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Abstract

We provide consistent random algorithms for sequentialsétet under partial monitoring, when
the decision maker does not observe the outcomes but redastead random feedback signals.
Those algorithms have no internal regret in the sense thaheset of stages where the decision
maker chose his action according to a given law, the averageffocould not have been improved
in average by using any other fixed law.

They are based on a generalization of calibration, no lodgéned in terms of a Vorofio
diagram but instead of a Laguerre diagram (a more generakpon This allows us to bound, for
the first time in this general framework, the expected awematgrnal, as well as the usual external,
regret at staga by O(n~%/3), which is known to be optimal.

Keywords: repeated games, on-line learning, regret, partial mangorcalibration, Voronband
Laguerre diagrams

1. Introduction

Hannan (1957) introduced the notion of regret in repeated games: ex |flagt will be referred as
a decision maker or also a forecaster) has no external regret if, &stycafly, his average payoff
could not have been greater if he had known, before the beginning gtttne, the empirical distri-
bution of moves of the other player. Blackwell (1956b) showed that ttstemce of suclexternally
consistenstrategies, first proved by Hannan (1957), is a consequence gbrisachability theo-
rem. A generalization of this result and a more precise notion of regrefugréo Foster and Vohra
(1997) and Fudenberg and Levine (1999): there exist internallyistens strategies, that is, such
that for any of his action, the decision maker has no external regreeaetlof stages where he ac-
tually chose this specific action. Hart and Mas-Colell (2000) also usexk®kil's approachability
theorem to construct explicit algorithms that bound the internal (and tiverétie external) regret
at stagen by O (n~%/2).

Some of those results have been extended to the partial monitoring framéwaiik, where the
decision maker receives at each stage a random signal, whose law efginicdon his unobserved
payoff. Rustichini (1999) defined and proved the existence of eaflgroonsistent strategies, that
is, such that the average payoff of the decision maker could not haredsymptotically greater
if he had known, before the beginning of the game, the empirical distribufisignals. Actually,
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the relevant information is a vector of probability distributions, one for esxtion of the decision
maker, that is called flag

Some algorithms bounding optimally the expected regreﬁ)l()l_srl/?’) have been exhibited un-
der some strong assumptions on the signalling structure, see Cesa-Biad¢higosi (2006), The-
orem 6.7 for the optimality of this bound. For example, Jaksch et al. (2@t®jadered the Markov
decision process framework, Cesa-Bianchi et al. (2005) assumtggbyatfs can be deduced from
flags and Lugosi et al. (2008) that feedbacks are deterministic (aldhghve fact that the worst
compatible payoff is linear with respect to the flag). When no such assuniptioade, Lugosi
et al. (2008) provided an algorithm (based on the exponential weighitilgn) that bounds regret
by O (n~1/5).

In this framework, internal regret was defined by Lehrer and Sol@@qg stages are no longer
distinguished as a function of the action chosen by the decision maker (as fialltimonitoring
case) but as a function of its law. Indeed, the evaluation of the paymif(ly calledworst casgis
not linear with respect to the flag. So a best response (in a sense thriszljieo a given flag might
consist only in a mixed action (i.e., a probability distribution over the set of agtidrehrer and
Solan (2007) also proved the existence and constructed internally onistrategies, using the
characterization of approachable convex sets due to Blackwell (L98éechet (2009) provided an
alternative algorithm, recalled in Section 3.1; this latter is based on calibratiantica introduced
by Dawid (1982). Roughly speaking, these algoritrarkscretize arbitrarily the space of flags and
each point of the discretization is called a possible prediction. Then, st@geiage, they predict
what will be the next flag and outputteest respons it. If the sequence of predictions is calibrated
then the average flag, on the set of stages where a specific predictiodds with be close to this
prediction.

Thanks to the continuity of payoff and signaling functions, both algorithmmdhe internal
regret bye + O(n‘l/z). However the first drawback lies in their computational complexities: at
each stage, the algorithm of Perchet (2009) solves a system of linestia@ts while the one Lehrer
and Solan (2007), after a projection on a convex set, solves a linegnapno In both case, the size
of the linear system or program considered is polynomia and exponential in the numbers of
actions and signals. The second drawback is that the constants in thé catesergence depend
drastically ore.

As a consequence, a classieubling trickargument will generate an algorithm with a strongly
sub-optimal rate of convergence, that might even depend on the size afctitons sets, and a
complexity that increases with time.

Our main result is Theorem 24, stated in Section 3.2: it provides the firgitalgathat bounds
optimally both internal and external regret@}(n‘l/e') in the general case. It is a modification of
the algorithm of Perchet (2009) that does not use an arbitrary distietizut constructs carefully
a specific one and then computes, stage by stage, the solution of a sydieeaptquations of
constant size. In Section 4.1, an other algorithm, based on Blackwelfeagability as the one of
Lehrer and Solan (2007), with optimal rate and smaller constants is exhibiteduites however
to solve, at each stage, a linear program of constant size.

Section 1 is devoted to the simpler framework of full monitoring. We recall diefirs of
calibration and regret and we provide awealgorithm to construct strategies with internal regret
asymptotically smaller thaa. We show how to modify this algorithm, however in a not efficient
way, in order to bound optimally the regret W(n*l/z). This has to be seen only as a tool that
can be easily adapted with partial monitoring in order to reach the optimal tm)‘u@c(n‘l/?’);

1894



INTERNAL REGRET WITHPARTIAL MONITORING: CALIBRATION -BASED OPTIMAL ALGORITHMS

this is done in Section 2. Some extensions (the second algorithm, the soaatpdict casand
variants to strengthen the constants) are presented in Section 3. Somedigutoofs can be found
in Appendix.

2. Full Monitoring

Consider a two-person gamerepeated in discrete time, where at stageN, a decision maker, or
forecaster, (resp. the environment or Nature) chooses an égtioh (resp.j, € 7). This generates
a payoffp, = p(in, jn), Wherep is a mapping fron7 x 7 to R, and a regret, € R' defined by:

= [P(i, jn) — P(in, jn) ieIERI’

wherel is the finite cardinality off (andJ the one of7). This vector represents the differences
between what the decision maker could have got and what he actually got.

The choices of,, and j, depend on the past observations (also called finite history) =
(i1,]1,--,in-1, Jn—1) and may be random. Explicitly, the set of finite histories is denote# by
Unen (I x )", with (I x 7)° = 0 and a strategy of the decision maker is a mapping frdrto
A(1), the set of probability distributions ovet Given the historyh, € (I x 7)", a(hy) € A(T) is
the law ofi, 1. A strategyt of Nature is defined similarly as a function framto A(7). A pair of
strategiego,T) generates a probability, denoted By, over (#,4) whereH = (I x 7)Y is the
set of infinite histories embedded with the cylindefield.

We extend the payoff mappimmto A(1) x A(7) by p(x,y) = Exy[p(i, J)] and for any sequence
a= (8m)mey and anyn € N, we denote by, = %Zghlam the average od up to stagen.

Definition 1 (Hannan, 1957) A strategyo of the forecaster is externally consistent if for every
strategyt of Nature: _
limsupr, <0, Viel, Pgi—as
n—oo
In words, a strategy is externally consistent if the forecaster could not have had a greateff pa
if he had known, before the beginning of the game, the empirical distribufiantimns of Nature.
Indeed, the external consistencyais equivalent to the fact that :
limsup max p(X, jn) —pn <0, Pgi—as 1)
n—co  XeA(I) )
Foster and Vohra (1997) (see also Fudenberg and Levine, 1988¢di@ more precise notion

of regret. The internal regret of the stagedenoted byR, € R'*!, is also generated by the choices
of in and j, and its(i, k)-th coordinate is defined by:

0 otherwise

Stated differently, every row of the matri¥, is null except the,-th which isr,.

Definition 2 (Foster and Vohra, 1997) A strategyo of the forecaster is internally consistent if for
every strategy of Nature:

limsupRX <0 Vike I, Py —as

n—oo
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We introduce the following notations to defiaenternally consistency. Denote Byq(i) the
set of stages before theth where the forecaster chose actioand j,(i) € A(J) the empirical
distribution of Nature’s actions on this set. Formally,

o zmeNn(i) Jm

No(i) = {me{1,...n}; in=i} and ju(i)= (1) e A(9). 2)

A strategy ise-internally consistent if for everyk € I
INn(i)]

limsup

n—oo

(p(k,j}<i>>—p<i,ﬂ<i>>—e) <0, Par-as

If we define, for eveng > 0, thee-best response correspondence by :

BR(Y) = {x€ A(1); plxy) > maxp(zy) ¢

then a strategy of the decision makereimnternally consistent if any actionis either ane-best
response to the empirical distribution of Nature’s actionsNafi) or the frequency of is very
small. We will simply denot®&R, by BRand call it the best response correspondence.

From now on, given two sequenc{:bn € L,aneRY me N} where L is a finite set, we will
define the subset of integexi (1) and the averaga,(T) as in Equation (2), that is:

_ am
No(1) = {me {10} Im=1} and al) = 2703 pa
INn(1)]

Proposition 3 (Foster and Vohra, 1997)For everye > 0, there exist-internally consistent strate-
gies.

Although the notion of internal regret is a refinement of the notion of eataeyret (in the
sense that any internally consistent strategy is also externally consi8tiemt)and Mansour (2007)
proved that any externally consistent algorithm can be efficiently tramsgft into an internally
consistent one (actually they obtained an even stronger property saligaconsistendy

Foster and Vohra (1997) and Hart and Mas-Colell (2000) provezttlrthe existence of O-
internally consistent strategies using different algorithms (with optimal rabased respectively
on the Expected Brier Score and Blackwell’s approachability theoremgorime sense, we merge
these two last proofs in order to provide a new one, given in the followaaogian, that can be
extended quite easily to the partial monitoring framework.

2.1 A Naive Algorithm, Based on Calibration

The algorithm (a similar idea was used by Foster and Vohra, 1997) thatraots are-internally
consistent strategy is based on this simple fact: if the forecaster can,lstagage, foresee the
law of Nature’s next action, say< A(7), then he just has to choose any best respongetdhe
following stage. The continuity o implies that the forecasts need not be extremely precise but
only up to somed > 0.

Let{y(l); | € L} be ad-grid of A(J) (i.e., a finite set such that for eveyyc A(7) there exists
| € £ such thatly—y(l)|| < &) andi(l) be a best responseyd ), for everyl € L. Then ifdis small
enough:

ly—y([l <26 =i(l) € BRx(y).
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It is possible to construct good sequence of forecadtg computing a calibrated strategy (in-
troduced by Dawid, 1982 and recalled in the following Subsection 2.1.1).

2.1.1 CALIBRATION

Consider a two-person repeated gdrgevhere, at staga, Nature chooses the state of the wopid
in a finite sety and a decision maker (that will be referred in this setting as a predictatictset
by choosingy(ln) in 9 = {y(l); | € L}, a finited-grid of A(7) (its cardinality is denoted bly). As
usual, a behavioral strategyof the predictor (respt of Nature) is a mapping from the set of finite
historiesH = Unen (£ x 7)"toA(L) (respA(7)). We also denote b, ; the probability generated
by the pair(o, 1) over(#, 4) the set of infinite histories embedded with the cylinder topology.

Definition 4 (Dawid, 1982) A strategyo of the predictor is calibrated (with respect®={y(l); | €
L}) if for every strategyt of Nature,Pg r-as:

imsup ™! (1) -yl - 170) -y ) <0 ki€ L

n— oo

where|| - || is the Euclidian norm oR”.

In words, a strategy is calibrated if for evdrg L, the empirical distribution of states, on the set
of stages wherg(l) was predicted, is closer tgl) than to any othey(k) ( or the frequency ofl,
INn(1)[/n, is small).

Given a finite grid ofA(7), the existence of calibrated strategies has been proved by Foster
and Vohra (1998) using either the Expected Brier Score or a minmax thdatually this second
argument is acknowledged to Hart). We give here a construction, rddatesimpler than the one
of Foster and Vohra, due to Sorin (2008).

Proposition 5 (Foster and Vohra, 1998)For any finite grid)” of A(7), there exist calibrated strate-
gies with respect t9” such that for every strategyof Nature:

o | max a2 (1) -1 1) -y )| <o ).

Proof. Consider the auxiliary game where, at stage N, the predictor (resp. Nature) chooses
I, € L (resp.jn € J) and the vector payoff is the matrik, € R-*- where

ulk — lin=YD[2=lin—y&) > ifl=I,
" 0 otherwise -

A strategyo is calibrated with respect tg if Un converges to the negative orthant. Indeed for every
I,k € L, the(l,k)-th coordinate ol, is

gk — N Smenn() lim=YDI2 = llim —y(®)[I?
" n INn(1)]
[Nn(D)]

- (u‘n<l>—y<l>u2— \J'_n(l)—y(k)llz>-
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Denote byJf := {max(0,U})}, ., =:Un—U; the positive part b, and by\, € A(£) any
invariant measure dan*. We recall thaf\ is an invariant measure of a nonnegative mdikii, for
everyl € L,

S MUK =A(1) S U
keL keL
Its existence is a consequence of Perron-Frobenius Theoremoiseraimple, Seneta (1981).

Define the strategy of the predictor inductively as follows. Choose arbitragid), the law
of the first action and at stage+ 1, play accordingly to any invariant measurelgf. We claim
that this strategy is an approachability strategy of the negative orthaitéfbecause it satisfies
Blackwell’s (1956a) sufficient condition:

vne N, <U_n—U_n_,Hi‘:)\n [Unialinta] =Uy ) <0.

Indeed, for every possiblg 1 € 7:
(U Ba, [Untaljnsa]) = 0= (U7 Uy ),
where the second equality follows from the definition of positive and negjptrts.
Consider the first equality.  Thél,k)-th coordinate of the matrixEy [Uni1|jnt1] iS
An(1) <||jn+1—y( D12 = [|ines — YK | ) therefore the coefficient dffj,, 1 — y(1)||? in the first term

iSAn(l) Sker (Jn+) — Sker M(K) (U ) This equals 0 sinck, is an invariant measure of; .
Blackwell's (1956a) result also |mpI|es tHag « [||U, [|] < 2Mpn~Y2 for any strategy of Nature

whereM3 = supy,Eq c [HUmHZ} =4L. O
Interestingly, the strategy we constructed in this proof is actually internally consistent in the
game with action spacesand_/ and payoffs defined by(l, j) = —||j —y()||%

Corollary 6 For any finite grid9” of A(7), there exist®, a calibrated strategy with respect {p,
such that for every strategyof Nature, withPs ; probability at leastl — o:

max’N”('”<||jE<|>—y<l>|2— |]j_n(l)—y(k)||2> <k o,

lkeZ N

where ©, = mln{f 2In <L2)+§K”I <L2> \Kf” 2In <L2>},

M= supy/Eqx [Humuz]gsﬁ;

m<n

2
Vi= SupsupEqg+
m<n| keL

Urllk —Eor {UH ’2] <3

Kh= supsup
m<n| keL

Uk~ Eg, [UH ’ <3

Proof. Proposition 5 implies thadt [Un] < 2Mun~1/2, Hoeffding-Azuma’s inequality (see Lemma
28 below in Section 4.3.1) implies that with probability at leastd.:

O — o [0X] < Kf 2|n<l)
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Freedman’s inequality (an analogue of Bernstein’s inequality for martihgade Freedman (1975,
Proposition 2.1) or Cesa-Bianchi and Lugosi (2006, Lemma A.8), implidsatitila probability at
least 1-&:
1 2 K
Uk }EOT 2In J
The result is a consequence of these two mequalltles and of Proposmon 5. O

The definition of®, as a minimum (and the use of Freedman’s inequality) will be useful when
we will refer to this corollary in the subsequent sections. Obviously, in theent framework,

o< 2|n( )

2.1.2 BACK TO THE NAIVE ALGORITHM

Let us now go back to the construction @tonsistent strategies in. Computeo, a calibrated
strategy with respect to &grid 9" = {y(l); | € L} of A(J) in an abstract calibration ganig.
Whenever the decision maker (seen as a predictor) should choosditimel @ "¢, then he (seen
as a forecaster) choosék) € BR(y(l)) in the original gamé& . We claim that this defines a strategy
o¢ which is Z-internally consistent.

Proposition 7 (Foster and Vohra, 1997)For everye > 0, the strategyo, described above ig¢-
internally consistent.

Proof. By definition of a calibrated strategy, for evenmy> 0, there exists with probability 1, an
integerN € N such that for every,k € £ and for everyn > N :

B (i) -yl 1570) ~y0017 ) <

n
Since{y(k); k € L} is ad-grid of A(7), for everyl € £ and everyn € N, there existk € £ such
that | jn(1) — y(K)||* < 82, hencel|jn(1) —y(1)||* < 52+”\NTH(|)\- Therefore, sincgl) € BR(y(1)):

INn(D[ . N
n - 62

for everyl € £ andn > N. The(i,k)-th coordinate oﬁn satisfies:

= [lin(1) =y()? < 28" = p(k. jn(1)) —p(i(1), n(1)) < 26, Vke I,

(0] . .
(Rn 2) = nme%(i)(p(kajm)_p(|,1m>_28)
B il f (I)(p(kJm)—p(i,jm)_zs)
i(N=imeNy
e NI i e
a |Zi%:i n (p(k’Jn(I)) p(l(l),jn(|)) 25.;)'

Recall that either™l > 1 andp(k, jn(i)) — p(i(1), jn(1)) — 26 < 0, or Ml < 1 Sincep is
bounded (byM, > 0), then :

i _ 2M,L
W(Rﬁ_zg>§q 62", Viel,vkeI,vn>N,
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which implies thao is 2e-internally consistent. 0

Remark 8 This ndve algorithm only achievessconsistency and Proposition 5 implies that

Far ()| <0( 7).

The constants depend drastically on L, which is in the current framewdhleiarder ofe’, therefore
it is not possible to obtain O-internally consistency at the same rate with aicldesbling trick
argument, that is, use 2 K-internally consistent strategy oncMtages, then switch to 2 (<t1)-

internally consistent strategy, and so on (see Sorin, 1990, Propositiypage 56).

Moreover, since this algorithm is based on calibration, it computes at stale an invari-
ant measure of a non-negative matrix; this can be done, using Gaustsiimation, with Q(L3)
operations, thus this algorithm is far from being efficient (since its computticomplexity is
polynomial ine and exponential in J). There exi&internally consistent algorithms, see, for exam-
ple, the reduction of Blum and Mansour (2007), that do not have thigrexptial dependency in the
complexity or in the constants.

On the bright side, this algorithm can be modified to obtain O-consistencyptanal rate;
obviously, it will still not be efficient with full monitoring (see Section 2.3) wideer, it has to be
understood as a tool that can be easily adapted in order to exhibit, in thiaparonitoring case,
an optimal internal consistent algorithm (see Section 3.2). And in that stdwork, it is not clear
that we can remove the dependency on L (especially for the internatyegr

2.2 Calibration and Laguerre Diagram

Given a finite subset of Voroiisites {z(l) € RY; | € £}, thel-th Vorond cell V(1), or the cell
associated ta(l ), is the set of points closer | ) than to any othez(k):

V()= {ZeRS |Z-2)P < |2- 207, vker},

where| - || is the Euclidian norm oRY. EachV(l) is a polyhedron (as the intersection of a finite
number of half-spaces) af¥ (1); | € £} is a covering ofRY. A calibrated strategy with respect to
{z(l); | € L} has the property that for evehe £, the frequency of goes to zero, or the empirical
distribution of states ohly(I), converges t&/ (1).

The nave algorithm uses the Vorohdiagram associated to an arbitrary grid\gf/ ) and assigns
to every small cell as-best reply to every point of it; this is possible by continuityofA calibrated
strategy ensures tha{(l) converges t&/ (1) (or the frequency of is small), thus choosingl) on
Nn(l) was indeed a-best response ti (). With this approach, we cannot construct immediately
O-internally consistent strategy. Indeed, this would require that faydwe L there exists a 0-best
responseé(l) to every elemeny in V(). However, there is no reason for them to share a common
best response becaug#l); | € L} is chosen arbitrarily.

On the other hand, consider the simple game catexdiching penniesBoth players have two
actionHeads and ails, soA(J) = A(I) = [0, 1], seen as the probability of choosifg The payoff
is 1 if both players choose the same action and -1 otherwise. Aktigresp.T) is a best response
for Player 1 to any in [0,1/2] (resp. in[1/2,1]). These two segments are exactly the cells of the
Vorond diagram associated {y(1) = 1/4,y(2) = 3/4}, therefore, performing a calibrated strategy
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with respect to{y(1),y(2)} and playingH (resp.T) on the stages of type 1 (resp. 2) induces a 0-
internally consistent strategy of Player 1.

This idea can be generalized to any game. Indeed, by Lemma 10 stated Agfovgan be
decomposed into polytopial best-response areas (a polytope is thedarivef a finite number of
points, its vertices). Given such a polytopial decomposition, one can fiiméaVorond diagram
(i.e., any best-response area is an union of Voraedls) and finally use a calibrated strategy to
ensure convergence with respect to this diagram.

Although the construction of such a diagram is quite simpl& jrdifficulties arise in higher
dimension, even ifR2. More importantly, the number of Voronsites can depend not only on
the number of defining hyperplanes but also on the angles between thesnb@mg arbitrarily
large even with a few hyperplanes). On the other hand, the descriptehaduerre diagram (this
concept generalizes Vorohdiagrams) that refines a polytopial decomposition is quite simple and
is described in Proposition 11 below. For this reason, we will considen frow on this kind of
diagram (sometimes also called Power diagram) .

Given a subset of Laguerre sitégl) € RY; | € £} and weights{w(l) € R; | € L}, thel-th
Laguerre celP(1) is defined by:

P(1) = {z €R;

Z-2)P-oll) < |2 2K)° - k), vke L},

where|| - || is the Euclidian norm oRY. EachP(l) is a polyhedron an&® = {P(l); | € L} is a
covering ofRY.

Definition 9 A coveringX = {K'; i € I} of a polytope K with non-empty interior is a polytopial
complex of K if for every,jj in the finite set/, K' is a polytope with non-empty interior and the
polytope KN K! has empty interior.

This definition extends naturally to a polytopewith empty interior, if we consider the affine
subspace generated Ky

Lemma 10 There exists a subsét C I such that{B'; i € I'} is a polytopial complex of(7),
where Bis the i-th best response area defined by

B'={yeA(Y); i € BRly)} = BRi).

Proof. For anyy € A(J), p(-,y) is linear onA(1) thus it attains its maximum of andJ;.; B' =
A(7). Without loss of generality, we can assume that eBlas non-empty, otherwise we drop the
indexi. For everyi.k e I, p(i,-) — p(k,-) is linear onA(7) thereforeB' is a polytope; it is indeed
defined by

B = {yeAU); pli.y) > p(ky), Vke I}
= (yeR% p(i,y) —p(ky) > 0} NA(T),
kel
so itis the intersection of a finite number of half-spaces and the polytope
Moreover ifB'(',‘, the interior ofB' N B, is non-empty thep(i,-) equalsp(k,-) on the subspace
generated b)B{')‘ and therefore od\(7); consequentl' = BX. Denote by’ any subset of such
that for everyi € I, there exists exactly oriéc I’ such that8' = B' # 0, then{B'; i ¢ I'} is a
polytopial complex ofA( 7). O
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Proposition 11 Let X = {K'; i € I'} be a polytopial complex of a polytope ® RY. Then there
exists{z(l) e RY, w(1) € R; | € L}, afinite set of Laguerre sites and weights, such that the Laguerre
diagram? = {P(l); | € L} refinesXk, that is, every Kis a finite union of cells.

Proof. Let X = {K'; i € I} be a polytopial complex df c RY. EachK! is a polytope, thus defined
by a finite number of hyperplanes. Denote:Hy= {H;; t € T} the set of all defining hyperplanes
(the finite cardinality ofZ is denoted byT) and X = {R'; | € L} the finest decomposition &
induced by# (usually called arrangement of hyperplanes) which by definition refiaeBheorem

3 and Corollary 1 of Aurenhammer (1987) imply thigtis the Laguerre diagram associated to some
{z(1), w(l); I € L} whose exact computation requires the following notation:

i) for everyt € 7, letc, € RY andby € R (which can, without loss of generality, be assumed to
be non zero) such that

H = {XGRd; X, ) :b[}.

i)y For everyl € £ andt € 7, ay(l) = 1 if the origin of R? andK' are in the same halfspace
defined byH; andoi(l) = —1 otherwise.

iif) For everyl € L, we define:

(1) = ZM?(')Q and o(l) = Hz(,)”z”ztg;n(l)bt.

Note that one can add the same constant to every weigdt O
Buck (1943) proved that the number of cells definedTbityperplanes irR¢ is bounded by
Yo (}) = ®(T,d), where(}) is the binomial coefficienfT choosek. Moreover,T is smaller than
(I —1)/2 (in the case where ea¢li has a non-empty intersection with every other polytope), so
L< (p(%, d).
If d > n, theng(n,d) = 2". Pascal’s rule and a simple induction imply that, for eveny € N,
o(n,d) < (n+ 1)d. Finally, for anyn > 2d, by noticing that

(@) + (g"g) -+ ( Z ( d >m§m20<d)m:n—d+l <1+d,

(d) n—-d+1 n-d+1 n—-2d+1—

we can conclude thag(n,d) < (1+d)(7) < (1+d).

Lemma 12 Let? = {P(l); | € L} be a Laguerre diagram associated to the set of sites and weights
{z(l) e RY, w(l) € R; | € L}. Then, there exists a positive constant M 0 such that for every
ZeRYff

1Z—z()]*~ (1) < |Z—2z(K)[|* — (k) +¢, YI,ke L 3)

then d(Z,P(1)) is smaller than Me.

The proof can be found in Appendix A.1; the constlht depends on the Laguerre diagram, and
more precisely on the inner products, ¢ ), for everyt,t’ € 7.
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2.3 Optimal Algorithm with Full Monitoring

We reformulate Proposition 5 and Corollary 6 in terms of Laguerre diagram.

Theorem 13 For any set of sites and weighfg(l) € R, w(1) € R; | € L} there exists a strategy
o of the predictor such that for every strategpf Nature:

Eox |

‘(LJ_M)*‘H <0 <\%> whereU,,, is defined by :

ul')‘n:{ [1in=Y)1Z = (O] = [l = yR)[[> = w(k)] if I =1y

0 otherwise *

Corollary 14 For any set of sites and weighfg(l) € R?, w(1) € R; | € L}, there exists a strategy
o of the predictor such that, for every strateggf Nature, withPs ; probability at leastl — &:

maX\Nn<'>!< (1) =y 2= )] = 1ia(h) = (I - co(k)] ) Zy +6n

lkeZ N

whereMy = supy/Eoz | [Vl < 4VL(5,0)a;

m<n

o - i on(3) 2w () 5 ()

= supsupiia: ||l Box [Ulin] || <4l0.0)2:

m<nl keL

Ko = supsup|Ul,—To . [Ulk]| < 4(B.0)].
m<n| keL

[(b,0)]le = Sup\lct||+sup|bt\
teT

Such a strategy is said to be calibrated with respedtytd), w(l); | € L}.

The proof is identical to the one of Proposition 5 and Corollary 6. We havethe material to
construct our neviool algorithm

Theorem 15 There exists an internally consistent strategpf the forecaster such that for every
strategyt of Nature and every g N, with P ; probability greater tharl — &:

maxR',f<O< In(é))

ikel

Proof. The existence of a Laguerre Diagraf¥(l); | € L} associated to a finite sdy(l) €
RY w(l) € R; | € L} that refines{B'; i € I} is implied by Lemma 10 and Proposition 11. So,
for everyl € £, there exists(l) such thatr (1) c B("). As in the néve algorithm, the strategy of
the decision maker is constructed through a straegglibrated with respect toy(l), w(l); | € L}.
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Whenever, accordingly to, the decision maker (seen as a predictor) should play, then he
(seen as a forecaster) playg) in T

If we denote byjs (1) the projection ofj,(l) ontoY (1) then:
Sk ’NH(I)‘ A =
LI (ot )~ pi(1). 0 )
IN(1)] e e
<3 P (ot ot 5o |+ [t ) ot 500 )
<

3 B (e[ o]

< @M max (170 ()1 )] = [I570) - y0917 - (k] )

n

where the second inequality is due to the fact ttigte BR(j,(1)) and the third to the fact thatis
Mp-Lipschitz. The fourth inequality is a consequence of Lemma 12.
Corollary 14 yields that for every strategyf Nature, withPs ; probability at least 1-

Ik n

<[|u‘n<l>—y<l>||2—oo<l>} - [|u‘n<l>—y<k>||2—w<k>}) <

BVL(b.0) . (0. [ (L2
o um 2'”(6)’

therefore withQo = 16M,MpL3/?||(b, )|l andQ; = 8M,MpLY2||(b,C)|. One has that for every
strategy of Nature and with probability at least ®:

maxF?nkzmax’N”“)'(p(k,j‘na))—p(i,j‘n() <%, 9 Jan L2

kel ikerl n
]

Remark 16 Theorem 15 is already well-known. The construction of this internallyistam strat-
egy relies on Theorem 13, which is implied by the existence of internallystemsstrategies...
Moreover, as mentioned before, it is far from being efficient since L giigrs both in the compu-
tational complexity and in the constant, is polynomialinThere exist efficient algorithms, see, for
example, Foster and Vohra (1997) or Blum and Mansour (2007).

However, the calibration is defined in the space of Nature’s action, wiealepayoffs are ir-
relevant; they are only used to decide which action is associated to eadltiiwa. Therefore the
algorithm does not require that the forecaster observes his real fsyas long as he knows what
is the best response to his information (Nature’s action in this case). Thiegssply why our
algorithm can be generalized to the partial monitoring framework.

The polytopial decomposition @f( 7) induced by{bx, ¢;; t € 7} is exactly the same as the one
induced by{yb(t), yc(t); t € 7} for anyy > 0. Thus, by choosing small enough||(b,c)||. and
therefore the constants in Corollary 14 can be arbitrarily small (i.e., multipliezhigy > 0).
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However, these two Laguerre diagrams are associated to the sets ohditesights£(1) and
L(y), where£(y) = {yz(l), yo(I) + y?[|lz) |2 = yl|lz(1)||; | € L}. If L(y) is used instead of.(1),
then the constarlp defined in Lemma 12 should be divided YySo, as expected, the constants in
the proof of Theorem 15 do not dependyrrrom now on, we will assume thgtb, ¢)||.. is smaller
than 1.

3. Partial Monitoring

In the partial monitoring framework, the decision maker does not obseatig®s actions. There is
a finite set of signalg (of cardinalityS) such that, at stagethe forecaster receives only a random
signals, € S. Its law iss(in, jn) Wheresis a mapping from? x 7 to A(S), known by the decision
maker.
We define the mappingfrom A(7) to A(S)' by s(y) = <Ey [s(i, j)])_ L€ A(S)'. Any element
le

of A(S)' is called a flag (it is a vector of probability distributions ov®rand we will denote byF

the range ok. Given a flagf in 7, the decision maker cannot distinguish between any different
mixed actionsy andy’ in A(J) that generatd, that is, such thas(y) = s(y') = f. Thussis the
maximal informative mapping about Nature’s action. We denotdoy s(j,) the (unobserved)
flag of stagen € IN.

Example 1 Label efficient prediction (Cesa-Bianchi and Lugosi, 2006, Exaia@g

Consider the following game. Nature chooses an outcome G or B and tlva$tee can either
observe the actual outcome (action 0) or choose to not observe itiekd fabel g or b. His payoff
is equal to 1 if he chooses the right label and otherwise is equal to 0.flBagd laws of signals
are defined by the following matrices (where a, b and c are three diffprebabilities over a finite
given set S).

G B G B

o|0|O0 o|lal|b

Payoffs: g| 0 | 1 and signals: gl c | c
b|1]0 bjc|c

Action G, whose best response is g, generates thédlagc) and action B, whose best response is
b, generates the fla@, c,c). In order to distinguish between those two actions, the forecaster needs
to know $0,y) although action o is never a best response (but is purely informative).

The worst payoff compatible witkand f € F is defined by:
W(x, f)= inf X, Y),
(xf)=_inf p(xy
andW is extended td\(.S)' by W(x, f) =W (x,M#(f)).

As in the full monitoring case, we define, for every> 0, the e-best response multivalued
mappingBR: : A(S)' = A(T) by :

BR(f) = {xeA(I); W(x, f) > supW(z f)—s} :

zel(1)

Given a flagf € A(S)', the functionW (-, f) may not be linear so the best response of the forecaster
might not contain any element &f
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Example 2 Matching pennies in the dark:

Consider the matching pennies game where the forecaster does notelise coin but al-
ways receives the same signal c: every choice of Nature generatsartieflagc,c). For every
x € [0,1] = A({H,T}) (the probability of playing T), the worst compatible payoffX\c,c)) =
minyc ) P(X,Y) is equal to—|1— 2x| thus is non-negative only forx 1/2. Therefore the only best
response of the forecaster is to pléb'l + %T, while actions H and T give the worst payoff of -1.

The definition of external consistency and especially Equation (1) exiziodally to this frame-
work: a strategy of the decision maker is externally consistent if he coultiaw@ improved his
payoff by knowing, before the beginning of the game, the average flag:

Definition 17 (Rustichini, 1999) A strategyo of the forecaster is externally consistent if for every
strategyt of Nature:

limsup maxW(z, fn) —pn <0, Pgr-as
n—+o zeA(I)

The main issue is the definition of internally consistency. In the full monitorisg cte fore-
caster has no internal regret if, for evarg I, the actioni is a best-response to the empirical
distribution of Nature’s actions, on the set of stages wheras actually chosen. In the partial mon-
itoring framework, the decision maker’s action should be a best respotise average flag. Since
it might not belong tol but rather taA( 1), we will (following Lehrer and Solan, 2007) distinguish
the stages not as a function of the action actually chosen, but as a fuottistaw.

We make an extra assumption on the characterization of the forecastat&ggtr it can be
generated by a finite family of mixed actiofis(l) € A(Z); | € L} such that, at stage € N, the
forecaster chooses a typeand, given that type, the law of his actignis x(In) € A(7).

Denote byNy(lI) = {me {1,..,n}; In =1} the set of stages before tineth whose type ig.
Roughly speaking, a strategy will lseinternally consistent (with respect to the ggtif, for every
I € £, x(l) is ane-best response t& (1), the average flag oN(I) (or the frequency of the typle
INn(1)|/n, converges to zero).

The finiteness of is required to get rid of strategies that trivially insure that every frequen
converges to zero (for instance by choosing only once every mixedaclibe choice ofx(l); | €
L} and the description of the strategies are justified more precisely below byrR2iem Section
3.2.

Definition 18 (Lehrer and Solan, 2007)For every ne N and every le L, the average internal
regret of type | at stage nis

Ra(l) = sup [W(x, fa(1)) = Pn(1)] -

xeA(I)

A strategyo of the forecaster i$£, €)-internally consistent if for every strategyf Nature:
n— o0

Iimsup“\lnn(l)| <£Rn(l)—e> <0, vleL, Pgras

In words, a strategy i6L, €)-internally consistent if, for everlye L, the forecaster could not have
had, for sure, a better payoff (of at lea}tf he had known, before the beginning of the game, the
average flag oy (I) (or the frequency of is small).
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3.1 A Naive Algorithm

Theorem 19 (Lehrer and Solan, 2007)For everye > 0, there exist(L,¢€)-internally consistent
strategies.

Lehrer and Solan (2007) proved the existence and constructedtsaigly®s and an alternative, yet
close, algorithm has been provided by Perchet (2009). The main idbaglithem are similar to the
full monitoring case so we will quickly describe them. For simplicity, we assumedridiowing
sketch of the proof, that the decision maker fully observes the seqoéfiags fn = s(jn) € A(S)'.

Recall thatV is continuous (Lugosi et al., 2008, Proposition A.1), so for e¢esy0 there exist
two finite familiesG = {f(1) € A(S)'; | € L}, ad-grid of A(S)", andX = {x(I) € A(l); | € L} such
that if f is d-close tof(l) andx is &-close tox(l) thenx belongs taBR: (f). A calibrated algorithm
ensures that:

) fa(l) is asymptoticallyd-close tof (1), because it is closer th(1) than to every othef (k);

ii) in(l) converges ta(l) as soon afN(1)| is big enough, because di(1) the choices of action
of the decision maker are independent and identically distributed acctyrding|);

i)y pn(l) converges t@(x(1), jn(l)) which is greaterthaw(x(l), f_n(l)> becausgn(l) generates
the flagf,(1).

Therefore,\N(x(I), f_n(l)) is close to\N(x(I), f(l)) which is greater thakN(z, f(I)) foranyze

A(I). As a consequengay(l) is asymptotically greater (up to sorae> 0) than supwW (z, fn(l)>,
as long agNy(I)| is big enough.

The difference between the two algorithm lies in the construction of a calibsitategy. On
one hand, the algorithm of Lehrer and Solan (2007) reduces to Bldskamproachability of some
convex seC C RS" it therefore requires to solve at each stage a linear program of digeopoial
in €', after a projection or”. On the other hand, the algorithm of Perchet (2009) is based on the
construction given in Section 2.1.1; it solves at each stage a system ofdiqeation of size also
polynomial ineS'.

The conclusions of the full monitoring case also apply here: these higihefiient algo-
rithms cannot be used directly to constret 0)-internally consistent strategy with optimal rates
since the constants depend drasticall\e oWVe will rather prove that one can define wisely once for
all {f(1),w(l); I € L} and{x(l); | € L} (see Proposition 20 and Proposition 11) so ¥iBtc A(I)
is a 0-best response to any flagn P(l), the Laguerre cell associated td ) andw(l).

The strategy associated with these choices wil{ bgd)-internally consistent, with an optimal
rate of convergence and a computational complexity polynomial in

3.2 Optimal Algorithms

As in the full monitoring framework (cf Lemma 10), we define for everyA( 1) thex-best response
areaB* as the set of flags to whichis a best response :

B*={f e A(S)"; xe BR(f)} =BR}(x).

SinceW is continuous, the familyB*; x € A(I)} is a covering ofA(S)'. However, one of its finite
subsets can be decomposed into a finite polytopial complex:
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Proposition 20 There exists a finite family X {x(l) € A(I); | € L} such that the family
{BX<'>; S L} of associated best response area can be further subdivided into a pialyt@m-
plex ofA(S)'.

The rather technical proof can be found in Appendix A.2. In this frarmkvemd because of the
lack of linearity ofW, anyBX") might not be convex nor connected. However, each one of them is
a finite union of polytopes and the family of all those polytopes is a compléx §¥' .

Remark 21 As a consequence of Proposition 20, there exists a finite setAX7) that contains

a best response to any flag f. In particular, if the decision maker coodetive the flag.fbefore
choosing his actionxthen, at every stagepxvould be in X. So in the description of the strategies
of the forecaster, the finite s¢k(l); | € L} = X is in fact intrinsic that is, determined by the
description of the payoff and signal functions.

As a consequence of this remark, mentionihgs irrelevant; so we will, from now on, simply
speak ofinternally consistent strategies

3.2.1 QUTCOME DEPENDENTSIGNALS

In this section, we assume that the laws of the signal received by the detialer are independent
of his action. Formally, for everii’ € I, the two mappings(i,-) ands(i’,-) are equal. Therefore,
F (the set of realizable flags) can be seen as a polytopial sub&€tspf Proposition 20 holds in
this framework, hence there exists a finite fan{ik(l ); | € £} such that for any flag € ¥, there
is some € L such thak(l) is a best-reply td. Moreover, for a fixed € L, the set of such flags is
a polytope.

Theorem 22 There exists an internally consistent strategguch that for every strategyof Nature,
with Pg -probability at leastl — &:

supl™ Ul 1) < 0 ( '”(%)) |

n

Proof. Propositions 11 and 20 imply the existence of two finite famie#l); | € £} and
{f(1),w(l); I € L} such thai(l) is a best response to arfyin P(I), the Laguerre cell associated
to f(I) andw(l). Assume, for the moment, that for any two differérmindk in £, the probability
measureg(l) andx(k) are different.

The strategyo is defined as follows. Compute a strategycalibrated with respect to
{f(1),w(l); I € L}. When the decision maker (seen as a predictor) should ch@ogeaccordingly
to 0, then he (seen as a forecaster) plays according§l jon the original game. Corollary 14 (with
the assumption thdt(b, c)||. is smaller than 1) implies that witf, ; probability at least 1- 8;:

max e ([150) — £0)12- )] = [I50) - 1001 -] ) <

leL n
2
87\/[+i 2In Li ,
vnooy/n )
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therefore combined with Lemma 12, this yields that :

_ 2
r@%xmnn(l)‘Hs_n(l)—fn(l)HSSM\%ﬁJr% 2|n<|a_‘>1>’ 4
wheref,(1) is the projection o;(l) ontoP(1).
Hoeffding-Azuma’s inequality implies that witPs; ; probability at least 1- d,:
_ 2In( &t
ﬂ?XWHS_"(I) - fn(')H < <n‘32) (5)
and with probability at least4 &3 :
_ 2In( &
max 1) - p0x), 1) < SB) ©
W is My-Lipschitz in f (see Lugosi et al., 2008) arsdjn(l)) = fu(1) therefore:
(1) =W (x(1), fa(1)) = [Ba(1) = pOX(1), in1))] — M| fal)) — Fal1)| (7)
and
maxw (x fa) < maxw(x 1)+ M ([[§0) 0] + [50) - T0))
< W(x(0), o) +Mw (&0 - ]|+ [sO - R0|))  @®
sincex(l) is a best response fa(l). Equations (7) and (8) yield
Ra(1) < 2Mw[§(0) = FolD)|| + 2| |[§:0) = o)) ||+ [Ba) = o). Ta))| - @

Combining Equations (4), (5), (6) and (9) gives that with probability astlda- o, if we define
Qo = 16MpMw /L, Q1 = (2Mw +8MwMp +M,) andQ, = L (L + 25+ 2):

wup ) < 2 Ty 2 ()

If there existl andk such thai(l) = x(k), then although the decision maker made two different
predictionsf (I) or f(k), he played accordingly to the same probabikith) = x(k). DefineNq(I, k)
as the set of stages where the decision maker predicts ditheor f (k) up to stagen, fy(l,k) as
the average flag on this seh(l,k) as the average payoff amgl(l,k) as the regret. Sind&/(x,-) is
convex for every € A(I), then maxca ;) W(X, -) is also convex so

INn(1,K)| = INa(1)] = INn(K)| -
BT maxwix, fn(1,k)) < W(x, fr(1)) + " max wix, fa(k
n " MaxWx, fo(l, k) < =T maxWix, fo(1)) + === Maxw(x, fu(k))
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N (I, K)| — Nh(D)| = Nn(K)| —
and MU g = PO ) 0I5
n n n

so we still have

Nn(l,K)| In(3)

LA S < —_\O/

S Rk <O (/=

Hence the previous bound holds up to a fat¢tor O

Remark 23 Lugosi et al. (2008) have constructed an externally consistent siatiegt is, such
that, asymptotically, for any strategyof Nature:

pn> maxW(z fn), Pgr—as
ze(1)

The final argument in the proof of Theorem 22 also implies that an inligroansistent strategy is
also externally consistent, hence we can compare bounds betweelyotitian.

If the signals are deterministic, Lugosi et al. (2008)’s efficient algaomities an expected regret
smaller than Qn~/2). However this bound became, with random signalén@/4). Thus our al-
gorithm, along with computing no internal regret, has a better rate of cgaree, the optimal one.
Concerning the computational complexity, the true purpose of this algoh#ing the minimization
of internal regret, it is not efficient to bound external regret.

3.2.2 ACTION-OUTCOME DEPENDANT SIGNALS

In this section, we consider the most general framework and we assuntleehavs of the signals
might depend on the decision maker’s actions. Our main result is the following:

Theorem 24 There exists an internally consistent strategguch that, for every strategyof Na-
ture, withPs ; probability at leastl — &:

Nn(l 1 1 1 1
rlrgx|r$)17{n(l) <O <nl/3 In (6) + Wln (6)) )

Proof. The proof is essentially the same as the one of Theorem 22, so we careabsik(| ) # x(K)
for any two differentl andk in £. The only difference is due to the fact that at stage N, the
unobserved flad,, has to be estimated, see, for example, Lugosi et al. (2008).

Following Auer et al. (2002/03), we define for evedrg £ andn € N, they,-perturbation of
x(1) by X(I,n) = (1 —¥h)X(1) +Ynu whereu is the uniform probability over and (Yn)nen is @ non-
negative non-increasing sequence. For even)N, let

Lii ) N
enh=|=—= (Is= € (R>),
(x(ln,n)[ln] Hos)ecs i1 (55
whereX(In,n)[in] > Yo = Yn/l > 0 is the weight put by(l,,n) oni,. With this notation,g, is an
unbiased estimator df, sinceEq; [en|n"!] = f,, seen as an element (iRS)'.
We define now the strategy of the forecaster. Assume that in an auxilienggg a predictor
computew, a calibrated strategy with respect{td(l), w(l); | € L}, but where the state at stagés
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the estimatog, € R'S. When the decision maker (seen as a predictor) should chgaseordingly
togin I, then he (seen as a forecaster) chogsascordingly tax(l,,) in the original game.

In order to use Corollary 14, we need to boundM, andK,. In the current framework and
thanks to Proposition 11, one has for evetye £ andn € IN:

Ul =214, 5 o‘(k);ct(l) (<en,ct> + bt) ,

teT

so using the fact thal(b, ¢)||2 = 1 and the definition oé:

Ik |2 X(In,n)[1] |
Uw,m‘ ] < 16[Eq [HQWHZ} | (b, C)Hozo < 162 W < 16%.

sup suplEq ¢ [
I keLm<n

As a consequencé,, < 4y—1n, v < 4\/\/1n andM, < 4 % Lemma 12 implies that, witPg
probability at least1— d,), for everyl € L:

N < e S (. S ()

wheref,(1) is the projection o&y(l) ontoP(l).
Following Lugosi et al. (2008), since for everg I andse S, Eg ¢ [[ | } <1/yn, Freedman’s
inequality implies that with probability at least-10,, for everyl € L

MOl ] < vis( 2 n (%) + 2. () ).

Hoeffding-Azuma’s inequality implies that with probability at least &s:

~

Np(1) | — — 2. (2L 2 meNy (1) Ym
_ < z £mehnl) 71
max—_=|Pn(l) p(X(I),Jn(I))\ Moy /oinl G, ) T M=
and by takingy, = n~/3, one hasy men, 1) Ym < 31?2, As a consequence, for everg £, with

probability at least 1 &:

Ne(1) Q 295 295 L2% 295
o Fall) < PTE 1/3 2ln 1/2 2In t3pan

with the constants defined K, = 16MpMw /LI + 3MwM,l, Q2 = 2MwV/1 (8Mp +/S), Q3 =
Mp, Q4 = 2Mw (4Mp +V/1S) and Qs = L (L+2+2IS). They can be decreased if concentration
inequalities in Hilbert spaces are used (see Section 4.3). O

In the label efficient prediction game defined in Example 1, for every gyatef the decision
maker there exists a sequence of outcomes such that the forecasteedxggret is greater than
n-1/3/7, see Cesa-Bianchi et al. (2005, Theorem 5.1). Therefore thefraté/2 of our algorithm
is optimal for both internal and external regret.
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The computational complexity of this internally consistent algorithm is polynomikl ifhus
it can be seen, in some sense, as an efficient one. A question left offem éxistence of an
algorithm whose computational complexity is polynomial in the minimal number ofrlespbnse
areas required to cové(s)', see Proposition 20.

The following Section 4.1 deals with a simpler question and exhibits an internailsistent
algorithm which requires to solve at each stage a linear program of slgagpaial in Lo, the
minimal number of polytopes on whidBR is constant, instead of a system of linear equations of
sizel.

4. Concluding Remarks

This section sheds light on some improvements of the computational complexigpoasthnts of
our algorithm and also on the possibility to remove the assumptioryttsdinite.

4.1 Second Algorithm: Calibration and Polytopial Complex

The algorithms we described are quite easy to run stage by stage sinceettester only needs
to compute some invariant measures of non-negative matrices. Howeergetjuire to construct
the Laguerre diagrar® = {P(l); | € L} given the se{by, ¢;; t € 7}. And we have shown that,
which is a factor both in the complexity of the algorithms and in their rate of cgevere, can be
in the order ofT ' hence polynomial i.§'.

This section is devoted to a modification of the algorithm that does not requaentipute a
Laguerre diagram but which is more difficult, stage by stage, to implement.oflyedifference
between the two algorithms is in the definition of calibration.

Let {K(I); I € Lo} be a finite polytopial complex ai(7). It is defined by two finite families
{cceR), b eR;teT}and{T(I)CT;!| € L} suchthat:

K(I)={yeA(); (y.e) <b,¥teT()c T}, Ve L.

Let us defing(c,,br1) = (¢, by) if t € T(1) and(cyy, by ) = (0,0) otherwise. Then we can rewrite
K() ={yeAld); (y.c1) < by, vte T}

Definition 25 A strategyo is calibrated with respect to the compléK(l); | € Lo} if for every
strategyt of Nature,lPs ;-as:

memf”Oﬂm&p—m>gq Vte T,V € Ly.

n—oo

Theorem 26 There exist calibrated strategies with respect to any finite polytopial coriglé); | €
Lo}.

Proof. Consider the following auxiliary two-person garfig where at stage € IN the predictor
(resp. Nature) choosésc Lo (resp.jn € J) which generates the vector paybff € R™™ defined
by:
Utk — J (Lin=jc) —by i1 =1
n 0 otherwise °
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Any strategy that approaches the negative ortkanin I'; is calibrated with respect to the complex
{K(1); | € Lo}.

Blackwell’s characterization of approachable convex sets (Blackw@li6d, Theorem 3) im-
plies that the predictor can approach the convex(ketif (and only if) for every mixed action
of Nature inA(J), he has an actiom € A(Lp) such that the expected payoff is 0. Given
Yn € A(J), choosind (yn) € Lo, wherel(yy) is the index of the polytope that contaipg ensures
thatey, iy, [Un] is in Q. Therefore there exist calibrated strategies with respect to any polytopia
complex. O

This modification of the definition of calibration does not change the othéopaur algorithms
nor the remaining of the proofs (in particular, to calibrate the sequenaebkerved flags, the fore-
caster must usg,-perturbations). The constants in the rates of convergence are ndigrssirace

Lo can be much smaller thdanand inl", E[||Up]||?] is bounded byD (%) whereTo = supc, T(I)

is the maximum number of hyperplanes defining a polytope of the complex.

The main argument behind this algorithm (i.e., the characterization of ap@iol@cconvex
sets of Blackwell, 1956a) is quite close, in spirit, to the one of Lehrer ah@nS@007). Note
that however, with our representation, the projectionroncan be computed linearly ifiLy, so
polynomially inLg. Therefore, it reduces to the construction of an approachability syrated)so,
as shown by Blackwell (1956a), to the resolution, at each stage, of a [inegramming of size
polynomial inL.

4.2 Extension to the Compact Case

We prove in this section that the finitenessjas not required.
Assume that instead of choosifgat stagen € IN, which generates the flafg = s(j,) and an

outcome vecto(p(i, jn)), K Nature chooses directly an outcome ve€égqre [—1,1]' and a flagf,
le

which belongs t(On) wheresis a multivalued mapping fror-1, 1)" into A(S)'. As before, the

decision maker’s payoff i® (thein-th coordinate 00,) and he receives a signgl whose law is

fln. Strategies of the forecaster and consistency are defined as before.

Theorem 27 If the graph ofs is a polytope, then there exists an internally consistent strategy
such that, for every strategyof Nature, withPs ; probability at leastl — &:

Nn(l 1 1 1 1
rré%x| n()%(l) So(nl/?’ In <6> +Wln <5>>

The proof of this result is identical to the one of Theorem 24.

Note that the assumption that the grapls &fa polytope is fulfilled in the finite dimension case.
The mappingis multivalued since in finite dimension there might exist two different mixed actions
y1,¥1 in A(7) that generate the same outcome vector @€,y1) = p(-,y2) = O) but different flags
(i.e., f1 = s(y1) # s(y2) = f2). Hence we should havi, f» € s(O).

4.3 Strengthening of the Constants

We propose two different ideas to strengthen the constants of our algoriinst, we can use (as
did Lugosi et al., 2008) only one concentration inequality for every dioate of the vectoUgn
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instead of one concentration inequality per coordinate. Second, we cémiet sparser vector
payoffs (so that its norm decreases) by looking at a slight differefimition of calibration.

4.3.1 GONCENTRATIONINEQUALITIES IN HILBERT SPACES

The rates of convergence of our algorithms rely mainly on three propeBii@skwell’s approacha-
bility theorem, Hoeffding-Azuma'’s and Freedman'’s inequalities. Theseatlolsed us to study the
convergence of a sequence of vectdgstowards 0. Approachability is well defined for sequences
of vectors, however the two concentration inequalities hold only for ralled martingales. To
circumvent this issue, we used in the proofs the fact that if a profldss R%}, . is a martin-
gale then, for each coordinate, the proc{as# € R}nelN is a real valued martingale. This does not
use the fact thdt, might be sparse and the use of concentration inequalities in Hilbert space ca
sharpen the constant.

Indeed, recall Hoeffding-Azuma’s inequality:

Lemma 28 (Hoeffding, 1963; Azuma, 1967) et U, be a sequence of martingale differences bounded
by K, that is, for every & IN, Eg ¢ [Un;1|hn] = 0 and |Un| < K.
Then for every e IN and everye > O:

2K?2

- 2. (2
Po+ (un\ <Ky/Zin (6>> >1-8.

Chen and White (1996) proved an equivalent property for vector ngaittrinIRY.

_ _ne?
Por(|Un| >¢) < 2€Xp( ne ) )

which can be expressed as

Lemma 29 (Chen and White, 1996)Let U, be a sequence of martingale differenceRfbounded
almost-surely by K> 0. Then for every i IN and for everye > 0:

— ne2 —ne? ne?
Po([[Unll > €) < zmaX{L ZKZ}eXp(2K2> < ZeXp(_GZKZ> )

foreverya <1-— zie (which equals approximatively.81).

Assume that for everg € IN, ||Upl/o < ||U || @nd||Upn||2 < ||U||2; we can deduce from the use
of only Hoeffding-Azuma'’s inequality that:

INn(D]' 71k 2 —ne?
P max——— \Uy"| > ¢ | <2L°exp| =5 | -
or (mp S0 > ) < 270
However, Chen and White’s result, along with the fact fgt|| < L, implies that:
INn(D1 |71 —ne?
Por [ max——=|U¢| > ¢ ) <2exp|l —
o (mex 108 > ¢) < 2es0{ 5

which can reduce the dependencylLin The effects is even more dramatic when estimating the
sequences of flags, sineghas only positive component (§€n|/« = ||en||2)-

There also exist variants of Bernstein’s inequality, see, for exampt&skii (1976) in Hilbert
spaces that can be used in order to get more precise constants.
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4.3.2 CALIBRATION WITH RESPECT OFNEIGHBORHOODS

Definition 30 Given a finite set = {y(I) € R, w(l) € R; | € £}, y(k) is a neighbor of {) if
k # | and the dimension of ) N P(k) is equal to d- 1.

We defined a calibrated strategy with respecyicas a strategyg such thatj_n(l) is asymptoti-
cally closer toy(l) than to any othey(k) as soon as the frequencylafoes not go to zero. In fact,
jn(l) needs only to be closer igl) than to any of its neighbors. So one can constngghbors
calibrated strategies by modifying the algorithm given in Proposition 5; thefpalystagen is now
denoted by, and is defined by:

(U,)Ik  lin=y[I2=lljn—y(k)||? if | =1, andkis a neighbor of
oo 0 otherwise

The strategy consisting in choosing an invariant measw(elu_,(,))t+ is calibrated and the squared
maximal second order momeM3 = sup,., Eot [||Un||?] equals 4\, whereA( is the maximal
number of neighbors. This latter can be much smaller than 4, and the gaithisomodification is
limpid if we considere-calibration.

Indeed, in order to construct such strategies, we usually take-disgretization ofA(J) so that
L=0(e"U-D). However, there exists a discretization such tat 2~ -1, which is independent
of e.
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Appendix A. Proofs of Technical Results

This section is devoted to the proofs of previously mentioned results, thatrisna 12 and Propo-
sition 20.

A.1 Proof of Lemma 12

Let| € L be fixed. we denote by = {¢; € RY; t € (1)} the finite family of normal vectors to
(d—1)-faces ofP(I) and byB = {by € R; t € 7 ()} the family of scalars such that :

P()={ZeR% (Zo) <, WteT()}.
Any points satisfying Equation (3) belongs to
(1) = {z eRY (Z,q) <b+eg Ve ‘I(I)} .

For any vertew of P(l), there exist$;, ..,tq € Z(I) such that

V= (d] {Ze RY; (Z,c,) = btk}

k=1
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and{c,, .., } is a basis oRRY. If we denote by the point defined by

d
ve=) {Z eR% (Z,¢,) = by, +s}
k=1
thenP(l) is included in the convex hull of every.

Equation (3) can be rephrased asxibelongs toP;(l) thend(x,P(l)) is smaller tharMpe.
Therefore it is enough to prove this property for everginced(-,P(l)) is a convex mapping thus
maximized over a polytope on one of its vertices.

With these notations, for evekye {1,..,d}, (ve —V,¢,) = € and there exists a unique decom-
positionvg — v = zﬂzlakctk. Define the symmetrid x d Gram matrixQ, by Q}(k/ = (G, G, ) and
a = (ay,..,0q). Then following classical properties hold:

1) ||ve —V||> = aTQa and there exist a diagonal matix= diag(Ay,..,Aq) With0 < A1 < .. < Ag
and ad x d matrix P and such tha®~1 = PT andQ, = PTDP;

2) Qa =& = (g,..,€) thereforen = Q'¢;
3) [Ive —VII* = (Q"e)TQ(Q "e) = eTPTD*Pe < €ZdA;

Therefore, for any € P, and in particular for any point that satisfies Equation (2);- 1, (2)|| <

max, ||ve — V|| < e+/dvA1 " The result follows from the fact thatis finite. The constan¥p in
Lemma 12 is smaller than the square root of the inverse of the smallest eigendalliQ, times
\/d; it depends on the inner produdts, ¢) and on the dimension of .

A.2 Proof of Proposition 20

Definition 31 Let K be a polytope. A correspondence I8 = R is polytopial constant, if there
exists{K(l); I € L} a finite polytopial complex of K anfix(l); | € L} such that XI) € B(f) for
every fe K(I).

Let us now restate Proposition 20:
Proposition 32 BR is polytopial constant.

This theorem is well-known and quite useful in the full monitoring case @eexfample the Lemke
and Howson, 1964 algorithm). In tlttwmpact casdroposition 20 becomes:

Proposition 33 If shas a polytopial graph, then BR is polytopial constant.

The proofs of both propositions rely on polytopial parameterized max-naigrams defined in the
next subsection.

A.2.1 CONSTANT SOLUTION OF A POLYTOPIAL PARAMETERIZED MAX-MIN PROGRAM

A Polytopial Parameterized Max-Min Program (PPMP) is defined as follbwsX and?” be two
Euclidian spaces of respective dimensthnandd,. Consider the prograr(Ps) (depending on a
parameterf that belongs to some polytope in R%) that is defined by

(Ps) : max min XAy,
Xex yey
st.Dx<d st.Efy<es
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whereA is ad; x dy matrix, {Es, er; f € 7} is a family of matrices and vectors (we do not specify
the sizes the matrices, as long as each inequality makes send@)dhack also a fixed matrix and
vector such that the admissible $8t= {x € X; Dx < d} is a polytope. The solution set O ) is
denoted byB(f) C X and this defines a multivalued mappiB@) from ¥ into X.

Theorem 34 Assume that the correspondence S defined by:

F =9
f = S={yc9; Ery<es}

has a polytopial grapts. Then B: ¥ = X is polytopial constant.

S:

Figure 1 illustrates ideas of the proof for a simple example.
Proof. Before going into full details, we first recall the following properties:

i) A linear program is minimized on a vertex of the polytopial feasible set (thictgadly
implied by the following point);

i) Rockafellar (1970, Theorem 27.4, page 270): GixenD andf € 7, if y minimizesxAyon
St then

—XA€ NCSf (y) )

whereNCe (y) is the normal cone to the convex &t RY aty € E defined by :
NCe(y) = {pe RY; (p.z—), v2€E};

i) Ziegler (1995, Example 7.3, page 193): P is a polytope then the finite family
{NGp(v); v is a vertex ofP} is a polyhedral complex aRY called a normal fan (i.e., it is
a finite family of polyhedra that covdRY and such that each pair has an intersection with
empty interior);

iv) Billera and Sturmfels (1992, page 530): Since for every 7, Sy = M~1(f) wherel : Sc
F x99 — ¥ is the projection with respect to first coordinates, then there ej{idts; | € L},
a polytopial complex ofF such that the normal fan & is constant on everl(l) (this can
alternatively be deduced from the following point);

v) Rambau and Ziegler (1996, Proposition 2.4, page 221): On eachs# gudytopek (1), the
mappingf — S is linear. In particular, there exists a finite family of affine functidf{)
from K(I) to 9 such that the vertices & are exactly{y(f); y(-) € Y(I)}.

Points i) and ii) imply that ifx; maximizes(Ps ), then the latter is minimized at some vertex of
St denoted byy;, again because of point i). Therefore it can be assumed-thgh is a vertex of
the polytopeNCs, (i) N Da— WhereDa_ := {—XxA; x € D}. ThusB(f), the solution set tgPs)
contains at least an element of

Xi = {x € D; —xA'is a vertex ofDa_ NNCs, (y1), for some vertey of Sf} .

By point iii), the normal fan and therefor€; are constant of(l). The latter can also be
assumed to be finite by taking a unique representanX; for every vertices of the intersection of
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the normal fan and,_. Since the number of different fans is finite, for ahg 7, the solution set
to (Pr) contains at least an element of the finiteXset .+ X+.
Moreover, for every € X:

B lx) = {fef minxAy > maxmlnxAy}
€St X eDyeSt

= U {f € K(I); minxAy > maxmln%Ay}
ler yeSt X' €D yeS;

= Un {f € K(I); minxAy > minx’Ay}
" yeS

leLx'exX yesr

- |L€JLXQXV()U {f eK(l); )r/TgiSrfwayzxAy(f)}

= Un U ﬂ {feK ; XAY(f) > XAY ()},
leLx'eXy ()eY()y(-)

where, respectively, the second line is a consequence of pointédhitid line of the definition of
X and the fourth and fifth lines of points i) and v).
By point v), the two mapping(-) andy'(-) are affine orK(I), so each possible set

{f e K(1); xAy(f) > XAy (f)}

is a polytope as the intersection of an half-space and the poli@pe Since, the intersection of

a union of polytopes remains a union of polytopes, for every X, B~1(x) is a finite union of

polytopes andB is polytopial constant. O
We can now prove simultaneously Propositions 32 and 33:

A.2.2 PROOF OFPROPOSITIONS32 AND 33

Sincesis linear, its graph, denoted IS is a polytope. Theorem 34 (wit® = A(7)) implies that

the solution, denoted b§( f) for every f € F, of the parameterized program

max min X
xeA(I )yegl(f)p( Y)

is polytopial constant. We denote BiK(1); | € L} a corresponding polytopial complex.Bfis con-
stant orK (1), then it is also constant df(l) = Mg* (K(1)), which is a finite union of polytopes
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