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Abstract

A sequenceq, ..., Xn, ... Of discrete-valued observations is generated accordisgrte unknown
probabilistic law (measurg). After observing each outcome, one is required to give dardil
probabilities of the next observation. The realizable dasehen the measunebelongs to an ar-
bitrary but known clasg” of process measures. The non-realizable case is whecompletely
arbitrary, but the prediction performance is measured veisipect to a given set of process mea-
sures. We are interested in the relations between theséeprsland between their solutions, as
well as in characterizing the cases when a solution existsiading these solutions. We show that
if the quality of prediction is measured using the total &aon distance, then these problems coin-
cide, while if it is measured using the expected average Kerdence, then they are different. For
some of the formalizations we also show that when a solutkistsit can be obtained as a Bayes
mixture over a countable subset 6f We also obtain several characterization of those et
which solutions to the considered problems exist. As astiltion to the general results obtained,
we show that a solution to the non-realizable case of theesexguprediction problem exists for the
set of all finite-memory processes, but does not exist fosétef all stationary processes. It should
be emphasized that the framework is completely generalptheesses measures considered are
not required to be i.i.d., mixing, stationary, or to belongny parametric family.

Keywords: sequence prediction, time series, online prediction zable sequence prediction,
non-realizable sequence prediction

1. Introduction

A sequenceq,...,X,,... of discrete-valued observations (wherdoelong to a finite seX) is gen-

erated according to some unknown probabilistic law (measure). Thaisis probability measure

on the spac€ = (X*,B) of one-way infinite sequences (hefeis the usual Boreb-algebra).

After each new outcomg, is revealed, one is required to predict conditiopadbabilities of the

next observatiorx,,1 = @, a € X, given the paski,...,X,. Since a predictop is required to give

conditional probabilitiep(X,+1 = alxi,...,%n) for all possible historiesy, ..., X,, it defines itself

a probability measure on the spaReof one-way infinite sequences. In other words, a probability

measure o2 can be considered both as a data-generating mechanism and as a predicto
Therefore, given a set of probability measures af2, one can ask two kinds of questions about

C. First, does there exist a predicfpwhose forecast probabilities converge (in a certain sense) to

thep-conditional probabilities, if an arbitragye C is chosen to generate the data? Here we assume
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that the “true” measure that generates the data belongs to thieafdénhterest, and would like to
construct a predictor that predicts all measureg inThe second type of questions is as follows:
does there exist a predictor that predicts at least as well as any praulietg, if the measure that
generates the data comes possibly from outsidédfThus, here we consider elements(bas
predictors, and we would like to combine their predictive properties, if thisssiple. Note that in
this setting the two questions above concern the same objectCaosgirobability measures of.

Each of these two questions, the realizable and the non-realizable omeehjayed much
attention in the literature; the setting for the non-realizable case is usually sldifidsent, which
is probably why it has not (to the best of the author’s knowledge) begetliesl as another facet of
the realizable case. The realizable case traces back to Laplace, wbonisadered the problem of
predicting outcomes of a series of independent tosses of a biased taihis,The has considered
the case when the segtis that of all i.i.d. process measures. Other classical examples studied are
the set of all computable (or semi-computable) measures (Solomonoff), 18@é8set ofk-order
Markov and finite-memory processes (e.g., Krichevsky, 1993) ancethe# all stationary processes
(Ryabko, 1988). The general question of finding predictors forrhitrary given setC of process
measures has been addressed in Ryabko and Hutter (2007, 208BkoR2010a); the latter work
shows that when a solution exists it can be obtained as a Bayes mixture ogant@ble subset
of C.

The non-realizable case is usually studied in a slightly different, nonaitigtic, setting. We
refer to Cesa-Bianchi and Lugosi (2006) for a comprehensiveviye It is usually assumed that
the observed sequence of outcomes is an arbitrary (deterministic) segqitésrequired not to give
conditional probabilities, but just deterministic guesses (although thessegiean be selected us-
ing randomisation). Predictions result in a certain loss, which is requiregl$miall as compared to
the loss of a given set of reference predictors (expertghe losses of the experts and the predictor
are observed after each round. In this approach, it is mostly assunidiaetiseiC is finite or count-
able. The main difference with the formulation considered in this work is thaeguire a predictor
to give probabilities, and thus the loss is with respect to something nevewetig@robabilities,
not outcomes). The loss itself is not completely observable in our setting. Iseh&e our non-
realizable version of the problem is more difficult. Assuming that the datargimg mechanism is
probabilistic, even if it is completely unknown, makes sense in such probkerfar@xample, game
playing, or market analysis. In these cases one may wish to assign smaller these models or
experts who give probabilities closer to the correct ones (which arer mbserved), even though
different probability forecasts can often result in the same action. Aimipgeaticting probabilities
of outcomes also allows us to abstract from the actual use of the prediffiorexample, making
bets) and thus from considering losses in a general form; instead j/ve®oeaentrate on those forms
of loss that are more convenient for the analysis. In this latter respeqbydbéems we consider
are easier than those considered in prediction with expert advice. (l¢owe principle, noth-
ing restricts us to considering the simple losses that we chose; they arecustenient choice.)
Noteworthy, the probabilistic approach also makes the machinery of glippéieory applicable,
hopefully making the problem easier. A reviewer suggested the followimgrsry explanation of
the difference between the non-realizable problems of this work anécpogdwith expert advice:
the latter is prequential (in the sense of Dawid, 1992), whereas the fismet.

In this work we consider two measures of the quality of prediction. Thedimstis the total
variation distance, which measures the difference between the foeswhsihe “true” conditional
probabilities of all future events (not just the probability of the next outgoriee second one is
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REALIZABLE AND NONREALIZABLE PREDICTION PROBLEMS

expected (over the data) average (over time) Kullback-Leibler dimeryeRequiring that predicted
and true probabilities converge in total variation is very strong; in partictités is possible if
(Blackwell and Dubins, 1962) and only if (Kalai and Lehrer, 1994)h@cess measure generating
the data is absolutely continuous with respect to the predictor. The latteanfdes the sequence
prediction problem relatively easy to analyse. Here we investigate whabte@aralleled for the
other measure of prediction quality (average KL divergence), which chmeaker, and thus allows

for solutions for the cases of much larger s€tsf process measures (considered either as predictors
or as data generating mechanisms).

Having introduced our measures of prediction quality, we can furthexkitiee non-realizable
case into two problems. The first one is as follows. Given acseff predictors, we want to
find a predictor whose prediction error converges to zero if there isast lene predictor irC
whose prediction error converges to zero; we call this problem simplyrtbe-fealizable” case,
or Problem 2 (leaving the name “Problem 1” to the realizable case). Tldewn-realizable
problem is the “fully agnostic” problem: it is to make the prediction error asymgtibtias small
as that of the best (for the given process measure generating thedator inC (we call this
Problem 3). Thus, we now have three problems about a set of pnoeessireg” to address.

We show that if the quality of prediction is measured in total variation then all tee firoblems
coincide: any solution to any one of them is a solution to the other two. For Seeafeexpected
average KL divergence, all the three problems are different: the abédizase is strictly easier than
non-realizable (Problem 2), which is, in turn, strictly easier than the fulypatic case (Problem 3).
We then analyse which results concerning prediction in total variation caaeferred to which of
the problems concerning prediction in average KL divergence. It hm@asisin Ryabko (2010a) that,
for the realizable case, if there is a solution for a given set of proceasures”, then a solution can
also be obtained as a Bayesian mixture over a countable suligghid holds both for prediction in
total variation and in expected average KL divergence. Here we staihilk result also holds true
for the (non-realizable) case of Problem 2, for prediction in expeatexhge KL divergence. We do
not have an analogous result for Problem 3 (and, in fact, conjectairthihopposite statement holds
true). However, for the fully agnostic case of Problem 3, we show tzdrability with respect to
a certain topology given by KL divergence is a sufficient (though nm@essary) condition for the
existence of a predictor. This is used to demonstrate that there is a soluticdmthlem for the set
of all finite-memory process measures, complementing similar results obtairied ipedifferent
settings. On the other hand, we show that there is no solution to this probtetimefget of all
stationary process measures, in contrast to a result of B. Ryabk8)(t#8 gives a solution to the
realizable case of this problem (that is, a predictor whose expecteabavt. error goes to zero if
any stationary process is chosen to generate the data). Finally, we alderca modified version
of Problem 3, in which the performance of predictors is only compared dimidlual sequences.
For this problem, we obtain, using a result from (Ryabko, 1986), sachenisation of those set3
for which a solution exists in terms of the Hausdorff dimension.

2. Notation and Definitions

Let X be a finite set. The notatioxy_, is used forxs,...,X,. We consider stochastic processes
(probability measures) o := (X*,B) whereB is the sigma-field generated by the cylinder sets
[X1.n], X € X,n € N ([x1.n] is the set of all infinite sequences that start with,). For a finite seA
denotelA| its cardinality. We us&, for expectation with respect to a measpre
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Next we introduce the measures of the quality of prediction used in this.faqexwo measures
1 andp we are interested in how different tipe and p-conditional probabilities are, given a data
samplexy . Introduce thegconditional) total variationdistance

V(K P,X1.n) := SUP|U(AIX1.n) — P(AlX1.n)],
AcB

if P(x1.n) # 0 @andp(xy.n) # 0, andv(p, p,x1.n) = 1 otherwise.

Definition 1 We say thap predicts u in total variation if

V(K P, X1 n) — O p-a.s.

This convergence is rather strong. In particular, it meanstuanditional probabilities of arbitrary
far-off events converge tp-conditional probabilities. Moreovep predictsy in total variation
if (Blackwell and Dubins, 1962) and only if (Kalai and Lehrer, 199dis absolutely continuous
with respect tgp. Denote>,, the relation of absolute continuity (that {g,>,, 1 if pis absolutely
continuous with respect (o).

Thus, for a clasg” of measures there is a predicfothat predicts everp € C in total variation
if and only if everyp € C has a density with respect @ Although such sets of processes are
rather large, they do not include even such basic examples as the B&ehaulli i.i.d. processes.
That is, there is n that would predict in total variation every Bernoullii.i.d. process meagpre
p € [0,1], wherep s the probability of 0. Indeed, all these procesig®p € [0, 1], are singular with
respect to one another; in particular, each of the non-overlappingjsetsll sequences which have
limiting fraction p of Os has probability 1 with respect to one of the measures and 0 with teepec
all others; since there are uncountably many of these measures, thermeasure with respect
to which they all would have a density (since such a measure shoulgkigye> 0 for all p).

Therefore, perhaps for many (if not most) practical applications this unead the quality of
prediction is too strong, and one is interested in weaker measures ofrpance.

For two measurep andp introduce theexpected cumulative Kullback-Leibler divergence (KL
divergencepns

n
M(X% = alXg 1-1)
da(p) :=E =aXt-1)log————"—7,
n(K,P) ut;aezx M = alxe.1-1)log P(X = alX.1-1)

In words, we take the expected (over data) cumulative (over time) Kurgiviee betweep- and
p-conditional (on the past data) probability distributions of the next outcome.

Definition 2 We say thap predicts [ in expected average KL divergence if

1

This measure of performance is much weaker, in the sense that it regog@gredictions only one
step ahead, and not on every step but only on average; also thegemse is not with probability 1
but in expectation. With prediction quality so measured, predictors existfatively large classes
of measures; most notably, Ryabko (1988) provides a predictor whiedighs every stationary
process in expected average KL divergence.
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We will use the following well-known identity (introduced, in the context of sece predic-
tion, by Ryabko, 1988)

- P(X1.n)
h(pp)=— Y u(xl.,n)logmxlﬂn)?

X1 .n€XM
where on the right-hand side we have simply the KL divergence betweesunegaandp restricted
to the firstn observations.

Thus, the results of this work will be established with respect to two vergrdifit measures
of prediction quality, one of which is very strong and the other rather w&hls suggests that the
facts established reflect some fundamental properties of the problereddon, rather than those
pertinent to particular measures of performance. On the other handatrre open to extend the
results below to different measures of performance.

Definition 3 Consider the following classes of process measues the set of all process mea-
sures,D is the set of all degenerate discrete process measydiisghe set of all stationary processes
and My is the set of all stationary measures with memory not greater than kdgrddarkov pro-
cesses, with\p being the set of all i.i.d. processes):

D:={peP:3Ixe X® ux) =1},

S = {u ecP: Vn, k > 1\V/8.1_4n S Xn |J.(X14_n = alun) = H(X1+k.,n+k = al_,n)} .

My :={pe S :Vn>kvae XVay e X"

H(Xn+1 = alX1.n = a1.n) = M(X4+1 = aX1. k = @n—k+1.n) } -

Abusing the notation, we will sometimes use element®aind X interchangeably. The following
(simple and well-known) statement will be used repeatedly in the examples.

Lemma 4 For everyp € P there exists & © such that ¢(p,p) > nlog|.x| for all n € N.

Proof Indeed, for eaclm we can seleg(x, = a) = 1 for a € X that minimizep(X, = alx1.n-1),
so thatp(xy n) < |X|7". [ |

3. Sequence Prediction Problems

For the two notions of predictive quality introduced, we can now state forrtadl\sequence pre-
diction problems.

Problem Irealizable case). Given a set of probability measgrgind a measure such thap
predicts in total variation (expected average KL divergence) gvery’, if such ap exists.

Thus, Problem 1 is about finding a predictor for the case when thegg@anerating the data
is known to belong to a given clags That is, the set” here is a set of measures that generate the
data. Next let us formulate the questions ah@uats a set of predictors.

Problem 2(non-realizable case). Given a set of process measures (prejii¢tdind a process
measure such thap predicts in total variation (in expected average KL divergence) eveasure
v € P such that there ig € C which predicts (in the same sense)
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While Problem 2 is already quite general, it does not yet address whdtecaalled the fully
agnostic case: if nothing at all is known about the proeegsnerating the data, it means that there
may be nqu € C such thait predictsv, and then, even if we have a solutiptio the Problem 2, we
still do not know what the performance pfis going to be on the data generatedvpgompared to
the performance of the predictors frafh To address this fully agnostic case we have to introduce
the notion of loss.

Definition 5 Introduce the almost sure total variation losspfvith respect to

(W, p) := inf{a € [0,1] : limsupv(W, p,X1.n) < O p—a.s},

n—oo
and the asymptotic KL loss
. 1
lkL(v,p) := limsup_dn(v.p).

n—oo
We can now formulate the fully agnostic version of the sequence prediatidaten.
Problem 3.Given a set of process measures (predictorgind a process measupesuch thap
predicts at least as well as apyn C, if any process measuvec ? is chosen to generate the data:

I(va)_l(v7u) SO

for everyv € P and everyu € C, wherel (-, -) is eitherly(-,-) or Ik (-, ).

The three problems just formulated represent different conceptpabaghes to the sequence
prediction problem. Let us illustrate the difference by the followimigrmal example. Suppose
that the sefC is that of all (ergodic, finite-state) Markov chains. Markov chains bairigmiliar
object in probability and statistics, we can easily construct a predictbat predicts every € C
(for example, in expected average KL divergence, see Krichet€88). That is, if we know that
the procesg generating the data is Markovian, we know that our predictor is going forpewell.
This is the realizable case of Problem 1. In reality, rarely can we be satrththMarkov assumption
holds true for the data at hand. We may believe, however, that it is stilkamahle assumption, in
the sense that there is a Markovian model which, for our purposeth@qrurposes of prediction),
is a good model of the data. Thus we may assume that there is a Markov raqatel(ctor) that
predicts well the process that we observe, and we would like to combinedtieve qualities of
all these Markov models. This is the “non-realizable” case of Problemdte bhat this problem
is more difficult than the first one; in particular, a procesgenerating the data may be singular
with respect to any Markov process, and still be predicted well (in theesefiexpected average
KL divergence, for example) by some of them. Still, here we are making semwsgptions about
the process generating the data, and, if these assumptions are wrongette not know anything
about the performance of our predictor. Thus, we may ultimately wish toosdkdge that we do
not know anything at all about the data; we still know a lot about Markoegsses, and we would
like to use this knowledge on our data. If there is anything at all Markovian(that is, anything
that can be captured by a Markov model), then we would like our predictedat. In other words,
we want to have a predictor that predicts any process measure whatsaieleast) as well as any
Markov predictor. This is the “fully agnostic” case of Problem 3.

Of course, Markov processes were just mentioned as an example, wthiie work we are only
concerned with the most general case of arbitrary (uncountable sdtgrocess measures.

The following statement is rather obvious.
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Proposition 6 Any solution to Problem 3 is a solution to Problem 2, and any solution to Problem 2
is a solution to Problem 1.

Despite the conceptual differences in formulations, it may be somewhigtanmwehether the three
problems are indeed different. It appears that this depends on the nmediqaredictive quality

chosen: for the case of prediction in total variation distance all the thad#gons coincide, while
for the case of prediction in expected average KL divergence thegiffeesnt.

4. Prediction in Total Variation

As it was mentioned, a measupeis absolutely continuous with respect to a measuié and
only if p predictsp in total variation distance. This reduces studying at least Problem 1 for tota
variation distance to studying the relation of absolute continuity. Introducedtaionp >, u for
this relation.

Let us briefly recall some facts we know aboty; details can be found, for example, in Plesner
and Rokhlin (1946). LefP],, denote the set of equivalence classe® ofith respect to>,,, and for
K€ By denotey] the equivalence class that containwo element®, 0, € [P]y, (Or 01,07 € P)
are called disjoint (or singular) if there is no< [P]iy such thato; >, v and oy >, v; in this
case we writeo; Ly, 02. We write [] + [Wp] for [%(ul + 2)]. Every pairoi, 0 € [P)iy has a
supremum suf1,07) = 01 + 02. Introducing into[?], an extra element O such that>,, O for all
o € [P]w, We can state that for evegy, i € [P]iy there exists a unique pair of elemeptsand py
such thapl = s+ s, P > Mg andp Ly Ms. (This is a form of Lebesgue decomposition.) Moreover,
Ha = Inf(p,l). Thus, every pair of elements has a supremum and an infimum. Moreoveey, e
bounded set of disjoint elements|df];, is at most countable.

Furthermore, we introduce the (unconditional) total variation distance ketwecess mea-
sures.

Definition 7 (unconditional total variation distance) The (unconditional) total variation distance
is defined as

V(K P) := Sup|u(A) — p(A)].
AeB

Known characterizations of those sgtshat are bounded with respecttq, can now be related
to our prediction problems 1-3 as follows.

Theorem 8 Let C C . The following statements abodtare equivalent.
(i) There exists a solution to Problem 1 in total variation.
(i) There exists a solution to Problem 2 in total variation.
(iii) There exists a solution to Problem 3 in total variation.
(iv) Cis upper-bounded with respect 19,.

(v) There exists a sequenceqiC, k € N such that for some (equivalently, for every) sequence of
weights w € (0,1], k € N such thaty .y Wk = 1, the measur® = S .y Wil satisfies) >,
for every pe C.

(vi) C is separable with respect to the total variation distance.
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(vii) Let CT:={peP:3p e Cp >, 1} Every disjoint (with respect t&,,) subset ofC* is at
most countable.

Moreover, every solution to any of the Problems 1-3 is a solution to the otlgras is any upper
bound forC. The sequence|in the statement (v) can be taken to be any dense (in the total variation
distance) countable subset&f(cf. (vi)), or any maximal disjoint (with respect ta,) subset o""

of statement (vii), in which every measure that is nafiis replaced by any measure frofhthat
dominates it.

Proof The implicationgi) < (ii) < (iii ) are obvious (cf. Proposition 6). The implicatitin) = (i)

is a reformulation of the result of Blackwell and Dubins (1962). The ecs® (and hendg) = (iv))
was established in Kalai and Lehrer (1994).= (ii) follows from the equivalencé) < (iv) and
the transitivity of>,,; (i) = (iii ) follows from the transitivity of>, and from Lemma 9 below:
indeed, from Lemma 9 we havg(v,1) = 0 if 4>t v andli(v,n) = 1 otherwise. From this and
the transitivity of>y, it follows that if p >, pthen alsdiy (v, p) < lw(v, ) for all v € 2. The equiv-
alence of(v), (vi), and(i) was established in Ryabko (2010a). The equivalencgvpfand (vii)
was proven in Plesner and Rokhlin (1946). The concluding statemente digbrem are easy to
demonstrate from the results cited above. |

The following lemma is an easy consequence of Blackwell and Dubins (1962)

Lemma9 Let wp be two process measures. Theip,p,x; n) converges to either 0 or 1 with
H-probability 1.

Proof Assume thaf is not absolutely continuous with respectgdqthe other case is covered
by Blackwell and Dubins, 1962). By Lebesgue decomposition theoremméasurgl admits a
representatiop = ap, + (1 — o)ps wherea € [0,1] and the measurasg, ands are such that, is
absolutely continuous with respectpoand s is singular with respect tp. LetW be such a set
that pa(W) = p(W) = 1 andps(W) = 0. Note that we can takg, = Ww andps = M| y=\w. From
Blackwell and Dubins (1962) we hawépa,p,X1.n) — O Ya-a.s., as well as(pa, U, X1.n) — O pa-
a.s. andv(ps, W, X1.n) — 0 Ys-a.s. Moreovery(s, p,X1.n) > |Us(W|X1.n) — P(W|X1.n)| = 1 so that
V(Ms, P, X1..n) — 1 Ys-a.s. Furthermore,

V(H, p, Xlun) < V(H, Ha, Xl‘.n) + V(l.la, p, Xl‘.n) =1

and
V(}J., p,Xl,_n) > _V(IJ., IJSaXl..n) +V(U'S7 p,X]_,_n> =II.

We havel — 0 pa-a.s. and hencgjw-a.s., as well asl — 1 ps-a.s. and hencp|y-\w-a.s. Thus,
H(V(K P, X1.n) = 0 0or 1) < p(W)Hw (I = 0) + X \W) P xeorw (I = 1) = P(W) + p(X*\W) =1,
which concludes the proof. |

Remark.Using Lemma 9 we can also defiegpectedrather than almost sure) total variation
loss ofp with respect tqu, as theu-probability thatv(, p) converges to 1:

(K, P) 1= p{X1, X0, -+ € X* 1 V(W P, X0.n) — 1}
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Then Problem 3 can be reformulated for this notion of loss. However, &dg t see that for this
reformulation Theorem 8 holds true as well.

Thus, we can see that, for the case of prediction in total variation, all theesee prediction
problems formulated reduce to studying the relation of absolute continuityrémeps measures
and those families of measures that are absolutely continuous (haveitg)deitk respect to some
measure (a predictor). On the one hand, from a statistical point of vietv families are rather
large: the assumption that the probabilistic law in question has a density wittctésgome (nice)
measure is a standard one in statistics. It should also be mentioned thaamnilggsfcan easily be
uncountable. (In particular, this means that they are large from a commatigpioint of view.) On
the other hand, even such basic examples as the set of all Bernoulli i.i.durasaoes not allow
for a predictor that predicts every measure in total variation (as explaireection 2).

That is why we have to consider weaker notions of predictions; frometh@ediction in ex-
pected average KL divergence is perhaps one of the weakest. @hefgbe next sections is to see
which of the properties that we have for total variation can be transféamd in which sense) to
the case of expected average KL divergence.

5. Prediction in Expected Average KL Divergence

First of all, we have to observe that for prediction in KL divergencebRmms 1, 2, and 3 are
different, as the following theorem shows. While the examples provided iprthaf are artificial,
there is a very important example illustrating the difference between Probkerd Problem 3 for
expected average KL divergence: the Seif all stationary processes, given in Theorem 16 in the
end of this section.

Theorem 10 For the case of prediction in expected average KL divergence, Prabler and 3
are different: there exists a sey C P for which there is a solution to Problem 1 but there is no
solution to Problem 2, and there is a sétC P for which there is a solution to Problem 2 but there
is no solution to Problem 3.

Proof We have to provide two examples. Fix the binary alphabet{0,1}. For each deterministic
sequence=ty,ty,--- € X construct the process measwyras follows:y; (xp =tq|ty n-1) :=1— Wll
and forxy n—1 # ti.n-1 let i (o = O|xg. n—1) = 1/2, for alln € N. That is,y is Bernoulli i.i.d. 1/2
process measure strongly biased towards a specific deterministic sequéetalsoy(x; n) =2 "
for all ;. n € X", n € N (the Bernoulli i.i.d. 1/2). For the set := {y; : t € X*} we have a solution
to Problem 1: indeedj(y,y) <1 = o(n). However, there is no solution to Problem 2. Indeed,
for eacht € D we haved,(t,y) = logn = o(n) (that is, for every deterministic measure there is an
element of(; which predicts it), while by Lemma 4 for evegye P there exists € D such that
dn(t,p) > nforall ne N (that is, there is no predictor which predicts every measure that is prédicte
by at least one element ¢f).

The second example is similar. For each deterministic sequeadg,t,,--- € D construct
the process measukg as follows: (X, = talt1. n-1) := 2/3 and forxy n-1 # t1.n-1 let y{(x, =
Ox1.n-1) = 1/2, for all n € N. It is easy to see that is a solution to Problem 2 for the set
G2 :={Y, :t € X*}. Indeed, ifv € P is such thatl,(v,y) = o(n) then we must have(t; ) = 0o(1).
From this and the fact that andy coincide (up toO(1)) on all other sequences we conclude
dn(v,y) = o(n). However, there is no solution to Problem 3 fgr. Indeed, for every € D we
havedn(t,y,) = nlog3/2+o(n). Therefore, ifp is a solution to Problem 3 then lim s, (t,p) <
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log3/2 < 1 which contradicts Lemma 4. [ |

Thus, prediction in expected average KL divergence turns out to be@complicated matter
than prediction in total variation. The next idea is to try and see which of the &bout prediction
in total variation can be generalized to some of the problems concerningtyadn expected
average KL divergence.

First, observe that, for the case of prediction in total variation, the elgniga of Problems 1
and 2 was derived from the transitivity of the relatiop of absolute continuity. For the case of
expected average KL divergence, the relatiprptedictsu in expected average KL divergence” is
not transitive (and Problems 1 and 2 are not equivalent). HowevePréiblem 2 we are interested
in the following relation:p “dominates”u if p predicts everyw such thaiu predictsv. Denote this
relation by>y, :

Definition 11 (>«.) We writep >, W if for everyv € P the equalitylim sup%dn(v,u) = 0implies
limsupida(v,p) = 0.
The relation>,, has some similarities witk-,. First of all, >, is also transitive (as can be easily
seen from the definition). Moreover, similarly ta,, one can show that for any, p any strictly
convex combinatiorop+ (1 — a)p is a supremum of p,p} with respect to>,,. Next we will
obtain a characterization of predictability with respecttg similar to one of those obtained for
ity

The key observation is the following. If there is a solution to Problem 2 foeta’sthen a
solution can be obtained as a Bayesian mixture over a countable sulgsét@ftotal variation this

is the statemer(tv) of Theorem 8.

Theorem 12 Let C be a set of probability measures @n If there is a measurp such thaip >, N
for every pe C (p is a solution to Problem 2) then there is a sequenge |, k € N, such that
S ken WkHk >« M for every pe C, where w are some positive weights.

The proofis deferred to Section 7. An analogous result for Problemslastablished in Ryabko
(2009). (The proof of Theorem 12 is based on similar ideas, but is meotvéd.)

For the case of Problem 3, we do not have results similar to Theorem k2afementv) of
Theorem 8); in fact, we conjecture that the opposite is true: there existeas(rable) sef of
measures such that there is a solution to Problem 3fdbut there is no Bayesian solution to
Problem 3, meaning that there is no probability distribution((discrete or not) such that the
mixture overC with respect to this distribution is a solution to Problem 3dor

However, we can take a different route and extend another partexfr&€m 8 to obtain a char-
acterization of setg for which a solution to Problem 3 exists.

We have seen that, in the case of prediction in total variation, separability @ggect to the
topology of this distance is a necessary and sufficient condition for tiseeage of a solution to
Problems 1-3. In the case of expected average KL divergence théaitimsomewhat different,
since, first of all, (asymptotic average) KL divergence is not a metriciléMme can introduce a
topology based on it, separability with respect to this topology turns out teshéfieient but not a
necessary condition for the existence of a predictor, as is shown inxhtheerem.
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Definition 13 Define the distance.d s, 1) on process measures as follows

M1 (X1.n)
H2(X1..n)

)

Oo (M1, H2) = limsup sup 1 ‘Iog

n—oo  x3 ,eX

where we assumeg0/0 := 0.

Clearly,d. is symmetric and satisfies the triangle inequality, but it is not exact. Morefoveyery
M1, k2 We have

. 1

lim Supﬁdn(ula IJ'Z) < d°°(p{|.7 HZ)

n—soo

The distanced. (W, 2) measures the difference in behaviourpafand pp on all individual se-
guences. Thus, using this distance to analyse Problem 3 is most close taditierial approach
to the non-realizable case, which is formulated in terms of predicting indivatktarministic se-
qguences.

Theorem 14 (i) Let C be a set of process measures.(Clfs separable with respect ta.cthen
there is a solution to Problem 3 faf, for the case of prediction in expected average KL
divergence.

(i) There exists a set of process measufesuch thatC is not separable with respect tq, dout
there is a solution to Problem 3 for this set, for the case of prediction in expevezdge KL
divergence.

Proof For the first statement, lef be separable and Ity )k be a dense countable subset of
C. Definev := ¥,y Wk, Wherewy are any positive summable weights. Fix any measuaad
anyp € C. We will show that limsup ., 2dn(T,v) < limsup,_,., 1da(T,1). For everyg, find such a

k € N thatd. (W, k) < €. We have

dn(T,v) < dn(T,W =E;lo —logw,
n( )— n( kuk) T guk(xl,,n) g k
T(X1.n) H(X1.n)
=E;lo +E;lo —logw
O ) ) O
M(X1..n)
< dn(T,l)+ sup lo — logwg.
< Gh(TH)+ sup 108 o n) |~ 109

From this, dividing byn taking limsup_,., on both sides, we conclude

lim sup}dn(r,v) <lim sup}dn(t,p) +e€.
Nn—oc0 n n—o0 n
Since this holds for every > 0 the first statement is proven.

The second statement is proven by the following example.(lie¢ the set of all deterministic
sequences (measures concentrated on just one sequence) subk thanber of Os in the first
symbols is less thag/n, for all n € N. Clearly, this set is uncountable. It is easy to check that
M1 # Hp impliesds (W, P2) = o for everypy, W € C, but the predictow, given byv(x, =0) =1/n
independently for different, predicts everyi € C in expected average KL divergence. Since all
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elements of” are deterministicy is also a solution to Problem 3 fat. [ |

Although simple, Theorem 14 can be used to establish the existence of arstdutcoblem 3
for an important class of process measures: that of all processes miighrfiemory, as the next
theorem shows. Results similar to Theorem 15 are known in different ssttorgexample, Ziv and
Lempel (1978), Ryabko (1984), Cesa-Bianchi and Lugosi (188€)others.

Theorem 15 There exists a solution to Problem 3 for prediction in expected average lekgdince
for the set of all finite-memory process measurés= Uyen M.

Proof We will show that the selM is separable with respect tky. Then the statement will follow
from Theorem 14. It is enough to show that each/gis separable with respect th.

For simplicity, assume that the alphabet is bindty|(= 2; the general case is analogous).
Observe that the familyMy of k-order stationary binary-valued Markov processes is parametrized
by |X|¥ [0,1]-valued parameters: probability of observing 0 after obserxing for eachx; y €
XX, Note that this parametrization is continuous (as a mapping from the parampater\sith the
Euclidean topology t@V with the topology ofd.,). Indeed, for anyy, i € My and everyg , € X"
such thay(xg. n) # 0,i =1,2, it is easy to see that

1

n

o M1 (X1.n)

1 (X1 k1)
< su
H2(X1.n) P

I , 1
 Xeki1 k+1 ‘ UZ(Xl-.k+1) @)

so that the right-hand side of (1) also upper-bouhdsl , L), implying continuity of the parametriza-
tion.

It follows that the sep"fl, qe Q¥ * of all stationaryk-order Markov processes with rational val-
ues of all the parameter®(= Q N[0, 1]) is dense inMy, proving the separability of the latter set.
[ |

Another important example is the set of all stationary process measSurEsis example also
illustrates the difference between the prediction problems that we conBidethis set a solution
to Problem 1 was given in Ryabko (1988). In contrast, here we shawttbee is no solution to
Problem 3 fors.

Theorem 16 There is no solution to Problem 3 for the set of all stationary processes

Proof This proof is based on the construction similar to the one used in Ryabk8)(i®@8emon-
strate impossibility of consistent prediction of stationary processes withesdr@ averaging.

Let m be a Markov chain with statesD 2,... and state transitions defined as follows. From
each satk € NU {0} the chain passes to the st&te- 1 with probability 2/3 and to the state 0
with probability 1/3. It is easy to see that this chain possesses a unique atatéistribution on
the set of states (see, e.g., Shiryaev, 1996); taken as the initial distrilituidiefines a stationary
ergodic process with values MU {0}. Fix the ternary alphabet = {a,0,1}. For each sequence
t =tj,tp,--- € {0,1}* define the procegs as follows. It is a deterministic function of the cham
If the chain is in the state O then the procgssutputsa; if the chainmis in the statek > 0 then
the process outputg. That is, we have defined a hidden Markov process which in the statthé of
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underlying Markov chain always outpuas while in other states it outputs either 0 or 1 according
to the sequence

To show that there is no solution to Problem 3 frwe will show that there is no solu-
tion to Problem 3 for the smaller set:= {i : t € {0,1}*}. Indeed, for anyt € {0,1}° we
havedn(t, k) = nlog3/2+o(n). Then if p is a solution to Problem 3 foC we should have
limsup, %dn(t,p) <log3/2 < 1 for everyt € D, which contradicts Lemma 4. |

From the proof of Theorem 16 one can see that, in fact, the statement phavés is stronger:
there is no solution to Problem 3 for the set of all functions of stationarydecgcountable-state
Markov chains. We conjecture that a solution to Problem 2 exists for the $atebut not for the
set of all stationary processes.

As we have seen in the statements above, the set of all deterministic mezspiags an
important role in the analysis of the predictors in the sense of Problem 3efohe, an interesting
guestion is to characterize those sé€tsef measures for which there is a predicpothat predicts
every individual sequencat least as well as any measure frgilm Such a characterization can
be obtained in terms of Hausdorff dimension, using a result of Ryabkd6j1%hat shows that
Hausdorff dimension of a set characterizes the optimal prediction eabcdm be attained by any
predictor.

For a sefA C X® denoteH (A) its Hausdorff dimension (see, for example, Billingsley, 1965 for
its definition).

Theorem 17 Let C C . The following statements are equivalent.

(i) There is a measurp € P that predicts every individual sequence at least as well as the best
measure fronT: for every pe C and every sequence Xy, --- € X* we have

o1 o1
liminf —~logp(x1.n) < liminf - I0gH(x¢.n)-

(i) For everya € [0,1] the Hausdorff dimension of the set of sequences on which the average
prediction error of the best measure ¢his not greater tharu is bounded byt /log|X|:

H({x1,X2,--- € X% 1 inf liminf 1 logpu(x1.n) < a}) <a/loglx|.
HeC n—e N

Proof The implication(i) = (ii) follows directly from Ryabko (1986) where it is shown that for
every measurp one must havéd ({xs, Xz, -+ € X* : liminfn_, —1logp(x1.n) < a}) < a/log|X]|.

To show the opposite implication, we again refer to Ryabko (1986): fayesstA C X* there
is a measurea such that

liminf —}IogpA(xl_.n) < H(A)log|x]. (2)

n—oo n

For eacha € [0,1] defineAy := {X1,%2,--- € X*: infuecliminfn_m—%Iogu(xl_,n) < a}). By as-
sumptionH (Aq) < a/log|X|, so that from (2) for alky, %z, - - - € Ay we obtain

1
liminf ——logpa(x.n) < @. 3)
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Furthermore, defin@ := ¥ 4.qWqPa,, WhereQ = [0,1] N Q is the set of rationals ir0,1] and
(Wq)qeq is any sequence of positive reals satisfyigowq = 1. For everya € [0,1] let gk € Q,
k € N be such a sequence thatQy, —a < 1/k. Then, for everyn € N and everyxy, X, - -- € Aq,

we have 1 1 |
ogw,
- logp(X1.n) < e logpg(X1.n) — 109%a;

From this and (3) we get

. 1 .
Ilnm_>|°r;1f - logp(x1.n) < I'nm_fﬂf Pg(XL.n) +1/k<ak+1/k

Since this holds for everly € N, it follows that for allxy, X, - - - € NkenAg, = Aq We have

n—sco

liminf 1 logp(x1.n) < inf(gk+1/k) =aq,
n keN

which completes the proof of the implicatigi) = (i). [

6. Discussion

It has been long realized that the so-called probabilistic and agnostieréadial, non-stochastic,
deterministic) settings of the problem of sequential prediction are stronigiede This has been
most evident from looking at the solutions to these problems, which ardlyibaaed on the same
ideas. Here we have proposed a formulation of the agnostic problemossraalizable case of the
probabilistic problem. While being very close to the traditional one, this settingsls to directly
compare the two problems. As a somewhat surprising result, we can sadtther the two prob-
lems are different depends on the measure of performance chosea:ciasth of prediction in total
variation distance they coincide, while in the case of prediction in expecerdga KL divergence
they are different. In the latter case, the distinction becomes particularbrequpon the example
of stationary processes: while a solution to the realizable problem has émmgkmown, here we
have shown that there is no solution to the agnostic version of this problemfoFimalization also
allowed us to introduce another problem that lies in between the realizabldarfiolly agnostic
problems: given a class of process measurefind a predictor whose predictions are asymptot-
ically correct for every measure for which at least one of the measur€gives asymptotically
correct predictions (Problem 2). This problem is less restrictive thefutlyeagnostic one (in par-
ticular, it is not concerned with the behaviour of a predictor on everyrohtéstic sequence) but
at the same time the solutions to this problem have performance guaranteatside the model
class considered.

In essence, the formulation of Problem 2 suggests to assume that we $etvefanodels one
of which is good enough to make predictions, with the goal of combining thdiqtiee powers of
these models. This is perhaps a good compromise between making modellingpsss on the
data (the data is generated by one of the models we have) and the fullyiagmosst-case, setting.

Since the problem formulations presented here are mostly new (at leasthia general form),
it is not surprising that there are many questions left open. A promisirtg towbtain new results
seems to be to first analyse the case of prediction in total variation, whichrasntmustudying
the relation of absolute continuity and singularity of probability measuresthemdito try and find
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analogues in less restrictive (and thus more interesting and difficult) chggedicting only the
next observation, possibly with Cesaro averaging. This is the appthatkve took in this work.
Here it is interesting to find properties common to all or most of the predictioblgms (in total
variation as well as with respect to other measures of the performanda &t all possible. For
example, the “countable Bayes” property of Theorem 12, that state# thate is a solution to a
given sequence prediction problem for a gehen a solution can be obtained as a mixture over a
suitable countable subset ¢f holds for Problems 1-3 in total variation, and for Problems 1 and 2
in KL divergence; however we conjecture that it does not hold for tieblEem 3 in KL divergence.

It may also be interesting to study algebraic properties of the relatignthat arises when
studying Problem 2. We have show that it shares some properties withdtierre>,, of absolute
continuity. Since the latter characterizes prediction in total variation and theefacharacterizes
prediction in KL divergence (in the sense of Problem 2), which is muctkere#& would be inter-
esting to see exactly what properties the two relations share.

Another direction for future research concerns finite-time performana#sis. In this work
we have adopted the asymptotic approach to the prediction problem, ignoerettaviour of
predictors before asymptotic. While for prediction in total variation it is a réihoice, for other
measures of performance, including average KL divergence, it is ttlah Problems 1-3 admit
non-asymptotic formulations. It is also interesting what are the relations betwerformance
guarantees that can be obtained in non-asymptotic formulations of Probl@&ns 1

7. Proof of Theorem 12

Proof Define the set€,, as the set of all measures ? such thay predictst in expected average

KL divergence. LetC" := UycC,. For eacht € C let p(1) be any (fixedy € € such that € C,,.

In other words,C™ is the set of all measures that are predicted by some of the measurearid

for each measurein C* we designate one “parent” measua@) from C such thatp(t) predictst.
Define the weightsy, := 1/k(k+1), for allk € N.

Step 1For eachue C* let &, be any monotonically increasing function such thd{t) = o(n) and

dn(W, P(K)) = 0(dn(K)). Define the sets

1
Uy = {Xl..n € X" p(xen) > np(Xl..n>} ; 4)
V= {an e X p0n) > 2500} ©)
and
T =UinVv]. (6)
We will upper-boundy(T"). First, using Markov’s inequality, we derive
P(X1.n) > 1_p(xen) 1
XMNUT) = >n) <=-E =-. 7
M) ll<u(xl..n) “nuGan) N ()
Next, observe that for everye N and every sef C X", using Jensen'’s inequality we can obtain
P(X1.n) 1 P(X1.n)
- X1.n)lo = —u(A ——H(X1 n)lo
xl_nzeAlJ( .n)1og H(X1.n) ( )lezeA H(A) H(X1n) gU(Xl..n)
P(A) 1
> —u(A)log=—= > —p(A)logp(A) — =. (8
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Moreover,

dn(u, p(u)) = —Xl egn\vn U—(Xl..n) |Og pLLE')Xl n) )

P(H) (X1.n) -
uk Hnu(xl,,n)log M(X1.n) > n (M) H(X"\V) —1/2,

where in the inequality we have used (5) for the first summand and (8)daeitond. Thus,

(K, () +1/2

HOCTWV) < SR = o), )
From (6), (7) and (9) we conclude
HXMT) < XMV + (MU = o(1). (10)

Step 2n: a countable cover, time Rix ann € N. Definem] := max,cp(T;') (sincex" are
finite all suprema are reached) Find arysuch thaipi(T;3) = mn and letT;" := Tj. Fork> 1,
let M = max,ec p(T\ T 1) If M >0, lety be anyu € C such tha‘P(TQ\Tk l) my, and let
T =T 1UT otherwise Iet'I'k =T, ;. Observe that (for eaah) there Is only a finite number
of positiveny, smce the sex" is finite; letK, be the largest indek such thaim > 0. Let

Kn

Vni= S Wiep(p)
k=1

As a result of this construction, for evenye N everyk < K, and every; » € T,! using the defini-
tions (6), (4) and (5) we obtain

1
Vn(Xe.n) > W2 Wp(xy ). (11)
Step 2: the resulting predictoEinally, define

'S wov, (12)

v Yy
2 2neN

wherey s the i.i.d. measure with equal probabilities of>alt X (that is,y(x1.n) = | X| " for every
n e N and everyk; , € X"). We will show thatv predicts everyie C*, and then in the end of the
proof (Step r) we will show how to replageby a combination of a countable set of elementg of
(in fact,yis just a regularizer which ensures thaprobability of any word is never too close to 0).
Step 3:v predicts every & C*. Fixanyp e C*. Introduce the parametegg € (0,1), n€N, to
be defined later, and Igf := 1/¢]}. Observe thap(T\ T ;) > p(TL,\T"), for anyk > 1 and any
ne N, by definition of these sets. Since the SEt§T," ;, k€ N are disjoint, we obtaip(T\ T ;) <
1/k. Hencep(T\T") < g} for somej < jj;, since otherwisen] = max,cc p(TJ‘\Tj’ﬁ) > g so that
p(T’,‘,H\T”) > gl =1/jj, WhICh is a contradiction. Thus,

p(TJ‘\Tqu) <g) (13)
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We can upper-bounﬂ(TL[‘\Tanl) as follows. First, observe that

P(X1.n)
dn(,p) = — H(x1.n)log
) x1__nelemTj”ﬂ " U(Xl..n)
X
_ Z IJ-(Xl,,n) |Og p( l..n)
x.n€TTH H(X1.n)
X
_ z H(Xl‘.n) |Og p( 1..n)
X1 EXM\ T MO0
=1+ +1l. (14)
Then, from (6) and (4) we get
| > —logn. (15)
From (8) and (13) we get
"> _“<T1P\Tjrﬁ) log p(TlP\Tj’ﬁ) —-1/2> _“(TLP\TJnB) loge; —1/2. (16)
Furthermore,
> % W(xen)logH(xe.n)
XL.n€XMT]
xn Tn
> U(XMNTY) Iogu > 2 KX\ T)nlogl x|, (17)

T T2

where the first inequality is obvious, in the second inequality we have usdddhthat entropy is
maximized when all events are equiprobable and in the third one we|&8&d?| < |X|". Com-
bining (14) with the bounds (15), (16) and (17) we obtain

dn (K, p) > —logn—p(TI\Tj) loge) — 1— p(X"\T,")nlog|.X],
so that

HTITR) <

< _Iogsﬂ<dn(U7 p) +logn+ 1+ p(X"\T,")nlog x| ). (18)

From the fact thatl,(i, p) = o(n) and (10) it follows that the term in bracketsi&), so that we can
define the parametee§j in such a way that-loge]} = o(n) while at the same time the bound (18)
givesu(TE\TjE) = 0(1). Fix such a choice of]}. Then, using (10), we conclude

HOCTR) < P\ TD) + WTNTR) = o(1). (19)

We proceed with the proof af,(p,v) = o(n). For anyx; , € T,-E we have

W

1 1 1
V04.n) = SWaVn(xa.n) = Swawip=2 0 Wp(xa n) > 2 (eR)?2 " Wp(xaa),  (20)
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where the first inequality follows from (12), the second from (11), emthe third we have used
win = 1/(ji)(if+1) and j}, = 1/eh. Next we use the decomposition

dn(pv) = — M(X1.n)log =1+Il. (21)

X1.n€ i

V(X1..n) V(X1..n)
- HM(x1.n) log
H(X1.n) x1__n6;n\Tj”ﬂ o) H(X1.n)

=>-

From (20) we find

Wi X
| < *lOQ(I;(SEyZ*én(U)) _ Z “(Xl..n)log p( 1.n

- B ] P(X1.n)
= (o(n) — 2logel + 3n (M) + (dn(w P)+Xlun€;\% H(x2.n)log u(xl..n))

<on— Y  H(Xw.n)logH(xen)

xl,,neX”\Tj':r}

< o(n) +uX"\Tjp)nlog|X| = o(n), (22)

where in the second inequality we have useldge;; = o(n), dn(l, p) = 0(n) anddn(K) = o(n), in
the last inequality we have again used the fact that the entropy is maximizetdaNteyents are
equiprobable, while the last equality follows from (19). Moreover, fid2) we find

I <log2— 5 “(Xl..n>|0gzl(xl“n)

X1.n€XNTH (XL.n)

<1+ np(x”\Tj?}) log|X| =o(n), (23)

where in the last inequality we have usgd; ) = |X| " andp(xy.n) < 1, and the last equality
follows from (19).

From (21), (22) and (23) we conclude(v, u) — 0.

Step r: the regularizey. It remains to show that the i.i.d. regularizgn the definition ofv (12),
can be replaced by a convex combination of a countably many elementgiréndeed, for each
ne N, denote

Ani={Xen€eX":3ue CUxn) # O},

and let for eachx;, € X" the measurepy, , be any measure fromC such that
b o (X1.n) > 3 SURe - H(X0 ). Define

V)= o S B0 ),

‘An’ X1.n€A

foreachx] , € A", ne N, and lety := S ynWkY,. For everyu e C we have

1
Y (Xe.n) = WalAn| i o (Xan) > EWn’X‘fnU(Xl..n)

for everyn € N and everyx; , € Ay, which clearly suffices to establish the bouhid= o(n) as
in (23). [ |
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