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Abstract

We unify f-divergences, Bregman divergences, surrogate regretlspproper scoring rules, cost
curves, ROC-curves and statistical information. We dolilgisystematically studying integral and
variational representations of these objects and in sogddentify their representation primitives
which all are related to cost-sensitive binary classifaati As well as developing relationships
between generative and discriminative views of learnihg, tew machinery leads to tight and
more general surrogate regret bounds and generalisedePimgkualities relating -divergences
to variational divergence. The new viewpoint also illumesaexisting algorithms: it provides a
new derivation of Support Vector Machines in terms of diegrces and relates maximum mean
discrepancy to Fisher linear discriminants.

Keywords: classification, loss functions, divergence, statisticBdrimation, regret bounds

1. Introduction

Some of the simplest machine learning problems concern binary experiméet® iTis assumed
that observations are drawn from a mixture of two distributions (one fdr elass). These distribu-
tions determine many important objects related to the learning problems theypimsigch as risk,
divergence and information. Our aim in this paper is to present all of thigigets in a coherent
framework explaining exactly how they relate to each other. Doing so bdogseptual clarity to
the area as well as providing the means for a number of new technicliresu

1.1 Motivation

There are many different notions that underpin the definition of machimeitegproblems. These
include information, loss, risk, regret, ROC (Receiver Operating Cleriatic) curves and the area
under them, Bregman divergences and distance or divergence bgivadsability distributions. On
the surface, the problem of estimating whether two distributions are the sanmmeésured by, say,
their Kullback-Leibler divergence) is different to the problem of minimisatbexpected risk in
a prediction problem. One goal of the present paper is to show how thésfigd difference is
indeed only superficial—deeper down they are the same problem andieadadyd algorithmic
insights for one can be transferred to the other.

Machine learning as an engineering discipline is still yolirifhere is no agreed language to
describe machine learning problems (such is usually done with an informalreb&t&English and

1. Bousquet (2006) has articulated the need for an agreed vocataledear statement of the main problems, and to
“revisit what has been done or discovered so far with a fresh look”.
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mathematics). There is very little in the way of composability of machine learningieodu That
is, given the solution to one problem, use it to solve another. Of courseauld like to not merely
be able to do this, but to be certain what one might lose in doing so. In ordertttat, one needs
to be able to provide theoretical guarantees on how well the original pnobid be solved by
solving the surrogate problem. Related to these issues is the fact thatre@wsell understood
primitivesfor machine learning. Indeed, what does that even mean? All of thasesisse the
underlying motivation for this paper.

Our long term goal (towards which this paper is but the first step) is to trii¢hd of ma-
chine learning into a more well founded engineering discipline with an adesggiage and well
understood composition rules. Our motivation is that until one can start byitistems modu-
larly, one is largely restricted to starting from scratch for each new pmpliather than obtaining
the efficiency benefits of re-use.

We are comparingroblems not solutions or algorithms. Whilst there have been attempts to
provide a degree of unification at the level of algorithms (Altun and Smol@gRQhere are in-
trinsic limits to such a research program. The most fundamental is thati&uoghy) there is no
satisfactory formal definition of what an algorithm really is Blass and Gaingi2003), nor how two
algorithms can be compared with a view to determining if they are the same (BEIS2€09).

We have started with binary experiments because they are simple and widdlyAswe will
show, by pursuing the high level research agenda summarised abevewy managed to unify
all of the disparate concepts mentioned and furthermore have simultansouglified and gen-
eralised two fundamental results: Pinsker inequalities betwedinergences and surrogate regret
bounds. The proofs of these new results rely essentially on the decibimpasto primitive prob-
lems.

1.2 Novelty and Significance

Our initial goal was to present existing material in a unified way. We havesthdene that. In
doing so we have developed new (and simpler) proofs of existing restuiditionally we have
developed some novel technical results. The key ones are:

1. A link between the weighted integral representations for proper scanies and those for
f-divergences which allows the transformation from one to the other {€he0);

2. A unified derivation of the integral representations in terms of Tayloesehowing their
equivalence (Theorem 18);

2. Abelson et al. (1996) described the principles of constructing sodtwith the aid of (Locke, 1690, Chapter 12,
paragraph 1):

The acts of the mind, wherein it exerts its power over simple ideas, arydhiese three: (1) Combining
several simple ideas into one compound one; and thusoaliplex ideagre made. (2) The second is
bringing two ideas, whether simple or complex, together, and setting thesnégnother, so as to take
a view of them at once, without uniting them into one; by which it gets albiggs of relations(3) The
third is separating them from all other ideas that accompany them in théiexistence; this is called
abstraction: and thus all igeneral ideasre made

Modularity is central to computer hardware (Baldwin and Clark, 20Q6ma other engineering disciplines (Ger-
shenson et al., 2003) and plays a central role in some models ofratmdevelopment (Varian, 2003; Weitzman,
1998; Mokyr, 1992). The reason modularity works is that comporzarise combined a@omposed
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3. Use of these representations to derive new bounds for divergeBayes risks and regrets:
“surrogate regret bounds”(Theorem 25) and Pinsker inequalitiesafEm 30);

4. Showing that statistical information (and henfcelivergence) are both Bregman informa-
tions;

5. The derivation of SVMs from a variational perspective which presid clearer explanation
of the link between MMD (Maximum Mean Discrepancy) and SVMs (Suppedtor Ma-
chines) §H;

6. Explicit formulae relating Bayes risk to the Neyman-Pearson functioithvaillows the trans-
formation of risk curves to ROC curves and vice versa (Theorem 22).

The significance of these new connections is that they show that the atfdicss function
(scoring rule),f-divergence and Bregman divergence (regret) are intimately relatedesing one
implies choices for the others. Furthermore we show there are more intuitisableuparameter-
isations for f-divergences and scoring rules (their corresponding weight furgtioThe weight
functions have the advantage that if two weight functions match, then thespoinding objects
are identical. That is not the case for theparameterising ari-divergence or the convex func-
tion parameterising a Bregman divergence. As well as the theoreticalshiergich connections,
these alternate representations suggest new algorithms for empirically egjisiatin quantities.
We have represented all of the connections graphically in figure 1. ifieus symbols are defined
below; the point of the picture here is to see the overall goal of the paperrelating of a range of
diverse concepts.

Given the broad scope of our work, there is of course much prior viookmuch to summarise
in this introduction. Appendix C summarises the main precursors and relat&d wo

1.3 Paper Outline and Key Contributions

The following is an outline of the main structure of this paper section by sectigidhting the
contributions and novelty. A knowledgeable reader only interested in tlieeneov results should be
able to just read Sections 4-8 plus Appendix H with the aid of Table 1. Moreugdnd technical
proofs and digressions are in the appendices.

82 Many of the properties of the objects studied in this paper are directeeddrom well-known
properties of convex functions. In particular, a generalised formagioF's theorem and
Jensen’s inequality underpin many of the new results. Although elemewiyave started
from this point because it shows how fundamental are the connectiaws thter in the paper
are. We rederive Savage’s famous theorem (Theorem 7) fromesspgctive.

83 One of the simplest type of statistical problems is that of distinguishing bettmeedistribu-
tions. Such a problem is known asmary experiment Two classes ofmeasures of diver-
gencebetween the distributions are introduced: the class of @sisdivergences and the
class of Bregman divergences.

84 When additional assumptions are made about a binary experiment—eadcié prior proba-
bility for each of the two distributions—it becomes possible to talk albisiktand statistical
informationof an experiment that is defined with respect to a loss function. A keytlissu
Theorem 10 which shows thétdivergence, statistical information and Bregman divergence
are all fundamentally equivalent.
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BASIC ELEMENTS

Function|Class e e Distributions | Binary Experiment Mﬂé%mx function
g ¥ P,Q 7 (7, P,Q) = (n, M) -
Add 7 — class prior
& m \, W, W= .\ w f
Jr(t) =L(m) = (vt +1—-m)L Ait‘\av . Add a loss function A
Proper Losses:
T=(P,Q) = AL(w, P,Q) ; ¢ L.L
Given A: [0,1] - R, 3¢ st 4o
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Variational Divergence is y regman Divergence
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. . - 3
i .n_<m6m=om Integral Representation: v(m,c) v(7.¢) fntegral Representation of Binary Classification Task
I1(P,Q) = [y Ij=(P, Q)y(m)dn w AiTgv proper losses: Prior Bayes Risk L()
_u“_a_ﬁ_ e: < »| 4 E h Le(n,R)w(c)de 13| Posterior Bayes Risk L(, P, Q)
f™(t) = 2 min(1 — 7, 7) — min(1 — 7, 7t) Primitive: £, Statistical Information
1-m .
Weight: ﬁ )= &1 (2) where Weights: w(c) = L"(c) AL(r, P,Q) = L(r) — L(r, P, Q)
me)=(1—-c)m+ (1 — Ly (1,7) ‘IS\A v..rs\gx‘ n)+
n(W(1)+Ww©)-w©)
N Ly, (n) = =W(n) +n(W(1) + W(0)) - W(0)
i A
Integral Representation in terms f-divergence 7 By(n(X)) = AL(m, P, Q)
of Statistical Ipformation Variational Representation: Bregman Information = Statistical Information
L;(P,Q) = | AL'™!(r,P,Q)y(m)dr I;(P,Q) = sup Nﬁ&u\ 17(r)dQ
kX X .
oc . G Neyman _umm-m%: Function 3(a, P, Q)
Primitive: AL’ (, P, Q) B(a) = inf —((1-ma+nr—L(x, P,Q))
Weight: () 7€(0,1] T
] L(m, P,Q) = min ((1-m)a+n(1-B(e, P,Q))
Partial Knowledge of = — AL’~!(r, P, Q) S0
e.g. (m, Vr,)iey
v v

Generalised Pinsker Bounds
I(P,Q) = @4((mi, Vir,))iey
where @ only depends on f

Regret Bounds for Surrogate Losses
Bu(n.1) = (o, @) V 9(co, —av),
¥(co, @) = Blco, co + @) = L(co) — L(co + @) + L' (co)
When ¢, = 1/2 and w is symmetric,
Bu(n, 1) > L(1/2) — L(1/2 + o)

Figure 1: Diagrammatic summary of key relationships developed in the paper.
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85 A key technique we use is that of an integral representation. We sladwntbgral represen-
tations of f-divergences and proper losses and statistical information are afitiediyethe
same (Theorem 18). We explicitly compare the primitives for each of thgsesentations
and show their natural interpretation.

86 The weight function view also illuminates various “graphical represients of binary exper-
iments, such as ROC curves. We unify several graphical represastftiobinary experi-
ments and present new explicit formulae relating Bayes risk to the NeynmamsdPefunction,
which allows the transformation of risk curves to ROC curves and vice{@tseorem 22).

87 The various equivalences developed in the above sections aredbértauderive new tight
inequalities of interest in Machine Learning, The first is a We derive ghicixform for
surrogate regret bounds for proper losses in terms of the weightdarcorresponding to the
proper loss (Theorem 25). These are tight bounds on the conditiskatith respect to an
arbitrary cost-sensitive misclassification loss when all is known is the vathe conditional
risk with respect to an arbitrary proper loss. The result generalisgengxresults in two
key ways. We also generalise the classical Pinsker inequality by detigimgoounds on an
arbitrary f-divergence when the value of several generalised variationabginees between
the same distributions is known (Theorem 30). A side-effect is an expitiidla for the best
possible bound on KL-divergence given knowledge of the classar@&@tional divergence.

88 Another representation of risks is a variational one. We systematicalgrexhe relationship
between Bayes risk and variational divergence, building upon classgdts. An interesting
consequence of our analysis is presented in Appendix H where wetehbmaximum mean
discrepancy (MMD)—a kernel approach to hypothesis testing andg#inee estimation—is
essentially SVM learning in disguise. In doing so we present a novel, simglengeresting
alternate derivation of the Support Vector Machine.

1.4 Notational Conventions

Here we record elementary notation and the conventions we adopt tloututje paper. Key no-
tations are tabulated in table 1. We write\y := min(x,y), XVy := maxx,y), (X)+ :=xV0,
(X)— :=xA0 and the Iverson brackgp] = 1 if pis true and[p] = 0 otherwise (Knuth, 1992). The
generalised functiod(-) is defined byf;’ o(x) f (x)dx= f(0) whenf is continuous at 0 anal< 0 < b
(Antosik et al., 1973; Friedlander, 1982). The unit stefx) = [*, 8(t)dt. The real numbers are
denotedR, the non-negative realk™ and the extended reas= R U {oo}; the rules of arithmetic
with extended real numbers and the need for them in convex analysismaied by Rockafellar
(1970). Random variables are written in sans-serif féntX, Y. Sets are in calligraphic fontl
(the “input” space)y (the “label” space). Vectors are written in bold fomt.a,x € R™. We will
often have cause to take expectatidipdf various functions over the random variaileWe write
such quantities in blackboard bolH:L, B, J. The elementary loss & its conditional expectation
w.r.t. Y is L and the full expectation (over the joint distributi@rof (X,Y)) is L. Lower bounds on
guantities with an intrinsic lower bound (e.g., the Bayes optimal loss) are wriitBraw underbar:
L, L. Quantities related by double integration appear in this paper and we notatartiveg point in
lower case, the first integral with upper case, and the second integnapar case with an overbar:

w, W, W. Estimated quantities are hattefl: In several places we overload the notation. In all cases

careful attention to the type of the arguments or subscripts reliably disamksguate
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Symbol Meaning Defined
lo Perspective transform 1)
(P.Q) Binary experiment 83

14 Loss §4.2

L Conditional risk §4.2

L Expected risk §4.2
L Conditional Bayes risk 84.2
L Expected Bayes Risk §4.2
Julg) Jensen gap Th.5
I+ (PQ) f-divergence betweeld andQ 83.2
¢ Csiszr dual ofg )

[0 Legendre-Fenchel dual gf 3)

By Bregman divergence and regret 84.4
TPy, FN, True Positive / False Negative rate for test (10)
B(-,PQ) Neyman-Pearson function foP, Q) (11)

rT Test, Test statistic §3.1
By(P.Q) Generative Bregman divergence 83.3
P Joint distribution ori{ x Y §4.1

M Reference measure fOP, Q) with prior 1t §4.1

s A priori probability of positive class §4.1
n Probability of positive class §4.2
n(-) Conditional probability of positive class 84.2
T=(n,M;0)=(P,Q;¢) Task §4.2
i) Estimator off)(-) §4.2
By(S) Bregman information o$ 845
w(-) Weight function for proper loss 85.3
y(+) Weight function forf-divergence §5.1
AL(n,M) Statistical information (20)
le,Le Cost-sensitive mis-classification loss (29),(30)
ROC(1) Receiver Operating Characteristic curve 37)
AUC(T) Area Under the ROC Curve (38)
Vi(P,Q) Generalised Variational divergence (49)

Table 1: Standard notation used throughout the paper.

2. Convex Functions and Their Representations
Many of the properties of divergences and losses are best unoltbtough properties of the con-

vex functions that define them. One aim of this paper is to explain and reldteisaivergences
and losses by understanding the relationships between their primitive fusiclitne relevant def-
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initions and theory of convex functions will be introduced as requiredy #ms not explicitly
defined can be found in books by Hiriart-Urruty and Le&wral (2001) or Rockafellar (1970).

A set8 C RY is said to beconvexif for all A € [0,1] and for all pointssy,s; € 8 the point
Asi+ (1—-A)s, € 8. Afunctiong: 8 — R defined on a convex s8tis said to be a (propegonvex
functionif3 for all A € [0,1] and pointss;,s; € § the functiong satisfies

QAsL+ (1-A)s2) <AQ(s1) + (1 - M) @)

A function is said to beoncavef —g@is convex.
The remainder of this section presents properties, representationa@asiotmations of convex
functions that will be used throughout this paper.

2.1 The Perspective Transform and the Csisz Dual
When§ = R* and@: R™ — R is convex, theperspective transformf @is defined forr € R* via

19(s/1), 1>0,s>0
lo(S.1) = 0, 1=0,5=0 (1)
T 190),  1>0,5=0

s, 1=0,5>0,
where@(0) := lims_0@(s) € R andg, is theslope at infinitydefined as

S+ S S—+o S

for everysy € 8§ where@(sp) is finite. This slope at infinity is only finite whegq(s) = O(s), that
is, wheng grows at most linearly asincreases. Whey, is finite it measures the slope of the
linear asymptote. The functiol : [0,00)2 — R is convex in both arguments (Hiriart-Urruty and
Lemagéchal, 1993b) and may take on the value whens or T is zero. It is introduced here
because it will form the basis of thedivergences described in the next section.

The perspective transform can be used to defineCsisar dual ¢¢ : [0,00) — R of a convex
function@: R™ — R by letting

#0141, =70( ;) @

for all T € (0,0) and@’(0) := ¢,. The originalp can be recovered frotg sinceq(s) = I (s, 1).
The convexity of the perspective transfolgin both its arguments guarantees the convexity of
the dualg®. Some simple algebraic manipulation shows that fosalle R*

lp(S,T) = 1 (T,9).
This observation leads to a natural definition of symmetry for convex fumstioMe will call a
convex function®-symmetriqor simply symmetriavhen the context is clear) when its perspective
transform is symmetric in its arguments. Thatgss ¢-symmetric wherly(s,T) = l(t,s) for all
s,T € [0,). Equivalently@is O-symmetric if and only ifp® = @.

3. The restriction of the values gfto R will be assumed throughout unless explicitly stated otherwise. This implies the
properness of since it cannot take on the valuese or +o.

4. The perspective transform is closely relatedep-multiplicationwhich is defined for alft € [0,) and (proper)
convex functionspto bet® @:= s+ 1@(s/t) for 1 > 0 and is 0 whernt = s= 0 and+ otherwise. Bauschke et al.
(2008) summarise the properties of this operation and its relationship toagtbeations on convex functions.
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2.2 The Legendre-Fenchel Dual Representation

A second important dual operator for convex functions isltbgendre-Fenchel (LF) dualThe LF
dual@* of a functiong: 8 — R is a function defined by

@' (s") :=sup{(s,;s") —@(s)}. 3)

se8

The LF dual of any function is convex and, if the functi@is convex and closed then th& bidual
is a faithful representation of the original function. That is,

@ (s) = sup{(s’,s) —@"(s")} = &(s).

sFe8*

Wheno: 8 — R, 8§ C R, is a function of a real argumestand the derivativey (s) exists, the
Legendre-Fenchel conjugapeis given by thd_egendre transforn(Hiriart-Urruty and Lemagchal,
2001; Rockafellar, 1970)

2.3 Integral Representations

In this paper we are primarily concerned with convex and concave funsctiefined on subsets of
the real line. A central tool in their analysis is the integral form of their Taglpansion. Herey
andq@’ denote the first and second derivativegpaéspectively.

Theorem 1 (Taylor's Theorem) Let 8§ = [s, 9 be a closed interval oR and let@: 8§ — R be
differentiable onsy, s| and twice differentiable ofsp,s). Then

08 = 050) + ¢ () (5 %0)+ | st (4)

The argumens appears in the limits of integral in the above theorem and consequently can
be awkward to work with. Also, it will be useful to expamgabout some point not at the end of
the interval of integration. The following corollary of Taylor's theorermm/es these problems by
introducing piecewise linear terms of the fofs+t),. = (s—t) V0.

Corollary 2 (Integral Representation |) Suppose-o < a < b < « and letg: [a,b] — R be a
twice differentiable function. Then, for all € [a,b] we have

o9 = o)+ ¢3)(5-50)+ [ (sHW D ®)

where
(s—t) so<t<s

Pp(St) =< (t—s) s<t<g
0 otherwise

is piecewise linear and convex in s for eaght s [a,b].
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This result is a consequence of the way in whigleffectively restricts the limits of integration to
the interval(sg,s) C [a,b] or (s,5) C [a,b] depending on whethesy < sor sp > swith appropriate
reversal of the sign ofs—t).

Whena = 0 andb = 1 a second integral representation for the unit interval can be ddrived
(5) that removes the term involving.

Corollary 3 (Integral Representation Il) A twice differentiable functiop: [0,1] — R can be ex-
pressed as

1
o(s) = 0(0) + (@)~ 9(0)s— [ w(sH /)t ©)
where(s,t) = (1—t)sA (1—9s)t is piecewise linear and concave ireq0, 1] for each te [0, 1].

The result follows by integration by parts tf’(t). The proof can be found in Appendix A.1. It
is used in Section 5 below to obtain an integral representation of losseimé&oy lolass probability
estimation. This representation can be traced back to Temple (1954) wisthatethe kernel
Y(s,t) is the Green'’s function for the differential equati¢fi = 0 with boundary conditiong(a) =
W(b) = 0.

Both these integral representations state that the non-linear partaf be expressed as a
weighted integral of piecewise linear termpg or Y. When we restrict our attention to convex
we are guaranteed the “weighig”(t) for each of these terms are non-negative. Since the measures
of risk, information and divergence we examine below do not dependelfintbar part of these
expansions we are able to identify convex functions with the weigftts= @’(t) that define their
non-linear part. The sets of piecewise linear functi¢gg (s,t) }icjap and{Y(s;t)}eo.1 can be
thought of as families of “primitive” convex functions from which others ¢e built through their
weighted combination. Representations like these are often daleduet representatiorefter
work by Choquet (1953) on the representation of compact conveesgRhelps, 2001).

2.4 Representations for Non-Differentiable Convex Functions

It is possible to weaken the conditions on the representation results sodldepihcontinuous but
not necessarily differentiable functions. As much of this paper deals witttibns that fall into
this category—namely general convex functions—being able to genetiadise results is essen-
tial in order to understand the weight functions corresponding to the praritdivergences and
loss functions. We will briefly discuss these generalisations and introdune sonventions for
interpreting subsequent results in an effort to avoid too many distractihgitedities.

The convention for the remainder of this paper is thatftret derivativeof a convex func-
tion @ overR is to be interpreted as a right derivative. That is, we will tgkg) to beq, (t) =

limego w. Theorem 24.1 of Rockafellar (1970) guarantees that this derivakigts and
is non-decreasing and right continuous on the domaim. oft is therefore possible to define a
Lebesgue-Stieltjes measurg((a, b)) := ¢ (b) — ¢/ (a) for intervals in the domain af.

Second derivativesf convexg are only ever used within integrals to “weight” the contribution
of the non-negative, piecewise linear functiamg-,t) andy(-,t) discussed above. Thus, we write
f: f(t)@’(t)dt as a short-hand for the Lebesgue-Stieltjes integfd(t)d)up(t). For simplicity,
we will often speak of weight “functions” being equal to the secondvdéxie of general convex
functions. As we only ever consider linear operators on these weigtitifuwns, it is unproblematic to

treat second derivatives as Schwartz distributions or “generalisetidns” (Antosik et al., 1973;
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Friedlander, 1982) and add, scale, and evaluate them like normal fasictithe most exotic of
these we will consider explicitly are the weight functions correspondinget@timitive ¢, andy
functions. They correspond to Dirac delta distributidfg as defined in Section 1.4.

As Liese and Vajda (2006) carefully show, it is possible to derive gdised versions of the
integral representations using the interpretations above. Of course, twé functiong are twice
differentiable these interpretations and generalised results coincide wsthfilhahe usual first and
second derivatives.

2.5 Bregman Divergence

Bregman divergences are a generalisation of the notion of distancesdmepwints. Given a differ-
entiabl@ convex functionp: 8§ — R and two pointss, s € § the Bregman divergenéeof s from g
is defined to be
By(S.%0) := @(S) — @(So) — (s— S0, 0P(0)) , ()

wherel@(sy) is the gradient ofpatsy. A concise summary of many of the properties of Bregman
divergences is given by Banerjee et al. (2005b, Appendix A); Bme@ensor and Zenios (1997).
In particular, Bregman divergences always satBfys, so) > 0 andBy(S,S) = 0 for all ;50 € 8,
regardless of the choice gf They are not always metrics, however, as they do not always satisfy
the triangle inequality and their symmetry depends on the choige of

Whens = R andgis twice differentiable, comparing the definition of a Bregman divergence in
(7) to the integral representation in (4) reveals that Bregman diveegdretween real numbers can
be defined as the non-linear part of the Taylor expansiop dkearranging (4) shows that for all
S, € R

| "5 ) @' ()dt = @(S) — PSo) — (5—50)@ (o) = Bo(5.%0) ®)

sincelJ@= ¢ and the inner product is simply multiplication over the reals. This result alsshold
for more general convex se$s Importantly, it intuitively shows why the following holds (because
the Bregman divergence depends only onrtbelinearpart of the Taylor expansion).

Theorem 4 Let @ and Y both be real-valued, differentiable convex functions over the convex set
such thaip(s) = Y(s) +as+ b for some ab € R. Then, for all s andg By(S, o) = By (S, ).

A proof can be obtained directly by substituting and expandirig the definition of a Bregman
divergence.

Equation 8 also shows whg(s,s) is decreasing as— | decreases (a fact we will exploit
later): sinceq’(t) > O for all t, if sy < s, then the integrand in (8) is always non-negative and the
result is immediate by the nature of integrationsgf> s, a similar argument holds.

2.6 Jensen’s Inequality and the Jensen Gap

A central inequality in the study of convex functions is Jensen’s inequdlitglates the expectation
of a convex function applied to a random variable to the convex functialuated at its mean. We
will denote byE, [] := [s-duexpectation ove$ with respect to a probability measyi@vers.

5. Technically@ need only be differentiable on the relative interidSjiof 8. We omit this requirement for simplicity
and because it is not relevant to this discussion.

6. Named in reference to Bregman (1967) although he was not theoftehsider such an equation, at least in the one
dimensional case; confer Brunk et al. (1957, p.838).
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Theorem 5 (Jensen’s Inequality) Let@: § — R be a convex function, p be a distribution afithe
an 8-valued random variable (measurable w.r.t. i) such thafiS|] < . Then

Jul@) = Eu[@(S)] — @(Ey[S]) = 0. (9)

The proof is straight-forward and can be found in (Dudley, 2003,31Qlensen’s inequality can
also be used to characterise the class of convex functiogssla function such that (9) holds for
all random variables and distributions themust be conveX.Intuitively, this connection between
expectation and convexity is natural since expectation can be seen peratoo that takes convex
combinations of random variables.

We will call the differencel,[@] the Jensen gap fopwhenS ~ . Many measures of divergence
and information studied in the subsequent sections can be expressexl Jshsen gap of some
convex function. Due to the linearity of expectation, the Jensen gap issitigerio the addition of
affine terms to the convex function that defines it:

Theorem 6 Let @: 8 — R be convex function anfl and p be as in Theorem 5. Then for each
a,b € R the convex functio(s) := @(s) + as+ b satisfies),[@(S)] = Ju[W(S)].

The proof is a consequence of the definition of the Jensen gap and thetyiref expectations
and can be found in Appendix A.2. An implication of this theorem is that whesidering sets
of convex functions as parameters to the Jensen gap operator theyeedlya identified by their
non-linear part. Thus, the Jensen gap operator can be seen to impegeiaience relation over
convex functions where two convex functions are equivalent if theg llee same Jensen gap, that
is, if their difference is affine.

In light of the two integral representations in Section 2.3, this means thenJgag®enly depends
on the integral terms in (5) and (6) and so is completely characterised byeigate/ provided by
¢’. Specifically, for suitably differentiable: [a,b] — R we have

b
Ju@(S)] = /a Talos (5,0 /(1) .

Since several of the measures of divergence, information and riskalhgsa can be expressed as a
Jensen gap, this observation implies that these quantities can be identifiedewibidiints provided
by ¢’ as it is these that completely determine the measure’s behaviour.

3. Binary Experiments and Measures of Divergence

The various properties of convex functions developed in the previecttos have many implica-
tions for the study of statistical inference. We begin by considdringry experimentsP, Q) where

P andQ are probability measurgsver a common spacé. We will considerP the distribution over
positiveinstances an€ the distribution ovenegativeinstances. The densities BfandQ with re-
spect to some third reference distributi@nover X will be defined bydP = pdM anddQ = qdM
respectively. Unless stated otherwise we will assumeRratdQ are both absolutely continuous

7. This can be seen by considering a distribution with a finite, discrete et as its support and applying Theo-
rem 4.3 of Rockafellar (1970).

8. We intentionally avoid too many measure theoretic details for the sakerity.ckippropriatec-algebras and conti-
nuity can be assumed where necessary.
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with respect tdVl. (One can always choo$# to ensure this by setting := (P+ Q)/2; but see the
next section.)

There are several ways in which the “separation’Paéind Q in a binary experiment can be
quantified. Intuitively, these all measure the difficulty of distinguishing betwihe two distri-
butions using instances drawn from their mixture. The further apart thebdisons are the easier
discrimination becomes. This intuition is made precise through the connectionsskigmd MMD
later in Appendix H.

A central statistic in the study of binary experiments and statistical hypothesisgtés the
likelihood ratiodP/dQ. As the following section outlines, the likelihood ratio is, in the sense of
preserving the distinction betweéhandQ, the “best” mapping from an arbitrary spa&eto the
real line.

3.1 Statistical Tests and the Neyman-Pearson Lemma

In the context of a binary experime(,Q), a statistical testis any function that assigns each

instancex € X to eitherP or Q. We will use the labels 1 and 0 f& andQ respectively and so a

statistical test is any function: X — {0, 1}. In machine learning, a function of this type is usually

referred to as alassifier The link between tests and classifiers is explored further in Section 4.
Each test partitions the instance spag&into positive and negativerediction sets

X = {xeX :r(x)=1},
Xy = {xeX :r(x)=0}.

There are fouclassification ratesissociated with these predictions sets: the true positive rate (TP),
true negative rate (TN), false positive rate (FP) and the false negat&éFN). For a given test
they are defined as follows:

TR :=P(X), FP:=Q(X/),

FN, :=P(X,), TN;:=Q(X,). (10)

The subscript will be dropped when the test is clear by the context. ShaedQ are distributions
overX = X;" UX, and the positive and negative sets are disjoint we have thatA®= 1 and
FP+TN = 1. As a consequence, the four values in (10) can be summarised bsinyome from
each column.

Often, statistical tests are obtained by applying a threshglth a real-valuedest statistic
T:X — R. In this case, the statistical testrix) = [1(x) > 1o]. This leads to parameterised forms
of prediction set$(Y(1g) := XETZTO]] fory € {+,—}, and the classification rates {(®), FP(To),
TN¢(T0), and TR(1o) which are defined analogously. By varying the threshold parametega odn
classification rates can be achieved. This observation leads to a welhlgraphical representation
of test statistics known as the ROC curve, which is discussed further tioSécl.

A natural question is whether there is a “best” statistical test or test statistgetéou binary
experiments. This is usually formulated in terms of a test’s power and sizgpoviner 3, of the test
r for a particular binary experimeiP, Q) is a synonym for its true positive rate (that@,:= TP
and so - B, := FN,°) and thesizea, of same test is just its false positive rate:= FP.. Here,

9. This is opposite to the usual definitionf&fin the statistical literature. Usually,-43; is used to denote the power of
a test. We have chosen to Uxefor the power (true positive rate) as this makes it easier to compare withdR@es
and it is consistent with the usage of Torgersen (1991).
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“best” is considered to be thmost powerfulMP) test of a given size (Bickel and Doksum, 2001,
84.2). Thatis, a testis considered MP of size € [0, 1] if, a, = a and for all other tests such that
o < a we have 1, < 1— . We will denote byB(a) := B(a, P, Q) the true positive rate of an
MP test betweeP (the alternative hypothesis) af(the null hypothesis) & with significancen.
Torgersen (1991) calli(-, P, Q) the Neyman-Pearson function for the dichotof®/Q). Formally,
for eacha € [0,1], the Neyman-Pearson functihmeasures the largest true positive rate P
any measurable classifier X — {—1,1} that has false positive rate F& mosta. That is,

B(a)=B(a,PQ):= sup {TR : FR <a}. (11)
re{-11}%

The Neyman-Pearson lemma (Neyman and Pearson, 1933) shows thatltheditt ratiot™ (x) =
dP/dQ(x) is the most powerful test for each choice of threshld Since each choice ab € R
results in a tesfdP/dQ > 1o] of some sizex € [0,1] we have thaf

B(FPx(10)) = TP (To) (12)

and so varyingo over R results in a maximal ROC curve. This too is discussed further in Sec-
tion 6.1.

The Neyman-Pearson lemma thus identifies the likelihood dRj@Q as a particularly useful
statistic. Given an experime(®,Q) it is, in some sense, the best mapping from the spatethe
reals. The next section shows how this statistic can be used as the basiaf@ty of divergence
measures betwedhandQ.

3.2 Csisar f-divergences

The class off -divergencegAli and Silvey, 1966; Csisar, 1967) provide a rich set of relations that
can be used to measure the separation of the distributions in a binary expterdné -divergence

is a function that measures the “distance” between a pair of distributarsd Q defined over a
spaceX of observations. Traditionally, thé-divergence ofP from Q is defined for any convex
f :(0,00) — R such thatf (1) = 0. In this case, thé-divergence is

1P ~Eo|f (55 )] = [ (56 @@ (13)

whenP is absolutely continuous with respect@and equalse otherwiset!

The above definition is not completely well-defined as the behaviof@ii®hot specified at the
endpoints of 0, ). This is remedied via the perspective transfornf pintroduced in Section 2.1
above which defines the limiting behaviour fof Given convexf : (0,0) — R such thatf (1) =0
the f-divergence of P from @&

I+ (PQ) :=Em[lt(p,a)] = Ex-m [l (p(X),a(X))], (14)

wherel; is the perspective transform 6f(see (1)).

10. Equation (43) in Section 6.3 below, shows @) is the lower envelope of a family of linear functionsafind is
thus concave and continuous. Hence, the equality in (12) holds.
11. Liese and Miescke (2008, pg. 34) give a definition that does gatreeabsolute continuity.
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The restriction thatf (1) = O in the above definition is only present to normaligseso that
I+(Q,Q) = 0 for all distributionsQ. We can extend the definition dfdivergences to all convek
by performing the normalisation explicitly. Sind€Eq [dP/dQ]|) = (1) this is done most conve-
niently through the definition of the Jensen gap for the funcfiapplied to the random variable
dP/dQ with distributionQ. That is, for all convex : (0,) — R and for all distributiond® andQ

ot (gg)| ~1rP@ - f0. (15)
Due to the issues surrounding the behaviouf af 0 ande the definitions in (13), (14) and (15)
are not entirely equivalent. When it is necessary to deal with the limiting h@irathe definition
in (14) will be used. However, the version in (15) will be most useful wheawing connections
betweenf -divergences and various definitions of information in Section 4 below.
Several properties df-divergence can be immediately obtained from the above definitions. The
symmetry of the perspective in (2) means that

I+ (P,Q) =1 (Q,P) (16)

for all distributionsP andQ, where ¢ is the Csisar dual off. The non-negativity of the Jensen
gap ensures thdt (P, Q) > 0 for all P andQ. Furthermore, the affine invariance of the Jensen gap
(Theorem 6) implies the same affine invariance ffativergences.

Several well-known divergences correspond to specific choidabg dfinctionf (Ali and Silvey,
1966, 85). One divergence central to this paper isvidugational divergence YP,Q) which is
obtained by setting (t) = |t — 1| in Equation 14. Itis the only-divergence that is a true metric on
the space of distributions ovér (Khosravifard et al., 2007) and gets its name from its equivalent
definition in the variational form

V(PQ) =2||P- Q| := ZEgEIP(A) —Q(A)[.

(Some authors definé without the 2 above.) This form of the variational divergence is disclisse
further in Section 8. Furthermore, the variational divergence is onefarindy of “primitive” f-
divergences discussed in Section 5. These are primitive in the senad diker f-divergences can
be expressed as a weighted sum of members from this family.

Another well knownf-divergence is the Kullback-Leibler (KL) divergence ®.Q), obtained
by settingf (t) =tIn(t) in Equation 14. Others are given in Table 2 in Section 5.4.

3.3 Generative Bregman Divergences

Another measure of the separation of distributions can be defined aspbeted Bregman diver-
gence between the densitipsand q with respect to the reference measiie Given a convex
function@: R™ — R thegenerative Bregman divergenbetween the distributior® andQ is (con-
fer (14))

Bo(P,Q) := Em [By(P,q)] = Ex-m [Bg(P(X),q(X))] -
We call this Bregman divergence “generative” to distinguish it from thscliminative” Bregman

divergence introduced in Section 4 below, where the adjectives “givesrand “discriminative”
are explained further.
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Csisar (1995) notes that there is only one divergence common to the classieérgences and
the generative Bregman divergences. In this sense, these two dédsesgences are “orthogonal”
to each other. Their only common point is when the respective convetidascsatisfyf(t) =
@(t) =tInt —at+ b (for a,b € R) in which case botfis andB, are the KL divergence.

4. Risk and Statistical Information

The above discussion df-divergences assumes an arbitrary reference medéureer the space
X to define the densitiep andq. In the previous section, the choice of reference measure was
irrelevant sincef -divergences are invariant to this choice.

In this section an assumption is made that adds additional structure to the sHgtibetween
P andQ. Specifically, we assume that the reference measguiga mixture of these two distribu-
tions. ThatisM = 1P+ (1—m)Q for somem € (0,1). In this case, by constructioR, andQ are
absolutely continuous with respectlth Intuitively, this can be seen as defining a distribution over
the observation spack by first tossing a coin with a bias for heads and drawing observations
from P on heads o) on tails.

This extra assumption allows us to interpret a binary experirffe@) as a generalisesuper-
vised binary taskrt, P, Q) where the positivey(= 1) and negativey(= —1) labels ye Y := {—1,1}
are paired withobservations x X through a joint distributior® over X x Y. (We formally define
a task later in terms of an experiment plus loss function.) Given an obserdatan fromX ac-
cording toM, it is natural to try to predict its corresponding label or estimate the probaibiitsts
drawn fromP.

Below we will introduce risk, regret, and proper losses and show hosettetate to discrimina-
tive Bregman divergence. We then show the connection between theajemeiew (f-divergence
between the class conditional distributions) and Bregman divergence.

4.1 Generative and Discriminative Views

Traditionally, the joint distributior? of inputsx € X and labelsy € Y is used as the starting point
for analysing risk in statistical learning theory. In order to better link riskditergences, in our
analysis we will consider two related representationB.of

Thegenerativeview decomposes the joint distributi@into two class-conditional distributions
defined a®P(X) :=P(X|y = 1), Q(X) := P(X]y = —1) for all X C X and a mixing probability or
prior .:=P(X,y = 1). Thediscriminativerepresentation decomposes the joint distribution into an
observation distribution NX) :=P(X,Y) for all X C X and anobservation-conditional densityr
posteriorn(x) = g—,\*}l(x) whereH (X) := P(X,y = 1). The terms “generative” and “discriminative”
are used here to suggest a distinction made by Ng and Jordan (2002 gertérative case, the aim
is to model the class-conditional distributiosndQ and then use Bayes rule to compute the most
likely class; in the discriminative case the focus is on estimatipg directly. Although we are not
directly interested in this paper in the problems of modelling or estimating we finddtieation a
useful one*?

12. The generative-discriminative distinction usually refers to whetheri® modelling the process that generates each
class-conditional distribution, or instead wishes solely to perform well dis@imination task (Drummond, 2006;
Lasserre et al., 2006; Minka, 2005; Rubinstein and Hastie, 199&reTtas been some recent work relating the two
in the sense that if the class conditional distributions are well estimated themneiperform well in discrimination
(Long and Servedio, 2006; Long et al., 2006; Goldberg, 2001; &a@md Goldberg, 2006).
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Density Density
A

Figure 2: The generative and discriminative view of binary experiments.

Both these decompositions are exact sifi@an be reconstructed from either. Also, translating
between them is straight-forward, since
dP
M=mP+(1- dn=m—
so we will often swap betweefm, M) and (1, P,Q) as arguments to functions for risk, divergence
and information. A graphical representation of the generative andrmisative views of a binary
experiment is shown in Figure 2.
The posteriom is closely related to the likelihood ratwP/dQ in the supervised binary task
setting. For each choice ofe (0, 1) this relationship can be expressed by a mapping|0, 1] —
[0,00] and its invers@ ! defined by

; 17)

forall c € [0,1) andt € [0, ), andAn(1) := c. Thus

n=Agt (3—2) and, converselyg—g =An(N).

These will be used later when relatifiedivergences and risk.

4.2 Estimators and Risk

We will call a (M-measurable) function : X — [0, 1] a class probabilitgstimator Overloading the
notation slightly, we will also usg = f}(x) € [0, 1] to denote arestimatefor a specific observation
x € X. Many of the subsequent arguments rely on this conditional perspective

Estimate quality is assessed usinipss functior? : Y x [0,1] — R and the loss of the estimate
f with respect to the labsl € Y is denoted/(y,f}). If n € [0,1] is the probability of observing the
labely = 1 then thepoint-wise riskof the estimate) € [0,1] is defined to be thg-average of the
point-wise loss for:

L(n,1A) :=Eyq[(Y,A)] = £(0,A)(1—n) +£(1,A)n. (18)
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(This is what Steinwart 2006 calls tiner risk) Whenn : XX — [0, 1] is an observation-conditional
density, taking thévl-average of the point-wise risk gives ttfall) risk of the estimaton:

L(n,A,M) = Em[L(N,A)] = Ex-m[L(n(X),N(X))]
/L (x),A(x) (X) L(A,P.Q).

The convention of using, L andIL for the loss, point-wise and full risk is used throughout this
paper. Any names or parameters associatédnitl be propagated ta andL.

We call the combination of a logsand the distributior® a taskand denote it discriminatively
asT = (n,M;?) or generatively a3 = (1, P,Q; /). A natural measure of the difficulty of a task is
its minimal achievable risk, dBayes risk

L(n,M) =L(mP.Q):= I[Qfl] L(n,n,M) = Ex.m [L(n(X))],

where

0,1]5n—L(n):= Ir[gl]L(n )

is the point-wise Bayes riskNote the use of the underline dnandL to indicate that the corre-
sponding function&. andL are minimised.

4.3 Proper Losses

If 1) is to be interpreted as an estimate of the true positive class probapittign it is desirable to
require that_(n,n) be minimised whem = n for all n € [0,1]. Losses that satisfy this constraint
are said to bé&isher consistenand are known agroper scoring rulegBuja et al., 2005; Gneiting
and Raftery, 2007). To use common machine learning terminology we witlteeFésher consistent
losses aproper lossesThis implies that a proper logssatisfied.(n) = L(n,n) for all n € [0,1].

There are a few properties of losses that we will require to establishrckegtheorems below.
The first of these is that we will say a lossfar whenevem — ¢(0,n) andn — ¢(1,n) are,
respectively, right continuous at 0 and left continuous at 1, and

£(0,0) = £(1,1) = 0.

That is, no loss incurred for perfect prediction and there are noesutjdmps” in penalty for
near-perfect prediction. The main place fairness is relied upon is in thgrahteepresentation of
Theorem 16 where it is used to get rid of some constants of integrationrdér to explicitly
construct a proper loss from its associated “weight function” as shiowrheorem 17 we will
require that the loss baefinite that is, its point-wise Bayes risk at 0 and 1 must be bounded from
below:

L(0) > —o0, L(1) > —c0.

Since properness of a loss ensutés) = L(n,n) we see that a fair proper loss is necessarily definite
sinceL(0,0) = ¢(0,0) = 0 > —oo, and similarly forL(1,1). Conversely, if a proper loss is definite
then the finite value$(0,0) and/(1,1) can be subtracted froi{0, -) and/(1, -) to make it fair.
Finally, for Theorem 7 below to hold at the endpoints of the unit intervalegelire a loss to be
regular, that is,
rl]lgnoné(l,n) rl]lr/nl(l n)¢(0,n) =0. (19)
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Intuitively, this condition ensures that making mistakes on events that neppeh should not incur
a penalty. It is not difficult to show that any fair, definite loss is also ragtias, a proper and fair
loss is also regular) but the converse does not hold. Since propemeés$airness imply definiteness
and regularity, most of the situations we consider in the remainder of this palpgvolve losses
which are both proper and fair.

Proper losses for probability estimation and surrogate margin lossegf&antlett et al. 2006)
for classification are closely related. (Surrogate margin losses aré@ecgts in more detail in
Appendix D.) Buja et al. (2005) note that “the surrogate criteria of clasgifin are exactly the
primary criteria of class probability estimation” and that most commonly usedgate margin
losses are just proper losses mapped ffor] to R via a link function. The main exceptions are
hinge losses? Buja et al. (2005, pg. 4) state that SVMs are “the only case that trulydsgsa
estimation of class probabilities and directly aims at classification.” Howewennonly used
margin losses of the forg(yF (X)) are a more restrictive class than proper losses since, as Buja et al.
(2005, 823) note, “[t]his dependence on the margin limits all theory anctipeato a symmetric
treatment of class 0 and class 1. The relation between link functionsepfogses and margin
losses is considered in more detail by Reid and Williamson (2010).

The following important property of proper losses seems to be originallyaSavage (1971).
It shows that a proper loss is completely characterised by a concastéofudefining its point-wise
Bayes risk along with a simple structural relationship between its point-wisamigiBayes risk.

Theorem 7 A loss functior? is proper if and only if its point-wise Bayes riskr}) is concave and
for eachn,f € (0,1)
L(n,/) =L(®A)+ M -A)L'(A).

Furthermore if¢ is regular this characterisation also holds at the endpoimt§ € {0, 1}.

For general concave functiohswhich may not be differentiablé—L)’ is to be taken to be a
right derivative as discussed in Section 2.4. The following proof usegrgument in Buja et al.
(2005, 817) for the forward direction and the generalised Taylorsrdma due to Liese and Vajda
(2006) for the converse.

Proof By definition, the point-wise Bayes ridkn) = inf; L(n,n) which, for eacm < [0, 1] is just
the lower envelope of the linds(n,A) = (1 —n)¢(0,/}) +n¢(1,/}) and thusL is concave? The
properness of meand.(n) = L(n,n) and thei-derivative ofL is 0 whenfj = n. Hence

) .
EL(n,n) =(1-n)¢(0,n)+n(1,n)=0

A=n
for all n € [0,1]. Using this and expandirid(n) via the product rule, a little algebra showsn) =
£(1,n) —¢(0,n). Thus

L) +(n—A)L'(A) (1=A)£(0,A) +AL(L,A) + (N—A)[£(L,1) — £(0,A)]

which is the definition of.(n,R). The result holds at the endpoints if the loss is regular by applying
the assumptions in (19).

13. And powers of absolute divergenge-r|® for o # 2.
14. Since this argument made no use of the properneswefsee the concavity of the Bayes risk holds for any loss.

748



INFORMATION, DIVERGENCE AND RISK

Conversely, now supposkis a concave function and Iéty,) = A(R) + (y— NN (R). The
Taylor expansion of\ is

AM) = AR+ -RNR)+ A”(n—c>A"<c>dc

and so .
L(n,A) = A(R) — /n (N—)A"(c)dc> A(n) =L(n)

because the concavity 6f means\” < 0 and so the integral term is positive and is minimised to 0
whenn = . This showd is proper, completing the proof. |

This characterisation of the concavity bfmeans proper losses have a natural connection to
Bregman divergences.

4.4 Discriminative Bregman Divergence

Recall from Section 2.5 that § C RY is a convex set, then a convex functipn$ — R defines a
Bregman divergence

By (S S0) := @(S) — @(s0) — (S— S0, JP(S0)) -

When§ = [0, 1], the concavity ofL meansg(s) = —L(s) is convex and so induces the Bregman
divergencé®
By(S,S0) = —L(8) +L(%0) — (S0 —S)L'(S0) = L(s,%) —L(s)

by Theorem 7. The converse also holds. Given a Bregman divee§gravers = [0, 1] the convex-
ity of ¢ guarantees thdt = —@is concave. Thus, we know that there is a proper losgh Bayes
risk equal to—@. As noted by Buja et al. (2005, §19), the difference

By(n,A) =L(n,A) —L(n)

is also known as thpoint-wise regreof the estimate) w.r.t. . The correspondinfull) regretis
the M-average point-wise regret

Ex-m[Bo(N(X),N(X))] = L(n,A,M) — L(n,M).

4.5 Bregman Information

Banerjee et al. (2005a) recently introduced the notion oBilsgman informatiomB,(S) of a ran-
dom variables drawn according to some distributiorovers. It is the minimalo-average Bregman
divergence that can be achieved by an elerseats (the Bregman representatiyeln symbols,

By(S) := '52§ Es~o [By(S,9)] = Es-q [By(S,s")] -

The authors show that the mean= Es.s[S], is the unique Bregman representative. That is,
By(S) = Eg[By(S,S)]. Surprisingly, this minimiseonly depends or$ ando, not the choice ofp

15. Technically$ is the 2-simpleX (s;, ) € [0,1]%: s + s, = 1} but we identifys € [0, 1] with (s,1—s). Also, we once
again interpref—L)’ as a right derivative for general concavas discussed in Section 2.4.
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defining the divergence and is a consequence of Jensen’s inequualitheform of the Bregman
divergence.

Since regret is a Bregman divergence, it is natural to ask what is tihesponding Bregman
information. In this casep = —L and the random variablgé = n(X) € [0,1], whereX € X is
distributed according to the observation distributdn Noting thatEx..m[n(X)] = 11, the proof of
the following theorem stems from the definition of Bregman information and som@esalgebra
showing that infL(n, M) = (1t M), since by assumptiofis a proper loss.

Theorem 8 Supposé is a proper loss. Given a discriminative tagk M) and lettingp= —L, the
corresponding Bregman information gfX) satisfies

Be(n(X)) = Be(n,M) := L(T,M) —L(n,M).

4.6 Statistical Information

The reduction in risk (from priort € [0, 1] to posteriom € [0,1]%)
AL(n,M) = AL(T P, Q) := L(T,M) —L(n,M) (20)

is known asstatistical informationand was introduced by DeGroot (1962) motivated by Lindley
(1956). This reduction can be interpreted as how much risk is removeddwikg observation-
specific class probabilities rather than just the priat

DeGroot originally introduced statistical information in terms of what he calfedrecertainty
functionwhich, in the case of binary experiments, is any function[0, 1] — [0, ). The statistical
information is then the average reduction in uncertainty which can be eguas a concave Jensen
gap

—ImU(n)] =Im[-UN)] = U (Exm [N(X)]) = Exm [U(n(X))].

DeGroot noted that Jensen’s inequality implies that for this quantity to benagative the uncer-
tainty function must be concave, thatslJ must be convex.

Theorem 8 shows that statistical information is a Bregman information anespamnds to the
Bregman divergence obtained by settipg —L. This connection readily shows that.(n,M) >0
(DeGroot, 1962, Thm 2.1) since the minimiser of the Bregman informatian=sEx..mv [N (X)]
regardless of loss arigl,(n, ) > 0 since it is a regret.

4.7 Unifying Information and Divergence

From a generative perspectiviedivergences can be used to assess the difficulty of a learning task by
measuring the divergence between the class-conditional distribdiRiand Q. The more divergent

the distributions for the two classes, the easier the classification@ssérreicher and Vajda (1993,
Thm 2) made this relationship precise by showing thdtvergence and statistical information have

a one-to-one correspondence:

Theorem 9 If (Tt P,Q;¢) is an arbitrary task and lis the associated conditional Bayes risk then
defining

(1) :—L(n)—(nt+1—n)L< (21)

nt+1—n)
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for e [0,1] implies ftis convex, (1) =0and

lin(P,Q) = AL(TL, P, Q)

for all distributions P and Q. Conversely, if f is convex and )f= 0 then defining

1- l1-m
Ln(n)::_l_?[f< n 1?n>> T[E[Ovl]

implies
11(P.Q) =AL™(TLP.Q)

for all distributions P and Q, wherAL" is the statistical information associated witH.L

The proof, given in Appendix A.3, is a straight-forward calculation thqul@ts the relation-
ships between the generative and discriminative views presented e@distbined with the link
between Bregman and statistical information, this result means that thefr@mdrgences ar-
terchangeablas measures of task difficulty. The theorem leads to some correspesdagteveen
well known losses and divergence: log-loss with(RLQ); square loss with triangular discrimina-
tion; and 0-1 loss witlV (P, Q). (See Section 5.5 for an explicitly worked out example.)

This connection generalises the link betwdedivergences anB-errors (expectations of con-
cave functions ofy) in Devroye et al. (1996) and can be compared to the more recent Wiork o
Nguyen et al. (2005) who show that eatllivergence corresponds to the negative Bayes risk for a
family of surrogate margin losses. The one-to-many nature of their result reayateodds with the
one-to-one relationship here. However, the family of margin losses giéeir work can be recov-
ered by combining the proper losses with link functions. Working with prigsses also addresses
a limitation pointed out by Nguyen et al. (2005, pg. 14), namely that “asymmettigergences
cannot be generated layy (margin-based) surrogate loss function” and extends their analysis “to
show that asymmetri€-divergences can be realized by general (asymmetric) loss functions”

4.8 Summary
The main results of this section can be summarised as follows.
Theorem 10 Let f: R™ — R be a convex function and for eadte (0, 1] define for o= [0,1):

%) = - Ct((o)),

l1-m
L(©) = -0,

whereAr is defined by (17). Then for every binary experim@h®@) we have
]If(F)?Q) = AL(nu M) = B(P<r]7 M)7

where M:= 1P+ (1-mQ, n := dP/dM andL is the expectation (iiX) of the conditional Bayes
risk L. Equivalently,

Jo[f(dP/dQ)] = Im[-L(n)] = Im[®(n)].
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What this says is that for each choicerothe classes of-divergenced, statistical informations
AL and (discriminative) Bregman informatiofiig, can all be defined in terms of the Jensen gap of
some convex function. Additionally, there is a bijection between each of tiasses due to the
mappingA that identifies likelihood ratios with posterior probabilities.

The class off -divergences is “more primitive” than the other measures since its definities d
not require the extra structure that is obtained by assuming that thenefemgeasur®l can be
written as the convex combination of the distributidghandQ. Indeed, eacli; is invariant to the
choice of reference measure and so is invariant to the choioe ©he results in the next section
provide another way of looking at this invariancelef In particular, we see that evefydivergence
is a weighted “average” of statistical informations or, equivalefitiydivergences.

5. Primitives and Weighted Integral Representations

When given a class of functions likedivergences, risks or measures of information it is natural to
ask what the “simplest” elements of these classes are. We would like to knmlv fulmctions are
“primitive” in the sense that they can be used to express other measuri®inselves cannot be
S0 expressed.

The connections between risk;divergence, and statistical information discussed in Section 4
are all in terms of the convex functions that define each type of measurersrdiscussed in
Section 2.3, integral representations allow these convex functions t@bessed as weighted com-
binations of simple, convex, piecewise linear functions. By thinking of theobéhese simple
functions as a “basis” for convex functions, we are able to identify amyex function with its
“coordinates”™—that is, its weight function—relative to this basis.

The main result of this section essentially “lifts” this weight function represgem of convex
functions through the definitions of proper risks ahdlivergence (and therefore also statistical
and Bregman information) so they can be expressed as weighted integpaimibve elements
corresponding to the simple convex functions acting as the “basis”. Inade af f-divergences
and information the weight function in these integrals completely determines gteriour. This
means the weight functions can be used as a proxy for the analysis efrtleesures, or as a knob
the user can adjust in choosing what to measure.

We also show that the close relationships between informationf atidergence in terms of
their convex generators can be directly translated into a relationship bretheeespective weight
functions associated with these measures. That is, given the weighibfutitat determines an
f-divergence there is, for each choice of the pripa simple transformation that yields the weight
function for the corresponding statistical information, aiak versa

This shift from “function as graph of evaluations” to “function as weight®mbination of
primitive functions” permeates the remainder of the paper and is (loosehgdlpgous to the way
the Fourier transform represents functions as sums of simple, period@sign Section 6, risk
curves are used to graphically summarise the values of all the primitive nsks diven binary
experiment. In Section 7, surrogate regret bounds for proper lesgba tight generalisation of
Pinsker’s inequality are derived by considering the relationship betgeraral regrets or diver-
gences and the primitive ones comprising them. In both cases, the bouredsadrished by using
weight functions to understand the relative contribution of each primitiveegavitighted sum. In
particular, the Pinkser-like inequalities in Appendix B for specifidivergences are obtained via
direct manipulation of their weight functions.
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5.1 Integral Representations off -divergences

The following result shows that the classfetlivergences (and, by the result of the previous section,
statistical and Bregman information) is closed under conic combination.

Theorem 11 For all convex functions;f f2: (0,00) — R and allay,a; € [0, ), the function
(0,00) >t g(t) :=ag fi(t) +azfa(t) (22)
is convex. Furthermore, for all distributions P and Q, we have

I4(P,Q) = a1l1,(RP.Q) + a2l (P.Q). (23)

Conversely, givenif fz, a1 and ay, if (23) holds for all P and Q then g must be, up to affine
additions, of the form (22).

The proof is a straight-forward application of the definition of convexity ahf -divergences.

One immediate consequence of this result is that the setdfergences is closed under conic
combinationsy; aily;,. Furthermore, the arguments in Section 2.4 can be used to extend this obser-
vation beyond finite linear combination to generalised weight functiorBy Corollary 2, if f is a
convex function then expanding it about 1 in (5) and settifg) = f”(s) means that

H(PQ) - | “Is(P.Qa(9)ds (24)

whereFs(t) = [s< 1](s—t)+ + [s> 1](t — s);..18 The functionsFs, s€ R* can therefore be seen
as the generators of the class of primitif«elivergences. As a function of eachks is piecewise
linear, with a single “hinge” as. Of course, any affine translation of aRyis also a primitive. In
fact, each~s may undergo a different affine translation without changingftitivergencdl;. The
weight functiona is what completely characterises the behaviodr;of

The integral in (24) need not always exist since the integrand may riatdggable. When the
Cauchy Principal Value diverges we say the integral takes on the salifée note that many (not
all) f-divergences can sometimes take on infinite values.

The integral form in (24) can be readily transformed into an integralessmtation that does
not involve an infinite integrand. This is achieved by mapping the inté@ved) onto [0, 1) via the
change of variabler = ; € [0,1]. In this cases = 2= and sads= — 97 and the integral of (24)
becomes

0
H(PQ = — [ Ik (RQa( 2dn
1
- [ 15 (PQvman (25)

where

- {(1—n(l+t))+, > (26)

fr(t) :=TFox(t) = (M1+t)—1)y, T<

NI NI

16. Technically, one must assume tHats twice differentiable for this result to hold. However, the convexityfof
implies it has well-defined one-sided derivativEs and a(s) can be expressed as the measure corresponding to
d f,_/d\ for the Lebesgue measuke Details can be found in Liese and Vajda (2006). The representatiogesfexal
f-divergence in terms of elementary ones is not new; see for exadgdéereicher and Feldman (1981) and Feldman
andOsterreicher (1989).
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and

y(T) == %f” (?) .

This observation forms the basis of the following restatement of a theorelnelbg and Vajda
(2006). We include it here with a short proof to discuss the connectitweles f -divergences and
statistical informatiort.

Theorem 12 Let f be convex such that(X¥) = 0. Then there exists a (generalised) functipn
(0,1) — R such that, for all P and Q:

1(R.Q)= [ 11, (RO A where f() = (L9 ATt— (1) A ().

Proof The earlier discussion giving the derivation of Equation (25) implies thaltreShe only
discrepancy is over the form df;.. We determine the precise form by noting that the family of
f given in (26) can be transformed by affine addition without affecting épeesentation of;.
Specifically,

fult) = (L—TOAT—(1L—TO)A(TL)
{1 T[1+t) > 1
m(1l+t)— ++n(1—t), <3

= fu(t) + < 31 -1),

and sofy and f;; are in the same affine equivalence class for gachi0, 1]. Thus, by Theorem 6 we
havels, = I for eachme [0,1], proving the result. [

The specific choice of;; in the above theorem from all of the affine equivalents was made to
make simpler the connection between integral representations for losbdsdarergences, dis-
cussed in Section 5.4.

One can easily verify thaty are convex hinge functions ¢fwith a hinge atut and fp(1) =
0. Thus{l, }nc(0,q) is a family of primitive f-divergences; confeOsterrelcher and Feldman
(1981) and Feldman ar@sterreicher (1989). This theorem implies an existing representation of
f-divergences due t@sterreicher and Vajda (1993, Theorem 1) and Gutenbrunner Y199@y
show that anf-divergence can be represented as a weighted integral of statistmahatfons for
0-1 loss: for allP,Q

1
L(PQ) = /0 ALY (1 P,Q)y(modr 27)
v = igf”<ln"). (28)

An f divergence isymmetridf I;(P,Q) = I+(Q,P) for all P,Q. The representation df in
terms ofy and Theorem 15 provides an easy test for symmetry:

17. The ¥ term in the definition ofy seems a little unusual at first glance. However, it is easily understotteas
product of two terms: Ar® from the second derivative dfl — 1)/, and 1/t from a transformation of variables
within the integral to map the limits of integration frof@, ) to (0, 1) via Ar.
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Corollary 13 Supposds is an f-divergence with corresponding weight functiogiven by (28).
Thenlt is symmetric iffy(11) = y(1— ) for all e [0, 1.

The proofis in Appendix A.4.
Corollary 13 provides a way of generating all conviesuch thatfls is symmetric that is sim-
pler than that proposed by Hiriart-Urruty and Magdz-Legaz (2007): leg(m) = B(TtA (1 — 1))

1
wherep (R*)[o*i] (i.e., all symmetric weight functions) and generétgom y by inverting (28);

explicitly,
f(s)—/S /t ! ! dr )dt, se R"
Jo \Uo (T+1)3y T+1 ’ '

5.2 Proper Losses and Cost-Weighted Risk

We now consider a representation of proper losses in terms of primitivesidisat originates with
Shuford et al. (1966). Our discussion follows that of Buja et al. (200% then examines its
implications in light of the connections between information and divergenteiesented.

The cost-weighted losseme a family of losses parameterised by a false positiveaeso, 1]
that defines a loss fore {+1} andn € [0,1] by

te(y:n) = cly=—1][7 = ]+ (1—c)[y=1][q < c]. (29)

Intuitively, a cost-weighted loss thresholgsat ¢ and assigns a cost if the resulting classification
disagrees witly. These correspond to the “signatures” for eliciting the probabhiliég described by
Lambert et al. (2008). Substitutirg= % will verify that 26% is equivalent to 0-1 misclassification

loss¢9—1. Taking expectations with respectYowe have

Lc(n,A) = (1—n)c[A > c]+n(1—-c)[A <c]. (30)

We will uselL, L andAL, to denote the cost-weighted point-wise risk, full risk and statistical
information associated with each cost-weighted loss. The following theorelhestcsome useful
observations about these primitive quantities. The first shows that thewpigien Bayes risk is a
simple, concave “tent” function. The second shows that cost-weightédtista information is
invariant under the switching of the classes provided the costs are dtsbesvand thattand 1—c
are interchangeable.

Theorem 14 For all n,c € [0, 1] the point-wise Bayes risk.(n) = (1—n)cA (1—c)n and is there-
fore concave in both c angl.

Proof From the definition of in Equation 29 and the definition of point-wise Bayes risk, we have,
forn € [0,1],

L = inf L A
L¢(n) ﬁé?o,l] ¢(n,n)

= _inf {(1—n)c[A>c]+n(1—c)[A <c]}
ne[0,1)

- ﬁi?gl]{n(l— ¢)+(c—n)[n =]},

where the last step makes use of the iderfiity< c] = 1— [} > c]. Since(c—n) is negative if and
only if n > c, the infimum is obtained by havirg) > c] = 1 if and only ifn > ¢, that is, by letting
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A =n. Inthis case, whef) > cwe haveL.(n) =c(1—n) and when < cwe haveL;(n) = (1—c)n.
The concavity ol is evident as this function is the minimum of two linear functions ahdn. B

Theorem 15 For all ¢ € [0,1] and taskgn,M; {c) = (Tt P, Q; £¢) the statistical information satisfies
1)
ALC(]'_ n, M) = ALl—cma M)7

or equivalently,
ALC(]' -1Q, P) = ALlfc(T[v P, Q)v

and 2)
ALT[(]'_ C, P?Q) = ALC(:L_ . RQ)

Proof By Theorem 14 we know.(n) = min{(1—n)c,(1—c)n} and soL.(1—n) =L, _.(n) for
alln,c e [0,1]. ThereforeL;(1—n,M) =1L, .(n,M) for anyn : X — [0,1] including the con-
stant functionEu[n]. By definition,AL.(n,M) = L(Em[n],M) —L(n,M) and soAL;_.(n,M) =
AL.(1—n,M) proving part 1.

Part 2 also follows from Theorem 14 by noting that1l — ) = L(1—c) andEu[L.(n)] =
Jyemin{(1—c)mdP, (1—mcdQ}. [

5.3 Integral Representations of Proper Losses

The cost-weighted losses are primitive in the sense that they form the basi€hoquet integral
representation of proper losses. This representation is essentiallgegc@mce of Taylor's theorem
and was originally studied by Shuford et al. (1966) and later generdlis&thervish (1989). The
recent presentation of this result by Lambert et al. (2008) gives yrebr@ general formulation
in terms of the elicitability of properties of distributions, along with a geometricvdédn. An
historical summary of decompositions of scoring rules is given by Winklat. ¢1990, Section 4).

Theorem 16 Let/: Y x [0,1] — R be a fair, proper loss. Then for eache (0,1) and ye Y

1
0.0) = [ el wic)de (D)
where theweight functiod® w: (0,1) — R* satisfies
w(c) = -L"(c) >0 (32)

for all c € (0,1). Conversely, if is defined by (31) for some weight function (@,1) — R™ then it
iS proper.

The proof is almost a direct consequence of Taylor’'s theorem.

18. The weight function and second derivative-df are to be interpreted distributionally as discussed in Section 2.4.
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Proof We first assumée is a proper loss so that(n,f) = Ev..,[¢(Y,A)] andL(n) = L(n,n).
ExpandingL(n) aboutn € (0,1) using Corollary 2 yields

L) = L@+ -AL@) + [ e iU
= LA+ [ e AL )

by Theorem 7. The generalised functimic) = —L"(c) > 0 by the concavity of.. Rearranging
(33) gives

1
L(n.A) =L+ [ @e(n,A)w(c)de

The definition ofL in (18) impliesL(y,f) = ¢(y,n) fory € {0,1} and so

(i) =L+ [ el A)we)de 39

where
®y,nN)=[M<c<ylly-c+[y<c<ni](c—y),

which is equal to the definition df in (29) since the left (resp. right) term is only non-zero when
y =1 (resp. y = 0). Observe that(0) = L(1) = 0 sinceL(0) = L(0,0) = ¢(0,0) = 0O by the
assumption that the loss is fair, and similarly Egd).

This shows that (34) is equivalent to (31), completing the forward dinectfdhe theorem.

If we now assume the functiom > 0 is given and’ defined as in (31) then it suffices to show
L(n) =L(n,n). First note that

1

L(n,A) = EYNq[OEC(Y,ﬁ)W(c)dC]

1

=/, Lc(n,R)w(c)dc.

Each of thel. are proper and so are minimised whgr=n. Sincew(c) > 0 this must also be
sufficient to minimise.. |

We will write ¢, L\, andLL,, to explicitly indicate the parameterisation of the loss, conditional
loss and expected loss by the weight functianA proper los<,, corresponding to a given weight
function can be explicitly derived using the following theorem.

Theorem 17 Given a weight function w0, 1] — R, let W(t) = [*w(c)dc andW(t) = [*W(c)dc.
Then the los$,, defined by B

bw(y,R) = =W(A) - (y—H)W(H)
is a proper loss. Additionally, ¥V (0) andW(1) are both finite then

(%:1) = Lw(y, 1) + (W(L) —W(0))y+W(0) (35)

is a fair, proper loss.
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Proof First we define the loss

1
)= [ telvfpwie)de

and proceed to show it is equal to the definitior’pf Theorem 16 guarantees thas proper and
thatw = —L”. By definition of the improper integral&/ andW and the fundamental theorem of
calculus we know thatv’ =w = —L" and SOV’ (t) =W(t) = —L'(t) +aand

W(t) = —L(t) +at+b, (36)

wherea,b € R are constants of integration. Substituting these into the Savage representatio
Theorem 7 for proper losses we see that

Lin.A) = L)+ ﬁ) ‘()
= —W(A)+ai+b+(n-7)[-W()+al
= -W(@)- (n W) +an +b.

SinceL(y,n) = ¢(y,n) fory € {0,1} we have/(0,n) = 4w(0,A) +band/(1,/) = fw(1,A)+a+b
for all a,b € R. Choosinga = b = 0 achieves the result.

If W(0) andW(1) are both finite then letting = W(1) — W(0) andb = W(0) means (36) im-
pliesW(0) = —L(0) +W(0) and soL(0) = 0. Similarly,L(1) = 0 showing that (35) is fair. W

As an example of how this theorem lets us explicitly construct proper losz@sweight func-
tions, consider the weight functiom(c) = 1. In this caseW(t) =t andW(t) = % Thus, noting
thaty? =y fory € {0,1} we have

which is the square loss.

As a second example, considefc) = = C) In this caseW(t) = In (%) andW(t) = (1—
t)In(1—t) +tin(t). Since lim_p€ln(e) = 0 we define 010) := 0 so thatb = W(0) = 0 and
a=W(1) —W(0) = 0. This implies

ly) = (A=) ~AG) - - ()
= [F@=A)+y-MlIn@-A)+[-A—(y—A)]In(A)

—(1-y)In(1—-A) —yIn(A)

which is log loss.

5.4 Relating Integral Representations forl. and I'¢

There is also the following direct relationship between the weight func{das an f-divergence
andw for the corresponding statistical information. Since the weight functioesaarattractive
parameterization, it is convenient to be able to directly translate between thhegpective weight
functions. The proofis in Appendix A.5.
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Theorem 18 Let f: RT — R be convex (with f1) = 0) definel; with corresponding weight func-
tion y. Then for eachite (0,1) the weight function Win Theorem 16 for the losé™ given by

Theorem 9 satisfies ( W )
o T(L—TT l-¢omn
wic) = V(T[,C)3y( v(Tt,C) )

or, inversely,

v(c) = T[2(1—T[)2W <n(1— c)) 7

V(1 c)3 v(TC)
wherev(r,c) = (1—c)mt+ (1—T)C.

The representation (27,28) allows the determination of weights for starfddiekrgences.
Kullback-Liebler divergence K{P,Q) corresponds tg(m) = ﬁ ThusJ(P,Q) =KL(PQ) +
KL (Q,P) corresponds tg(m) = ﬁ Severalf-divergences are presented with their corre-
sponding weight function in Table 2. The weight for K2.Q) has a double pole at= 0 which is
why KL-divergence is hard to estimate—it puts a lot of weightxi?—* (11, PQ) for Tt~ 0 which by
Theorem 15 means a lot of weight ﬁ@c(%) for c~ 1 which requires a good estimatelaf(n, M)
which is difficult with modest data sample siZés.

A loss function corresponding to ea¢kdivergence in Table 2 is also shown. The weight func-
tionw(c) for the loss is for the case when= % thatis, itis a loss for a binary classification problem
with equal proportions of positive and negative examples. In this caseelitionship betweew
andy simplifies tow? (c) = 2y(1—c) sincev(3,c) = e+ 1(1—c) = 1.

The entries in Table 2 without a name for the loss correspond to lossegséhattadefinite. It
turns out that weight functions whose tail behaviour iso(@t?) or o((1—c)~?) asc goes to 0 or
1, respectively (confer Buja et al., 2005, §6) imply non-definitenesspobper loss.

5.5 Example—Squared Loss

We illustrate some of the above concepts with a simple example. ConsiderdtpsseWe have
L(n.f) =A*1-n)+ (A —1)n

and thud.(n) =L(n,n) =n(1—n) andL”(n) = —2 and thus by (32(n) = 2. From (21) we thus

have
ml-m(mt+1—1m—(1—mnt

T _
P = t+1—Tt

Choosingrt= } this becomes 3 (t) = A One can check that-& 3 (t) +t — 1 = ‘=% which

agrees with the corresponding to Triangular Discrimination in Table 2. Scaling is just a questio
of normalisation and we have already seen thas insensitive to affine offsets ifi. This illus-

trates the awkwardness of parameterisipgn terms of f: at first sightéﬁ—f4 and (ttfl)z seem quite

19. Considering KL-divergence from the weight function perspeaivggests a scheme to estimate it: avoid attempting
to estimate the regions near zero and one where the weight functiogetveA particular example of this is the

divergence Klg(P,Q) which has weight functiog() = m[[ne [e,1—¢]]. The corresponding can be worked
out but has the rather less intuitively clear foffift) = [t < t£:](t(In(55) +1) — 1%5) + [5 <t < LEJtint +

[[% < t]](t(ln(%) +1)— %), €€ [0,1). This approach to regularizing the estimation of the KL-divergence was
suggested by Gutenbrunner (1990, page 454).
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Symbol  Divergence f(t) y(TD) w2 (c) 2(0,R) (1,R) Loss

V(PQ)  Variational t—1] 165(m—3) 325(3-—c) 16[A4 > 3] 16[A < 3] 0-1
KL(P.Q) Kullback-Leibler tint e e 2 T_:ﬁ|3+%g 2 ?w% |L —
A(P,Q)  Triangular (t—1)2/(t+1) 8 16 &2 8(1—1)? Square
Discrimination
I(P,Q) Jensen-Shannon  5In (&) —3In(41) %ﬁa ﬁm% —In(1-7) —In(R) Log
T(PQ)  Arith-Geo. Mean (%5)in (&:L) zeowy ol Llin(a-A)f) - 52| i[n@-fn)+A] —
JPQ)  Jeffreys (t—1)In(t) i % NT: Apju;qv +mg NT: Aﬁb +£ —
h’(P,Q)  Hellinger (Vi—1)? N?ﬁmam\m _ﬁ\opv%\m 2 HJPM 2 ﬁb Boosting
X*(P,Q)  Pearsorx? (t—1) % ﬁ\»% NM@MW H[mm —
WPQ)  Symmetricx? % =t ﬁwaw ﬁm% +3 Nawmmmj mﬁﬁﬁm o

Table 2: Divergences and their corresponding functibremd weightsy along with the weightsv and partial losses—see Section 5.4 ;
confer Taneja (2005a); Liese and Vajda (2006). Topsge (2008)C& Q) = 2I(P,Q) and Qm Q) = 2T(P,Q) the Capacitory
and Dual Capacitory discrimination respectively. Several of the abowggnces are “symmetrised” versions of others. For
example,T(P,Q) = 3[KL(%52,P) +KL(%52,Q)], 1(P,Q) = 3[KL (P, %52) +KL(Q, %52)], IP.Q) = KL(P.Q) +KL(Q,P), and
W(P,Q) = X2(P,Q) +X?(Q,P). The Boosting loss is also know as the “exponential” loss (Buja et al., 2005ses without a name
are all indefinite losses and the forms given#£@y; -) in these cases are not normalised.
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different. Using weight functions automatically filters out the effect of affine offsets—if the
weight functions corresponding fig and f, match, therly, = I,. Finally observe that substituting
y(17) = 8 from the table into Theorem 18 we obta@é(c) = V(lrig)g -8 =2, consistent with the weight
obtained above.

6. Graphical Representations

The last section described representations of risksfasiiergences in terms of weighted integrals
of primitive functions. The values of the primitive functions lend themselvesgmaphical inter-
pretation that is explored in this section. In particular, a diagram calk&kaurveis introduced.
Risk curves are a useful aid to intuition when reasoning about risksyg#inces and information
and they are used in Section 7 to derive bounds between variousetieegand risks.

Risk curves are closely related to thest curvesof Drummond and Holte (2006) as well as
idealisedreceiver operating characteristic, or ROC curv@gsawcett, 2004). Proposition 20 makes
this latter relationship explicit via a point-line duality between risk and ROC surieditionally,
results about the Neyman-Pearson function by Torgersen (1981) adltovestablish a transforma-
tion between suitably smooth maximal ROC and minimal risk curves in Theorem @ite the
close ties betweelfi-divergences and risks, and between risk curves and ROC cuveeshow in
Proposition 19 that thareaunder an ROC curve cannot be interpreted a$-divergence.

6.1 ROC Curves

Plotting areceiver operating characteristic cunee ROC curvds a way of graphically summarising
the performance of a test statistic. Recall from Section 3.1 that in the cafi@kinary experiment

(P, Q) onaspacé, atest statistit is any function that maps pointsito the real line. Each choice

of thresholdrg € R results in a classifienx) = [1(x) > 1] and its corresponding classification rates.
An ROC curve for the test statistids simply a plot of the true positive rate of these classifiers as a
function of their false positive rate as the threshjdaries oveiR. Formally,

ROC(1) := {(FP(T0), TP (T0)) : To € R} C [0,1]2. (37)

A graphical example of an ROC curve is shown as the solid black line in Fyure

For a fixed experimen(, Q), the Neyman-Pearson lemma provides an upper envelope for ROC
curves. It guarantees that the ROC curve for the likelihood rétie dP/dQ will lie above, or
dominate that of any other test statisticas shown in Figure 3. This is an immediate consequence
of the likelihood ratio being the most powerful test since for each falseiy®msate (or sizey it
will have the largest true positive rate (or pow@rpf all tests (Eguchi and Copas, 2001). Thus
ROC(dP/dQ) is themaximalROC curve.

The performance of a test statisticshown in an ROC curve is commonly summarised by
the Area Under the ROC CuryeAUC(1), and is closely related to the Mann-Whitney-Wilcoxon
statistic. Formally, if P, Q) is a binary experiment anda test statistic the AUC is

AUC(T) = /01 B.(a) dat (38)

_ / " TP (to) FP.(To) dTo, (39)
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True Positive Rate (TP)
N

False Positive Rate (FP)

Figure 3: Example of an ROC diagram showing an ROC curve for an agpitatistical test
(middle, bold curve) as well as an optimal statistical tégtop, grey curve). The dashed
line represents the ROC curve for a random, or uninformative statistital tes

wheref;(a) = TP (1) for ato € R such that FR1p) = a.
In Section 3.1 the Neyman-Pearson lemma was used to argue that th@cuyfer the likeli-
hood ratio dominates all other curves. Since the likelihood ratio is used tedeflivergences, it

is natural to ask whether the area under the maximal ROC curvefisdarergence. Interestingly,
the answer is “no”.

Proposition 19 There is no convex f such thatP,Q) = AUC(dP/dQ) for all distributions P and
Q.

Proof Note that anf-divergence’s integral can be decomposed as follows
L(PQ = [ 10 [ dQdt (40)
t

whereX; := {x € X : dP/dP(x) =t} = (dP/dQ)~%(t). Compare this to the definition of AUE)
given in (39) whert = dP/dQ

AUC(dP/dQ) = /jOTPT(t)FPQ(t)dt

_ —/ooo(Porl)([t,oo)) dQat (41)

Xt

since FR(t) = d/dt f* [, dQ(x)dt = — [, dQ anddP/dQ > 0. If we assume there exists dn
such that for all binary experimentB, Q), I (P, Q) = AUC(dP/dQ) we would require the integrals
in (40) and (41) to be equal for glP,Q). This would requiref (t) = —(Po (dP/dQ)~Y)(]t, )) for
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all't € [0,) which is not possible for all binary experimertg Q) simultaneously. [ |

Although the maximal AUC fo(P, Q) cannot be expressed asfivergence, Torgersen (1991)
shows how it can be expressed as the variational divergence betieggmoduct measures R Q
andQx P. Thatis, AUGdP/dQ) =V (P x Q,Q x P). Following up this connection and considering
other f-divergences of product measures is left as future work.

It is important to realise that AUC is not a particularly intrinsic measure—jusbrancon
one. As the earlier discussion of integral representations has shoeve, ithvalue in consider-
ing weighted versions of integrals such as (38). As Hand (2008) notkis ioommentary on a
recent paper (outlining another type of performance curve): “Taalldbe values of the diagnos-
tic instrument, when integrating to yield the overall AUC measure, it is negessaecide what
weight to give to each value in the integration. The AUC implicitly does this usingighing
derived empirically from the data.” Along these lines, Xie and Priebe (R@06@& Eguchi and Copas
(2001) have suggested generalisations of the AUC that incorporaigbkteiand show that certain
choice of weight functions yield well-known losses.

A closer investigation of these generalisations of AUC and their connectiometsures of
divergence is also left as future work.

6.2 Risk Curves

Risk curves are a graphical representation closely related to ROCscilnaetake into account a
prior Ttin addition to the binary experime(®, Q). They provide a concise summary of the risk of
an estimaton) for the full range of costs € [0, 1] for a fixed priorm € [0, 1], or, alternatively, for
the full range of priorgtgiven a fixed cost.

A risk curve for costdor the estimator is the set{(c,L¢(Aq, T, P,Q)) : ¢ € [0,1]} of points
parameterised by co$t.A risk curve for priorsfor the estimatof is the set{ (1, LOY(A,  P,Q)) :
e [0,1]}.

Figure 4 shows an example ofrisk curve diagram On it is plotted the cost curves for an
estimate of a true posterion on the same graph. The “tent” function also shown is the risk curve
for the majority class predictor mfiil — m)c, (1 —c)mt}. Herem= 3. Other choices ofte (0,1)
skew the tent and the curves under it towards O or 1.

In light of the weighted integral representations described in Theoreetéral of the quanti-
ties can be associated with properties of a cost curve diagram. The Vitgiglionw(c) associated
with a loss? can be interpreted as a weighting on the horizontal axis of a risk curveadiagyVhen
the area under a risk curve is computed with respect to this weighting theissthe full risk IL
sincel.(n,n) = folLC(n,ﬁ)W(C) dc.

Furthermore, the weighted area between the risk curves for an esfijraatkthe true posterior
n is the regref.(n,n) —L(n) and the statistical informatiofAL(n,M) = L(1; M) —LL(n,M) is the
weighted area between the “tent” risk curve foand the risk curve fon.

The correspondence between ROC and risks curves is due to the igtibetween the true
class probabilityn and the likelihood ratialP/dQ for a fixed. As shown in Section 4.1, this

20. Unlike the cost curves originally described by Drummond and HolB@gp, the version presented here does not
normalise the risk, and plots the cost on the horizontal axis rather thandtieqp of the prior probability and cost.
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Figure 4: Example of a risk curve for costs diagram showing risk cufwesosts for the true
posterior probability) (bottom, solid curve), an estimafig(middle, bold curve) and the
majority class or prior estimate (top, dashed curve).

relationship is
ap _
dQ
Each cost € [0,1] can be mapped to a corresponding test statistic thresigetdAr(c) andvice
versa
Drummond and Holte (2006) show that their cost curves have a point-ladeelationship with
ROC curves. As can be established with some straight-forward algebraathe result holds for
our risk diagrams.

1-m n

)\n(ﬂ):Tl_n-

Proposition 20 For a given point(FP, TP) on an ROC diagram the corresponding line in a risk
diagram is
Le=(A-mcFP+m(l1—c)(1-TP), cel0,]]

Conversely, the line in ROC space corresponding to a p@iritc) in risk space is

(1— n)cFP (1-mc—Lc

TP:T[(l—c) nil-c

FPc [0,1].

An example of this relationship is shown graphic&lin Figure 5 between the point A and the
line A*,

21. An applet that demonstrates the relationship can be found htgt:/mark.reid.namefiem/
visualising-roc-and-cost-curve-duality.html
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&
o
True Positive Rate
AN
N
AY

False Positive Rate

Figure 5: Cost curve diagram (left) and corresponding ROC diagrigimt). The black curves on
the left and right represent risk and classification rates of an exanmguiéctor. The grey
Bayes risk curve on the left corresponds to the dominating grey RO@ aurthe right
for the likelihood statistic. Similarly, the dashed tent on the left corresporitie tdashed
diagonal ROC line on the right. The point labelled A in the risk diagram cporgs to
the line labelled A* in the ROC diagram.

6.3 Transforming from ROC to Risk Curves and Back

As mentioned earlier, the Neyman-Pearson lemma guarantees the ROC aunves fmaximal.
This corresponds to the cost curve being minimal. In fact, these relatieatgmual in the sense
that there exists a transformation from one to the other as we shall now daNewnake use of
a connection between the Neyman-Pearson function in (11) and the max®akRrve due to
Torgersen (1981). For completeness, a proof using our nomenatatuizee found in Appendix A.7.

Theorem 21 Let B(a, P, Q) be the Neyman-Pearson function for the binary experinier) and

let L(tt, P, Q) be the 0-1 Bayes risk on the same experiment for the pridthen, for any choice of
me [0,1] we have

L(P.Q) = L= min ((1-ma-+1—B(c.P.Q) “2)

and conversely for ang € [0, 1],

. 1
B@.RQ) = inf ~(1-ma+n-L(nPQ) 43)

i— L(1 P, Q) is the lower envelope of a parameterized t)yamily of affine functions (iro)
and is thus concave. Wh@-) andLL(-) are smooth, explicit closed form formulas can be found:
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Theorem 22 Suppos@ andL are differentiable or{0, 1] and [0, 1] respectively. Then

L(m) = (1-1B(r) + (1 B(B(m)), me [0,1], (44)
where
B = (1)
and
B(a) = mla) [(1—L(a))a+L(a) - LL()], o€ (0,1 (45)
where
L) = LYol
L(m = L(m—1il/(n)

The proof can be found in Appendix A.6.
Using (45) we present an example. Consillén) = yr(1—m) for y € [0, 1] One can readily

check thatl,, () = yr?. Hencel (o) = \/ge [O,ﬂ.ThusL(y)( )=0vLy ()AL= /ajyA
1. Substltutlng and rearranging we find that the corresporfdlisgyiven by

a+y+(y/a/yAl)(l—a— y)

By(a) = NCY

A graph of thisB(-) is given in figure 6.

By constructior(1) = 1 andp is concave and continuous 6@ 1]. The following lemma is due
to Torgersen (1991). Given mild conditions on the space of instancegjivlis a corollary which
guarantees that all concave curves on a risk diagram can be realisedne pair of distributions.
Their proofs can be found in Appendix A.8 and Appendix A.9, respeltiv

Lemma 23 SupposeX contains a connected componéht Let @: [0,1] — [0,1] be an arbitrary
function that is concave and continuous @1] such thatp(1) = 1. Then there exists distributions
P and Q onX such tha3(a,P,Q) = ¢(a) for all a € [0,1].

Corollary 24 SupposéX contains a connected component. Let[0,1] — [0,1] be an arbitrary
concave function such that for aile [0,1], 0 < (1) < TtA (1 — ). Then there exists distributions
P and Q onX such thatL (1, P, Q) = (1) for all te [0, 1].

The corollary shows that reasoning about cost-weighted risks foosdiiple binary experiments
(P,Q) can be done purely geometrically. Each experiment can be associatedasiticave curve
and vice versaso that the existence of an experiment becomes equivalent to the exisfeace
concave curve with certain properties. This relationship is exploited in tkteseetion to establish
bounds forf-divergences in Theorem 30.
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alpha

Figure 6: Graph of the parameterised Neyman-Pearson funztiery(a,P,Q) for y=i/20,i =
1,...,20. (See text.)

7. Bounding General Objects in Terms of Primitives

All of the above results are exact—they are exact representationstiziuter primitives or general
objects in terms of other primitives. Another type of relationship is an inequalitiis section we
consider how we can (tightly) bound the value of a general objgatr(B,,) in terms of primitive
objects V;—the generalised variational divergence defined belowBgpthe regret with respect to
the cost weight loss (29)). Bounditig(P, Q) in terms ofVy(P, Q) is a generalisation of the classical
Pinsker inequality (Pinsker, 1964). BoundiBg(n,f) in terms ofB¢(n,n) is a generalisation of
the so-called “surrogate regret bounds” (Zhang, 2004b; Bartlett,62006).

As explained previously, we work with treonditionalBregman divergencB,,(n,1). Results
in terms ofBy(n,A), N, A € [0,1] immediately imply results foBy,(n,), wheren, i € [0,1]* by
taking expectations with respectXo

7.1 Surrogate Regret Bounds

Suppose for some fixech € (0,1) that B, (n,n) = a. What can be said concerning the value
of Bw(n,R) for an arbitrary weight functiomv? Surrogate regret bounds answer this question by
showing how the value 0B, is controlled by a function oBy,. That is,B¢, < F(By) for some
non-decreasing. The main result of this subsection, Theorem 25, presents a geneiadaie

767



REID AND WILLIAMSON

bound for proper losses implicitly &, > F~1(B,,). However, as Corollary 28 shows, this implicit
bound can always be inverted.

Previous work on this problem is summarised in Appendix D. Apart from tieoretical
interest, these bounds have direct practical implications: it can often ble srapler to minimise
Bw(n,H) overf than to minimiseB.(n,f). The bounds below will tell the user of such a scheme
the maximum price they will have to pay, in terms of statistical performance, fiog @sparticular
surrogate.

Theorem 25 Let g € (0,1) and let B,(n,n) denote the point-wise regret for the cost-weighted
loss/c,. Suppose it is known thatBn,f) = a. Then the point-wise regret(B, ) for any proper
surrogate losg with point-wise risk L and Bayes riskdatisfies

B(n,N) > Y(co,a) vV Y(Co, —01), (46)

where
Y(co,a) := B(Co,Co+ ) = L(Co) —L(Co+a) +aL'(co).
Furthermore (46) is tight.

The proof of this bound is almost a direct consequence of the factdfedts for proper losses
are Bregman divergences (see Section 4.4). This is a simplified versamegdrlier proof by Reid
and Williamson (2009). We will make use of the following expressiorBoderived by Buja et al.
(2005). Its proof can be found in Appendix A.10.

Lemma 26 Suppose Lis the conditional risk for cost-sensitive misclassification loss (see 5.2). For
any loss c= [0, 1] the cost-weighted regret:B, 1) := Lc(n,A) — Ls(n) satisfies

Bc(n,A) =[n—c[[nAfq<c<nvil.

Proof (Theorem 25) Let B be the conditional regret associated with some arbitrary proper loss
¢ and suppose that we know the cost-weighted reBggin,n) = a. By Lemma 26, this implies
thata = n — cp whenf < cp < n anda = cp+n whenn < ¢y < . SinceB(n,R) is a Bregman
divergence its value decreasegms || decreases (see Section 2.5). Thus, in the first case we have
N <co<co+a=nandsoB(n,n)=B(co+a,R) > B(co+ a,cp) and is minimised wheR = cp.

The proof of the second case, wher= ¢p — a < ¢y < 1} proceeds identically. Thug&(n,R) is
no smaller than each &(co+ a,cp) andB(co — a, Cp), giving the required result. [ |

By restricting attention to the case whey= % and symmetric losses we obtain, as a corollary,
a result similar to that presented by Bartlett et al. (2006) for surrogatgimimsses sincB% is

easily shown to be half the 0-1 regret. It is obtained by substitmtiﬁg% and noting the symmetry
of L impIiesL’(%) = 0; Appendix D contains some examples illustrating this special case.

Corollary 27 If L is symmetric—that is, l% +c) force [0, —]—and E’% (n,A) =a, then

B(n.A) >L(3) - L3 +a).

The bounds in Theorem 25 can be inverted to allow the approximate minimisatiicaxt-
weighted loss via the minimisation of a surrogate loss.
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Corollary 28 Minimising Bn,R) w.r.t. j minimises the bound on.B),1) for each c< (0,1).

Proof To see this, let)/(cp,a) := %w(co,a) = —L'(co+0a)+L'(co). SincelL is concavel’ is
non-increasing and hend¢&(co+ a) < L'(cp) and soy/'(co,a) > 0 and thereforex — Y(co, ) is
non-decreasing and thus invertible (although there may be non-unggiangoints whergs(co,a)
is constant ina). This invertibility means minimisind(n,n) w.r.t. f, minimises the bound on

Bc(naﬁ) .

Finally, Theorem 25 can be used to immediately establish a loose, secardsorahd ina for
symmetric losses in terms of their weight function, similar to a result due to Buja(2085).

Corollary 29 Suppose Bis the regret for a symmetric proper loéwith associated weight function
w. Then .
S W(3) <12
Bu(n.1) = =2 [By(n.)] .

Proof A Taylor series expansion of the second term in the bound of Corollaap@idta = % gives

WD), W(F) o,
Bw(n,N) > 5 O A

since the linear term cancels and there is no third order termwirscgymmetric and thus’(3) = 0.
Settinga = B%(n,ﬁ) gives the result. [ |

Some extensions to the above result have been recently presentedt2Gt0).

7.2 General Pinsker Inequalities for Divergences

The many differentf divergences are single number summaries of the relationship between two
distributionsP and Q. Each f-divergence emphasises different aspects. Merely considering the
functions f by which f-divergences are traditionally defined makes it hard to understand these
different aspects, and harder still to understand how knowledfg obnstrains the possible values
of It,. Whenly, =V (a special primitive fotl{) andIt, = KL, this is a classical problem that has
been studied for decades; Appendix E summarises the history.

Vajda (1970) posed the question dight lower boundbn KL-divergence in terms of variational
divergence. This “best possible Pinsker inequality” takes the form

L(V):=, jnf KL(PQ), Ve[0.2) (47)

where the infimum is over alP and Q such thatv(P,Q) = V. Recently Fedotov et al. (2003)
presented aimplicit (parametric) version of the form

(V(t),L(t))ters (48)
2

2
V(t) =t (1— (coth(t) - i) ) ,  L(t)=In (Sinth(t)> +tcoth(t) — S|r1th2(t)
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We will now show how viewingf -divergences in terms of their weighted integral representation
simplifies the problem of understanding the relationship between differegriggnces and leads,
amongst other things, to an explicit formula for (47).

We make use of a generalised notion of variational divergence:

Vn(P,Q):=2 sup |TEpr— (1—-1Eqr|, (49)
re[-1,1%
wherette (0,1) and the supremum is over all measurable functions fioto [—1, 1].

Fix a positive integen. Consider a sequence0y < Th < --- < T, < 1. Suppose we “sampled”
the value ofV(P, Q) at these discrete values of Sincett— Vy(P,Q) is concave, the piecewise
linear concave function passing through points

{(m, Ve (PQ) Ly

is guaranteed to be an upper bound on the variational ¢uE¥&(P, Q))re(0,1)- This therefore gives
a lower bound on thé-divergence given by a weight functign This observation forms the basis
of the theorem stated below.

Theorem 30 For a positive integer n consider asequefice Ty < Th < --- < T < 1. Let1p :=0
andt,,1:=1andfori=0,...,n+ 1let

Gii= (1-T6) ATE —Vr (P.Q)

(observe that consequentpy = Yn. 1 = 0). Let

Ay = {a—(al,...,an)eR”: (50)
Wis1— Ll"'_a| Wi mYig ':1,...,n}.
Thy1— T T —Th_1

The set f defines the allowable slopes of a piecewise linear function majorizirgVy(P, Q) and
matching it at each ofy,...,T,. Fora= (ay,...,a)) € Ay, let

Wi—Yir1+ai 1T 1 —aTE

w = ,1=0,...,n, (51)
Air1— g

j = {ke{l,...,n}:ﬁj(<%§fﬁ<+1}, (52)

o= [i<ilfi+[i=jl3+[i<i]fi_1, (53)

Oai = [i<iJ@—a)+[i>|J(-1—a_1), (54)

Bai = [i<jl(Wi—am)+[i>j](Pi-1—a-175 1) (55)

fori =0,...,n+1and lety; be the weight corresponding to f given by (28).
For arbitrary I+ and for all distributions P and Q ofX the following bound holds. If in addition
X contains a connected component, it is tight.

H(PQ > QQL’!Z)/M (@ai T+ Bay s (i (56)
= min3 S [0t + Bar) 1 () — a1 (70
(Ga|7'ﬁ+[3a|)rf( )+Ga|rf( )] (57)
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wherel ¢ (1) := [My¢ (t)dt andl ¢ (1) := [T ¢ (t)dt

Equation 57 follows from (56) by integration by parts. The remainder gbthef is in Section A.12.
Although (57) looks daunting, we observe: (1) the constrainta are convex (in fact they are a
box constraint); and (2) the objective is a relatively benign functioa of

Whenn = 1 the result simplifies considerably. If in addition = 3 thenV: (P,Q) = zV(P.Q).
Itis then a straightforward exercise to explicitly evaluate (56), especidigmy; is symmetric. The
following theorem expresses the result in term¥ 0P, Q) for comparability with previous results.
The result for KL(P, Q) is a (best-possible) improvement on the classical Pinsker inequality.

Theorem 31 For any distributions FQ on X, let V :=V(P,Q). Then the following bounds hold
and, if in additionX has a connected component, are tight.

Wheny is symmetric abou$ and convex,

I1(PQ) >2[Ff (3-%)+ %M (3)—Tr(3)]

NI

andl s and F_f are as in Theorem 30.

This theorem gives the first explicit representation of the optimal Pinskandf?

Corollary 32 The following special cases holggymmetric about/2).

2—\/4-V2,

2Vin(3Y)),

N(P,Q)
JP.Q)
W(PQ)
1(P.Q)
T(P.Q)

(A\VARAYS

Vv

V2
(% 2)I2=V)+(3+%)IN2+V) -In(2),

In <\/W) —In(2).

The following special cases holdié not symmetric)

v

v

X*(PQ) = [V<1Vi+[V =15y, (58)
: V2B B-2-V B+2-V B+2-V
KL(PQ) > Be[vrpglzfv1< 2 )ln(B,ZW)JF( 2 )ln(ww). (59)

By plotting both (48) and (59) one can confirm that the two bounds (impliciteplicit) coincide;
see Figure 7.

The above theorem suggests a means by which onestamnatean f-divergence by estimating a
sequencel (TLP,Q))L ;. A simpler version of such an idea (more directly using the representation
(27)) has been studied by Song et al. (2008).

22. A summary of existing results and their relationship to those preseetedshgiven in Appendix E.
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Figure 7: Lower bound on K(P,Q) as a function of the variational divergen¢¢P, Q). Both the
explicit bound (59) and Fedotorev et al.’'s implicit bound (48) are plotted.

8. Variational Representations

We have already seen a number of connections between the Bayes risk

LORPQ) = inf Exu[£(N(X),A(X))
and thef-divergence
1P =Eo | f 5 )| (60)

Comparing these definitions leads to an obvious and intriguing point: the defioitib involves

an optimisation, whereas that foy does not. Observe that the normal usage of these quantities
is that one wishes to know not just the real numhém, P,Q), but also the estimatg: X — [0, 1]

that attains the minimal risk. In this section we will explore two view§ef-relating the standard
definition to avariational one that explains where the optimisation is hidden in (60). We then
explore some simpler relationships when using the linear “loss”. In Appdnave consider the
variational representation dt obtained by representinfy in terms of the LF duaf*. We also
explore some generalisations that naturally arise from this representatiorelate them to each
other and to the standarfddivergence.
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The easiest place to start, unsurprisingly, is with the variational diveggeBelow we derive a
straight-forward extension of the classical result relaﬂﬁgl(%, P,Q) toV(P, Q). We then explore
variational representations for genefatlivergences.

8.1 Generalised Variational Divergence

Let € C {—1,1}* denote a collection of measurable binatgssifierson X. Consider the (con-
strained®) Bayes risk for 0-1 loss minimised over this set:

Lo H(P.Q) = inf Ex.y)p " H(r(X), Y)]. (61)
The variational divergence is so called because it can be written

V(PQ) =2 /;SCUDI?! P(A) —Q(A)], (62)

where the supremum is over all measurable subséXs 8ince

V(PQ = sup [Epr—Eqrl,

re(-1,1]%
consider the following generalisation \6f
Ven(PQ):=2 sup [mEpr— (1—-10)Eqr|, (63)
reRC[-1,1)X

wherett € (0,1) and the supremum is over all measurable functions fioto [—-1,1]. (If R =
[—1,1]* we just writeV(P,Q).) Whenrmt= % this is a scaled version of whatiMer (1997a,b) calls
anintegral probability metric?*

If R is symmetric about zer@r € R = —r € R), then the absolute value signs in (63) can
be removed. To see this, suppose the supremum was attaimednat thata := TiEpr — (1 —
TMEqr < 0. Choosd” := —T and observe thatfpr’ — (1 — TEgF = —a > 0. ThusVy (P,Q) =
2SURcprcy—1,1x (TEPr — (1 —T)Eqr).

Let sgnR := {sgnr: r € R} and fora,b € R, letaR+b:= {ar+b: r € R}.

Theorem 33 Suppos& C [—1,1]* is symmetric about zero arsjnR C R. For all e (0,1) and
allPand Q

L?SZJ%R+1)/2(T[, PQ) = % - %VfR,T[(Pa Q) (64)

and the infimum in (61) corresponds to the supremum in (63).

The proofis in Appendix A.11.

23. Tong and Koller (2000) call this thestrictedBayes risk.

24. Zolotarev (1984) calls this probability metric with-structure There are probability metrics that are neittfer
divergences nor integral probability metrics. A large collection is due hBa(1991). A recent survey on rela-
tionships (inequalities and some representations) has been given by &idlSu (2002). The idea of generalising
variational divergence by restricting the set the supremum is takensoakso used by Ben-David et al. (2010).
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8.2 The Linear “Loss” and the Generalised Variational Divergence

Theorem 33 shows that computikg  involves an optimisation problem equivalent to that arising
in the determination of.. The argmin in the definition of. is usually called théwypothesigor
Bayes optimal hypothe$isFollowing Borgwardt et al. (2006) we will call the argmax in (63) the
witness

WhenR = [—1,1]* andmt= 3, sgnR C R and furthermore = (sgnk + 1)/2 = {0,1}* and so
Theorem 33 reduces to the classical resultfifat (1, P,Q) = 1 — 2V (P.Q) (Devroye et al., 1996).

The requirement that sgthC R is unattractive. It is necessitated by the use of 0-1 loss. It can
be removed by instead considering timear loss

MM (r(x),y) =1-yr(x), ye{-11}.

If r is unrestricted, then there is no guarantee fffat>- —o and is thus a legitimate loss function.
Below we will always consider € R such that the linear loss is bounded from below. Observe that
the common hinge loss (Steinwart and Christmann, 2008) is sitAB%( f (x),y) = 0V ¢ (f(x),y).

Theorem 34 Assume thaR C [—a,a]* for some a> 0 and is symmetric about zero. Then for all
me (0,1) and all distributions P and Q of(
1

L!’}I{n(nvl:’aQ):l_ 2

Vzn(P,Q)

and the r that attainﬁi!}z”(m P, Q) corresponds to the r that obtains the supremum in the definition
of Ve n(P, Q).

Proof

(MBx~pl™ (r(X), —1) + (1~ M Ex~f"™ (r(X), +1))

(TEx~p(1+1 (X)) + (1= MEx~q(1-r(X)))

in‘;}‘2 (TM+TEpr + (1 —1) — (1 —mEqr)

re

= 1+ rIQC];z(T[EpI' —(1-mEqgr)

= 1—sup(riEp(—r)— (1-mMEq(-r))

)
rek

= 1—sup(tEpr — (1—mEqr)

reR

1

2

where the penultimate step exploits the symmetrR of |

LY(PQ) = inf

inf
reR

= 1- VfR,T[(P? Q)7

Now suppose thaR = By := {r: ||r||s% < 1}, the unit ball in3(, a Reproducing Kernel Hilbert
Space (RKHS) (Satikopf and Smola, 2002). Thus for alie R there exists &eature mapp: X —
H such that (x) = (r,@(x))sc and{(@(x), ®(y))s = K(Xx,y), wherek is a positive definité&ernelfunc-
tion. Borgwardt et al. (2006) show that

1
Va1 (P.Q) = Z[Ep@—Eq@|5. (65)
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Given  Assumed Derived
(PQ foy I+(P.Q)
(MPQ) U«xwWW JU(n))=ALTP.Q)
L(n)
f Lw(n, ), Bw(n,1)

Table 3: Summary relationships between key objects arising in Binary Expgemésiven” in-
dicates the object is given or provided by the world; “Assumed” is somethi@giser of
assumes or imposes in order to create a well defined problem; “Deriveidaies quanti-
ties that are derived from the primitives.

Thus
i 1
Ly (TLP.Q) = 1 - 7| Ep@— EqQsc (66)

Empirical estimators derived from the correspondence between (83b6&hlead to the-Support
Vector Machine and Maximum Mean Discrepancy; see Appendix H. Fugbeeralizations of
variational representations bf are explored in Appendix F.

9. Conclusions

There are several existing concepts that can be used to quantify thetohformation in a task
and its difficulty: Uncertainty, Bregman information, statistical information, &asisk and regret,
and f-divergences. Information is a difference in uncertainty; regret igference in risk. In the
case of supervised binary class probability estimation, we have conrasutedxtended several
existing results in the literature to show how to translate between these pamspethe represen-
tations allow a precise answer to the question of what are the primitives fanybéxperiments.

We have derived the integral representations in a simple and unified mamaeillustrated
the value of the representations. Along the way we have drawn connec¢ticen diverse set of
concepts related to binary experiments: risk curves, cost curves, R®€s and the area under
them; variational representations foldivergences, risks and regrets.

Two key consequences are surrogate regret bounds that areeatnmme general and simpler
than those in the literature, and a generalisation of the classical Pinksaalitggroviding,inter
alia, an explicit form for the best possible Pinsker inequality relating Kullbagibler divergence
and Variational divergence. We have also presented a new derivdtgupport vector machines
and their relationship to Maximum Mean Discrepancy (integral probability nstric

The key relationships between the basic objects of study are summarisddér8 Band Figure 1
in 81.2.

All of the results we have presented demonstrate the fundamental and &eymreture of the
cost-weighted misclassification loss, which is becoming increasingly apme@diathe Machine
Learning literature (Bach et al., 2006; Beygelzimer et al., 2008). Thepaew developed in this
paper has also recently been used to better understand the structunmpisite binary losses
(losses involving a link function)—see Reid and Williamson (2010).
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More generally, the present work is small part of a larger structusglareh agenda to under-
stand the whole field of machine learning in terms@ftions between problems. We envisage
these relations being richer and more powerful than the already valahletionsbetween learn-
ing problems. Much of the present literature on machine learning is highly solitcussed. Of
course one does indeed likegolveproblems, and we do not suggest otherwise. But it is hard to
see structure in the panoply of solutions which continue to grow each Vearpresent paper is a
first step to a pluralistic unification of a diverse set of machine learninigi@mnus. The goal we have
in mind can be explained by analogy. There are several such analogies:

Computational Complexity Within the field of NP-completeness (Garey and Johnson, 1979; John-
son, 1982-1992; 2005-2007) lead to a detailed and structured tarttbng of therelation-
shipsbetween many fundamental problems and consequently guides the seasotufions
for new problems.

Functional Analysis Compare Machine Learning problems with mathematigattions In the
19th century, each function was considered separately. Functiorayds (Lindstbm,
2008) cataloguedthem by consideringetsof functions andelations (mappings) between
them and subsequently developed many new and powerful tools. Thagirng abstraction
and focus on relations has remained a powerful force in mathematics (\§fikj29007).

Biology A systematiccataloging (taxonomy) resonates with Biology’s Linnean past—and tax-
onomies can indeed lead to standardisation and efficiency (Bowker andlSe9). But
taxonomies alone are inadequate—it seems necessary to understanittbesigps in a
manner analogous t8ystems Biologwhich “is about putting together rather than taking
apart, integration rather than reduction.... Successful integratior atygtems level must
be built on successful reduction, but reduction alone is far fromcseiffi” (Noble, 2006).

Geology Finally, Lyell's Principles of GeologyLyell, 1830) was a watershed in Geology’s history
(Bowker, 2005); prior work igre-historical. Lyell's key insight was to explain the huge di-
versity of geological formations in terms of a relatively simple set of transétions applied
repeatedly.

These analogies encourage our aspiration that by more systematicallgtandéeng theela-
tionshipsbetween machine learning problems and how they carabsformednto each other, we
will develop a better organised and more powerful toolkit for solving existind future problems,
and will make progress along the lines suggested by Hand (1994).
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Appendix A. Proofs

This appendix presents the proofs that were omitted in the main body of tkee pap

A.1 Proof of Corollary 3

Integration by parts dfi’(t) gives [y t@'(t) dt = ¢ (1) — (¢(1) — ¢(0)) which can be rearranged to
give

d(1)= [ g0 dt+ (91) - 90).

Substituting this into the Taylor expansiongif) about 1 yields
G = o) +g(1)(s—1 +/1t—s)(p(’(t)dt
= o+ | [ 10w -e0)| -1+ [ -9 F et
= 91+ (91— 90)(s- 1)+ | 1t<s—1> GO dts [ (9. ¢' 0
= G0+ (D) - @05 [ wsH@)
wherey(s,t) := min{(L—t)s, (1 — s)t}. This form ofy is valid since

—(ts—1)+(t—9:) = {—ts+t—t+s7 t>s

—ts+t, t<s
_ fs—ts t>s

t—ts, t<s
= min{(1-t)s,(1—s)t}

as required.

A.2 Proof of Theorem 6

Expanding the definition of the Jensen gap using the definitiangifes
Juw(S)] = Euw(S)] - w(E,[S])

Eu[@(S) +bS +a] — (@(Ey[S]) + bE,[S] + &)

Eu[@(S)] + bEL[S] 4 a— (Ey[S]) — bEL[S] —

= Jul®(S)]

as required.
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A.3 Proof of Theorem 9

Proof Given a taskTt P, Q; /) we need to first check that

ﬂmw:mewm+1—mL<m+j_n) (67)

is convex and that™(1) = 0. This latter fact is obtained immediately by substituting 1 into
fT(t) yielding L(m) — L(11) = 0. The convexity off " is guaranteed by Theorem 7, which shows that
L is concave and the fact that the perspective transform of a conmekidu is always convex (see
Section 2.1). Thus the function

Tt
t—l(m,m+1-1m=—(t+1-TML| ———
R S ey

is the composition of a convex function and an affine one and therefarexo
Substituting (67) into the definition df-divergence in (13) yields

Eq[f™(dP/dQ)] = EQ[L() (”S:(fl ”)L(ndPJrT([iF—)ﬂ)dQ)]

_ L(T[)—/L( gl\j)dl\/l

sincedM = TP+ (1 — m)dQ. Recall thatn = TdP/dM. SinceL(m) is constant we note that
L(m) = Ev [L()] =L(1t;M) and so

Eq[f(dP/dQ)] = L(1)—Ewm[L(n)]

I
I
B
=
|
1=
>
=

as required for the forward direction.
Starting with
1-n 1-1m n
L™(n) :=— f
Ln) 1-m < T 1—n>
and substituting into the definition of statistical information in (20) gives us

AL"(N,M) = Eu [L”( )] Em [L"(n)]

- LT 1—T11 n
- /. f )dM — / < iy 1—n)dM

sincef(1) =0,dQ=(1-n)/(1—mdM and

1-m
dP/dQ==_" 7111

by the discussion in Section 4.1. This proves the converse statement oétierth |
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A.4 Proof of Corollary 13

Proof Let f9(t) :=tf(1/t) denote the Csiéz-dual of f as described in Section 2.1 above. It is
known (see (16) and, for example, Liese and Vajda, 2006) that

It (P,Q) = I;0(Q,P) ifandonlyif f(t)=fo(t)+cit+c,
for somecy, ¢, € R. Sincef andy are related byf” (') = y(r) we can argue as follows. Ob-
serve thatf'(t) = f(1/t)—/(1/t)/t andfO"(t) = £”(1/t) /t3. Hencef " (1) = £ () (£)°.
Let = 1—7t Thusl' = ;™. Hence

5 = ()2

_ T(Sy(r()< n >3

1-m

= m™y(1-1).
Thus ify(l— M) = y(11), we have showm— y(1— ) is the weight corresponding . Observing
thatgtz (fO(t) +cat 4 c2) = £9” concludes the proof. [ |
A.5 Proof of Theorem 18
Proof Theorem 9 shows that

1-n 1-1m n

T e —

and we have seen from (32) thaf(c) = —(L™)"(c). The remainder of this proof involves taking
the second derivative df, doing some messy algebra and matching the result to the relationship
betweery and f” in (Equation 28).

Lettingrp=rp(n) = =1 ” and taking derivatives of (68) yields

—(LM'(n) = (1—ﬂ)_1[—f(n) +(@=n)f'(rory
—(LN'M) = Q=) = (rprp+ L —n)(F (rrg+ " (r) (r)?) — £ (rory
(l—ﬂ)‘l[(—Zr%Jr(l—n) ”)f() +(L=n)(rp)? " (r)].
However, the form of; means ) = =" and sor, = =

rr 1- n)z rr (1-n)? n)
of f'(rn) in the above expression vanishes

(-2t (- =T [(1:31)2 +(1_”><1—2n)3] 0

This means the coefficient

Substituting this back inte-(L)” gives us

SUY) = )

_ 1_nf// 1-m n (1_n)2 1
Cl-m T 1-n ™ (1-n)?

B 1-m _,/1-m n
M= e ( m 1—n>'
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By Equation 28 we have

y(t) = éf” <1t_t> :

(1-om - in that expression gives

(1-om\  v(mc)® (1= ¢
Y v(re) ) (1—c)3® ml-c)

Thus 11 (10 L L
ml—1t —C)Tt —T —T C
v (S ) = et () e
as required. The argument to show the inverse relationship is essentiadiyrtiee |

A.6 Proof of Theorem 22
Proof Consider the right side of (42) and differentiate with respect:to

2 (1 ma (1L B(a)) = (1) (@)

Setting this to zero we have — 1) = 1¥'(a) and thusp/(a) = 1*7“ Sincef is monotonically

increasing and concav@, is monotonically decreasing and non-negative. Thus we can set

a=p"" (i”) €0,1].

Substituting back intdl — ma + 11(1— B(a)) we obtain (44).
Now consider the right side of (43):

1
F[((1—11)O(+1T—L(n)). (69)
Differentiating with respect tawe have=2 — &n") + %. Setting this equal to zero we obtain
—-a L L
7_ﬂ+i]2-[):07 e (071]
11 T TE

= o+l (m—L(m =0.

Observing the definition dt. we thus have thdi(n) =0o. Now

P~ L)
= -7l () — L (1) + L' (1)
— mw(m
> 0

sincelL is concave. Thud.(-) is monotonically non-decreasing and we can write L_l(a). In
order to ensuret € [0, 1] we substitutet= LL(a) into (69) to obtain (45). [ |
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A.7 Proof of Theorem 21

Proof Since the true positive rate forc {—1,1}* is TP = P(r~1(1)) and the false positive rate
forris FR = Q(r~1(1)) we have

B(a,PQ) = sup {P(X/): QX/)<a},
re{-1,1}%

whereX; :=r"1(1).
Noting that the 0-1 loss af is simply its probability of error—that is, the average of the false
positive and false negative rates—we have for gaeh0, 1] that the Bayes optimal 0-1 loss is

LIRQ) = _inf {(1-1Q() +m(1—P(X)}

since the false negative rate FN P(X\ X;') = 1—P(X,"). Thus for allt,a € [0,1], and all
measurable functions X — {—1,1},

L(mPQ) (1-mQ(X) +m(1—P(X["))
(1-moa+m(1-P(X;))

(1-ma+m(1l-p(a,RPQ)).

ININ A

Thus, we see that(m, P, Q) is the largest numbét such that{1 — ma + (1 — B(a)) > L for all
a € [0,1] and hence one can set

L(mMPQ) =L= ar;w[énl]((l— ma+T1(1—B(a))

for eachre [0,1].
Conversely, we can express the Neyman-Pearson furgiioterms of the Bayes risk. That is,
for anya € [0,1], B(a,P,Q) is the largest numbéds such that

vme [0,1] (1-moa-+T1(l—p)>L(m
& vmel0,] (1-ma-L(m>mnp-1)
= Ve (0,1] %((l—n)a—L(n))ZB—l
& vVne (0,1 B< %[((1—n)a+n—IL,(n))

Thus we can set

me(0,1] TU
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A.8 Proof of Lemma 23

Proof LetX’ = [0,1] andP be the uniform distribution oft’. OverloadP andQ to also denote the
respective cumulative distribution functions (i.B(x) = P(]0,X])). ThusP(m) = 1). SetQ(m) =
@(11). Sinceq(-) is increasing it suffices to considgr) of the formry(x) = [x < 1. Hence

Bla)=maxe(m): 0<n<1 n<a}, ae|01].

The maximum will always be obtained for= a and thusB(a) = @(a) for a € [0,1]. Finally, a
pair of distributions oriX can be constructed by embedding the connected comp@neriX into
X'. Chooseay: € — X’ such thag is invertible. Such @ always exists sinc€ is connected. Then
gt induces distribution® andQ on € and thus ori by subsethood. [ |

A.9 Proof of Corollary 24

Proof Choose ap satisfying the conditions and substitute into (43). This gives a corresmppnd
@(-). We know from the preceding lemma that there eRistndQ such tha3(-,P,Q) = ¢(-) which
corresponds té.(-, P, Q). Thus it remains to show that the functigrefined by

o) = inf ~((1—ra-+ - ()

is concave and satisfiggl) = 1. Observe thgB(1) = infc oy 1M Now by the upper bound on

Tt

P, we have% > 1> 1 But limye,g PLH(") = 1 and thug3(1) = 1. Finally note that

pla) = inf (47 e+ (- wim)

(0,1

This is the lower envelope of a parameterized fhyamily of affine functions (ina) and is thus
concave. |

A.10 Proof of Lemma 26

Proof From Theorem 14 we know that(n) = min{(1—n)c,(1—c)n} and note thafl—n)c <
(1-c)n <= c<n. Then, by the definition of. and the identity X- [p] = [-p] we have

~

Be(n,n) = (1-n)c[h >c]+(1-cn[h <c]-min{(1-n)c,(1-c)n}
= (I-n)c[A>c]+(1-cnlh <c]—-(1-n)c[n>c]—(1-c)n[n <]
= (I-n)c(f=c]—[n=c])+(L-cn([h <c]—[n<c]).

Note that[} > c] — [n > c] is either 1 or -1 depending on whethge>c >n orfj <c<n and is
zero otherwise. Similarlyji < c] — [n < c] is 1 whenf < ¢ <n, is -1 when\ > c¢>n and is zero
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otherwise. This means

R 1-n)c—-(1-cn, RH>c>
Bc(n,n) = (=me-{i=on, 1 l
—(1-n)c+(1-cn, n=c>n
_Je=n, n=c>n
~ In-c¢ n=zc>i
= In—c[[min{n,n} < c<max{n,n}]
as required. |

A.11 Proof of Theorem 33
Proof LetC:= (sgnR+1)/2C {0,1}* and so sgfk = 2C — 1. Then
LI Y mPQ) = jQEE(x,Y)NPEO_l(r(X)aY)
= inf (TExp®(r(X),0) + (1 - Exo* (r(X),1))
= inf (Mxp[r(X) = 2 + (1 T Ex-qlr (X) = 0])
= jgg(nﬂipr +(1-mEq(1—r))

since Ram = {0,1} = Ex.p[r(X) = 1] = Expr (X) andEx..q[r(X) = 0] = Ex.q(1—r(X)). Let
p+1

p=2r—1€2C—1. Thusr = 22=. Hence
LYY mPQ) = nf | (TIEP (pzl) —(1-mEq (1— p?))
. ;peizng_l(rﬂEp(er 1)+ (1-mEq(1-p))
_ ;peizrgl(T[IEJpp+(1—T[)EQ(—p)+T[+(1—"))
— % +5 peizneffl(mEPp —(1-mEgp)
_ ;_;p;%plmp(—p) ~ (1-TEq(-p)).

SinceR is symmetric about zero, s¢R) = 2€—1, € C {0,1}* is symmetric about; that is,
peC=(1-p)ecC. Thus

LI mPQ) = sup (TiEpp — (1—T)Eqgp)

pe2e—1

Voe_11(P,Q)

ngrfR,Tr(Pa Q) (70)

NIFRNIFP NI
AR AEFE NP
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Since by assumption sghC R, the supremum in (63) will bet1-valued everywhere. Thus
Vsgnr,n(P, Q) = Vg n(P, Q). Combining this fact with (70) leads to (64).

Finally observe that by replacing inf and sup by argmin and arg max thepfanedf the theorem
is apparent. |

A.12 Pinsker Theorems

Proof (Theorem 30)Given a binary experimer{f, Q) denote the corresponding statistical infor-
mation as

O() = Qo) (1) 1= AL H(TLP.Q) = TA (1~ T) — Yipgy (1),

whereyp o) (T) = Y(1) = ]LO (1, P,Q). We know that is non-negative and concave and satisfies

(1) < 1A (1—m) and thusp(0) = lIJ(l) =0.
Since

1
(RQ) = [ olmyi(mar 71
I(P,Q) is minimized by minimizingppq) over all (P, Q) such that
Q6 =@ =Te A (1-T6) — Wipg) (T6).

Let; := (1) = 5 — 2V (P.Q). The problem becomes:

Given(m, ).,  find the maximalp: [0,1] — [0, 3] such that (72)
W) =i, i=0,....n+1, (73)
Y(m <mA(1—m), e [0,1], (74)
Y is concave (75)

This will tell us the optimalg to use since optimising ovap is equivalent to optimizing over
L(-,P.Q). Under the additional assumption 8i Corollary 24 implies that for any satisfying
(73), (74) and (75) there exisBsQ such thafL(-,P,Q) = W(-).

Let W be the set of piecewise linear concave functiongOot] havingn+ 1 segments such that
Y € W= Y satisfies (73) and (74). We now show that in order to solve (72) it gsffic consider
PYeW.

If gis a concave function oR, then

dg(x) == {se R: g(y) <g(X) +(s,y—x), yc R}

denote thesup-differentialbf g atx. (This is the obvious analogue of teab-differential for convex
functions Rockafellar, 1970.) Suppa$es a general concave function satisfying (73) and (74). For
i=1,...,n, let

Gl = {[0, Y>g’:m— iR islinearand Zg¥(m)| € 6¢J(m)}.

Observe that by concavity, for all concaesatisfying (73) and (74), for alj € U, Gi(p, g(m) >
W(m), e [0,1].
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A AY(
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Figure 8: lllustration of construction of optimal(m) = L(1,P,Q). The optimaly is piecewise
linear such thaty(15) = W;, i =0,...,n+ 1.

Thus given any sucty, one can always construct

(1) = min(gf (). ..., g% (1) (76)

such thatp* is concave, satisfies (73) agd (1) > Q(11), for all te [0, 1]. It remains to take account
of (74). That is trivially done by setting

W(1t) = min(y* (1), TA (1 — 1)) (77)
which remains concave and piecewise linear (although with potentially origoaadd linear seg-

ment). Finally, the pointwise smallest concabesatisfying (73) and (74) is the piecewise linear
function connecting the point®,0), (Tu, Y1), (T, W2), . . ., (T, WUm), (1,0)

Letg: [0,1] — [O, %] be this function which can be written explicitly as
g(T[) _ (llh + (l*lJIJrl | LIJ)( : Tﬁ)) . [[T[E [T[iani+l]]]a i — 0,...,n,
Thi1 — T
where we have defineh := 0, Yo := 0, T, 1 := 1 and@,. 1 :=0.

We now explicitly parameterize this family of functions. Lgt [0,1] — R denote the affine
segment the graph of which passes throughy;), i = 0,...,n+ 1. Write pi(17) = i+ b;. We

know thatp;(15) = y; and thus
bi=yi—am, i=0,....,n+1
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In order to determine the constraints @an sinceg is concave and minoriza$, it suffices to only
consider(1s_1,9(15_1)) and(Tg.+1,9(T541)) fori = 1,...,n. We have (foi = 1,...,n)

Pi(T5-1) >g(T-1)
= gT,_1+ b > Wi
= am 1+yi—atm >y
= a(Mma—-T1) >
—

<0 T
= a < qufl lIJI'
Th1—T§
Similarly we have (foi =1,...,n)
Pi(Th+1) > g(Ti+1)

= aTiy1+b = Yit1
= am1+Yi—am > Wi
= (M—T)  >Pipa— Y
——
N ai>° > Wiss — Wi
Tit1— T
We now determine the points at whighdefined by (76) and (77) change slope. That occurs at the
pointsTtwhen

pi (1D = Piy1(1)
= am+Yi —aT =a 1T+ Y1 —a1Th1
= (@p—a)m =Yi—Pir+aa—aTg
Wi —Wir1+ai11Thy1
A1 — 4

= i =

fori=0,...,n. Thus

W(m = pi(m), me 1,7, i=1...,n
Leta= (a,...,an). We explicitly denote the dependencelobn a by writing Y. Let

Ga(m) = TA(1-T)—Ya(T)
= OaiT+Baj, TE[M_1,T],i=1,....,n+1,

wherea € A, (see (50))%, aa; andpB,; are defined by (53), (54) and (55) respectively. The extra
segment induced at indgxqsee (52)) is needed sinte— 1A (1— 1) has a slope change at= %
Thus in generalgp, is piecewise linear witn+ 2 segments (recallranges from 0 ta + 2); if
T = % for somek € {1,...,n}, then there will be only+ 1 non-trivial segments.

Thus

{"H 5. - [ [ R ac /%}
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Y(0)
o5y A (1) A

Figure 9: The optimisation problem when= 1. Giveny, there are many risk curves consistent
with it. The optimisation problem involves finding the piecewise linear concakeuise
¥ € W and the corresponding= 1tA (1 — 1) that maximised;. L andU are defined in
the text.

is the set ofp consistent with the constraints aAd is defined in (50). Thus substituting into (71),
interchanging the order of summation and integration and optimizing we havengla®). The
tightness has already been argued: under the additional assumptionsimce there is no slop

in the argument above since eveapgatisfying the constraints is the Bayes risk function for some

(PQ). [

Proof (Theorem 31)In this casen = 1 and the optimal function will be piecewise linear, concave,
and its graph will pass throughm, Y;). Thus the optimad will be of the form

0, e [0,L]UU,1]
o(m) =< T— (an+b), me [L, 3]
1-m— (ar+b), me[,U]

whereary +b =1 = b= 3 —am anda e [—2y1, 2] (see Figure 9). For variational divergence,
Ty = 3 and thus

<
[EN

L|,11:T[1/\(1—T[1)—*—

Vv
1724 (78)
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and sop; =V /4. We can thus determirieandU:

aL+b =L
= al+y—am =L
N L _am — qu'
a—1
. B -yt
Similarly aU +b=1—-U = U = ==% and thus
1 1y tam
a+l
I+(P,Q) > . ryqinzw] /[(1—a)ﬂ— Wy + amy)ys (n)dﬂ+/ [(—a—1)Tt— 1 +am + 1]ys (Mdr
ac|—2Y1,2y1
am -y 1

a—1 2

(79)
If ys is symmetric aboutt = % (so by Corollary 13 is symmetric) and convex ang = % then
the optimala = 0. Thus in that case,

It (PQ) > Z/qu<n_L|Jl)Vf(n)dn
= 2[(3 W (3)+Ti(w) ~T4(3)]
= 24D+ (3-%) -Te(3)]. (80)

Appendix B. Examples of Generalised Pinsker Inequality

Combining the above with (78) leads to a range of Pinsker style boundgrfonetricls:

Jeffrey’s Divergence J(P,Q) = KL (P,Q) + KL (Q,P). Thusy(m) = nz(ll.fn) + n(1£n)2 = n2(117n)2'
(As a checkf (t) = (t— 1)In(t), f”(t) = 5 and soy; () = ' (&) = n2(1+

IPQ) > 2/;/2(“_[“1) dr

1 T[2<1_ -,-[)2

(491 —2)(In(Y1) = In(1—Yy)).

Substitutingpy = 3 — % gives
2+V
> — .
J(P.Q)>VlIn <2—V>
Observe that the above bound behaves\ikéor smallV, andV In (35) >V forV € [0,2).
Using the traditional Pinkser inequality (KB, Q) >V?/2) we have

JPQ) = KL(PRQ)+KL(QP)

V2 V2
> 4
= 273
= V?
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Jensen-Shannon Divergencéderef (t) = 5Int — @ In(t+1)+In2 and thus the weight function

yf(n) - % f (1%“) - ZTI(J:!;T[)' Thus

B 3 m— Y
JSP’Q) N Y1 21'[(1—T[)

= In(l— llJ]_) — lleln(l— llJ]_) +ljJ1|n Y1+ In(2)

Substituting; = 3 — % leads to
1V 1V
ol g - Sy — .
JS(P,Q)_<2 4>In(2 V)+<2+4>In(2+V) In(2)

Hellinger Divergence Here f(t) = (1/t — 1)%. Consequently the weight function

1oy(l-m_ 1 ! - .
wﬁv:ﬁf<n)_Wﬁau_mﬂfm_zmu_mwz

and thus
: M-y
w 2[m(1—m)]3/2
4 /P1(P1—1)+2y/1—Un
V31—

RPQ) >

- 2-\4-v2
ForsmalV, 2—+/4-V2xV?/4,

Avrithmetic-Geometric Mean Divergence Here f(t) = Y2In (ﬂ) Thus f”(t) = % and

2\t
henceys () = £ (1) = y; (1) = ZTT[;ZGTETS} and thus

2 2 —2m+1
TRQ) 2 2 () Ty

Substitutingpy = 3 — % gives

T(PQ) > _1m<;+1)—§m(i—ﬁ)—m@>
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Symmetric x-Divergence HereW(P,Q) = X?(P,Q) + x*(Q,P) and thus (see below} (1) = 2 +
= Zn)g. (As a check, fromf(t) = (t_l)f& we have f”(t) = Z(t;*l) and thusys () =
L1 (1) gives the same result.)

l

2 2
WYPQ) > lIJl(T[ UJ1)< (1n)> dm

2(1+ 4l]J1 —4yn)
llJl(LlJl -1)

Substituting = 5 — 7 vV givesW(P,Q) > . v2

Whenys is not symmetric, one needs to use (79) instead of the simpler (80). We ephsial
special cases.

X2-Divergence Heref (t) = (t — 1)2 and sof(t) = 2 and hencg(m) = f” (1) /m® = Z which is
not symmetric. Upon substituting/ &2 for y(m1) in (79) and evaluating the integrals we obtain
1A APy 1492 -4y,
2 1 1
PQ)>2 min — .
x(RQ) = ac[-2¢1,2yy]  2Y1—a 2P —a-2
=:J(a,P1)

One can then solv§aJ(a, Y1) = 0 foraand one obtaina” = 2y; — 1. Nowa" > —2y; only
if Y1 > 7. One can check that whepy < , thena— J(a, 1) is monotonically increasing
for a € [—2y1,2Y;] and hence the minimum occurs @t = —2y;. Thus the value of
minimisingJ(a, Y1) is
= [W1>1/4])(291 - 1) + 1 < 1/4] (—20).
Substituting the optimal value af into J(a, 1) we obtain
1+apf -4y 1+40% -4y
4y -2 )
Substituting; = 3 — % and observing thal < 1=y > 1/4 we obtain

\KfAm):Hw1>LMM2+8w§—8wﬁ+ﬂw1§1ﬂﬂ<

\%
2 > 2 > .
FRQ IV < UV IV 2 1 s
Observe that the bound divergest@sV — 2.

Kullback-Leibler Divergence Inthis casef (t) =tInt and thusf”(t) = 1/t and the weight function
vt (D) = % f (1%“) = @ which is clearly not symmetric. From (79) we obtain

a a+2y; —2 a a+ 2y,
> - — B — - — = .
KL(RQ) 2 [~ 2rqr}1|,r21¢1] (1 2 LIJ1) In( a—2y; )+(2+LIJ1> In (a—2w1+2>
Substitutingpy = 3 — % gives KL(P,Q) > min, [VT,TV]éa( ), where
Ba(V) = V+2-2a In 2a—2-V + 2a+2-V In 2a+2-V
e 4 2a—2+V 4 2a+2+V )’

Setp ;= 2aand we have (59).
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Appendix C. Background and Prior Work

Specific prior results are referred to in the body of the paper. We n@fhyomdicate the broad
sweep of prior work along the lines of the present paper.

The most important precursors and inspiration are the three nearly simuigheorks by
Buja et al. (2005), Liese and Vajda (2006) and Nguyen et al. (2008¢. work by Dawid (2007)
is also very similar in spirit to that presented here. A crucial differenceaishé relies on a para-
metric viewpoint, and can use the machinery of Riemannian geometry. Zha@ga2 Zhang and
Matsuzoe (2009) have developed a number of connections betweexdanctions, the Bregman
divergences they induce, and Riemannian geometry. All of the results préisent paper are, in
contrast, “coordinate-free.” Thaotivationof the present work is closely aligned with that of Hand
(1994) whose avowed aim was to “stimulate debate about the need to formadasFch questions
sufficiently precisely that they may be unambiguously and correctly matchibdstatistical tech-
niques.” Hand and Vinciotti (2003) develop some refined machine leataghg that can be viewed
as weighted problems (in the sense of the weight functions we make exteissivf in this paper);
confer Buja et al. (2005).

The paper presents a unification of sorts. This, in itself, is hardly new irhimadearning.
There are different approaches to unification. One distinction is betiMesistic and Pluralistic
approaches (James, 1909; Turkle and Papert, 1992); this cantssfodhe hedgehog/fox distinction
of Berlin (1953).

Monisticapproaches aim for a single all encompassing th&#y/problem with most monistic
approaches is that you have to accept it “all or nothing.” There areymaifying approaches
developed in Statistics and Machine learning that have left little trace; Fon@gaNelson’s use
of non-standard analysis (Nelson, 1987; Lutz and Musio, 2005) astimelations for probability;
Topsge’s (2006), Shafer and Vovk’s (2001) game theory as a,msisLe Cam’s use of Riesz
measures on a vector lattice to replace the traditional sample space (Le@eh, 19

Pluralistic approaches are closer to what is proposed here (where, insteadrohing for a
single master representation, we study relationships and translations betwaege of different
representations). It resonates with Kiefer's assertion that “Statistice motoplex to be codified in
terms of a simple prescription that is a panacea for all settings, and ... stdaul as carefully
as possible at a variety of possible procedures...” (Kiefer, 1%Z¥amples of existing pluralistic
attempts include limited problem catalogs such as for different notionesi{Turney, 2000) or a
restricted set of problems (Raudys, 2001).

The decision theoretic approach (DeGroot, 1970; Berger, 1985pKiéB87) due to Wald
(1950, 1949) is central to the present paper. The idea of segkimitives for statistics dates
back at least to the elementary experiments of Birnbaum (1961). The nshifiobetween risks
and Bregman divergences is studied byi@wvald and Dawid (2004) and Buja et al. (2005).

25. Nguyen et al. (2005) is dated 13 October, 2005, Liese and Vaj@¥)2vas received on 26 October 2005 and Buja
et al. (2005) is dated 3 November 2005. Shen’s PhD thesis (Sheh), 2@ich contains most of the material in Buja
et al. (2005), is dated 16 October 2005. The paper by Nguyen eb@b)®as now appeared as Nguyen et al. (2009).

26. Monistic approaches can be categorised into at least four distitegfotees. They are briefly summarised in Ap-
pendix C.1.
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There are numerous possible definitions of information. Many of themtarédes Csisar
(1978) and Acel (1984) provide a critical analysis. Floridi (2004) discusses plui@aliersus
monistic approach: is there one single definition of information, or shoul@ temany different
definitions depending on the particular problem? Our view, like ShannatBj1& that there are
many types. Shannon information was developed with communications problemrsda-there is
no reason why it is the only notion of information that makes sense for legpamd inference.

There are many known relationships between risks and divergenwesdredistributions many
of which we explicitly discuss later in the paper. General results include tthos toOsterreicher
(2003),0sterreicher and Vajda (1993), Gutenbrunner (1990), Liese ajdd Y2006), Goel and De-
Groot (1979) and Golic (1987). Particular relations between risk in piolassification problems
and f-divergences are not new (Poor and Thomas, 1977; Kailath, 1%ne more general re-
sults that relate the choice of loss function in a binary learning problem ticplar f-divergences
between the class-conditional distributions have been (re)-discoyEmrathi and Copas, 2001;
Nguyen et al., 20050sterreicher and Vajda, 1993). Known results relating different distabe-
tween probability distributions are summarised by Gibbs and Su (2002).

The idea of solving a machine learning problem by using a solution to some letiraing
problem is now called anachine learning reductiofBeygelzimer et al., 2008, 2005) The idea is
not new. Equivalences are a natural structuring device and wefieiekp Ashby’s foundational
work on cybernetics (Ashby, 1956), a precursor to Machine Legrnden-Bassat (1978) studied
the concept ok-equivalence, Conover and Iman (1981) showed how rank tests ealerived
by applying nonparametric tests to order statistics, and Goldman et al. (aa8%Bartlett et al.
(1996) used reductions for theoretical purposes. However recinttg has been a large number
of explicit constructions of reductions (Zadrozny et al., 2003; Lartyfa006; Beygelzimer et al.,
2005; Langford and Beygelzimer, 2005; Langford and Zadrozo@52Langford et al., 2006; Li and
Lin, 2007; Beygelzimer et al., 2007; Langford, 2007; Scott and Dpean2007),or development
of results which although not explicitly called reductions are effectivelyBown et al., 2002;
Brown and Low, 1996; Brown and Zhao, 2003; Chaudhuri and [26l92; Cossock and Zhang,
2006; Cuevas and Fraiman, 1997; Domingos, 1999; Steinwart et ab; 288che, 2001). Two key
differences between the recent machine learning reductions literatithepresent paper is that
our relationships between problems are (usually) exact (instead aapm@ate) and we work with
the true underlying distributions (rather than finite sample distributions).

The theory ofComparison of Experimentsleveloped by Blackwell (1951, 1953), and signif-
icantly extended by LeCam (1964, 1986) is also related to the overallsgbalut here. It has
been used to define notions of isomorphism for statistical problems (Mos&acksteder, 1966;
Sacksteder, 1967) and is the subject of three books (Strasser, Ti#§6rsen, 1991; Heyer, 1982)
and a recent review (Goel and Ginebra, 2003). The key differatitbethe present work is that the
comparison of experiments theory seeks results that hollftoss functions rather than for a par-
ticular one; with a few exceptions (Torgersen, 1991, Chapter 10)kiigltrelated comparisons to
sufficient statistics and characterised comparisons. LeCam (1964dfifipcacomparisons in terms
of the degree to which one experiment is “better than” another (the defictistance). There are
very few known examples of deficiency distance (Carter, 2002). eurtbre LeCam'’s theory is
formulated in a particularly abstract way to make its theorems elegant (Yahgea@am, 1999).
Renowned probabilists concur that its arcane formulation has made it gsélnlee(van der Vaart,
2002; Pollard, 2000; Strasser, 2000). Consequently the subjebtidaslatively limited impact.
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Graphical representations have been used for a long while to betterstarttk binary experi-
ments. In the main body of the paper we develop connections betweerv&eoperating Charac-
teristic (ROC) curves, (Fawcett, 2006, 2004; Flach, 2003; Flach an@@05; Maxion and Roberts,
2004) the Area Under ROC Curve (AUC), (Cortes and Mohri, 2004d;12008; Hand and Till,
2001; Hanley and McNeil, 1982) and Cost Curves (Drummond and H@@8§;2Torgersen, 1991).
These can be seen mpresentationsf Binary Experiments.

C.1 Summary of Previous “Monistic” Approaches to Unification

There are are range of different approaches to unifying machinaimgairom a monistic perspec-
tive:

Low level data interchangéefhere is a small amount of work on developing standards for inter-
changing data sets (Grossman et al., 2002; Carey et al., 2007; Wettdchad Muller, 2001)—this
is analogous to PDDL (Ghallab et al., 1998). There are also some limited éyleéattempts such
as ontologies (Soldatova and King, 2006) and general frameworlgd&at al., 1996).

Modelling frameworks:To solvea machine learning problem, one needs models. There is a
rich literature on graphical models (Jordan, 1999), factor graphshigshang et al., 2001) and
Markov logic networks (Domingos and Richardson, 2004; Richardedrb@mmingos, 2006) which
have allowed the unification of sets of problems (Worthen and Stark, 2@0th) a focus on the
modelling and computational techniques for particular problems.

Comparison of frameworksthere are several philosophical frameworks/approaches to design-
ing inference and learning algorithms. Barnett (1999), Bayarri amgeB€2004) and Berger (2003)
compare and contrast these. They are effectively comparing diffetenistic frameworks, not
comparing problems.

Overarching frameworksThese include frameworks such as Bayesian (Robert, 1994), informa-
tion theoretic (Jenssen, 2005b; Harrérep1993), game-theoretic (Vovk et al., 2005{1@w~vald and
Dawid, 2004), MDL (Giinwald, 2007; Rissanen, 2007), regularised distance minimisation (Bor-
wein and Lewis, 1991; Altun and Smola, 2006; Broniatowski, 2004), ancek marrowly focussed
“unifying frameworks” such as information geometry (Dawid, 2007; Bgu2005), exponential
families (Canu and Smola, 2006) and the information bottleneck (Tishby eDaDb) 2

Appendix D. Examples and Prior Work on Surrogate Regret Bounds

Surrogate regret bounds have garnered interest in the machine ¢eeonimunity (Zhang, 2004b;
Bartlett et al., 2006; Steinwart, 2007; Steinwart and Christmann, 20@8nv@&rt and Christmann
(2008, Chapter 3) have presented a good summary of recent work.

All of the recent work has been in termsmfargin losse®f the form

L(n,h) = ne(h) + (1 —n)e(—h).
As Buja et al. (2005) discuss, such margin losses can not capturefthesgof all possible proper
losses. Bartlett et al. (2006) prove that for dmy

W (L Y(n,h)—L%*(n)) <L°n,h) —Ln),
wherey = {I** is the LF biconjugate of,

o (52) 0(57)
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H(n) = L*(n) and
HE ()= inf o (ne@)+ (1 =n)e(-a))

is the optimal conditional risk under the constraint that the sign of the argumeisagrees with
2n —1.

We will consider two examples presented by Bartlett et al. (2006) and sfaivthe bounds we
obtain with the above theorem match the results we obtain with Theorem 25.

Exponential Loss Consider the linkh = W) = lln?ﬁﬁ with corresponding inverse ling =

T;zﬁ. Buja et al. (2005) showed that this link function combined with exponentiadjima

loss@(y) = e Y results in a proper scoring rule

L(n,A)=n (1%ﬁ>%+(1—n) (1_ﬁ>%.

2ln(1-n))?
(Note Buja et al., 2005 have missed the factorsof ThusW(n) = —2-L_ andW(n) =

—2,/n(1—n). Hence we obtain
L(n)=2y/n(1-n) (81)

and from (46) we obtain that B% (n,n) = a then

B(n,A) > 1—v/1—4a2. (82)

Equations 81 and 82 match the results presented by Bartlett et al. (20@%)nofing that
B%(n,ﬁ) measures the loss in termsﬁ%fand Bartlett et al. (2006) usef—! = 26%.

i )

From (32) we obtain

Truncated Quadratic Loss Consider the margin losg(h) = (14 hV 0)2 = (2 v 0)2 with link
function h(R) = 24 — 1. From (32) we obtair.(n) = 4n(1—n) and from (46) the regret
boundB(n,R) > 4a2. These match the results presented by Bartlett et al. (2006) when again
it is noted we used; and they used® 1.

The above results are fog = % Generalisations of margin losses to the case of uneven weights are
presented by Steinwart and Christmann (2008, Section 3.5). Neveghslese the samgfunction

is still used for both components of the loss (albeit with unequal weight$) &scheme can still

not capture the full generality of all proper scoring rules in the manngieaed by the results in
Section 7.1.

Appendix E. History of Pinsker Inequalities

Pinsker (1964) presented the first bound relating KQ) to V(P,Q): KL >V?/2 and it is now
known by his name or sometimes as the Pinsker-@sikallback inequality since Csiaz (1967)
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presented another version and Kullback (1967) showed>Kt?/24-V4/36. Much later Topsge
(2001) showed K> V?/2+V*4/36+V®8/270. Non-polynomial bounds are due to Vajda (1970):
KL > Lvajaa(V) = In (55) — 2% and Toussaint (1978) who showed Kt Lyajga(V) V (VZ/2+
V4/36+V8/288).

Care needs to be taken when comparing results from the literature aswliffiefinitions for the
divergences exist. For example Gibbs and Su (2002) use a definitibihatt differs by a factor of
2 from ours. There are some isolated bounds relatibg some other divergences, analogous to the
classical Pinkser bound; Kumar and Chhina (2005) have preserntethaasy as well as new bounds
for a wide range osymmetric fdivergences by making assumptions on the likelihood ratig:
p(x)/a(x) < R< o for all x € X. This line of reasoning has also been developed by Dragomir et al.
(2001) and Taneja (2005a,b). Topsge (2000) has presented sonite séries representations for
capacitory discrimination in terms of triangular discrimination which lead to inequalittween
those two divergences. Liese and Miescke (2008, p.48) give theatiggu < hv/4—h2 (which
seems to be originally due to LeCam, 1986) which when rearranged ponds exactly to the
bound forh? in theorem 31. Withers (1999) has also presented some inequalities betibheen
(particular) pairs of divergences; his reasoning is also in terms of infiniies expansions.

Unterreiter et al. (2000) considered the casanef 1 but arbitraryls (that is they bound an
arbitrary f-divergence in terms of the variational divergence). Their argumesimgar to the
geometric proof of Theorem 30. They do not compute any of the explicihéd® in theorem 31
except they state (page 248)(P,Q) > V2 which is looser than (58).

Gilardoni (2006a) showed (via an intricate argument) th&t'if1) exists, theri; > ”<+W2 He
also showed some fourth order inequalities of the fdgm» C27fV2 + c4,fV4 where the constants
depend on the behaviour éfat 1 in a complex way. Gilardoni (2006b,c) presented a completely
different approach which obtains many of the results of theored{ &ilardoni (2006¢) improved
Vajda’s bound slightly to KLP, Q) > In ;% — %Y In25Y.

Gilardoni (2006b,c) presented a general tight lower boundfid?, Q) in terms ofV (P, Q) which
is difficult to evaluate explicitly in general:

\ ( Flgr"(k(1/V))] N flor *(k(1/V))] >

22 gty —1 T 1o g k)

wherek(t) = 3 (179%1(0 + ggl(]t-)fl>’ g(u) = (u—1)f'(u) — f(u), gg*[g(u)] = u for u > 1 and

g, *[g(u)] = ufor u< 1. He presented a new parametric formfpr= KL in terms of Lambert's\V
function. In general, the result is analogous to that of Fedotov et &3j20 that it is in a parametric
form which, if one wishes to evaluate for a particifaione needs to do a one dimensional numerical
search—as complex as (59). However, wHeis such thafl; is symmetric, this simplifies to the
elegant forml; > 2Y f (35) — f/(1)V. He presented explicit special cases fiér J, A and!|
identical to the results in Theorem 31. It is not apparent to us how theoagiprof Gilardoni
(2006b,c) could be extended to more general situations such as thataremha0 (i.e.n > 1).

Finally Bolley and Villani (2005) have consideragightedversions of the Pinsker inequalities
(bounds for a weighted generalisation of Variational divergence) mgef KL-divergence that are
related to transportation inequalities.

27. We were unaware of these two papers until completing the resulenpeesn the main paper.

795



REID AND WILLIAMSON

Appendix F. Variational Representation of [ and its Generalizations

The variational representation of the Variational divergence (62)estg the question of whether
there is a variational representation for a genérdivergence. This has been considered previously.
We briefly summarise the approach, and then explore some (new) implicatibresrepresentation.
One can obtain a variational representationlfioby substituting a variational representation
for f into the definition ofl; (Keziou, 2003a,b; Broniatowski, 2004; Broniatowski and Keziou,
2009). Letp andq denote the densities correspondingPt@nd Q and assume for now they ex-
ist. Recall from Section 2.2 above, that the Legendre-Fenchel cdejodd is given by f*(s) =
SURicpoms US— f(U). In general Rari* = R* ;= RU {+e}. Sincef(u) =sup,prup— f*(p), we
can write

If(PQ) = /ch(X)surJ(pM—f*(p))dx

ok \ d(X)
= sup P(X)p(x) — *(p(x))a(x)dx
peRY
= sup(Epp—Eqf*(p)). (83)
pERX

We make this concrete by considering the variational divergence. Thespondingf is given by
f(t) = |t — 1| and (adopting the convention thialse is a “very strong zero” sdfalsg] - o = 0;
confer Knuth, 1992)

f*(x) = [x € [-1,1]Jeo+ [x € [-1,1]]x.

Since the supremum in (83) will not be attained if the second term is infinitecameestrict the
supremum to be oveF = {p € R*: ||p||» < 1}. Thus

V(PQ) = sup (Epp—Egp) = sup (Epp—Egp)
p: llpflo<1 pe{-11}%

= sup (Epp—Eqp) = 2 sup (Epp—Eqgp)
pe{0,2}* pe{0,1}*

= 2sunP(A) — QA

since the supremum will be attained for functigmsaking on values only i{—1,1} and the re-
maining steps are simply a shift and rescaling{@g2} by adding 1, and then t{0,1}).
The representation (83) suggests the generalisation

It#(P.Q) = sup [ p(X)p(x)— f*(p(x))q(x)dx
pEFCRX /X
= supEpp—Eqf*(p)).
peF

Observing this is not symmetric imandq suggests a further generalisation:

Itgs7(PQ) = sup [ —g"(p(x))p(x)— f*(p(x))a(x)dx
pEFCRY /X
= sup—Epg*(p) —Eqf*(p)).
peF
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Hereg* is theR*-valued LF conjugate of a convex functignSetlt g := I g px.
An alternative generalisation &f is

It ¢5(P,Q) == sup(Epg*(p) — Eqf*(p))
peF

which is identical to (84) except for removal of the minus sign precegingetl g.= JIf grx- If
p € F are such thaltp||. is unbounded, then in genelalg 7(P, Q) will be infinite. Properties of the
alternative definition relate to the extended infimal convolution between twaegdanctions.

Definition 35 Suppose fg: R™ — R* are convex. The extended infimal convolution is
(fOg)(1) := Xie% f(x) +19(x/1), TERT.
Note that the second term in this convolution is the perspective functiotig§ecl) applied ta,
that is,lg(Xx, T).
Theorem 36 Suppose fg: R™ — R* are convex. Then
L 11 (PQ) =TI px(P.Q), It 5(PQ) = I15(P.Q), and

List—1y,5(P,Q) = (PQ).

g1
5.2

2. ﬁfl,glg =, g, 7 onlyif f, — f = faand g — g = ga and f, fo, f4,01,02,9a are affine.
3. It,t,5 = Ligd, () (P. Q)
4. Tt t 5 = Tgja 15 (P.Q) = V() (P.Q).

Proof Part 1 follows immediately from the various definitions. Since affine functéoaghe only
functions that are simultaneously convex and conciyg, 5 = Lt, g, 7 Only if f1, f2 (resp.g1,92)
are affine and their differences are affine (since an affine offdlet@t changel). This proves part
2.
We have by change of variables
It.1.7(P,Q) = supEpf*(p) —Eqf*(p)) = sup (Epl —EqW) = Tigja.r () (P.Q),
peF pef*(J)
wheref*(F) :={f*op: pe F}. (The same argument appliedlio 5 although SURcg () (—Epp—
EqWy) does not correspond to a generalised variational divergence.) fiviegparts 3 and 4.
|

In order to prove 5 we need the following lemma.

Lemma 37 Let f: R — R and K: R x R — R be convex and bounded from below. Then the
extended infimal convolution

(fOK)(x) :)i/rgﬂgf(y)JrK(x,y), xeR

is convex in xc R.
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Observe that iK(x,y) = g(x—y) for convexg, thenfJK = f &g, the standard infimal convolution
(Hiriart-Urruty and Lemaichal, 1993b). This extended infimal convolution seems little studied
with the exception owith the exception of Cepedello-Boiso (1998).

Proof Let f(x,y) := f(y), xe R. Clearly f is convex onR x R. Leth(x,y) = f(x,y) + K(x,y).
Hiriart-Urruty and Lemagchal (1993b, Proposition 2.1.1) show thas convex oriR x R. Observe
that (fOOK)(x) = inf{h(x,y): y € R}, that is, themarginalfunction ofh. Since by constructioh is
bounded from below, using the result of Hiriart-Urruty and Leecdial (1993b, p.169) proves the
result. [ |

Corollary 38 For any convex f and g,[fg is convex.

Proof Observe thatflg)(x) = infycgr+ f(y) +xg(y/x) = infyer+ f(y) +1g(x,y), x € R, wherelg

is the perspective function (1). Hiriart-Urruty and Leraelnal (1993b, Proposition 2.2.1) show that
if g: R" — R is convex then the perspectilgis convex orR™ . The corollary then follows from
the lemma. |

Proof (part 5 of Theorem 36)Observe that ih(x) = t@(x) then the LF conjugatk*(s) = t@(s/t).
Thus using the Fenchel duality theorem (Rockafellar, 1970) we haugg (Rockafellar and Wets,
2004, Theorem 14.60) to justify the swapping the order of the supremdnmeegration,

Itg(PRQ) = sup [ —g"(p(X))p(x) — F*(p(x))a(x)dx
peRX X

— /sup g (p)p(x) — f*(p)a(x)dx
X peR

- it () +o(75g) @
[ttt (gt ) o9 () o=
= [ ira(p.ayax

o) = inta()f (o5 ) +p0a (5 )

°

where

Letx:=£ ¢ R*. Thusp = xqand
l1.g(p.a) = Inf af(x)+ pg(xa/p).
Lett=2 e R*. Thus
ig(P.a)(V) = inf qf(x)+ pg(x/1)
= q| inf f(x)+19(x/T)
XeR+
= q-(fOg)(v). (84)
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Leth:= fOg. Observe from (84) thag 4(p,q) = gh(p/q) and thus

Hf,g(pm—/XQ(X)h(g((:g) dx=Tn(p,q)

if his convex, which we know to be the case from Corollary 38. |

It suggests the question: given a suitable corfyedoes there always exigisuch thatf = gdg?
This is analogous to the question of spectral factorisation (Sayed andatK&@01) for ordinary
linear convolution. We do not know the answer to this question, but hdlectad a few examples
in Appendix G that demonstrates it is certainly truegome f There does not appear to be a result
analogous to part 5 of Theorem 36 fb[g.

We have seen how~divergences are related to integral probability metvgsIt turns out that
the variational divergence is special in being both. Many integral fimbtyametrics are true metrics
(Muller, 1997a,b). The only-divergence that is a metric is the variational divergence. Whether
there existF such thawvs(-,-) is not a metric but equalk (-,-) for somef #t — |t — 1| (or affine
transformation thereof) is left as an open probf&m.

We end with another open problem. We have seen hgvandVy are related. This begs the
guestion whether there is a representation of the form

5 1
It 5(P.Q) 2 /0 ALS (1t P,Q)ys ()drt

Appendix G. Examples of Extended Convolution Factorisation

In this section we present three exampleg @fhich can be written ag = glg.

If g(t) = (t — 1)? (corresponding to Pearsof divergence),(gg)(t) = infyer+ (X — 1)% +
1(x/T1 — 1)2. Differentiating the right-hand side with respectxosetting to zero and solving for
X givesx = 2(?41/0- Substituting we obtairigg) (1) = (T;ll)z which is thef for A(P,Q), the
triangular discrimination.

If g(t) =tIn(t), a similar straightforward calculation yieldgdg) (1) = = e\ﬁ.

If g(t) = (vt —1)? (corresponding to Hellinger divergence) then a similar calculation yields
(gg)(1) = %(\/f— 1)? = g(1)/2. Thus thigy plays a role analogous to a gaussian kernel in ordinary
convolution. The significance of this is unclear.

We summarise the results (and the associgtgdh the following table.

a(t) (gtg)(t)  g*(s)

—1)2
t-12 L =g
tint —2/1 1

(Vi-1? 3(VT-1% Zls<1]+w[s>1]

28. This has in fact been solved by Sriperumbudur et al. (2009) amearlier version of the present paper was published
as an ArXiV preprint.
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Whilst it is indeed straightforward to computg]g) giveng (although a simple closed form is
not always possible), it is far from obvious how to go from a gifelw ag such thatf = glg.

Hiriart-Urruty and Lemagchal (1993a, page 69) show that foconvex onR™*, g convex and
increasing o™,

(go f)*(s) = inf af*(3)+g"(a) = f*Og".
a>0

This illuminates the difficulty of the above “factorisation problem”. It is eqléwa to: given a
convex increasind*, find a convex increasing’ such thatf* = g* o g*.

Appendix H. Empirical Estimators of VB% %(P, Q) and SVMs

This appendix further develops the observations made in Section 8.2iregére relationship be-
tween divergence and risk whéh= By, a unit ball in a reproducing kernel Hilbert spaée In
contrast to the rest of the paper (which focussed on relationships ingdive underlying distri-
butions), in this appendix we will consider the practical situation where tlseyely an empirical
sample. We will see how the general results have interesting implicationaiptesdased machine
learning algorithms.

If we require an empirical estimate o (P, Q) we can replac® andQ by empirical distribu-
tions. We will useweightedempirical distributions. Given an independent identically distributed
samplen = (wy, ..., Wny) € X" thea-weighted empirical distributioﬁ,‘\’, with respect tav is defined
by

m

dp9 .= Zai{)(. — W)

wherea = (ay,...,0m), 0 >0,i=1,....mandS";0; = 1. We will write IAE\‘,’V@:: E,sx(p:
z{‘;lai(p(wi). Thus
SO 1 ~ .

V3 4 (P8, PP) = JIIEGe— B2 |3
Suppose now tha® andQ correspond to the positive and negative class conditional distributions.
Letx := (X1,...,Xm) be a sample drawn froml = 1P + (1 — 11)Q with corresponding label vector
y=(Y1,.--,¥m). Letl:={1,...mh IT:={iel:yy=1},1":={iel:y; =—1}. Consider a
weight vectort = (s, ...,0m) over the whole sample. Thus

Epgp= S aig(x) and Eop= S aig(x)

ielt iel—
where we also require
m" m-
Y>ai=— and ) aj=-—
ielt m iel— m
and hence
T —m
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Substituting into (65) we have

ZVB}C’l (Iﬁv Q) = <]§:P(p* ]EQ([), Ep(p— ]EQ(p>

= <Z i) —  aigx), 3 ajpx) — 0‘1>

iel™ iel= jel+ jel=

= <;0‘i)’i@(xi)7;am¢(xj)>

= ZZGiGjinj<<P(Xi),<P(XJ)>
i€l e

— Zzaiajyiyjk(xi,xj)::J(a,x). (85)
i€l J€

We now consider three different choicesonf

Uniform weighting If we seta; = % i=1,...,m, then (85) becomes

%z yiyjk(xi,xj) = MMD%[B}[,X+,X_]
i,Jel

wherex™ := (X)ic|+, X := (X )ie;- and MMD, is the biased estimator of tHdaximum Mean
Discrepancy(Gretton et al., 2008), an alternate nameVWgr Observe that from theorem 34, this
case corresponds to using a Fisher linear discriminant in feature dpew®ye et al., 1996) when
it is assumed that the within-class covariance matrices are both the identity raigxollows by
observing that the constructed hypothesis is identical in both cases.

Pessimistic Weightinglnstead of weighting each sample equally, one can optimisecnvBy
theorem 34, minimizing(a, x) overa will maximize L' and is thus the most pessimistic choice.
Explicitly, we have

m m
min aiayiyik(x,X;) (86)
a i;i; B :
s.t. a; >0, i=1....m (87)
ki mt —m-~
ayj = ——— (88)
iZl - m
m

-ZlC(i =1 (89)

which can be recognized as the support vector machine (Cortes anikVap95). The SVM uses
the sign of the “witness” (Gretton et al., 2008);» i ; ajyik(xi,x) as its predictor.

Interpolation between above two caseé parameterized interpolation between the above two
cases can be constructed by the addition of the constraints

Giﬁi i=1

90
Vm7 ) 7m7 ( )

wherev € (0,1] is an adjustable parameter. Observe thabntrols the sparsity adt since (90),

(87) and (89) together imply thafi € | : a; # 0} > vm. Crisp and Burges (2000) have shown that
(86)....,(90) is equivalent to the-SVM algorithm (Sclklkopf et al., 2000).
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While “information-theoretic” approaches to the SVM and weighted keealasentations are
hardly new?® the results presented here are novel and provide a simple and dirgeatidarof the
SVM via the generalised variational divergence.

If VB%% (Pw, Q) is used as a test statistic to infer whether two samplasdz are drawn from
the same distribution (as Gretton et al., 2008 do), then when the distributeomsafhichw andz
are drawn are close, the classification performance of the corrasgaidssifier (i.e., the classifier
that uses the sign of the witness function) will be close to the worst possiiiies one will be
operating in a regime distinct from the normal situation, where the risk is typisaibll.

Finally observe that the derivation of the SVM presented here could edias an application
of an alternate “inductive principle’—a general recipe for construckgagning algorithms from
learning task specification (Vapnik, 1989, 2006). The traditional EmpiRsk Minimization prin-
ciple entails replacingP, Q) with (I3x+,Qxf) in the definition ofL(1t, P,Q). Then, in order to not
overfit, one restricts the class of functions from which hypothesesravend That is, there are two
approximations:

L(m, P,Q) Empirical Approximation (uniform) LL(TT, |5x+,QX—) Restrict Class L (TT, FA’X+,QX—).

Upon settinga™ = (a)ic;+ anda™ = ()¢ -, the derivation presented above, in contrast, can be
summarised schematically by

“L(TP,Q)" Restrict Class L (TLP,Q) Empirical Approximation §-weighted) L (TT I%?: , Qg:),

where a different loss (the “linear” loss) was used at the start. With thatflmction, reversing the
order of the two approximations would not work, and is (thus) not edgrtdo the ERM inductive
principle. The first step makés well defined—with no restriction it is not, hence the quotes; and
will avoid overfitting in any case. The second step is the more generalefghted) empirical
approximation.

We believe that this alternate derivation of the SVM is of interest becaussiihjder (avoids
the need to introduces margins) and it elucidates the connection betweeertied iwethods for

29. The use of kernel representations for classification is of courtseaw: from the classical kernel classifier (where
aj =1/mfor alli € I) (Devroye et al., 1996, Chapter 10) to the Generalised Portrait (Aiaeret al., 1964), the
Generalised Discriminant (Baudat and Anouar, 2000) and the pamdgchniques inspired by Support Vector
Machines (Scéilkopf and Smola, 2002; Herbrich, 2002). None of these techniquissigned from the perspective
of minimising af-divergence.

Principe et al. (2000a) have developed an approach to machine [garnislems based on information theoretic
criteria (Principe et al., 2000b; Jenssen et al., 2004; Xu et al.,;2@05sen, 2005a; Jenssen et al., 2006; Pavia et al.,
2006). Jenssen et al. (2004, 2006) considered kernel methmstlite perspective of Renyi’'s quadratic entropy.
They do not exploit the formal relationship between maximising divergemd minimising risk. They interpret the
SVM as being constructed from weighted Parzen windows density estim@teston et al. (2008) explained the
relationship between their MMD estimators and those derived from (ummezly Parzen windows estimates of the
class-conditional distributions. Weighted Parzen windows estimates wedeas a basis for building a classifier by
Babich and Camps (1996). Weighted empirical distributions are widely inggarticle filtering (Crisan and Doucet,
2002).

McDermott and Katagiri (2002) considered the direct optimisation ofsslar built on top of Parzen windows
density estimates. They showed that the minimum classification error anieriequivalent to a Parzen windows
estimate of the theoretical Bayes risk. They re-derive the traditionabapp of minimising an estimate of the
expected loss. McDermott and Katagiri (2003) extended their apptoabe multi-class setting in a way that takes
account of all the “other” classes better in estimating the probability of efra given class.
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classification and MMD—indeed MMD is nothing but the Fisher linear discrintiagplied to a
binary problem induced by the given distributidasindQ.
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