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Abstract

Motivated by problems of anomaly detection, this paper anm@nts the Neyman-Pearson paradigm
to deal with asymmetric errors in binary classification vattonvex losg. Given a finite collection

of classifiers, we combine them and obtain a new classifidrsiitzsfies simultaneously the two
following properties with high probability: (i) it$-type | error is below a pre-specified level and
(ii), it has ¢-type Il error close to the minimum possible. The proposedsdifier is obtained by
minimizing an empirical convex objective with an empiricahvex constraint. The novelty of the
method is that the classifier output by this computatiorf@ésible program is shown to satisfy the
original constraint on type | error. New techniques to harsdich problems are developed and they
have consequences on chance constrained programmingst\evaluate the price to pay in terms
of type Il error for being conservative on type | error.

Keywords: binary classification, Neyman-Pearson paradigm, anometiyction, empirical con-
straint, empirical risk minimization, chance constraigtimization

1. Introduction

The Neyman-Pearson (NP) paradigm in statistical learning extends thetiedjef classical binary
classification in that, while the latter focuses on minimizing classification error tiawisighted
sum of type | and type Il errors, the former minimizes type Il error with goesoundx on type |
error. With slight abuse of language, in verbal discussion we do niglissh type I/Il error from
probability of type /11 error.

For learning with the NP paradigm, it is essential to avoid one kind of ertheatxpense of the
other. As an illustration, consider the following problem in medical diagndaisng to detect a
malignant tumor has far more severe consequences than flagging a tten@nSo it makes sense
to put priority on controlling the false negative rate. Other scenarios incloae filtering, machine
monitoring, target recognition, etc.

In the learning context, as true errors are inaccessible, we canrmterdlmost surely the
desired upper bound for type | error. The best we can hope is thatbadépendent classifier has
type | error bounded with high probability. Ideally, a good classificatide fin NP context should
satisfy two properties. The first is that type | error of the classifies bounded from above by a
pre-specified level with pre-specified high probability; the second isftirets good performance
bounds for excess type Il error. As will be illustrated, it is unlikely thalsthewo goals can be
fulfilled simultaneously. Following the original spirit of NP paradigm, we pubiity on type |
error and insist on the pre-specified upper boandOur proposed learning procedure meets the
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conservative attitude on type | error, and has good performancedbmeasured by the excess
¢-type Il error. We also discuss the general consequence of bemsga@tive in NP learning.

The paper is organized as follows. In Section 2, the classical setupnfanylxlassification is
reviewed and the main notation is introduced. A parallel between binanjfidaien and statisti-
cal hypothesis testing is drawn in Section 3 with emphasis on the NP paradigithifrdimeworks.
The main propositions and theorems are stated in Section 4 while proofs &nittcesults are
relegated to Appendix A. Finally, Section 5 illustrates an application of owltse® chance con-
strained optimization.

In the rest of the paper, we denoteXythe j-th coordinate of a vectorc RY.

2. Binary Classification

In this section, we review the classical setup of binary classification tageitiethe convexification
procedure that we employ throughout the paper. Moreover, we inteothe Neyman-Pearson
paradigm in this setup.

2.1 Classification Risk and Classifiers

Let (X,Y) be a random couple wheke € X c RY is a vector of covariates ande {—1,1} is a
label that indicates to which cla¥sbelongs. Aclassifier his a mappindh: X — [—1, 1] whose sign
returns the predicted class givi¥n An error occurs wher-h(X)Y > 0 and it is therefore natural to
define the classification loss by-4h(X)Y > 0), where 1-) denotes the indicator function.

The expectation of the classification loss with respect to the joint distributioX,df) is called
(classification) riskand is defined by

R(h) = P(~h(X)Y > 0).

Clearly the indicator function is not convex, and for computational caevexe, a common practice
is to replace it by a convex surrogate (see, e.g., Bartlett et al., 2006efmdnces therein).
To this end, we rewrite the risk function as

whered(z) = 1(z> 0). Convex relaxation can be achieved by simply replacing the indicator func-
tion by a convex surrogate.

Definition 1 A function¢ : [-1,1] — R is called aconvex surrogaté# it is non-decreasing, con-
tinuous and convex andgf(0) = 1.

Commonly used examples of convex surrogates are the hinge(8ss- (1+ x), the logit loss
$(x) = log,(1+ €) and the exponential loggx) = €*.
For a given choice of, define thap-risk

Ry (h) = E[¢(=Yh(X))].

Hereafter, we assume thitis fixed and refer tdz, as the risk when there is no confusion. In our
subsequent analysis, this convex relaxation will also be the ground lyzareastochastic convex
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optimization problem subject to stochastic constraints. A general treatmenotbfproblems can
be found in Section 5.

Because of overfitting, it is unreasonable to look for mappings minimizing erapiigk over
all classifiers. Indeed, one could have a small empirical risk but a langeisk. Hence, we resort
to regularization. There are in general two ways to proceed. The fitstrisstrict the candidate
classifiers to a specific clagg, and the second is to change the objective function by, for example,
adding a penalty term. The two approaches can be combined, and sometignasetiobviously
equivalent.

In this paper, we pursue the first idea by defining the class of candidetsifiers as follows.
Let hy,...,hy,M > 2 be a given collection of classifiers. In our setup, we allddwo be large.
In particular, our results remain asymptotically meaningful as lonigl aso(€"). Such classifiers
are usually called base classifiers and can be constructed in a veeynmanner. Typical examples
include decision stumps or small trees. While khis may have no satisfactory classifying power
individually, for over two decades, boosting type of algorithms have essfally exploited the
idea that a suitable weighted majority vote among these classifiers may resultcraksification
risk (Schapire, 1990). Consequently, we restrict our search fgsitilears to the set of functions
consisting of convex combinations of thgs:

M
HEOW = {hy = Z Ajhj,A € N},
=1

whereA denotes the flat simplex of 'lRand is defined by = {A e RM : A\; > 0, Z'j\":l)\j =1}. In
effect, classification rules given by the signhof #°°™ are exactly the set of rules produced by the
weighted majority votes among the base classifigrs. ., hy.

By restricting our search to classifiers #°°", the best attainabl@-risk is calledoracle risk
and is abusively denoted iR (#°°"). As a result, we havBy (h) > Ry (#°™) for anyh € #H "
and a natural measure of performance for a clasdifier’//“°™ is given by its excess risk defined
by R (h) — Ry (%™

The excess risk of a data driven classifigris a random quantity and we are interested in
bounding it with high probability. Formally, the statistical goal of binary clasaifon is to construct
a classifieth, such that the oracle inequality

Rp(hn) < Ry (hygeon) + B (FH ™, 8)

holds with probability - 8, whereA,(-,-) should be as small as possible.

In the scope of this paper, we focus on candidate classifiers in the &84 Some of the
following results such as Theorem 3 can be extended to more genersg<laikclassifiers with
known complexity such as classes with bounded VC-dimension, as for é&xam@annon et al.
(2002). However, our main argument for boundipigype 1l error (defined in next subsection)
relies on Proposition 4 which, in turn, depends heavily on the convexityegiithblem, and it is not
clear how it can be extended to more general classes of classifiers.

2.2 The Neyman-Pearson Paradigm

We make the convention that whe(X) > 0 the predicted class is1, and—1 otherwise. Under this
convention, the risk function in classical binary classification can beesgprd as a convex combina-
tion of type | error R(h) = P(-YhX)>0Y=-1) and type Il error
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R (h) = P(~YhX) > O]Y = 1):
R(h) = P(Y = —1)R (h) + P(Y = DR (h).

While the goal of classical binary classification is gig R(h), where# is the set of candidate
classifiers, the NP classification targets on
min R"(h).

heH
R (h)<a

More generally, we can define tigetype | andp-type Il errors respectively by

Re(h) =E[¢(=YhX))[Y=-1]  and  Ry(h)=E[p(-YhX))Y=1].

Our main theorems concern ab&yf(-) andRy(-), but we will come back and address how convex-
ification and conservativeness aff€&t(-) andR"(-).

Following the NP paradigm, for a given clagsof classifiers, we seek to solve the constrained
minimization problem:

min Ry (h). 1)
Ry (h)<a
wherea € (0,1), the significance level, is a constant specified by the user.

NP classification is closely related to the NP approach to statistical hypothssigyie We
now recall a few key concepts about the latter. Many classical works dddressed the theory
of statistical hypothesis testing, in particular Lehmann and Romano (2008idps a thorough
treatment of the subject.

Statistical hypothesis testing bears strong resemblance with binary cldgsifitave assume
the following model. LeP~ andP* be two probability distributions o  RY. Let p € (0,1) and
assume that is a random variable defined by

v _ 1  with probabilityp,
| —1 with probability 1 p.

Assume further that the conditional distributionXfjivenY is given byPY. Given such a model,

the goal of statistical hypothesis testing is to determine whetheas generated fror@~ or P*.

To that end, we construct a tegt X — [0,1] and the conclusion of the test based @is that

X is generated fronP* with probability @(X) and fromP~ with probability 1— @(X). Note that
randomness here comes from an exogenous randomization processdlipping a biased coin.
Two kinds of errors arise: type | error occurs when rejecthgvhen it is true, and type Il error
occurs when accepting- when it is false. The Neyman-Pearson paradigm in hypothesis testing
amounts to choosingthat solves the following constrained optimization problem

maximize Ho(X)|Y =1],

subjectto  E@X)[Y=-1]<a,
wherea € (0,1) is the significance level of the test. In other words, we specify a signdeckavel
a on type | error, and minimize type Il error. We call a solution to this probdemmost powerful test

of levela. The Neyman-Pearson Lemma gives mild sufficient conditions for the egestarsuch
atest.
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Theorem 2 (Neyman-Pearson Lemma)_et P~ and P" be probability distributions possessing den-
sities p and p’ respectively with respect to some measure p. ket) = U (L(X) > k), where the
likelihood ratio L(x) = p*(x)/p (x) and k is such that RL(X) > k) < a and P (L(X) > k) > a.
Then,

o fyisalevela = E[px(X)]Y = —1] most powerful test.

e For a given leveli, the most powerful test of levelis defined by

1 it L(X)>k
oX)=¢ 0 if L(X)<k
—P~(L(X)>k :

Notice that in the learning frameworlp,cannot be computed since it requires the knowledge of
the likelihood ratio and of the distributio® andP*. Therefore, it remains merely a theoretical
proposition. Nevertheless, the result motivates the NP paradigm pursued

3. Neyman-Pearson Classification Via Convex Optimization

Recall that in NP classification with a loss functipnthe goal is to solve the problem (1). This can-
not be done directly as conditional distributiddsandP*, and hencé; andRy, are unknown. In
statistical applications, information about these distributions is available thiteugi.i.d. samples
X5 XN >1andX), ..., X1, n" > 1, whereX| ~P,i=1,....,n andX" ~P*i=1,...,n".

We do not assume that the two samplXsg, ..., X ) and(X;,..., X!, ) are mutually independent.
Presently the sample sizes andn* are assumed to be deterministic and will appear in the sub-
sequent finite sample bounds. A different sampling scheme, where thasttigs are random, is
investigated in Section 4.3.

3.1 Conservativeness on Type | Error

While the binary classification problem has been extensively studiedgtieadproposition on how
to implement the NP paradigm remains scarce. To the best of our knowlédgeon et al. (2002)
initiated the theoretical treatment of the NP classification paradigm and areegplyical study can
be found in Casasent and Chen (2003). The framework of Cannaln @002) is the following.
Fix a constantgy > 0 and let# be a given set of classifiers with finite VC dimension. They study a
procedure that consists of solving the following relaxed empirical optimizatioblem
min  R'(h 2

o omin o Re(h, @)

R~ (h)<o+&0/2
where

R0 = S AN >0). and R(R) = - 33X ) <0)

denote the empirical type | and empirical type Il errors respectively. hle¢ a solution to (2).
Denote byh* a solution to the original Neyman-Pearson optimization problem:
h* € argminR’ (h), 3)

heH
R (h)<a
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The main result of Cannon et al. (2002) states that, simultaneously with lagalgtity, the type II
error R* (h) is bounded from above bR* (h*) + &1, for somee; > 0 and the type | error o is
bounded from above by + &. In a later paper, Cannon et al. (2003) considers problem (2) for
a data-dependent family of classifiek§ and bound estimation errors accordingly. Several results
for traditional statistical learning such as PAC bounds or oracle inequdides been studied in
Scott (2005) and Scott and Nowak (2005) in the same framework as ¢hiaidrdown by Cannon
et al. (2002). A noteworthy departure from this setup is Scott (2008revhensible performance
measures for NP classification that go beyond analyzing separately ta® &irerrors are intro-
duced. Furthermore, Blanchard et al. (2010) develops a genéuribsdo semi-supervised novelty
detection by reducing it to NP classification. Recently, Han et al. (20083izsed several results
of Cannon et al. (2002) and Scott and Nowak (2005) to NP classificaitbrconvex loss.

The present work departs from previous literature in our treatment efltgpror. In fact, the
classifiers in all the papers mentioned above take a compromise on thetgmeided upper bound
on type | error, that is, they ensure thatAP(h) > o + &) is small, for somee > 0. However,
it is our primary interest to make sure that(ﬁ) < a with high probability, following the original
principle of the Neyman-Pearson paradigm that type | error shouldriteotled by a pre-specified
level a. As we follow an empirical risk minimization procedure, to contrdRP(h) > a), it is
necessary to havie be a solution to some program with a strengthened constraint on empirical
type | error. If our concern is only on type | error, we can just do slmwever, we also want
to evaluate the excess type Il error. Our conservative attitude on typerlfaces new technical
challenges which we summarize here. In the approach of Cannon e0@g)(and of Scott and
Nowak (2005), the relaxed constraint on the type | error is construsiiet that the constraint
F%(h) < a+¢p/2 on type | error in (2) is satisfied by (defined in (3)) with high probability, and
that this classifier accommodates the excess type Il error well. As a resuttotitrol of type Il
error mainly follows as a standard exercise to control suprema of empirica¢sses. This is not
the case here; we have to develop methods to control the optimum value timrzation problem
under a stochastic constraint. Such methods have consequencedynat®R classification but

also on chance constraint programming as explained in Section 5.

3.2 Convexified NP Classifier

Concerned about computational feasibility, our proposed classifier sotbiéon to a convex pro-
gram, which is an empirical form NP classification problem (1) where theilalision of the ob-
servations is unknown. In view of the arguments presented in the presidogection, we cannot
simply replace the unknown risk functions by their empirical counterparte tieatment of the
convex constraint should be done carefully and we proceed as follows

For any classifieh and a given convex surrogate definelia, andf\’$ to be the empirical coun-
terparts ofR; andRj, respectively by

Rl = - 3 80X ). and Ry(h) = -5 (-hX).

Moreover, for anya > 0, let #®2 = {h ¢ 4™V : Ry (h) < a} be the set of classifiers "™

whose convexified type | errors are bounded from above, laynd Iet.’Hf’:a ={he HW: ﬁ@(h) <
a} be the set of classifiers i °°™ whose empirical convexified type | errors are bounded.bjo
make our analysis meaningful, we assume H&® = 0.
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We are now in a position to construct a classifierifi®" according to the Neyman-Pearson
paradigm. For any > 0 such that < a+/n-, define the convexified NP classifigras any classifier
that solves the following optimization problem

~

min h).
min - Ry(h) (@)
Ry (W <a—1/vn~

Note that this problem consists of minimizing a convex function subject to aegocenstraint
and can therefore be solved by standard algorithms (see, e.g., Bowhadenberghe, 2004, and
references therein).

In the next section, we present a series of results on type | and typ®is ®f classifiers that
are more general tha.

4. Performance Bounds

In this section, we will first evaluate our proposed classﬁfeagainstq) I/ll errors. These bench-
marks are necessary becaimds constructed based on them. Moreover, in view of the decision
theory framework, such errors are just expected loss with a genssaunctiond, which are inter-
esting to investigate. As the true type | and type Il errors are usually the mmagem in statistical
learning, we will also address the effect of convexification in terms of Xoess type Il error. In-
terestingly, given that we want to be conservative on type | error, ereitlorking ond errors nor
working on true errors leads to a most desirable type Il error. The furisay for being conservative
will be characterized explicitly.

4.1 Control of Type | Error

First, we identify classifiers such thaRy (h) < a with high probability. This is done by enforcing
its empirical counterpalﬁ(h) be bounded from above by the quantity

Ox =0 —K/vVn,
for a proper choice of positive constaat

Theorem 3 Fix constants,a € (0,1),L > 0and let¢ : [-1,1] — R™ be a given L-Lipschitz convex
surrogate. Define

K =4v2L,/log <22/|> .
Then for any (random) classifierdn #<°" that satisfiest%(h) < 0k, we have
R (h) <Ry(h) <a.
with probability at leastl — 8. Equivalently

PHY% c 4% >1-35. (5)
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4.2 Simultaneous Control of the Two Errors

Theorem 3 guarantees that any classifier that satisfies the strengtuerstchint on the empirical
¢-type | error will haved-type | error and true type | error bounded from aboveohyWe now
check that the constraint is not too strong so thatjtiigpe 1l error is overly deteriorated. Indeed,
an extremely smali, would certainly ensure a good control of type | error but would detatéor
significantly the best achievabdetype Il error. Below, we show not only that this is not the case
for our approach but also that the convexified NP clasdifietefined in Section 3.2 with = o,
suffers only a small degradation of ipstype Il error compared to the best achievable. Analogous
to classical binary classification, a desirable result is that with high pilitigab

h) — min Rj(h) <A 6
Ry() — min Ry(h) < &a(7), ®)
whereA,(¥) goesto 0 ag=n +n* — oo,

The following proposition is pivotal to our argument.

Proposition 4 Fix constanto € (0,1) and let$ : [—1,1] — R™ be a given continuous convex sur-
rogate. Assume further that there exiggs> 0 such that the set of classifief?:% Vo is nonempty.
Then, for anw € (0,vo),

min Ry(h) — min Ry(h) < ¢(1)—

he #6.a—v he#{¢.a Vo—V

This proposition ensures that if the convex surrogeiecontinuous, strengthening the constraint on
type | error -type | error) does not increase too much the best achiegatylpe Il error. We should
mention that the proof does not use the Lipschitz property, blit only that it is uniformly bounded
by (1) on[—1,1]. This proposition has direct consequences on chance constraog@mming
as discussed in Section 5.

The next theorem shows that the NP classfffedefined in Section 3.2 is a good candidate to
perform classification with the Neyman-Pearson paradigm. It relies orotlesving assumption
which is necessary to verify the condition of Proposition 4.

Assumption 1 There exists a positive constant 1 such that the set of classifie6?£” is nonempty.

Note that this assumption can be tested using (5) for large enoudihdeed, it follows from this
inequality that with probability + 9,

7_4141,80(—}(/@ C g dEa—Kk/Vn +k/VnT _ groea

Thus, it is sufficient to check i!-lfjm_"/ﬁ is nonempty for some > 0. Before stating our main

theorem, we need the following definition. Under Assumption 1g léeénote the smallestsuch
that #®£% -£ 0 and letng be the smallest integer such that
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Theorem 5 Let ¢, k, 3 and a be the same as in Theorem 3, affddenote any solution t(4).
Moreover, let Assumption 1 hold and assume thatmg where iy is defined in(7). Then, the
following hold with probabilityl — 29,

R (A*) < Ry(R*) <« (8)
and 46(1) )
K K
R$ B hg}?“ Re() = (1— s)aﬁ NG ©

In particular, there exists a constant:€0 depending om, ¢ (1) andg, such that9) yields

e e e |

Note here that Theorem2is not exactly of the type (6). The right hand side of (9) goes to zero
if both n~ andn* go to infinity. Inequality (9) conveys a message that accuracy of the estimate
depends on information from both classes of labeled data. This concérates us to consider a
different sampling scheme.

4.3 A Different Sampling Scheme

In this subsection (only), we consider a model for observations that ie standard in statistical
learning theory (see, e.g., Devroye et al., 1996; Boucheron et ab)200

Let (X1,Y1),...,(%n, Ya) ben independent copies of the random coupleY) € X x {—1,1}.
Denote byPx the marginal distribution oK and byn(x) = E[Y|X = X] the regression function &f
ontoX. Denote byp the probability of positive label and observe that

1+EN(X)]
y

In what follows, we assume thBk (n(X) = —1) VPx(n(X) =1) < 1 so thatp € (0,1).

LetN™ = cardY; : Y; = —1} be the random number of instances labelddandN* =n— N~ =
cardY; : Y; = 1}. In this setup, the NP classifier is defined as in Section 3.2 wineesdn* are
replaced byN- andN* respectively. To distinguish this classifier frdmh previously defined, we
denote the NP classifier obtained with this sampling scher‘rﬂi,,.by

Let the eventF be defined by

p=PY=1=E(PY =1X]) =

49(1)k
(A < al N {R;(AX) — mi h) < . + )
F = {Ry SR he}[¢“R$( ) < (1—¢€)av/N- \/N+}
DenoteB,- = {Y1 ==Yy = =1, Y11 = --- = Yq = 1}. Although the eveniB,- is different

from the evenf{N- = n }, symmetry leads to the following key observation:
P(FIN =n")=P(F|B,).
Therefore, under the conditions of Theorem 5, we find thahfor ng the eventF satisfies
P(FIN"=n")>1-205. (10)

We obtain the following corollary of Theorem 5.
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Corollary 6 Letd, k, 3 anda be the same as in Theorem 3, drfgbe the NP classifier obtained
with the current sampling scheme. Then under Assumption t #my/(1— p), where iy is defined

in (7), we have with probabilityl — 25)(1— e~ "z 02 ),

R (F) <Ry (RS <a (11)
and 4¢<1> 2
~ K K
Ro() = it R < (TG TN 12
n(1-p)? np2

Moreover, with probabilityl —20—e~ 2  —¢e~ 2, we have simultaneous{§1) and

N _ 4v/20(1)K 2v/2K
Roln) = R < e nap T Ve

(13)

4.4 Price to Pay For Being Conservative

We have shown that the the computational feasible claséifisatisfies oracle inequalities which
take the optimab-type Il errors as the benchmark. In this subsection, the excess tep@iiwill
be measured, and we will characterize the price to pay by being cotigerva type | error.

Much like its counterparts in classical binary classification, the next stitiksighple relation
addresses the consequence of convexification in the NP paradigm.

Theorem 7 Leth be any classifier, then

R*(F])—Rirm)n R*(h) < Ry(h) — |nf R;(h).

This theorem applies to any classifier; in particular, it holds for our pseghX. As the proof of
Theorem 7 indicates, min(n)<q R" (h) = infr-)<o Ry (h). So the bound in the theorem can be very
tight, depending on the nature faf

Now relax the range of base classifié¥s . .., hy to be[—B,B]|. Denote byﬂg”“ the set of

convex combinations of the base classifiers that Igatyge | error bounded from above loy
Therefore, we have the following observation:

R'(M)— min R'(h) <Ti+To+Ts,

R~ (h)<a
where
T, = R; (A*) — min
1= Ry(R) 5 h),
T = mlnle, - |nf Rj,,h
—B<h<B
3: |nf R$h— m)fSan(h).

—B<h<B

With the new set of base classifiers taking rangels-iB, B], Theorem 5 holds if we replageby
Kg = 4v/2LgB+/l0g(2M/8), whereLg is the Lipschitz constant o on [-B,B]. Therefore, the
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convergence rate df is explicitly controlled. We can see that with a fixed sample size, choosing a
set of base classifiers with smaller range will result in a tighter bound faxbess-type Il error.
However, if one concerns more about the true type 1l error, choasisigallerB should not be a
better option, because only signs matters for true type | and Il errois.ifthition is reflected in

the termTs. WhenB increases]s decreases. More specifically, it can be shown that

Ts= (P*(XT)$(-B)+ P (X7)$(0)) —P* (X7 ) =P (X")9(-B),

whereX™ C X is the part of feature space mapped to labél by the optimal NP classifier that
solves mi-(n)<q R*(h), andX~ is the part that mapped to labell; this is what NP Lemma says
when there is no need for randomization. Therefdgeliminishes towards 0 &increases, and the
trade-off betweef; andT; is very clear. Whep(x) = (1+X) is the hinge loss, the best trade-off
occurs aB € (0,1). WhenB(> 1) goes to infinity,Ts = O stays the same while the upper bound of
Tz blows up.

Note thaﬂlgb’a c {h:R (h) <a,—B < h<B}, soT; reflects the price to pay for being conser-
vative on type | error. It also reflect the bias for choosing a spedficliclate pool of classifiers, that
is, convex combinations of base classifiers. As long as the base clasaiieich enough, the latter
bias should be small. However in our belief, the price to pay for being ceaisee is unavoidable.
Even if we do not resort to convexification, getting the best insurandgpanl error still demands
a high premium on type Il error.

The same attitude is shared in the seminal paper Cannon et al. (2002¢ nvihvais claimed
without justification that if we use’ < a for the empirical program, “it seems unlikely that we
can control the estimation err& (h) — R* (h*) in a distribution independent way”. The following
proposition confirms this opinion in a certain sense.

Fixa € (0,1),n" >1,n" > 1anda’ <a. Let ﬁ(a’) be the classifier defined as any solution of
the following optimization problem:

min R"(h).
_her
R~ (h)<a’
The following negative result holds not only for this estimator but also fewttaclen*(a’) defined
as the solution of
min R"(h).
he #H
R~ (h)<ao’
Note thath*(a’) is not a classifier but only a pseudo-classifier since it depends on km®wn
distribution of the data.

Proposition 8 There exist base classifiers,h, and a probability distribution fo(X,Y) for which,
regardless of the sample sizes and ', any pseudo-classifier;h= Ahy + (1 —-A)hp, 0 <A < 1,
such that R(h;) < a, it holds
R (hs) — min R"(hy) >a.
(") R~ (hy)<aAe[0,1] () 2

In particular, the excess type Il risk of (o —&,-), €~ > 0 does not converge to zero as sample
sizes increase evengf- — 0. Moreover, whem < 1/2 for any (pseudo-)classifie {0 < A < 1)
such thatR (h;) < a, it holds

R (h;) — in_R(m)=a.
() Rf(hk)rgérjxe[o;] () =a
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with probability at leasti A 1/4. In other words, if we lel = {hy : R"(hy) <a,A € [0,1]}, andB =

{hy : R (hy) — ming-n,)<aneo,g R () > a,A € [0,1]}, thenP(A C B) > a A1/4. In particular,

the excess type Il risk éf(a —&n-), En- > 0 does not converge to zero with positive probability, as
sample sizes increase evegdf — 0.

The proof of this resultis postponed to Appendix A. The fact that theleré(a — - ) satisfies
the lower bound indicates that the problem comes from using a strengtbensiaint. Note that
the conditionr < 1/2 is purely technical and can be removed. Nevertheless, it is alwayasberc
practice thatt < 1/2. When the number of base classifiers is great then two, we believe that simila
counterexamples can be still constructed, though the technicality will be mosleeal.

In view of this negative result and our previous discussion, we havecepathe price to pay for
being conservative on type | error, and our classtifeis no exception. As such conservativeness
follows from the original spirit of the Neyman-Pearson paradigm, we tepdy whatever we have
to pay. The positive sides are that our proposed procedure is compatbtifeasible, and it attains
good rates under a different (but still meaningful) criterion.

5. Chance Constrained Optimization

Implementing the Neyman-Pearson paradigm for the convexified binawifataion bears strong
connections with chance constrained optimization. A recent accountlfsablems can be found
in Ben-Tal et al. (2009, Chapter 2) and we refer to this book for esfees and applications. A
chance constrained optimization problem is of the following form:

g\ninf()\) st. P{F(A\§) <0}>1-aq, (14)
en

whereg € = is a random vector) ¢ RM is convexa is a small positive number arfdis a determin-
istic real valued convex function. Problem (14) can be viewed as aatsbenof robust optimization.
Indeed, for the latter, the goal is to solve the problem

minf(A) s.t. sug=(A,§) <O, (15)
AEA fc=

and this essentially corresponds to (14) for the aase0. For simplicity, we takd- to be scalar
valued but extensions to vector valued functions and conic ordersoasidered in Ben-Tal et al.
(2009, Chapter 10). Moreover, it is standard to assumerfa) is convex almost surely.

Problem (14) may not be convex because the chance consffamt\ : P{F(A,&) < 0} >
1—a} is not convex in general and thus may not be tractable. To solve this proBlékopa
(1995) and Lagoa et al. (2005) have derived sufficient conditionthe distribution of¢, for the
chance constraint to be convex. On the other hand, Calafiore and C2006) initiated a different
treatment of the problem where no assumption on the distributidniefmade, in line with the
spirit of statistical learning. In that paper, they introduced the so-cattedario approachased on
a samplez,..., &, of independent copies @f The scenario approach consists of solving

minf(A) st. F(A,&)<0,i=1,...,n. (16)
AeN

Calafiore and Campi (2006) showed that under certain conditions, iéithple sizen is bigger than
somen(a,d), then with probability 1- 5, the optimal solutiorhs¢ of (16) is feasible for (14). The
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authors did not address the control of the tefr ASC) — f* wheref* denotes the optimal objective
value in (14). However, in view of Proposition 8, it is very unlikely that thisrte&ean be controlled
well.
In an attempt to overcome this limitation, a nawalytical approach was introduced by Ne-
mirovski and Shapiro (2006). It amounts to solving the following convei@pation problem
Aer/Q:QRSf(A) s.t. G(At) <0, (17)
in whicht is some additional instrumental variable and wh@fet) is convex. The problem (17)
provides a conservative convex approximation to (14), in the senseubstx feasible for (17) is
also feasible for (14). Nemirovski and Shapiro (2006) considereatticplar class of conservative
convex approximation where the key step is to repla¢€ R®,&) > 0} by E¢(F(A,§)) in (14),
where¢ a nonnegative, nondecreasing, convex function that takes valu®.1Mémirovski and
Shapiro (2006) discussed several choiceg fcluding hinge and exponential losses, with a focus
on the latter that they nani@ernstein Approximatian
The idea of a conservative convex approximation is also what we emplay ipaper. Recall
thatP~ the conditional distribution oX givenY = —1. In a parallel form of (14), we cast our target
problem as
r;;i/rcR*(hA) st. P {h(X)<0}>1—q, (18)

whereA is the flat simplex of F¥.
Problem (18) differs from (14) in tha'(h,) is not a convex function ok. ReplacingR’(hy)
by R (hy) turns (18) into a standard chance constrained optimization problem:

rAT;i/r\]R$(h)\) st. P {h(X)<0}>1-aqa. (19)

However, there are two important differences in our setting, so that meotase directly Scenario
Approach or Bernstein Approximation or other analytical approaches4p First,R;(f,) is an
unknownfunction of A. Second, we assume minimum knowledge ati®ut On the other hand,
chance constrained optimization techniques in previous literature assumkegge about the dis-
tribution of the random vectot. For example, Nemirovski and Shapiro (2006) require that the
moment generating function of the random veé @ efficiently computable to study the Bernstein
Approximation.

Given a finite sample, it is not feasible to construct a strictly conservappeoaimation to the
constraint in (19). On the other hand, it is possible to ensure that if weddarfrom the sample,
this constraint is satisfied with high probability-1, that is, the classifier is approximately feasible
for (19). In retrospect, our approach to (19) is an innovative hylxeisveen the analytical approach
based on convex surrogates and the scenario approach.

We do have structural assumptions on the problemg|gte {1,...,M} be arbitrary functions
that take values if-1,1] andF (A, &) = 25-\':1)\,-9,- (§). Consider a convexified version of (14):

minf(A) st Hp(FA8)]<a, (20)

where¢ is aL-Lipschitz convex surrogaté, > 0. Suppose that we observe a sam@le. .., &n)
that are independent copies&@fWe propose to approximately solve the above problem by

AeN

minf(A) s.t. iq)(F()\,Ei))gna—Kﬁ,
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for somek > to be defined. Denote @any solution to this problem and by the value of the
objective at the optimum in (20). The following theorem summarizes our caotitsibto chance
constrained optimization.

Theorem 9 Fix constantd,a € (0,1/2),L > 0 and let¢ : [-1,1] — R™ be a given L-Lipschitz
convex surrogate. Define

K =4v2L,/log <22/|> .

Then, the following hold with probability at least- 20
(i) A is feasible for(14).

(i) Ifthere exists € (0,1) such that the constraifE[p(F (A, §))] < ea is feasible for soma € A,

then for
n>< 4k >2
“\(1-¢a /)’
we have a(1)
~ " K
f()\)—fq,g(l_s)a\m.

In particular, as M and n go to infinity with all other quantities kept fixed, wiaiob

f(X)-fg;:o(,/'O?]M) .

The proof essentially follows that of Theorem 5 and we omit it. The limitations tefofem 9
include rigid structural assumptions on the functtoand on the set. While the latter can be easily
relaxed using more sophisticated empirical process theory, the formeeigiho our analysis.
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Appendix A. Proof of the Main Results

We gather in this appendix the proofs of the main results of the paper.

A.1 Proof of Theorem 3

We begin with the following lemma, which is extensively used in the sequel. Itsf peties on
standard arguments to bound suprema of empirical processes. Recéfijtha ,hy} is family of

M classifiers such thdt; : X — [—1,1] and that for any\ in the simplexA c RM, h, denotes the
convex combination defined by
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The following standard notation in empirical process theory will be usetiXfe.., X, € X ben
i.i.d random variables with marginal distributiéh Then for any measurable functidn X — R,

we write q
:i;f(m and  P(f) =Ef(X) = [ faP.

Moreover, the Rademacher averagd @ defined as

Ri(1) =3 5.8 F(X).

whereg;, ..., &y are i.i.d. Rademacher random variables such that £ 1) = P(g; = —-1) =1/2
fori=1,...,n

Lemma 10 Fix L > 0,8 € (0,1). Let X,...,X, be n i.i.d random variables o with marginal
distribution P. Moreover, let : [-1,1] — R an L-Lipschitz function. Then, with probability at
leastl— 9, it holds

supl(PyP) 0 ohA>r<4ﬁL og( %)

Proof Defined(-) = ¢(-) — $(0), so thath is anL-Lipschitz function that satisfiefs(0) = 0. More-
over, for any\ € A, it holds

(Ph=P)(dohy) = (Ph=P)(dohy).

Let®: R — R, be a given convex increasing function. Applying successively the syriragon
and the contraction inequalities (see, e.g., Koltchinskii, 2011, ChapteeZ)nd/

E® (sup|(Pn —P)(o h)\)\> <E® (23up|Rn(<|To hA)|> <E® (4Lsup|Rn(h)\)|> )
AeA AeA AeA

Observe now that — |Ry(hy )| is a convex function and Theorem 32.2 in Rockafellar (1997) entails

that

sup|Ra(hy)| = max ]Rn )| -
AeEN

We now use a Chernoff bound to control this quantlty. To that end, fix O, and observe that

P(igfupn ><¢om>|>t) o (sfeug(Pn—P)(q?om)Q
1
@ (4leg1jg>l\<ﬂ\Rn y) (21)

Moreover, sinceb is increasing,

ECD<4LS max [Ry(h; ]) E max @ (4Ls|Ro(h;)|)

1<j<™m 1<j<™Mm

<

<y E[®(4LsRy(hj)) v @ (—4LsR(hj))]

IN
N
Z

® (4LsRy(hj)) . (22)

Il
R
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Now chooseb(-) = exp(-), then

® (4LsRy(h |_1E cos h( >§)> < xp<8L§52>,

where cosh is the hyperbolic cosine function and where in the inequalitysed the fact that
Ihj(X;)| < 1 for anyi, j and coskx) < exp(x?/2). Together with (21) and (22), it yields

: 8L2s? nt?
P(sup|(Pn—P)(¢oh>\) >t> < ZM@Sexp< - —st) <2M exp(—32|_2> :

AEN

Choosing

t=

2 (%)

completes the proof of the Lemma. |

We now proceed to the proof of Theorem 3. Note first that from theept@s ofp, R™(h) <
Ry (h). Next, we have for any data-dependent classifier#“°™ such thaRy (h) < a:

Ro() <Ry -+ sup [Ry(h) —Ry(h)| <~ ﬁ+h€s;;cgm\ h) — Re(h) -

Lemma 10 implies that, with probability-10

hes;gm!%(h) —Ry(h)| = fgf\(ﬁ; —P)(om)| < =

The previous two displays imply th& (h) < o with probability 1— 3, which completes the proof
of Theorem 3.

A.2 Proof of Proposition 4

The proof of this proposition builds upon the following lemma.

Lemma 11 Lety(a) = infy, c40q R (hy), thenyis a non-increasing convex function @ 1].

Proof First, it is clear thay is a non-increasing function @f because foo’ > a, {h, € #H™" :
Ry(hy) <o} C {hy € HO™: Ry(hy) <a'}.

We now show thay is convex. To that end, observe first that sigcis continuous on—1,1],
the set{A € A : hy € H®%} is compact. Moreover, the function— Ry (hy) is convex. Therefore,
there exista\* € A such that

y(a) = inf Ry(hy)= min Ry(hy) = Ry(hy).

hyeHoa hye{ba

Now, fix ag,a; € [0,1]. From the above considerations, there exis\, € /A such thaty(a;) =
Ry (hy,) andy(az) = Ry (hy,). For any® € (0,1), define the convex combinations = 8a; + (1 —
8)az andAg = 6A1 + (1 —B)A2. Sinceh — Ry (hy) is convex, it holds

R¢(h)\ <9R$ h7\1 1 G)R(I,(h;\z) §9G1+(1—9)G2:G_9,
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. Together with the convexity df, it yields

so thathy, € #*%. Hencey(as) < Ry(hy,)
<ORy(hy,) +(1=8)Ry(hy,) = By(aa) + (1 - B)y(az).

y(6a1+ (1—-8)az) < Ry(hy,)
[

We now complete the proof of Proposition 4. For any [0,1], let y(x) = infpc4x Ry (h) and
observe that the statement of the proposition is equivalent to

y(a—v) —y(a) g¢(1)VOL_V, 0< Vv <vo.

Lemma 11 together with the assumption th&t:%—Vo =£ @ imply thaty is a non-increasing convex
real-valued function offr — vg, 1] so that

y(a—v)—y(a)<v sup |gl,
geoy(a—v)
wheredy(a — v) denotes the sub-differential gfat a —v. Moreover, sincey is a non-increasing
convex function ona — vo,a — V], it holds

y(a—vo) —y(a—v) > (v—vo) sup |gl.
geoy(a—v)

The previous two displays yield

y(@—v)—y(a) <v

A.3 Proof of Theorem 5
Define the event€~ andE* by

= [ {IRy(h)—Ry(h |_F}

he_q.[conv
~ K
hggmv{l%(h)—%(h)K Jnj}-

Lemma 10 implies
P(E)AP(E") >1-4. (23)

Note first that Theorem 3 implies that (8) holds with probability & Observe now that the I.h.s
of (9) can be decomposed as

Ry() = min Ry (h) = As+ A+ Ag,

where
Ao = () R0+ ( Ry - i i)

Ao = min R$h— min I{‘;h

he 30K he # %2«
n
= min (h)— min h).
heﬂ-[“’o‘ZKR$ he Ho.a (v
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To boundA; from above, observe that

AL<2 sup [Ry(h)—Ry(h) <2 sup [Ry(h)—Ry(h).
he (b he s{om

Therefore, on the ever&™ it holds 5
K

vnto
We now treatd,. Note thatA, < 0 on the event{?:%2 J-Ij’:“K. But this event contain€ - so
thatA, < 0 on the evenf-.

Finally, to controlAs, observe that under Assumption 1, Proposition 4 can be applied with
v = 2k/+/n- andvg = (1—€)a. Indeed, the assumptions of the theorem imply thatvg/2. It

yields
46(L)k
Al ————.
= (1-goavn
Combining the bounds ofy;, A, andAz obtained above, we find that (9) holds on the evlent £+
that has probability at least-125 in view of (23).
The last statement of the theorem follows directly from the definitiok. of

A <

A.4 Proof of Corollary 6
Now prove (12),

P(F)= i P(FIN =n)P(N"=n")
n—=0

> S P(FIN =n)P(N =n)

> (1-28)P(N" = no),

where in the last inequality, we used (10). Applying now Lemma 12, we obtain

Therefore,

P(F)>(1-25)(1—e

which completes the proof of (12).
The proof of (13) follows by observing that

o : 4/20(1)K 2v/2K
{R$(hn)—h£n}|[2aR$(h) ~ (1-5ay/nil-_p) NG

}C(ﬂlﬁﬂf)uﬂguﬂg,

where

B SOOI 40 (1)K 2K c
2= R0 i R > GG T e

A ={N" <n(1-p)/2},
A3 ={N" <np/2}.
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SinceA45 C {N~ > ng}, we find

P(ANa5) < 3 P(FIN =n)P(N =n") <23

Next, using Lemma 12, we get

_n(1-p? ﬁ
P(4) <e 2 and R4;) <e 2

Hence, we find

o 4/20(1)K 2v/2k Cnp? o
o {0~ > SR ) <

which completes the proof of the corollary.

A.5 Proof of Theorem 7

First observe that for ariy R+ R$ ). Then the result follows from the claim that

R (h) = f (h).
ngaa RO

It is clear mirk-m)<q R*(h) < infr-(n)<a Ry (), it remains to prove the other direction. By the
Neyman-Pearson Lemma, We can decompose the feature Fgat® a disjoint union ofX™ and
X, and the optimal (pseudo) classifier that solvesgmif<q R*(h) assigns label-1 for anyx €
X*, and—1 for anyx € X~. Note that if any two classifier; andg, have the same signs, that is,

sgn(g1) = sgngz), thenR (g1) = R (g2) andR"(g1) = R*(gz2). On the other hand, fap-type | and
Il errors, values of classifiers do matter. B

Let hge(x) = B-I(x € XT) + (—¢€)-I(x € X). Then clearly for anyB,e > 0, hg¢ solves
Ming- (<o R*(h). Also, for anyB, e > 0,

|nf R$ (h) < Ry( (hge) = P*(XH)d(—B) +P (X )d(g).

Taking the limit, we have

lim Ry(hee) = lim P (X")p(~B)+P (X )d(e) = P"(X ") =R’ (hee).

B—o0,e—0 B—00,e—0

Therefore, ing- ) <q Ry () < Ming-(h)<¢ R*(h), which completes the proof.

A.6 Proof of Proposition 8
Let the base classifiers be defined as
h(x)=—-1 and hy(x)=U(x<a)—U(x>a), Vxel0,]]
For anyA € [0, 1], denote the convex combinationtof andhy by hy = Ahy + (1—A)hy, that is,

(%) = (1—20)2(x < o) — A(X > 0.
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Suppose the conditional distributionsXfgivenY = 1 orY = —1, denoted respectively B3 and
P, are both uniform on0, 1]. Recall thatR (hy) = P~ (h)(X) > 0) andR"(hy) = P*(h)(X) < 0).
Then, we have

R () =P~ (M (X) > 0) = al(A < 1/2). (24)

Therefore, for any € [0,a], we have

Ael0l:Rm)<1}= { E(i’/lz],l] :I —a.
Observe now that
R'(hy) =P (hy(X)<0)=(1-a)I(A<1/2)+UA>1/2). (25)

For anyt € [0,q], it yields

l1-a ift=aq,

inf R"(hy) = .
Ae[OJ]!Q*(hA)gT () { 1 ift<a.

Consider now a classifiés, such thaﬁ(h_x) < 1 for somert < a. Then from (24), we see that must
haveA > 1/2. Together with (25), this imples th&t (h)) = 1. It yields

R (hy) — in R(h)=1—(1—a)=a.
(hy) A:R[rgig?)gq (hy) (1-a)=a

This completes the first part of the proposition. Moreover, in the same masn@4), it can be
easily proved that

R () = nl_n;m(mow > 0)=ay 1A <1/2). (26)

where

on = nlizlmoq <a) (27)

If a classifierh, is such thaR (hy) < oy, then (26) implies thak > 1/2. Using again (25), we
find also thaR"(hy) = 1. It yields

R (hy) —A:R[r(\rl]?)gaR*(hA) =1-(1-0)=a.

It remains to show tha& (h,) < a,- with positive probability for any classifier such that(hy) <t
for somet < a. Note that a sufficient condition for a classiffgrto satisfy this constraint is to have
a < ap-. Itis therefore sufficient to find a lower bound on the probability of thenévt = {a,- >
a}. Such a lower bound is provided by Lemma 13, which guarantees tt@t Pa A 1/4.

Appendix B. Technical Lemmas on Binomial Distributions

The following lemmas are purely technical on the tails of Binomial distributions.
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Lemma 12 Let N be a binomial random variables with parameters & and g€ (0,1). Then, for
any t> 0 such that t< ng/2, it holds

PN>t)>1-e .

Proof Note first thatn— N has binomial distribution with parameters> 1 and 1— g. Therefore,
we can writen— N = zi”:lZi wherez; are i.i.d. Bernoulli random variables with parameter 4.
Thus, using Hoeffding's inequality, we find that for amy 0,

P(n—N—-n(1—q)>9) ge‘ﬁ.

Applying the above inequality witt=n—n(1—q) —t > ng/2 > 0 yields

P(N>t) = P(—N—n(1—q) <n-n(l1—g)—t) > 1—e% .

The next lemma provides a lower bound on the probability that a binomial ditnibexceeds its
expectation. Our result is uniform in the size of the binomial and it can héy easified that it

is sharp by considering sizes= 1 andn = 2 and by looking at Figure 1. In particular, we do not
resort to Gaussian approximation which improves upon the lower boundsaihée derived from
the inequalities presented in Slud (1977).

Lemma 13 Let N be a binomial random variable with parametersii and0 < q < 1/2. Then, it
holds
P(N>nqg) >qA(1/4).

Proof We introduce the following local definition, which is limited to the scope of this proo
Fix n> 1 and for anyg € (0,1), let Py denote the distribution of a binomial random variable with
parameters andq. Note first that ifn = 1, the result is trivial since

Pe(N>q)=P(Z>q)=P(Z=1)=q,

whereZ is a Bernoulli random variable with parametgr
Assume thah > 2. Note thatifg < 1/n, thenPy(N > nq) > P(Z=1) =g, whereZ is a Bernoulli
random variable with parametgr Moreover, for any any integdersuch thak/n < q < (k+1)/n,
we have
Pa(N > ng) = Py(N > k+1) > Pc(N > k+1). (28)

The above inequality can be easily proved by taking the derivative ogeéntidrval(k/n, (k+1)/n],
of the function
n n\ .
q— <.>q‘(1—q)”“-
=k \J

We now show that
Pc(N>k+1)>Pcei(N>k), 2<k<n/2. (29)
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Figure 1: Tail probabilities N > nqg) whereN is a binomial random variable with parameters
andg.

LetUy,...,U, beni.i.d. random variables uniformly distributed on the interf@all] and denote
by Uk the correspondingth order statistic such thaf;) <... <U,. Following Feller (1971,
Section 7.2), itis not hard to show that

Kk
Pc(N>k+1) =P < iﬁ() = n<n;1) /”t"(l_t)nfkfldt’
) 0

and in the same manner,
PLa(N =) = P(Ugy < 5 = n<n_ 1) AR AEE
' 0

Note that
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so that (29) follows if we prove

k=1

"otk n—k Iﬁ(k n—k—
k/o 11— t) dtg(n—k)/ot(l—t) et (30)

We can establish the following chain of equivalent inequalities.

k/ tkllt”kdt<n k/t t)"k1gt
dtk k kd ) % k—1 k
n— < — _ n—
o A EED /tidt dt+k/k_n1t (1—t)" kot
nd k n—k " k—1 n—k
= /O a[t (1-1) }dtgk BRI E L
k n—k k
N ORCH RS

We now study the variations of the functibrs b(t) =t*1(1—t)" K on the interva[(k— 1) /n, k/n].
Taking derivative, it is not hard to see that functiomdmits a unique local optimum, which is a
maximum, atto = £=1 and thatto € ((k— 1)/n,k/n) becausek < n. Therefore, the function is
increasing on(k — 1)/n to] and decreasing dity, k/n|. It implies that

" " bty > Lmin [b(k;l),b(r‘:)] .

n

Hence, the proof of (30) follows from the following two observations:

(B (0 =0 () () =
062" <2 () (-5 e

While the first equality above is obvious, the second inequality can be obithinan equivalent
statement is
n n - n n
k k-1 n— k n—k
— <
< (k—l) (n—k+1) =1

Since the functiot — (t“) is increasing 010, »), andk < n—k+-1, the result follows.
To conclude the proof of the Lemma, note that (28) and (29) imply that fpgan1/n,

n—1\" /n-1\"* 1N\N%? 1 1

2853
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where, in the last inequality, we used the fact that the function

t t-1
s 1o <t—1> _<t—l)
t t

is increasing onl, ). [ |
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