
Journal of Machine Learning Research 12 (2011) 3027-3063 Submitted 4/10; Revised 1/11; Published 10/11

Robust Approximate Bilinear Programming for
Value Function Approximation

Marek Petrik MPETRIK@US.IBM .COM

IBM T.J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598, USA

Shlomo Zilberstein SHLOMO@CS.UMASS.EDU

Department of Computer Science
University of Massachusetts
Amherst, MA 01003, USA

Editor: Shie Mannor

Abstract
Value function approximation methods have been successfully used in many applications, but the
prevailing techniques often lack usefula priori error bounds. We propose a newapproximate
bilinear programmingformulation of value function approximation, which employs global opti-
mization. The formulation provides strong a priori guarantees on both robust and expected policy
loss by minimizing specific norms of the Bellman residual. Solving a bilinear program optimally
is NP-hard, but this worst-case complexity is unavoidable because the Bellman-residual minimiza-
tion itself is NP-hard. We describe and analyze the formulation as well as a simple approximate
algorithm for solving bilinear programs. The analysis shows that this algorithm offers aconvergent
generalization of approximate policy iteration. We also briefly analyze the behavior of bilinear
programming algorithms under incomplete samples. Finally, we demonstrate that the proposed
approach can consistently minimize the Bellman residual onsimple benchmark problems.
Keywords: value function approximation, approximate dynamic programming, Markov decision
processes

1. Introduction

Solving large Markov Decision Processes (MDPs) is a very useful, butcomputationally challenging
problem addressed widely in the AI literature, particularly in the area of reinforcement learning.
It is widely accepted that large MDPs can be solved only approximately. Thecommonly used
approximation methods can be divided into three broad categories: 1)policy search, which ex-
plores a restricted space of all policies, 2)approximate dynamic programming—or value function
approximation—which searches a restricted space of value functions, and 3) approximate linear
programming, which approximates the solution using a linear program. The goal of approximate
methods is to compute a policy that minimizes thepolicy loss—the difference between the returns
of the computed policy and an optimal one. While all of these approximate methodshave achieved
impressive results in various application domains, they have significant limitations.

Policy search methods rely on local search in a restricted policy space. The policy may be
represented, for example, as a finite-state controller (Stanley and Miikkulainen, 2004) or as a greedy
policy with respect to an approximate value function (Szita and Lorincz, 2006). Policy search

c©2011 Marek Petrik and Shlomo Zilberstein.

PETRIK AND ZILBERSTEIN

methods have achieved impressive results in such domains as Tetris (Szita and Lorincz, 2006) and
helicopter control (Abbeel et al., 2006). However, they are notoriously hard to analyze. We are not
aware of any established theoretical guarantees regarding the quality ofthe solution.

Approximate dynamic programming (ADP) methods iteratively approximate the value function
(Bertsekas and Ioffe, 1997; Powell, 2007; Sutton and Barto, 1998).They have been extensively
analyzed and are the most commonly used methods. However, approximate dynamic programming
methods typically do not converge and they only provide weak guaranteesof approximation quality.
The approximation error bounds are usually expressed in terms of the worst-case approximation of
the value function over all policies (Bertsekas and Ioffe, 1997). In addition, most available bounds
are with respect to theL∞ norm, while the algorithms often minimize theL2 norm. While there exist
someL2-based bounds (Munos, 2003), they require values that are difficultto obtain.

Approximate linear programming (ALP) uses a linear program to compute the approximate
value function in a particular vector space (de Farias, 2002). ALP has been previously used in
a wide variety of settings (Adelman, 2004; de Farias and van Roy, 2004; Guestrin et al., 2003).
Although ALP often does not perform as well as ADP, there have been some recent efforts to close
the gap (Petrik and Zilberstein, 2009). ALP has better theoretical properties than ADP and policy
search. It is guaranteed to converge and return the closestL1-norm approximation ˜v of the optimal
value functionv⋆ up to a multiplicative factor. However, theL1 norm must be properly weighted
to guarantee a small policy loss, and there is noreliable method for selecting appropriate weights
(de Farias, 2002).

To summarize, existing reinforcement learning techniques often provide good solutions, but
typically require significant domain knowledge (Powell, 2007). The domain knowledge is needed
partly because useful a priori error bounds are not available, as mentioned above. Our goal is to
develop a morereliablemethod that is guaranteed to minimize bounds on the policy loss in various
settings.

This paper presents new formulations for value function approximation thatprovably minimize
bounds on policy loss using a global optimization framework; we consider both L∞ and weighted
L1 error bounds. To minimize the policy loss, we derive new bounds based onapproximate value
functions. These bounds do not require coefficients that are hard to obtain or compute, unlike, for
example, bounds for approximate linear programming.

An advantage of the approach we propose is that the actual solutions andtheir properties are
independent of the methods used to compute them. The paper focuses on thedevelopment of models
for value function approximation and their properties. Although we do present two methods for
solving these models, it is likely that more efficient algorithms will be developed inthe future.

We start with a description of the framework and notation in Section 2 and a description of value
function approximation in Section 3. Then, in Section 4, we describe the proposed approximate
bilinear programming (ABP) formulations. Bilinear programs are typically solved using global
optimization methods, which we briefly discuss in Section 5. A drawback of the bilinear formulation
is that solving bilinear programs may require exponential time. We show in Section 5, however, that
this complexity is unavoidable because minimizing the approximation error bound isin fact NP-
hard.

In practice, only sampled versions of ABPs are often solved. While a thorough treatment of
sampling is beyond the scope of this paper, we examine the impact of sampling and establish some
guarantees in Section 6. Unlike classical sampling bounds on approximate linear programming, we
describe bounds that apply to the worst-case error. Section 7 shows that ABP is related to other

3028

ROBUST APPROXIMATE BILINEAR PROGRAMMING

approximate dynamic programming methods, such as approximate linear programming and policy
iteration. Section 8 demonstrates the applicability of ABP using common reinforcement learning
benchmark problems.

The general setting considered in this paper is a restricted form of reinforcement learning. In
reinforcement learning, methods can use samples without requiring a modelof the environment.
The methods we propose can also be based on samples, but they require additional structure. In
particular, they require that all or most actions are sampled for every state. Such samples can be
easily generated when a model of the environment is available.

2. Framework and Notation

This section defines the framework and the notation we use. We also define Markov decision pro-
cesses and the associated approximation errors. Markov decision processes come in many forms,
depending on the objective function that is optimized. This work focuses oninfinite-horizon dis-
counted MDPs, which are defined as follows; a more extensive treatment isavailable, for example,
in Puterman (2005).

Definition 1 A Markov Decision Processis a tuple(S ,A ,P, r,α), whereS is a finite set of states,A
is a finite set of actions, P: S ×A×S 7→ [0,1] is the transition function (P(s,a,s′) is the probability
of transiting to state s′ from state s given action a), and r: S ×A 7→ R is a reward function. The
initial distribution is: α : S 7→ [0,1], such that∑s∈S α(s) = 1.

The goal in solving an MDP is to find a sequence of actions that maximizes the expectedγ-
discounted cumulative sum of rewards, also called thereturn. A solution of a Markov decision
process is a policy, defined as follows.

Definition 2 A deterministic stationarypolicy π : S 7→ A assigns an action to each state of the
Markov decision process. A stochastic stationarypolicy π : S×A 7→ [0,1] satisfies∑a∈A π(s,a) = 1
for each s∈ S . The set of all stochastic stationary policies is denoted asΠ.

Non-stationary policies may take different actions in the same state in different time-steps. We
limit our treatment to stationary policies, since for infinite-horizon MDPs there exists an optimal
stationaryand deterministicpolicy. We also consider stochastic policies because they are more
convenient to use in some settings. A policyπ ∈ Π together with the transition matrix induces a
distribution over the state spaceS in every time step resulting in random variablesSt for t = 0. . .∞.
The return of a policy is then defined as:

ρ(π,α) = Eα

[

∞

∑
t=0

∑
a∈A

γtπ(St ,a)r(St ,a)

]

,

whereα is the distribution ofS0. Our objective is then maxπ∈Π ρ(π,α), for which the optimal
solution is some deterministic policyπ⋆.

The transition matrix and reward function for adeterministicpolicy π are defined as:

Pπ : (s,s′) 7→ P(s,π(s),s′) and rπ : s 7→ r(s,π(s)) .

The transition matrix and reward function for astochasticpolicy π are defined as:

Pπ : (s,s′) 7→ ∑
a∈A

π(s,a)P(s,a,s′) and rπ : s 7→ ∑
a∈A

π(s,a)r(s,a) .

3029

PETRIK AND ZILBERSTEIN

In addition, we usePa andra to denote these values for a constant policyπ(s) = a for somea∈ A .
The value functionv : S → R represents the expected return when starting in a particular state.

The set of all value functions is denoted asV = R
|S |. A value functionvπ of a policy π is: vπ =

(I − γPπ)
−1 rπ.

The value function update for a policyπ is denoted byLπ, and the Bellman operator is denoted
by L and defined as:

Lπv= γPπv+ rπ , Lv= max
π∈Π

Lπv .

The value function update for a stochastic policyπ can be written as:

(Lπv)(s) = ∑
a∈A ,s′∈S

π(s,a)
(

γP(s,a,s′)v(s′)+ r(s,a)
)

.

A policy π is greedywith respect to a value functionv whenLπv= Lv. The optimal value function
v⋆ = vπ⋆ satisfiesv⋆ = Lv⋆. The following proposition summarizes an important property of optimal
value functions.

Proposition 3 (Section 6.9 in Puterman, 2005)For any policyπ ∈ Π the optimal value function
is an upper bound on the value function of any policy:

v⋆ ≥ vπ .

We assume a vector representation of the policyπ ∈ R
|S ||A |. The variablesπ are defined for all

state-action pairs and represent policies. That is,π(s,a) represents the probability of taking action
a∈ A in states∈ S . The space of all stochastic policies can be represented using the following set
of linear equations:

∑
a∈A

π(s,a) = 1 ∀s∈ S ,

π(s,a)≥ 0 ∀s∈ S ,∀a∈ A .

These inequalities can be represented using matrix notation as follows:

Bπ = 1 π≥ 0 ,

where the matrixB : |S |× (|S | · |A |) is defined as follows:

B(s′,(s,a)) =

{

1 s= s′

0 otherwise
.

We use0 and 1 to denote vectors of all zeros or ones of the appropriate size respectively. The
symbolI denotes an identity matrix of the appropriate dimension.

In addition, a policyπ induces astate occupancy frequency uπ : S → R, defined as follows:

uπ =
(

I − γPT

π

)−1
α .

The set of all occupancy frequencies is denoted asU ⊆ R
|S |. The return of a policy depends on the

state-action occupancy frequencies andαTvπ = rTπ uπ. The optimal state-action occupancy frequency

3030

ROBUST APPROXIMATE BILINEAR PROGRAMMING

is uπ⋆ and is often denoted asu⋆. State-action occupancy frequency u: S ×A → R is defined for
all states and actions; notice the missing subscript. We useu|a : S → R to denote the restriction
of u to actiona∈ A and useu|π equivalently for a deterministic policyπ asu|π : s 7→ u(s,π(s,a)).
State-action occupancy frequenciesu must satisfy (e.g., Section 6.9 in Puterman, 2005):

∑
a∈A

(I − γPa)
Tu|a = α ∀a∈ A .

To formulate approximate linear and bilinear programs, it is necessary to restrict the value func-
tions so that their Bellman residuals are non-negative (or at least boundedfrom below). We call
such value functions transitive-feasible and define them as follows.

Definition 4 A value function istransitive-feasiblewhen v≥ Lv. The set of transitive-feasible value
functions is:

K = {v∈ V v≥ Lv} .

Given someε≥ 0, the set ofε-transitive-feasiblevalue functions is:

K (ε) = {v∈ V v≥ Lv− ε1} .

Notice that the optimal value functionv⋆ is transitive-feasible.
Next, we summarize the key properties of value functions and policies that weuse to derive the

results. First, the following lemma summarizes the monotonicity of transition matrices; itfollows
from the geometric sequence representation of the matrix inverse.

Lemma 5 [Monotonicity] Let P be a stochastic matrix. Then both linear operators P and (I − γP)−1

are monotonous:

x≥ y⇒ Px≥ Py ,

x≥ y⇒ (I − γP)−1x≥ (I − γP)−1y

for all x and y.

An important property, which we rely on, is that greedy policies are not affected by adding or
subtracting a constant from a value function; we state this well-known property without proof.

Proposition 6 Let v∈ V be any value function and assume an arbitrary c∈ R. Then:

L(v+c1) = Lv+ γc1 .

In addition, ifπ is a greedy policy with respect to v it is also greedy with respect to v+c1.

The models we define also rely on the following basic properties of the Bellman operator.

Lemma 7 Let u be the state-action occupancy frequency of some policyπ. Then:

1Tu= 1/(1− γ) .

3031

PETRIK AND ZILBERSTEIN

Proof The lemma follows because:

∑
a∈A

(u|a)
T(I − γPa) = αT ,

∑
a∈A

(u|a)
T(I − γPa)1= αT1 ,

(1− γ) ∑
a∈A

(u|a)
T1= 1= (1− γ)uT1 .

Finally, an important property of transitive-feasible value functions is thatthey represent an upper
bound on the optimal value function.

Lemma 8 Transitive feasible value functions form an upper bound on the optimal value function.
If v ∈K (ε) is anε-transitive-feasible value function, then:

v≥ v⋆− ε/(1− γ)1 .

Proof Let P⋆ and r⋆ be the transition matrix and the reward vector of the optimal policy. Then,
using Theorem 5, we get:

v≥ Lv− ε1 ,

v≥ γP⋆v+ r⋆− ε1 ,

(I − γP⋆)v≥ r⋆− ε1 ,

v≥ (I − γP⋆)−1 r⋆− ε/(1− γ) .

3. Value Function Approximation

This section describes basic methods for value function approximation usedto solve large MDPs.
Value function approximation, as its name indicates, only computes an approximate value function
ṽ of the MDP. The actual solution of the MDP is then the greedy policyπ with respect to this value
function ṽ. The quality of such a policy can be characterized using its value functionvπ in one of
the following two ways.

Definition 9 (Policy Loss) Let π be a policy. Theexpected policy lossσe of π is defined as:

σe(π) = ρ(π⋆,α)−ρ(π,α) = ‖v⋆−vπ‖1,α = αTv⋆−αTvπ ,

where‖x‖1,c denotes the weighted L1 norm: ||x‖1,c = ∑i |c(i)x(i)|.
Therobust policy lossσr of π is defined as:

σr(π) = max
{α≥0 1Tα=1}

ρ(π⋆,α)−ρ(π,α) = ‖v⋆−vπ‖∞ = max
s∈S
|v⋆(s)−vπ(s)| .

3032

ROBUST APPROXIMATE BILINEAR PROGRAMMING

The expected policy loss captures the total loss of discounted reward when following the policy
π instead of the optimal policy, given the initial state distribution. The robust policy loss ignores the
initial distribution and, in some sense, measures the difference for the worst-case initial distribution.

A set of state features is a necessary component of value function approximation. These features
must be supplied in advance and must capture the essential structure of theproblem. The features
are defined by mapping each states to a vectorφ(s) of features. We denoteφi : S → R to be a
function that maps states to the value of featurei:

φi(s) = (φ(s))i .

The desirable properties of the features depend strongly on the algorithm,samples, and attributes of
the problem; the tradeoffs are not yet fully understood. The functionφi can be treated as a vector,
similarly to the value functionv.

Value function approximation methods compute value functions that can be represented using
the state features. We call such value functionsrepresentableand define them below.

Definition 10 Given aconvexpolyhedral setṼ ⊆ V , a value function v isrepresentable(in Ṽ) if
v∈ Ṽ .

Many methods that compute a value function based on a given set of features have been de-
veloped, such as genetic algorithms and neural networks (Bertsekas and Tsitsiklis, 1996). Most of
these methods are extremely hard to analyze, computationally complex, and hard to use. More-
over, these complex methods do not satisfy the convexity assumption in Theorem 10. A simpler
and more common method islinear value function approximation, in which the value function of
each states is represented as a linear combination ofnonlinear featuresφ(s). Linear value function
approximation is easy to apply and analyze.

Linear value function approximation can be expressed in terms of matrices asfollows. Let the
matrixΦ : |S |×m represent the features for the state-space, wherem is the number of features. The
rows of the feature matrixΦ, also known as thebasis, correspond to the features of the statesφ(s).
The feature matrix can be defined in one of the following two equivalent ways:

Φ =







− φ(s1)
T −

− φ(s2)
T −

...






, Φ =





| |
φ1 φ2 . . .
| |



 .

The value functionv is then represented asv = Φx and the set of representable functions isṼ =
colspan(Φ).

The goal of value function approximation is not simply to obtain a good value function ṽ but
a policy with a small policy loss. Unfortunately, the policy loss of a greedy policy, as formulated
in Theorem 9, depends non-trivially on the approximate value function ˜v. Often, the only reliable
method of precisely computing the policy loss is to simulate the policy, which can be very costly.
The following theorem states the most common bound on the robust policy loss.

Theorem 11 [Robust Policy Loss, Williams and Baird, 1994] Letπ be a greedy policy with respect
to a value functioñv. Then:

‖v⋆−vπ‖∞ ≤
2

1− γ
‖ṽ−Lṽ‖∞ .

3033

PETRIK AND ZILBERSTEIN

In addition, if ṽ∈K then:

‖v⋆−vπ‖∞ ≤
1

1− γ
‖ṽ−Lṽ‖∞ .

The bounds in Theorem 11 are often overly conservative because they ignore the initial distri-
bution and do not apply to the expected policy loss. We propose methods thatminimize both the
standard bounds in Theorem 11 and new tighter bounds on the expected policy loss in Theorem 12.

We are now ready to derive a new bound on the expected policy loss in its most general form.
We show later how this bound relates to existing bounds and discuss its properties and special cases.

Theorem 12 [Expected Policy Loss] Letπ ∈Π be a greedy policy with respect to a value function
ṽ∈ V and let the state occupancy frequencies ofπ be bounded as u≤ uπ ≤ ū. Then:

σe(π) = ‖v⋆−vπ‖1,α = αTv⋆−αTṽ+uTπ (ṽ−Lṽ)

≤ αTv⋆−αTṽ+uT [ṽ−Lṽ]−+ ūT [ṽ−Lṽ]+ ,

where[x]+ = max{x,0} and[x]− = min{x,0} element-wise. In addition, whenṽ∈K , the bound is:

‖v⋆−vπ‖1,α ≤−‖v
⋆− ṽ‖1,α +‖ṽ−Lṽ‖1,ū , (1)

‖v⋆−vπ‖1,α ≤−‖v
⋆− ṽ‖1,α +

1
1− γ

‖ṽ−Lṽ‖∞ . (2)

Proof Note that:
uTπ (I − γPπ)−αT = 0T , (3)

which follows directly from the definition of state-action occupancy frequencies. The bound is then
derived as follows:

‖v⋆−vπ‖α
Theorem 3

= αTv⋆−αTvπ
(3)
= αTv⋆−αTvπ +(uTπ (I − γPπ)−αT)ṽ

= αTv⋆− rTπ uπ +(uTπ (I − γPπ)−αT)ṽ

= αTv⋆− rTπ uπ +uTπ (I − γPπ)ṽ−αTṽ

= αTv⋆−αTṽ+uTπ ((I − γPπ)ṽ− rπ)

= αTv⋆−αTṽ+uTπ (ṽ−Lṽ)

≤ αTv⋆−αTṽ+uT [ṽ−Lṽ]−+ ūT [ṽ−Lṽ]+ .

Inequality (1) then follows from Theorem 8, which implies that ˜v≥ v⋆ andv≥ Lv. Inequality (2)
follows using the trivial version of Holder’s inequality as:

αTv⋆−αTṽ
Theorem 8

= −‖v⋆− ṽ‖1,α ,

uTπ (ṽ−Lṽ)
Holder’s
≤ ‖uπ‖1‖ṽ−Lṽ‖∞

Theorem 7
=

1
1− γ

‖ṽ−Lṽ‖∞ .

Notice that the bounds in Theorem 12 can be minimized even without knowing theoptimalv⋆.
The optimal value functionv⋆ is independent of the approximate value function ˜v and the greedy
policy π depends only on ˜v.

3034

ROBUST APPROXIMATE BILINEAR PROGRAMMING

Algorithm 1 : Approximate policy iteration, whereZ(π) denotes a custom value function
approximation for the policyπ.

π0,k← random, 1 ;1

while πk 6= πk−1 do2

ṽk← Z(πk−1) ;3

πk(s)← argmaxa∈A r(s,a)+ γ∑s′∈S P(s,a,s′)ṽk(s) ∀s∈ S ;4

k← k+1 ;5

Remark 13 Theorem 12 generalizes the bounds established by de Farias (2002, Theorem 3.1),
which state that for each̃v∈K and a greedy policyπ:

‖v⋆−vπ‖1,α ≤
1

1− γ
‖v⋆− ṽ‖1,(1−γ)uπ .

This bound is a special case of Inequality(1) becauseαTv⋆−αTṽ≤ 0 and:

‖ṽ−Lṽ‖1,uπ ≤ ‖v
⋆− ṽ‖1,uπ =

1
1− γ

‖v⋆− ṽ‖1,(1−γ)uπ ,

from v⋆ ≤ Lṽ≤ ṽ.

The methods that we propose require the following standard assumption.

Assumption 1 All multiples of the constant vector1 are representable iñV . That is, k1∈ Ṽ for
all k ∈ R.

Notice that the representation setṼ satisfies Assumption 1 when the first column ofΦ is 1. The
impact of including the constant feature is typically negligible because addinga constant to the
value function does not change the greedy policy.

Value function approximation algorithms are typically variations of the exact algorithms for
solving MDPs. Hence, they can be categorized as approximate value iteration, approximate policy
iteration, and approximate linear programming. The ideas behind approximate value iteration can
be traced to Bellman (1957), which was followed by many additional research efforts (Bertsekas
and Tsitsiklis, 1996; Sutton and Barto, 1998; Powell, 2007). Below, we only discuss approximate
policy iteration and approximate linear programming, because they are the methods most closely
related to our approach.

Approximate policy iteration(API) is summarized in Algorithm 1. The functionZ(π) denotes
the specific method used to approximate the value function for the policyπ. The two most com-
monly used methods—Bellman residual approximationand least-squares approximation
(Lagoudakis and Parr, 2003)—minimize theL2 norm of the Bellman residual.

The approximations based on minimizingL2 norm of the Bellman residual are common in
practice since they are easy to compute and often lead to good results. Mosttheoretical analyses of
API, however, assume minimization of theL∞ norm of the Bellman residual:

Z(π) ∈ argmin
v∈Ṽ
‖(I − γPπ)v− rπ‖∞ .

3035

PETRIK AND ZILBERSTEIN

L∞-API is shown in Algorithm 1, whereZ(π) is calculated by solving the following linear program:

Z(π) = min
σ,v

{

σ (I − γPπ)v+1σ≥ rπ, −(I − γPπ)v+1σ≥−rπ,v∈ Ṽ
}

.

We are not aware of convergence or divergence proofs ofL∞-API, and such analysis is beyond
the scope of this paper. Theoretically, it is also possible to minimize theL1 norm of the Bellman
residual, but we are not aware of any detailed study of such an approximation.

In the above description of API, we assumed that the value function is approximated for all
states and actions. This is impossible in practice due to the size of the MDP. Instead, API relies on a
subset of states and actions, provided as samples. API is not guaranteed to converge in general and
its analysis is typically in terms of limit behavior. The limit bounds are often very loose. We discuss
the performance of API and how it relates to approximate bilinear programmingin more detail in
Section 7.

Approximate linear programming—a method for value function approximation—is based on
the linear program formulation of exact MDPs:

min
v ∑

s∈S

c(s)v(s)

s.t. v(s)− γ ∑
s′∈S

P(s′,s,a)v(s′)≥ r(s,a) ∀(s,a) ∈ (S ,A) .
(4)

The valuec represents a distribution over the states, usually a uniform one. That is,∑s∈S c(s) = 1.
The linear program (4) is often too large to be solved precisely, so it is approximated by assuming
thatv∈ Ṽ (de Farias and van Roy, 2003), yielding the followingapproximate linear program:

min
v

cTv

s.t. Av≥ b , v∈ Ṽ .
(5)

The matrix inequalityAv≥ b represents the inequality in (4) and is the following for actions
a1,a2, . . . ,an ∈ A :







I − γPa1

I − γPa2
...






= A ≥ b=







ra1

ra2
...






.

The constraintv∈ Ṽ denotes the value function approximation. To actually solve this linear pro-
gram for the simple linear approximation (whenṼ = colspan(Φ)), the value function is represented
asv= Φx, which leads to:

min
x

cTΦx

s.t. AΦx≥ b .

Appropriate constraints can be added for other choices ofṼ .
Assumption 1 guarantees that (5) is feasible. The following lemma follows directly from the

definition ofK :

Lemma 14 A value function v satisfies Av≥ b if and only if v∈ K . In addition, if v∈ K , then
v≥ v⋆.

3036

ROBUST APPROXIMATE BILINEAR PROGRAMMING

Theorem 14 implies that an optimal solution ˜v of (5) satisfies: ˜v≥ v⋆ from Theorem 8. As a result,
the objective of (5) represents the minimization of‖v−v⋆‖1,c = cT(v−v⋆) (de Farias, 2002).

Approximate linear programming is guaranteed to converge to a solution and minimize a
weightedL1 norm on the solution quality.

Theorem 15 (Theorem 4.1 in de Farias, 2002)Given Assumption 1, let̃v be the solution of(5). If
c= α then:

‖v⋆− ṽ‖1,α ≤
2

1− γ
min
v∈Ṽ
‖v⋆−v‖∞ =

2
1− γ

min
x
‖v⋆−Φx‖∞ .

The difficulty with the solution of ALP is that it is hard to derive guarantees onthe policy loss based
on the bounds in terms of theL1 norm; it is possible when the objective functionc represents ¯u, as
Theorem 13 shows. In addition, the constant 1/(1− γ) may be very large whenγ is close to 1.

Approximate linear programs are often formulated in terms of samples instead ofthe full formu-
lation above. The performance guarantees are then based on analyzingthe probability that a large
number of constraints is violated. It is generally hard to translate the constraint violation bounds to
bounds on the quality of the value function and the policy.

4. Bilinear Program Formulations

This section shows how to formulate value function approximation as a separable bilinear program.
Bilinear programs are a generalization of linear programs that allows the objective function to in-
clude an additional bilinear term. A separable bilinear program consists of two linear programs
with independent constraints and is fairly easy to solve and analyze in comparison to non-separable
bilinear programs.

Definition 16 (Separable Bilinear Program) A separablebilinear program in the normal form is
defined as follows:

min
w,x y,z

sT1 w+ rT1 x+xTCy+ rT2 y+sT2 z

s.t. A1x+B1w= b1 , A2y+B2z= b2 ,

w,x≥ 0 , y,z≥ 0 .

(6)

The objective of the bilinear program (6) is denoted asf (w,x,y,z). We separate the variables using
a vertical line and the constraints using different columns to emphasize the separable nature of the
bilinear program. In this paper, we only useseparablebilinear programs and refer to them simply
as bilinear programs.

The goal in approximate dynamic programming and value function approximationis to find a
policy that is close to optimal. The set of acceptable policies is typically restrictedto be greedy with
respect torepresentablevalue functions. We define this set of policiesΠ̃⊆Π as:

Π̃ = {π ∈Π Lπv= Lv, v∈ Ṽ } .

We propose approximate bilinear formulations that minimize the following bounds on robust
and expected policy loss.

1. Robust policy loss: Minimize ‖v⋆−vπ‖∞ by minimizing the bounds in Theorem 11:

min
π∈Π̃
‖v⋆−vπ‖∞ ≤min

v∈Ṽ

1
1− γ

‖v−Lv‖∞ .

3037

PETRIK AND ZILBERSTEIN

2. Expected policy loss: Minimize ‖v⋆−vπ‖1,α by minimizing the bounds in Theorem 12:

min
π∈Π̃
‖v⋆−vπ‖1,α ≤ αTv⋆+ min

v∈Ṽ∩K

(

−αTṽ+
1

1− γ
‖v−Lv‖∞

)

.

The appropriateness of each formulation depends on the particular circumstances of the domain.
For example, minimizing robust bounds is advantageous when the initial distribution is not known
and the performance must be consistent under all circumstances. On the other hand, minimizing
expected bounds on the value function is useful when the initial distribution isknown.

In the formulations described below, we initially assume that samples of all statesand actions
are used. This means that the precise version of the operatorL is available. When solving large
problems, the number of samples is often much smaller, due to either subsampling or reduction
based on the structure of the MDP. While sampling in linear programs results simply in removal of
constraints, in approximate bilinear programs it also leads to a reduction in the number of certain
variables, as described in Section 6.

The formulations below denote the value function approximation generically byv ∈ Ṽ . That
restricts the value functions to be representable using the features. Representable value functions
v can be replaced by a set of variablesx asv = Φx, which reduces the number of variables to the
number of features.

4.1 Robust Policy Loss

The solution of the robust approximate bilinear program minimizes theL∞ norm of the Bellman
residual‖v−Lv‖∞ over the set of representable and transitive-feasible value functions.This mini-
mization can be formulated as follows.

min
π λ,λ′,v

πTλ+λ′

s.t. Bπ = 1 , λ+λ′1≥ Av−b≥ 0 ,

π≥ 0 , λ,λ′ ≥ 0 ,

v∈ Ṽ .

(7)

All the variables are vectors exceptλ′, which is a scalar. The valuesA andb are identical to the
values in (5). The variablesλ correspond to all state-action pairs. These variables represent the
Bellman residuals that are being minimized. This formulation offers the following guarantees.

Theorem 17 Let (π̃, ṽ, λ̃, λ̃′) be an optimal solution of(7) and let

v′ = ṽ−
‖ṽ−Lṽ‖∞

2(1− γ)
1 .

Then:

π̃Tλ̃+ λ̃′ = ‖ṽ−Lṽ‖∞ = min
v∈K ∩Ṽ

‖v−Lv‖∞

‖v′−Lv′‖∞ = min
v∈Ṽ
‖v−Lv‖∞

≤ (1+ γ)min
v∈Ṽ
‖v−v⋆‖∞ .

In addition, there exists an optimalπ̃ ∈ Π̃.

3038

ROBUST APPROXIMATE BILINEAR PROGRAMMING

It is important to note that the theorem states that solving the approximate bilinearprogram is
equivalent to minimization overall representable value functions, not only the transitive-feasible
ones. This follows by subtracting a constant vector1 from ṽ to balance the lower bounds on the
Bellman residual error with the upper ones as Theorem 20 shows. This reduces the Bellman resid-
ual by 1/2 without affecting the policy. Finally, note that wheneverv⋆ ∈ Ṽ , both ABP and ALP
will return the optimal value functionv⋆. The following corollary follows from Theorem 11 and
Theorem 17 applied tov′.

Corollary 18 For any optimal solutioñv of (7), the policy loss of the greedy policyπ̃ is bounded
by:

‖v⋆−vπ̃‖∞ =
2

1− γ
min
v∈Ṽ
‖v−Lv‖∞ .

To prove Theorem 17, we first define the following linear programs.

f1(π,v) = min
λ,λ′

{

πTλ+λ′ 1λ′+λ≥ Av−b,λ≥ 0
}

,

f2(v) = min
π
{ f1(π,v) Bπ = 1,π≥ 0} .

Assuming thatf ⋆ is the optimal solution of (7), then:

f ⋆ = min
π∈Π,v∈Ṽ∩K

f1(π,v) = min
v∈Ṽ∩K

f2(v) .

Lemma 19 Let v∈K be a transitive-feasible value function and letπ be a policy. Then:

f1(π,v)≥ ‖v−Lπv‖∞ , (8)

f2(v) = ‖v−Lv‖∞ . (9)

In addition, inequality(8) becomes an equality for anydeterministicpolicy π, and there is a deter-
ministic optimal policy that satisfies equality(9).

Proof To prove (8), notice that for alls∈ S we have that∑a∈A π(s,a) = 1 andπ(s,a)≥ 0. Then:

f1(π,v)
(8)
= λ′+ ∑

s∈S ,a∈A

λ(s,a)π(s,a)

λ(s,a)≥0
≥ λ′+max

s∈S
∑
a∈A

λ(s,a)π(s,a)

= max
s∈S

∑
a∈A

π(s,a)(λ′+λ(s,a))

≥max
s∈S

∑
a∈A

π(s,a) ∑
s′∈S

(γP(s,a,s′)v(s′)+ r(s,a))

= ‖v−Lπv‖∞ .

To show the equality for a deterministic policy, setλ′ = ‖v−Lπv‖∞ andλ(s,π(s)) = 0 with other
elements ofλ set arbitrarily. This can be readily shown to be an optimal solution.

3039

PETRIK AND ZILBERSTEIN

To prove (9), note again thatv ∈ K , which implies thatv≥ Lv. Then, using the fact that the
policy defines an action for every state, we get:

f2(v) = min
π∈Π
‖v−Lπv‖∞ = min

π∈Π
max
s∈S

(v−Lπv)(s)

= max
s∈S

min
π∈Π

(v−Lπv)(s)

= max
s∈S

(v−max
π∈Π

Lπv)(s)

= max
s∈S

(v−Lv)(s) = ‖v−Lv‖∞ .

The existence of an optimal deterministic solution then follows from the existenceof a deterministic
greedy policy with respect to a value function.

Now, we show that restricting the value functions to be transitive feasible is not limiting, because
it does not restrict the set of greedy policies that are considered. To do that, we define the following
sets:

V1 = arg min
v∈Ṽ∩K

‖v−Lv‖∞ , V2 = argmin
v∈Ṽ
‖v−Lv‖∞ .

Let Π1 andΠ2 be sets of greedy policies with respect toV1 andV2. The setsV1 andV2 satisfy the
following important property.

Lemma 20 Given Assumption 1, let v1 ∈ V1 and v2 ∈ V2, we have the following equalities:

min
s∈S

(v1−Lv1)(s) = 0 , −min
s∈S

(v2−Lv2)(s) = max
s∈S

(v2−Lv2)(s) .

Then, define:

v′1 = v1−
‖v1−Lv1‖∞

2(1− γ)
1 , v′2 = v2+

‖v2−Lv2‖∞

(1− γ)
1 .

for which the following holds:

min
s∈S

(v′2−Lv′2)(s) = 0 , −min
s∈S

(v′1−Lv′1)(s) = max
s∈S

(v′1−Lv′1)(s) .

Proof Assume, for the sake of deriving a contradiction, that mins∈S (v1−Lv1)(s) = ε > 0. Then, let
v̄1 = v1− ε/(1− γ)1∈K which implies the following by Theorem 6:

‖v̄1−Lv̄1‖∞ = ‖v1−Lv1− ε1‖∞ = max
s∈S

(v1−Lv1− ε1)(s)

= max
s∈S

(v1−Lv1)(s)− ε = ‖v1−Lv1‖∞− ε

< ‖v1−Lv1‖∞ .

This contradicts the optimality ofv1. The inequality forv2 follows similarly. The rest of the lemma
is a simple consequence of Theorem 6.

We are now ready to show that neither the set of greedy policies considered nor the policy loss
bounds are affected by considering only transitive feasible functions in(7).

3040

ROBUST APPROXIMATE BILINEAR PROGRAMMING

Proposition 21 Given Assumption 1, the following holds:

V1 =

{

v2+
‖v2−Lv2‖∞

(1− γ)
1 v2 ∈ V2

}

,

‖v1−Lv1‖∞ = 2‖v2−Lv2‖∞ ∀v1 ∈ V1,∀v2 ∈ V2 ,

Π1 = Π2 .

Proof To show thatV1⊆
{

v2+
‖v2−Lv2‖∞

(1−γ) 1 v2 ∈ V2

}

, assume av1 ∈ V1 and define:

v2 = v1−
‖v1−Lv1‖∞

2(1− γ)
1 .

Note thatv2 ∈V from Assumption 1, and 2‖v2−Lv2‖∞ = ‖v1−Lv1‖∞ from Theorem 20. To show
thatv2 ∈ V2 by contradiction, assume that there exists ¯v2 ∈ V2 such that
‖v̄2−Lv̄2‖∞ < ‖v2−Lv2‖∞ and letv̄1 = v̄2+

‖v̄2−Lv̄2‖∞
(1−γ) 1. Using Theorem 20, we get:

‖v̄1−Lv̄1‖∞ = 2‖v̄2−Lv̄2‖∞ < 2‖v2−Lv2‖∞ = ‖v1−Lv1‖∞ ,

which contradicts the optimality ofv1.

The inclusionV1 ⊇
{

v2−
‖v−Lv‖∞
2(1−γ) 1 v2 ∈ V2

}

andΠ1 ⊇ Π2 can be shown similarly. Finally,

Theorem 6 implies thatΠ1 = Π2.

Proposition 22 Given Assumption 1, the minimal Bellman residual for a representable valuefunc-
tion can be bounded as follows:

min
v∈Ṽ
‖Lv−v‖∞ ≤ (1+ γ)min

v∈Ṽ
‖v−v⋆‖∞ .

Proof Assume that ˆv minimizes minv∈Ṽ ‖v−v⋆‖∞ ≤ ε. Then:

v⋆− ε1≤ v ≤ v⋆+ ε1 ,
Lv⋆− γε1≤ Lv ≤ Lv⋆+ γε1 ,

Lv⋆− γε1−v≤ Lv−v ≤ Lv⋆+ γε1−v ,
Lv⋆−v⋆− (1+ γ)ε1≤ Lv−v ≤ Lv⋆−v⋆+(1+ γ)ε1 ,

−(1+ γ)ε1≤ Lv−v ≤ (1+ γ)ε1 .

Theorem 17 now easily follows from the results above.
Proof [Proof of Theorem 17] Letf ⋆ be the optimal objective value of (7). Then we have from
Theorem 19 that:

f ⋆ = min
π∈Π,v∈Ṽ∩K

f1(π,v) = min
v∈Ṽ∩K

f2(v) = min
v∈Ṽ∩K

‖v−Lv‖∞ .

The properties ofv′ follow directly from Theorem 21:

ṽ∈ V1⇒ v′ ∈ V2⇒‖v
′−Lv′‖∞ = min

v∈Ṽ
‖v−Lv‖∞ .

3041

PETRIK AND ZILBERSTEIN

Note that the existence of an optimal deterministic policy in (7) follows from the existence of a
deterministic optimal policy inf2. The bound on the minimal Bellman residual follows from Theo-
rem 22.

4.2 Expected Policy Loss

This section describes bilinear programs that minimize bounds on the expectedpolicy loss for a
given initial distribution‖v−Lv‖1,α. The initial distribution can be used to derive tighter bounds on
the policy loss. We describe two formulations. They respectively minimize anL∞ and a weighted
L1 norm on the Bellman residual.

The expected policy loss can be minimized by solving the following bilinear formulation.

min
π λ,λ′,v

πTλ+λ′− (1− γ)αTv

s.t. Bπ = 1 , Av−b≥ 0 ,

π≥ 0 , λ+λ′1≥ Av−b ,

λ,λ′ ≥ 0 ,

v∈ Ṽ .

(10)

Notice that this formulation is identical to the bilinear program (7) with the exception of the term
−(1− γ)αTv.

Theorem 23 Given Assumption 1, any optimal solution(π̃, ṽ, λ̃, λ̃′) of (10)satisfies:

1
1− γ

(

π̃Tλ̃+ λ̃′
)

−αTṽ=
1

1− γ
‖Lṽ− ṽ‖∞−αTṽ

= min
v∈K ∩Ṽ

(

1
1− γ

‖Lv−v‖∞−αTv

)

= min
v∈Ṽ

(

1
1− γ

‖Lv−v‖∞−αTv

)

.

In addition, there exists an optimalπ̃ ∈ Π̃.

The following bound on the policy loss follows using Theorem 12.

Corollary 24 There exists an optimal solutioñπ that is greedy with respect tõv for which the policy
loss is bounded by:

‖v⋆−vπ̃‖1,α ≤

(

min
v∈Ṽ∩K

1
1− γ

‖Lv−v‖∞−‖v
⋆−v‖1,α

)

≤

(

min
v∈Ṽ

1
1− γ

‖Lv−v‖∞−αT(v−v⋆)

)

.

3042

ROBUST APPROXIMATE BILINEAR PROGRAMMING

Proof The proof of Theorem 23 is similar to the proof of Theorem 17 with the main difference
being in the definition of functionsf1, and f2:

f1(π,v) = min
λ,λ′

{

πTλ+λ′− (1− γ)αTv 1λ′+λ≥ Av−b,λ≥ 0
}

,

f2(v) = min
π
{ f1(π,v) Bπ = 1,π≥ 0} .

The following lemma can be proved identically to Theorem 19.

Lemma 25 Let v∈K be a transitive-feasible value function and letπ be a policy. Then:

f1(π,v)≥ ‖v−Lπv‖∞−‖v
⋆−v‖1,α , (11)

f2(v) = ‖v−Lv‖∞−‖v
⋆−v‖1,α . (12)

In addition, (11) holds with an equality for adeterministicpolicy π, and there is a deterministic
optimal policy that satisfies(12).

The fact that optimization over transitive-feasible value functions does not restrict the resulting
policies is proved identically to Theorem 21 with setsV1 andV2 that satisfy the same equations.
Notice also that the objective function of (10) does not change when subtracting a constant for
v′ = v−k1 andk≥ 0:

1
1− γ

‖v′−Lv′‖∞−αTv′ =
1

1− γ
‖v−Lv‖∞−αTv ,

when−mins∈S (v′−Lv′)(s) = maxs∈S (v′−Lv′)(s) and mins∈S (v−Lv)(s) = 0.

5. Solving Bilinear Programs

This section describes methods for solving approximate bilinear programs. Bilinear programs can
be easily mapped to other global optimization problems, such as mixed integer linear programs
(Horst and Tuy, 1996). We focus on a simple iterative algorithm for solving bilinear programs
approximately, which also serves as a basis for many optimal algorithms. In addition, we provide a
basic problem-specific mixed integer program formulation.

Solving a bilinear program is an NP-complete problem (Bennett and Mangasarian, 1993). The
membership in NP follows from the finite number of basic feasible solutions of theindividual linear
programs, each of which can be checked in polynomial time. The NP-hardness is shown by a
reduction from the SAT problem.

There are two main approaches for solving bilinear programs optimally. In thefirst approach, a
relaxation of the bilinear program is solved. The solution of the relaxed problem represents a lower
bound on the optimal solution. The relaxation is then iteratively refined, for example by adding
cutting plane constraints, until the solution becomes feasible. This is a common method used to
solve integer linear programs. The relaxation of the bilinear program is typically either a linear or
semi-definite program (Carpara and Monaci, 2009).

In the second approach, feasible, but suboptimal, solutions of the bilinearprogram are calculated
approximately. The approximate algorithms are usually some variation of Algorithm 2. The bilinear

3043

PETRIK AND ZILBERSTEIN

Algorithm 2 : Iterative algorithm for solving (6)

(x0,w0)← random ;1

(y0,z0)← argminy,z f (w0,x0,y,z) ;2

i← 1 ;3

while yi−1 6= yi or xi−1 6= xi do4

(yi ,zi)← argmin{y,z A2y+B2z=b2 y,z≥0} f (wi−1,xi−1,y,z) ;5

(xi ,wi)← argmin{x,w A1x+B1w=b1 x,w≥0} f (w,x,yi ,zi) ;6

i← i+17

return f (wi ,xi ,yi ,zi)8

program formulation is then refined—using concavity cuts (Horst and Tuy, 1996)—to eliminate
previously computed feasible solutions and solved again. This procedurecan be shown to find the
optimal solution by eliminating all suboptimal feasible solutions.

The most common and simplest approximate algorithm for solving bilinear programs is Algo-
rithm 2. This algorithm is shown for the general bilinear program (6), where f (w,x,y,z) represents
the objective function. The minimizations in the algorithm are linear programs which can be eas-
ily solved. Interestingly, as we will show in Section 7, Algorithm 2 applied to ABPgeneralizes a
version of API.

While Algorithm 2 is not guaranteed to find an optimal solution, its empirical performance is
often remarkably good (Mangasarian, 1995). Its basic properties aresummarized by the following
proposition.

Proposition 26 (Theorem 2.2 in Bennett and Mangasarian, 1993)Algorithm 2 is guaranteed to
converge, assuming that the linear program solutions are in a vertex of the optimality simplex. In
addition, the global optimum is a fixed point of the algorithm, and the objective value monotonically
improves during execution.

The proof is based on the finite count of the basic feasible solutions of the individual linear pro-
grams. Because the objective function does not increase in any iteration,the algorithm will eventu-
ally converge.

As mentioned above, any separable bilinear program can be also formulated as a mixed integer
linear program (Horst and Tuy, 1996). Such formulation is not practical in our setting, because its
size grows quadratically with the size of ABP and its linear relaxations were very loose in our exper-
iments. Below, we present a more compact and structured mixed integer linear program formulation,
which relies on the property of ABP that there is always a solution with an optimal deterministic
policy (see Theorem 17).

We only show the formulation of the robust approximate bilinear program (7); the same ap-
proach applies to all other formulations that we propose. To formulate the mixed integer linear
program, assume a given upper boundτ ∈ R for the optimal solutionλ⋆ and alls∈ S anda ∈ A

3044

ROBUST APPROXIMATE BILINEAR PROGRAMMING

such thatτ≥ λ⋆(s,a). The mixed integer linear program formulation that corresponds to (7) is:

min
z,π,λ,λ′,v

1Tz+λ′

s.t. z≥ λ− τ(1−π) ,

Bπ = 1 ,

λ+λ′1≥ Av−b≥ 0 ,

λ,λ′ ≥ 0 , v∈ Ṽ , π ∈ {0,1}|S ||A | .

(13)

The following theorem states the correctness of this formulation:

Theorem 27 Let (π1,λ1,λ′1) be an optimal (greedy-policy) solution of(7) and letτ≥ λ1. Then:

(

π1,λ1,λ′1,z
′ = min

z≥λ1−(τ−π1)
1Tz

)

is an optimal solution of(13) and vice versa. When in addition f1 and f2 are the optimal objective
values of(7) and (13), then f1 = f2.

Proof First, we show that(π1,λ1,λ′1,z= minz≥λ1−(τ−π1)1Tz) is feasible in (13) and has the same
objective value. Sinceπ1 is a greedy policy (see Theorem 17), thenπ1 ∈ {0,1}S×A . That isπ1 is
feasible in (13). Let then:

z2(s,a) =

{

λ(s,a) if π1(s,a) = 1

0 otherwise
.

To show thatz2 is feasible in (13), analyze the following two cases:

π(s,a) = 1 : z2(s,a)+ τ(s,a)(1−π1(s,a)) = z2(s,a) = λ1(s,a) ,

π(s,a) = 0 : z2(s,a)+ τ(s,a)(1−π1(s,a))≥ τ(s,a)≥ λ1(s,a) .

The objective values must then be identical based on a simple algebraic manipulation. The reverse
direction—showing that for any solution of (13) there is a solution of (7) withthe same objective
value—follows similarly.

This mixed integer linear program formulation is much simpler than a general MILP formulation of
a bilinear program (Horst and Tuy, 1996).

The performance of the proposed solution methods strongly depends on the actual structure of
the problem. As usual with NP-hard problems, there is very little understanding of the theoretical
properties that could guarantee faster solution methods. Experimental results, however, show that
the ABP-specific formulation can solve problems that are orders of magnitude larger than those that
can be solved by the general MILP formulation of ABP.

6. Sampling Guarantees

Typically, the number of states in an MDP is too large to be explicitly enumerated, making it hard
to solve even when the value function is restricted to be representable. Theusual approach is to
sample a limited number of states, actions, and their transitions in order to approximately calculate

3045

PETRIK AND ZILBERSTEIN

the value function. This section shows basic properties of the samples that are sufficient to establish
solution quality guarantees with incomplete samples. To derive sampling bounds, we assume in this
section that the representable value functions are regularized.

First, we formally define samples and then show how to use them to compute a solution. The
samples of the simplest type are defined as follows.

Definition 28 One-step simple samplesare defined as:

Σ̃⊆ {(s,a,(s1 . . .sn), r(s,a)) s,s′ ∈ S , a∈ A} ,

where s1 . . .sn are selected i.i.d. from the distribution P(s,a, ·).

Note thatΣ̃ represents an arbitrary subset of states and actions and may or may not be sampled from
a distribution. More informative samples include the full distributionP(s,a, ·) instead of samples
from the distribution. While these samples are often unavailable in practice, they are useful in the
theoretical analysis of sampling issues.

Definition 29 One-step samples with expectationare defined as follows:

Σ̄⊆ {(s,a,P(s,a, ·), r(s,a)) s∈ S , a∈ A} ,

where P(s,a, ·) is the distribution over the next states.

The membership of a state in the samples is denoted simply ass∈ Σ̃ or (s,a)∈ Σ with the remaining
variables, such asr(s,a) considered to be available implicitly.

The sampling models may vary significantly in different domains. The focus ofthis work is
on problems with either a fixed set of available samples or a domain model. Therefore, we do not
analyze methods for gathering samples. We also do not assume that the samples come from previous
executions, but rather from a deliberate sample-gathering process.

The samples are used to approximate the Bellman operator and the set of transitive-feasible
value functions as the following definitions describe.

Definition 30 The sampled Bellman operatorand the corresponding set of sampled transitive-
feasible functions are defined as:

(L̄(v))(s̄) = max
{a (s̄,a)∈Σ̄}

r(s̄,a)+ γ ∑
s′∈S

P(s̄,a,s′)v(s′) ∀s̄∈ Σ̄

K̄ =
{

v (s̄,a,P(s̄,a), r(s̄,a)) ∈ Σ̄, v(s̄)≥ (L̄v)(s̄)
}

.

The less-informative set of samplesΣ̃ can be used as follows.

Definition 31 Theestimated Bellman operatorand the corresponding set of estimated transitive-
feasible functions are defined as:

(L̃(v))(s̄) = max
{a (s̄,a)∈Σ̃}

r(s̄,a)+ γ
1
n

n

∑
i=1

v(si) ∀s̄∈ Σ̃

K̃ =
{

v (s̄,a,(s1 . . .sn), r(s̄,a)) ∈ Σ̃, v(s̄)≥ (L̃v)(s̄)
}

.

3046

ROBUST APPROXIMATE BILINEAR PROGRAMMING

Notice that operators̃L and L̄ map value functions to a subset of all states—only states that are
sampled. The values for other states are not defined here; they would bedefined in a problem-
specific way as, for example, the proof of Theorem 32 shows.

The samples can also be used to create an approximation of the initial distribution, or the dis-
tribution of visitation frequencies of a given policy. The estimated initial distribution ᾱ is defined
as:

ᾱ(s) =

{

α(s) (s, ·, ·, ·) ∈ Σ̄
0 otherwise

.

Most existing sampling bounds for approximate linear programming focus on bounding the
probability that a large number of constraints is violated when assuming a distribution over the
constraints (de Farias and van Roy, 2004). The difficulty with this approach is that the number
of violated constraints does not easily translate to bounds on the quality of thevalue function, or
the policy. In addition, the constraint distribution assumed in the bounds of deFarias and van Roy
(2004) is often somewhat arbitrary with no implication on solution quality.

Our approach, on the other hand, is to define properties of the sampled operators that guarantee
that the sampling error bounds are small. These bounds do not rely on distributions over constraints
and transform directly to bounds on the policy loss. To define bounds on the sampling behavior, we
propose the following assumptions. The first assumption limits the error due to missing transitions
in the sampled Bellman operatorL̄.

Assumption 2 (Constraint Sampling Behavior) There existsεp≥ 0 such that for all v∈ Ṽ :

Lv− εp1≤ L̄v≤ Lv .

Notice that Assumption 2 implies that:

K ⊆ K̄ ⊆K (εp) .

The second assumption quantifies the error on the estimation of the transitions of the estimated
Bellman operator̃L.

Assumption 3 (Constraint Estimation Behavior) There existsεs≥ 0 such that for all v∈ Ṽ :

Lv− εs1≤ L̃v≤ Lv+ εs1 .

Notice that Assumption 3 implies that:

K̄ (−εs)⊆ K̃ ⊆ K̄ (εs) .

Assumptions 2 and 3 are intentionally generic, so that they apply to a wide range of scenarios.
They can be easily satisfied, for example, by making the following Lipschitz continuity assumptions
on state features, transitions and rewards.

Assumption 4 Let k : S → R
n be a map of the state-space to a normed vector space. Then for all

s1,s2,s3 ∈ S and all features (columns)φi ∈Φ, we define Kr , KP, and Kφ such that

|r(s1)− r(s2)| ≤ Kr ‖k(s1)−k(s2)‖ ,

|p(s3|s1,a)− p(s3|s2,a)| ≤ KP‖k(s1)−k(s2)‖ ∀a∈ A ,

|φi(s1)−φi(s2)| ≤ Kφ ‖k(s1)−k(s2)‖ .

3047

PETRIK AND ZILBERSTEIN

This assumption can be used to provide bounds on the sampling error as follows; for more details
on tighter and more general bounds see Petrik (2010).

Proposition 32 Given Assumptions 1 and 4 and thatṼ = {Φx+ l1 ‖x‖1≤ ψ, l ∈ R}, then As-
sumption 2 holds with:

εp =
(

Kr +ψ(Kφ + γKP)
)

max
s∈S

min
s̄∈Σ̄
‖k(s)−k(s̄)‖ .

Note thatṼ as defined in Theorem 32 satisfies Assumption 1.
Proof Assume that there exists a constantq such that:

max
s∈S

min
s̄∈Σ
‖k(s)−k(s̄)‖ ≤ q .

Also, define a functionχ : S → S̄ that maps each state to the closest sample as follows:

χ(s) = argmin
s̄∈Σ̄
‖k(s)−k(s̄)‖ .

We will use the following simple extension of Holder’s inequality to prove the proposition.

Lemma 33 The following holds for any v∈ Ṽ = {Φx+ l1 ‖x‖1≤ ψ, l ∈ R} and any y such that
1Ty= 0.

|yTv| ≤ |y|T|v| ≤ ψ‖Φy‖∞ .

Assumption 4 directly implies the following inequalities:

‖φ(χ(s))−φ(s)‖∞ ≤ qKφ ,

|r(χ(s))− r(s)| ≤ qKr ,

‖P(χ(s),a)Tφi−P(s,a)Tφi‖∞ ≤ qKp ∀a∈ A .

The proposition now follows using simple algebraic manipulation as:

max
s∈S
|(v−Lv)(s)− (v− L̄v)(χ(s))|

≤ max
s∈S ,a∈A

|(v− γPav− ra)(s)− (v− γPav− ra)(χ(s))|

≤ max
s∈S ,a∈A

|1Ts (Φx− γPaΦx− ra)−1Tχ(s)(Φx− γPaΦx− ra)|

≤ max
s∈S ,a∈A

|(1Ts −1Tχ(s))Φx|+ |(1Ts −1Tχ(s))γPaΦx|+

+ |(1Ts −1Tχ(s))ra|

Theorem 33
≤ max

s∈S ,a∈A
‖(1Ts −1Tχ(s))Φ‖∞ψ+

+‖(1Ts −1Tχ(s))γPaΦ‖∞ψ+‖(1Ts −1Tχ(s))ra‖∞

≤ qKr +qψ(Kφ + γKp) ,

where the last inequality follows from Assumption 4.

3048

ROBUST APPROXIMATE BILINEAR PROGRAMMING

In practice, the estimated Bellman operator is used to formulate the approximate bilinear pro-
gram. Then, the matrices used in the sampled approximate bilinear program (7)are defined as
follows for all (si ,a j) ∈ Σ̃.

ÃΦ =

(

− φ(si)
T− γ 1

m ∑s′∈s′1...s
′
m

P(si ,a j ,s′)φ(s′)T −

−
... −

)

, b̃=

(

r(si ,a j)
...

)

,

B̃(s′,(si ,a j)) = I
{

s′ = si
}

∀s′ ∈ Σ̃ .

The ordering over states in the definitions above is also assumed to be consistent. The sampled
version of the bilinear program (7) is then:

min
π λ,λ′,x

πTλ+λ′

s.t. B̃π = 1 , ÃΦx−b≥ 0 ,

π≥ 0 , λ+λ′1≥ ÃΦx− b̃ ,

λ,λ′ ≥ 0 .

(14)

The size of the bilinear program (14) scales with the number of samples and features, not with
the size of the full MDP, because the variablesλ andπ are defined only for state-action pairs in
Σ̃. That is, |π| = |λ| = |{(s,a) ∈ Σ}|. The number of constraints in (14) is approximately three
times the number of variablesλ. Finally, the number of variablesx corresponds to the number of
approximation features.

Theorem 17 shows that sampled robust ABP minimizes‖v− L̃v‖∞ or ‖v− L̄v‖∞. We are now
ready to derive sampling bounds on these values that rely on Assumptions 2and 3 defined above.

Theorem 34 Let the optimal solutions to the sampled and precise Bellman residual minimization
problems be:

v1 ∈min
v∈Ṽ
‖v−Lv‖∞ , v2 ∈min

v∈Ṽ
‖v− L̄v‖∞ , v3 ∈min

v∈Ṽ
‖v− L̃v‖∞ .

Value functions v1, v2, v3 correspond to solutions of instances of robust approximate bilinear pro-
grams for the given samples. Also letv̂i = vπi , whereπi is greedy with respect to vi . Then, given
Assumptions 1 to 3, the following holds:

‖v⋆− v̂1‖∞ ≤
2

1− γ
min
v∈Ṽ
‖v−Lv‖∞ ,

‖v⋆− v̂2‖∞ ≤
2

1− γ

(

min
v∈Ṽ
‖v−Lv‖∞ + εp

)

,

‖v⋆− v̂3‖∞ ≤
2

1− γ

(

min
v∈Ṽ
‖v−Lv‖∞ + εp+2εs

)

.

These bounds show that it is possible to bound policy loss due to incomplete samples. As mentioned
above, existing bounds on constraint violation in approximate linear programming (de Farias and
van Roy, 2004) typically do not easily lead to policy loss bounds.

3049

PETRIK AND ZILBERSTEIN

Sampling guarantees for other bilinear program formulations are very similar. Because they
also rely on an approximation of the initial distribution and the policy loss, they require additional
assumptions on the uniformity of state samples.
Proof We show bounds on‖vi−Lvi‖∞; the theorem can then be inferred from Theorem 17, which
establishes that ABP minimizes the Bellman residual. The first inequality follows directly from
Theorem 17. The second inequality can be derived as:

v2−Lv2

Assumption 2
≤ v2− L̄v2

(⋆)

≤ v1− L̄v1

≤ v1−Lv1+ εp1 .

The third inequality can be derived as:

v3−Lv3

Assumption 2
≤ v3− L̄v3+ εp1

Assumption 3
≤ v3− L̃v3+ εs1+ εp1

(⋆)

≤ v1− L̃v1+ εs1+ εp1
Assumption 3
≤ v1−Lv1+2εs1+ εp1 .

The star(⋆) in the inequalities refers to the fact thatvi ≥ Lvi and thatvi ’s minimize the correspond-
ing Bellman residuals.

To summarize, this section identifies basic assumptions on the sampling behavior and shows
that approximate bilinear programming scales well in the face of uncertainty caused by incomplete
sampling. More detailed analysis will need to focus on identifying problem-specific assumptions
and sampling modes that guarantee the basic conditions, namely satisfying Assumptions 2 and 3.
Such analysis is beyond the scope of this paper.

7. Discussion and Related ADP Methods

This section describes connections between approximate bilinear programming and two closely
related approximate dynamic programming methods: ALP, andL∞-API, which are commonly used
to solve factored MDPs (Guestrin et al., 2003). Our analysis sheds light on some of their observed
properties and leads to a newconvergentform of approximate policy iteration.

Approximate bilinear programming addresses some important drawbacks of ALP:
1. ALP provides value function bounds with respect toL1 norm, which does not guarantee small

policy loss;
2. ALP’s solution quality depends significantly on the heuristically-chosen objective functionc

in (5) (de Farias, 2002);
3. The performance bounds involve a constant 1/(1−γ) which can be very large whenγ is close

to 1; and
4. Incomplete constraint samples in ALP easily lead to unbounded linear programs.

3050

ROBUST APPROXIMATE BILINEAR PROGRAMMING

The downside of using approximate bilinear programming is, of course, the higher computational
complexity.

The first and the second issues in ALP can be addressed by choosing aproblem-specific objec-
tive functionc (de Farias, 2002). Unfortunately, all existing bounds require thatc is chosen based on
the optimal ALP solution forc. This is impossible to compute in practice. Heuristic values forc are
used instead. Robust approximate bilinear program (7), on the other hand, has no such parameters.

The fourth issue in approximate linear programs arises when the constraintsneed to be sampled.
The ALP may become unbounded with incomplete samples because its objective value is defined
using theL1 norm on the value function, and the constraints are defined using theL∞ norm of
the Bellman residual. In approximate bilinear programs, the Bellman residual is used in both the
constraints and objective function. The objective function of ABP is then bounded below by 0 for
an arbitrarily small number of samples.

The NP-completeness of ABP compares unfavorably with the polynomial complexity of ALP.
However, most other approximate dynamic programming algorithms are not guaranteed to con-
verge to a solution in finite time. As we show below, the exponential time complexity ofABP is
unavoidable (unless P = NP).

Proposition 35 (Mangasarian, 1995)A bilinear program can be solved in NP time.

The proof is straightforward. There is an optimal solution of the bilinear program such that the
solutions of the individual linear programs are basic feasible. The set ofall basic feasible solutions
is finite, because the feasible regions ofw,x andy,z are independent. The value of a basic feasible
solution can be calculated in polynomial time.

The following theorem shows that the computational complexity of the ABP formulation is
asymptotically the same as the complexity of tightly approximating the value function.

Theorem 36 Suppose that0 < γ < 1 and ε > 0. Then the problem of determining whether the
following inequalities hold is NP-complete:

min
v∈K ∩Ṽ

‖Lv−v‖∞ < ε , min
v∈Ṽ
‖Lv−v‖∞ < ε .

The problem remains NP-complete even when Assumption 1 is satisfied. Inaddition, it is also NP-
complete to determine:

min
v∈Ṽ
‖Lv−v‖∞−‖v

⋆−v‖1,α < ε , min
v∈Ṽ
‖Lv−v‖1,ū−‖v

⋆−v‖1,α < ε ,

assuming that̄u≥ 0 and1Tū= 1.

As the theorem states, the value function approximation does not become computationally sim-
pler even when Assumption 1 holds—a universal assumption in the paper. Notice that ALP can
determine whether minv∈K ∩Ṽ ‖Lv−v‖∞ = 0 in polynomial time.
Proof The membership in NP follows from Theorem 17 and Theorem 35. We show NP-hardness
by a reduction from the 3SAT problem. We first do not make Assumption 1. Weshow that the
theorem holds forε = 1. The appropriateε can be obtained by simply scaling the rewards in the
MDP.

The main idea is to construct an MDP and an approximation basis, such that theapproximation
error is small whenever the SAT problem is satisfiable. The values of the states will correspond to

3051

PETRIK AND ZILBERSTEIN

a3
a2a1 a3

a2
a1

s(C2)s(C1)

(l11 ∨ l12 ∨ l13) ∧ (l21 ∨ l22 ∨ l23)

Figure 1: MDP constructed from the corresponding SAT formula.

the truth values of the literals and clauses. The approximation featuresφ will be used to constrain
the values of literals that share the same variable. The MDP constructed from the SAT formula is
depicted in Figure 1.

Consider a SAT problem with clausesCi :
∧

i=1,...,n

Ci =
∧

i=1,...,n

(l i1∨ l i2∨ l i3) ,

wherel i j are literals. A literal is a variable or the negation of a variable. The variablesin the SAT
problem arex1 . . .xm. The corresponding MDP is constructed as follows. It has one states(l i j) for
every literall i j , one states(Ci) for each clauseCi and an additional state ¯s. That is:

S = {s(Ci) i = 1, . . . ,n}∪{s(l i j) i = 1, . . . ,n, j = 1, . . . ,3}∪{s̄} .

There are 3 actions available in each states(Ci), which determine the literal of the clause whose
value is true. There is only a single action available in statess(l i j) ands̄. All the MDP’s transitions
are deterministic. The transitiont(s,a) = (s′, r) is from the states to s′, when actiona is taken, and
the reward received isr. The transitions are as follows:

t(s(Ci),a j) = (s(l i j),1− γ) ,
t(s(l i j),a) = (s(l i j),−(1− γ)) ,

t(s̄,a) = (s̄,2− γ) .

Notice that the rewards depend on the discount factorγ, for notational convenience.
There is one approximation feature for every variablexk such that:

φk(s(Ci)) = 0 ,

φk(s̄) = 0 ,

φk(s(l i j)) =

{

1 if l i j = xk

−1 if l i j = ¬xk
.

An additional feature in the problem̄φ is defined as follows:

φ̄(s(Ci)) = 1 ,

φ̄(s(l i j)) = 0 ,

φ̄(s̄) = 1 .

3052

ROBUST APPROXIMATE BILINEAR PROGRAMMING

The purpose of state ¯s is to ensure thatv(s(ci))≥ 2− γ, as we assume in the remainder of the proof.
First, we show that if the SAT problem is satisfiable, then minv∈Ṽ∩K ‖Lv−v‖∞ < 1. The value

function ṽ∈ K is constructed as a linear sum of the features as:v= Φy, wherey= (y1, . . . ,ym, ȳ).
Hereyk corresponds toφk andȳ corresponds tōφ. The coefficientsyk are constructed from the truth
value of the variables as follows:

yk =

{

γ if xk = true

−γ if xk = false
,

ȳ= 2− γ .

Now define thedeterministicpolicy π as:

π(s(Ci)) = a j wherel i j = true .

The true literals are guaranteed to exist from the satisfiability. This policy is greedy with respect to
ṽ and satisfies that‖Lπṽ− ṽ‖∞ ≤ 1− γ2.

The Bellman residuals for all actions and states, given a value functionv, are defined as:

v(s)− γv(s′)− r ,

wheret(s,a) = (s′, r). Given the value function ˜v, the residual values are:

t(s(Ci),a j) = (s(l i j),1− γ) :

{

2− γ− γ2+(1− γ) = 1− γ2 if l i j = true

2− γ+ γ2+(1− γ) = 1+ γ2 if l i j = false
,

t(s(l i j),a) = (s(l i j),(1− γ)) :

{

γ− γ2+1− γ = 1− γ2 if l i j = true

−γ+ γ2+1− γ = (1− γ)2 > 0 if l i j = false
,

t(s̄,a) = (s̄,1− γ) : (1− γ)+ γ−1= 0 .

It is now clear thatπ is greedy and that:

‖Lṽ− ṽ‖∞ = 1− γ2 < 1 .

We now show that if the SAT problem is not satisfiable then minv∈K ∩Ṽ ‖Lv− v‖∞ ≥ 1− γ2

2 .
Now, given a value functionv, there are two possible cases for eachv(s(l i j)): 1) a positive value,
and 2) a non-positive value. Two literals that share the same variable will have the same sign, since
there is only one feature per each variable.

Assume now that there is a value function ˜v. There are two possible cases we analyze: 1) all
transitions of a greedy policy are to states with positive value, and 2) there isat least one transition
to a state with a non-positive value. In the first case, we have that

∀i ∃ j, ṽ(s(l i j))> 0 .

That is, there is a functionq(i), which returns the positive literal for the clausej. Now, create a
satisfiable assignment of the SAT problem as follows:

xk =

{

true if l iq(i) = xk

false if l iq(i) = ¬xk
,

3053

PETRIK AND ZILBERSTEIN

with other variables assigned arbitrary values. Given this assignment, all literals with states that
have a positive value will be also positive. Since every clause contains atleast one positive literal,
the SAT is satisfiable, which is a contradiction with the assumption. Therefore,there is at least one
transition to a state with a non-positive value.

Let C1 represent the clause with a transition to a literall11 with a non-positive value, without
loss of generality. The Bellman residuals at the transitions from these states will be:

b1 = ṽ(s(l11))− γṽ(s(l11))+(1− γ)≥ 0−0+(1− γ) = 1− γ ,
b1 = ṽ(s(C1))− γṽ(s(l11))− (1− γ)≥ 2− γ−0−1+ γ = 1 .

Therefore, the Bellman residual ˜v is bounded as:

‖Lṽ− ṽ‖∞ ≥max{b1,b2} ≥ 1 .

Since we did not make any assumptions on ˜v, the claim holds for all representable and transitive-
feasible value functions. Therefore, minv∈Ṽ∩K ‖Lv−v‖∞ ≤ 1− γ2 is and only if the 3SAT problem
is feasible.

We now show that the problem remains NP-complete even when Assumption 1 holds. Define a
new state ¯s1 with the following transition:

t(s̄2,a) = (s̄2,−
γ
2
) .

All previously introduced featuresφ are zero on the new state. That isφk(s̄1) = φ̄(s̄1) = 0. The new
constant feature is:̂φ(s) = 1 for all statess∈ S , and the matching coefficient is denoted as ¯y1. When
the formula is satisfiable, then clearly minv∈Ṽ∩K ‖Lv− v‖∞ ≤ 1− γ2 since the basis is now richer

and the Bellman error on the new transition is less than 1− γ2 whenȳ1 = 0.
Now we show that when the formula is not satisfiable, then:

min
v∈Ṽ∩K

‖Lv−v‖∞ ≥ 1−
γ2

2
.

This can be scaled to an appropriateε by scaling the rewards. Notice that

0≤ ȳ1≤
γ
2
.

Whenȳ1 < 0, the Bellman residual on transitionss(Ci)→ s(l i j) may be decreased by increasing ¯y1

while adjusting other coefficients to ensure thatv(s(Ci)) = 2− γ. Whenȳ1 >
γ
2 then the Bellman

residual from the state ¯s1 is greater than 1− γ2

2 . Given the bounds on ¯y1, the argument foryk = 0
holds and the minimal Bellman residual is achieved when:

v(s(Ci))− γv(s(l i j))− (1− γ) = v(s(s̄1))− γv(s(s̄1))+
γ
2
,

2− γ− γȳ1− (1− γ) = ȳ1− γȳ1+
γ
2
,

ȳ1 =
γ
2
.

Therefore, when the SAT problem is unsatisfiable, the Bellman residual is at least 1− γ2

2 .

3054

ROBUST APPROXIMATE BILINEAR PROGRAMMING

The NP-completeness of minv∈Ṽ ‖Lv− v‖∞ < ε follows trivially from the fact that transitive-
feasibility does not restrict the solution quality. The proof for‖v−Lv‖∞−αTv is almost identical.
The difference is a new state ˆs, such thatφ(ŝ) = 1 andα(ŝ) = 1. In that caseαTv= 1 for all v∈ Ṽ .
The additional term thus has no effect on the optimization.

The proof can be similarly extended to the minimization of‖v−Lv‖1,ū. Defineū(Ci) = 1/n and
ū(l i j) = 0. Then the SAT problem is satisfiable if an only if‖v−Lv‖1,ū = 1− γ2. Note that ¯u, as
defined above, is not an upper bound on the occupancy frequenciesuπ. It is likely that the proof
could be extended to cover the case ¯u≥ uπ by more carefully designing the transitions fromCi . In
particular, there needs to be high probability of returning toCi andū(l i j > 0.

Approximate bilinear programming can also improve on API withL∞ minimization (L∞-API for
short), which is a popular method for solving factored MDPs (Guestrin et al., 2003). Minimizing the
L∞ approximation error is theoretically preferable, since it is compatible with the existing bounds on
policy loss (Guestrin et al., 2003). The bounds on value function approximation in API are typically
(Munos, 2003):

limsup
k→∞

‖v⋆− v̂k‖∞ ≤
2γ

(1− γ)2 limsup
k→∞

‖ṽk−vk‖∞ ,

wherev̂k is the value function of policyπk which is greedy with respect to ˜vk. These bounds are
looser than the bounds on solutions of ABP by at least a factor of 1/(1− γ). Often the difference
may be up to 1/(1− γ)2 since the error‖ṽk− vk‖∞ may be significantly larger than‖ṽk− Lṽk‖∞.
Finally, the bounds cannot be easily used, because they only hold in the limit.

We proposeOptimistic Approximate Policy Iteration(OAPI), a modification of API. OAPI is
shown in Algorithm 1, whereZ(π) is calculated using the following program:

min
σ,v

σ

s.t. Av≥ b (≡ (I − γPa)v≥ ra ∀a∈ A)

−(I − γPπ)v+1σ≥−rπ ,

v∈ Ṽ .

(15)

In fact, OAPI corresponds to Algorithm 2 applied to ABP because the linearprogram (15) corre-
sponds to (7) with a fixedπ. Then, using Theorem 26, we get the following corollary.

Corollary 37 Optimistic approximate policy iteration converges in finite time. In addition, the
Bellman residual of the generated value functions monotonically decreases.

OAPI differs fromL∞-API in two ways: 1) OAPI constrains the Bellman residuals by 0 from
below and byσ from above, and then it minimizesσ. L∞-API constrains the Bellman residuals by
σ from both above and below. 2) OAPI, like API, uses only the current policy for the upper bound
on the Bellman residual, but usesall the policies for the lower bound on the Bellman residual. Next
we show that the optimal solutions of (16) and (17) are closely related.

L∞-API cannot return an approximate value function that has a lower Bellman residual than
ABP, given the optimality of ABP described in Theorem 17. However, evenOAPI—an approximate
ABP algorithm—is guaranteed to perform comparably toL∞-API, as the following theorem states.

3055

PETRIK AND ZILBERSTEIN

Theorem 38 Assume that L∞-API converges to a policȳπ and a value function̄v. Then, define:

v̄′ = v̄+
1

1− γ
‖v̄−Lπ̄v̄‖∞1 .

The pairπ̄ andv̄′ is a fixed point of OAPI when ties are broken appropriately.

Notice that while the optimistic and standard policy iterations can converge to the same solutions,
the steps in their computation may not be identical. In addition, there may be multiple points of
convergence with the solution depending on the initialization.
Proof First, note that the value function optimization in API and OAPI corresponds tothe following
optimization problems:

min
v∈Ṽ
‖Lπv−v‖∞ = min

σ,v

{

σ (I − γPπ)v+1σ≥ rπ
−(I − γPπ)v+1σ≥−rπ

,v∈ Ṽ

}

, (16)

min
v∈Ṽ∩K

‖Lπv−v‖∞ = min
σ,v

{

σ (I − γPa)v≥ ra ∀a∈ A
−(I − γPπ)v+1σ≥−rπ

,v∈ Ṽ

}

. (17)

Given thatπ̄ is greedy with respect to ¯v and that ¯v minimizes the Bellman residual of̄π, the following
equalities hold:

Lπ̄v̄≥ Lv̄ ,

‖v̄−Lπ̄v̄‖∞ ≤ ‖v−Lπ̄v‖∞ ∀v∈ Ṽ ,

−min
s∈S

(v−Lπv)(s) = max
s∈S

(v−Lπv)(s) .

Then, v̄′ ∈ K from the first and third properties, since ¯v′ ≥ Lπ̄v̄′ ≥ Lv̄′. The value function ¯v′ is
therefore feasible in OAPI. In addition, we have that‖v̄′−Lπ̄v̄′‖∞ = 2‖v̄−Lπ̄v̄‖∞.

For the policyπ̄ to be a fixed point in OAPI, it needs to minimize the Bellman residual with
respect to ¯v′. This is easy to show as follows:

Lπ̄v̄≥ Lπv̄ ,

v̄−Lπ̄v̄≤ v̄−Lπv̄ ,

0≤ v̄′−Lπ̄v̄′ ≤ v̄′−Lπv̄′ ,

‖v̄′−Lπ̄v̄′‖∞ ≤ ‖v̄
′−Lπv̄′‖∞ .

For the value function ¯v′ to be a fixed point in OAPI, it needs to minimize the Bellman residual
with respect to all representable and transitive-feasible value functions. To show a contradiction,
assume that there existsv′ ∈ Ṽ ∩K such that for someε > 0:

‖v′−Lπ̄v′‖∞ ≤ ‖v
′−Lπ̄v′‖∞− ε .

Define also a value functionzas follows:

z= v′−

(

1
2(1− γ)

‖v̄−Lπ̄v̄‖∞ +
ε
2

)

1 .

3056

ROBUST APPROXIMATE BILINEAR PROGRAMMING

We now show that the Bellman residual ofz is less than that of ¯v:

‖v′−Lπ̄v′‖∞ ≤ ‖v̄′−Lπ̄v̄′‖∞− ε ,

0≤ maxs∈S (v′−Lπ̄v′)(s) ≤max
s∈S

(v̄′−Lπ̄v̄′)(s)− ε ,

−‖v̄−Lπ̄v̄‖∞ +
ε
2
≤ maxs∈S (v′−Lπ̄v′)(s)−‖v̄−Lπ̄v̄‖∞ + ε

2 ≤−‖v̄−Lπ̄v̄‖∞ +
ε
2
,

−‖v̄−Lπ̄v̄‖∞ +
ε
2
≤ ‖z−Lπ̄z‖∞ ≤−‖v̄−Lπ̄v̄‖∞ +

ε
2
.

Therefore,‖z−Lπ̄z‖∞ < ‖v̄−Lπ̄v̄‖∞, which is a contradiction.

To summarize, OAPI guarantees convergence, while matching the performance ofL∞-API. The
convergence of OAPI is achieved because given a non-negative Bellman residual, the greedy policy
also minimizes the Bellman residual. Because OAPI ensures that the Bellman residual is always
non-negative, it can progressively reduce it. In comparison, the greedy policy inL∞-API does not
minimize the Bellman residual, and thereforeL∞-API does not always reduce it. Theorem 38 also
explains why API provides better solutions than ALP, as observed in Guestrin et al. (2003). From
the discussion above, ALP can be seen as anL1-norm approximation of a single iteration of OAPI.
L∞-API, on the other hand, performs many such ALP-like iterations.

8. Experimental Results

In this section, we validate the approach by applying it to simple reinforcementlearning bench-
mark problems. We consider three different problem domains, each designed to empirically test a
different property of the algorithm.

First, in Section 8.1, we compare the policy loss of various approximate bilinearprogramming
formulations with the policy loss of approximate policy iteration and approximate linear program-
ming. These experiments are on a problem that is sufficiently small to compute theoptimal value
function. Second, in Section 8.2, we compare the solution quality in terms of the Bellman residual
for a number of applicable algorithms. Finally, in Section 8.3 we apply ABP withL1 relaxation to
a common inverted pendulum benchmark problem and solve it using the proposed mixed integer
linear formulation.

Note that our analysis shows that the solution of ABP using OAPI corresponds to the solutions
of API. The optimal solutions of ABP are, therefore, also at least equivalently good in terms of
the Bellman residual bounds. However, the actual empirical performance of these methods will
depend significantly on the specific problem; our experimental results mostly demonstrate that the
proposed methods compute value functions that minimize Bellman residual bounds and result in
good policies.

ABP is an off-policy approximation method like LSPI (Lagoudakis and Parr,2003) or ALP.
Thus samples can be gathered independently of the control policy. But it isnecessary that multiple
actions are sampled for each state to enable the selection of different policies.

8.1 Simple Chain Problem

First, we demonstrate and analyze the properties of ABP on a simple chain problem with 200 states,
in which the transitions move to the right or left (2 actions) by one step with a centered Gaussian

3057

PETRIK AND ZILBERSTEIN

ABP ABPexp ABPh ALP API
0

0.5

1

1.5

2

2.5

‖
v
∗
−

ṽ
‖ ∞

Figure 2:L∞ Bellman residual for the chain problem

noise of standard deviation 3. The rewards were set to sin(i/20) for the right action and cos(i/20)
for the left action, wherei is the index of the state. This problem is small enough to calculate the
optimal value function and to control the approximation features. The approximation basis in this
problem is represented by piece-wise linear features, of the formφ(si)= [i−c]+, for c from 1 to 200.
The discount factor in the experiments wasγ = 0.95 and the initial distribution wasα(130) = 1. We
verified that the solutions of the bilinear programs were always close to optimal, albeit suboptimal.

We experimented with the full state-action sample and randomly chose the features. All results
are averages over 50 runs with 15 features. In the results, we use ABPto denote a close-to-optimal
solution of robust ABP, ABPexp for the bilinear program (10), and ABPh for a formulation that min-
imizes the average of ABP and ABPexp. API denotes approximate policy iteration that minimizes
theL2 norm.

Figure 2 shows the Bellman residual attained by the methods. It clearly showsthat the robust
bilinear formulation most reliably minimizes the Bellman residual. The other two bilinearformu-
lations are not much worse. Notice also the higher standard deviation of ALPand API. Figure 3
shows the expected policy loss, as specified in Theorem 9, for the calculated value functions. It
confirms that the ABP formulation outperforms the robust formulation, since itsexplicit objective
is to minimize the expected loss. Similarly, Figure 4 shows the robust policy loss. As expected, it
confirms the better performance of the robust ABP formulation in this case.

Note that API and ALP may achieve lower policy loss on this particular domain than the ABP
formulations, even though their Bellman residual is significantly higher. This ispossible because
ABP simply minimizes bounds on the policy loss. The analysis of tightness of policyloss bounds
is beyond the scope of this paper.

8.2 Mountain Car Benchmark Problem

In the mountain-car benchmark, an underpowered car needs to climb a hill (Sutton and Barto, 1998).
To do so, it first needs to back up to an opposite hill to gain sufficient momentum. The car receives
a reward of 1 when it climbs the hill. The discount factor in the experiments wasγ = 0.99.

3058

ROBUST APPROXIMATE BILINEAR PROGRAMMING

ABP ABPexp ABPh ALP API
−0.5

0

0.5

1

1.5

‖
v
∗
−

v
π
‖
1
,
α

Figure 3: Expected policy loss for the chain problem

ABP ABPexp ABPh ALP API
0

1

2

3

4

5

6

‖
v
∗
−

v
π
‖
∞

Figure 4: Robust policy loss for the chain problem

Note that the state space in this problem is infinite. It is, therefore, necessary to sample states.
The states are sampled uniformly from the feasible state space and the ABP formulation is created
as described in Section 6.

The experiments are designed to determine whether OAPI reliably minimizes the Bellman resid-
ual in comparison with API and ALP. We use a uniformly-spaced linear splineto approximate the
value function. The constraints were based on 200 uniformly sampled stateswith all 3 actions per
state. We evaluated the methods with 100 and 144 approximation features, which correspond to the
number of linear segments.

The results of robust ABP (in particular OAPI), ALP, API withL2 minimization, and LSPI are
depicted in Table 1. The results are shown for bothL∞ norm and uniformly-weightedL2 norm. The
run-times of all these methods are comparable, with ALP being the fastest. Since API (LSPI) is
not guaranteed to converge, we ran it for at most 20 iterations, which was an upper bound on the
number of iterations of OAPI. The results demonstrate that ABP minimizes theL∞ Bellman residual

3059

PETRIK AND ZILBERSTEIN

(a) L∞ error of the Bellman residual

Features 100 144
OAPI 0.21 (0.23) 0.13 (0.1)
ALP 13. (13.) 3.6 (4.3)
LSPI 9. (14.) 3.9 (7.7)
API 0.46 (0.08) 0.86 (1.18)

(b) L2 error of the Bellman residual

Features 100 144
OAPI 0.2 (0.3) 0.1 (1.9)
ALP 9.5 (18.) 0.3 (0.4)
LSPI 1.2 (1.5) 0.9 (0.1)
API 0.04 (0.01) 0.08 (0.08)

Table 1: Bellman residual of the final value function. The values are averages over 5 executions,
with the standard deviations shown in parentheses.

much more consistently than the other methods. Note, however, that all the considered algorithms
would have performed significantly better with a finer approximation.

8.3 Inverted Pendulum Benchmark Problem

The goal in the inverted pendulum benchmark problem is to balance an inverted pole by accelerating
a cart in either of two directions (Wang et al., 1996; Lagoudakis and Parr, 2003). There are three
actions in this domain that represent applying the force ofu= −50N, u= 0N, andu= 50N to the
cart with a uniform noise between−10N and 10N. The angle of the inverted pendulum isθ and its
update equation is:

θ̈ =
gsin(θ)−αml(θ̇)2sin(2θ)/2−αcos(θ)u

4l/3−αmlcos2(θ)
.

Here the constants are:g= 9.8, m= 2.0, M = 8.0, α = 1/(m+M). The simulation step is set to
0.1 and we use linear interpolation for simplicity.

We used the standard features for this benchmark problem; a set of radial basis functions ar-
ranged in a grid over the 2-dimensional state space with centersµi and a constant term required by
Assumption 1. The features for a states= (θ, θ̇) are defined as:

(

1,exp−
‖s−µ1‖

2
2

2
,exp−

‖s−µ2‖
2
2

2
, . . .

)

.

We considered 100 centers for radial basis functions arranged in a 10by 10 grid forθ∈ [−π/2,π/2]
andθ̇ ∈ [−5,5].

We usedL1 norm regularization to apply the sampling bounds and to compare the approach with
regularized approximate linear programming. Assuming thatφ0 represents the constant feature, the
set of representable value functions is defined as:

Ṽ =

{

100

∑
i=0

φixi

100

∑
i=1

|xi | ≤ ψ

}

.

Note that the constant feature is not included in the regularization. The regularization bound was
set apriori toψ = 100. Subsequent tests showed that ABP performed almost identically with the
regularization bound for valuesψ ∈ [50,200].

Transition samples were collected in advance—using the same procedure asLSPI—from ran-
dom episodes, starting in randomly perturbed states very close to the equilibrium state(0,0) and

3060

ROBUST APPROXIMATE BILINEAR PROGRAMMING

Figure 5: Policy loss as a function of the number of samples.

following a random policy. The average length of such episodes was about 6 steps. We computed
the transitions for each sampled state and all the actions by sampling each transition 20 times.

We compare the solution quality to regularized approximate linear programming (RALP), which
has been show to perform well on a range of benchmarks (Petrik et al., 2010). We evaluated only
the formulation that minimizes the robust objective. The mixed integer linear program formulation
for ABP was optimized using CPLEX 12.1. We set the time cutoff to be 60s. In thistime interval,
most solutions were computed to about 10% optimality gap.

Figure 5 compares the expected policy loss of ABP and RALP on the invertedpendulum bench-
mark as a function of the number of state transitions sampled. In every iteration, both ABP and
RALP were run with the same samples. The policy loss was evaluated on 50 episodes, each at most
50 steps long. The performance of the optimal policy was assumed to be 0 andthe policy loss of 0
essentially corresponds to balancing the pole for 2500 steps.

The experimental results on the inverted pendulum demonstrate that ABP may significantly out-
perform RALP. Both RALP and ABP have a large sampling error when the number of samples is
small. This could be addressed by appropriately setting the regularization bound as our sampling
bounds indicate; we kept the regularization bound fixed for all sample counts for the sake of sim-
plicity. With a larger number of samples, ABP significantly outperforms RALP, which significantly
outperforms LSPI for similar features (Petrik et al., 2010).

9. Conclusion and Future Work

We propose and analyze approximate bilinear programming, a new value-function approximation
method, which provably minimizes bounds on policy loss. ABP returns theoptimal approximate
value function with respect to the Bellman residual bounds, despite being formulated with regard to
transitive-feasible value functions. We also show that there is no asymptotically simpler formula-
tion, since finding the closest value function and solving a bilinear programare both NP-complete
problems. Finally, the formulation leads to the development of OAPI, a new convergent form of
API which monotonically improves the objective value function.

While we only discuss simple solvers for ABP, a deeper study of bilinear solvers may lead to
more efficient optimal solution methods. ABPs have a small number of essentialvariables (that

3061

PETRIK AND ZILBERSTEIN

determine the value function) and a large number of constraints, which can be leveraged by some
solvers (Petrik and Zilberstein, 2007). In addition, theL∞ error bound provides good theoretical
guarantees, but it may be too conservative in practice; a similar formulation based onL2 norm
minimization may be more practical.

Note that, as for example LSPI, approximate bilinear programming is especially applicable to
MDPs with discrete (and small) action spaces. This requirement is limiting in solvingmany resource
management problems in which the resource is a continuous variable. While it isalways possible to
discretize the action space, this is not feasible when the action space is multidimensional. Therefore,
extending these methods to problems with continuous action spaces is an important issue that needs
to be addressed in future work.

We believe that the proposed formulation will help deepen the understandingof value func-
tion approximation and the characteristics of existing solution methods, and potentially lead to the
development of more robust and more widely-applicable reinforcement learning algorithms.

Acknowledgments

This work was supported by the Air Force Office of Scientific Research under Grant No. FA9550-
08-1-0171. We also thank the anonymous reviewers for their comments thathelped to improve the
paper significantly.

References

Pieter Abbeel, Varun Ganapathi, and Andrew Y. Ng. Learning vehiculardynamics, with application
to modeling helicopters. InAdvances in Neural Information Processing Systems, pages 1–8,
2006.

Daniel Adelman. A price-directed approach to stochastic inventory/routing.Operations Research,
52:499–514, 2004.

Richard Bellman.Dynamic Programming. Princeton University Press, 1957.

Kristin P. Bennett and O. L. Mangasarian. Bilinear separation of two sets inn-space.Computation
Optimization and Applications, 2, 1993.

Dimitri P. Bertsekas and Sergey Ioffe. Temporal differences-basedpolicy iteration and applications
in neuro-dynamic programming. Technical Report LIDS-P-2349, LIDS, 1997.

Dimitri P. Bertsekas and John N. Tsitsiklis.Neuro-Dynamic Programming. Athena Scientific, 1996.

Alberto Carpara and Michele Monaci. Bidimensional packing by bilinear programming. Mathe-
matical Programming Series A, 118:75–108, 2009.

Daniela P. de Farias.The Linear Programming Approach to Approximate Dynamic Programming:
Theory and Application. PhD thesis, Stanford University, 2002.

Daniela P. de Farias and Ben van Roy. The linear programming approach toapproximate dynamic
programming.Operations Research, 51:850–856, 2003.

3062

ROBUST APPROXIMATE BILINEAR PROGRAMMING

Daniela P. de Farias and Benjamin van Roy. On constraint sampling in the linearprogramming
approach to approximate dynamic programming.Mathematics of Operations Research, 29(3):
462–478, 2004.

Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution algo-
rithms for factored MDPs.Journal of Artificial Intelligence Research, 19:399–468, 2003.

Reiner Horst and Hoang Tuy.Global optimization: Deterministic approaches. Springer, 1996.

Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration.Journal of Machine Learn-
ing Research, 4:1107–1149, 2003.

Olvi L. Mangasarian. The linear complementarity problem as a separable bilinear program.Journal
of Global Optimization, 12:1–7, 1995.

Remi Munos. Error bounds for approximate policy iteration. InInternational Conference on Ma-
chine Learning, pages 560–567, 2003.

Marek Petrik.Optimization-based Approximate Dynamic Programming. PhD thesis, University of
Massachusetts Amherst, 2010.

Marek Petrik and Shlomo Zilberstein. Anytime coordination using separable bilinear programs. In
Conference on Artificial Intelligence, pages 750–755, 2007.

Marek Petrik and Shlomo Zilberstein. Constraint relaxation in approximate linear programs. In
International Conference on Machine Learning, pages 809–816, 2009.

Marek Petrik, Gavin Taylor, Ron Parr, and Shlomo Zilberstein. Feature selection using regulariza-
tion in approximate linear programs for Markov decision processes. InInternational Conference
on Machine Learning, pages 871–878, 2010.

Warren B. Powell.Approximate Dynamic Programming. Wiley-Interscience, 2007.

Martin L. Puterman.Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., 2005.

Kenneth O. Stanley and Risto Miikkulainen. Competitive coevolution through evolutionary com-
plexification.Journal of Artificial Intelligence Research, 21:63–100, 2004.

Richard S. Sutton and Andrew Barto.Reinforcement Learning. MIT Press, 1998.

Istvan Szita and Andras Lorincz. Learning Tetris using the noisy cross-entropy method.Neural
Computation, 18(12):2936–2941, 2006.

Hua O. Wang, Kazuo Tanaka, and Meichael F. Griffin. An approach tofuzzy control of nonlinear
systems: Stability and design issues.IEEE Transactions on Fuzzy Systems, 4:14–23, 1996.

Ronald J. Williams and Leemon C. Baird. Tight performance bounds on greedy policies based on
imperfect value functions. InYale Workshop on Adaptive and Learning Systems, 1994.

3063

