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Abstract
Motivated by problems of anomaly detection, this paper implements the Neyman-Pearson paradigm
to deal with asymmetric errors in binary classification witha convex lossϕ. Given a finite collection
of classifiers, we combine them and obtain a new classifier that satisfies simultaneously the two
following properties with high probability: (i) itsϕ-type I error is below a pre-specified level and
(ii), it has ϕ-type II error close to the minimum possible. The proposed classifier is obtained by
minimizing an empirical convex objective with an empiricalconvex constraint. The novelty of the
method is that the classifier output by this computationallyfeasible program is shown to satisfy the
original constraint on type I error. New techniques to handle such problems are developed and they
have consequences on chance constrained programming. We also evaluate the price to pay in terms
of type II error for being conservative on type I error.
Keywords: binary classification, Neyman-Pearson paradigm, anomaly detection, empirical con-
straint, empirical risk minimization, chance constrainedoptimization

1. Introduction

The Neyman-Pearson (NP) paradigm in statistical learning extends the objective of classical binary
classification in that, while the latter focuses on minimizing classification error that isa weighted
sum of type I and type II errors, the former minimizes type II error with an upper boundα on type I
error. With slight abuse of language, in verbal discussion we do not distinguish type I/II error from
probability of type I/II error.

For learning with the NP paradigm, it is essential to avoid one kind of error atthe expense of the
other. As an illustration, consider the following problem in medical diagnosis:failing to detect a
malignant tumor has far more severe consequences than flagging a benigntumor. So it makes sense
to put priority on controlling the false negative rate. Other scenarios includespam filtering, machine
monitoring, target recognition, etc.

In the learning context, as true errors are inaccessible, we cannot enforce almost surely the
desired upper bound for type I error. The best we can hope is that a data dependent classifier has
type I error bounded with high probability. Ideally, a good classification rule f̂ in NP context should
satisfy two properties. The first is that type I error of the classifierf̂ is bounded from above by a
pre-specified level with pre-specified high probability; the second is thatf̂ has good performance
bounds for excess type II error. As will be illustrated, it is unlikely that these two goals can be
fulfilled simultaneously. Following the original spirit of NP paradigm, we put priority on type I
error and insist on the pre-specified upper boundα. Our proposed learning procedure meets the
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conservative attitude on type I error, and has good performance bound measured by the excess
ϕ-type II error. We also discuss the general consequence of being conservative in NP learning.

The paper is organized as follows. In Section 2, the classical setup for binary classification is
reviewed and the main notation is introduced. A parallel between binary classification and statisti-
cal hypothesis testing is drawn in Section 3 with emphasis on the NP paradigm in both frameworks.
The main propositions and theorems are stated in Section 4 while proofs and technical results are
relegated to Appendix A. Finally, Section 5 illustrates an application of our results to chance con-
strained optimization.

In the rest of the paper, we denote byx j the j-th coordinate of a vectorx∈ IRd.

2. Binary Classification

In this section, we review the classical setup of binary classification together with the convexification
procedure that we employ throughout the paper. Moreover, we introduce the Neyman-Pearson
paradigm in this setup.

2.1 Classification Risk and Classifiers

Let (X,Y) be a random couple whereX ∈ X ⊂ IRd is a vector of covariates andY ∈ {−1,1} is a
label that indicates to which classX belongs. Aclassifier his a mappingh : X → [−1,1] whose sign
returns the predicted class givenX. An error occurs when−h(X)Y ≥ 0 and it is therefore natural to
define the classification loss by 1I(−h(X)Y ≥ 0), where 1I(·) denotes the indicator function.

The expectation of the classification loss with respect to the joint distribution of(X,Y) is called
(classification) riskand is defined by

R(h) = P(−h(X)Y ≥ 0) .

Clearly the indicator function is not convex, and for computational convenience, a common practice
is to replace it by a convex surrogate (see, e.g., Bartlett et al., 2006, andreferences therein).

To this end, we rewrite the risk function as

R(h) = IE[ϕ(−h(X)Y)],

whereϕ(z) = 1I(z≥ 0). Convex relaxation can be achieved by simply replacing the indicator func-
tion by a convex surrogate.

Definition 1 A functionϕ : [−1,1]→ R
+ is called aconvex surrogateif it is non-decreasing, con-

tinuous and convex and ifϕ(0) = 1.

Commonly used examples of convex surrogates are the hinge lossϕ(x) = (1+ x)+, the logit loss
ϕ(x) = log2(1+ex) and the exponential lossϕ(x) = ex.

For a given choice ofϕ, define theϕ-risk

Rϕ(h) = IE[ϕ(−Yh(X))] .

Hereafter, we assume thatϕ is fixed and refer toRϕ as the risk when there is no confusion. In our
subsequent analysis, this convex relaxation will also be the ground to analyze a stochastic convex
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optimization problem subject to stochastic constraints. A general treatment ofsuch problems can
be found in Section 5.

Because of overfitting, it is unreasonable to look for mappings minimizing empirical risk over
all classifiers. Indeed, one could have a small empirical risk but a large true risk. Hence, we resort
to regularization. There are in general two ways to proceed. The first isto restrict the candidate
classifiers to a specific classH , and the second is to change the objective function by, for example,
adding a penalty term. The two approaches can be combined, and sometimes they are obviously
equivalent.

In this paper, we pursue the first idea by defining the class of candidate classifiers as follows.
Let h1, . . . ,hM,M ≥ 2 be a given collection of classifiers. In our setup, we allowM to be large.
In particular, our results remain asymptotically meaningful as long asM = o(en). Such classifiers
are usually called base classifiers and can be constructed in a very naive manner. Typical examples
include decision stumps or small trees. While theh j ’s may have no satisfactory classifying power
individually, for over two decades, boosting type of algorithms have successfully exploited the
idea that a suitable weighted majority vote among these classifiers may result in lowclassification
risk (Schapire, 1990). Consequently, we restrict our search for classifiers to the set of functions
consisting of convex combinations of theh j ’s:

H conv= {hλ =
M

∑
j=1

λ jh j ,λ ∈ Λ},

whereΛ denotes the flat simplex of IRM and is defined byΛ = {λ ∈ IRM : λ j ≥ 0,∑M
j=1 λ j = 1}. In

effect, classification rules given by the sign ofh∈H conv are exactly the set of rules produced by the
weighted majority votes among the base classifiersh1, . . . ,hM.

By restricting our search to classifiers inH conv, the best attainableϕ-risk is calledoracle risk
and is abusively denoted byRϕ(H

conv). As a result, we haveRϕ(h)≥ Rϕ(H
conv) for anyh∈H conv

and a natural measure of performance for a classifierh∈ H conv is given by its excess risk defined
by Rϕ(h)−Rϕ(H

conv).
The excess risk of a data driven classifierhn is a random quantity and we are interested in

bounding it with high probability. Formally, the statistical goal of binary classification is to construct
a classifierhn such that the oracle inequality

Rϕ(hn)≤ Rϕ(hH conv)+∆n(H
conv,δ)

holds with probability 1−δ, where∆n(·, ·) should be as small as possible.
In the scope of this paper, we focus on candidate classifiers in the classH conv. Some of the

following results such as Theorem 3 can be extended to more general classes of classifiers with
known complexity such as classes with bounded VC-dimension, as for example in Cannon et al.
(2002). However, our main argument for boundingϕ-type II error (defined in next subsection)
relies on Proposition 4 which, in turn, depends heavily on the convexity of the problem, and it is not
clear how it can be extended to more general classes of classifiers.

2.2 The Neyman-Pearson Paradigm

We make the convention that whenh(X)≥ 0 the predicted class is+1, and−1 otherwise. Under this
convention, the risk function in classical binary classification can be expressed as a convex combina-
tion of type I error R−(h) = IP(−Yh(X)≥ 0|Y =−1) and type II error
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R+(h) = IP(−Yh(X)> 0|Y = 1):

R(h) = IP(Y =−1)R−(h)+ IP(Y = 1)R+(h).

While the goal of classical binary classification is minh∈H R(h), whereH is the set of candidate
classifiers, the NP classification targets on

min
h∈H

R−(h)≤α

R+(h) .

More generally, we can define theϕ-type I andϕ-type II errors respectively by

R−
ϕ(h) = IE [ϕ(−Yh(X))|Y =−1] and R+

ϕ(h) = IE [ϕ(−Yh(X))|Y = 1] .

Our main theorems concern aboutR−
ϕ(·) andR+

ϕ(·), but we will come back and address how convex-
ification and conservativeness affectR−(·) andR+(·).

Following the NP paradigm, for a given classH of classifiers, we seek to solve the constrained
minimization problem:

min
h∈H

R−
ϕ (h)≤α

R+
ϕ(h), (1)

whereα ∈ (0,1), the significance level, is a constant specified by the user.
NP classification is closely related to the NP approach to statistical hypothesis testing. We

now recall a few key concepts about the latter. Many classical works have addressed the theory
of statistical hypothesis testing, in particular Lehmann and Romano (2005) provides a thorough
treatment of the subject.

Statistical hypothesis testing bears strong resemblance with binary classification if we assume
the following model. LetP− andP+ be two probability distributions onX ⊂ IRd. Let p∈ (0,1) and
assume thatY is a random variable defined by

Y =

{

1 with probabilityp,
−1 with probability 1− p.

Assume further that the conditional distribution ofX givenY is given byPY. Given such a model,
the goal of statistical hypothesis testing is to determine whetherX was generated fromP− or P+.
To that end, we construct a testφ : X → [0,1] and the conclusion of the test based onφ is that
X is generated fromP+ with probability φ(X) and fromP− with probability 1− φ(X). Note that
randomness here comes from an exogenous randomization process such as flipping a biased coin.
Two kinds of errors arise: type I error occurs when rejectingP− when it is true, and type II error
occurs when acceptingP− when it is false. The Neyman-Pearson paradigm in hypothesis testing
amounts to choosingφ that solves the following constrained optimization problem

maximize IE[φ(X)|Y = 1] ,
subject to IE[φ(X)|Y =−1]≤ α ,

whereα ∈ (0,1) is the significance level of the test. In other words, we specify a significance level
α on type I error, and minimize type II error. We call a solution to this problema most powerful test
of level α. The Neyman-Pearson Lemma gives mild sufficient conditions for the existence of such
a test.
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Theorem 2 (Neyman-Pearson Lemma)Let P− and P+ be probability distributions possessing den-
sities p− and p+ respectively with respect to some measure µ. Let fk(x) = 1I(L(x)≥ k), where the
likelihood ratio L(x) = p+(x)/p−(x) and k is such that P−(L(X) > k) ≤ α and P−(L(X) ≥ k) ≥ α.
Then,

• fk is a levelα = IE [ϕk(X)|Y =−1] most powerful test.

• For a given levelα, the most powerful test of levelα is defined by

φ(X) =











1 if L(X)> k
0 if L(X)< k
α−P−(L(X)>k)

P−(L(X)=k) if L(X) = k.

Notice that in the learning framework,φ cannot be computed since it requires the knowledge of
the likelihood ratio and of the distributionsP− andP+. Therefore, it remains merely a theoretical
proposition. Nevertheless, the result motivates the NP paradigm pursuedhere.

3. Neyman-Pearson Classification Via Convex Optimization

Recall that in NP classification with a loss functionϕ, the goal is to solve the problem (1). This can-
not be done directly as conditional distributionsP− andP+, and henceR−

ϕ andR+
ϕ, are unknown. In

statistical applications, information about these distributions is available through two i.i.d. samples
X−

1 , . . . ,X
−
n− , n− ≥ 1 andX+

1 , . . . ,X
+

n+ , n+ ≥ 1, whereX−
i ∼P−, i = 1, . . . ,n− andX+

i ∼P+, i = 1, . . . ,n+.
We do not assume that the two samples(X−

1 , . . . ,X
−
n−) and(X+

1 , . . . ,X
+

n+) are mutually independent.
Presently the sample sizesn− andn+ are assumed to be deterministic and will appear in the sub-
sequent finite sample bounds. A different sampling scheme, where these quantities are random, is
investigated in Section 4.3.

3.1 Conservativeness on Type I Error

While the binary classification problem has been extensively studied, theoretical proposition on how
to implement the NP paradigm remains scarce. To the best of our knowledge,Cannon et al. (2002)
initiated the theoretical treatment of the NP classification paradigm and an earlyempirical study can
be found in Casasent and Chen (2003). The framework of Cannon etal. (2002) is the following.
Fix a constantε0 > 0 and letH be a given set of classifiers with finite VC dimension. They study a
procedure that consists of solving the following relaxed empirical optimizationproblem

min
h∈H

R̂−(h)≤α+ε0/2

R̂+(h), (2)

where

R̂−(h) =
1
n−

n−

∑
i=1

1I(h(X−
i )≥ 0) , and R̂+(h) =

1
n+

n+

∑
i=1

1I(h(X−
i )≤ 0)

denote the empirical type I and empirical type II errors respectively. Letĥ be a solution to (2).
Denote byh∗ a solution to the original Neyman-Pearson optimization problem:

h∗ ∈ argmin
h∈H

R−(h)≤α

R+(h) , (3)
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The main result of Cannon et al. (2002) states that, simultaneously with high probability, the type II
error R+(ĥ) is bounded from above byR+(h∗)+ ε1, for someε1 > 0 and the type I error of̂h is
bounded from above byα+ ε0. In a later paper, Cannon et al. (2003) considers problem (2) for
a data-dependent family of classifiersH , and bound estimation errors accordingly. Several results
for traditional statistical learning such as PAC bounds or oracle inequalitieshave been studied in
Scott (2005) and Scott and Nowak (2005) in the same framework as the one laid down by Cannon
et al. (2002). A noteworthy departure from this setup is Scott (2007) where sensible performance
measures for NP classification that go beyond analyzing separately two kinds of errors are intro-
duced. Furthermore, Blanchard et al. (2010) develops a general solution to semi-supervised novelty
detection by reducing it to NP classification. Recently, Han et al. (2008) transposed several results
of Cannon et al. (2002) and Scott and Nowak (2005) to NP classificationwith convex loss.

The present work departs from previous literature in our treatment of type I error. In fact, the
classifiers in all the papers mentioned above take a compromise on the pre-determined upper bound
on type I error, that is, they ensure that IP(R−(ĥ) > α+ ε0) is small, for someε0 > 0. However,
it is our primary interest to make sure thatR−(ĥ) ≤ α with high probability, following the original
principle of the Neyman-Pearson paradigm that type I error should be controlled by a pre-specified
level α. As we follow an empirical risk minimization procedure, to control IP(R−(ĥ) > α), it is
necessary to havêh be a solution to some program with a strengthened constraint on empirical
type I error. If our concern is only on type I error, we can just do so.However, we also want
to evaluate the excess type II error. Our conservative attitude on type I error faces new technical
challenges which we summarize here. In the approach of Cannon et al. (2002) and of Scott and
Nowak (2005), the relaxed constraint on the type I error is constructedsuch that the constraint
R̂−(h)≤ α+ ε0/2 on type I error in (2) is satisfied byh∗ (defined in (3)) with high probability, and
that this classifier accommodates the excess type II error well. As a result, the control of type II
error mainly follows as a standard exercise to control suprema of empiricalprocesses. This is not
the case here; we have to develop methods to control the optimum value of an optimization problem
under a stochastic constraint. Such methods have consequences not only in NP classification but
also on chance constraint programming as explained in Section 5.

3.2 Convexified NP Classifier

Concerned about computational feasibility, our proposed classifier is thesolution to a convex pro-
gram, which is an empirical form NP classification problem (1) where the distribution of the ob-
servations is unknown. In view of the arguments presented in the previoussubsection, we cannot
simply replace the unknown risk functions by their empirical counterparts. The treatment of the
convex constraint should be done carefully and we proceed as follows.

For any classifierh and a given convex surrogateϕ, defineR̂−
ϕ andR̂+

ϕ to be the empirical coun-
terparts ofR−

ϕ andR+
ϕ respectively by

R̂−
ϕ(h) =

1
n−

n−

∑
i=1

ϕ(h(X−
i )) , and R̂+

ϕ(h) =
1
n+

n+

∑
i=1

ϕ(−h(X+
i )) .

Moreover, for anya> 0, letH ϕ,a = {h∈ H conv : R−
ϕ(h)≤ a} be the set of classifiers inH conv

whose convexified type I errors are bounded from above bya, and letH ϕ,a
n− = {h∈H conv : R̂−

ϕ(h)≤
a} be the set of classifiers inH conv whose empirical convexified type I errors are bounded bya. To
make our analysis meaningful, we assume thatH ϕ,α 6= /0.
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We are now in a position to construct a classifier inH conv according to the Neyman-Pearson
paradigm. For anyτ > 0 such thatτ ≤ α

√
n−, define the convexified NP classifierh̃τ as any classifier

that solves the following optimization problem

min
h∈H conv

R̂−
ϕ (h)≤α−τ/

√
n−

R̂+
ϕ(h) . (4)

Note that this problem consists of minimizing a convex function subject to a convex constraint
and can therefore be solved by standard algorithms (see, e.g., Boyd andVandenberghe, 2004, and
references therein).

In the next section, we present a series of results on type I and type II errors of classifiers that
are more general thañhτ.

4. Performance Bounds

In this section, we will first evaluate our proposed classifierh̃τ againstϕ I/II errors. These bench-
marks are necessary becauseh̃τ is constructed based on them. Moreover, in view of the decision
theory framework, such errors are just expected loss with a general loss functionϕ, which are inter-
esting to investigate. As the true type I and type II errors are usually the main concern in statistical
learning, we will also address the effect of convexification in terms of the excess type II error. In-
terestingly, given that we want to be conservative on type I error, neither working onϕ errors nor
working on true errors leads to a most desirable type II error. The priceto pay for being conservative
will be characterized explicitly.

4.1 Control of Type I Error

First, we identify classifiersh such thatR−
ϕ(h)≤ α with high probability. This is done by enforcing

its empirical counterpart̂R−
ϕ(h) be bounded from above by the quantity

ακ = α−κ/
√

n−,

for a proper choice of positive constantκ.

Theorem 3 Fix constantsδ,α∈ (0,1),L> 0 and letϕ : [−1,1]→ IR+ be a given L-Lipschitz convex
surrogate. Define

κ = 4
√

2L

√

log

(

2M
δ

)

.

Then for any (random) classifier h∈H conv that satisfiesR̂−
ϕ(h)≤ ακ, we have

R−(h)≤ R−
ϕ(h)≤ α .

with probability at least1−δ. Equivalently

IP
[

H
ϕ,ακ

n− ⊂H ϕ,α]≥ 1−δ . (5)
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4.2 Simultaneous Control of the Two Errors

Theorem 3 guarantees that any classifier that satisfies the strengthenedconstraint on the empirical
ϕ-type I error will haveϕ-type I error and true type I error bounded from above byα. We now
check that the constraint is not too strong so that theϕ-type II error is overly deteriorated. Indeed,
an extremely smallακ would certainly ensure a good control of type I error but would deteriorate
significantly the best achievableϕ-type II error. Below, we show not only that this is not the case
for our approach but also that the convexified NP classifierh̃τ defined in Section 3.2 withτ = ακ
suffers only a small degradation of itsϕ-type II error compared to the best achievable. Analogous
to classical binary classification, a desirable result is that with high probability,

R+
ϕ(h̃

κ)− min
h∈H ϕ,α

R+
ϕ(h)≤ ∆̃n(F ), (6)

where∆̃n(F ) goes to 0 asn= n−+n+ → ∞.
The following proposition is pivotal to our argument.

Proposition 4 Fix constantα ∈ (0,1) and letϕ : [−1,1]→ IR+ be a given continuous convex sur-
rogate. Assume further that there existsν0 > 0 such that the set of classifiersH ϕ,α−ν0 is nonempty.
Then, for anyν ∈ (0,ν0),

min
h∈H ϕ,α−ν

R+
ϕ(h)− min

h∈H ϕ,α
R+

ϕ(h)≤ ϕ(1)
ν

ν0−ν
.

This proposition ensures that if the convex surrogateϕ is continuous, strengthening the constraint on
type I error (ϕ-type I error) does not increase too much the best achievableϕ-type II error. We should
mention that the proof does not use the Lipschitz property ofϕ, but only that it is uniformly bounded
by ϕ(1) on [−1,1]. This proposition has direct consequences on chance constrained programming
as discussed in Section 5.

The next theorem shows that the NP classifierh̃κ defined in Section 3.2 is a good candidate to
perform classification with the Neyman-Pearson paradigm. It relies on the following assumption
which is necessary to verify the condition of Proposition 4.

Assumption 1 There exists a positive constantε< 1such that the set of classifiersH ϕ,εα is nonempty.

Note that this assumption can be tested using (5) for large enoughn−. Indeed, it follows from this
inequality that with probability 1−δ,

H
ϕ,εα−κ/

√
n−

n− ⊂H ϕ,εα−κ/
√

n−+κ/
√

n− =H ϕ,εα .

Thus, it is sufficient to check ifH ϕ,εα−κ/
√

n−

n− is nonempty for someε > 0. Before stating our main
theorem, we need the following definition. Under Assumption 1, letε̄ denote the smallestε such
thatH ϕ,εα 6= /0 and letn0 be the smallest integer such that

n0 ≥
(

4κ
(1− ε̄)α

)2

. (7)
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Theorem 5 Let ϕ, κ, δ and α be the same as in Theorem 3, andh̃κ denote any solution to(4).
Moreover, let Assumption 1 hold and assume that n− ≥ n0 where n0 is defined in(7). Then, the
following hold with probability1−2δ,

R−(h̃κ)≤ R−
ϕ(h̃

κ)≤ α (8)

and

R+
ϕ(h̃

κ)− min
h∈H ϕ,α

R+
ϕ(h)≤

4ϕ(1)κ
(1− ε̄)α

√
n−

+
2κ√
n+

. (9)

In particular, there exists a constant C> 0 depending onα, ϕ(1) and ε̄, such that(9) yields

R+
ϕ(h̃

κ)− min
h∈H ϕ,α

R+
ϕ(h)≤C

(
√

log(2M/δ)
n− +

√

log(2M/δ)
n+

)

.

Note here that Theorem 4.2 is not exactly of the type (6). The right hand side of (9) goes to zero
if both n− andn+ go to infinity. Inequality (9) conveys a message that accuracy of the estimate
depends on information from both classes of labeled data. This concern motivates us to consider a
different sampling scheme.

4.3 A Different Sampling Scheme

In this subsection (only), we consider a model for observations that is more standard in statistical
learning theory (see, e.g., Devroye et al., 1996; Boucheron et al., 2005).

Let (X1,Y1), . . . ,(Xn,Yn) be n independent copies of the random couple(X,Y) ∈ X ×{−1,1}.
Denote byPX the marginal distribution ofX and byη(x) = IE[Y|X = x] the regression function ofY
ontoX. Denote byp the probability of positive label and observe that

p= IP[Y = 1] = IE(IP[Y = 1|X]) =
1+ IE[η(X)]

2
.

In what follows, we assume thatPX(η(X) =−1)∨PX(η(X) = 1)< 1 so thatp∈ (0,1).
Let N− = card{Yi : Yi =−1} be the random number of instances labeled−1 andN+ = n−N− =

card{Yi : Yi = 1}. In this setup, the NP classifier is defined as in Section 3.2 wheren− andn+ are
replaced byN− andN+ respectively. To distinguish this classifier from̃hτ previously defined, we
denote the NP classifier obtained with this sampling scheme byh̃τ

n.
Let the eventF be defined by

F = {R−
ϕ(h̃

κ
n)≤ α}∩{R+

ϕ(h̃
κ
n)− min

h∈H ϕ,α
R+

ϕ(h)≤
4ϕ(1)κ

(1− ε̄)α
√

N−
+

2κ√
N+

}.

DenoteBn− = {Y1 = · · · = Yn− = −1,Yn−+1 = · · · = Yn = 1}. Although the eventBn− is different
from the event{N− = n−}, symmetry leads to the following key observation:

IP(F |N− = n−) = IP(F |Bn−).

Therefore, under the conditions of Theorem 5, we find that forn− ≥ n0 the eventF satisfies

IP(F |N− = n−)≥ 1−2δ . (10)

We obtain the following corollary of Theorem 5.
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Corollary 6 Let ϕ, κ, δ andα be the same as in Theorem 3, andh̃κ
n be the NP classifier obtained

with the current sampling scheme. Then under Assumption 1, if n> 2n0/(1− p), where n0 is defined

in (7), we have with probability(1−2δ)(1−e−
n(1−p)2

2 ),

R−(h̃κ
n)≤ R−

ϕ(h̃
κ
n)≤ α (11)

and

R+
ϕ(h̃

κ
n)− min

h∈H ϕ,α
R+

ϕ(h)≤
4ϕ(1)κ

(1− ε̄)α
√

N−
+

2κ√
N+

. (12)

Moreover, with probability1−2δ−e−
n(1−p)2

2 −e−
np2

2 , we have simultaneously(11)and

R+
ϕ(h̃

κ
n)− min

h∈H ϕ,α
R+

ϕ(h)≤
4
√

2ϕ(1)κ
(1− ε̄)α

√

n(1− p)
+

2
√

2κ√
np

. (13)

4.4 Price to Pay For Being Conservative

We have shown that the the computational feasible classifierh̃κ satisfies oracle inequalities which
take the optimalϕ-type II errors as the benchmark. In this subsection, the excess type IIerror will
be measured, and we will characterize the price to pay by being conservative on type I error.

Much like its counterparts in classical binary classification, the next strikingly simple relation
addresses the consequence of convexification in the NP paradigm.

Theorem 7 Let h̃ be any classifier, then

R+(h̃)− min
R−(h)≤α

R+(h)≤ R+
ϕ(h̃)− inf

R−(h)≤α
R+

ϕ(h) .

This theorem applies to any classifier; in particular, it holds for our proposedh̃κ. As the proof of
Theorem 7 indicates, minR−(h)≤α R+(h) = infR−(h)≤α R+

ϕ(h). So the bound in the theorem can be very
tight, depending on the nature ofh̃.

Now relax the range of base classifiersh1, . . . , hM to be [−B,B]. Denote byH ϕ,α
B the set of

convex combinations of the base classifiers that haveϕ-type I error bounded from above byα.
Therefore, we have the following observation:

R+(h̃κ)− min
R−(h)≤α

R+(h)≤ T1+T2+T3 ,

where

T1 = R+
ϕ(h̃

κ)− min
h∈H ϕ,α

B

R+
ϕ(h) ,

T2 = min
h∈H ϕ,α

B

R+
ϕ(h)− inf

R−(h)≤α
−B≤h≤B

R+
ϕ(h) ,

T3 = inf
R−(h)≤α
−B≤h≤B

R+
ϕ(h)− inf

R−(h)≤α
R+

ϕ(h) .

With the new set of base classifiers taking ranges in[−B,B], Theorem 5 holds if we replaceκ by
κB = 4

√
2LBB

√

log(2M/δ), whereLB is the Lipschitz constant ofϕ on [−B,B]. Therefore, the
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convergence rate ofT1 is explicitly controlled. We can see that with a fixed sample size, choosing a
set of base classifiers with smaller range will result in a tighter bound for theexcessϕ-type II error.
However, if one concerns more about the true type II error, choosinga smallerB should not be a
better option, because only signs matters for true type I and II errors. This intuition is reflected in
the termT3. WhenB increases,T3 decreases. More specifically, it can be shown that

T3 =
(

P+(X+)ϕ(−B)+P+(X−)ϕ(0)
)

−P+(X−) = P+(X+)ϕ(−B) ,

whereX+ ⊂ X is the part of feature space mapped to label+1 by the optimal NP classifier that
solves minR−(h)≤α R+(h), andX− is the part that mapped to label−1; this is what NP Lemma says
when there is no need for randomization. Therefore,T3 diminishes towards 0 asB increases, and the
trade-off betweenT1 andT3 is very clear. Whenϕ(x) = (1+x)+ is the hinge loss, the best trade-off
occurs atB∈ (0,1). WhenB(≥ 1) goes to infinity,T3 = 0 stays the same while the upper bound of
T1 blows up.

Note thatH ϕ,α
B ⊂ {h : R−(h)≤ α,−B≤ h≤ B}, soT2 reflects the price to pay for being conser-

vative on type I error. It also reflect the bias for choosing a specific candidate pool of classifiers, that
is, convex combinations of base classifiers. As long as the base classifiers are rich enough, the latter
bias should be small. However in our belief, the price to pay for being conservative is unavoidable.
Even if we do not resort to convexification, getting the best insurance ontype I error still demands
a high premium on type II error.

The same attitude is shared in the seminal paper Cannon et al. (2002), where it was claimed
without justification that if we useα′ < α for the empirical program, “it seems unlikely that we
can control the estimation errorR+(ĥ)−R+(h∗) in a distribution independent way”. The following
proposition confirms this opinion in a certain sense.

Fix α ∈ (0,1),n− ≥ 1,n+ ≥ 1 andα′ < α. Let ĥ(α′) be the classifier defined as any solution of
the following optimization problem:

min
h∈H

R̂−(h)≤α′

R̂+(h) .

The following negative result holds not only for this estimator but also for the oracleh∗(α′) defined
as the solution of

min
h∈H

R−(h)≤α′

R+(h) .

Note thath∗(α′) is not a classifier but only a pseudo-classifier since it depends on the unknown
distribution of the data.

Proposition 8 There exist base classifiers h1,h2 and a probability distribution for(X,Y) for which,
regardless of the sample sizes n− and n+, any pseudo-classifier hλ̃ = λ̃h1+(1− λ̃)h2, 0 ≤ λ̃ ≤ 1,
such that R−(hλ̃)< α, it holds

R+(hλ̃)− min
R−(hλ)≤α,λ∈[0,1]

R+(hλ)≥ α .

In particular, the excess type II risk of h∗(α− εn−), εn− > 0 does not converge to zero as sample
sizes increase even ifεn− → 0. Moreover, whenα ≤ 1/2 for any (pseudo-)classifier hλ̃ (0≤ λ̃ ≤ 1)
such thatR̂−(hλ̃)< α, it holds

R+(hλ̃)− min
R−(hλ)≤α,λ∈[0,1]

R+(hλ)≥ α .
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with probability at leastα∧1/4. In other words, if we letA = {hλ : R̂−(hλ)<α,λ∈ [0,1]}, andB =
{hλ : R+(hλ)−minR−(hλ)≤α,λ∈[0,1]R

+(hλ)≥ α,λ ∈ [0,1]}, thenIP(A ⊂ B)≥ α∧1/4. In particular,

the excess type II risk ofĥ(α− εn−), εn− > 0 does not converge to zero with positive probability, as
sample sizes increase even ifεn− → 0.

The proof of this result is postponed to Appendix A. The fact that the oracleh∗(α−εn−) satisfies
the lower bound indicates that the problem comes from using a strengthenedconstraint. Note that
the conditionα ≤ 1/2 is purely technical and can be removed. Nevertheless, it is always the case in
practice thatα ≤ 1/2. When the number of base classifiers is great then two, we believe that similar
counterexamples can be still constructed, though the technicality will be move involved.

In view of this negative result and our previous discussion, we have to accept the price to pay for
being conservative on type I error, and our classifierh̃κ is no exception. As such conservativeness
follows from the original spirit of the Neyman-Pearson paradigm, we needto pay whatever we have
to pay. The positive sides are that our proposed procedure is computationally feasible, and it attains
good rates under a different (but still meaningful) criterion.

5. Chance Constrained Optimization

Implementing the Neyman-Pearson paradigm for the convexified binary classification bears strong
connections with chance constrained optimization. A recent account of such problems can be found
in Ben-Tal et al. (2009, Chapter 2) and we refer to this book for references and applications. A
chance constrained optimization problem is of the following form:

min
λ∈Λ

f (λ) s.t. IP{F(λ,ξ)≤ 0} ≥ 1−α, (14)

whereξ∈Ξ is a random vector,Λ⊂R
M is convex,α is a small positive number andf is a determin-

istic real valued convex function. Problem (14) can be viewed as a relaxation of robust optimization.
Indeed, for the latter, the goal is to solve the problem

min
λ∈Λ

f (λ) s.t. sup
ξ∈Ξ

F(λ,ξ)≤ 0, (15)

and this essentially corresponds to (14) for the caseα = 0. For simplicity, we takeF to be scalar
valued but extensions to vector valued functions and conic orders are considered in Ben-Tal et al.
(2009, Chapter 10). Moreover, it is standard to assume thatF(·,ξ) is convex almost surely.

Problem (14) may not be convex because the chance constraint{λ ∈ Λ : IP{F(λ,ξ) ≤ 0} ≥
1−α} is not convex in general and thus may not be tractable. To solve this problem, Pŕekopa
(1995) and Lagoa et al. (2005) have derived sufficient conditions on the distribution ofξ for the
chance constraint to be convex. On the other hand, Calafiore and Campi(2006) initiated a different
treatment of the problem where no assumption on the distribution ofξ is made, in line with the
spirit of statistical learning. In that paper, they introduced the so-calledscenario approachbased on
a sampleξ1, . . . ,ξn of independent copies ofξ. The scenario approach consists of solving

min
λ∈Λ

f (λ) s.t. F(λ,ξi)≤ 0, i = 1, . . . ,n. (16)

Calafiore and Campi (2006) showed that under certain conditions, if the sample sizen is bigger than
somen(α,δ), then with probability 1− δ, the optimal solution̂λsc of (16) is feasible for (14). The
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authors did not address the control of the termf (λ̂sc)− f ∗ where f ∗ denotes the optimal objective
value in (14). However, in view of Proposition 8, it is very unlikely that this term can be controlled
well.

In an attempt to overcome this limitation, a newanalytical approach was introduced by Ne-
mirovski and Shapiro (2006). It amounts to solving the following convex optimization problem

min
λ∈Λ,t∈Rs

f (λ) s.t. G(λ, t)≤ 0, (17)

in which t is some additional instrumental variable and whereG(·, t) is convex. The problem (17)
provides a conservative convex approximation to (14), in the sense thateveryx feasible for (17) is
also feasible for (14). Nemirovski and Shapiro (2006) considered a particular class of conservative
convex approximation where the key step is to replace IP{F(λ,ξ) ≥ 0} by IEϕ(F(λ,ξ)) in (14),
whereϕ a nonnegative, nondecreasing, convex function that takes value 1 at0. Nemirovski and
Shapiro (2006) discussed several choices ofϕ including hinge and exponential losses, with a focus
on the latter that they nameBernstein Approximation.

The idea of a conservative convex approximation is also what we employ in our paper. Recall
thatP− the conditional distribution ofX givenY =−1. In a parallel form of (14), we cast our target
problem as

min
λ∈Λ

R+(hλ) s.t. P−{hλ(X)≤ 0} ≥ 1−α, (18)

whereΛ is the flat simplex of IRM.
Problem (18) differs from (14) in thatR+(hλ) is not a convex function ofλ. ReplacingR+(hλ)

by R+
ϕ(hλ) turns (18) into a standard chance constrained optimization problem:

min
λ∈Λ

R+
ϕ(hλ) s.t. P−{hλ(X)≤ 0} ≥ 1−α. (19)

However, there are two important differences in our setting, so that we cannot use directly Scenario
Approach or Bernstein Approximation or other analytical approaches to (14). First,R+

ϕ( fλ) is an
unknownfunction of λ. Second, we assume minimum knowledge aboutP−. On the other hand,
chance constrained optimization techniques in previous literature assume knowledge about the dis-
tribution of the random vectorξ. For example, Nemirovski and Shapiro (2006) require that the
moment generating function of the random vectorξ is efficiently computable to study the Bernstein
Approximation.

Given a finite sample, it is not feasible to construct a strictly conservative approximation to the
constraint in (19). On the other hand, it is possible to ensure that if we learnedĥ from the sample,
this constraint is satisfied with high probability 1−δ, that is, the classifier is approximately feasible
for (19). In retrospect, our approach to (19) is an innovative hybridbetween the analytical approach
based on convex surrogates and the scenario approach.

We do have structural assumptions on the problem. Letg j , j ∈ {1, . . . ,M} be arbitrary functions
that take values in[−1,1] andF(λ,ξ) = ∑N

j=1 λ jg j(ξ). Consider a convexified version of (14):

min
λ∈Λ

f (λ) s.t. IE[ϕ(F(λ,ξ))]≤ α, (20)

whereϕ is a L-Lipschitz convex surrogate,L > 0. Suppose that we observe a sample(ξ1, . . . ,ξn)
that are independent copies ofξ. We propose to approximately solve the above problem by

min
λ∈Λ

f (λ) s.t.
n

∑
i=1

ϕ(F(λ,ξi))≤ nα−κ
√

n,
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for someκ > to be defined. Denote bỹλ any solution to this problem and byf ∗ϕ the value of the
objective at the optimum in (20). The following theorem summarizes our contribution to chance
constrained optimization.

Theorem 9 Fix constantsδ,α ∈ (0,1/2),L > 0 and letϕ : [−1,1] → IR+ be a given L-Lipschitz
convex surrogate. Define

κ = 4
√

2L

√

log

(

2M
δ

)

.

Then, the following hold with probability at least1−2δ

(i) λ̃ is feasible for(14).

(ii) If there existsε∈ (0,1) such that the constraintIE[ϕ(F(λ,ξ))]≤ εα is feasible for someλ∈Λ,
then for

n≥
(

4κ
(1− ε)α

)2

,

we have

f (λ̃)− f ∗ϕ ≤ 4ϕ(1)κ
(1− ε)α

√
n
.

In particular, as M and n go to infinity with all other quantities kept fixed, we obtain

f (λ̃)− f ∗ϕ = O

(

√

logM
n

)

.

The proof essentially follows that of Theorem 5 and we omit it. The limitations of Theorem 9
include rigid structural assumptions on the functionF and on the setΛ. While the latter can be easily
relaxed using more sophisticated empirical process theory, the former is inherent to our analysis.
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Appendix A. Proof of the Main Results

We gather in this appendix the proofs of the main results of the paper.

A.1 Proof of Theorem 3

We begin with the following lemma, which is extensively used in the sequel. Its proof relies on
standard arguments to bound suprema of empirical processes. Recall that {h1, . . . ,hM} is family of
M classifiers such thath j : X → [−1,1] and that for anyλ in the simplexΛ ⊂ RM, hλ denotes the
convex combination defined by

hλ =
N

∑
j=1

λ jh j .
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The following standard notation in empirical process theory will be used. Let X1, . . . ,Xn ∈ X ben
i.i.d random variables with marginal distributionP. Then for any measurable functionf : X → IR,
we write

Pn( f ) =
1
n

n

∑
i=1

f (Xi) and P( f ) = IE f (X) =
∫

f dP.

Moreover, the Rademacher average off is defined as

Rn( f ) =
1
n

n

∑
i=1

εi f (Xi) ,

whereε1, . . . ,εn are i.i.d. Rademacher random variables such that IP(εi = 1) = IP(εi = −1) = 1/2
for i = 1, . . . ,n.

Lemma 10 Fix L > 0,δ ∈ (0,1). Let X1, . . . ,Xn be n i.i.d random variables onX with marginal
distribution P. Moreover, letϕ : [−1,1] → IR an L-Lipschitz function. Then, with probability at
least1−δ, it holds

sup
λ∈Λ

|(Pn−P)(ϕ◦hλ)| ≤
4
√

2L√
n

√

log

(

2M
δ

)

.

Proof Defineϕ̄(·) .
= ϕ(·)−ϕ(0), so thatϕ̄ is anL-Lipschitz function that satisfies̄ϕ(0) = 0. More-

over, for anyλ ∈ Λ, it holds

(Pn−P)(ϕ◦hλ) = (Pn−P)(ϕ̄◦hλ) .

Let Φ : IR → IR+ be a given convex increasing function. Applying successively the symmetrization
and the contraction inequalities (see, e.g., Koltchinskii, 2011, Chapter 2), we find

IEΦ
(

sup
λ∈Λ

|(Pn−P)(ϕ̄◦hλ)|
)

≤ IEΦ
(

2sup
λ∈Λ

|Rn(ϕ̄◦hλ)|
)

≤ IEΦ
(

4Lsup
λ∈Λ

|Rn(hλ)|
)

.

Observe now thatλ 7→ |Rn(hλ)| is a convex function and Theorem 32.2 in Rockafellar (1997) entails
that

sup
λ∈Λ

|Rn(hλ)|= max
1≤ j≤M

∣

∣Rn(h j)
∣

∣ .

We now use a Chernoff bound to control this quantity. To that end, fixs, t > 0, and observe that

IP

(

sup
λ∈Λ

|(Pn−P)(ϕ◦hλ)|> t

)

≤ 1
Φ(st)

IEΦ
(

ssup
λ∈Λ

|(Pn−P)(ϕ̄◦hλ)|
)

≤ 1
Φ(st)

IEΦ
(

4Ls max
1≤ j≤M

∣

∣Rn(h j)
∣

∣

)

. (21)

Moreover, sinceΦ is increasing,

IEΦ
(

4Ls max
1≤ j≤M

∣

∣Rn(h j)
∣

∣

)

= IE max
1≤ j≤M

Φ
(

4Ls
∣

∣Rn(h j)
∣

∣

)

≤
M

∑
j=1

IE [Φ(4LsRn(h j))∨Φ(−4LsRn(h j))]

≤ 2
M

∑
j=1

IEΦ(4LsRn(h j)) . (22)
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Now chooseΦ(·) = exp(·), then

IEΦ(4LsRn(h j)) =
n

∏
i=1

IEcosh

(

4Lshj(Xi)

n

)

≤ exp

(

8L2s2

n

)

,

where cosh is the hyperbolic cosine function and where in the inequality, weused the fact that
|h j(Xi)| ≤ 1 for anyi, j and cosh(x)≤ exp(x2/2). Together with (21) and (22), it yields

IP

(

sup
λ∈Λ

|(Pn−P)(ϕ◦hλ)|> t

)

≤ 2M inf
s>0

exp

(

8L2s2

n
−st

)

≤ 2M exp

(

− nt2

32L2

)

.

Choosing

t =
4
√

2L√
n

√

log

(

2M
δ

)

,

completes the proof of the Lemma.

We now proceed to the proof of Theorem 3. Note first that from the properties ofϕ, R−(h) ≤
R−

ϕ(h). Next, we have for any data-dependent classifierh∈H conv such thatR̂−
ϕ(h)≤ ακ:

R−
ϕ(h)≤ R̂−

ϕ(h)+ sup
h∈H conv

∣

∣R̂−
ϕ(h)−R−

ϕ(h)
∣

∣≤ α− κ√
n−

+ sup
h∈H conv

∣

∣R̂−
ϕ(h)−R−

ϕ(h)
∣

∣ .

Lemma 10 implies that, with probability 1−δ

sup
h∈H conv

∣

∣R̂−
ϕ(h)−R−

ϕ(h)
∣

∣= sup
λ∈Λ

∣

∣(P−
n− −P−)(ϕ◦hλ)

∣

∣≤ κ√
n−

.

The previous two displays imply thatR−
ϕ(h)≤ α with probability 1−δ, which completes the proof

of Theorem 3.

A.2 Proof of Proposition 4

The proof of this proposition builds upon the following lemma.

Lemma 11 Let γ(α) = infhλ∈H ϕ,α R+
ϕ(hλ), thenγ is a non-increasing convex function on[0,1].

Proof First, it is clear thatγ is a non-increasing function ofα because forα′ > α, {hλ ∈ H conv :
R−

ϕ(hλ)≤ α} ⊂ {hλ ∈H conv : R−
ϕ(hλ)≤ α′}.

We now show thatγ is convex. To that end, observe first that sinceϕ is continuous on[−1,1],
the set{λ ∈ Λ : hλ ∈H ϕ,α} is compact. Moreover, the functionλ 7→ R+

ϕ(hλ) is convex. Therefore,
there existsλ∗ ∈ Λ such that

γ(α) = inf
hλ∈H ϕ,α

R+
ϕ(hλ) = min

hλ∈H ϕ,α
R+

ϕ(hλ) = R+
ϕ(hλ∗) .

Now, fix α1,α2 ∈ [0,1]. From the above considerations, there existλ1,λ2 ∈ Λ such thatγ(α1) =
R+

ϕ(hλ1) andγ(α2) = R+
ϕ(hλ2). For anyθ ∈ (0,1), define the convex combinations̄αθ = θα1+(1−

θ)α2 andλ̄θ = θλ1+(1−θ)λ2. Sinceλ 7→ R−
ϕ(hλ) is convex, it holds

R−
ϕ(hλ̄θ

)≤ θR−
ϕ(hλ1)+(1−θ)R−

ϕ(hλ2)≤ θα1+(1−θ)α2 = ᾱθ ,
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so thathλ̄θ
∈H ϕ,ᾱθ . Hence,γ(ᾱθ)≤ R+

ϕ(hλ̄θ
). Together with the convexity ofϕ, it yields

γ(θα1+(1−θ)α2)≤ R+
ϕ(hλ̄θ

)≤ θR+
ϕ(hλ1)+(1−θ)R+

ϕ(hλ2) = θγ(α1)+(1−θ)γ(α2) .

We now complete the proof of Proposition 4. For anyx∈ [0,1], let γ(x) = infh∈H ϕ,x R+
ϕ(h) and

observe that the statement of the proposition is equivalent to

γ(α−ν)− γ(α)≤ ϕ(1)
ν

ν0−ν
, 0< ν < ν0 .

Lemma 11 together with the assumption thatH ϕ,α−ν0 6= /0 imply thatγ is a non-increasing convex
real-valued function on[α−ν0,1] so that

γ(α−ν)− γ(α)≤ ν sup
g∈∂γ(α−ν)

|g| ,

where∂γ(α− ν) denotes the sub-differential ofγ at α− ν. Moreover, sinceγ is a non-increasing
convex function on[α−ν0,α−ν], it holds

γ(α−ν0)− γ(α−ν)≥ (ν−ν0) sup
g∈∂γ(α−ν)

|g| .

The previous two displays yield

γ(α−ν)− γ(α)≤ ν
γ(α−ν0)− γ(α−ν)

ν−ν0
≤ ν

ϕ(1)
ν−ν0

.

A.3 Proof of Theorem 5

Define the eventsE− andE+ by

E− =
⋂

h∈H conv

{|R̂−
ϕ(h)−R−

ϕ(h)| ≤
κ√
n−

} ,

E+ =
⋂

h∈H conv

{|R̂+
ϕ(h)−R+

ϕ(h)| ≤
κ√
n+

} .

Lemma 10 implies
IP(E−)∧ IP(E+)≥ 1−δ . (23)

Note first that Theorem 3 implies that (8) holds with probability 1− δ. Observe now that the l.h.s
of (9) can be decomposed as

R+
ϕ(h̃

κ)− min
h∈H ϕ,α

R+
ϕ(h) = A1+A1+A3 ,

where

A1 =
(

R+
ϕ(h̃

κ)− R̂+
ϕ(h̃

κ)
)

+

(

R̂+
ϕ(h̃

κ)− min
h∈H ϕ,ακ

n−
R+

ϕ(h)

)

A2 = min
h∈H ϕ,ακ

n−
R+

ϕ(h)− min
h∈H ϕ,α2κ

R+
ϕ(h)

A3 = min
h∈H ϕ,α2κ

R+
ϕ(h)− min

h∈H ϕ,α
R+

ϕ(h).
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To boundA1 from above, observe that

A1 ≤ 2 sup
h∈H ϕ,ακ

n−

|R̂+
ϕ(h)−R+

ϕ(h)| ≤ 2 sup
h∈H conv

|R̂+
ϕ(h)−R+

ϕ(h)|.

Therefore, on the eventE+ it holds

A1 ≤
2κ√
n+

.

We now treatA2. Note thatA2 ≤ 0 on the eventH ϕ,α2κ ⊂H
ϕ,ακ

n− . But this event containsE− so
thatA2 ≤ 0 on the eventE−.

Finally, to controlA3, observe that under Assumption 1, Proposition 4 can be applied with
ν = 2κ/

√
n− andν0 = (1− ε̄)α. Indeed, the assumptions of the theorem imply thatν ≤ ν0/2. It

yields

A3 ≤
4ϕ(1)κ

(1− ε̄)α
√

n−
.

Combining the bounds onA1, A2 andA3 obtained above, we find that (9) holds on the eventE−∩E+

that has probability at least 1−2δ in view of (23).
The last statement of the theorem follows directly from the definition ofκ.

A.4 Proof of Corollary 6

Now prove (12),

IP(F ) =
n

∑
n−=0

IP(F |N− = n−)IP(N− = n−)

≥
n

∑
n−=n0

IP(F |N− = n−)IP(N− = n−)

≥ (1−2δ)IP(N− ≥ n0) ,

where in the last inequality, we used (10). Applying now Lemma 12, we obtain

IP(N− ≥ n0)≥ 1−e−
n(1−p)2

2 .

Therefore,

IP(F )≥ (1−2δ)(1−e−
n(1−p)2

2 ) ,

which completes the proof of (12).
The proof of (13) follows by observing that

{

R+
ϕ(h̃

κ
n)− min

h∈H ϕ,α
R+

ϕ(h)>
4
√

2ϕ(1)κ
(1− ε̄)α

√

n(1− p)
+

2
√

2κ√
np

}

⊂ (A1∩Ac
2)∪A2∪A3 ,

where

A1 =

{

R+
ϕ(h̃

κ
n)− min

h∈H ϕ,α
R+

ϕ(h)>
4ϕ(1)κ

(1− ε̄)α
√

N−
+

2κ√
N+

}

⊂ F c ,

A2 = {N− < n(1− p)/2} ,
A3 = {N+ < np/2} .
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SinceAc
2 ⊂ {N− ≥ n0}, we find

IP(A1∩Ac
2)≤ ∑

n−≥n0

IP(F c|N− = n−)IP(N− = n−)≤ 2δ .

Next, using Lemma 12, we get

IP(A2)≤ e−
n(1−p)2

2 and IP(A3)≤ e−
np2

2 .

Hence, we find

IP

{

R+
ϕ(h̃

κ
n)− min

h∈H ϕ,α
R+

ϕ(h)>
4
√

2ϕ(1)κ
(1− ε̄)α

√

n(1− p)
+

2
√

2κ√
np

}

≤ 2δ+e−
n(1−p)2

2 +e−
np2

2 ,

which completes the proof of the corollary.

A.5 Proof of Theorem 7

First observe that for anŷh, R+(ĥ)≤ R+
ϕ(ĥ). Then the result follows from the claim that

min
R−(h)≤α

R+(h) = inf
R−(h)≤α

R+
ϕ(h) .

It is clear minR−(h)≤α R+(h) ≤ infR−(h)≤α R+
ϕ(h), it remains to prove the other direction. By the

Neyman-Pearson Lemma, We can decompose the feature spaceX into a disjoint union ofX+ and
X−, and the optimal (pseudo) classifier that solves minR−(h)≤α R+(h) assigns label+1 for anyx ∈
X+, and−1 for anyx∈ X−. Note that if any two classifiersg1 andg2 have the same signs, that is,
sgn(g1) = sgn(g2), thenR−(g1) = R−(g2) andR+(g1) = R+(g2). On the other hand, forϕ-type I and
II errors, values of classifiers do matter.

Let h̄B,ε(x) = B · I(x ∈ X+) + (−ε) · I(x ∈ X−). Then clearly for anyB,ε > 0, h̄B,ε solves
minR−(h)≤α R+(h). Also, for anyB,ε > 0,

inf
R−(h)≤α

R+
ϕ(h)≤ R+

ϕ(h̄B,ε) = P+(X+)ϕ(−B)+P+(X−)ϕ(ε) .

Taking the limit, we have

lim
B→∞,ε→0

R+
ϕ(h̄B,ε) = lim

B→∞,ε→0
P+(X+)ϕ(−B)+P+(X−)ϕ(ε) = P+(X−) = R+(h̄B,ε) .

Therefore, infR−(h)≤α R+
ϕ(h)≤ minR−(h)≤α R+(h), which completes the proof.

A.6 Proof of Proposition 8

Let the base classifiers be defined as

h1(x) =−1 and h2(x) = 1I(x≤ α)−1I(x> α) , ∀x∈ [0,1]

For anyλ ∈ [0,1], denote the convex combination ofh1 andh2 by hλ = λh1+(1−λ)h2, that is,

hλ(x) = (1−2λ)1I(x≤ α)−1I(x> α) .
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Suppose the conditional distributions ofX givenY = 1 orY =−1, denoted respectively byP+ and
P−, are both uniform on[0,1]. Recall thatR−(hλ) = P−(hλ(X)≥ 0) andR+(hλ) = P+(hλ(X)< 0) .
Then, we have

R−(hλ) = P−(hλ(X)≥ 0) = α1I(λ ≤ 1/2) . (24)

Therefore, for anyτ ∈ [0,α], we have

{λ ∈ [0,1] : R−(hλ)≤ τ}=
{

[0,1] if τ = α ,
(1/2,1] if τ < α .

Observe now that

R+(hλ) = P+(hλ(X)< 0) = (1−α)1I(λ < 1/2)+1I(λ ≥ 1/2) . (25)

For anyτ ∈ [0,α], it yields

inf
λ∈[0,1]:R−(hλ)≤τ

R+(hλ) =

{

1−α if τ = α ,
1 if τ < α .

Consider now a classifier̄hλ such thatR−(h̄λ)≤ τ for someτ < α. Then from (24), we see that must
haveλ > 1/2. Together with (25), this imples thatR+(h̄λ) = 1. It yields

R+(h̄λ)− min
λ :R−(hλ)≤α

R+(hλ) = 1− (1−α) = α .

This completes the first part of the proposition. Moreover, in the same manner as (24), it can be
easily proved that

R̂−(hλ) =
1
n−

n−

∑
i=1

1I(hλ(X
−
i )≥ 0) = αn−1I(λ ≤ 1/2) , (26)

where

αn− =
1
n−

n−

∑
i=1

1I(X−
i ≤ α) (27)

If a classifierĥλ is such thatR̂−(ĥλ) < αn− , then (26) implies thatλ > 1/2. Using again (25), we
find also thatR+(ĥλ) = 1. It yields

R+(ĥλ)− min
λ :R−(hλ)≤α

R+(hλ) = 1− (1−α) = α .

It remains to show that̂R−(ĥλ)<αn− with positive probability for any classifier such thatR̂−(ĥλ)≤ τ
for someτ < α. Note that a sufficient condition for a classifierĥλ to satisfy this constraint is to have
α ≤ αn− . It is therefore sufficient to find a lower bound on the probability of the eventA = {αn− ≥
α}. Such a lower bound is provided by Lemma 13, which guarantees that IP(A)≥ α∧1/4.

Appendix B. Technical Lemmas on Binomial Distributions

The following lemmas are purely technical on the tails of Binomial distributions.
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Lemma 12 Let N be a binomial random variables with parameters n≥ 1 and q∈ (0,1). Then, for
any t> 0 such that t≤ nq/2, it holds

IP(N ≥ t)≥ 1−e−
nq2

2 .

Proof Note first thatn−N has binomial distribution with parametersn≥ 1 and 1−q. Therefore,
we can writen−N = ∑n

i=1Zi whereZi are i.i.d. Bernoulli random variables with parameter 1−q.
Thus, using Hoeffding’s inequality, we find that for anys≥ 0,

IP(n−N−n(1−q)≥ s)≤ e−
2s2
n .

Applying the above inequality withs= n−n(1−q)− t ≥ nq/2≥ 0 yields

IP(N ≥ t) = IP(n−N−n(1−q)≤ n−n(1−q)− t)≥ 1−e−
nq2

2 .

The next lemma provides a lower bound on the probability that a binomial distribution exceeds its
expectation. Our result is uniform in the size of the binomial and it can be easily verified that it
is sharp by considering sizesn= 1 andn= 2 and by looking at Figure 1. In particular, we do not
resort to Gaussian approximation which improves upon the lower bounds that can be derived from
the inequalities presented in Slud (1977).

Lemma 13 Let N be a binomial random variable with parameters n≥ 1 and0< q≤ 1/2. Then, it
holds

IP(N ≥ nq)≥ q∧ (1/4) .

Proof We introduce the following local definition, which is limited to the scope of this proof.
Fix n≥ 1 and for anyq∈ (0,1), let Pq denote the distribution of a binomial random variable with
parametersn andq. Note first that ifn= 1, the result is trivial since

Pq(N ≥ q) = IP(Z ≥ q) = IP(Z = 1) = q,

whereZ is a Bernoulli random variable with parameterq.
Assume thatn≥ 2. Note that ifq≤ 1/n, thenPq(N≥ nq)≥ IP(Z= 1)= q, whereZ is a Bernoulli

random variable with parameterq. Moreover, for any any integerk such thatk/n< q≤ (k+1)/n,
we have

Pq(N ≥ nq) = Pq(N ≥ k+1)≥ Pk
n
(N ≥ k+1) . (28)

The above inequality can be easily proved by taking the derivative over the interval(k/n,(k+1)/n],
of the function

q 7→
n

∑
j=k+1

(

n
j

)

q j(1−q)n− j .

We now show that
Pk

n
(N ≥ k+1)≥ Pk−1

n
(N ≥ k) , 2≤ k≤ n/2. (29)
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Figure 1: Tail probabilities IP(N ≥ nq) whereN is a binomial random variable with parametersn
andq.

LetU1, . . . ,Un ben i.i.d. random variables uniformly distributed on the interval[0,1] and denote
by U(k) the correspondingkth order statistic such thatU(1) ≤ . . . ≤ U(n). Following Feller (1971,
Section 7.2), it is not hard to show that

Pk
n
(N ≥ k+1) = IP(U(k+1) ≤

k
n
) = n

(

n−1
k

)∫ k
n

0
tk(1− t)n−k−1dt ,

and in the same manner,

Pk−1
n
(N ≥ k) = IP(U(k) ≤

k−1
n

) = n

(

n−1
k−1

)∫ k−1
n

0
tk−1(1− t)n−kdt .

Note that
(

n−1
k−1

)

=

(

n−1
k

)

k
n−k

,
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so that (29) follows if we prove

k
∫ k−1

n

0
tk−1(1− t)n−kdt ≤ (n−k)

∫ k
n

0
tk(1− t)n−k−1dt . (30)

We can establish the following chain of equivalent inequalities.

k
∫ k−1

n

0
tk−1(1− t)n−kdt ≤ (n−k)

∫ k
n

0
tk(1− t)n−k−1dt

⇔
∫ k

n

0

dtk

dt
(1− t)n−kdt ≤−

∫ k
n

0
tk d(1− t)n−k

dt
dt +k

∫ k
n

k−1
n

tk−1(1− t)n−kdt

⇔
∫ k

n

0

d
dt

[

tk(1− t)n−k
]

dt ≤ k
∫ k

n

k−1
n

tk−1(1− t)n−kdt

⇔
(

k
n

)k(

1− k
n

)n−k

≤ k
∫ k

n

k−1
n

tk−1(1− t)n−kdt

We now study the variations of the functiont 7→ b(t) = tk−1(1−t)n−k on the interval[(k−1)/n,k/n].
Taking derivative, it is not hard to see that functionb admits a unique local optimum, which is a
maximum, att0 = k−1

n−1 and thatt0 ∈ ((k− 1)/n,k/n) becausek ≤ n. Therefore, the function is
increasing on[(k−1)/n, t0] and decreasing on[t0,k/n]. It implies that

∫ k
n

k−1
n

b(t)dt ≥ 1
n

min

[

b
(k−1

n

)

,b
(k

n

)

]

.

Hence, the proof of (30) follows from the following two observations:

(

k
n

)k(

1− k
n

)n−k

=
k
n

(

k
n

)k−1(

1− k
n

)n−k

=
k
n

b
(k

n

)

,

and
(

k
n

)k(

1− k
n

)n−k

≤ k
n

(

k−1
n

)k−1(

1− k−1
n

)n−k

=
k
n

b
(k−1

n

)

.

While the first equality above is obvious, the second inequality can be obtained by an equivalent
statement is

(

k
n

)k−1(n−k
n

)n−k

≤
(

k−1
n

)k−1(n−k+1
n

)n−k

⇔
(

k
k−1

)k−1( n−k
n−k+1

)n−k

≤ 1

Since the functiont 7→
(

t+1
t

)t
is increasing on[0,∞), andk≤ n−k+1, the result follows.

To conclude the proof of the Lemma, note that (28) and (29) imply that for any q> 1/n,

Pq(N ≥ nq)≥ P1
n
(N ≥ 2) = 1−

(

n−1
n

)n

−
(

n−1
n

)n−1

≥ 1−
(

1
2

)2

− 1
2
=

1
4
,
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where, in the last inequality, we used the fact that the function

t 7→ 1−
(

t −1
t

)t

−
(

t −1
t

)t−1

is increasing on[1,∞).
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