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Abstract

We provide consistent random algorithms for sequential decision under partial monitoring, when
the decision maker does not observe the outcomes but receives instead random feedback signals.
Those algorithms have no internal regret in the sense that, on the set of stages where the decision
maker chose his action according to a given law, the average payoff could not have been improved
in average by using any other fixed law.

They are based on a generalization of calibration, no longerdefined in terms of a Voronoı̈
diagram but instead of a Laguerre diagram (a more general concept). This allows us to bound, for
the first time in this general framework, the expected average internal, as well as the usual external,
regret at stagen by O(n−1/3), which is known to be optimal.

Keywords: repeated games, on-line learning, regret, partial monitoring, calibration, Voronöı and
Laguerre diagrams

1. Introduction

Hannan (1957) introduced the notion of regret in repeated games: a player (that will be referred as
a decision maker or also a forecaster) has no external regret if, asymptotically, his average payoff
could not have been greater if he had known, before the beginning of the game, the empirical distri-
bution of moves of the other player. Blackwell (1956b) showed that the existence of suchexternally
consistentstrategies, first proved by Hannan (1957), is a consequence of his approachability theo-
rem. A generalization of this result and a more precise notion of regret aredue to Foster and Vohra
(1997) and Fudenberg and Levine (1999): there exist internally consistent strategies, that is, such
that for any of his action, the decision maker has no external regret on the set of stages where he ac-
tually chose this specific action. Hart and Mas-Colell (2000) also used Blackwell’s approachability
theorem to construct explicit algorithms that bound the internal (and therefore the external) regret
at stagen by O

(
n−1/2

)
.

Some of those results have been extended to the partial monitoring framework, that is, where the
decision maker receives at each stage a random signal, whose law might depend on his unobserved
payoff. Rustichini (1999) defined and proved the existence of externally consistent strategies, that
is, such that the average payoff of the decision maker could not have been asymptotically greater
if he had known, before the beginning of the game, the empirical distribution of signals. Actually,
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the relevant information is a vector of probability distributions, one for eachaction of the decision
maker, that is calleda flag.

Some algorithms bounding optimally the expected regret byO
(
n−1/3

)
have been exhibited un-

der some strong assumptions on the signalling structure, see Cesa-Bianchiand Lugosi (2006), The-
orem 6.7 for the optimality of this bound. For example, Jaksch et al. (2010) considered the Markov
decision process framework, Cesa-Bianchi et al. (2005) assumed that payoffs can be deduced from
flags and Lugosi et al. (2008) that feedbacks are deterministic (along with the fact that the worst
compatible payoff is linear with respect to the flag). When no such assumptionis made, Lugosi
et al. (2008) provided an algorithm (based on the exponential weight algorithm) that bounds regret
by O

(
n−1/5

)
.

In this framework, internal regret was defined by Lehrer and Solan (2007); stages are no longer
distinguished as a function of the action chosen by the decision maker (as in the full monitoring
case) but as a function of its law. Indeed, the evaluation of the payoff (usually calledworst case) is
not linear with respect to the flag. So a best response (in a sense to be defined) to a given flag might
consist only in a mixed action (i.e., a probability distribution over the set of actions). Lehrer and
Solan (2007) also proved the existence and constructed internally consistent strategies, using the
characterization of approachable convex sets due to Blackwell (1956a). Perchet (2009) provided an
alternative algorithm, recalled in Section 3.1; this latter is based on calibration, anotion introduced
by Dawid (1982). Roughly speaking, these algorithmsε-discretize arbitrarily the space of flags and
each point of the discretization is called a possible prediction. Then, stage after stage, they predict
what will be the next flag and output abest responseto it. If the sequence of predictions is calibrated
then the average flag, on the set of stages where a specific prediction is made, will be close to this
prediction.

Thanks to the continuity of payoff and signaling functions, both algorithms bound the internal
regret byε+O

(
n−1/2

)
. However the first drawback lies in their computational complexities: at

each stage, the algorithm of Perchet (2009) solves a system of linear equations while the one Lehrer
and Solan (2007), after a projection on a convex set, solves a linear program. In both case, the size
of the linear system or program considered is polynomial inε and exponential in the numbers of
actions and signals. The second drawback is that the constants in the rate of convergence depend
drastically onε.

As a consequence, a classicdoubling trickargument will generate an algorithm with a strongly
sub-optimal rate of convergence, that might even depend on the size of the actions sets, and a
complexity that increases with time.

Our main result is Theorem 24, stated in Section 3.2: it provides the first algorithm that bounds
optimally both internal and external regret byO

(
n−1/3

)
in the general case. It is a modification of

the algorithm of Perchet (2009) that does not use an arbitrary discretization but constructs carefully
a specific one and then computes, stage by stage, the solution of a system oflinear equations of
constant size. In Section 4.1, an other algorithm, based on Blackwell’s approachability as the one of
Lehrer and Solan (2007), with optimal rate and smaller constants is exhibited; itrequires however
to solve, at each stage, a linear program of constant size.

Section 1 is devoted to the simpler framework of full monitoring. We recall definitions of
calibration and regret and we provide a naı̈ve algorithm to construct strategies with internal regret
asymptotically smaller thanε. We show how to modify this algorithm, however in a not efficient
way, in order to bound optimally the regret byO

(
n−1/2

)
. This has to be seen only as a tool that

can be easily adapted with partial monitoring in order to reach the optimal boundof O
(
n−1/3

)
;
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this is done in Section 2. Some extensions (the second algorithm, the so-calledcompact caseand
variants to strengthen the constants) are presented in Section 3. Some technical proofs can be found
in Appendix.

2. Full Monitoring

Consider a two-person gameΓ repeated in discrete time, where at stagen∈N, a decision maker, or
forecaster, (resp. the environment or Nature) chooses an actionin ∈ I (resp. jn ∈ J ). This generates
a payoffρn = ρ(in, jn), whereρ is a mapping fromI × J toR, and a regretrn ∈ R

I defined by:

rn =
[
ρ(i, jn)−ρ(in, jn)

]
i∈I

∈ R
I ,

whereI is the finite cardinality ofI (andJ the one ofJ ). This vector represents the differences
between what the decision maker could have got and what he actually got.

The choices ofin and jn depend on the past observations (also called finite history)hn−1 =
(i1, j1, .., in−1, jn−1) and may be random. Explicitly, the set of finite histories is denoted byH =⋃

n∈N (I × J )n, with (I × J )0 = /0 and a strategyσ of the decision maker is a mapping fromH to
∆(I ), the set of probability distributions overI . Given the historyhn ∈ (I × J )n, σ(hn) ∈ ∆(I ) is
the law ofin+1. A strategyτ of Nature is defined similarly as a function fromH to ∆(J ). A pair of
strategies(σ,τ) generates a probability, denoted byPσ,τ, over(H ,A) whereH = (I × J )N is the
set of infinite histories embedded with the cylinderσ-field.

We extend the payoff mappingρ to ∆(I )×∆(J ) by ρ(x,y) = Ex,y[ρ(i, j)] and for any sequence
a= (am)m∈N and anyn∈ N∗, we denote by ¯an =

1
n ∑n

m=1am the average ofa up to stagen.

Definition 1 (Hannan, 1957) A strategyσ of the forecaster is externally consistent if for every
strategyτ of Nature:

limsup
n→∞

r̄ i
n ≤ 0, ∀i ∈ I , Pσ,τ−as.

In words, a strategyσ is externally consistent if the forecaster could not have had a greater payoff
if he had known, before the beginning of the game, the empirical distribution of actions of Nature.
Indeed, the external consistency ofσ is equivalent to the fact that :

limsup
n→∞

max
x∈∆(I )

ρ(x, j̄n)− ρ̄n ≤ 0, Pσ,τ−as. (1)

Foster and Vohra (1997) (see also Fudenberg and Levine, 1999) defined a more precise notion
of regret. The internal regret of the stagen, denoted byRn ∈ R

I×I , is also generated by the choices
of in and jn and its(i,k)-th coordinate is defined by:

Rik
n =

{
ρ(k, jn)−ρ(i, jn) if i = in

0 otherwise.
.

Stated differently, every row of the matrixRn is null except thein-th which isrn.

Definition 2 (Foster and Vohra, 1997)A strategyσ of the forecaster is internally consistent if for
every strategyτ of Nature:

limsup
n→∞

R̄ik
n ≤ 0 ∀i,k∈ I , Pσ,τ−as.
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We introduce the following notations to defineε-internally consistency. Denote byNn(i) the
set of stages before then-th where the forecaster chose actioni and j̄n(i) ∈ ∆(J ) the empirical
distribution of Nature’s actions on this set. Formally,

Nn(i) = {m∈ {1, ..,n}; im = i} and j̄n(i) =
∑m∈Nn(i) jm
|Nn(i)|

∈ ∆(J ). (2)

A strategy isε-internally consistent if for everyi,k∈ I

limsup
n→∞

|Nn(i)|
n

(
ρ(k, j̄n(i))−ρ(i, j̄n(i))− ε

)
≤ 0, Pσ,τ−as.

If we define, for everyε ≥ 0, theε-best response correspondence by :

BRε(y) =

{
x∈ ∆(I ); ρ(x,y)≥ max

z∈∆(I )
ρ(z,y)− ε

}
,

then a strategy of the decision maker isε-internally consistent if any actioni is either anε-best
response to the empirical distribution of Nature’s actions onNn(i) or the frequency ofi is very
small. We will simply denoteBR0 by BRand call it the best response correspondence.

From now on, given two sequences
{

lm ∈ L ,am ∈ R
d; m∈ N

}
whereL is a finite set, we will

define the subset of integersNn(l) and the average ¯an(l) as in Equation (2), that is:

Nn(l) = {m∈ {1, ..,n}; lm = l} and ān(l) =
∑m∈Nn(l)am

|Nn(l)|
∈ R

d.

Proposition 3 (Foster and Vohra, 1997)For everyε ≥ 0, there existε-internally consistent strate-
gies.

Although the notion of internal regret is a refinement of the notion of external regret (in the
sense that any internally consistent strategy is also externally consistent),Blum and Mansour (2007)
proved that any externally consistent algorithm can be efficiently transformed into an internally
consistent one (actually they obtained an even stronger property calledswap consistency).

Foster and Vohra (1997) and Hart and Mas-Colell (2000) proved directly the existence of 0-
internally consistent strategies using different algorithms (with optimal rates and based respectively
on the Expected Brier Score and Blackwell’s approachability theorem). Insome sense, we merge
these two last proofs in order to provide a new one, given in the following section, that can be
extended quite easily to the partial monitoring framework.

2.1 A Näıve Algorithm, Based on Calibration

The algorithm (a similar idea was used by Foster and Vohra, 1997) that constructs anε-internally
consistent strategy is based on this simple fact: if the forecaster can, stageby stage, foresee the
law of Nature’s next action, sayy∈ ∆(J ), then he just has to choose any best response toy at the
following stage. The continuity ofρ implies that the forecasts need not be extremely precise but
only up to someδ > 0.

Let {y(l); l ∈ L} be aδ-grid of ∆(J ) (i.e., a finite set such that for everyy∈ ∆(J ) there exists
l ∈ L such that‖y−y(l)‖ ≤ δ) andi(l) be a best response toy(l), for everyl ∈ L . Then ifδ is small
enough:

‖y−y(l)‖ ≤ 2δ ⇒ i(l) ∈ BR2ε(y) .
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It is possible to construct agood sequence of forecastsby computing a calibrated strategy (in-
troduced by Dawid, 1982 and recalled in the following Subsection 2.1.1).

2.1.1 CALIBRATION

Consider a two-person repeated gameΓc where, at stagen, Nature chooses the state of the worldjn
in a finite setJ and a decision maker (that will be referred in this setting as a predictor) predicts it
by choosingy(ln) in Y = {y(l); l ∈ L}, a finiteδ-grid of ∆(J ) (its cardinality is denoted byL). As
usual, a behavioral strategyσ of the predictor (resp.τ of Nature) is a mapping from the set of finite
historiesH =

⋃
n∈N (L× J )n to ∆(L) (resp.∆(J )). We also denote byPσ,τ the probability generated

by the pair(σ,τ) over(H ,A) the set of infinite histories embedded with the cylinder topology.

Definition 4 (Dawid, 1982) A strategyσ of the predictor is calibrated (with respect toY = {y(l); l ∈
L}) if for every strategyτ of Nature,Pσ,τ-as:

limsup
n→∞

|Nn(l)|
n

(
‖ j̄n(l)−y(l)‖2−‖ j̄n(l)−y(k)‖2

)
≤ 0, ∀k, l ∈ L ,

where‖ · ‖ is the Euclidian norm ofRJ.

In words, a strategy is calibrated if for everyl ∈ L , the empirical distribution of states, on the set
of stages wherey(l) was predicted, is closer toy(l) than to any othery(k) ( or thefrequency ofl ,
|Nn(l)|/n, is small).

Given a finite grid of∆(J ), the existence of calibrated strategies has been proved by Foster
and Vohra (1998) using either the Expected Brier Score or a minmax theorem (actually this second
argument is acknowledged to Hart). We give here a construction, relatedbut simpler than the one
of Foster and Vohra, due to Sorin (2008).

Proposition 5 (Foster and Vohra, 1998)For any finite gridY of ∆(J ), there exist calibrated strate-
gies with respect toY such that for every strategyτ of Nature:

Eσ,τ

[
max
l ,k∈L

|Nn(l)|
n

(
‖ j̄n(l)−y(l)‖2−‖ j̄n(l)−y(k)‖2

)]
≤ O

(
1√
n

)
.

Proof. Consider the auxiliary game where, at stagen ∈ N, the predictor (resp. Nature) chooses
ln ∈ L (resp. jn ∈ J ) and the vector payoff is the matrixUn ∈ R

L×L where

U lk
n =

{
‖ jn−y(l)‖2−‖ jn−y(k)‖2 if l = ln

0 otherwise.
.

A strategyσ is calibrated with respect toL if Ūn converges to the negative orthant. Indeed for every
l ,k∈ L , the(l ,k)-th coordinate ofŪn is

Ū lk
n =

|Nn(l)|
n

∑m∈Nn(l) ‖ jm−y(l)‖2−‖ jm−y(k)‖2

|Nn(l)|

=
|Nn(l)|

n

(
‖ j̄n(l)−y(l)‖2−‖ j̄n(l)−y(k)‖2

)
.
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Denote byŪ+
n :=

{
max

(
0,Ū lk

n

)}
l ,k∈L =: Ūn−Ū−

n the positive part of̄Un and byλn ∈ ∆(L) any

invariant measure of̄U+
n . We recall thatλ is an invariant measure of a nonnegative matrixU if, for

everyl ∈ L ,

∑
k∈L

λ(k)Ukl = λ(l) ∑
k∈L

U lk .

Its existence is a consequence of Perron-Frobenius Theorem, see, for example, Seneta (1981).
Define the strategyσ of the predictor inductively as follows. Choose arbitrarilyσ( /0), the law

of the first action and at stagen+1, play accordingly to any invariant measure ofŪ+
n . We claim

that this strategy is an approachability strategy of the negative orthant ofR
L×L because it satisfies

Blackwell’s (1956a) sufficient condition:

∀n∈ N,〈Ūn−Ū−
n ,Eλn

[Un+1| jn+1]−Ū−
n 〉 ≤ 0.

Indeed, for every possiblejn+1 ∈ J :

〈Ū+
n ,Eλn

[Un+1| jn+1]〉= 0= 〈Ū+
n ,Ū−

n 〉,

where the second equality follows from the definition of positive and negative parts.
Consider the first equality. The(l ,k)-th coordinate of the matrixEλn

[Un+1| jn+1] is

λn(l)
(
‖ jn+1−y(l)‖2−‖ jn+1−y(k)‖2

)
, therefore the coefficient of‖ jn+1−y(l)‖2 in the first term

is λn(l)∑k∈L (Ū
+
n )

lk −∑k∈L λn(k)(Ū+
n )

kl. This equals 0 sinceλn is an invariant measure of̄U+
n .

Blackwell’s (1956a) result also implies thatEσ,τ [‖Ū+
n ‖]≤ 2Mnn−1/2 for any strategyτ of Nature

whereM2
n = supm≤nEσ,τ

[
‖Um‖2

]
= 4L. �

Interestingly, the strategyσ we constructed in this proof is actually internally consistent in the
game with action spacesL andJ and payoffs defined byρ(l , j) =−‖ j −y(l)‖2.

Corollary 6 For any finite gridY of ∆(J ), there existsσ, a calibrated strategy with respect toY ,
such that for every strategyτ of Nature, withPσ,τ probability at least1−δ:

max
l ,k∈L

|Nn(l)|
n

(
‖ j̄n(l)−y(l)‖2−‖ j̄n(l)−y(k)‖2

)
≤ 2Mn√

n
+Θn ,

where Θn = min

{
vn√

n

√
2ln

(
L2

δ

)
+

2
3

Kn

n
ln

(
L2

δ

)
,

Kn√
n

√
2ln

(
L2

δ

)}
;

Mn = sup
m≤n

√
Eσ,τ

[
‖Um‖2

]
≤ 3

√
L;

v2
n = sup

m≤n
sup

l ,k∈L
Eσ,τ

[∣∣∣U lk
n −Eσ,τ

[
U lk

n

]∣∣∣
2
]
≤ 3;

Kn = sup
m≤n

sup
l ,k∈L

∣∣∣U lk
n −Eσ,τ

[
U lk

n

]∣∣∣≤ 3.

Proof. Proposition 5 implies thatEσ,τ [Ūn]≤ 2Mnn−1/2. Hoeffding-Azuma’s inequality (see Lemma
28 below in Section 4.3.1) implies that with probability at least 1−δ :

Ū lk
n −Eσ,τ

[
Ū lk

n

]
≤ Kn√

n

√
2ln

(
1
δ

)
.
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Freedman’s inequality (an analogue of Bernstein’s inequality for martingale), see Freedman (1975,
Proposition 2.1) or Cesa-Bianchi and Lugosi (2006, Lemma A.8), implies that with probability at
least 1−δ :

Ū lk
n −Eσ,τ

[
Ū lk

n

]
≤ vn√

n

√
2ln

(
1
δ

)
+

2
3

Kn

n
ln

(
1
δ

)
.

The result is a consequence of these two inequalities and of Proposition 5. �

The definition ofΘn as a minimum (and the use of Freedman’s inequality) will be useful when
we will refer to this corollary in the subsequent sections. Obviously, in the current framework,

Θn ≤ 3√
n

√
2ln
(

L2

δ

)
.

2.1.2 BACK TO THE NAÏVE ALGORITHM

Let us now go back to the construction ofε-consistent strategies inΓ. Computeσ, a calibrated
strategy with respect to aδ-grid Y = {y(l); l ∈ L} of ∆(J ) in an abstract calibration gameΓc.
Whenever the decision maker (seen as a predictor) should choose the action l in Γc, then he (seen
as a forecaster) choosesi(l) ∈ BR(y(l)) in the original gameΓ. We claim that this defines a strategy
σε which is 2ε-internally consistent.

Proposition 7 (Foster and Vohra, 1997)For everyε > 0, the strategyσε described above is2ε-
internally consistent.

Proof. By definition of a calibrated strategy, for everyη > 0, there exists with probability 1, an
integerN ∈ N such that for everyl ,k∈ L and for everyn≥ N :

|Nn(l)|
n

(
‖ j̄n(l)−y(l)‖2−‖ j̄n(l)−y(k)‖2

)
≤ η .

Since{y(k); k ∈ L} is aδ-grid of ∆(J ), for everyl ∈ L and everyn∈ N, there existsk ∈ L such
that‖ j̄n(l)−y(k)‖2 ≤ δ2, hence‖ j̄n(l)−y(l)‖2 ≤ δ2+η n

|Nn(l)| . Therefore, sincei(l) ∈ BR(y(l)):

|Nn(l)|
n

≥ η
δ2 ⇒‖ j̄n(l)−y(l)‖2 ≤ 2δ2 ⇒ ρ(k, j̄n(l))−ρ(i(l), j̄n(l))≤ 2ε, ∀k∈ I ,

for everyl ∈ L andn≥ N. The(i,k)-th coordinate ofR̄n satisfies:

|Nn(i)|
n

(
R̄ik

n −2ε
)

≤ 1
n ∑

m∈Nn(i)

(
ρ(k, jm)−ρ(i, jm)−2ε

)

=
1
n ∑

l :i(l)=i
∑

m∈Nn(l)

(
ρ(k, jm)−ρ(i, jm)−2ε

)

= ∑
l :i(l)=i

|Nn(l)|
n

(
ρ(k, j̄n(l))−ρ(i(l), j̄n(l))−2ε

)
.

Recall that either|Nn(l)|
n ≥ η

δ2 and ρ(k, j̄n(i))− ρ(i(l), j̄n(l))− 2ε ≤ 0, or |Nn(l)|
n < η

δ2 . Sinceρ is
bounded (byMρ > 0), then :

|Nn(i)|
n

(
R̄ik

n −2ε
)
≤ η

2MρL

δ2 , ∀i ∈ I , ∀k∈ I , ∀n≥ N ,
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which implies thatσ is 2ε-internally consistent. �

Remark 8 This näıve algorithm only achievesε-consistency and Proposition 5 implies that

Eσ,τ

[
max
i,k∈I

(
R̄ik

n − ε
)]

≤ O

(
1√
n

)
.

The constants depend drastically on L, which is in the current framework inthe order ofεJ, therefore
it is not possible to obtain 0-internally consistency at the same rate with a classic doubling trick
argument, that is, use a2−k-internally consistent strategy on Nk stages, then switch to a2−(k+1)-
internally consistent strategy, and so on (see Sorin, 1990, Proposition 3.2, page 56).

Moreover, since this algorithm is based on calibration, it computes at eachstage an invari-
ant measure of a non-negative matrix; this can be done, using Gaussianelimination, with O

(
L3
)

operations, thus this algorithm is far from being efficient (since its computational complexity is
polynomial inε and exponential in J). There exist0-internally consistent algorithms, see, for exam-
ple, the reduction of Blum and Mansour (2007), that do not have this exponential dependency in the
complexity or in the constants.

On the bright side, this algorithm can be modified to obtain 0-consistency at optimal rate;
obviously, it will still not be efficient with full monitoring (see Section 2.3). However, it has to be
understood as a tool that can be easily adapted in order to exhibit, in the partial monitoring case,
an optimal internal consistent algorithm (see Section 3.2). And in that last framework, it is not clear
that we can remove the dependency on L (especially for the internal regret).

2.2 Calibration and Laguerre Diagram

Given a finite subset of Voronoı̈ sites{z(l) ∈ R
d; l ∈ L}, the l -th Voronöı cell V(l), or the cell

associated toz(l), is the set of points closer toz(l) than to any otherz(k):

V(l) =
{

Z ∈ R
d; ‖Z−z(l)‖2 ≤ ‖Z−z(k)‖2 , ∀k∈ L

}
,

where‖ · ‖ is the Euclidian norm ofRd. EachV(l) is a polyhedron (as the intersection of a finite
number of half-spaces) and{V(l); l ∈ L} is a covering ofRd. A calibrated strategy with respect to
{z(l); l ∈ L} has the property that for everyl ∈ L , the frequency ofl goes to zero, or the empirical
distribution of states onNn(l), converges toV(l).

The näıve algorithm uses the Voronoı̈ diagram associated to an arbitrary grid of∆(J ) and assigns
to every small cell anε-best reply to every point of it; this is possible by continuity ofρ. A calibrated
strategy ensures that̄jn(l) converges toV(l) (or the frequency ofl is small), thus choosingi(l) on
Nn(l) was indeed aε-best response tōjn(l). With this approach, we cannot construct immediately
0-internally consistent strategy. Indeed, this would require that for every l ∈ L there exists a 0-best
responsei(l) to every elementy in V(l). However, there is no reason for them to share a common
best response because{z(l); l ∈ L} is chosen arbitrarily.

On the other hand, consider the simple game calledmatching pennies. Both players have two
actionHeads andTails, so∆(J ) = ∆(I ) = [0,1], seen as the probability of choosingT. The payoff
is 1 if both players choose the same action and -1 otherwise. ActionH (resp.T) is a best response
for Player 1 to anyy in [0,1/2] (resp. in[1/2,1]). These two segments are exactly the cells of the
Voronöı diagram associated to{y(1) = 1/4,y(2) = 3/4}, therefore, performing a calibrated strategy
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with respect to{y(1),y(2)} and playingH (resp.T) on the stages of type 1 (resp. 2) induces a 0-
internally consistent strategy of Player 1.

This idea can be generalized to any game. Indeed, by Lemma 10 stated below,∆(J ) can be
decomposed into polytopial best-response areas (a polytope is the convex hull of a finite number of
points, its vertices). Given such a polytopial decomposition, one can find afiner Voronöı diagram
(i.e., any best-response area is an union of Voronoı̈ cells) and finally use a calibrated strategy to
ensure convergence with respect to this diagram.

Although the construction of such a diagram is quite simple inR, difficulties arise in higher
dimension, even inR2. More importantly, the number of Voronoı̈ sites can depend not only on
the number of defining hyperplanes but also on the angles between them (thus being arbitrarily
large even with a few hyperplanes). On the other hand, the description ofa Laguerre diagram (this
concept generalizes Voronoı̈ diagrams) that refines a polytopial decomposition is quite simple and
is described in Proposition 11 below. For this reason, we will consider from now on this kind of
diagram (sometimes also called Power diagram) .

Given a subset of Laguerre sites{z(l) ∈ R
d; l ∈ L} and weights{ω(l) ∈ R; l ∈ L}, the l -th

Laguerre cellP(l) is defined by:

P(l) =
{

Z ∈ R
d; ‖Z−z(l)‖2−ω(l)≤ ‖Z−z(k)‖2−ω(k), ∀k∈ L

}
,

where‖ · ‖ is the Euclidian norm ofRd. EachP(l) is a polyhedron andP = {P(l); l ∈ L} is a
covering ofRd.

Definition 9 A coveringK = {K i ; i ∈ I} of a polytope K with non-empty interior is a polytopial
complex of K if for every i, j in the finite setI , Ki is a polytope with non-empty interior and the
polytope Ki ∩K j has empty interior.

This definition extends naturally to a polytopeK with empty interior, if we consider the affine
subspace generated byK.

Lemma 10 There exists a subsetI ′ ⊂ I such that{Bi ; i ∈ I ′} is a polytopial complex of∆(J ),
where Bi is the i-th best response area defined by

Bi = {y∈ ∆(J ); i ∈ BR(y)}= BR−1(i) .

Proof. For anyy∈ ∆(J ), ρ(·,y) is linear on∆(I ) thus it attains its maximum onI and
⋃

i∈I Bi =
∆(J ). Without loss of generality, we can assume that eachBi is non-empty, otherwise we drop the
index i. For everyi,k ∈ I , ρ(i, ·)−ρ(k, ·) is linear on∆(J ) thereforeBi is a polytope; it is indeed
defined by

Bi = {y∈ ∆(J ); ρ(i,y)≥ ρ(k,y), ∀k∈ I}
=

⋂

k∈I
{y∈ R

J; ρ(i,y)−ρ(k,y)≥ 0}∩∆(J ),

so it is the intersection of a finite number of half-spaces and the polytope∆(J ).
Moreover ifBik

0 , the interior ofBi ∩Bk, is non-empty thenρ(i, ·) equalsρ(k, ·) on the subspace
generated byBik

0 and therefore on∆(J ); consequentlyBi = Bk. Denote byI ′ any subset ofI such
that for everyi ∈ I , there exists exactly onei′ ∈ I ′ such thatBi = Bi′ 6= /0, then{Bi ; i ∈ I ′} is a
polytopial complex of∆(J ). �
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Proposition 11 LetK = {K i ; i ∈ I} be a polytopial complex of a polytope K⊂ R
d. Then there

exists{z(l)∈R
d, ω(l)∈R; l ∈L}, a finite set of Laguerre sites and weights, such that the Laguerre

diagramP = {P(l); l ∈ L} refinesK , that is, every Ki is a finite union of cells.

Proof. LetK = {K i ; i ∈ I} be a polytopial complex ofK ⊂R
d. EachK i is a polytope, thus defined

by a finite number of hyperplanes. Denote byH = {Ht ; t ∈ T } the set of all defining hyperplanes
(the finite cardinality ofT is denoted byT) andK̂ = {K̂ l ; l ∈ L} the finest decomposition ofRd

induced byH (usually called arrangement of hyperplanes) which by definition refinesK . Theorem
3 and Corollary 1 of Aurenhammer (1987) imply thatK̂ is the Laguerre diagram associated to some
{z(l), ω(l); l ∈ L} whose exact computation requires the following notation:

i) for everyt ∈ T , let ct ∈ R
d andbt ∈ R (which can, without loss of generality, be assumed to

be non zero) such that

Ht =
{

X ∈ R
d; 〈X,ct〉= bt

}
.

ii) For every l ∈ L and t ∈ T , σt(l) = 1 if the origin ofRd and K̂ l are in the same halfspace
defined byHt andσt(l) =−1 otherwise.

iii) For every l ∈ L , we define:

z(l) =
∑t∈T σt(l)ct

T
and ω(l) = ‖z(l)‖2+2

∑t∈T σt(l)bt

T
.

Note that one can add the same constant to every weightω(l). �

Buck (1943) proved that the number of cells defined byT hyperplanes inRd is bounded by
∑d

k=0

(T
k

)
=: φ(T,d), where

(T
k

)
is the binomial coefficient,T choosek. Moreover,T is smaller than

I(I −1)/2 (in the case where eachK i has a non-empty intersection with every other polytope), so

L ≤ φ
(

I2

2 ,d
)

.

If d ≥ n, thenφ(n,d) = 2n. Pascal’s rule and a simple induction imply that, for everyn,d ∈ N,
φ(n,d)≤ (n+1)d. Finally, for anyn≥ 2d, by noticing that

(n
d

)
+
( n

d−1

)
+ ..+

(n
0

)
(n

d

) ≤
d

∑
m=0

(
d

n−d+1

)m

≤
∞

∑
m=0

(
d

n−d+1

)m

=
n−d+1
n−2d+1

≤ 1+d ,

we can conclude thatφ(n,d)≤ (1+d)
(n

d

)
≤ (1+d)nd

d! .

Lemma 12 LetP = {P(l); l ∈ L} be a Laguerre diagram associated to the set of sites and weights
{z(l) ∈ R

d, ω(l) ∈ R; l ∈ L}. Then, there exists a positive constant MP > 0 such that for every
Z ∈ R

d if
‖Z−z(l)‖2−ω(l)≤ ‖Z−z(k)‖2−ω(k)+ ε, ∀l ,k∈ L (3)

then d(Z,P(l)) is smaller than MPε.

The proof can be found in Appendix A.1; the constantMP depends on the Laguerre diagram, and
more precisely on the inner products〈ct ,ct ′〉, for everyt, t ′ ∈ T .
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2.3 Optimal Algorithm with Full Monitoring

We reformulate Proposition 5 and Corollary 6 in terms of Laguerre diagram.

Theorem 13 For any set of sites and weights{y(l) ∈ R
J, ω(l) ∈ R; l ∈ L} there exists a strategy

σ of the predictor such that for every strategyτ of Nature:

Eσ,τ

[∥∥∥(Ūω,n)
+
∥∥∥
]
≤ O

(
1√
n

)
whereUω,n is defined by :

U lk
ω,n =

{
[‖ jn−y(l)‖2−ω(l)]− [‖ jn−y(k)‖2−ω(k)] if l = ln
0 otherwise

.

Corollary 14 For any set of sites and weights{y(l) ∈ R
J, ω(l) ∈ R; l ∈ L}, there exists a strategy

σ of the predictor such that, for every strategyτ of Nature, withPσ,τ probability at least1−δ:

max
l ,k∈L

|Nn(l)|
n

([
‖ j̄n(l)−y(l)‖2−ω(l)

]
−
[
‖ j̄n(l)−y(k)‖2−ω(k)

])
≤ 2Mn√

n
+Θn

whereMn = sup
m≤n

√
Eσ,τ

[
‖Uω,m‖2

]
≤ 4

√
L‖(b,c)‖∞ ;

Θn = min

{
vn√

n

√
2ln

(
L2

δ

)
+

2
3

Kn

n
ln

(
L2

δ

)
,

Kn√
n

√
2ln

(
L2

δ

)}
;

v2
n = sup

m≤n
sup

l ,k∈L
Eσ,τ

[∣∣∣U lk
ω,m−Eσ,τ

[
U lk

ω,m

]∣∣∣
2
]
≤ 4‖(b,c)‖2

∞ ;

Kn = sup
m≤n

sup
l ,k∈L

∣∣∣U lk
ω,m−Eσ,τ

[
U lk

ω,m

]∣∣∣≤ 4‖(b,c)‖∞ ,

‖(b,c)‖∞ = sup
t∈T

‖ct‖+sup
t∈T

|bt | .

Such a strategy is said to be calibrated with respect to{y(l), ω(l); l ∈ L}.

The proof is identical to the one of Proposition 5 and Corollary 6. We have now the material to
construct our newtool algorithm:

Theorem 15 There exists an internally consistent strategyσ of the forecaster such that for every
strategyτ of Nature and every n∈ N, withPσ,τ probability greater than1−δ:

max
i,k∈I

R̄ik
n ≤ O



√

ln
(

1
δ
)

n


 .

Proof. The existence of a Laguerre Diagram{Y(l); l ∈ L} associated to a finite set{y(l) ∈
R

J, ω(l) ∈ R; l ∈ L} that refines{Bi ; i ∈ I} is implied by Lemma 10 and Proposition 11. So,
for everyl ∈ L , there existsi(l) such thatY(l) ⊂ Bi(l). As in the näıve algorithm, the strategyσ of
the decision maker is constructed through a strategyσ̂ calibrated with respect to{y(l), ω(l); l ∈L}.
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Whenever, accordingly tôσ, the decision maker (seen as a predictor) should playl in Γc, then he
(seen as a forecaster) playsi(l) in Γ.

If we denote bỹjn(l) the projection ofj̄n(l) ontoY(l) then:

R̄ik
n = ∑

l :i(l)=i

|Nn(l)|
n

(
ρ(k, j̄n(l))−ρ(i(l), j̄n(l))

)

≤ ∑
l :i(l)=i

|Nn(l)|
n

([
ρ(k, j̄n(l))−ρ(k, j̃n(l))

]
+

[
ρ(i(l), j̃n(l))−ρ(i(l), j̄n(l))

])

≤ ∑
l :i(l)=i

|Nn(l)|
n

(
2Mρ

∥∥∥ j̃n(l)− j̄n(l)
∥∥∥
)

≤ (2MρMPL)max
l ,k∈L

|Nn(l)|
n

([
‖ j̄n(l)−y(l)‖2−ω(l)

]
−
[
‖ j̄n(l)−y(k)‖2−ω(k)

])

where the second inequality is due to the fact thati(l) ∈ BR( j̃n(l)) and the third to the fact thatρ is
Mρ-Lipschitz. The fourth inequality is a consequence of Lemma 12.

Corollary 14 yields that for every strategyτ of Nature, withPσ,τ probability at least 1−δ:

max
l ,k

Nn(l)
n

([
‖ j̄n(l)−y(l)‖2−ω(l)

]
−
[
‖ j̄n(l)−y(k)‖2−ω(k)

])
≤

8
√

L‖(b,c)‖∞√
n

+
4‖(b,c)‖∞√

n

√
2ln

(
L2

δ

)
,

therefore withΩ0 = 16MρMPL3/2‖(b,c)‖∞ andΩ1 = 8MρMPL1/2‖(b,c)‖∞ one has that for every
strategy of Nature and with probability at least 1−δ:

max
i,k∈I

R̄ik
n = max

i,k∈I
|Nn(i)|

n

(
ρ(k, j̄n(i))−ρ(i, j̄n(i))

)
≤ Ω0√

n
+

Ω1√
n

√
2ln

(
L2

δ

)
.

�

Remark 16 Theorem 15 is already well-known. The construction of this internally consistent strat-
egy relies on Theorem 13, which is implied by the existence of internally consistent strategies...
Moreover, as mentioned before, it is far from being efficient since L, thatenters both in the compu-
tational complexity and in the constant, is polynomial in IJ. There exist efficient algorithms, see, for
example, Foster and Vohra (1997) or Blum and Mansour (2007).

However, the calibration is defined in the space of Nature’s action, wherereal payoffs are ir-
relevant; they are only used to decide which action is associated to each prediction. Therefore the
algorithm does not require that the forecaster observes his real payoffs, as long as he knows what
is the best response to his information (Nature’s action in this case). This is precisely why our
algorithm can be generalized to the partial monitoring framework.

The polytopial decomposition of∆(J ) induced by{bt , ct ; t ∈ T } is exactly the same as the one
induced by{γb(t), γc(t); t ∈ T } for any γ > 0. Thus, by choosingγ small enough,‖(b,c)‖∞ and
therefore the constants in Corollary 14 can be arbitrarily small (i.e., multiplied byanyγ > 0).
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However, these two Laguerre diagrams are associated to the sets of sites and weightsL(1) and
L(γ), whereL(γ) = {γz(l), γω(l)+ γ2‖z(l)‖2− γ‖z(l)‖; l ∈ L}. If L(γ) is used instead ofL(1),
then the constantMP defined in Lemma 12 should be divided byγ. So, as expected, the constants in
the proof of Theorem 15 do not depend onγ. From now on, we will assume that‖(b,c)‖∞ is smaller
than 1.

3. Partial Monitoring

In the partial monitoring framework, the decision maker does not observe Nature’s actions. There is
a finite set of signalsS (of cardinalityS) such that, at stagen the forecaster receives only a random
signalsn ∈ S . Its law iss(in, jn) wheres is a mapping fromI × J to ∆(S), known by the decision
maker.

We define the mappings from ∆(J ) to ∆(S)I by s(y) =
(
Ey [s(i, j)]

)
i∈I

∈ ∆(S)I . Any element

of ∆(S)I is called a flag (it is a vector of probability distributions overS ) and we will denote byF
the range ofs. Given a flagf in F , the decision maker cannot distinguish between any different
mixed actionsy andy′ in ∆(J ) that generatef , that is, such thats(y) = s(y′) = f . Thuss is the
maximal informative mapping about Nature’s action. We denote byfn = s( jn) the (unobserved)
flag of stagen∈N.

Example 1 Label efficient prediction (Cesa-Bianchi and Lugosi, 2006, Example6.8):
Consider the following game. Nature chooses an outcome G or B and the forecaster can either

observe the actual outcome (action o) or choose to not observe it and pick a label g or b. His payoff
is equal to 1 if he chooses the right label and otherwise is equal to 0. Payoffs and laws of signals
are defined by the following matrices (where a, b and c are three differentprobabilities over a finite
given set S).

G B G B
o 0 0 o a b

Payoffs: g 0 1 and signals: g c c
b 1 0 b c c

Action G, whose best response is g, generates the flag(a,c,c) and action B, whose best response is
b, generates the flag(b,c,c). In order to distinguish between those two actions, the forecaster needs
to know s(o,y) although action o is never a best response (but is purely informative).

The worst payoff compatible withx and f ∈ F is defined by:

W(x, f ) = inf
y∈s−1( f )

ρ(x,y),

andW is extended to∆(S)I by W(x, f ) =W (x,ΠF ( f )).
As in the full monitoring case, we define, for everyε ≥ 0, the ε-best response multivalued

mappingBRε : ∆(S)I ⇉ ∆(I ) by :

BRε( f ) =

{
x∈ ∆(I ); W(x, f )≥ sup

z∈∆(I )
W(z, f )− ε

}
.

Given a flagf ∈ ∆(S)I , the functionW(·, f ) may not be linear so the best response of the forecaster
might not contain any element ofI .
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Example 2 Matching pennies in the dark:
Consider the matching pennies game where the forecaster does not observe the coin but al-

ways receives the same signal c: every choice of Nature generates thesame flag(c,c). For every
x ∈ [0,1] = ∆({H,T}) (the probability of playing T), the worst compatible payoff W(x,(c,c)) =
miny∈∆(J) ρ(x,y) is equal to−|1−2x| thus is non-negative only for x= 1/2. Therefore the only best
response of the forecaster is to play1

2H + 1
2T, while actions H and T give the worst payoff of -1.

The definition of external consistency and especially Equation (1) extendnaturally to this frame-
work: a strategy of the decision maker is externally consistent if he could not have improved his
payoff by knowing, before the beginning of the game, the average flag:

Definition 17 (Rustichini, 1999) A strategyσ of the forecaster is externally consistent if for every
strategyτ of Nature:

limsup
n→+∞

max
z∈∆(I )

W(z, f̄n)− ρ̄n ≤ 0, Pσ,τ-as.

The main issue is the definition of internally consistency. In the full monitoring case, the fore-
caster has no internal regret if, for everyi ∈ I , the actioni is a best-response to the empirical
distribution of Nature’s actions, on the set of stages wherei was actually chosen. In the partial mon-
itoring framework, the decision maker’s action should be a best responseto the average flag. Since
it might not belong toI but rather to∆(I ), we will (following Lehrer and Solan, 2007) distinguish
the stages not as a function of the action actually chosen, but as a functionof its law.

We make an extra assumption on the characterization of the forecaster’s strategy: it can be
generated by a finite family of mixed actions{x(l) ∈ ∆(I ); l ∈ L} such that, at stagen ∈ N, the
forecaster chooses a typeln and, given that type, the law of his actionin is x(ln) ∈ ∆(I ).

Denote byNn(l) = {m∈ {1, ..,n}; lm = l} the set of stages before then-th whose type isl .
Roughly speaking, a strategy will beε-internally consistent (with respect to the setL) if, for every
l ∈ L , x(l) is anε-best response tōfn(l), the average flag onNn(l) (or the frequency of the typel ,
|Nn(l)|/n, converges to zero).

The finiteness ofL is required to get rid of strategies that trivially insure that every frequency
converges to zero (for instance by choosing only once every mixed action). The choice of{x(l); l ∈
L} and the description of the strategies are justified more precisely below by Remark 21 in Section
3.2.

Definition 18 (Lehrer and Solan, 2007)For every n∈ N and every l∈ L , the average internal
regret of type l at stage n is

Rn(l) = sup
x∈∆(I )

[
W(x, f̄n(l))− ρ̄n(l)

]
.

A strategyσ of the forecaster is(L ,ε)-internally consistent if for every strategyτ of Nature:

limsup
n→+∞

|Nn(l)|
n

(
Rn(l)− ε

)
≤ 0, ∀l ∈ L , Pσ,τ-as.

In words, a strategy is(L ,ε)-internally consistent if, for everyl ∈ L , the forecaster could not have
had, for sure, a better payoff (of at leastε) if he had known, before the beginning of the game, the
average flag onNn(l) (or the frequency ofl is small).
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3.1 A Näıve Algorithm

Theorem 19 (Lehrer and Solan, 2007)For every ε > 0, there exist(L ,ε)-internally consistent
strategies.

Lehrer and Solan (2007) proved the existence and constructed such strategies and an alternative, yet
close, algorithm has been provided by Perchet (2009). The main ideas behind them are similar to the
full monitoring case so we will quickly describe them. For simplicity, we assume in the following
sketch of the proof, that the decision maker fully observes the sequenceof flags fn = s( jn) ∈ ∆(S)I .

Recall thatW is continuous (Lugosi et al., 2008, Proposition A.1), so for everyε > 0 there exist
two finite familiesG = { f (l)∈ ∆(S)I ; l ∈ L}, aδ-grid of ∆(S)I , andX = {x(l)∈ ∆(I); l ∈ L} such
that if f is δ-close tof (l) andx is δ-close tox(l) thenx belongs toBRε ( f ). A calibrated algorithm
ensures that:

i) f̄n(l) is asymptoticallyδ-close tof (l), because it is closer tof (l) than to every otherf (k);

ii) īn(l) converges tox(l) as soon as|Nn(l)| is big enough, because onNn(l) the choices of action
of the decision maker are independent and identically distributed accordingly to x(l);

iii) ρ̄n(l) converges toρ(x(l), j̄n(l)) which is greater thanW
(

x(l), f̄n(l)
)

becausējn(l) generates

the flag f̄n(l).

Therefore,W
(

x(l), f̄n(l)
)

is close toW
(

x(l), f (l)
)

which is greater thanW
(

z, f (l)
)

for any z∈

∆(I ). As a consequencēρn(l) is asymptotically greater (up to someε > 0) than supzW
(

z, f̄n(l)
)

,

as long as|Nn(l)| is big enough.
The difference between the two algorithm lies in the construction of a calibrated strategy. On

one hand, the algorithm of Lehrer and Solan (2007) reduces to Blackwell’s approachability of some
convex setC ⊂R

LSI; it therefore requires to solve at each stage a linear program of size polynomial
in εSI, after a projection onC . On the other hand, the algorithm of Perchet (2009) is based on the
construction given in Section 2.1.1; it solves at each stage a system of linearequation of size also
polynomial inεSI.

The conclusions of the full monitoring case also apply here: these highly non-efficient algo-
rithms cannot be used directly to construct(L ,0)-internally consistent strategy with optimal rates
since the constants depend drastically onε . We will rather prove that one can define wisely once for
all { f (l), ω(l); l ∈L} and{x(l); l ∈L} (see Proposition 20 and Proposition 11) so thatx(l)∈ ∆(I )
is a 0-best response to any flagf in P(l), the Laguerre cell associated tof (l) andω(l).

The strategy associated with these choices will be(L ,0)-internally consistent, with an optimal
rate of convergence and a computational complexity polynomial inL.

3.2 Optimal Algorithms

As in the full monitoring framework (cf Lemma 10), we define for everyx∈∆(I ) thex-best response
areaBx as the set of flags to whichx is a best response :

Bx =
{

f ∈ ∆(S)I ; x∈ BR( f )
}
= BR−1(x) .

SinceW is continuous, the family{Bx; x∈ ∆(I )} is a covering of∆(S)I . However, one of its finite
subsets can be decomposed into a finite polytopial complex:
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Proposition 20 There exists a finite family X= {x(l) ∈ ∆(I ); l ∈ L} such that the family{
Bx(l); l ∈ L

}
of associated best response area can be further subdivided into a polytopial com-

plex of∆(S)I .

The rather technical proof can be found in Appendix A.2. In this framework and because of the
lack of linearity ofW, anyBx(l) might not be convex nor connected. However, each one of them is
a finite union of polytopes and the family of all those polytopes is a complex of∆(S)I .

Remark 21 As a consequence of Proposition 20, there exists a finite set X⊂ ∆(I ) that contains
a best response to any flag f . In particular, if the decision maker could observe the flag fn before
choosing his action xn then, at every stage, xn would be in X. So in the description of the strategies
of the forecaster, the finite set{x(l); l ∈ L} = X is in fact intrinsic that is, determined by the
description of the payoff and signal functions.

As a consequence of this remark, mentioningL is irrelevant; so we will, from now on, simply
speak ofinternally consistent strategies.

3.2.1 OUTCOME DEPENDENTSIGNALS

In this section, we assume that the laws of the signal received by the decision maker are independent
of his action. Formally, for everyi, i′ ∈ I , the two mappingss(i, ·) ands(i′, ·) are equal. Therefore,
F (the set of realizable flags) can be seen as a polytopial subset of∆(S). Proposition 20 holds in
this framework, hence there exists a finite family{x(l); l ∈ L} such that for any flagf ∈ F , there
is somel ∈ L such thatx(l) is a best-reply tof . Moreover, for a fixedl ∈ L , the set of such flags is
a polytope.

Theorem 22 There exists an internally consistent strategyσ such that for every strategyτ of Nature,
with Pσ,τ-probability at least1−δ:

sup
l∈L

|Nn(l)|
n

Rn(l)≤ O



√

ln
(

1
δ
)

n


 .

Proof. Propositions 11 and 20 imply the existence of two finite families{x(l); l ∈ L} and
{ f (l), ω(l); l ∈ L} such thatx(l) is a best response to anyf in P(l), the Laguerre cell associated
to f (l) andω(l). Assume, for the moment, that for any two differentl andk in L , the probability
measuresx(l) andx(k) are different.

The strategyσ is defined as follows. Compute a strategyσ̂ calibrated with respect to
{ f (l), ω(l); l ∈L}. When the decision maker (seen as a predictor) should choosel ∈L accordingly
to σ̂, then he (seen as a forecaster) plays accordingly tox(l) in the original game. Corollary 14 (with
the assumption that‖(b,c)‖∞ is smaller than 1) implies that withPσ,τ probability at least 1−δ1:

max
l∈L

|Nn(l)|
n

([
‖s̄n(l)− f (l)‖2−ω(l)

]
−
[
‖s̄n(l)− f (k)‖2−ω(k)

])
≤

8
√

L√
n

+
4√
n

√
2ln

(
L2

δ1

)
,
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therefore combined with Lemma 12, this yields that :

max
l∈L

|Nn(l)|
n

∥∥∥s̄n(l)− f̃n(l)
∥∥∥≤ 8MP

√
L√

n
+

4MP√
n

√
2ln

(
L2

δ1

)
, (4)

where f̃n(l) is the projection of ¯sn(l) ontoP(l).
Hoeffding-Azuma’s inequality implies that withPσ,τ probability at least 1−δ2:

max
l∈L

|Nn(l)|
n

∥∥∥∥s̄n(l)− f̄n(l)

∥∥∥∥≤

√√√√2ln
(

2SL
δ2

)

n
(5)

and with probability at least 1−δ3 :

max
l∈L

|Nn(l)|
n

∣∣∣∣ρ̄n(l)−ρ(x(l), j̄n(l))

∣∣∣∣≤ Mρ

√√√√2ln
(

2L
δ3

)

n
. (6)

W is MW-Lipschitz in f (see Lugosi et al., 2008) ands( j̄n(l)) = f̄n(l) therefore:

ρ̄n(l)≥W
(

x(l), f̃n(l)
)
−
∣∣∣ρ̄n(l)−ρ(x(l), j̄n(l))

∣∣∣−MW

∥∥∥ f̄n(l)− f̃n(l)
∥∥∥ (7)

and

max
x∈∆(I )

W
(
x, f̄n(l)

)
≤ max

x∈∆(I )
W
(

x, f̃n(l)
)
+MW

(∥∥∥s̄n(l)− f̄n(l)
∥∥∥+

∥∥∥s̄n(l)− f̃n(l)
∥∥∥
)

≤ W
(

x(l), f̃n(l)
)
+MW

(∥∥∥s̄n(l)− f̄n(l)
∥∥∥+

∥∥∥s̄n(l)− f̃n(l)
∥∥∥
)

(8)

sincex(l) is a best response tõfn(l). Equations (7) and (8) yield

Rn(l)≤ 2MW

∥∥∥s̄n(l)− f̄n(l)
∥∥∥+2MW

∥∥∥s̄n(l)− f̃n(l)
∥∥∥+

∣∣∣ρ̄n(l)−ρ(x(l), j̄n(l))
∣∣∣. (9)

Combining Equations (4), (5), (6) and (9) gives that with probability at least 1− δ, if we define
Ω0 = 16MPMW

√
L, Ω1 =

(
2MW +8MWMP+Mρ

)
andΩ2 = L(L+2S+2):

sup
l∈L

|Nn(l)|
n

Rn(l)≤
Ω0√

n
+

Ω1√
n

√
2ln

(
2Ω2

δ

)

If there existl andk such thatx(l) = x(k), then although the decision maker made two different
predictionsf (l) or f (k), he played accordingly to the same probabilityx(l) = x(k). DefineNn(l ,k)
as the set of stages where the decision maker predicts eitherf (l) or f (k) up to stagen, f̄n(l ,k) as
the average flag on this set,ρ̄n(l ,k) as the average payoff andRn(l ,k) as the regret. SinceW(x, ·) is
convex for everyx∈ ∆(I ), then maxx∈∆(I )W(x, ·) is also convex so

|Nn(l ,k)|
n

max
x∈∆(I )

W(x, f̄n(l ,k))≤
|Nn(l)|

n
max

x∈∆(I )
W(x, f̄n(l))+

|Nn(k)|
n

max
x∈∆(I )

W(x, f̄n(k))
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and − |Nn(l ,k)|
n

ρ̄n(l ,k) =−|Nn(l)|
n

ρ̄n(l)−
|Nn(k)|

n
ρ̄n(k)

so we still have

|Nn(l ,k)|
n

Rn(l ,k)≤ O



√

ln
(

1
δ
)

n


 .

Hence the previous bound holds up to a factorL. �

Remark 23 Lugosi et al. (2008) have constructed an externally consistent strategy, that is, such
that, asymptotically, for any strategyτ of Nature:

ρ̄n ≥ max
z∈∆(I )

W
(
z, f̄n

)
, Pσ,τ−as.

The final argument in the proof of Theorem 22 also implies that an internally consistent strategy is
also externally consistent, hence we can compare bounds between our algorithm.

If the signals are deterministic, Lugosi et al. (2008)’s efficient algorithm has an expected regret
smaller than O

(
n−1/2

)
. However this bound became, with random signals, O

(
n−1/4

)
. Thus our al-

gorithm, along with computing no internal regret, has a better rate of convergence, the optimal one.
Concerning the computational complexity, the true purpose of this algorithmbeing the minimization
of internal regret, it is not efficient to bound external regret.

3.2.2 ACTION-OUTCOME DEPENDANT SIGNALS

In this section, we consider the most general framework and we assume that the laws of the signals
might depend on the decision maker’s actions. Our main result is the following:

Theorem 24 There exists an internally consistent strategyσ such that, for every strategyτ of Na-
ture, withPσ,τ probability at least1−δ:

max
l∈L

|Nn(l)|
n

Rn(l)≤ O

(
1

n1/3

√
ln

(
1
δ

)
+

1

n2/3
ln

(
1
δ

))
.

Proof. The proof is essentially the same as the one of Theorem 22, so we can assume thatx(l) 6= x(k)
for any two differentl andk in L . The only difference is due to the fact that at stagen ∈ N, the
unobserved flagfn has to be estimated, see, for example, Lugosi et al. (2008).

Following Auer et al. (2002/03), we define for everyl ∈ L andn ∈ N, the γ̂n-perturbation of
x(l) by x̂(l ,n) = (1− γ̂n)x(l)+ γ̂nu whereu is the uniform probability overI and(̂γn)n∈N is a non-
negative non-increasing sequence. For everyn∈ N, let

en =

(
1i=in

x̂(ln,n)[in]
(1s=sn)s∈S

)

i∈I
∈
(
R

S)I
,

wherex̂(ln,n)[in] ≥ γn = γ̂n/I > 0 is the weight put bŷx(ln,n) on in. With this notation,en is an
unbiased estimator offn sinceEσ,τ

[
en|hn−1

]
= fn, seen as an element of

(
R

S
)I

.
We define now the strategy of the forecaster. Assume that in an auxiliary gameΓc, a predictor

computes̃σ, a calibrated strategy with respect to{ f (l), ω(l); l ∈L}, but where the state at stagen is
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the estimatoren ∈R
IS. When the decision maker (seen as a predictor) should chooseln accordingly

to σ̃ in Γc, then he (seen as a forecaster) choosesin accordingly tôx(ln) in the original game.
In order to use Corollary 14, we need to boundvn, Mn andKn. In the current framework and

thanks to Proposition 11, one has for everyl ,k∈ L andn∈N:

U l ,k
ω,n = 21l=ln ∑

t∈T

σt(k)−σt(l)
T

(
〈en,ct〉+bt

)
,

so using the fact that‖(b,c)‖2
∞ = 1 and the definition ofen:

sup
l ,k∈L

sup
m≤n

Eσ,τ

[∣∣∣U l ,k
ω,m

∣∣∣
2
]
≤ 16Eσ,τ

[
‖en‖2

]
‖(b,c)‖2

∞ ≤ 16∑
i∈I

x̂(ln,n)[i]
(x̂(ln,n)[i])2 ≤ 16

I
γn

.

As a consequence,Kn ≤ 4 1
γn

, vn ≤ 4
√

I
γn

and Mn ≤ 4
√

LI
γn

. Lemma 12 implies that, withPσ,τ

probability at least(1−δ1), for everyl ∈ L :

|Nn(l)|
n

∥∥∥ēn(l)− f̃n(l)
∥∥∥≤ 8

√
LIMP√γnn

+
8
√

IMP√γnn

√
2ln

(
L2

δ1

)
+

8
3

MP

γnn
ln

(
L2

δ1

)
,

where f̃n(l) is the projection of ¯en(l) ontoP(l).

Following Lugosi et al. (2008), since for everyi ∈ I ands∈ S , Eσ,τ

[
|ei,s

n |2
]
≤ 1/γn, Freedman’s

inequality implies that with probability at least 1−δ2, for everyl ∈ L

|Nn(l)|
n

∥∥∥ēn(l)− f̄n(l)
∥∥∥≤

√
IS

(√
2

1
nγn

ln

(
2LIS

δ2

)
+

2
3nγn

ln

(
2LIS

δ2

))
.

Hoeffding-Azuma’s inequality implies that with probability at least 1−δ3:

max
l∈L

Nn(l)
n

∣∣∣ρ̄n(l)−ρ(x(l), j̄n(l))
∣∣∣≤ Mρ

√
2
n

ln

(
2L
δ3

)
+2Mρ

∑m∈Nn(l) γ̂m

n
,

and by takingγn = n−1/3, one has∑m∈Nn(l) γ̂m ≤ 3I
2 n2/3. As a consequence, for everyl ∈ L , with

probability at least 1−δ:

Nn(l)
n

Rn(l)≤
Ω1

n1/3
+

Ω2

n1/3

√
2ln

(
2Ω5

δ

)
+

Ω3

n1/2

√
2ln

(
2Ω5

δ

)
+

2
3

Ω4

n2/3
ln

(
2Ω5

δ

)

with the constants defined byΩ1 = 16MPMW
√

LI +3MWMρI , Ω2 = 2MW
√

I
(
8MP+

√
S
)
, Ω3 =

Mρ, Ω4 = 2MW(4MP +
√

IS) andΩ5 = L(L+2+2IS). They can be decreased if concentration
inequalities in Hilbert spaces are used (see Section 4.3). �

In the label efficient prediction game defined in Example 1, for every strategy σ of the decision
maker there exists a sequence of outcomes such that the forecaster expected regret is greater than
n−1/3/7, see Cesa-Bianchi et al. (2005, Theorem 5.1). Therefore the rateof n−1/3 of our algorithm
is optimal for both internal and external regret.
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The computational complexity of this internally consistent algorithm is polynomial inL. Thus
it can be seen, in some sense, as an efficient one. A question left open isthe existence of an
algorithm whose computational complexity is polynomial in the minimal number of best-response
areas required to cover∆(S)I , see Proposition 20.

The following Section 4.1 deals with a simpler question and exhibits an internally consistent
algorithm which requires to solve at each stage a linear program of size polynomial in L0, the
minimal number of polytopes on whichBR is constant, instead of a system of linear equations of
sizeL.

4. Concluding Remarks

This section sheds light on some improvements of the computational complexity andconstants of
our algorithm and also on the possibility to remove the assumption thatJ is finite.

4.1 Second Algorithm: Calibration and Polytopial Complex

The algorithms we described are quite easy to run stage by stage since the forecaster only needs
to compute some invariant measures of non-negative matrices. However, they require to construct
the Laguerre diagramP = {P(l); l ∈ L} given the set{bt , ct ; t ∈ T }. And we have shown thatL,
which is a factor both in the complexity of the algorithms and in their rate of convergence, can be
in the order ofTSI hence polynomial inLSI

0 .
This section is devoted to a modification of the algorithm that does not require tocompute a

Laguerre diagram but which is more difficult, stage by stage, to implement. Theonly difference
between the two algorithms is in the definition of calibration.

Let {K(l); l ∈ L0} be a finite polytopial complex of∆(J ). It is defined by two finite families{
ct ∈R

J, bt ∈R; t ∈ T
}

and{T (l)⊂ T ; l ∈ L} such that:

K(l) = {y∈ ∆(J ); 〈y,ct〉 ≤ bt , ∀t ∈ T (l)⊂ T } , ∀l ∈ L0 .

Let us define(ct,l ,bt,l ) = (ct ,bt) if t ∈ T (l) and(ct,l ,bt,l ) = (0,0) otherwise. Then we can rewrite
K(l) = {y∈ ∆(J ); 〈y,ct,l 〉 ≤ bt,l , ∀t ∈ T }.

Definition 25 A strategyσ is calibrated with respect to the complex{K(l); l ∈ L0} if for every
strategyτ of Nature,Pσ,τ-as:

limsup
n→∞

|Nn(l)|
n

(
〈 j̄n(l),ct,l 〉−bt,l

)
≤ 0, ∀t ∈ T ,∀l ∈ L0 .

Theorem 26 There exist calibrated strategies with respect to any finite polytopial complex{K(l); l ∈
L0}.

Proof. Consider the following auxiliary two-person gameΓ′
c, where at stagen ∈ N the predictor

(resp. Nature) choosesln ∈ L0 (resp. jn ∈ J ) which generates the vector payoffUn ∈ R
TL0 defined

by:

U lk
n =

{
〈1 jn= j ,ct,l 〉−bt,l if l = ln

0 otherwise.
.
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Any strategy that approaches the negative orthantΩ− in Γ′
c is calibrated with respect to the complex

{K(l); l ∈ L0}.
Blackwell’s characterization of approachable convex sets (Blackwell, 1956a, Theorem 3) im-

plies that the predictor can approach the convex setΩ− if (and only if) for every mixed action
of Nature in∆(J ), he has an actionx ∈ ∆(L0) such that the expected payoff is inΩ−. Given
yn ∈ ∆(J ), choosingl(yn) ∈ L0, wherel(yn) is the index of the polytope that containsyn, ensures
thatEyn,l(yn)[Un] is in Ω−. Therefore there exist calibrated strategies with respect to any polytopial
complex. �

This modification of the definition of calibration does not change the other part of our algorithms
nor the remaining of the proofs (in particular, to calibrate the sequence of unobserved flags, the fore-
caster must usêγn-perturbations). The constants in the rates of convergence are now smaller since

L0 can be much smaller thanL and inΓ′
c, E[‖Un‖2] is bounded byO

(
T0
γn

)
whereT0 = supl∈L0

T(l)

is the maximum number of hyperplanes defining a polytope of the complex.
The main argument behind this algorithm (i.e., the characterization of approachable convex

sets of Blackwell, 1956a) is quite close, in spirit, to the one of Lehrer and Solan (2007). Note
that however, with our representation, the projection onΩ− can be computed linearly inTL0, so
polynomially inL0. Therefore, it reduces to the construction of an approachability strategy and so,
as shown by Blackwell (1956a), to the resolution, at each stage, of a linear programming of size
polynomial inL0.

4.2 Extension to the Compact Case

We prove in this section that the finiteness ofJ is not required.
Assume that instead of choosingjn at stagen∈N, which generates the flagfn = s( jn) and an

outcome vector
(

ρ(i, jn)
)

i∈I
, Nature chooses directly an outcome vectorOn ∈ [−1,1]I and a flagfn

which belongs tos(On) wheres is a multivalued mapping from[−1,1]I into ∆(S)I . As before, the
decision maker’s payoff isOin

n (the in-th coordinate ofOn) and he receives a signalsn whose law is
f in
n . Strategies of the forecaster and consistency are defined as before.

Theorem 27 If the graph ofs is a polytope, then there exists an internally consistent strategyσ
such that, for every strategyτ of Nature, withPσ,τ probability at least1−δ:

max
l∈L

|Nn(l)|
n

Rn(l)≤ O

(
1

n1/3

√
ln

(
1
δ

)
+

1

n2/3
ln

(
1
δ

))
.

The proof of this result is identical to the one of Theorem 24.
Note that the assumption that the graph ofs is a polytope is fulfilled in the finite dimension case.

The mappings is multivalued since in finite dimension there might exist two different mixed actions
y1,y1 in ∆(J ) that generate the same outcome vector (i.e.,ρ(·,y1) = ρ(·,y2) = O) but different flags
(i.e., f1 = s(y1) 6= s(y2) = f2). Hence we should havef1, f2 ∈ s(O).

4.3 Strengthening of the Constants

We propose two different ideas to strengthen the constants of our algorithm. First, we can use (as
did Lugosi et al., 2008) only one concentration inequality for every coordinate of the vectorUω,n
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instead of one concentration inequality per coordinate. Second, we can implement sparser vector
payoffs (so that its norm decreases) by looking at a slight different definition of calibration.

4.3.1 CONCENTRATION INEQUALITIES IN HILBERT SPACES

The rates of convergence of our algorithms rely mainly on three properties: Blackwell’s approacha-
bility theorem, Hoeffding-Azuma’s and Freedman’s inequalities. These toolsallowed us to study the
convergence of a sequence of vectorsŪ+

n towards 0. Approachability is well defined for sequences
of vectors, however the two concentration inequalities hold only for real valued martingales. To
circumvent this issue, we used in the proofs the fact that if a process

{
Un ∈R

d
}

n∈N is a martin-
gale then, for each coordinate, the process

{
Uk

n ∈R
}

n∈N is a real valued martingale. This does not
use the fact thatUn might be sparse and the use of concentration inequalities in Hilbert space can
sharpen the constant.

Indeed, recall Hoeffding-Azuma’s inequality:

Lemma 28 (Hoeffding, 1963; Azuma, 1967)Let Un be a sequence of martingale differences bounded
by K, that is, for every n∈N, Eσ,τ [Un+1|hn] = 0 and|Un|< K.

Then for every n∈N and everyε > 0:

Pσ,τ (|Ūn| ≥ ε)≤ 2exp

(−nε2

2K2

)
,

which can be expressed as

Pσ,τ

(
|Ūn| ≤ K

√
2
n

ln

(
2
δ

))
≥ 1−δ.

Chen and White (1996) proved an equivalent property for vector martingale inRd.

Lemma 29 (Chen and White, 1996)Let Un be a sequence of martingale differences inR
d bounded

almost-surely by K> 0. Then for every n∈N and for everyε > 0:

Pσ,τ (‖Ūn‖ ≥ ε)≤ 2max

{
1,

√
nε2

2K2

}
exp

(−nε2

2K2

)
≤ 2exp

(
−α

nε2

2K2

)
,

for everyα ≤ 1− 1
2e (which equals approximatively0.81).

Assume that for everyn∈N, ‖Un‖∞ ≤ ‖U‖∞ and‖Un‖2 ≤ ‖U‖2; we can deduce from the use
of only Hoeffding-Azuma’s inequality that:

Pσ,τ

(
max

l ,k

|Nn(l)|
n

∣∣Ū l ,k
n

∣∣≥ ε
)
≤ 2L2exp

( −nε2

2‖U‖2
∞

)
.

However, Chen and White’s result, along with the fact that‖Un‖ ≤ L, implies that:

Pσ,τ

(
max

l ,k

|Nn(l)|
n

∣∣Ū l ,k
n

∣∣≥ ε
)
≤ 2exp

( −nε2

4‖U‖2
2

)

which can reduce the dependency inL. The effects is even more dramatic when estimating the
sequences of flags, sinceen has only positive component (so‖en‖∞ = ‖en‖2).

There also exist variants of Bernstein’s inequality, see, for example, Yurinskii (1976) in Hilbert
spaces that can be used in order to get more precise constants.
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4.3.2 CALIBRATION WITH RESPECT OFNEIGHBORHOODS

Definition 30 Given a finite setY = {y(l) ∈ R
d, ω(l) ∈ R; l ∈ L}, y(k) is a neighbor of y(l) if

k 6= l and the dimension of P(l)∩P(k) is equal to d−1.

We defined a calibrated strategy with respect toY , as a strategyσ such thatj̄n(l) is asymptoti-
cally closer toy(l) than to any othery(k) as soon as the frequency ofl does not go to zero. In fact,
j̄n(l) needs only to be closer toy(l) than to any of its neighbors. So one can constructneighbors-
calibrated strategies by modifying the algorithm given in Proposition 5; the payoff at stagen is now
denoted byU ′

n and is defined by:

(
U ′

n

)lk
=

{
‖ jn−y(l)‖2−‖ jn−y(k)‖2 if l = ln andk is a neighbor ofl

0 otherwise
.

The strategy consisting in choosing an invariant measure of(Ū ′
n)

+ is calibrated and the squared
maximal second order momentM2

n = supm≤nEσ,τ
[
‖Um‖2

]
equals 4N , whereN is the maximal

number of neighbors. This latter can be much smaller than 4, and the gain fromthis modification is
limpid if we considerε-calibration.

Indeed, in order to construct such strategies, we usually take anyε-discretization of∆(J) so that
L=O

(
ε−(J−1)

)
. However, there exists a discretization such thatN = 2−(J−1), which is independent

of ε.
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Appendix A. Proofs of Technical Results

This section is devoted to the proofs of previously mentioned results, that is,Lemma 12 and Propo-
sition 20.

A.1 Proof of Lemma 12

Let l ∈ L be fixed. we denote byC =
{

ct ∈R
d; t ∈ T (l)

}
the finite family of normal vectors to

(d−1)-faces ofP(l) and byB = {bt ∈R; t ∈ T (l)} the family of scalars such that :

P(l) =
{

Z ∈R
d; 〈Z,ct〉 ≤ bt , ∀t ∈ T (l)

}
.

Any points satisfying Equation (3) belongs to

Pε(l) =
{

Z ∈R
d; 〈Z,ct〉 ≤ bt + ε, ∀t ∈ T (l)

}
.

For any vertexv of P(l), there existst1, .., td ∈ T (l) such that

v=
d⋂

k=1

{
Z ∈R

d; 〈Z,ctk〉= btk

}
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and{ct1, ..,ctd} is a basis ofRd. If we denote byvε the point defined by

vε =
d⋂

k=1

{
Z ∈R

d; 〈Z,ctk〉= btk + ε
}

thenPε(l) is included in the convex hull of everyvε.
Equation (3) can be rephrased as: ifx belongs toPε(l) then d(x,P(l)) is smaller thanMPε.

Therefore it is enough to prove this property for everyvε sinced(·,P(l)) is a convex mapping thus
maximized over a polytope on one of its vertices.

With these notations, for everyk ∈ {1, ..,d}, 〈vε − v,ctk〉 = ε and there exists a unique decom-
positionvε − v = ∑d

k=1 αkctk. Define the symmetricd×d Gram matrixQl by Qkk′
l = 〈ctk,ctk′ 〉 and

α = (α1, ..,αd). Then following classical properties hold:

1) ‖vε−v‖2 =αTQl α and there exist a diagonal matrixD= diag(λ1, ..,λd) with 0< λ1 ≤ ..≤ λd

and ad×d matrixP and such thatP−1 = PT andQl = PTDP;

2) Qα = ε = (ε, ..,ε) thereforeα = Q−1
l ε;

3) ‖vε −v‖2 = (Q−1
l ε)TQl (Q

−1
l ε) = εTPTD−1Pε ≤ ε2dλ−1

1 .

Therefore, for anyZ ∈ Pε, and in particular for any point that satisfies Equation (3),‖Z−Πl (Z)‖ ≤
maxv‖vε − v‖ ≤ ε.

√
d
√

λ1
−1

. The result follows from the fact thatL is finite. The constantMP in
Lemma 12 is smaller than the square root of the inverse of the smallest eigenvalue of all Ql times√

d; it depends on the inner products〈ct ,ct ′〉 and on the dimension ofF .

A.2 Proof of Proposition 20

Definition 31 Let K be a polytope. A correspondence B: K ⇉ R
d is polytopial constant, if there

exists{K(l); l ∈ L} a finite polytopial complex of K and{x(l); l ∈ L} such that x(l) ∈ B( f ) for
every f∈ K(l).

Let us now restate Proposition 20:

Proposition 32 BR is polytopial constant.

This theorem is well-known and quite useful in the full monitoring case (see for example the Lemke
and Howson, 1964 algorithm). In thecompact case, Proposition 20 becomes:

Proposition 33 If shas a polytopial graph, then BR is polytopial constant.

The proofs of both propositions rely on polytopial parameterized max-min programs defined in the
next subsection.

A.2.1 CONSTANT SOLUTION OF A POLYTOPIAL PARAMETERIZED MAX -M IN PROGRAM

A Polytopial Parameterized Max-Min Program (PPMP) is defined as follows. LetX andY be two
Euclidian spaces of respective dimensiond1 andd2. Consider the program(Pf ) (depending on a
parameterf that belongs to some polytopeF in R

d3) that is defined by

(Pf ) : max
x∈ X

s.t. Dx≤ d

min
y∈ Y

s.t. Ef y≤ ef

xAy,
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whereA is ad1×d2 matrix,{Ef , ef ; f ∈ F } is a family of matrices and vectors (we do not specify
the sizes the matrices, as long as each inequality makes sense) andD,d are also a fixed matrix and
vector such that the admissible setD = {x∈ X; Dx≤ d} is a polytope. The solution set of(Pf ) is
denoted byB( f )⊂ X and this defines a multivalued mappingB(·) fromF into X .

Theorem 34 Assume that the correspondence S defined by:

S:
F ⇉ Y
f 7→ Sf = {y∈ Y ; Ef y≤ ef }

has a polytopial graphS. Then B: F ⇉ X is polytopial constant.

Figure 1 illustrates ideas of the proof for a simple example.
Proof. Before going into full details, we first recall the following properties:

i) A linear program is minimized on a vertex of the polytopial feasible set (this is actually
implied by the following point);

ii) Rockafellar (1970, Theorem 27.4, page 270): Givenx∈D and f ∈ F , if y minimizesxAyon
Sf then

−xA∈ NCSf (y) ,

whereNCE(y) is the normal cone to the convex setE ⊂R
d aty∈ E defined by :

NCE(y) =
{

p∈R
d; 〈p,z−y〉, ∀z∈ E

}
;

iii) Ziegler (1995, Example 7.3, page 193): IfP is a polytope then the finite family
{NCP(v); v is a vertex ofP} is a polyhedral complex ofRd called a normal fan (i.e., it is
a finite family of polyhedra that coverRd and such that each pair has an intersection with
empty interior);

iv) Billera and Sturmfels (1992, page 530): Since for everyf ∈ F , Sf = Π−1( f ) whereΠ : S⊂
F ×Y →F is the projection with respect to first coordinates, then there exists{K(l); l ∈L},
a polytopial complex ofF such that the normal fan toSf is constant on everyK(l) (this can
alternatively be deduced from the following point);

v) Rambau and Ziegler (1996, Proposition 2.4, page 221): On each of these polytopesK(l), the
mapping f 7→ Sf is linear. In particular, there exists a finite family of affine functionsY(l)
from K(l) to Y such that the vertices ofSf are exactly{y( f ); y(·) ∈Y(l)}.

Points i) and ii) imply that ifxf maximizes(Pf ), then the latter is minimized at some vertex of
Sf denoted byyf , again because of point i). Therefore it can be assumed that−xf A is a vertex of
the polytopeNCSf (yf )∩DA− whereDA− := {−xA; x ∈ D}. ThusB( f ), the solution set to(Pf )
contains at least an element of

X f =
{

x∈D; −xA is a vertex ofDA−∩NCSf (yf ), for some vertexyf of Sf
}
.

By point iii), the normal fan and thereforeX f are constant onK(l). The latter can also be
assumed to be finite by taking a unique representantx∈ X f for every vertices of the intersection of
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the normal fan andDA−. Since the number of different fans is finite, for anyf ∈ F , the solution set
to (Pf ) contains at least an element of the finite setX =

⋃
f∈F X f .

Moreover, for everyx ∈ X:

B−1(x) =

{
f ∈ F ; min

y∈Sf

xAy≥ max
x′∈D

min
y∈Sf

x′Ay

}

=
⋃

l∈L

{
f ∈ K(l); min

y∈Sf

xAy≥ max
x′∈D

min
y∈Sf

x′Ay

}

=
⋃

l∈L

⋂

x′∈X

{
f ∈ K(l); min

y∈Sf

xAy≥ min
y∈Sf

x′Ay

}

=
⋃

l∈L

⋂

x′∈X

⋃

y′(·)∈Y(l)

{
f ∈ K(l); min

y∈Sf

xAy≥ x′Ay′( f )

}

=
⋃

l∈L

⋂

x′∈X

⋃

y′(·)∈Y(l)

⋂

y(·)∈Y(l)

{
f ∈ K(l); xAy( f )≥ x′Ay′( f )

}
,

where, respectively, the second line is a consequence of point iv), the third line of the definition of
X and the fourth and fifth lines of points i) and v).

By point v), the two mappingy(·) andy′(·) are affine onK(l), so each possible set
{

f ∈ K(l); xAy( f )≥ x′Ay′( f )
}

is a polytope as the intersection of an half-space and the polytopeK(l). Since, the intersection of
a union of polytopes remains a union of polytopes, for everyx ∈ X, B−1(x) is a finite union of
polytopes andB is polytopial constant. �

We can now prove simultaneously Propositions 32 and 33:

A.2.2 PROOF OFPROPOSITIONS32 AND 33

Sinces is linear, its graph, denoted byS, is a polytope. Theorem 34 (withD = ∆(I )) implies that
the solution, denoted byB( f ) for every f ∈ F , of the parameterized program

max
x∈∆(I )

min
y∈s−1( f )

ρ(x,y)

is polytopial constant. We denote by{K(l); l ∈L} a corresponding polytopial complex. IfB is con-
stant onK(l), then it is also constant on̂K(l) = Π−1

S (K(l)), which is a finite union of polytopes.�
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