in particular, this is possible if
(Blackwell and Dubins, 1962) and only if (Kalai and Lehrer, 1994) theprocess measure generating
the data is absolutely continuous with respect to the predictor. The latter factmakes the sequence
prediction problem relatively easy to analyse. Here we investigate what can be paralleled for the
other measure of prediction quality (average KL divergence), which is much weaker, and thus allows
for solutions for the cases of much larger setsC of process measures (considered either as predictors
or as data generating mechanisms).

Having introduced our measures of prediction quality, we can further break the non-realizable
case into two problems. The first one is as follows. Given a setC of predictors, we want to
find a predictor whose prediction error converges to zero if there is at least one predictor inC
whose prediction error converges to zero; we call this problem simply the “non-realizable” case,
or Problem 2 (leaving the name “Problem 1” to the realizable case). The second non-realizable
problem is the “fully agnostic” problem: it is to make the prediction error asymptotically as small
as that of the best (for the given process measure generating the data)predictor inC (we call this
Problem 3). Thus, we now have three problems about a set of processmeasuresC to address.

We show that if the quality of prediction is measured in total variation then all the three problems
coincide: any solution to any one of them is a solution to the other two. For the case of expected
average KL divergence, all the three problems are different: the realizable case is strictly easier than
non-realizable (Problem 2), which is, in turn, strictly easier than the fully agnostic case (Problem 3).
We then analyse which results concerning prediction in total variation can betransferred to which of
the problems concerning prediction in average KL divergence. It was shown in Ryabko (2010a) that,
for the realizable case, if there is a solution for a given set of process measuresC , then a solution can
also be obtained as a Bayesian mixture over a countable subset ofC ; this holds both for prediction in
total variation and in expected average KL divergence. Here we show that this result also holds true
for the (non-realizable) case of Problem 2, for prediction in expected average KL divergence. We do
not have an analogous result for Problem 3 (and, in fact, conjecture that the opposite statement holds
true). However, for the fully agnostic case of Problem 3, we show that separability with respect to
a certain topology given by KL divergence is a sufficient (though not anecessary) condition for the
existence of a predictor. This is used to demonstrate that there is a solution to this problem for the set
of all finite-memory process measures, complementing similar results obtained earlier in different
settings. On the other hand, we show that there is no solution to this problem for the set of all
stationary process measures, in contrast to a result of B. Ryabko (1988) that gives a solution to the
realizable case of this problem (that is, a predictor whose expected average KL error goes to zero if
any stationary process is chosen to generate the data). Finally, we also consider a modified version
of Problem 3, in which the performance of predictors is only compared on individual sequences.
For this problem, we obtain, using a result from (Ryabko, 1986), a characterisation of those setsC
for which a solution exists in terms of the Hausdorff dimension.

2. Notation and Definitions

Let X be a finite set. The notationx1..n is used forx1, . . . ,xn. We consider stochastic processes
(probability measures) onΩ := (X∞,B) whereB is the sigma-field generated by the cylinder sets
[x1..n], xi ∈ X ,n∈ N ([x1..n] is the set of all infinite sequences that start withx1..n). For a finite setA
denote|A| its cardinality. We useEµ for expectation with respect to a measureµ.
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Next we introduce the measures of the quality of prediction used in this paper. For two measures
µ andρ we are interested in how different theµ- andρ-conditional probabilities are, given a data
samplex1..n. Introduce the(conditional) total variationdistance

v(µ,ρ,x1..n) := sup
A∈B

|µ(A|x1..n)−ρ(A|x1..n)|,

if µ(x1..n) 6= 0 andρ(x1..n) 6= 0, andv(µ,ρ,x1..n) = 1 otherwise.

Definition 1 We say thatρ predicts µ in total variation if

v(µ,ρ,x1..n)→ 0 µ-a.s.

This convergence is rather strong. In particular, it means thatρ-conditional probabilities of arbitrary
far-off events converge toµ-conditional probabilities. Moreover,ρ predictsµ in total variation
if (Blackwell and Dubins, 1962) and only if (Kalai and Lehrer, 1994)µ is absolutely continuous
with respect toρ. Denote≥tv the relation of absolute continuity (that is,ρ ≥tv µ if µ is absolutely
continuous with respect toρ).

Thus, for a classC of measures there is a predictorρ that predicts everyµ∈ C in total variation
if and only if everyµ ∈ C has a density with respect toρ. Although such sets of processes are
rather large, they do not include even such basic examples as the set of all Bernoulli i.i.d. processes.
That is, there is noρ that would predict in total variation every Bernoulli i.i.d. process measureδp,
p∈ [0,1], wherep is the probability of 0. Indeed, all these processesδp, p∈ [0,1], are singular with
respect to one another; in particular, each of the non-overlapping setsTp of all sequences which have
limiting fraction p of 0s has probability 1 with respect to one of the measures and 0 with respect to
all others; since there are uncountably many of these measures, there is no measureρ with respect
to which they all would have a density (since such a measure should haveρ(Tp)> 0 for all p).

Therefore, perhaps for many (if not most) practical applications this measure of the quality of
prediction is too strong, and one is interested in weaker measures of performance.

For two measuresµ andρ introduce theexpected cumulative Kullback-Leibler divergence (KL
divergence)as

dn(µ,ρ) := Eµ

n

∑
t=1

∑
a∈X

µ(xt = a|x1..t−1) log
µ(xt = a|x1..t−1)

ρ(xt = a|x1..t−1)
,

In words, we take the expected (over data) cumulative (over time) KL divergence betweenµ- and
ρ-conditional (on the past data) probability distributions of the next outcome.

Definition 2 We say thatρ predicts µ in expected average KL divergence if

1
n

dn(µ,ρ)→ 0.

This measure of performance is much weaker, in the sense that it requiresgood predictions only one
step ahead, and not on every step but only on average; also the convergence is not with probability 1
but in expectation. With prediction quality so measured, predictors exist forrelatively large classes
of measures; most notably, Ryabko (1988) provides a predictor which predicts every stationary
process in expected average KL divergence.
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We will use the following well-known identity (introduced, in the context of sequence predic-
tion, by Ryabko, 1988)

dn(µ,ρ) =− ∑
x1..n∈X n

µ(x1..n) log
ρ(x1..n)

µ(x1..n)
,

where on the right-hand side we have simply the KL divergence between measuresµandρ restricted
to the firstn observations.

Thus, the results of this work will be established with respect to two very different measures
of prediction quality, one of which is very strong and the other rather weak. This suggests that the
facts established reflect some fundamental properties of the problem of prediction, rather than those
pertinent to particular measures of performance. On the other hand, it remains open to extend the
results below to different measures of performance.

Definition 3 Consider the following classes of process measures:P is the set of all process mea-
sures,D is the set of all degenerate discrete process measures,S is the set of all stationary processes
andMk is the set of all stationary measures with memory not greater than k (k-order Markov pro-
cesses, withM0 being the set of all i.i.d. processes):

D := {µ∈ P : ∃x∈ X∞ µ(x) = 1} ,

S := {µ∈ P : ∀n,k≥ 1∀a1..n ∈ X nµ(x1..n = a1..n) = µ(x1+k..n+k = a1..n)} .

Mk := {µ∈ S : ∀n≥ k∀a∈ X ∀a1..n ∈ X n

µ(xn+1 = a|x1..n = a1..n) = µ(xk+1 = a|x1..k = an−k+1..n)} .

Abusing the notation, we will sometimes use elements ofD andX∞ interchangeably. The following
(simple and well-known) statement will be used repeatedly in the examples.

Lemma 4 For everyρ ∈ P there exists µ∈D such that dn(µ,ρ)≥ nlog|X | for all n ∈ N.

Proof Indeed, for eachn we can selectµ(xn = a) = 1 for a∈ X that minimizesρ(xn = a|x1..n−1),
so thatρ(x1..n)≤ |X |−n.

3. Sequence Prediction Problems

For the two notions of predictive quality introduced, we can now state formallythe sequence pre-
diction problems.

Problem 1(realizable case). Given a set of probability measuresC , find a measureρ such thatρ
predicts in total variation (expected average KL divergence) everyµ∈ C , if such aρ exists.

Thus, Problem 1 is about finding a predictor for the case when the process generating the data
is known to belong to a given classC . That is, the setC here is a set of measures that generate the
data. Next let us formulate the questions aboutC as a set of predictors.

Problem 2(non-realizable case). Given a set of process measures (predictors)C , find a process
measureρ such thatρ predicts in total variation (in expected average KL divergence) every measure
ν ∈ P such that there isµ∈ C which predicts (in the same sense)ν.
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While Problem 2 is already quite general, it does not yet address what can be called the fully
agnostic case: if nothing at all is known about the processν generating the data, it means that there
may be noµ∈ C such thatµ predictsν, and then, even if we have a solutionρ to the Problem 2, we
still do not know what the performance ofρ is going to be on the data generated byν, compared to
the performance of the predictors fromC . To address this fully agnostic case we have to introduce
the notion of loss.

Definition 5 Introduce the almost sure total variation loss ofρ with respect to µ

ltv(µ,ρ) := inf{α ∈ [0,1] : limsup
n→∞

v(µ,ρ,x1..n)≤ α µ–a.s.},

and the asymptotic KL loss

lKL(ν,ρ) := limsup
n→∞

1
n

dn(ν,ρ).

We can now formulate the fully agnostic version of the sequence prediction problem.
Problem 3.Given a set of process measures (predictors)C , find a process measureρ such thatρ

predicts at least as well as anyµ in C , if any process measureν ∈ P is chosen to generate the data:

l(ν,ρ)− l(ν,µ)≤ 0

for everyν ∈ P and everyµ∈ C , wherel(·, ·) is eitherltv(·, ·) or lKL(·, ·).
The three problems just formulated represent different conceptual approaches to the sequence

prediction problem. Let us illustrate the difference by the followinginformal example. Suppose
that the setC is that of all (ergodic, finite-state) Markov chains. Markov chains beinga familiar
object in probability and statistics, we can easily construct a predictorρ that predicts everyµ∈ C

(for example, in expected average KL divergence, see Krichevsky,1993). That is, if we know that
the processµ generating the data is Markovian, we know that our predictor is going to perform well.
This is the realizable case of Problem 1. In reality, rarely can we be sure that the Markov assumption
holds true for the data at hand. We may believe, however, that it is still a reasonable assumption, in
the sense that there is a Markovian model which, for our purposes (forthe purposes of prediction),
is a good model of the data. Thus we may assume that there is a Markov model (a predictor) that
predicts well the process that we observe, and we would like to combine the predictive qualities of
all these Markov models. This is the “non-realizable” case of Problem 2. Note that this problem
is more difficult than the first one; in particular, a processν generating the data may be singular
with respect to any Markov process, and still be predicted well (in the sense of expected average
KL divergence, for example) by some of them. Still, here we are making some assumptions about
the process generating the data, and, if these assumptions are wrong, then we do not know anything
about the performance of our predictor. Thus, we may ultimately wish to acknowledge that we do
not know anything at all about the data; we still know a lot about Markov processes, and we would
like to use this knowledge on our data. If there is anything at all Markovian init (that is, anything
that can be captured by a Markov model), then we would like our predictor touse it. In other words,
we want to have a predictor that predicts any process measure whatsoever (at least) as well as any
Markov predictor. This is the “fully agnostic” case of Problem 3.

Of course, Markov processes were just mentioned as an example, while inthis work we are only
concerned with the most general case of arbitrary (uncountable) setsC of process measures.

The following statement is rather obvious.
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Proposition 6 Any solution to Problem 3 is a solution to Problem 2, and any solution to Problem 2
is a solution to Problem 1.

Despite the conceptual differences in formulations, it may be somewhat unclear whether the three
problems are indeed different. It appears that this depends on the measure of predictive quality
chosen: for the case of prediction in total variation distance all the three problems coincide, while
for the case of prediction in expected average KL divergence they aredifferent.

4. Prediction in Total Variation

As it was mentioned, a measureµ is absolutely continuous with respect to a measureρ if and
only if ρ predictsµ in total variation distance. This reduces studying at least Problem 1 for total
variation distance to studying the relation of absolute continuity. Introduce thenotationρ ≥tv µ for
this relation.

Let us briefly recall some facts we know about≥tv; details can be found, for example, in Plesner
and Rokhlin (1946). Let[P ]tv denote the set of equivalence classes ofP with respect to≥tv, and for
µ∈ Ptv denote[µ] the equivalence class that containsµ. Two elementsσ1,σ2 ∈ [P ]tv (or σ1,σ2 ∈ P )
are called disjoint (or singular) if there is noν ∈ [P ]tv such thatσ1 ≥tv ν and σ2 ≥tv ν; in this
case we writeσ1 ⊥tv σ2. We write [µ1] + [µ2] for [1

2(µ1 + µ2)]. Every pairσ1,σ2 ∈ [P ]tv has a
supremum sup(σ1,σ2) = σ1+σ2. Introducing into[P ]tv an extra element 0 such thatσ ≥tv 0 for all
σ ∈ [P ]tv, we can state that for everyρ,µ∈ [P ]tv there exists a unique pair of elementsµs andµa

such thatµ= µa+µs, ρ ≥ µa andρ ⊥tv µs. (This is a form of Lebesgue decomposition.) Moreover,
µa = inf(ρ,µ). Thus, every pair of elements has a supremum and an infimum. Moreover, every
bounded set of disjoint elements of[P ]tv is at most countable.

Furthermore, we introduce the (unconditional) total variation distance between process mea-
sures.

Definition 7 (unconditional total variation distance) The (unconditional) total variation distance
is defined as

v(µ,ρ) := sup
A∈B

|µ(A)−ρ(A)|.

Known characterizations of those setsC that are bounded with respect to≥tv can now be related
to our prediction problems 1-3 as follows.

Theorem 8 LetC ⊂ P . The following statements aboutC are equivalent.

(i) There exists a solution to Problem 1 in total variation.

(ii) There exists a solution to Problem 2 in total variation.

(iii) There exists a solution to Problem 3 in total variation.

(iv) C is upper-bounded with respect to≥tv.

(v) There exists a sequence µk ∈ C , k∈N such that for some (equivalently, for every) sequence of
weights wk ∈ (0,1], k∈N such that∑k∈Nwk = 1, the measureν = ∑k∈Nwkµk satisfiesν ≥tv µ
for every µ∈ C .

(vi) C is separable with respect to the total variation distance.
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(vii) Let C+ := {µ∈ P : ∃ρ ∈ C ρ ≥tv µ}. Every disjoint (with respect to≥tv) subset ofC+ is at
most countable.

Moreover, every solution to any of the Problems 1-3 is a solution to the othertwo, as is any upper
bound forC . The sequence µk in the statement (v) can be taken to be any dense (in the total variation
distance) countable subset ofC (cf. (vi)), or any maximal disjoint (with respect to≥tv) subset ofC+

of statement (vii), in which every measure that is not inC is replaced by any measure fromC that
dominates it.

Proof The implications(i)⇐ (ii)⇐ (iii ) are obvious (cf. Proposition 6). The implication(iv)⇒ (i)
is a reformulation of the result of Blackwell and Dubins (1962). The converse (and hence(v)⇒ (iv))
was established in Kalai and Lehrer (1994).(i)⇒ (ii) follows from the equivalence(i)⇔ (iv) and
the transitivity of≥tv; (i) ⇒ (iii ) follows from the transitivity of≥tv and from Lemma 9 below:
indeed, from Lemma 9 we haveltv(ν,µ) = 0 if µ≥tv ν and ltv(ν,µ) = 1 otherwise. From this and
the transitivity of≥tv it follows that if ρ ≥tv µ then alsoltv(ν,ρ)≤ ltv(ν,µ) for all ν ∈ P . The equiv-
alence of(v), (vi), and(i) was established in Ryabko (2010a). The equivalence of(iv) and(vii)
was proven in Plesner and Rokhlin (1946). The concluding statements of the theorem are easy to
demonstrate from the results cited above.

The following lemma is an easy consequence of Blackwell and Dubins (1962).

Lemma 9 Let µ,ρ be two process measures. Then v(µ,ρ,x1..n) converges to either 0 or 1 with
µ-probability 1.

Proof Assume thatµ is not absolutely continuous with respect toρ (the other case is covered
by Blackwell and Dubins, 1962). By Lebesgue decomposition theorem, themeasureµ admits a
representationµ= αµa+(1−α)µs whereα ∈ [0,1] and the measuresµa andµs are such thatµa is
absolutely continuous with respect toρ andµs is singular with respect toρ. Let W be such a set
that µa(W) = ρ(W) = 1 andµs(W) = 0. Note that we can takeµa = µ|W andµs = µ|X∞\W. From
Blackwell and Dubins (1962) we havev(µa,ρ,x1..n) → 0 µa-a.s., as well asv(µa,µ,x1..n) → 0 µa-
a.s. andv(µs,µ,x1..n) → 0 µs-a.s. Moreover,v(µs,ρ,x1..n) ≥ |µs(W|x1..n)− ρ(W|x1..n)| = 1 so that
v(µs,ρ,x1..n)→ 1 µs-a.s. Furthermore,

v(µ,ρ,x1..n)≤ v(µ,µa,x1..n)+v(µa,ρ,x1..n) = I

and
v(µ,ρ,x1..n)≥−v(µ,µs,x1..n)+v(µs,ρ,x1..n) = II .

We haveI → 0 µa-a.s. and henceµ|W-a.s., as well asII → 1 µs-a.s. and henceµ|X∞\W-a.s. Thus,
µ(v(µ,ρ,x1..n)→ 0 or 1)≤ µ(W)µ|W(I → 0)+µ(X∞\W)µ|X∞\W(II → 1) = µ(W)+µ(X∞\W) = 1,
which concludes the proof.

Remark.Using Lemma 9 we can also defineexpected(rather than almost sure) total variation
loss ofρ with respect toµ, as theµ-probability thatv(µ,ρ) converges to 1:

l ′tv(µ,ρ) := µ{x1,x2, · · · ∈ X∞ : v(µ,ρ,x1..n)→ 1}.
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Then Problem 3 can be reformulated for this notion of loss. However, it is easy to see that for this
reformulation Theorem 8 holds true as well.

Thus, we can see that, for the case of prediction in total variation, all the sequence prediction
problems formulated reduce to studying the relation of absolute continuity for process measures
and those families of measures that are absolutely continuous (have a density) with respect to some
measure (a predictor). On the one hand, from a statistical point of view such families are rather
large: the assumption that the probabilistic law in question has a density with respect to some (nice)
measure is a standard one in statistics. It should also be mentioned that such families can easily be
uncountable. (In particular, this means that they are large from a computational point of view.) On
the other hand, even such basic examples as the set of all Bernoulli i.i.d. measures does not allow
for a predictor that predicts every measure in total variation (as explainedin Section 2).

That is why we have to consider weaker notions of predictions; from these, prediction in ex-
pected average KL divergence is perhaps one of the weakest. The goal of the next sections is to see
which of the properties that we have for total variation can be transferred (and in which sense) to
the case of expected average KL divergence.

5. Prediction in Expected Average KL Divergence

First of all, we have to observe that for prediction in KL divergence Problems 1, 2, and 3 are
different, as the following theorem shows. While the examples provided in theproof are artificial,
there is a very important example illustrating the difference between Problem 1and Problem 3 for
expected average KL divergence: the setS of all stationary processes, given in Theorem 16 in the
end of this section.

Theorem 10 For the case of prediction in expected average KL divergence, Problems 1, 2 and 3
are different: there exists a setC1 ⊂ P for which there is a solution to Problem 1 but there is no
solution to Problem 2, and there is a setC2 ⊂ P for which there is a solution to Problem 2 but there
is no solution to Problem 3.

Proof We have to provide two examples. Fix the binary alphabetX = {0,1}. For each deterministic
sequencet = t1, t2, · · · ∈X∞ construct the process measureγt as follows:γt(xn = tn|t1..n−1) := 1− 1

n+1
and forx1..n−1 6= t1..n−1 let γt(xn = 0|x1..n−1) = 1/2, for all n∈ N. That is,γt is Bernoulli i.i.d. 1/2
process measure strongly biased towards a specific deterministic sequence,t. Let alsoγ(x1..n) = 2−n

for all x1..n ∈ X n, n∈ N (the Bernoulli i.i.d. 1/2). For the setC1 := {γt : t ∈ X∞} we have a solution
to Problem 1: indeed,dn(γt ,γ) ≤ 1 = o(n). However, there is no solution to Problem 2. Indeed,
for eacht ∈D we havedn(t,γt) = logn= o(n) (that is, for every deterministic measure there is an
element ofC1 which predicts it), while by Lemma 4 for everyρ ∈ P there existst ∈ D such that
dn(t,ρ)≥ n for all n∈N (that is, there is no predictor which predicts every measure that is predicted
by at least one element ofC1).

The second example is similar. For each deterministic sequencet = t1, t2, · · · ∈ D construct
the process measureγt as follows: γ′t(xn = tn|t1..n−1) := 2/3 and forx1..n−1 6= t1..n−1 let γ′t(xn =
0|x1..n−1) = 1/2, for all n ∈ N. It is easy to see thatγ is a solution to Problem 2 for the set
C2 := {γ′t : t ∈ X∞}. Indeed, ifν ∈ P is such thatdn(ν,γ′) = o(n) then we must haveν(t1..n) = o(1).
From this and the fact thatγ and γ′ coincide (up toO(1)) on all other sequences we conclude
dn(ν,γ) = o(n). However, there is no solution to Problem 3 forC2. Indeed, for everyt ∈ D we
havedn(t,γ′t) = nlog3/2+o(n). Therefore, ifρ is a solution to Problem 3 then limsup1

ndn(t,ρ)≤
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log3/2< 1 which contradicts Lemma 4.

Thus, prediction in expected average KL divergence turns out to be a more complicated matter
than prediction in total variation. The next idea is to try and see which of the facts about prediction
in total variation can be generalized to some of the problems concerning prediction in expected
average KL divergence.

First, observe that, for the case of prediction in total variation, the equivalence of Problems 1
and 2 was derived from the transitivity of the relation≥tv of absolute continuity. For the case of
expected average KL divergence, the relation “ρ predictsµ in expected average KL divergence” is
not transitive (and Problems 1 and 2 are not equivalent). However, for Problem 2 we are interested
in the following relation:ρ “dominates”µ if ρ predicts everyν such thatµ predictsν. Denote this
relation by≥KL:

Definition 11 (≥KL) We writeρ ≥KL µ if for everyν ∈ P the equalitylimsup1
ndn(ν,µ) = 0 implies

limsup1
ndn(ν,ρ) = 0.

The relation≥KL has some similarities with≥tv. First of all,≥KL is also transitive (as can be easily
seen from the definition). Moreover, similarly to≥tv, one can show that for anyµ,ρ any strictly
convex combinationαµ+ (1−α)ρ is a supremum of{ρ,µ} with respect to≥KL. Next we will
obtain a characterization of predictability with respect to≥KL similar to one of those obtained for
≥tv.

The key observation is the following. If there is a solution to Problem 2 for a set C then a
solution can be obtained as a Bayesian mixture over a countable subset ofC . For total variation this
is the statement(v) of Theorem 8.

Theorem 12 LetC be a set of probability measures onΩ. If there is a measureρ such thatρ ≥KL µ
for every µ∈ C (ρ is a solution to Problem 2) then there is a sequence µk ∈ C , k ∈ N, such that
∑k∈Nwkµk ≥KL µ for every µ∈ C , where wk are some positive weights.

The proof is deferred to Section 7. An analogous result for Problem 1 was established in Ryabko
(2009). (The proof of Theorem 12 is based on similar ideas, but is more involved.)

For the case of Problem 3, we do not have results similar to Theorem 12 (orstatement(v) of
Theorem 8); in fact, we conjecture that the opposite is true: there exists a (measurable) setC of
measures such that there is a solution to Problem 3 forC , but there is no Bayesian solution to
Problem 3, meaning that there is no probability distribution onC (discrete or not) such that the
mixture overC with respect to this distribution is a solution to Problem 3 forC .

However, we can take a different route and extend another part of Theorem 8 to obtain a char-
acterization of setsC for which a solution to Problem 3 exists.

We have seen that, in the case of prediction in total variation, separability with respect to the
topology of this distance is a necessary and sufficient condition for the existence of a solution to
Problems 1-3. In the case of expected average KL divergence the situation is somewhat different,
since, first of all, (asymptotic average) KL divergence is not a metric. While one can introduce a
topology based on it, separability with respect to this topology turns out to be asufficient but not a
necessary condition for the existence of a predictor, as is shown in the next theorem.
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Definition 13 Define the distance d∞(µ1,µ2) on process measures as follows

d∞(µ1,µ2) = limsup
n→∞

sup
x1..n∈X n

1
n

∣

∣

∣

∣

log
µ1(x1..n)

µ2(x1..n)

∣

∣

∣

∣

,

where we assumelog0/0 := 0.

Clearly,d∞ is symmetric and satisfies the triangle inequality, but it is not exact. Moreover,for every
µ1,µ2 we have

limsup
n→∞

1
n

dn(µ1,µ2)≤ d∞(µ1,µ2).

The distanced∞(µ1,µ2) measures the difference in behaviour ofµ1 and µ2 on all individual se-
quences. Thus, using this distance to analyse Problem 3 is most close to the traditional approach
to the non-realizable case, which is formulated in terms of predicting individual deterministic se-
quences.

Theorem 14 (i) Let C be a set of process measures. IfC is separable with respect to d∞ then
there is a solution to Problem 3 forC , for the case of prediction in expected average KL
divergence.

(ii) There exists a set of process measuresC such thatC is not separable with respect to d∞, but
there is a solution to Problem 3 for this set, for the case of prediction in expected average KL
divergence.

Proof For the first statement, letC be separable and let(µk)k∈N be a dense countable subset of
C . Defineν := ∑k∈Nwkµk, wherewk are any positive summable weights. Fix any measureτ and
anyµ∈ C . We will show that limsupn→∞

1
ndn(τ,ν)≤ limsupn→∞

1
ndn(τ,µ). For everyε, find such a

k∈ N thatd∞(µ,µk)≤ ε. We have

dn(τ,ν)≤ dn(τ,wkµk) = Eτ log
τ(x1..n)

µk(x1..n)
− logwk

= Eτ log
τ(x1..n)

µ(x1..n)
+Eτ log

µ(x1..n)

µk(x1..n)
− logwk

≤ dn(τ,µ)+ sup
x1..n∈X n

log

∣

∣

∣

∣

µ(x1..n)

µk(x1..n)

∣

∣

∣

∣

− logwk.

From this, dividing byn taking limsupn→∞ on both sides, we conclude

limsup
n→∞

1
n

dn(τ,ν)≤ limsup
n→∞

1
n

dn(τ,µ)+ ε.

Since this holds for everyε > 0 the first statement is proven.
The second statement is proven by the following example. LetC be the set of all deterministic

sequences (measures concentrated on just one sequence) such thatthe number of 0s in the firstn
symbols is less than

√
n, for all n ∈ N. Clearly, this set is uncountable. It is easy to check that

µ1 6= µ2 impliesd∞(µ1,µ2) = ∞ for everyµ1,µ2 ∈ C , but the predictorν, given byν(xn = 0) = 1/n
independently for differentn, predicts everyµ∈ C in expected average KL divergence. Since all
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elements ofC are deterministic,ν is also a solution to Problem 3 forC .

Although simple, Theorem 14 can be used to establish the existence of a solution to Problem 3
for an important class of process measures: that of all processes with finite memory, as the next
theorem shows. Results similar to Theorem 15 are known in different settings, for example, Ziv and
Lempel (1978), Ryabko (1984), Cesa-Bianchi and Lugosi (1999)and others.

Theorem 15 There exists a solution to Problem 3 for prediction in expected average KL divergence
for the set of all finite-memory process measuresM := ∪k∈NMk.

Proof We will show that the setM is separable with respect tod∞. Then the statement will follow
from Theorem 14. It is enough to show that each setMk is separable with respect tod∞.

For simplicity, assume that the alphabet is binary (|X | = 2; the general case is analogous).
Observe that the familyMk of k-order stationary binary-valued Markov processes is parametrized
by |X |k [0,1]-valued parameters: probability of observing 0 after observingx1..k, for eachx1..k ∈
X k. Note that this parametrization is continuous (as a mapping from the parameter space with the
Euclidean topology toMk with the topology ofd∞). Indeed, for anyµ1,µ2 ∈Mk and everyx1..n ∈X n

such thatµi(x1..n) 6= 0, i = 1,2, it is easy to see that

1
n

∣

∣

∣

∣

log
µ1(x1..n)

µ2(x1..n)

∣

∣

∣

∣

≤ sup
x1..k+1

1
k+1

∣

∣

∣

∣

log
µ1(x1..k+1)

µ2(x1..k+1)

∣

∣

∣

∣

, (1)

so that the right-hand side of (1) also upper-boundsd∞(µ1,µ2), implying continuity of the parametriza-
tion.

It follows that the setµk
q, q∈ Q|X |k of all stationaryk-order Markov processes with rational val-

ues of all the parameters (Q := Q∩ [0,1]) is dense inMk, proving the separability of the latter set.

Another important example is the set of all stationary process measuresS . This example also
illustrates the difference between the prediction problems that we consider.For this set a solution
to Problem 1 was given in Ryabko (1988). In contrast, here we show that there is no solution to
Problem 3 forS .

Theorem 16 There is no solution to Problem 3 for the set of all stationary processesS .

Proof This proof is based on the construction similar to the one used in Ryabko (1988) to demon-
strate impossibility of consistent prediction of stationary processes without Cesaro averaging.

Let m be a Markov chain with states 0,1,2, . . . and state transitions defined as follows. From
each satek ∈ N∪ {0} the chain passes to the statek+ 1 with probability 2/3 and to the state 0
with probability 1/3. It is easy to see that this chain possesses a unique stationary distribution on
the set of states (see, e.g., Shiryaev, 1996); taken as the initial distributionit defines a stationary
ergodic process with values inN∪{0}. Fix the ternary alphabetX = {a,0,1}. For each sequence
t = t1, t2, · · · ∈ {0,1}∞ define the processµt as follows. It is a deterministic function of the chainm.
If the chain is in the state 0 then the processµt outputsa; if the chainm is in the statek > 0 then
the process outputstk. That is, we have defined a hidden Markov process which in the state 0 ofthe
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underlying Markov chain always outputsa, while in other states it outputs either 0 or 1 according
to the sequencet.

To show that there is no solution to Problem 3 forS , we will show that there is no solu-
tion to Problem 3 for the smaller setC := {µt : t ∈ {0,1}∞}. Indeed, for anyt ∈ {0,1}∞ we
havedn(t,µt) = nlog3/2+ o(n). Then if ρ is a solution to Problem 3 forC we should have
limsupn→∞

1
ndn(t,ρ)≤ log3/2< 1 for everyt ∈D, which contradicts Lemma 4.

From the proof of Theorem 16 one can see that, in fact, the statement that isproven is stronger:
there is no solution to Problem 3 for the set of all functions of stationary ergodic countable-state
Markov chains. We conjecture that a solution to Problem 2 exists for the latterset, but not for the
set of all stationary processes.

As we have seen in the statements above, the set of all deterministic measuresD plays an
important role in the analysis of the predictors in the sense of Problem 3. Therefore, an interesting
question is to characterize those setsC of measures for which there is a predictorρ that predicts
every individual sequenceat least as well as any measure fromC . Such a characterization can
be obtained in terms of Hausdorff dimension, using a result of Ryabko (1986), that shows that
Hausdorff dimension of a set characterizes the optimal prediction error that can be attained by any
predictor.

For a setA⊂ X∞ denoteH(A) its Hausdorff dimension (see, for example, Billingsley, 1965 for
its definition).

Theorem 17 LetC ⊂ P . The following statements are equivalent.

(i) There is a measureρ ∈ P that predicts every individual sequence at least as well as the best
measure fromC : for every µ∈ C and every sequence x1,x2, · · · ∈ X∞ we have

liminf
n→∞

−1
n

logρ(x1..n)≤ liminf
n→∞

−1
n

logµ(x1..n).

(ii) For every α ∈ [0,1] the Hausdorff dimension of the set of sequences on which the average
prediction error of the best measure inC is not greater thanα is bounded byα/ log|X |:

H({x1,x2, · · · ∈ X∞ : inf
µ∈C

liminf
n→∞

−1
n

logµ(x1..n)≤ α})≤ α/ log|X |.

Proof The implication(i) ⇒ (ii) follows directly from Ryabko (1986) where it is shown that for
every measureρ one must haveH({x1,x2, · · · ∈ X∞ : liminfn→∞−1

n logρ(x1..n)≤ α})≤ α/ log|X |.
To show the opposite implication, we again refer to Ryabko (1986): for every setA⊂ X∞ there

is a measureρA such that

liminf
n→∞

−1
n

logρA(x1..n)≤ H(A) log|X |. (2)

For eachα ∈ [0,1] defineAα := {x1,x2, · · · ∈ X∞ : infµ∈C liminfn→∞−1
n logµ(x1..n) ≤ α}). By as-

sumption,H(Aα)≤ α/ log|X|, so that from (2) for allx1,x2, · · · ∈ Aα we obtain

liminf
n→∞

−1
n

logρA(x1..n)≤ α. (3)
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Furthermore, defineρ := ∑q∈QwqρAq, whereQ = [0,1]∩Q is the set of rationals in[0,1] and
(wq)q∈Q is any sequence of positive reals satisfying∑q∈Qwq = 1. For everyα ∈ [0,1] let qk ∈ Q,
k ∈ N be such a sequence that 0≤ qk−α ≤ 1/k. Then, for everyn∈ N and everyx1,x2, · · · ∈ Aqk

we have

−1
n

logρ(x1..n)≤−1
n

logρq(x1..n)−
logwqk

n
.

From this and (3) we get

liminf
n→∞

−1
n

logρ(x1..n)≤ liminf
n→∞

ρqk(x1..n)+1/k≤ qk+1/k.

Since this holds for everyk∈ N, it follows that for allx1,x2, · · · ∈ ∩k∈NAqk = Aα we have

liminf
n→∞

−1
n

logρ(x1..n)≤ inf
k∈N

(qk+1/k) = α,

which completes the proof of the implication(ii)⇒ (i).

6. Discussion

It has been long realized that the so-called probabilistic and agnostic (adversarial, non-stochastic,
deterministic) settings of the problem of sequential prediction are strongly related. This has been
most evident from looking at the solutions to these problems, which are usually based on the same
ideas. Here we have proposed a formulation of the agnostic problem as a non-realizable case of the
probabilistic problem. While being very close to the traditional one, this setting allows us to directly
compare the two problems. As a somewhat surprising result, we can see thatwhether the two prob-
lems are different depends on the measure of performance chosen: in the case of prediction in total
variation distance they coincide, while in the case of prediction in expected average KL divergence
they are different. In the latter case, the distinction becomes particularly apparent on the example
of stationary processes: while a solution to the realizable problem has long been known, here we
have shown that there is no solution to the agnostic version of this problem. This formalization also
allowed us to introduce another problem that lies in between the realizable andthe fully agnostic
problems: given a class of process measuresC , find a predictor whose predictions are asymptot-
ically correct for every measure for which at least one of the measuresin C gives asymptotically
correct predictions (Problem 2). This problem is less restrictive then thefully agnostic one (in par-
ticular, it is not concerned with the behaviour of a predictor on every deterministic sequence) but
at the same time the solutions to this problem have performance guarantees faroutside the model
class considered.

In essence, the formulation of Problem 2 suggests to assume that we have aset of models one
of which is good enough to make predictions, with the goal of combining the predictive powers of
these models. This is perhaps a good compromise between making modelling assumptions on the
data (the data is generated by one of the models we have) and the fully agnostic, worst-case, setting.

Since the problem formulations presented here are mostly new (at least, in such a general form),
it is not surprising that there are many questions left open. A promising route to obtain new results
seems to be to first analyse the case of prediction in total variation, which amounts to studying
the relation of absolute continuity and singularity of probability measures, andthen to try and find
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analogues in less restrictive (and thus more interesting and difficult) casesof predicting only the
next observation, possibly with Cesaro averaging. This is the approachthat we took in this work.
Here it is interesting to find properties common to all or most of the prediction problems (in total
variation as well as with respect to other measures of the performance), ifit is at all possible. For
example, the “countable Bayes” property of Theorem 12, that states thatif there is a solution to a
given sequence prediction problem for a setC then a solution can be obtained as a mixture over a
suitable countable subset ofC , holds for Problems 1–3 in total variation, and for Problems 1 and 2
in KL divergence; however we conjecture that it does not hold for the Problem 3 in KL divergence.

It may also be interesting to study algebraic properties of the relation≥KL that arises when
studying Problem 2. We have show that it shares some properties with the relation≥tv of absolute
continuity. Since the latter characterizes prediction in total variation and the former characterizes
prediction in KL divergence (in the sense of Problem 2), which is much weaker, it would be inter-
esting to see exactly what properties the two relations share.

Another direction for future research concerns finite-time performance analysis. In this work
we have adopted the asymptotic approach to the prediction problem, ignoring the behaviour of
predictors before asymptotic. While for prediction in total variation it is a natural choice, for other
measures of performance, including average KL divergence, it is clear that Problems 1-3 admit
non-asymptotic formulations. It is also interesting what are the relations between performance
guarantees that can be obtained in non-asymptotic formulations of Problems 1–3.

7. Proof of Theorem 12

Proof Define the setsCµ as the set of all measuresτ ∈ P such thatµ predictsτ in expected average
KL divergence. LetC+ := ∪µ∈CCµ. For eachτ ∈ C+ let p(τ) be any (fixed)µ∈ C such thatτ ∈Cµ.
In other words,C+ is the set of all measures that are predicted by some of the measures inC , and
for each measureτ in C+ we designate one “parent” measurep(τ) from C such thatp(τ) predictsτ.

Define the weightswk := 1/k(k+1), for all k∈ N.
Step 1.For eachµ∈ C+ let δn be any monotonically increasing function such thatδn(µ) = o(n) and
dn(µ, p(µ)) = o(δn(µ)). Define the sets

Un
µ :=

{

x1..n ∈ X n : µ(x1..n)≥
1
n

ρ(x1..n)

}

, (4)

Vn
µ :=

{

x1..n ∈ X n : p(µ)(x1..n)≥ 2−δn(µ)µ(x1..n)
}

, (5)

and
Tn

µ :=Un
µ ∩Vn

µ . (6)

We will upper-boundµ(Tn
µ ). First, using Markov’s inequality, we derive

µ(X n\Un
µ) = µ

(

ρ(x1..n)

µ(x1..n)
> n

)

≤ 1
n

Eµ
ρ(x1..n)

µ(x1..n)
=

1
n
. (7)

Next, observe that for everyn∈ N and every setA⊂ X n, using Jensen’s inequality we can obtain

− ∑
x1..n∈A

µ(x1..n) log
ρ(x1..n)

µ(x1..n)
=−µ(A) ∑

x1..n∈A

1
µ(A)

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

≥−µ(A) log
ρ(A)
µ(A)

≥−µ(A) logρ(A)− 1
2
. (8)
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Moreover,

dn(µ, p(µ)) =− ∑
x1..n∈X n\Vn

µ

µ(x1..n) log
p(µ)(x1..n)

µ(x1..n)

− ∑
x1..n∈Vn

µ

µ(x1..n) log
p(µ)(x1..n)

µ(x1..n)
≥ δn(µn)µ(X

n\Vn
µ )−1/2,

where in the inequality we have used (5) for the first summand and (8) for the second. Thus,

µ(X n\Vn
µ )≤

dn(µ, p(µ))+1/2
δn(µ)

= o(1). (9)

From (6), (7) and (9) we conclude

µ(X n\Tn
µ )≤ µ(X n\Vn

µ )+µ(X n\Un
µ) = o(1). (10)

Step 2n: a countable cover, time n.Fix an n ∈ N. Definemn
1 := maxµ∈C ρ(Tn

µ ) (sinceX n are
finite all suprema are reached). Find anyµn

1 such thatρn
1(T

n
µn

1
) = mn

1 and letTn
1 := Tn

µn
1
. For k > 1,

let mn
k := maxµ∈C ρ(Tn

µ \Tn
k−1). If mn

k > 0, let µn
k be anyµ∈ C such thatρ(Tn

µn
k
\Tn

k−1) = mn
k, and let

Tn
k := Tn

k−1∪Tn
µn

k
; otherwise letTn

k := Tn
k−1. Observe that (for eachn) there is only a finite number

of positivemn
k, since the setX n is finite; letKn be the largest indexk such thatmn

k > 0. Let

νn :=
Kn

∑
k=1

wkp(µn
k).

As a result of this construction, for everyn∈ N everyk≤ Kn and everyx1..n ∈ Tn
k using the defini-

tions (6), (4) and (5) we obtain

νn(x1..n)≥ wk
1
n

2−δn(µ)ρ(x1..n). (11)

Step 2: the resulting predictor.Finally, define

ν :=
1
2

γ+
1
2 ∑

n∈N
wnνn, (12)

whereγ is the i.i.d. measure with equal probabilities of allx∈ X (that is,γ(x1..n) = |X |−n for every
n∈ N and everyx1..n ∈ X n). We will show thatν predicts everyµ∈ C+, and then in the end of the
proof (Step r) we will show how to replaceγ by a combination of a countable set of elements ofC

(in fact,γ is just a regularizer which ensures thatν-probability of any word is never too close to 0).
Step 3:ν predicts every µ∈ C+. Fix anyµ∈ C+. Introduce the parametersεn

µ ∈ (0,1), n∈N, to
be defined later, and letjnµ := 1/εn

µ. Observe thatρ(Tn
k \Tn

k−1)≥ ρ(Tn
k+1\Tn

k ), for anyk> 1 and any
n∈N, by definition of these sets. Since the setsTn

k \Tn
k−1, k∈N are disjoint, we obtainρ(Tn

k \Tn
k−1)≤

1/k. Hence,ρ(Tn
µ \Tn

j )≤ εn
µ for some j ≤ jnµ, since otherwisemn

j = maxµ∈C ρ(Tn
µ \Tn

jnµ
)> εn

µ so that

ρ(Tn
jnµ+1\Tn

jnµ
)> εn

µ = 1/ jnµ, which is a contradiction. Thus,

ρ(Tn
µ \Tn

jnµ
)≤ εn

µ. (13)
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We can upper-boundµ(Tn
µ \Tn

jnµ
) as follows. First, observe that

dn(µ,ρ) =− ∑
x1..n∈Tn

µ ∩Tn
jnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

− ∑
x1..n∈Tn

µ \Tn
jnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

− ∑
x1..n∈X n\Tn

µ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

= I + II + III . (14)

Then, from (6) and (4) we get
I ≥− logn. (15)

From (8) and (13) we get

II ≥−µ(Tn
µ \Tn

jnµ
) logρ(Tn

µ \Tn
jnµ
)−1/2≥−µ(Tn

µ \Tn
jnµ
) logεn

µ−1/2. (16)

Furthermore,

III ≥ ∑
x1..n∈X n\Tn

µ

µ(x1..n) logµ(x1..n)

≥ µ(X n\Tn
µ ) log

µ(X n\Tn
µ )

|X n\Tn
µ |

≥ −1
2
−µ(X n\Tn

µ )nlog|X |, (17)

where the first inequality is obvious, in the second inequality we have used the fact that entropy is
maximized when all events are equiprobable and in the third one we used|X n\Tn

µ | ≤ |X |n. Com-
bining (14) with the bounds (15), (16) and (17) we obtain

dn(µ,ρ)≥− logn−µ(Tn
µ \Tn

jnµ
) logεn

µ−1−µ(X n\Tn
µ )nlog|X |,

so that

µ(Tn
µ \Tn

jnµ
)≤ 1

− logεn
µ

(

dn(µ,ρ)+ logn+1+µ(X n\Tn
µ )nlog|X |

)

. (18)

From the fact thatdn(µ,ρ) = o(n) and (10) it follows that the term in brackets iso(n), so that we can
define the parametersεn

µ in such a way that− logεn
µ = o(n) while at the same time the bound (18)

givesµ(Tn
µ \Tn

jnµ
) = o(1). Fix such a choice ofεn

µ. Then, using (10), we conclude

µ(X n\Tn
jnµ
)≤ µ(X n\Tn

µ )+µ(Tn
µ \Tn

jnµ
) = o(1). (19)

We proceed with the proof ofdn(µ,ν) = o(n). For anyx1..n ∈ Tn
jnµ

we have

ν(x1..n)≥
1
2

wnνn(x1..n)≥
1
2

wnw jnµ

1
n

2−δn(µ)ρ(x1..n)≥
wn

4n
(εn

µ)
22−δn(µ)ρ(x1..n), (20)
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where the first inequality follows from (12), the second from (11), andin the third we have used
w jnµ = 1/( jnµ)( jnµ+1) and jnµ = 1/εµ

n. Next we use the decomposition

dn(µ,ν) =− ∑
x1..n∈Tn

jnµ

µ(x1..n) log
ν(x1..n)

µ(x1..n)
− ∑

x1..n∈X n\Tn
jnµ

µ(x1..n) log
ν(x1..n)

µ(x1..n)
= I + II . (21)

From (20) we find

I ≤− log
(wn

4n
(εn

µ)
22−δn(µ)

)

− ∑
x1..n∈Tn

jnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

= (o(n)−2logεn
µ+δn(µ))+



dn(µ,ρ)+ ∑
x1..n∈X n\Tn

jnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)





≤ o(n)− ∑
x1..n∈X n\Tn

jnµ

µ(x1..n) logµ(x1..n)

≤ o(n)+µ(X n\Tn
jnµ
)nlog|X |= o(n), (22)

where in the second inequality we have used− logεn
µ = o(n), dn(µ,ρ) = o(n) andδn(µ) = o(n), in

the last inequality we have again used the fact that the entropy is maximized when all events are
equiprobable, while the last equality follows from (19). Moreover, from(12) we find

II ≤ log2− ∑
x1..n∈X n\Tn

jnµ

µ(x1..n) log
γ(x1..n)

µ(x1..n)
≤ 1+nµ(X n\Tn

jnµ
) log|X |= o(n), (23)

where in the last inequality we have usedγ(x1..n) = |X |−n andµ(x1..n) ≤ 1, and the last equality
follows from (19).

From (21), (22) and (23) we conclude1
ndn(ν,µ)→ 0.

Step r: the regularizerγ. It remains to show that the i.i.d. regularizerγ in the definition ofν (12),
can be replaced by a convex combination of a countably many elements fromC . Indeed, for each
n∈ N, denote

An := {x1..n ∈ X n : ∃µ∈ C µ(x1..n) 6= 0},
and let for each x1..n ∈ X n the measureµx1..n be any measure fromC such that
µx1..n(x1..n)≥ 1

2 supµ∈C µ(x1..n). Define

γ′n(x
′
1..n) :=

1
|An| ∑

x1..n∈An

µx1..n(x
′
1..n),

for eachx′1..n ∈ An, n∈ N, and letγ′ := ∑k∈Nwkγ′k. For everyµ∈ C we have

γ′(x1..n)≥ wn|An|−1µx1..n(x1..n)≥
1
2

wn|X |−nµ(x1..n)

for everyn ∈ N and everyx1..n ∈ An, which clearly suffices to establish the boundII = o(n) as
in (23).
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