Journal of Machine Learning Research 12 (2011) 3027-3063 bm&ted 4/10; Revised 1/11; Published 10/11

Robust Approximate Bilinear Programming for
Value Function Approximation

Marek Petrik MPETRIK@US.IBM.COM
IBM T.J. Watson Research Center

P.O. Box 218

Yorktown Heights, NY 10598, USA

Shlomo Zilberstein SHLOMO@CS.UMASS.EDU
Department of Computer Science

University of Massachusetts

Ambherst, MA 01003, USA

Editor: Shie Mannor

Abstract

Value function approximation methods have been succégsiséd in many applications, but the
prevailing techniques often lack usefalpriori error bounds. We propose a nepproximate
bilinear programmingformulation of value function approximation, which empdoglobal opti-
mization. The formulation provides strong a priori guaesston both robust and expected policy
loss by minimizing specific norms of the Bellman residuallvig a bilinear program optimally
is NP-hard, but this worst-case complexity is unavoidakelegoise the Bellman-residual minimiza-
tion itself is NP-hard. We describe and analyze the fornutads well as a simple approximate
algorithm for solving bilinear programs. The analysis shtkat this algorithm offers eonvergent
generalization of approximate policy iteration. We als@tly analyze the behavior of bilinear
programming algorithms under incomplete samples. Finally demonstrate that the proposed
approach can consistently minimize the Bellman residuaimmple benchmark problems.

Keywords: value function approximation, approximate dynamic pragrang, Markov decision
processes

1. Introduction

Solving large Markov Decision Processes (MDPs) is a very usefutdmputationally challenging
problem addressed widely in the Al literature, particularly in the area ofamiament learning.
It is widely accepted that large MDPs can be solved only approximately. céhemonly used
approximation methods can be divided into three broad categoriegolity search which ex-
plores a restricted space of all policies,a@proximate dynamic programmiagpr value function
approximation—which searches a restricted space of value functiods3)approximate linear
programming which approximates the solution using a linear program. The goal of sippaie
methods is to compute a policy that minimizes gudicy loss—the difference between the returns
of the computed policy and an optimal one. While all of these approximate methwdsachieved
impressive results in various application domains, they have significant limgation

Policy search methods rely on local search in a restricted policy space.pdiity may be
represented, for example, as a finite-state controller (Stanley and Miikknle€2004) or as a greedy
policy with respect to an approximate value function (Szita and Lorincz6R20®@olicy search

(©2011 Marek Petrik and Shlomo Zilberstein.

PETRIK AND ZILBERSTEIN

methods have achieved impressive results in such domains as Tetris (Sizitarantz, 2006) and
helicopter control (Abbeel et al., 2006). However, they are notolycherd to analyze. We are not
aware of any established theoretical guarantees regarding the quakty silution.

Approximate dynamic programming (ADP) methods iteratively approximate the fahction
(Bertsekas and loffe, 1997; Powell, 2007; Sutton and Barto, 199Bgy have been extensively
analyzed and are the most commonly used methods. However, approximataidyrogramming
methods typically do not converge and they only provide weak guaraoftegproximation quality.
The approximation error bounds are usually expressed in terms of tis¢-@ame approximation of
the value function over all policies (Bertsekas and loffe, 1997). titaoh, most available bounds
are with respect to thie, norm, while the algorithms often minimize the norm. While there exist
somel,-based bounds (Munos, 2003), they require values that are ditiocalitain.

Approximate linear programming (ALP) uses a linear program to compute {hedamate
value function in a particular vector space (de Farias, 2002). ALP bas previously used in
a wide variety of settings (Adelman, 2004; de Farias and van Roy, 200dsttn et al., 2003).
Although ALP often does not perform as well as ADP, there have bexe secent efforts to close
the gap (Petrik and Zilberstein, 2009). ALP has better theoretical grepdénan ADP and policy
search. It is guaranteed to converge and return the clbgexirm approximatiorv of the optimal
value functionv* up to a multiplicative factor. However, tHg norm must be properly weighted
to guarantee a small policy loss, and there igei@mble method for selecting appropriate weights
(de Farias, 2002).

To summarize, existing reinforcement learning techniques often providd solutions, but
typically require significant domain knowledge (Powell, 2007). The domaowkedge is needed
partly because useful a priori error bounds are not available, asaned above. Our goal is to
develop a moreeliable method that is guaranteed to minimize bounds on the policy loss in various
settings.

This paper presents new formulations for value function approximatiomptbaably minimize
bounds on policy loss using a global optimization framework; we considérlhpand weighted
L, error bounds. To minimize the policy loss, we derive new bounds basegmoximate value
functions. These bounds do not require coefficients that are hafdtacmar compute, unlike, for
example, bounds for approximate linear programming.

An advantage of the approach we propose is that the actual solutiortheingroperties are
independent of the methods used to compute them. The paper focuseslevdlopment of models
for value function approximation and their properties. Although we dogmtesvo methods for
solving these models, it is likely that more efficient algorithms will be developéukifiuture.

We start with a description of the framework and notation in Section 2 andcaijpkisn of value
function approximation in Section 3. Then, in Section 4, we describe theopedpapproximate
bilinear programming (ABP) formulations. Bilinear programs are typically sbiwsing global
optimization methods, which we briefly discuss in Section 5. A drawback ofilinedr formulation
is that solving bilinear programs may require exponential time. We show in 8égtlmowever, that
this complexity is unavoidable because minimizing the approximation error boundast NP-
hard.

In practice, only sampled versions of ABPs are often solved. While a tlgbréreatment of
sampling is beyond the scope of this paper, we examine the impact of sampliegtablish some
guarantees in Section 6. Unlike classical sampling bounds on approximategdinogramming, we
describe bounds that apply to the worst-case error. Section 7 show&sBRais related to other

3028

ROBUST APPROXIMATE BILINEAR PROGRAMMING

approximate dynamic programming methods, such as approximate linearrmprogygand policy
iteration. Section 8 demonstrates the applicability of ABP using common reinfiertelearning
benchmark problems.

The general setting considered in this paper is a restricted form of reamf@nt learning. In
reinforcement learning, methods can use samples without requiring a wiothe environment.
The methods we propose can also be based on samples, but they relglitimal structure. In
particular, they require that all or most actions are sampled for every Sateh samples can be
easily generated when a model of the environment is available.

2. Framework and Notation

This section defines the framework and the notation we use. We also dedikeWtecision pro-
cesses and the associated approximation errors. Markov decisi@spesccome in many forms,
depending on the objective function that is optimized. This work focusasafnite-horizon dis-
counted MDPs, which are defined as follows; a more extensive treatmeraiiable, for example,
in Puterman (2005).

Definition 1 A Markov Decision Process a tuple(S, 4,P,r,a), wheres is a finite set of states?
is a finite set of actions, PS x 4 x S — [0, 1] is the transition function (f5,a, s) is the probability
of transiting to state’sfrom state s given action a), and 5 x 4 +— R is a reward function. The
initial distribution is: a : § — [0, 1], such thaty s a(s) = 1.

The goal in solving an MDP is to find a sequence of actions that maximizes trectexy-
discounted cumulative sum of rewards, also calledrétern. A solution of a Markov decision
process is a policy, defined as follows.

Definition 2 A deterministic stationaryolicy 1: § — A4 assigns an action to each state of the
Markov decision process. A stochastic stationgojicy 1t: S x 4 — [0, 1] satisfiesy ,c 4 T(s,a) =1
for each s . The set of all stochastic stationary policies is denotefllas

Non-stationary policies may take different actions in the same state in difféneg-steps. We
limit our treatment to stationary policies, since for infinite-horizon MDPs thgigtsan optimal
stationaryand deterministicpolicy. We also consider stochastic policies because they are more
convenient to use in some settings. A polity I together with the transition matrix induces a
distribution over the state spagen every time step resulting in random variab&g$ort = 0.. . c0.

The return of a policy is then defined as:

p(ma) = Eq [; 5 v‘n(s,a>r<s,a>] ,
t=0ac4

wherea is the distribution ofS. Our objective is then maxn p(TLa), for which the optimal
solution is some deterministic poliay.
The transition matrix and reward function fodaterministicpolicy tare defined as:

Pr:(s,S)— P(s1(s),s) and ry:s—r(sT(s)) .
The transition matrix and reward function fostchastigolicy tare defined as:

Pri(ss)— 3 m(sa)P(s,as) and rpis— § misayr(sa).
acAa acAqa

3029

PETRIK AND ZILBERSTEIN

In addition, we usé, andr, to denote these values for a constant potits) = a for somea € 4.
The value functiorv: § — R represents the expected return when starting in a particular state.
The set of all value functions is denoted #s= R!S|. A value functionv;; of a policy Ttis: vi; =

(I =yPo) rp
The value function update for a polieyis denoted by, and the Bellman operator is denoted
by L and defined as:

Lv=VyPv+rq, Lv= rTr[lea}]anv .

The value function update for a stochastic politgan be written as:

L)) = 5 Tmisa)(YP(sas)v(s)+r(sa)) .

acq,ses

A policy Ttis greedywith respect to a value functionwhenLrv = Lv. The optimal value function
V* = v satisfies/* = Lv*. The following proposition summarizes an important property of optimal
value functions.

Proposition 3 (Section 6.9 in Puterman, 2005)or any policytt € I the optimal value function
is an upper bound on the value function of any policy:

V> v

We assume a vector representation of the patieyRS/l. The variablestare defined for all
state-action pairs and represent policies. That(s,a) represents the probability of taking action
ac 4in statese §. The space of all stochastic policies can be represented using the fgleatn
of linear equations:

Zn(s,a):l vse s,
acAq
n(s,a) >0 Vse §,Vac 4.
These inequalities can be represented using matrix notation as follows:
Bi=1 mn>0,

where the matrixB : [S| x (|5|-|4]) is defined as follows:

1 s=¢
0 otherwise’

B(s,(s,a)) = {

We use0 and 1 to denote vectors of all zeros or ones of the appropriate size resggctivhe
symboll denotes an identity matrix of the appropriate dimension.
In addition, a policyrtinduces astate occupancy frequency uS — R, defined as follows:

Ur= (1 — T710(.
(1-ve7)

The set of all occupancy frequencies is denotedias RS/ The return of a policy depends on the
state-action occupancy frequencies angy; = r;f u,. The optimal state-action occupancy frequency

3030

ROBUST APPROXIMATE BILINEAR PROGRAMMING

is up and is often denoted ag. State-action occupancy frequency 8 x 4 — R is defined for
all states and actions; notice the missing subscript. Weulsse$S — R to denote the restriction
of u to actiona € 4 and useu| equivalently for a deterministic polici asul;: S+ u(s, 1(s,a)).
State-action occupancy frequenciesiust satisfy (e.g., Section 6.9 in Puterman, 2005):

S (1 -VP)Tua=a Vac4.

acAa

To formulate approximate linear and bilinear programs, it is necessarnttizctrése value func-
tions so that their Bellman residuals are non-negative (or at least botimedelow). We call
such value functions transitive-feasible and define them as follows.

Definition 4 A value function isransitive-feasiblevhen v> Lv. The set of transitive-feasible value
functions is:

K={ve V|v>Lv}.
Given some > 0, the set ok-transitive-feasiblevalue functions is:
K(e) ={ve V|v>Lv—el}.

Notice that the optimal value functior is transitive-feasible.

Next, we summarize the key properties of value functions and policies thaseve derive the
results. First, the following lemma summarizes the monotonicity of transition matridedipivs
from the geometric sequence representation of the matrix inverse.

Lemma 5 [Monotonicity] Let P be a stochastic matrix. Then both linear operators &&n- yP)‘1
are monotonous:

X>y=Px> Py,
x>y=(I—yP)"'x>(1-yP) 'y

forallx andy.

An important property, which we rely on, is that greedy policies are rfecfd by adding or
subtracting a constant from a value function; we state this well-knowreptyppithout proof.

Proposition 6 Let ve 9/ be any value function and assume an arbitrary B. Then:
L(v+cl)=Lv+ycl.

In addition, iftis a greedy policy with respect to v it is also greedy with respectitci.

The models we define also rely on the following basic properties of the Bellpamator.

Lemma 7 Let u be the state-action occupancy frequency of some plithen:

1Tu=1/(1-vy).

3031

PETRIK AND ZILBERSTEIN

Proof The lemma follows because:

S (Ula)T(1—yPa) =aT |

acAa
Y (Ula) (1 —yPa)l=0a'1,
acAa
(1-y) Y (Ua)1=1=(1-yu'l.

acAa

Finally, an important property of transitive-feasible value functions istth&t represent an upper
bound on the optimal value function.

Lemma 8 Transitive feasible value functions form an upper bound on the optimal vahatida.
If v e K (¢) is ane-transitive-feasible value function, then:

v>Vvi—g/(1-y)1.

Proof Let P* andr* be the transition matrix and the reward vector of the optimal policy. Then,
using Theorem 5, we get:
v>Lv—egl,
V> yPrV4rc—el,
(I —yP) v>r*—el,
v (1-yP) i —g/(1-y).

3. Value Function Approximation

This section describes basic methods for value function approximationasedve large MDPs.
Value function approximation, as its name indicates, only computes an apptexiaiae function
v of the MDP. The actual solution of the MDP is then the greedy paiigyith respect to this value
functionv. The quality of such a policy can be characterized using its value fungtiomone of
the following two ways.

Definition 9 (Policy Loss) Lettbe a policy. Thexpected policy losse of Ttis defined as:
Oe(T) = p(TE', &) —p(TL0) = ||V — V|10 = 0TV — T,

where||x||1c denotes the weighted Inorm: |[x||1.c = 5 |c(i)x(i)].
Therobust policy los®, of 1tis defined as:

or(M= max p(m,a)—p(ma) = ||V" — Vr/le = max|v*(s) — vr(S)| .
{a>0|1Ta=1} seS

3032

ROBUST APPROXIMATE BILINEAR PROGRAMMING

The expected policy loss captures the total loss of discounted rewardfell@ving the policy
Ttinstead of the optimal policy, given the initial state distribution. The robustyp@&s ignores the
initial distribution and, in some sense, measures the difference for thé-gass initial distribution.

A set of state features is a necessary component of value functiomapjtion. These features
must be supplied in advance and must capture the essential structurgpoblfeem. The features
are defined by mapping each stat® a vectorg(s) of features. We denotg : § — R to be a
function that maps states to the value of feaiure

@ (s) = (P(9))i -

The desirable properties of the features depend strongly on the algcsdihmples, and attributes of
the problem; the tradeoffs are not yet fully understood. The funagia@an be treated as a vector,
similarly to the value function.

Value function approximation methods compute value functions that can besesped using
the state features. We call such value functimmesentablend define them below.

Definition 10 Given aconvexpolyhedral setl/ C 9/, a value function v isepresentablén ’1~/) if
ve V.

Many methods that compute a value function based on a given set ofdediave been de-
veloped, such as genetic algorithms and neural networks (Bertsettdsisiklis, 1996). Most of
these methods are extremely hard to analyze, computationally complex, @htbheae. More-
over, these complex methods do not satisfy the convexity assumption inefhdd. A simpler
and more common method lisear value function approximationn which the value function of
each statsis represented as a linear combinatiomohlinear featureg(s). Linear value function
approximation is easy to apply and analyze.

Linear value function approximation can be expressed in terms of matrideBaags. Let the
matrix ® : | 5| x mrepresent the features for the state-space, whése¢he number of features. The
rows of the feature matrisp, also known as thbasis correspond to the features of the stapes.
The feature matrix can be defined in one of the following two equivalensway

- os)" — |
d=|— W)T — |, o=@ @
: .

The value functiorv is then represented as= ®x and the set of representable functiongis=
colspan(®).

The goal of value function approximation is not simply to obtain a good valnetifon V' but
a policy with a small policy loss. Unfortunately, the policy loss of a greedy potis formulated
in Theorem 9, depends non-trivially on the approximate value funetiddftéen, the only reliable
method of precisely computing the policy loss is to simulate the policy, which caeryecostly.
The following theorem states the most common bound on the robust policy loss.

Theorem 11 [Robust Policy Loss, Williams and Baird, 1994] Lrebe a greedy policy with respect
to a value functiorv. Then:

2 ..
IV o < 5= 9 LT

3033

PETRIK AND ZILBERSTEIN

In addition, ifV € K then:
IV Vil < =7 Lo
<t

The bounds in Theorem 11 are often overly conservative becaugé@time the initial distri-
bution and do not apply to the expected policy loss. We propose methodsithiatize both the
standard bounds in Theorem 11 and new tighter bounds on the expetitgdg@ss in Theorem 12.

We are now ready to derive a new bound on the expected policy loss in itggeresral form.
We show later how this bound relates to existing bounds and discuss itstEepad special cases.

Theorem 12 [Expected Policy Loss] Lat € N be a greedy policy with respect to a value function
vV € ¥ and let the state occupancy frequenciestble bounded as & uy; < u. Then:

Oe(T) = |V* =Vl |10 = @ TV —a "0+ Ul (V- L)
<a'v —a 04+ u" [J-LY_ +0" [V-L7, ,

where[x], = max{x,0} and[x] _ = min{x,0} element-wise. In addition, whére X, the bound is:

IV = VrllLa < =[IV' = V|1 + V- LV|1q, D
* o 1 . .
IV = Vrll1a < = [IV' = V|14 +EHV— LV - 2)
Proof Note that:
ur(l —yPr) —a" =0", 3

which follows directly from the definition of state-action occupancy fregigsn The bound is then
derived as follows:

IV — Vil ™30Ty aTv D oy — aTve+ (Ul (1 — yPr) — a1)¥

—a
=o'V — 1 Ug+ (Ul (I —yPy) —a’)¥
="V U+ ul (I —yP)i—a’

=o'V — a4 ug (I = YP)V— 1)
=o'V —a' V4 ul (V- L7)

<o’V —aTU4+u' [§-LY_ +0" [V—L7, .

v

Inequality (1) then follows from Theorem 8, which implies tlvat V* andv > Lv. Inequality (2)
follows using the trivial version of Holder’s inequality as:

GTV* . (XT\7 Thegem 8_HV* - \7||1,0(:
~ ., Holders - ~| Theorem7 1 . .
Up (V=L9) < Ul V- LT, =" [V — L] -

1-y
|

Notice that the bounds in Theorem 12 can be minimized even without knowirapthreal v*.
The optimal value function* is independent of the approximate value functioand the greedy
policy tdepends only omn.”™

3034

ROBUST APPROXIMATE BILINEAR PROGRAMMING

Algorithm 1: Approximate policy iteration, wher& (1) denotes a custom value function
approximation for the policyt

1 T,k < random, 1 ;

2 while 1 # 11 dO

3 Uk + 2(T-1) ;

4 T(S) <— argmaxear(s,a) + Yy scsP(s,a,9)VW(s) VseS;
5 K—k+1;

Remark 13 Theorem 12 generalizes the bounds established by de Farias (208@refin 3.1),
which state that for eactic K and a greedy policyt

|IV* — Vit

1, .
|1,0(< ryHV _VHl,(l—y)un .
This bound is a special case of Inequality becausex"v* —a TV < 0 and:

N - 1 -
1V =LV, < |V = V|10, = EHV* — V11— y)un 5

from v < LV < V.

The methods that we propose require the following standard assumption.

Assumption 1 All multiples of the constant vectdrare representable in/. That is, K € V for
allk e R.

Notice that the representation sEtsatisfies Assumption 1 when the first columndois 1. The
impact of including the constant feature is typically negligible because addicmnstant to the
value function does not change the greedy policy.

Value function approximation algorithms are typically variations of the exaarittgns for
solving MDPs. Hence, they can be categorized as approximate value ieggtigroximate policy
iteration, and approximate linear programming. The ideas behind approxialatiteration can
be traced to Bellman (1957), which was followed by many additional resezforts (Bertsekas
and Tsitsiklis, 1996; Sutton and Barto, 1998; Powell, 2007). Below, vixe discuss approximate
policy iteration and approximate linear programming, because they are thedsuetiust closely
related to our approach.

Approximate policy iteratiofAPI) is summarized in Algorithm 1. The functiafi(1) denotes
the specific method used to approximate the value function for the palidyhe two most com-
monly used methodsBellman residual approximationand least-squares approximation
(Lagoudakis and Parr, 2003)—minimize thenorm of the Bellman residual.

The approximations based on minimizihg norm of the Bellman residual are common in
practice since they are easy to compute and often lead to good resultshklmgtical analyses of
API, however, assume minimization of thg norm of the Bellman residual:

Z(m) € argmin|(1 — yPr)v— x|, -
veV

3035

PETRIK AND ZILBERSTEIN

L.-API is shown in Algorithm 1, wher&(m) is calculated by solving the following linear program:
Z(m) = rgivn{o‘ (I =YP)V+10 > ry, —=(I —=YP)V+10 > —r, V€ ‘17} .

We are not aware of convergence or divergence prooks,eAPl, and such analysis is beyond
the scope of this paper. Theoretically, it is also possible to minimizé therm of the Bellman
residual, but we are not aware of any detailed study of such an dpptien.

In the above description of API, we assumed that the value function i©eppated for all
states and actions. This is impossible in practice due to the size of the MDRdn&tl relies on a
subset of states and actions, provided as samples. API is not gudremteEmverge in general and
its analysis is typically in terms of limit behavior. The limit bounds are often vergdodVe discuss
the performance of APl and how it relates to approximate bilinear programimimgpre detail in
Section 7.

Approximate linear programming—a method for value function approximation-ased on
the linear program formulation of exact MDPs:

mvin z c(s)v(s)

sit. v(é)—ygz PE,savE) >r(sa) V(sa) e (S,A). ()
€S

The valuec represents a distribution over the states, usually a uniform one. Thatis(s) = 1.
The linear program (4) is often too large to be solved precisely, so it ioappated by assuming
thatv € 9 (de Farias and van Roy, 2003), yielding the followagaproximate linear program

min c'v
\"

~ (5)
st. Av>b, ve .

The matrix inequalityAv > b represents the inequality in (4) and is the following for actions
a,a,...,an € 4:

| —YPy Moy

I =YPy, | =A > b=|Ta

The constrain € 7 denotes the value function approximation. To actually solve this linear pro-
gram for the simple linear approximation (whéh= colspar{®)), the value function is represented
asv = ®x, which leads to:
min c'dx
X
st. ADx>Db.

Appropriate constraints can be added for other choicad.of
Assumption 1 guarantees that (5) is feasible. The following lemma followstljireom the
definition of K:

Lemma 14 A value function v satisfies Av b if and only if veé K. In addition, if ve K, then
V>V,

3036

ROBUST APPROXIMATE BILINEAR PROGRAMMING

Theorem 14 implies that an optimal solutienf (5) satisfiesv> v* from Theorem 8. As a result,
the objective of (5) represents the minimization|ef- v*||1c = cT (v—v*) (de Farias, 2002).

Approximate linear programming is guaranteed to converge to a solution and menamiz
weightedL1 norm on the solution quality.

Theorem 15 (Theorem 4.1 in de Farias, 20025iven Assumption 1, Iétbe the solution of5). If
¢ =a then:

IV~ 1 < IV Ve = 1o min [V~ @K
7 1-Vyer 1-y x
The difficulty with the solution of ALP is that it is hard to derive guaranteetherpolicy loss based
on the bounds in terms of thg norm; it is possible when the objective functiomepresentsi, as
Theorem 13 shows. In addition, the constantll-y) may be very large wheyis close to 1.
Approximate linear programs are often formulated in terms of samples instézelfofl formu-
lation above. The performance guarantees are then based on anéhgprgbability that a large
number of constraints is violated. It is generally hard to translate the consti@ation bounds to
bounds on the quality of the value function and the policy.

4. Bilinear Program Formulations

This section shows how to formulate value function approximation as a sgphinear program.
Bilinear programs are a generalization of linear programs that allows thetiobjéunction to in-
clude an additional bilinear term. A separable bilinear program consistsoofiear programs
with independent constraints and is fairly easy to solve and analyze in csop& non-separable
bilinear programs.

Definition 16 (Separable Bilinear Program) A separabldilinear program in the normal form is
defined as follows:
min - S{W+r{x+x Cy+rjy+s3z

W‘,X ‘ y7z

S.t. AX+Biw=Dby, Asy+Boz=Dhy, (6)
w,x>0, y,z>0.

The objective of the bilinear program (6) is denoted &as,x,y, z). We separate the variables using
a vertical line and the constraints using different columns to emphasizepghebée nature of the
bilinear program. In this paper, we only useparablebilinear programs and refer to them simply
as bilinear programs.

The goal in approximate dynamic programming and value function approximiatiorfind a
policy that is close to optimal. The set of acceptable policies is typically resttictee greedy with
respect taepresentablealue functions. We define this set of policids N as:

A ={men|Ly=Ly,ve V}.

We propose approximate bilinear formulations that minimize the following boundsloust
and expected policy loss.
1. Robust policy lossMinimize ||v* — Vi|| by minimizing the bounds in Theorem 11:

. 1
0V Vil < 0 [L
nef vey 1—

3037

PETRIK AND ZILBERSTEIN

2. Expected policy lossMiinimize ||V* — vr||1.q by minimizing the bounds in Theorem 12:

min ||V — Va1 <o’V + min (—aT\7+ iHv— Lv||oo> .

nell 7 veVnK 1-y
The appropriateness of each formulation depends on the particulamsit@oces of the domain.
For example, minimizing robust bounds is advantageous when the initial digiribs not known
and the performance must be consistent under all circumstances. Othénéhand, minimizing
expected bounds on the value function is useful when the initial distributiomoisn.

In the formulations described below, we initially assume that samples of all stadesctions
are used. This means that the precise version of the opdrasoavailable. When solving large
problems, the number of samples is often much smaller, due to either subsamptedyction
based on the structure of the MDP. While sampling in linear programs results/simipmoval of
constraints, in approximate bilinear programs it also leads to a reduction iruthleen of certain
variables, as described in Section 6. .

The formulations below denote the value function approximation genericallycbg’. That
restricts the value functions to be representable using the featureses@pfable value functions
v can be replaced by a set of variableasv = ®x, which reduces the number of variables to the
number of features.

4.1 Robust Policy Loss

The solution of the robust approximate bilinear program minimized_theorm of the Bellman
residual||v— Lv||. over the set of representable and transitive-feasible value funciidmis mini-
mization can be formulated as follows.
min TN+ N
AN Vv
s.t. Bti=1, A+AN1>Av—-b>0,

>0, AN>O0,
ve .
All the variables are vectors excelt which is a scalar. The valugsandb are identical to the

values in (5). The variablek correspond to all state-action pairs. These variables represent the
Bellman residuals that are being minimized. This formulation offers the followirzgantees.

(7)

Theorem 17 Let(TT, \7,5\,):’) be an optimal solution of7) and let

- V=LY
N V=LV
2(1-y)

Then:

AN = [V— LV = min_||v—LV]e
ve KNV

IV —LV|lw = min||v—LV| e
velV

< (L+y)minfv—ve .
ve

In addition, there exists an optimae 1.

3038

ROBUST APPROXIMATE BILINEAR PROGRAMMING

It is important to note that the theorem states that solving the approximate biiresgam is
equivalent to minimization oveall representable value functions, not only the transitive-feasible
ones. This follows by subtracting a constant vedtdrom V to balance the lower bounds on the
Bellman residual error with the upper ones as Theorem 20 shows. Thisagthe Bellman resid-
ual by 1/2 without affecting the policy. Finally, note that whenewére 9/, both ABP and ALP
will return the optimal value function*. The following corollary follows from Theorem 11 and
Theorem 17 applied t@.

Corollary 18 For any optimal solution’ of (7), the policy loss of the greedy poli¢yis bounded
by:

2 .
[IV* — V]| = v min||v—LV||e .
S

To prove Theorem 17, we first define the following linear programs.

— mi T /
fi(ryv) = rﬂ;\r){n A+A

1)\’+)\2Av—b,)\20} ,

fa(v) = mTi[n{fl(T[,v) |Bt=1,11> 0} .
Assuming thatf* is the optimal solution of (7), then:

f*= min fi(r,v)= min fy(v).
nel,ve VNK ve VNK

Lemma 19 Let ve X be a transitive-feasible value function and febbe a policy. Then:

f1(TLV) > [[V— L[(8)
fa(v) = [[V—LVle .)

In addition, inequality(8) becomes an equality for ameterministicpolicy 1, and there is a deter-
ministic optimal policy that satisfies equal(f9).

Proof To prove (8), notice that for ali € § we have thap 5. 4 T(s,a) = 1 andmn(s,a) > 0. Then:

fl(n,v)@)\’+ > Asam(sa)
scS,aeAa
A(s.2)>0
> N+maxy Asa(s,a)
SES 4&m
= N4
max 5 Ti(s,a)(A' +A(s,a))

acAa

>max 'y s, a)gz (YP(s,a,8)v(s) +r(s,a))
acA €S

ses

=|IV—LnV|[oo -

To show the equality for a deterministic policy, 2ét= ||[v— Lnv|| andA(s, 1i(s)) = 0 with other
elements ol set arbitrarily. This can be readily shown to be an optimal solution.

3039

PETRIK AND ZILBERSTEIN

To prove (9), note again thate %, which implies thatv > Lv. Then, using the fact that the
policy defines an action for every state, we get:

f2(V) = min||v— LnV|| = minmax(v — LnV)(s)
mell el se§

= maxmin(v— Lnv)(s)

scS§ mell
= max(vV— maxLnv)(s)
seS el

=maxv—Lv)(s) = |[v—LV|e .
ses

The existence of an optimal deterministic solution then follows from the existdrecdeterministic
greedy policy with respect to a value function. |

Now, we show that restricting the value functions to be transitive feasibt# lgmiting, because
it does not restrict the set of greedy policies that are considered Tfwatl we define the following
sets:

Vr=arg min [[V—LV||«, Vo =argmin||v— Lv||e .
veVNK veV

Let M, andl, be sets of greedy policies with respectitband 1. The setsl; and 7% satisfy the
following important property.

Lemma 20 Given Assumption 1, let\e 7} and \» € 7%, we have the following equalities:

min(vq —Lvy)(s) =0, —min(vy — Lvz)(S) = max(vz — Lvo)(s) .
seS seS sES
Then, define:
— Lva[oo [[V2 — Lval|oo
\/:V—Hvlill, Vo=V 1.
T 2y 2T 1y

for which the following holds:

min(v; — Lv5)(s) =0, —min(vy —Lvj)(s) = TG%X(\/l —Lva)(s) -

ESX) ESX)

Proof Assume, for the sake of deriving a contradiction, thatgmitv, —Lvi)(S) =€ > 0. Then, let
vi =Vv; —€/(1—y)1 € KX which implies the following by Theorem 6:

V2 = LVl = [V = Lvy — €1} = max(vy — Lvy —£1)(s)
=maxvy —Lvq)(s) —€=||vi — Lvi||c — €
seS
< HVl— LV1H00 .

This contradicts the optimality of,. The inequality fow, follows similarly. The rest of the lemma
is a simple consequence of Theorem 6. |

We are now ready to show that neither the set of greedy policies coedider the policy loss
bounds are affected by considering only transitive feasible functio®.n

3040

ROBUST APPROXIMATE BILINEAR PROGRAMMING

Proposition 21 Given Assumption 1, the following holds:

V2—LV2||0°
e [bl)
(1-vy)
IVi—Lvillw =2[Vo —LWo||w VV1 € T4, VW0 € 15,
My="rly.

Proof To show that1; C {Vz—l— %1‘@ € ‘Vz} assume &, € 74 and define:

Cvi—Lva e
2(1-y)
Note thatv, € V from Assumption 1, and|Rz — LV ||e = ||v1 — LV1|| from Theorem 20. To show

thatv, € 75 by contradiction, assume that there exists 7%, such that

Vo — Lo |le < [|[Vo — LV2]|eo and letvy = Vo + ML Using Theorem 20, we get:
(1-y)

V1 = LVilo = 2[[V2 = LV2 [0 < 2[[V2 = LV2[|e = [JVe = LVa|oo ,

Vo =Vq 1.

which contradicts the optimality of;.
The inclusion74 D {vz— H‘Z’(*l"_v\u)“l‘vz S ‘Vz} andl; D M, can be shown similarly. Finally,
Theorem 6 implies thdill; = M». [|

Proposition 22 Given Assumption 1, the minimal Bellman residual for a representable Watge
tion can be bounded as follows:

min||LV—V|e < (1+Yy)mMin||v— V|| .
veV ve

Proof Assume thav minimizes min_g, ||v—V*|l» < €. Then:
Vi—gl< v <Vvi4el,
Lv: —yel < Lv <Lv-+vel,
Lvi —yel—-v< Lv—v <LV +yel-v,
LV —v' — (1+y)el< Lv—v <LV —v'+(1+y)el,
—(1+y)el< Lv—v < (1+y)el.

Theorem 17 now easily follows from the results above.
Proof [Proof of Theorem 17] Letf* be the optimal objective value of (7). Then we have from
Theorem 19 that:

f*= min fiy(rv)= min fo(v)= min |[V—LV| .
nenve Nk ve Nk ve Nk

The properties of’ follow directly from Theorem 21:

VeN=Veli=|V—-LV|w=min|v—LV|w .
veV

3041

PETRIK AND ZILBERSTEIN

Note that the existence of an optimal deterministic policy in (7) follows from thstexxce of a
deterministic optimal policy irf,. The bound on the minimal Bellman residual follows from Theo-
rem 22. |

4.2 Expected Policy Loss

This section describes bilinear programs that minimize bounds on the exmetted loss for a
given initial distribution||v— Lv||1 . The initial distribution can be used to derive tighter bounds on
the policy loss. We describe two formulations. They respectively minimize.aand a weighted
L, norm on the Bellman residual.

The expected policy loss can be minimized by solving the following bilinear fortionla

min A+ —(1-y)a'v

AN Vv
s.t. Bri=1, Av—b>0,
n>0, A+N1>Av—Db, (20)
M >0,
ve .

Notice that this formulation is identical to the bilinear program (7) with the exceptfdhe term
—(1-y)aTv.

Theorem 23 Given Assumption 1, any optimal solutiim \7,5\,):’) of (10) satisfies:

~TY - 1 .. N
(nTM—)\’)—aTv LT = —a TV

1-y 1-y
. 1 -
= min_ [—|Lv—V|e—a'V
ve KNV l_y
. 1
= min <||Lv—v]oo—0(Tv> .
ve —y

In addition, there exists an optimae 1.

The following bound on the policy loss follows using Theorem 12.

Corollary 24 There exists an optimal solutidrthat is greedy with respect fofor which the policy
loss is bounded by:
|1,0(>

1 T
< ——|ILV— V]| — -V).
< (mlpl_y\Lv V][—a' (V—V))

ve

. 1
V"= Villia < | min ——|ILv—=Vle — [V =V
ve‘Vﬁ?(l_y

3042

ROBUST APPROXIMATE BILINEAR PROGRAMMING

Proof The proof of Theorem 23 is similar to the proof of Theorem 17 with the mairmdffice
being in the definition of function§;, and f;:

f1(TLV) = rAn;\p{T[T)\ +N = (1—y)aTv|IN +A > Av—b A > o} :
fa(v) = mTin{fl(T[,v) |Brt=1,1> 0} .

The following lemma can be proved identically to Theorem 19.

Lemma 25 Let ve X be a transitive-feasible value function and tebbe a policy. Then:

fi(mv) 2 [IV—Lavlle — [V = V]l1a (11)
fa(v) = V=LVl — V" = V|10 - (12)

In addition, (11) holds with an equality for aleterministicpolicy 1, and there is a deterministic
optimal policy that satisfiefl2).

The fact that optimization over transitive-feasible value functions doesestrict the resulting
policies is proved identically to Theorem 21 with séfsand 7% that satisfy the same equations.
Notice also that the objective function of (10) does not change whetmasting a constant for
VvV =v—klandk > 0:

1 T, 1 N
HH\/—L\/HOQ—O(\/_l_va LV|jw—0'V,

when—minscs(V — LV)(S) = maxes(V — LV)(s) and mines(v—Lv)(s) = 0. [|

5. Solving Bilinear Programs

This section describes methods for solving approximate bilinear prograitised® programs can
be easily mapped to other global optimization problems, such as mixed integerpinggams
(Horst and Tuy, 1996). We focus on a simple iterative algorithm for sgldiinear programs
approximately, which also serves as a basis for many optimal algorithmsditioadwe provide a
basic problem-specific mixed integer program formulation.

Solving a bilinear program is an NP-complete problem (Bennett and Marigas1993). The
membership in NP follows from the finite number of basic feasible solutions an¢iadual linear
programs, each of which can be checked in polynomial time. The NP-&ssde shown by a
reduction from the SAT problem.

There are two main approaches for solving bilinear programs optimally. ffirsh@pproach, a
relaxation of the bilinear program is solved. The solution of the relaxel@morepresents a lower
bound on the optimal solution. The relaxation is then iteratively refined,Xamele by adding
cutting plane constraints, until the solution becomes feasible. This is a commoadnetéd to
solve integer linear programs. The relaxation of the bilinear program isajypieither a linear or
semi-definite program (Carpara and Monaci, 2009).

In the second approach, feasible, but suboptimal, solutions of the bifinegram are calculated
approximately. The approximate algorithms are usually some variation of Algogitirhe bilinear

3043

PETRIK AND ZILBERSTEIN

Algorithm 2: Iterative algorithm for solving (6)

1 (Xo,Wp) « random ;

2 (Yo,20) < argmin,z f(Wo, Xo, Y, 2) ;

3i+1;

4 whiley;_1 #Y; orx_1 # X do

(Vi,z) argmir{y,z\AzerBzz:bzy,zzO} f(Wi1,%-1,Y,2) ;
(Xi,w;) < arg mir{x,w\Alx+81W:b1 X,W>0} f(wW,X,yi,2) ;

7 i+—i+1

[e2BNe)]

g return f(wi,x;,yi,z)

program formulation is then refined—using concavity cuts (Horst and T896)—to eliminate
previously computed feasible solutions and solved again. This procedunree shown to find the
optimal solution by eliminating all suboptimal feasible solutions.

The most common and simplest approximate algorithm for solving bilinear pragisaAlgo-
rithm 2. This algorithm is shown for the general bilinear program (6),r&tiéw, x,y, z) represents
the objective function. The minimizations in the algorithm are linear programshwdain be eas-
ily solved. Interestingly, as we will show in Section 7, Algorithm 2 applied to Ai&Reralizes a
version of API.

While Algorithm 2 is not guaranteed to find an optimal solution, its empirical perdace is
often remarkably good (Mangasarian, 1995). Its basic propertiesuanenarized by the following
proposition.

Proposition 26 (Theorem 2.2 in Bennett and Mangasarian, 1993\Igorithm 2 is guaranteed to
converge, assuming that the linear program solutions are in a vertexeabptimality simplex. In
addition, the global optimum is a fixed point of the algorithm, and the objectieymonotonically
improves during execution.

The proof is based on the finite count of the basic feasible solutions of digduaal linear pro-
grams. Because the objective function does not increase in any itethgaalgorithm will eventu-
ally converge.

As mentioned above, any separable bilinear program can be also forchatatemixed integer
linear program (Horst and Tuy, 1996). Such formulation is not prddticaur setting, because its
size grows quadratically with the size of ABP and its linear relaxations weyda@se in our exper-
iments. Below, we present a more compact and structured mixed integer lingeaup formulation,
which relies on the property of ABP that there is always a solution with an optietarministic
policy (see Theorem 17).

We only show the formulation of the robust approximate bilinear programtlié) same ap-
proach applies to all other formulations that we propose. To formulate thednnixeger linear
program, assume a given upper bound R for the optimal solutior* and alls€ § andac 4

3044

ROBUST APPROXIMATE BILINEAR PROGRAMMING

such thatt > A*(s,a). The mixed integer linear program formulation that corresponds to (7) is:

min 1Tz+ N
ZTIAN vV
s.t. z>A-1(1-1m),
Bi=1, (13)
AN1I>Av—-b>0,

AN >0, ve?, me{o1ial

The following theorem states the correctness of this formulation:

Theorem 27 Let (1y,A1,A]) be an optimal (greedy-policy) solution ¢7) and lett > A1. Then:

<Tt1,)\1,)\’1,z’: min)1Tz>

>N —(T—-Ty

is an optimal solution o{13) and vice versa. When in addition &nd % are the optimal objective
values of(7) and (13), then f = f».

Proof First, we show thatry, A1, A}, Z = Min), _(t_m) 172) is feasible in (13) and has the same
objective value. Sincey is a greedy policy (see Theorem 17), thanc {0,1}5*?. That isTy is
feasible in (13). Let then:

2(s.2) = A(s,a) ifm(sa) =1
229 0 otherwise

To show thatz, is feasible in (13), analyze the following two cases:

T(s,a)
T(s,a)

1: n(s,a)+1(s,a)(1—ru(s,a)) = z(s,a) =A1i(s,a),
0: »(s,a)+1(s,a)(1—m(s,a)) >1(s,a) > Ai(s,a) .

The objective values must then be identical based on a simple algebraic fadoipuThe reverse
direction—showing that for any solution of (13) there is a solution of (7) wwithsame objective
value—follows similarly. [|

This mixed integer linear program formulation is much simpler than a genera?¥ttmulation of
a bilinear program (Horst and Tuy, 1996).

The performance of the proposed solution methods strongly depende anttral structure of
the problem. As usual with NP-hard problems, there is very little understgquditihe theoretical
properties that could guarantee faster solution methods. Experimenths$réowever, show that
the ABP-specific formulation can solve problems that are orders of magridtger than those that
can be solved by the general MILP formulation of ABP.

6. Sampling Guarantees

Typically, the number of states in an MDP is too large to be explicitly enumeratddngia hard
to solve even when the value function is restricted to be representableustibkapproach is to
sample a limited number of states, actions, and their transitions in order to appteby calculate

3045

PETRIK AND ZILBERSTEIN

the value function. This section shows basic properties of the samplesédlsaifficient to establish
solution quality guarantees with incomplete samples. To derive sampling hauadssume in this
section that the representable value functions are regularized.

First, we formally define samples and then show how to use them to computetiarsolthe
samples of the simplest type are defined as follows.

Definition 28 One-step simple samplese defined as:
Sc{(sal(s...s),r(sa))|sdes, aca},
where g...s, are selected i.i.d. from the distribution&a,-).

Note that> represents an arbitrary subset of states and actions and may or maysaopled from
a distribution. More informative samples include the full distributi(s, a, -) instead of samples
from the distribution. While these samples are often unavailable in practigeatbaiseful in the
theoretical analysis of sampling issues.

Definition 29 One-step samples with expectatiame defined as follows:
> C{(s,aP(sa-),r(sa)|scs, aca},
where Rs, a, -) is the distribution over the next states.

The membership of a state in the samples is denoted simply asor (s,a) € = with the remaining
variables, such ags,a) considered to be available implicitly.

The sampling models may vary significantly in different domains. The focukisfwork is
on problems with either a fixed set of available samples or a domain model. dieerek do not
analyze methods for gathering samples. We also do not assume that thessaonptdrom previous
executions, but rather from a deliberate sample-gathering process.

The samples are used to approximate the Bellman operator and the set wive-deasible
value functions as the following definitions describe.

Definition 30 The sampled Bellman operat@nd the corresponding set of sampled transitive-
feasible functions are defined as:

H)F = max r(Ga)+y y PEagus) el

% = {v|(5aP(5a),r(5a) € %, V(3 > (Lv)(§} .
The less-informative set of samplEsan be used as follows.

Definition 31 Theestimated Bellman operatand the corresponding set of estimated transitive-
feasible functions are defined as:

C)E = max () e i_iv(a) vse s

K=1{v|[(Sa(s...s),r(5a) €2, v(§ > (Lv)(§} .

3046

ROBUST APPROXIMATE BILINEAR PROGRAMMING

Notice that operatorf andL map value functions to a subset of all states—only states that are
sampled. The values for other states are not defined here; they woulefibed in a problem-
specific way as, for example, the proof of Theorem 32 shows.

The samples can also be used to create an approximation of the initial distrjlartitie dis-
tribution of visitation frequencies of a given policy. The estimated initial distidioua is defined

as: _
= {a(s) (8-,)€ex

0 otherwise

Most existing sampling bounds for approximate linear programming focusoanding the
probability that a large number of constraints is violated when assuming a distmikaver the
constraints (de Farias and van Roy, 2004). The difficulty with this agprégathat the number
of violated constraints does not easily translate to bounds on the quality eéline function, or
the policy. In addition, the constraint distribution assumed in the bounds l6adas and van Roy
(2004) is often somewhat arbitrary with no implication on solution quality.

Our approach, on the other hand, is to define properties of the samm@etans that guarantee
that the sampling error bounds are small. These bounds do not rely doudistis over constraints
and transform directly to bounds on the policy loss. To define boundsessathpling behavior, we
propose the following assumptions. The first assumption limits the error due smmisansitions
in the sampled Bellman operator

Assumption 2 (Constraint Sampling Behavior) There existg, > 0 such that for all ve V:
Lv—gpl <Lv<Lv.
Notice that Assumption 2 implies that:
KCKC K(ep) -

The second assumption quantifies the error on the estimation of the transftibesestimated
Bellman operatot.

Assumption 3 (Constraint Estimation Behavior) There existgs > 0 such that for all ve V:
Lv—esl <Lv<Lv+tesl.
Notice that Assumption 3 implies that:
K(—€s) € K C K(es) -

Assumptions 2 and 3 are intentionally generic, so that they apply to a wide tdrsgenarios.
They can be easily satisfied, for example, by making the following Lipschitidragty assumptions
on state features, transitions and rewards.

Assumption 4 Let k: § — R" be a map of the state-space to a normed vector space. Then for all
s1,%,3 € S and all features (columngj) € @, we define K Kp, and Ky such that

r(s1) —r(s2)| <K lk(s1) —k(s2)]|
|p(ssls1,@) — p(ss[sz.@)| < Kp[k(s1) — k()| Vae A,
|@(S1) — @ (S2)] < Kollk(s1) k()] -

3047

PETRIK AND ZILBERSTEIN

This assumption can be used to provide bounds on the sampling error assfdibo more details
on tighter and more general bounds see Petrik (2010).

Proposition 32 Given Assumptions 1 and 4 and thet = {ox+11]|[x|l1 < @,I € R}, then As-
sumption 2 holds with:

ep = (Kr + (Ko YKe)) mamin (s) k(S]]

Note that?’ as defined in Theorem 32 satisfies Assumption 1.
Proof Assume that there exists a constgisuch that:

in||k(s) —k(§|| <q.
maxmin|[k(s) —k(s)l| < q

Also, define a functiorx : § — S that maps each state to the closest sample as follows:
X(s) = argmin||k(s) - k()| -
533

We will use the following simple extension of Holder’s inequality to prove thepsition.

Lemma 33 The following holds for any & V= {dx+11|||x|[» < ,l € R} and any y such that
1Ty =0.
™V < VTV < W[@yoo -

Assumption 4 directly implies the following inequalities:

[e(X(S) —@(S) [< UK,
r(x(s)) —r(s)| < aK: ,
IP(x(s),a) '@ —P(s,a) Tl <qKp Vae .

The proposition now follows using simple algebraic manipulation as:
max|(v—Lv)(s) — (v— L) (x(s))|
seS$
< _max [(V—yPav—ra)(s) — (V—YPaV—Ta)(X(9))|

scS,acAa
< max |18 (PX— YPa®X — Fa) — 1}) (PX— YPa®X —)|
< Jmax_ (15 — Iy Px +1(13 — Iyg VPa®X|+
+](15 —Lyg)ral
T ma (1] - 1)@ o+
scS,acAa
+1(2 - 1X)YPa® ||+ [| (13 — 1T()alfe
< gKr + (K +YKp)
where the last inequality follows from Assumption 4. |

3048

ROBUST APPROXIMATE BILINEAR PROGRAMMING

In practice, the estimated Bellman operator is used to formulate the approximagabjiro-
gram. Then, the matrices used in the sampled approximate bilinear prograre(@dgfined as
follows for all (s, aj) € 2.

A (— (P(S)T—V%Zsesl.._.qnP(S,aj,s')(p(s')T _> e (r(s;’aj)> |

B(g,(s,a))=1{d=s} vdek.

The ordering over states in the definitions above is also assumed to beteansiBhe sampled
version of the bilinear program (7) is then:

min TCA+MN

AN X .

S.t. Bri=1, A®x—-b>0,
>0, A+N1>Adx—b,

M >0.

(14)

The size of the bilinear program (14) scales with the number of sampleseatutds, not with
the size of the full MDP, because the variableandt are defined only for state-action pairs in
$. Thatis,|m = || = |{(s,a) € Z}|. The number of constraints in (14) is approximately three
times the number of variables Finally, the number of variablescorresponds to the number of
approximation features.

Theorem 17 shows that sampled robust ABP minimies Lv||., or |[v— Lv]|.. We are now
ready to derive sampling bounds on these values that rely on Assumptamts32defined above.

Theorem 34 Let the optimal solutions to the sampled and precise Bellman residual mitiiomza
problems be:

vi € min|lv—Lvle , Vo € min||v— LV , vz e min|lv—Lve .
veV veV ve

Value functions ¥, V», vz correspond to solutions of instances of robust approximate bilinear pro
grams for the given samples. Also fgt= vy, wherers is greedy with respect tg.vThen, given
Assumptions 1 to 3, the following holds:

IV — G4l < —2 min V= L]
1-Yyew
) 2 [
V=Vl < —— (m|n||v— Lv\|m+sp> ,
l_y veV

. 2 .
IV — V3| < iy <m|q~r/1|]v— Lv\|m+ep+283> .
ve

These bounds show that it is possible to bound policy loss due to incompiepdesa As mentioned
above, existing bounds on constraint violation in approximate linear progmag (de Farias and
van Roy, 2004) typically do not easily lead to policy loss bounds.

3049

PETRIK AND ZILBERSTEIN

Sampling guarantees for other bilinear program formulations are very sinilecause they
also rely on an approximation of the initial distribution and the policy loss, theyire additional
assumptions on the uniformity of state samples.

Proof We show bounds offv; — LVi||«; the theorem can then be inferred from Theorem 17, which
establishes that ABP minimizes the Bellman residual. The first inequality follovesttjirfrom
Theorem 17. The second inequality can be derived as:

Assumption 2 _
Vo —LVs < Vo — Lo

*) —
<vi— LV]_

<vi—Lvi+egpl.

The third inequality can be derived as:

Assumption 2 _
vz —Lvs < Vvz3—Lvz+¢gpl
Assumption 3 -
) ~
<Vvi—Lvitesl4gpl

Assumption 3

< vi—Lvi+2es1+¢€pl.

The star(x) in the inequalities refers to the fact that> Lv; and thaty;’s minimize the correspond-
ing Bellman residuals. |

To summarize, this section identifies basic assumptions on the sampling behaVvishavs
that approximate bilinear programming scales well in the face of uncertaingeday incomplete
sampling. More detailed analysis will need to focus on identifying problersiip@ssumptions
and sampling modes that guarantee the basic conditions, namely satisfying@sss 2 and 3.
Such analysis is beyond the scope of this paper.

7. Discussion and Related ADP Methods

This section describes connections between approximate bilinear progrgramdntwo closely
related approximate dynamic programming methods: ALPlanAPI, which are commonly used
to solve factored MDPs (Guestrin et al., 2003). Our analysis sheds ligswme of their observed
properties and leads to a neenvergentorm of approximate policy iteration.
Approximate bilinear programming addresses some important drawbacksof A
1. ALP provides value function bounds with respedttaorm, which does not guarantee small
policy loss;
2. ALP’s solution quality depends significantly on the heuristically-chosgeative functionc
in (5) (de Farias, 2002);
3. The performance bounds involve a constafiiLt-y) which can be very large whepis close
to 1; and
4. Incomplete constraint samples in ALP easily lead to unbounded lineagpnegr

3050

ROBUST APPROXIMATE BILINEAR PROGRAMMING

The downside of using approximate bilinear programming is, of course,ighethcomputational
complexity.

The first and the second issues in ALP can be addressed by chogsiolgl@m-specific objec-
tive functionc (de Farias, 2002). Unfortunately, all existing bounds requiredisathosen based on
the optimal ALP solution foc. This is impossible to compute in practice. Heuristic valuesfare
used instead. Robust approximate bilinear program (7), on the otheylm@sno such parameters.

The fourth issue in approximate linear programs arises when the consira@us$o be sampled.
The ALP may become unbounded with incomplete samples because its objedtigas/defined
using theL; norm on the value function, and the constraints are defined using.4h®rm of
the Bellman residual. In approximate bilinear programs, the Bellman residusédsin both the
constraints and objective function. The objective function of ABP is trmmbed below by 0 for
an arbitrarily small number of samples.

The NP-completeness of ABP compares unfavorably with the polynomiallegitypof ALP.
However, most other approximate dynamic programming algorithms are ncargead to con-
verge to a solution in finite time. As we show below, the exponential time complexiB&¥ is
unavoidable (unless P = NP).

Proposition 35 (Mangasarian, 1995)A bilinear program can be solved in NP time.

The proof is straightforward. There is an optimal solution of the bilineagiamm such that the
solutions of the individual linear programs are basic feasible. The sgtlodsic feasible solutions
is finite, because the feasible regionsagk andy, z are independent. The value of a basic feasible
solution can be calculated in polynomial time.

The following theorem shows that the computational complexity of the ABP flation is
asymptotically the same as the complexity of tightly approximating the value function.

Theorem 36 Suppose thad < y < 1 ande > 0. Then the problem of determining whether the
following inequalities hold is NP-complete:

min_ ||[Lv -V <€, min||Lv—V|j» < €.
ve KNV veV
The problem remains NP-complete even when Assumption 1 is satisfettition, it is also NP-
complete to determine:

mMin|[LV—V|[e — V' =V[1a <€, min|lLv—V|1g— V' —V|]1a <€,
veV veV

assuming thatr > 0and 10 = 1.

As the theorem states, the value function approximation does not becometationally sim-
pler even when Assumption 1 holds—a universal assumption in the pap¢iceNhat ALP can
determine whether mip,,. .7, ||LvV— V|| = 0 in polynomial time.
Proof The membership in NP follows from Theorem 17 and Theorem 35. We shad¥dness
by a reduction from the 3SAT problem. We first do not make Assumption 1.sNgev that the
theorem holds foe = 1. The appropriate can be obtained by simply scaling the rewards in the
MDP.

The main idea is to construct an MDP and an approximation basis, such tlzgireximation
error is small whenever the SAT problem is satisfiable. The values of ttes stél correspond to

3051

PETRIK AND ZILBERSTEIN

(lia VvV 12 V 113) A (21 V l22 V 123)

o

a1 as ar as

s(C1) s(Cz)
Figure 1: MDP constructed from the corresponding SAT formula.

the truth values of the literals and clauses. The approximation feapwikbe used to constrain
the values of literals that share the same variable. The MDP constructedHeoSAT formula is
depicted in Figure 1.
Consider a SAT problem with claus€s
A\ C= A (aVli2Vls),
i=1,...,n i=1,...n
wherel;; are literals. A literal is a variable or the negation of a variable. The variafle SAT
problem arex; ...xm. The corresponding MDP is constructed as follows. It has one sfigtefor
every literall;j, one states(C;) for each claus€; and an additional state That is:

S={sG)|i=1,...npu{sj)]i=1,....nj=1,...,3U{s.

There are 3 actions available in each s&{@), which determine the literal of the clause whose
value is true. There is only a single action available in stsigg ands. All the MDP’s transitions
are deterministic. The transitidfs,a) = (s,r) is from the statesto ', when actiora is taken, and
the reward received is The transitions are as follows:

t(s(ci)’aj) = (S(Iij)vl_y))
t(s(lij).a) = (s(lij), —(1-v)) ,
t(sa)=(s2-vY).

Notice that the rewards depend on the discount fagtfmr notational convenience.
There is one approximation feature for every variaflsuch that:

®(s(G)) =0,
®(s) =0,
1 if Iij = Xk
o(s(lij)) {_1 i1 = -
An additional feature in the problerﬁis defined as follows:
®s(G)) =1,
®s(lij) =0,
o) =1.

3052

ROBUST APPROXIMATE BILINEAR PROGRAMMING

The purpose of statgis to ensure that(s(c;)) > 2—y, as we assume in the remainder of the proof.

First, we show that if the SAT problem is satisfiable, then mjn . [|Lv— V][< 1. The value
functionv'e X is constructed as a linear sum of the featuresvas:®y, wherey = (y1,...,ym,Y).
Hereyy corresponds tgyx andy corresponds t@. The coefficientsy are constructed from the truth
value of the variables as follows:

y if xx=true
Yk = .)
—y if xx=false

y=2-y.
Now define thedeterministicpolicy Ttas:
1(s(Ci)) = aj wherel;; =true.

The true literals are guaranteed to exist from the satisfiability. This policyeisdyrwith respect to
¥ and satisfies thatl ¥ — V|je < 1—Vy°.
The Bellman residuals for all actions and states, given a value fungtame defined as:

v(s) —W(s) 1 |

wheret(s,a) = (S,r). Given the value functiom, the residual values are:

t(s(Gi),aj) = (s(lij), 1—-vy): {Z—V—y2+(1_y):1_y2 if 1 =true

2-Y+Y+(1-y)=1+y if I =false’
- y=1- if 1) =
t(s(ly),) = (sl1y). (L=y) {V_yf; S e e

t(sa)=(s1-y): (1-y)+y-1=0.
It is now clear thattis greedy and that:
LT~V =1-V* < 1.

We now show that if the SAT problem is not satisfiable then, minz, [[Lv — V[> 1 — %
Now, given a value function, there are two possible cases for eas(l;;)): 1) a positive value,
and 2) a non-positive value. Two literals that share the same variable wéltha same sign, since
there is only one feature per each variable.

Assume now that there is a value functianThere are two possible cases we analyze: 1) all
transitions of a greedy policy are to states with positive value, and 2) thatdeiast one transition
to a state with a non-positive value. In the first case, we have that

vidj, V(s(lj)) > 0.

That is, there is a functioq(i), which returns the positive literal for the clauge Now, create a
satisfiable assignment of the SAT problem as follows:

X = true If qu(i) = Xk 7
false ifligi) = %

3053

PETRIK AND ZILBERSTEIN

with other variables assigned arbitrary values. Given this assignment, edlditgith states that
have a positive value will be also positive. Since every clause contaleasitone positive literal,
the SAT is satisfiable, which is a contradiction with the assumption. Ther¢fane is at least one
transition to a state with a non-positive value.

Let C; represent the clause with a transition to a litéfalwith a non-positive value, without
loss of generality. The Bellman residuals at the transitions from these sti#ltbe:w

by = V(s(l11)) = W(s(l11)) + (1-y) 20— 0+ (1-y) =1-vy,
by = V(s(C1)) —W(s(l12)) = (1—y) 2 2—-y—-0-1+y=1.

Therefore, the Bellman residuals’bounded as:
|LV— V|| > max{by,bo} > 1.

Since we did not make any assumptionswithé claim holds for all representable and transitive-
feasible value functions. Therefore, min, . [|LvV—V|[o < 1—y? is and only if the 3SAT problem
is feasible.

We now show that the problem remains NP-complete even when Assumptiddsl Befine a
new states; with the following transition:

(88) = (2 —3)
All previously introduced featuregare zero on the new state. Thatpgs;) = ¢(5;) = 0. The new
constant feature igp(s) = 1 for all states < S, and the matching coefficient is denoted/asWhen
the formula is satisfiable, then clearly mi, ;. [[Lv—V[[o < 1—y? since the basis is now richer
and the Bellman error on the new transition is less thanAwheny; = 0.
Now we show that when the formula is not satisfiable, then:

y'Z

min [[Lv—V]e>1— .
veVNK 2

This can be scaled to an appropriatey scaling the rewards. Notice that

0<y <

NI<<

Wheny; < 0, the Bellman residual on transitios&i) — s(lij) may be decreased by increasing
while adjusting other coefficients to ensure thét(C;)) = 2—y. Wheny; > \—2’ then the Bellman

residual from the stats, is greater than 1 % Given the bounds owy, the argument foy, = 0
holds and the minimal Bellman residual is achieved when:

V(S(G) = W(s(l)) = (1Y) = W(S(80) — W(S(D) + 3 -
2y Wi (1-Y)=i— Wi+
Vi=s.

Therefore, when the SAT problem is unsatisfiable, the Bellman residueiast 1 g

3054

ROBUST APPROXIMATE BILINEAR PROGRAMMING

The NP-completeness of mjn;, ||Lv — V||, < € follows trivially from the fact that transitive-
feasibility does not restrict the solution quality. The proof ffer- Lv||.. —a v is almost identical.
The difference is a new stasesuch thatp($) = 1 anda($) = 1. In that caser'v=1forallve 7.
The additional term thus has no effect on the optimization.

The proof can be similarly extended to the minimizationjwf- Lv|| g. Defineu(C;) =1/nand
u(lij) = 0. Then the SAT problem is satisfiable if an onlyj|if — Lv||; 7= 1—y?. Note thatu, as
defined above, is not an upper bound on the occupancy frequancidsis likely that the proof
could be extended to cover the case uy by more carefully designing the transitions fr@n In
particular, there needs to be high probability of returnin@;tandu(lj; > 0. |

Approximate bilinear programming can also improve on API ithminimization (.-API for
short), which is a popular method for solving factored MDPs (Guestrih,&Q03). Minimizing the
L., approximation error is theoretically preferable, since it is compatible with tiséiregx bounds on
policy loss (Guestrin et al., 2003). The bounds on value function appetion in API are typically
(Munos, 2003):

”Tjotlp||V*_\7kHoo < u_z\:/)zlirpfgp\\vk—vkllw :
whereV is the value function of policyg which is greedy with respect t&.” These bounds are
looser than the bounds on solutions of ABP by at least a factoy df-1y). Often the difference
may be up to 1(1—y)? since the errof|¥ik — ||~ may be significantly larger thaifWi — LV||«.
Finally, the bounds cannot be easily used, because they only hold in the limit.

We proposeOptimistic Approximate Policy Iteratio(OAPI), a modification of API. OAPI is
shown in Algorithm 1, wherez(m) is calculated using the following program:

min o
st. Av>b (=(l—-yPy)v>r4 VYac 4)
—(I =yPr)v+10 > —rp,

ve .

(15)

In fact, OAPI corresponds to Algorithm 2 applied to ABP because the lipesgram (15) corre-
sponds to (7) with a fixedt. Then, using Theorem 26, we get the following corollary.

Corollary 37 Optimistic approximate policy iteration converges in finite time. In addition, the
Bellman residual of the generated value functions monotonically de@ease

OAPI differs fromL«-API in two ways: 1) OAPI constrains the Bellman residuals by 0 from
below and byo from above, and then it minimizes L..-API constrains the Bellman residuals by
o from both above and below. 2) OAPI, like API, uses only the currefitypéor the upper bound
on the Bellman residual, but usal the policies for the lower bound on the Bellman residual. Next
we show that the optimal solutions of (16) and (17) are closely related.

Lo-API cannot return an approximate value function that has a lower Bellesidual than
ABP, given the optimality of ABP described in Theorem 17. However, €&Rl—an approximate
ABP algorithm—is guaranteed to perform comparabli.{eAPI, as the following theorem states.

3055

PETRIK AND ZILBERSTEIN

Theorem 38 Assume that L-API converges to a policg and a value function. Then, define:
V=v+ ! IV—Liv]|1
=V Aol .

The pairmtandV is a fixed point of OAPI when ties are broken appropriately.

Notice that while the optimistic and standard policy iterations can converge t@ihe solutions,
the steps in their computation may not be identical. In addition, there may be multipls po

convergence with the solution depending on the initialization.

Proof First, note that the value function optimization in APl and OAPI correspontietiollowing

optimization problems:

. B o (I =yPr)v+10 > 1y ~
Vm€|$||an V] = rgvlvn{o (l —yPoV+ 10 > _rn,v ZB (16)
. . (1—-yPav>r14 VacAa ~}
min ||Lyv— V||« =min< o eV . 17
VG:VHKH T H [OAY) { —(I _VPTT)V+ 10 2 _r'n ()

Given thatrtis greedy with respect toand that’minimizes the Bellman residual of the following
equalities hold:

Lav>Lv,
V= Lo < [V— L[| WVE ¥,

- rSnEiSn(v— Lnv)(s) = ryee}x(v— Lnv)(s) .

Then,V € X from the first and third properties, singe> LV > LV. The value function/ is
therefore feasible in OAPI. In addition, we have thét— LiV || = 2||V— LiV]|e-

For the policymt to be a fixed point in OAPI, it needs to minimize the Bellman residual with
respect to/. This is easy to show as follows:

LT—[\TZ TV
V—Lav<v—Lpv,
0<V LV <V —LpV ,
IV =LV |0 < ||V = LV [0

For the value function’ to be a fixed point in OAPI, it needs to minimize the Bellman residual
with respect to all representable and transitive-feasible value functitmshow a contradiction,
assume that there existse 7N X such that for some > 0:

IV~ Lo < |V~ L[l —

Define also a value functionas follows:

1 _ €

3056

ROBUST APPROXIMATE BILINEAR PROGRAMMING

We now show that the Bellman residualaf less than that of:

IV = L[| < VLVl —¢,
0< MaXses(V — Lav')(s) < max(V —La/)(s) —¢,
Lo+ 5 < MgV — L)(8) ~ V- Lo+ § < [Lo+
= Lt < Iz Ll < V- LT+ 5 -
Therefore||z— LizZ|| < ||V— LaV]|», Which is a contradiction. [|

To summarize, OAPI guarantees convergence, while matching the perfoerof_..-API. The
convergence of OAPI is achieved because given a non-negativeeBeresidual, the greedy policy
also minimizes the Bellman residual. Because OAPI ensures that the Bellmamatésidlways
non-negative, it can progressively reduce it. In comparison, thedgrpolicy inL.-API does not
minimize the Bellman residual, and therefdrg-API does not always reduce it. Theorem 38 also
explains why API provides better solutions than ALP, as observed intfhues al. (2003). From
the discussion above, ALP can be seen ak;anorm approximation of a single iteration of OAPI.
L.-API, on the other hand, performs many such ALP-like iterations.

8. Experimental Results

In this section, we validate the approach by applying it to simple reinforcetaarmting bench-
mark problems. We consider three different problem domains, eachneesig empirically test a
different property of the algorithm.

First, in Section 8.1, we compare the policy loss of various approximate biljpregramming
formulations with the policy loss of approximate policy iteration and approximatadipegram-
ming. These experiments are on a problem that is sufficiently small to compubetinel value
function. Second, in Section 8.2, we compare the solution quality in terms ofeifradh residual
for a number of applicable algorithms. Finally, in Section 8.3 we apply ABP litrelaxation to
a common inverted pendulum benchmark problem and solve it using thegepaixed integer
linear formulation.

Note that our analysis shows that the solution of ABP using OAPI correlspim the solutions
of API. The optimal solutions of ABP are, therefore, also at least edgiidly good in terms of
the Bellman residual bounds. However, the actual empirical performanttese methods will
depend significantly on the specific problem; our experimental results mostlgrdgrate that the
proposed methods compute value functions that minimize Bellman residual anddesult in
good policies.

ABP is an off-policy approximation method like LSPI (Lagoudakis and F2003) or ALP.
Thus samples can be gathered independently of the control policy. Butetéssary that multiple
actions are sampled for each state to enable the selection of differentgolicie

8.1 Simple Chain Problem

First, we demonstrate and analyze the properties of ABP on a simple chhlampraith 200 states,
in which the transitions move to the right or left (2 actions) by one step with gemhGaussian

3057

PETRIK AND ZILBERSTEIN

25

15}
i I I I
0

ABP ABPexp ABPh ALP

[[0* = 0lloo

|_\

Figure 2:L, Bellman residual for the chain problem

noise of standard deviation 3. The rewards were set {@/€0) for the right action and c@g/20)

for the left action, wheré is the index of the state. This problem is small enough to calculate the
optimal value function and to control the approximation features. The appation basis in this
problem is represented by piece-wise linear features, of thedgsm= [i —c| . , for cfrom 1 to 200.

The discount factor in the experiments was 0.95 and the initial distribution was(130) = 1. We
verified that the solutions of the bilinear programs were always close to dpétheit suboptimal.

We experimented with the full state-action sample and randomly chose thesteaflirresults
are averages over 50 runs with 15 features. In the results, we us¢od&Pote a close-to-optimal
solution of robust ABP, ABPexp for the bilinear program (10), and AB# a formulation that min-
imizes the average of ABP and ABPexp. API denotes approximate polictigietaat minimizes
thelL, norm.

Figure 2 shows the Bellman residual attained by the methods. It clearly shathe robust
bilinear formulation most reliably minimizes the Bellman residual. The other two bilifoearu-
lations are not much worse. Notice also the higher standard deviation ofaAtdFAPI. Figure 3
shows the expected policy loss, as specified in Theorem 9, for the daltwalue functions. It
confirms that the ABP formulation outperforms the robust formulation, sinaxfificit objective
is to minimize the expected loss. Similarly, Figure 4 shows the robust policy Iasgxpected, it
confirms the better performance of the robust ABP formulation in this case.

Note that API and ALP may achieve lower policy loss on this particular domamttr@ ABP
formulations, even though their Bellman residual is significantly higher. Thi®ssible because
ABP simply minimizes bounds on the policy loss. The analysis of tightness of doksybounds
is beyond the scope of this paper.

8.2 Mountain Car Benchmark Problem

In the mountain-car benchmark, an underpowered car needs to climbSuhitbh and Barto, 1998).
To do so, it first needs to back up to an opposite hill to gain sufficient momenthe car receives
a reward of 1 when it climbs the hill. The discount factor in the experiments/wag.99.

3058

ROBUST APPROXIMATE BILINEAR PROGRAMMING

15

[0* = vx 1,0
o
o

0 l l .

ABP ABPexp ABPh ALP API

Figure 3: Expected policy loss for the chain problem

i

ABP ABPexp ABPh ALP

[0" = vrlloo
oo -l>

N

|_\

Figure 4: Robust policy loss for the chain problem

Note that the state space in this problem is infinite. It is, therefore, negdessample states.
The states are sampled uniformly from the feasible state space and the ABRdton is created
as described in Section 6.

The experiments are designed to determine whether OAPI reliably minimizesltiraBeesid-
ual in comparison with API and ALP. We use a uniformly-spaced linear sphimg@proximate the
value function. The constraints were based on 200 uniformly sampled wsii#ttesl 3 actions per
state. We evaluated the methods with 100 and 144 approximation featurels omhiespond to the
number of linear segments.

The results of robust ABP (in particular OAPI), ALP, API with minimization, and LSPI are
depicted in Table 1. The results are shown for datmorm and uniformly-weightetl, norm. The
run-times of all these methods are comparable, with ALP being the fastese SI(LSPI) is
not guaranteed to converge, we ran it for at most 20 iterations, whishawaipper bound on the
number of iterations of OAPI. The results demonstrate that ABP minimizdstBellman residual

3059

PETRIK AND ZILBERSTEIN

(a) L error of the Bellman residual

(b) Ly error of the Bellman residual

Features| 100 144 Features| 100 144

OAPI | 0.21(0.23) 0.13(0.1) OAPI 0.2(0.3) 0.1(L9)
ALP 13.(13) 3.6(4.3) ALP 9.5(18) 0.3(0.4)
LSPI 9.(14) 3.9(7.7) LSPI 1.2(1.5) 0.9(0.1)
API 0.46 (0.08) 0.86(1.18) API 0.04 (0.01) 0.08 (0.08)

Table 1: Bellman residual of the final value function. The values areagesrover 5 executions,
with the standard deviations shown in parentheses.

much more consistently than the other methods. Note, however, that all thiele@d algorithms
would have performed significantly better with a finer approximation.

8.3 Inverted Pendulum Benchmark Problem

The goal in the inverted pendulum benchmark problem is to balance ateidyeie by accelerating
a cart in either of two directions (Wang et al., 1996; Lagoudakis and P@d3). There are three
actions in this domain that represent applying the force f—50N, u = ON, andu = 50N to the
cart with a uniform noise betweenlON and 10N. The angle of the inverted penduluméisnd its
update equation is: _
5o gsin(8) —aml(8)?sin(20)/2 — acogB)u
B 41 /3—amlcog(6)

Here the constants arg:= 9.8, m= 2.0, M = 8.0, a = 1/(m+ M). The simulation step is set to
0.1 and we use linear interpolation for simplicity.

We used the standard features for this benchmark problem; a set dflvagis functions ar-
ranged in a grid over the 2-dimensional state space with cemtarsl a constant term required by
Assumption 1. The features for a state (6, 0) are defined as:

Is— pel3
) -

2
S_
5=l

(1, exp—

We considered 100 centers for radial basis functions arranged ibalI@grid ford € [—11/2,11/2]
andf € [-5,5].

We used.1 norm regularization to apply the sampling bounds and to compare the appvitac
regularized approximate linear programming. Assumingdbaepresents the constant feature, the
set of representable value functions is defined as:

. 100 100
V= {i;qm i;!Xi\ < w} :

Note that the constant feature is not included in the regularization. Théaregation bound was
set apriori to = 100. Subsequent tests showed that ABP performed almost identically with the
regularization bound for valuep € [50,200.
Transition samples were collected in advance—using the same procedu®&ksfrom ran-
dom episodes, starting in randomly perturbed states very close to the eqmilistate(0,0) and

3060

ROBUST APPROXIMATE BILINEAR PROGRAMMING

— PRALP
- - ABP

Expected policy loss
0.00 0.02 0.04 0.06 0.08 0.10

T T T T
100 150 200 250 300
Samples

Figure 5: Policy loss as a function of the number of samples.

following a random policy. The average length of such episodes wag élxieps. We computed
the transitions for each sampled state and all the actions by sampling eadiomaztstimes.

We compare the solution quality to regularized approximate linear programmiig)Rwhich
has been show to perform well on a range of benchmarks (Petrik eD&D).2We evaluated only
the formulation that minimizes the robust objective. The mixed integer lineargrofprmulation
for ABP was optimized using CPLEX 12.1. We set the time cutoff to be 60s. Irithesinterval,
most solutions were computed to about 10% optimality gap.

Figure 5 compares the expected policy loss of ABP and RALP on the inyegtetllum bench-
mark as a function of the number of state transitions sampled. In every iteratidtn ABP and
RALP were run with the same samples. The policy loss was evaluated on Bdepigach at most
50 steps long. The performance of the optimal policy was assumed to betBeapdlicy loss of 0
essentially corresponds to balancing the pole for 2500 steps.

The experimental results on the inverted pendulum demonstrate that ABRgnéigantly out-
perform RALP. Both RALP and ABP have a large sampling error when timeber of samples is
small. This could be addressed by appropriately setting the regularizatiom l&s our sampling
bounds indicate; we kept the regularization bound fixed for all sampletsdar the sake of sim-
plicity. With a larger number of samples, ABP significantly outperforms RALHRctv significantly
outperforms LSPI for similar features (Petrik et al., 2010).

9. Conclusion and Future Work

We propose and analyze approximate bilinear programming, a new valagetu approximation
method, which provably minimizes bounds on policy loss. ABP return®ftienal approximate
value function with respect to the Bellman residual bounds, despite beimgfated with regard to
transitive-feasible value functions. We also show that there is no asyngbpsampler formula-
tion, since finding the closest value function and solving a bilinear progir@iboth NP-complete
problems. Finally, the formulation leads to the development of OAPI, a newecgent form of
API which monotonically improves the objective value function.

While we only discuss simple solvers for ABP, a deeper study of bilineaesolwnay lead to
more efficient optimal solution methods. ABPs have a small number of esseatiables (that

3061

PETRIK AND ZILBERSTEIN

determine the value function) and a large number of constraints, whicheckavéraged by some
solvers (Petrik and Zilberstein, 2007). In addition, theerror bound provides good theoretical
guarantees, but it may be too conservative in practice; a similar formulasisedbonL, norm
minimization may be more practical.

Note that, as for example LSPI, approximate bilinear programming is espeqgipligable to
MDPs with discrete (and small) action spaces. This requirement s limiting in sohémy resource
management problems in which the resource is a continuous variable. Whiéweigs possible to
discretize the action space, this is not feasible when the action space is mulsatima@nTherefore,
extending these methods to problems with continuous action spaces is an irhjgstarthat needs
to be addressed in future work.

We believe that the proposed formulation will help deepen the understantivegue func-
tion approximation and the characteristics of existing solution methods, anadtipttelead to the
development of more robust and more widely-applicable reinforcemaniihggalgorithms.

Acknowledgments

This work was supported by the Air Force Office of Scientific ReseancteuGrant No. FA9550-
08-1-0171. We also thank the anonymous reviewers for their commentsalipad to improve the
paper significantly.

References

Pieter Abbeel, Varun Ganapathi, and Andrew Y. Ng. Learning vehidylaamics, with application
to modeling helicopters. IAdvances in Neural Information Processing Systepages 1-8,
2006.

Daniel Adelman. A price-directed approach to stochastic inventory/rou@pgrations Research
52:499-514, 2004.

Richard BellmanDynamic ProgrammingPrinceton University Press, 1957.

Kristin P. Bennett and O. L. Mangasarian. Bilinear separation of two setspace.Computation
Optimization and Application2, 1993.

Dimitri P. Bertsekas and Sergey loffe. Temporal differences-bpskdl iteration and applications
in neuro-dynamic programming. Technical Report LIDS-P-2349, L IT897.

Dimitri P. Bertsekas and John N. Tsitsiklideuro-Dynamic Programmingithena Scientific, 1996.

Alberto Carpara and Michele Monaci. Bidimensional packing by bilineagamming. Mathe-
matical Programming Series, A18:75-108, 2009.

Daniela P. de FariasThe Linear Programming Approach to Approximate Dynamic Progrargmin
Theory and ApplicationPhD thesis, Stanford University, 2002.

Daniela P. de Farias and Ben van Roy. The linear programming approappraximate dynamic
programming.Operations Resear¢h1:850-856, 2003.

3062

ROBUST APPROXIMATE BILINEAR PROGRAMMING

Daniela P. de Farias and Benjamin van Roy. On constraint sampling in the firgramming
approach to approximate dynamic programmimdathematics of Operations Resear@9(3):
462-478, 2004.

Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataragfficient solution algo-
rithms for factored MDPsJournal of Artificial Intelligence Researcth9:399-468, 2003.

Reiner Horst and Hoang Tuglobal optimization: Deterministic approacheSpringer, 1996.

Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteralmirnal of Machine Learn-
ing Research4:1107-1149, 2003.

Olvi L. Mangasarian. The linear complementarity problem as a separabledsilinogramJournal
of Global Optimization12:1-7, 1995.

Remi Munos. Error bounds for approximate policy iterationInternational Conference on Ma-
chine Learningpages 560-567, 2003.

Marek Petrik.Optimization-based Approximate Dynamic ProgrammiRgD thesis, University of
Massachusetts Amherst, 2010.

Marek Petrik and Shlomo Zilberstein. Anytime coordination using separableailjprograms. In
Conference on Atrtificial Intelligenc@ages 750-755, 2007.

Marek Petrik and Shlomo Zilberstein. Constraint relaxation in approximater lpregrams. In
International Conference on Machine Learnjiqmages 809—-816, 2009.

Marek Petrik, Gavin Taylor, Ron Parr, and Shlomo Zilberstein. Featleetgmn using regulariza-
tion in approximate linear programs for Markov decision processdsaténnational Conference
on Machine Learningpages 871-878, 2010.

Warren B. Powell Approximate Dynamic ProgrammingViley-Interscience, 2007.

Martin L. PutermanMarkov Decision Processes: Discrete Stochastic Dynamic Programidrin
Wiley & Sons, Inc., 2005.

Kenneth O. Stanley and Risto Miikkulainen. Competitive coevolution througluggnary com-
plexification. Journal of Artificial Intelligence ResearcB1:63—100, 2004.

Richard S. Sutton and Andrew BartBeinforcement LearningvlIT Press, 1998.

Istvan Szita and Andras Lorincz. Learning Tetris using the noisy @os®py method.Neural
Computation18(12):2936—2941, 2006.

Hua O. Wang, Kazuo Tanaka, and Meichael F. Griffin. An approadhzny control of nonlinear
systems: Stability and design issu#SEE Transactions on Fuzzy Systedid4—23, 1996.

Ronald J. Williams and Leemon C. Baird. Tight performance bounds omlgeaicies based on
imperfect value functions. INale Workshop on Adaptive and Learning Systeiig4.

3063

