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Abstract

Following Hartigan (1975), a cluster is defined as a conmkctenponent of thé-level set of the
underlying density, that is, the set of points for which tlemsity is greater thah A clustering
algorithm which combines a density estimate with specltatering techniques is proposed. Our
algorithm is composed of two steps. First, a nonparametisitly estimate is used to extract the
data points for which the estimated density takes a valuatgréhart. Next, the extracted points
are clustered based on the eigenvectors of a graph Laplawtix. Under mild assumptions,
we prove the almost sure convergence in operator norm ofrtipérieal graph Laplacian operator
associated with the algorithm. Furthermore, we give théctipbehavior of the representation
of the data set into the feature space, which establishesttbeg consistency of our proposed
algorithm.

Keywords: spectral clustering, graph, unsupervised classificatewel sets, connected compo-
nents

1. Introduction

The aim of data clustering, or unsupervised classification, is to partition asdaiato several
homogeneous groups relatively separated one from each other vwittés a certain distance or
notion of similarity. There exists an extensive literature on clustering mettaodsye refer the
reader to Anderberg (1973), Hartigan (1975) and McLachlan aetl(R@00), Chapter 10 in Duda
etal. (2000), and Chapter 14 in Hastie et al. (2001) for general misterighe subject. In particular,
popular clustering algorithms, such as Gaussian mixture models or k-meaegytoved useful in
a number of applications, yet they suffer from some internal and compuaghtimitations. Indeed,
the parametric assumption at the core of mixture models may be too stringent, vehdatidard
k-means algorithm fails at identifying complex shaped, possibly non-eoolssters.
The class ofspectral clusteringalgorithms is presently emerging as a promising alternative,

showing improved performance over classical clustering algorithms emaddenchmark problems
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and applications (see, e.g., Ng et al., 2002; von Luxburg, 2007). Arview of spectral clustering
algorithms may be found in von Luxburg (2007), and connections withekenethods are exposed
in Fillipone et al. (2008). The spectral clustering algorithm amounts at editgthe data into a
feature space by using the eigenvectors of the similarity matrix in such a wahéhelusters may
be separated using simple rules, for example, a separation by hypeatpldreecore component of
the spectral clustering algorithm is therefore the similarity matrix, or certaimalaations of it,
generally called graph Laplacian matrices; see Chung (1997). Graphdian matrices may be
viewed as discrete versions of bounded operators between funcsipaeds. The study of these
operators has started out recently with the works by Belkin et al. (2@@&kin and Niyogi (2005),
Coifman and Lafon (2006), Nadler et al. (2006), Koltchinskii (19%)e and Koltchinskii (2006),
Hein et al. (2007) and Rosasco et al. (2010), among others.

In the context of spectral clustering, the convergence of the empiraghd-aplacian operators
has been established in von Luxburg et al. (2008). Their results implyxisteece of an asymptotic
partition of the support of the underlying distribution of the data as the nuoflsmples goes to
infinity. However this theoretical partition results from a partition in a featpes, that is, it is the
pre-image of a partition of the feature space by the embedding mappingfaiesinterpreting the
asymptotic partition with respect to the underlying distribution of the data remamedyaan open
and challenging question. Similar interpretability questions also arise in thedretatgext of kernel
methods where the data is embedded in a feature space. For instance, izkilellitknown that the
populark-means clustering algorithm leads to an optimal quantizer of the underlyingbdigin
(MacQueen, 1967; Pollard, 1981; Linder, 2002), “kernelized’simrs of thek-means algorithm
allow to separate groups using nonlinear decision rules but are moreildiffiénterpret.

The rich variety of clustering algorithms raises the question of the definitiarctfster, and as
pointed out in von Luxburg and Ben-David (2005) and in Ga€scudero et al. (2008), there exists
many such definitions. Among these, perhaps the most intuitive and predisiion of a cluster
is the one introduced by Hartigan (1975). Suppose that the data is dremvrafprobability density
f onRY and lett be a positive number in the range bf Then a cluster in the sense of Hartigan
(1975) is a connected component of the upplevel set

L(t)={xeR?: f(x) >t}.

This definition has several advantages. First, it is geometrically simple.n8eitwffers the pos-
sibility of filtering out possibly meaningless clusters by keeping only the ebtiens falling in a
region of high density. This proves useful, for instance, in the situaticgrevthe data exhibits a
cluster structure but is contaminated by a uniform background noise.

In this context, the level should be considered as a resolution level for the data analysis. For
instance, when the threshdlds taken equal to 0, the groups in the sense of Hartigan (1975) are the
connected components of the support of the underlying distribution, wdtii@ereases, the clusters
concentrate in a neighborhood of the principal modes of the dehs&gveral clustering algorithms
deriving from Hartigan’s definition have been introduced building. Ir¥as et al. (2000, 2001),
and in the related work by Azzalini and Torelli (2007), clustering is penfd by estimating the
connected components @f(t). Hartigan’s definition is also used in Biau et al. (2007) to define an
estimate of the number of clusters based on an approximation of the level agtdighborhood
graph.

In the present paper, we adopt the definition of a cluster of Hartigarbj1@nd we propose
and study a spectral clustering algorithm on estimated level sets. The algasittomposed of
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two operations. Using the samp¥e, ..., X, of vectors ofRY, we first construct a nonparametric
density estimatd,, of the unknown density. Next, given a positive numberthis estimate is used
to extract those observations for which the estimated density exceedsedtetfieshold, that is,
the observations for whiclﬁq(xi) >1t. In the second step of the algorithm, we perform a spectral
clustering of the extracted points. The remaining data points are then |efeleda

Our proposal is to study the asymptotic properties of this algorithm. In the vgtotsy, the
density estimatef, is arbitrary but supposed consistent, and the thresh@dixed in advance.
For the spectral clustering part of the algorithm, we consider the settingevitine kernel function,
or similarity function, between any two pairs of observations is non negatidewith a compact
support of diametert® for some fixed positive real numbler Our contribution contain two sets of
results.

In the first set of results, we establish the almost-sure convergencesiatop norm of the
empirical graph Laplacian on the estimated level set. In von Luxburg e2@08), the authors
prove the collectively compact convergence of the empirical operattingaon the Banach space
of continuous functions on some compact set. Finite sample bounds in Hilkfarii® norms on
Sobolev spaces are obtained in the paper by Rosasco et al. (20106yr tasult, the empirical
operator is acting on a Banach subspace of the Holder $pfscef Lipschitz functions, which we
equip with a Sobolev norm. This operator norm convergence is more ataehah the slightly
weaker notion of convergence established in von Luxburg et al. j2@08 holds for any value
of the scale parametdr, but the functional space that we consider is smaller. As in the related
works referenced above, the operator norm convergence iedarsing results from the theory of
empirical processes to prove that certain classes of functions satisifpanilaw of large numbers.
We also rely on geometrical auxiliary results to obtain the convergence pféjpeocessing step of
the algorithm. Under mild regularity assumptions, we use the fact that the tgpoidige level set
L(t) changes only when the thresholgasses a critical value df This allow us to define random
graph Laplacian operators acting on a fixed space of functions, with paapability.

In the second set of results, we study the convergence of the speaafttbenempirical operator,
as a corollary of the operator norm convergence. Depending on thesvaf the scale parameter
h, we characterize the properties of the asymptotic partition induced by therihgsalgorithm.
First, we assume thétis lower than the minimal distance between any two connected components
of thet-level set. Under this condition, we prove that the embedded data poirdsrtoate on sev-
eral isolated points, each of whose corresponds to a connected cemmdrthe level set, that is,
observations belonging to the same connected component of the leved se@ped onto the same
point in the feature space. As a consequence, in the asymptotic regimesasayable clustering
algorithm applied on the transformed data partitions the observations aggdodthe connected
components of the level set. In this sense, recalling Hartigan's (197ibjto of a cluster, these
results imply that the proposed algorithm is strongly consistent and that, tstjcally, observa-
tions of L(t) are assigned to the same cluster if and only if they fall in the same conneated co
ponent of£(t). These properties follow from the ones of the continuous (i.e., populaérsion)
operator, which we establish by using arguments related to a Markov ahaigeneral state space.
The underlying fact is that the normalized empirical graph Laplacian defimandom walk on the
extracted observations, which converges to a random walk(on Then, asymptotically, when the
scale parameter is lower than the minimal distance between the connected eotspir (t), this
random walk cannot jump from one connected component to one anbdléxet, by exploiting the
continuity of the operators in the scale paraméiewe obtain similar consistency results when
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is slightly greater than the minimal distance between two connected componebfs) oin this
case, the embedded data points concentrates in several non-oveylappas, each of whose cor-
responds to a connected component ). This result holds whenevéris smaller than a certain
critical valuehmax, Which depends only on the underlying dendity

Finally, let us note that our consistency results hold for any value of tlesltbidt different
from a critical value of the densitf, which assume to be twice continuously differentiable. Under
the stronger assumption thétis p times continuously differentiable, with > d, Sard’s lemma
imply that the set of critical values df has Lebesgue measure 0, so that the consistency would
hold for almost alk. The special limit case= 0 corresponds to performing a clustering on all the
observations, and our results imply the convergence of the clustering pattigon of the support
of the density into its connected components, for a suitable choice of thepscalaeter. The proofs
could be simplified in this setting, though, since no pre-processing step Wweulgéeded. Let us
mention that this asymptotic partition could also be derived from the results ihwxiourg et al.
(2008). At last, we obtain consistency in the sense of Hartigan’s definitiwm the correct number
of clusters is requested, which corresponds to the number of conremtgzbnents of_(t), and
when the similarity function has a compact support . Hence several queséimain largely open
which are discussed further in the paper.

The paper is organized as follows. In Section 2, we start by introducingeibessary notations
and assumptions. Then we define the spectral clustering algorithm on edtileedé sets, and
we follow by introducing the functional operators associated with the algorith Section 3, we
study the almost-sure convergence in operator norm of the randoratorgrstarting with the un-
normalized empirical graph Laplacian operator. The main convergesod of the normalized
operator is stated in Theorem 4. Section 4 contains the second set lb$ @sthe consistency
of the clustering algorithm. We start by studying the properties of the limit ¢gena the case
where the scale parameteis lower than the minimal distance between two connected components
of L(t). The convergence of the spectrum, and the consistency of the algorittimenistated in
Theorem 7. This result is extended in Theorem 10 to allow for larger satie We conclude this
section with a discussion on possible extensions and open problems. ddie @i these theorems
rely on several auxiliary technical lemmas which are collected in Sectiongally-to make the
paper self contained, materials and some facts from the geometry of levdiusetional analysis,
and Markov chains are exposed in Appendices A, B, and C, resphcii the end of the paper.

2. Spectral Clustering Algorithm

In this section we give a description of the spectral clustering algorithmvehdets that is suitable
for our theoretical analysis.

2.1 Mathematical Setting and Assumptions

Let {X }i>1 be a sequence of i.i.d. random vectorsRif, with common probability measune
Suppose thagt admits a density with respect to the Lebesgue measurédnThe t-level sepf f
is denoted by.(t), that is,

L(t):={xeRY: f(x) >},
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for all positive levelt, and givena < b, £ denotes the sefx € RY : a < f(x) < b}. The dif-
ferentiation operator with respect xois denoted byD. We assume that satisfies the following
conditions.

Assumption 1. (i) f is of classC? onRY; (ii) ||Dxf|| > 0 onthe sefxc RY : f(x) =t};
(iii) f, Df, andD?f are uniformly bounded oRY.

Note that under Assumption Lt) is compact whenevermelongs to the interior of the range bf
Moreover,L(t) has a finite numbefof connected componeng, j =1,...,¢. For ease of notation,

the dependence @fj ont is omitted. The minimal distance between the connected components of
L(t) is denoted by, that is,

Omin 1= iiQ];dist(Ci, G). (1)

LetAfAn be a consistent density estimatefabased on the random sampig ..., X,. Thet-level
set of f, is denoted by ,(t), that is,

Ln(t) = {xeR%: fo(x) >t}
Let J(n) be the set of integers defined by
In):={je{L,....,n}: fa(Xj) >t}

The cardinality ofJ(n) is denoted byj(n).

Letk: RY — R, be a fixed function. The unit ball @& centered at the origin is denoted By
and the ball centered atc RY and of radius is denoted b+ rB. We assume throughout that the
functionk satisfies the following set of conditions.

Assumption 2. (i) k is of classC? onRY; (i) the support ok is B; (iii) k is uniformly
bounded from below oB/2 by some positive number; ariy) k(—x) = k(x) for all
x e RY,
Let h be a positive number. We denote ky: RY — R, the map defined b, (u) := k(u/h).
2.2 Algorithm
The first ingredient of our algorithm is trsgmilarity matrixK, , whose elements are given by
Knn(i, j) i= kn(Xj = Xi),

and where the integetisand j range over the random sétn). HenceK;y is a random matrix
indexed byJ(n) x J(n), whose values depend on the functipnand on the observation§ lying
in the estimated level seiy(t). Next, we introduce the diagonabrmalization matrixD, , whose
diagonal entries are given by

Dnn(i,i) == z Knn(i,]), ie€d(n).
jed(n)

Note that the diagonal elementsdf , are positive sinc&(i,i) > 0.
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The spectral clustering algorithm is based on the m&¥yx defined by
Qnh = D;ﬁKn,h-

Observe thaQn  is a random Markovian transition matrix. Note also that the (random) eigess/alu
of Qnn are real numbers and th@t , is diagonalizable. Indeed the mat@h is conjugate to the

symmetric matrixSyp = D;ﬁ/ZKth;ﬁ/z since we may write

Qni = Dpp/ *SunDy/e.
Moreover, the inequality{Qn |l < 1 implies that the spectrum(Qnp) is a subset of—1;+1].
Letl=An1> A2 > ... > )\n,j(n) > —1 be the eigenvalues @, n, where in this enumeration, an
eigenvalue is repeated as many times as its multiplicity.

To implement the spectral clustering algorithm, the data points of the partitioniidepn are
first embedded int®’ by using the eigenvectors @, associated with thé largest eigenvalues,
namelyAn 1, An2, ...An¢. More precisely, fix a collectioly, 1, Vn2, ..., Vn, of such eigenvectors
with components respectively givenWyx = {Vnk j }jeyn), fork=1,...,£. Then thej™" data point,
for j in J(n), is represented by the vectpk(X;) of the feature spac®’ defined bypn(X;) :=
{Vnk jt1<k<¢. Atlast, the embedded points are partitioned using a classical clusteringdnstich
as the k-means algorithm for instance.

2.3 Functional Operators Associated With the Matrices of the Algorithm

As exposed in the Introduction, some functional operators are assbwidtethe matrices acting
on CY(M defined in the previous paragraph. The link between matrices and fualctiperators is
provided by the evaluation map defined in (3) below. As a consequesympé#otic results on the
clustering algorithm may be derived by studying first the limit behavior ofelogerators.

To this aim, let us first introduce some additional notation. #oa subset ofRY, let W(D)
be the Banach space of complex-valued, bounded, and continuoushedifable functions with
bounded gradient, endowed with the norm

19llw := l[glle + [Dg]leo-

Consider the non-oriented graph whose vertices ar¥jtbdor j ranging inJ(n). The similarity
matrix Knh gives random weights to the edges of the graph and the random transitiox @,
defines a random walk on the vertices of a random graph. Associatethigittandom walk is the
transition operato®n : W (Ln(t)) — W(Ly(t)) defined for any functioy by

Qnng(X) := /an Onh (X Y)9(Y)PH(dy).

In this equation, is the discrete random probability measure given by

1
]P)t = — 6 i
: J(n) jejz(n) XJ
and o )
. Kly—X . amt
qn,h(xay) = Kn,h(x) ) WhereKn,h(X) = /Ln(t)kh(y X) P, (dy). (2)
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In the definition ofg, h, we use the convention that@= 0, but this situation does not occur in the
proofs of our results. _
Given theevaluation magt, : W(La(t)) — C!™ defined by

Th(g) == {g(xj)}jej(n)7 3)

the matrixQn and the operatoQ,n are related byQnno Ty = Tho Qnn.  Using this relation,
asymptotic properties of the spectral clustering algorithm may be dedumedlie limit behavior
of the sequence of operatdi®n n }n. The difficulty, though, is tha®, , acts orW(Lﬂ(t)) andLp(t)
is a random set which varies with the sample. For this reason, we introdigcgiance of operators
én,h acting oW (L(t)) and constructed fror®,, as follows.

First of all, recall that under Assumption 1, the gradientf afoes not vanish on the sét €
RY : f(x) =t}. Sincef is of classC?, a continuity argument implies that there exiggs> 0 such
thatzgtfssg contains no critical points of. Under this condition, Lemma 17 states thigt + €) is
diffeomorphic toL(t) for everye such thate| < €. In all of the following, it is assumed thap is
small enough so that

€o/0(g0) < h/2, wherea(gg) :=inf{||Df(x)

XELg ) (4)

Let {&n}n be a sequence of positive numbers such ¢hat gy for eachn, ande, — 0 asn — . In
Lemma 17 an explicit diffeomorphisiy, carrying L(t) to L(t —€,) is constructed, that is,

O L(t) — Lt—gpy).

The diffeomorphisnd, induces the linear operat®, : W (L(t)) —W (L(t—¢€,)) defined bybn,g=
god,t.
Second, lef),, be the probability event defined by

~ . ~ t 1
g%—Mm—ﬂmg%y{mﬁmmamxqu}zﬂmﬂ@.
Note that on the evenf,, the following inclusions hold:

L(t+en) C Ln(t) C L(t—¢n).

We assume that the indicator functidg, tends to 1 almost surely as— o, which is satisfied
by common density estimatdg under mild assumptions. For instance, consider a kernel density
estimate with a Gaussian kernel. It is a classical exercise to provéfhatE f,||. converges to 0
almost surely as goes to infinity (see, e.g., Example 38 in Pollard, 1984, p. 35, or Chapter 3 in
Prakasa Rao, 1983) under appropriate conditions on the bandwidtbresg Moreover, under the
conditions onf in Assumption 1, the norm of the gradient bfis uniformly bounded oiRY, so
by using a Taylor expansion, it is easy to prove that the bias ﬁ@fn— f|l — O as well. Hence
|| fo — |l — O almost surely. Furthermore, under AssumptiofiD2f|| is uniformly bounded on
RY so the same reasoning leads to the almost sure convergence 4D 0f Df||.. Together,
these facts imply thatg, — 1 almost surely ag — co.

We are now in a position to define the opera@m : W (L(t)) — W(L(t)). On the evenfp,

for all functiongin W(L(t)), we defineQnhg by the relation

(jmhg(x) = J(ln) jejz(n) qn,h(q)n(x),xj)g(q;;l(xj)), forallx e L(t), (5)
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and we extend the definition ﬁAjn_,h to the whole probability space by setting it to the null operator
on the complemen®§ of Qp, that is, onQ§, the function@mhg is identically zero for eacly €
W(L(t)). With a slight abuse of notation, we may note @At = P, 1Qnn®n, SO that essentially,

the operator@n,h andQn are conjugate and have equal spectra, which are in turn related to the
spectrum of the matri®, n. This is made precise in Proposition 1 below.

Proposition 1 On the evenf,, the spectrum of the functional operaton@ﬁ,h is o(ﬁnm) ={0}uU
0(Qnn). Moreover, if ifA # O, the eigenspaces are isomorphic, that is,

o

TH®n i N(Qun—A) — N(Qun—\),
wherem,®, acts on W L(t)) asg®ng(X) = g(d,1(x)).
Proof From Equation (5), the rang%(@mh) of Qn,h is spanned by the finite collection of functions

fi:|Lt) — C
X = Onn(dn(X), X)),

for all j € J(n). Moreover, these functions form a basistjﬁnvh). To show this, leV be a vector
in €’ such that
> Vifj(x)=0 forallxe L(t).
jed(n)

By definition ofgn , settingy = ¢n(x), we have

V%W—M)

=0 forallye L(t—¢gy).
J n
jej(n) Kn,h()/)

Since the support d, is hB, the support of the functiokinn is equal td Jjcn) (Xj+hB), and since
kn is positive, it follows thaw; = 0 for all j in J(n). Hence{f; : j € J(n)} is a basis oR(@mh).

Now let g be an eigenfunction dﬁmh associated with an eigenvalde# 0. Then for allx in
L(t)

1 _

i Z qn,h(¢n(x)7xj)g(¢n 1(Xj)) = Ag(X). (6)
Since we consider a non-zero eigenvalyis, in the range oﬁn’h, and since the functionfsf; : j €
J(n)} form a basis oR(Qp), there exists a unique vectdr= {Vitieam € CI™ such that

- Z Viann(dn(X),Xj), xe L(t).

900 = & i, 2

Thereforevj = g(¢,1(X;)) for all j in J(n). Moreover, by evaluating (6) at any= ¢, 1(X) with
i €J(n),
> ann(X,X) (90 (X)) = Ag(0,(X)),
jed(n)
which implies thatQ,,V = AV. ConsequentlyV is an eigenvector oQ, associated with the
eigenvalue\. Hence

0(Qnp) € 6(Qnp)U{0}, )
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and by unicity otV, it follows that the mapt, @, : N(@n,h —A) — N(Qnn—A) is injective.
Conversely, leV be an eigenvector of the mati@¥, , associated with a non-zero eigenvalue
Consider the functiog of W (L(t)) defined by

g(x) = )\j:(Ln) jeZ(n)vjqn,h(q)n(x),Xj), forallx e L(t).

Observe that for al] in J(n),

1 i
a(dn (X)) = A > Gnn(X), Xj)Vyr by definition ofg,
j’ed(n)
1 -
= %im) 2 K o (Xjr — Xj)Vjr by definition ofK n andgpn,
(Qn hV)J =V sinceV is an eigenvector

Hence it follows that for alk € L(t),

Qnng(x) = J(ln) J;ﬂ) Unn(On(X), Xj)g(dn (X)) using (5)
- 1%; Gn(d sinceg(32(X;)) = V.
Ag(X).
Consequently,
0(Qn,h) C G(QH,h)a (8)

and the mapt,, @, : N(@n,h —A) — N(Qnn—A) is surjective. Combining (7) and (8), and since 0
belongs tas(Qn ), We obtain the equality

6(Qnn) = {0} UG(Qnp).

At last, sincem,®, is both injective and surjective, the subspalskéén’h —A) andN(Qnp—A) are
isomorphic for any # 0. |

Remark 2 Albeit the relevant part dﬁmh is defined o2, for technical reasons, this does not bring
any difficulty as long as one is concerned with almost sure convergéacee this, letQ, 4, P) be
the probability space on which the'Xare defined. Denote Y. the event on whiclg, tends to

1, and recall that PQ.,) = 1 by assumption. Thus, for evesy< Q, there exists a random integer
no(w) such that, for each & np(w), wlies inQn. Besides g(w) is finite onQ.,. Hence in particular,

if {Z,} is a sequence of random variables such thdlteZ converges almost surely to some random
variable Z,, then 4 — Z,, almost surely.
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3. Operator Norm Convergence

In this section, we start by establishing the uniform convergence of aororalized empirical
functional operator. The main operator norm convergence residtf€m 4) is stated in Section 3.2.
The proofs of these theorems rely on several auxiliary lemmas which assl stad proved in
Section 5.

3.1 Unnormalized Operators

Letr: L(t — &) x RY — R be a given function. Define the linear operatBrsandR onW(L(t))
respectively by

Rg0) = [ r(6n00¥)o0a 0By, and R = [ r(y)gyH(dy)

Proposition 3 Assume the following conditions on the function r;
(i) r is continuously differentiable with compact support ;
(ii) r is uniformly bounded orL(t —g9) x RY, that is, [|f||e < o ;
(iii) the differential Dyr of the function r with respect to x is uniformly boundedfft — £) x RY,
that is, || Dxf || := sup{[|Dxr (X, Y)[| : (X,y) € L(t —€0) x R} < oo.
Then, as n— o,
sup{HRng— Rg|., : llgllw < 1} — 0 almost surely

The key argument for proving Proposition 3 is that the collection of funstion

{yw r(%Y)9Y) 1o (y) © X € L), [9llwicw) < 1}

is Glivenko-Cantelli, which is proved in Lemma 13. Let us recall that a collactiof functions is
said to be Glivenko-Cantelli, or to satisfy a uniform law of large number, if

sup
geF

— 0 almost surely,

3 906 5l

whereX, Xy, Xy, ... are i.i.d. random variables.

Proof In all this proof, we shall use the following convention: given a functiotefined only on
some subseD of RY, for any subsefl C D, and anyx € RY, the notatiorg(x)14(x) stands foig(x)
isx € 4 and for O otherwise. Set

1 10 B
S$g(X) := HZO)n 2 F(On(¥), %) 9(0n (X)) L) (%),
Tag(X) = H(Z(v) ﬁi: F(dn(X),X)9(%) L) (%),

1 10
Ung00 = Lz n 2, X900 L (%)

and consider the inequality

|Rag(X) — RIX)| < [Rg(X) — Sha(X)| + [Shg(X) — Tag(X)|
+ |Thg(X) —Ung(X)| +|Ung(x) — Rg(X)|, 9)
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forallxe L(t) and allg e W(L(t)).
The first term in (9) is bounded uniformly by

IRag(X) — Sig(x)| <

”—1]\\ru lal
TR0

and sincej(n)/ntends tou(L(t)) almost surely as — o, we conclude that

sup{HRng—SngHw :lgllw < 1} —0 a.s.as — . (10)
For the second term in (9), we have
w0 12
1000~ g% ”r” 0 3,900 00) L2y ~606) 1 ()|
Hr||oo 18

= Zlgn (11)

whereg, is the function defined on the whole spa&&by
= |9(672(9) Ly () — 9002 ()|
Consider the partition dR¢ given byRY = By ,UB, UBg n U B4y, Where

Bin:= Ln(t)NL(t), Bgn:= Ln(t)NL(L)S,
Ban = Ln(t)NL(t), Ban:= Ln(t)°NL(t)C.

The sum over in (11) may be split into four parts as

Zgn = 11(x,9) +12(x,9) + 13(x,9) +14(X, 9) (12)
where
LS 1 B
= ﬁi;gn(xl) {Xi € Byn}-
First, 14 n(X,g) = 0 sinceg; is identically 0 onB, 5. Second,
1 n
12(%,9) +13(X,9) < ||gH°°ﬁ_leL(t)ALn(t) (X) (13)
1=
Applying Lemma 11 together with the almost sure convergendg pfo 1, we obtain that
1 n
ﬁ ;1L(t)Mﬂ(t)(Xj) — 0 almost surely (14)
Third,
11(x,9) < sup |g(®n (X)) —g(X)| < [IDxgll SUP |65 (X) — x|
XeL(t) xeL(t)
< [IDxglleo SUP [[X—dn(X)]| — O (15)

xeL(t)
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ash — c0 by Lemma 17. Thus, combining (11), (12), (13), (14) and (15) leads to

sup{HSng—TngH00 lgllw < 1} —0 a.s. a$— o, (16)
For the third term in (9), using the inequality
IF(&n(X), %) =1 (%,X)| < [Dxr[les SUP [[§n(X) —X|

XeL(t)

we deduce that

1
}Tng(X) —Ung(X)‘ < WHQHWHDXerX:g(E)) [¢n(X) —X]|.

and so
suIO{HTnQ*UnG]Hoo S lglw < 1} —~0 as.as— o, (17)

by Lemma 17.
At last, for the fourth term in (9), we conclude by Lemma 13 that

sup{HUng— R, : lgllw < 1} —0 as. as — .

Finally, reporting (10), (16) and (17) in (9) yields the desired result. [ |

3.2 Normalized Operators

Theorem 4 states tha@mh converges in operator norm to the limit opera@y : W(L(t)) —
W(L(t)) defined by

Q909 = [ anxygyi 0y, (18
wherept' denotes the conditional distribution ¥fgiven the even{X € L(t)], and where
—X :
ey = X it k) = [ kaly—xn ). (19)
Kn(%) 150

Theorem 4 (Operator Norm Convergence) Suppose that Assumptions 1 and 2 hold. We have
|Qnn—Qnll,, — O almost surely as p> co.

Proof We will prove that, as1 — o, almost surely,

sup{‘
sup{‘

To this aim, we introduce the opera@th acting onW(L(t)) as

Qung9 = [ on(6n(x.y)9(6 () Bh(0y).

G- Qug] ¢ lahw < 1} 0 (20)

and

Dx[Qnng] — Dx[Qug] | < llglw < 1} ~0 (21)
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Proof of (20) Forallge W(L(t)), we have
Qnng — Qng|., < [|Qnng — Qnndl|., + || Qv — Qng..- (22)
First, by Lemma 14, the function= gy satisfies the condition in Proposition 3, so that
sup{ [ Qnng— Quglle  llglhw < 1} — 0 (239)

with probability one a1 — .
Next, sincel|gnl| < o by Lemma 14, there exists a finite const@ptsuch that,

|Qnnglle < Cn for all nand allg with ||g|jw < 1. (24)
By definition ofqn , for all X,y in the level setL(t), we have

Kn(X)

Onh(XY) = Kon() Oh(X,Y)-
So
~ ~ Kn(bn ~
Qnng(X) ~ Qnngl(x)| = Im ~ 1/ | Qung(x)
Kn (¢n(x))
G — 1,
= hxig(Ft)) Kn,h (¢n(x)) '
whereC, is as in (24). Applying Lemma 16 yields
sup{ [ Qung — Qnigle : lglw < 1} —0 (25)

with probability one a® — «. Reporting (23) and (25) in (22) proves (20).
Proof of (21) We have

The second term in right han side of (26) is bounded by

R0 = [ (Duth)($n(00.Y)9(05 ) P(dy)  and

Ro) = [ (Duh) (800, )0(0 () (0.

Dy [Q\mhg} — Dy [th} Dy [Q\n,hg} — Dy [éhg} Dy [én,hg} — Dy [th} (26)

00 00

i

S ‘
2]

Dx [én,hg} — Dx [th} ) < Hqu)nHOo HRng— RgHooa

where
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By lemma 17 x — Dydn(X) converges to the identity matrly of RY, uniformly in x over £(t). So
|IDxdn(X)|| is bounded by some finite consta&y uniformly overn andx € L(t) and

By Lemma 14, the map: (X,y) — Dx0n(X,y) satisfies the conditions in Proposition 3. ThiliR,g—
Rg||. converges to 0 almost surely, uniformly oxgn the unit ball oW (L(t)), and we deduce that

sup{‘

For the first term in right hand side of (26), observe first that theista constar(;, such that,
for all nand allg in the unit ball ofW (L(t)),

Dx| Q| — Dx|Qug| Hw < Cy|[Rig—R.,-

Dy [én,hg} —Dx [th}

Hgllw < l} —0 a.s.afn— oo, (27)

[Rangll, <G, forall nand allg with ||g|jw < 1, (28)

by Lemma 14.

On the one hand, we have

Kh(®n Kh($n

Dx [qn,h(q)n(x)?yn = lmeq)n(x)(quh)(%(x)’y) + Dx MI Qh(q’n(x)aY)-

Hence,
_  Kn(0n(%) Kn(n(¥) | ~
Dy [Qn,hg(x)} = meq)n(X)Rng(x) + Dx Knh((l)n(X))] Qn,ng(X).

On the other hand, sind@[gh(¢n(x),y)] = Dx®n(X)(Dxh) (®n(X),Y),

D |QnrglX)] = Dxbn(¥Reg(X).
Thus,

Dx|Qnng(X)] — D[ Qng()| = Dx

Kh((bn(x)))] én,hg(x)_F (Kh((bn()())) — 1> qu)n(x) Rng(x)

Knh($n(X) Knh (¢n(X)
Using the Inequalities (24) and (28), we obtain
h(9n()) Kn(9n())
Dy | Qn, Dy _— C 77 1.
o] 0[] |_ s stp o | 0 |+ cics e 0
and by applying Lemma 16, we deduce that
SUD{‘ Dy [Qn,hg} — Dy [th} Clglw < 1} —0 as. ag — . (29)
Reporting (27) and (29) in (26) proves (21). |
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4. Consistency of the Algorithm

The consistency of the algorithm relies on the operator norm COﬂV&}‘gﬁI@hh to the limit oper-
atorQp, (Theorem 4), on the spectral propertiesfstated below in Section 4.1, and on the results
collected in Appendix B on the perturbation theory of linear operators stdréing point is the fact
that, provided thalh < dnin, the connected components of the levelS@t are the recurrent classes
of the Markov chain whose transitions are definedQpy Indeed, this process cannot jump from
one component to another component. He@galefines the desired clustering via its eigenspace
corresponding to the eigenvalue 1, since this latter is spanned by theteheti functions of the
connected components 6ft), as stated in Proposition 6 below.

In Section 4.2, the consistency of the clustering is obtained in Theorem 7 dageewhere the
scale parametdris lower thandin defined in (1), which is the minimum distance between any two
connected components 6{t). Using the continuity 0@y in h, we then obtain the main consistency
in Theorem 10 of Section 4.3, whehds allowed to be larger thadi,, up to a value depending
only on the underlying densit§.

4.1 Propertiesof the Limit Operator Q, When h < dmin

The transition kernedj,(x,dy) := gn(X,y) it (dy) associated with the operatQ¥, defines a Markov
chain with state spacg(t), which is not countable. Familiar notions such as irreducibility, aperi-
odicity, and positive recurrence, which are valid for a Markov chaia ocountable state space, may
be extended to the non-countable case. The relevant definitions andamsaterMarkov chains
on a general state space are summarized in Appendix C. The propeftieshMérkov chain with
transition kernebjh(x, dy) are stated in Proposition 5 below.

Recall that£(t) has¢ connected components,..., and thatdyi,, defined in (1), is the
minimal distance between the connected componentgf

Proposition 5 Consider the Markov chain with state spacét) and transition kernel g(x,dy),
and assume that & dpin.

1. The chain is Feller and topologically aperiodic.

2. When started at a point x in some connected component of the sta& #pa chain evolves
within this connected component only.

3. When the state space is reduced to some connected compougj,dhe chain is open set
irreducible and positive Harris recurrent.

4. When the state space is reduced to some connected compppoéntt), the Markov chain has a
unique invariant distributio(dy) and, for all xe ¢, the sequence of distributiodsi(x, dy) }
over (i converges in total variation toy(dy).

neN

Proof Denote by{&,} the Markov chain with transition kerngh(x,dy). For allx € L(t), the dis-
tribution gn(x, dy) = dn(x,y)t(dy) is absolutely continuous with respect to the Lebesgue measure,
with densityy — fn(X,y) defined by

iy
Jyecw f(yl)dylﬁ(t)(Y)-

Since the similarity functiotk, and the densityf are both continuous, the mag,y) — fn(X,y) is
continuous.

fh(X, y) =0h (Xv y)
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Now, by induction om, the distribution o€, conditioned by = X, which isqﬂ“(x, dy) is also

absolutely continuous with respect to the Lebesgue measure and its densit§(x,y) satisfies

ey = [

2 fzydz= [ 2 zy)dz (30)
ze L(t)

zeL(t)

where the last equality follows from the Markov property. Moreovee easily sees by induction
that the magx,y) — f'(x,y) is continuous.

1. Since the similarity functioky, is continuous, with compact suppdB, the map

X Qug0 = [ ARV

is continuous for every bounded, measurable funajiddence, the chain is Feller.

Now we have to prove that the chain is topologically aperiodic, that is,cff{@tx+nB) > 0
for eachx € L(t), for all n > 1 andn > 0, whereq](x, -) is the distribution o, conditioned on
&o = x. Since the distribution(x,-) admits a continuous densify(x,-), it is enough to prove that
fl'(x,x) > 0. Sincek, is bounded from below oth/2)B by Assumption 2, the densitfs(x,y) is
strictly positive for ally € x4+ hB/2. By induction ovemn, using (30),f7'(x,x) > 0 and the chain is
topologically aperiodic.

2. Without loss of generality, since the numbering of the connected comizdeembitrary, assume
thatx € (7. Lety be a point ofZ(t) which does not belong t@:. Then|ly — X|| > dmin > h so that
gn(X,y) = 0. Whence,

Pu(1 € 1) = Gh(x, Gi) = /C o y)(dy) = /. o Oy =1

3. Assume that the state space is reduceditoln order to prove that the chain is open set irre-
ducible, it is enough to prove that, for eacly € ¢; andn > 0, there exists some integdrsuch that
P(én €y+nB) = q,’}' (x,y+nB) is positive. Observe thaf(x,dy) is the distribution with density

Oh(x,y) = / gh(X,X1)0h(X1,X2) . . . Oh(Xn—1, Y)dX1d%d X1

X1, Xn—1€C1

and (X1, ...,Xn—1) = On(X,X1)0nh(X1,X2) ... On(Xn—1,Y) iS continuous. Hence, it is enough to prove
that there exists some integerand a finite sequence, . ..xy such that

(X, X1)Gh(X1,X2) - . . Gn(Xn—1,Y) > O.

Since( is connected, there exists a finite sequerc®, .. .xy Of points in(Cy such thakg = X,
xn =Y, and||x; — Xi11|| < h/2 for each. Therefore

Onh(X, X1)Gh(X1,X2) - .. Gn(Xn—1,Y) > O

which proves that the chain is open set irreducible.
Since (1 is compact, the chain is non-evanescent, and so it is Harris recurrectll Rt
k(x) = k(—x) from Assumption 2. Therefore,(y — X) = kn(X —y) which yields

K (X)Gh (%, dy)H (dX) = Kn(y)an(y, dx)u (dy).
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By integrating the previous relation with respecktover C;, one may verify thakn(x)pt (dx) is an
invariant measure. At lagt. Kn(x)l'(dx) < e, which proves that the chain is positive.

4. This ergodic property is a direct application of the last part of Appe@d |

Proposition 6 Assume that k< dmin. If g is continuous and £ = g, then g is constant on the
connected components oft).

Proof The numbering of the connected components is arbitrary. Hence it is lettoygove that
g is constant ove(y. For this, fixx in ¢; and note thay = Qng impliesg = Qpg for anyn > 1.

By Proposition 5, the chain is open set irreducible, topologically aperi@dfid, positive Harris
recurrent onCy. Moreover,gp(x,dy) converges in total variation norm ta (dy), wherev; is the

unique invariant distribution when state space is reduced.t®pecifically,

Qa(x) — /C gyva(dy) asnseo

Hence, for everxin (i,
00 = [ _gywva(ay).
G

and since the last integral does not depend,dnfollows thatg is a constant function og;.. W

4.2 Spectral Convergence

Theorem 7 states that the representation of the extracted part of theetlaitto she feature space
R’ (see the end of Section 2.2) tends to concentrate arbdiffirent centroids. Moreover, each of
these centroids corresponds to a cluster, that is, to a connected corhpbrét). As a trivial con-
sequence, any partitioning algorithm (elgmeans) applied in the feature space will asymptotically
yield the desired clustering. In other words, the clustering algorithm isstens.

More precisely, using the convergence in operator norr@rgn‘ towardsQy, together with the
results of functional analysis given in Appendix B, we obtain the followidgdrem which de-
scribes the asymptotic behavior of the algorithm. Let us denot &y the set of integer$ such
thatX; is in the level sefL(t). For all j € J(e), definek(j) as the integer such thxf € ;).

Theorem 7 Suppose that Assumptions 1 and 2 hold, and that h (6;ithni,).

1. The first/ eigenvaluedn 1, An2,. .., An¢ 0f Qnn converge to 1 almost surely as- o, and there
existsnoe > 0 such that for all j> ¢, Anj belongs to{z: |z— 1] > no} for n large enough, with
probability one.

2. There exists a sequen@, }» of invertible linear transformations @& such that, for all je J(c),
&nPn(X;) converges almost surely tq g, where g, is the vector ok’ whose components are all
0 except the (§) component equal ta.

Proof 1. The spectrum oQn may be decomposed a$Qn) = 01(Qn) U 02(Qn), whereo1(Qn) =
{1} and whereoz(Qn) = o(Qn) \ {1}. Since 1 is an isolated eigenvalue, there exjgtd the open
interval (0; 1) such thato(Qn) N{z€ C: |z— 1] < no} is reduced to the singletofl}. Moreover,
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1 is an eigenvalue of), of multiplicity ¢, by Proposition 6. Hence by Theorem M(L(t))
decomposes intd/(L(t)) = M1 & M, whereM; = N(Qn — 1) andM, is mapped into itself b

Split the spectrum o@nh aso(Qnp) = 01(Qnn) Uo2(Qnp), where
01(Qnn) =0(Qnn) N{ze C: |z—1| < no}.

By Theorem 18, this decomposition of the spectrumjﬁgf] yields a decomposition (W(L(t)) as
W(L(t)) = Mn1® Mn2, whereMp; andM,; are stable subspaces un@[h and

Mn1 = @ N(@n.,h—)\)'

A€a1(Qnp)

By Proposition 10((3n7h) = 0(Qnn) U{0}. Statement 6 of Theorem 19 implies that, forralarge
enough, the total multiplicity of the eigenvaluesdn(Q,p) is dim(M;) = dim(N(Qy — 1)) = £.
Hence, for allj > ¢, An j belongs to{z: |z— 1| > no}. Moreover, statement 4 of Theorem 19 proves
that the first eigenvalues converges to 1.

2. In addition to the convergence of the eigenvaluelpf, the convergence of the eigenspaces also
holds. More precisely, |l be the projector oMy = N(Qn — 1) alongM» andr1, the projector on
Mpn,1 alongMy . Statements 2, 3, 5 and 6 of Theorem 19 leads to

IMh—MNjjw—0 as (31)

and the dimension d¥l,, 1 is equal to_€ for all nlarge enough.
Denote byE, ; the subspace ati(" spanned by the eigenvectors@f  corresponding to the
eigenvalued 1, . ..Any. Since

Mn1 = @ N(én,h—}\) and Eni= @ N(Qn,h—}\)a

reo1(Qnp) Aeo1(Qnp)

by Proposition 1 the map,®, induces an isomorphism betwedt, 1 andE, 1. Moreover, Iy
induces a morphisril, from My to Mn 1 which converges to the identity map i in W-norm by
(31). Hence, inhis large enougHl,, is invertible and we have the following isomorphisms of vector
spaces:

Fln:Mi—Mn1 and T5®n: Mg — Ena. (32)

By Proposition 6, the functiongk := 15, k=1,2...,¢, form a basis oM; = N(Q,—1). Using
the isomorphisms of (32), we may define forlalt {1,...¢},

Onk:=MnGk, and Ik := THPnGnk = THPnl1nGk-

over, forallk € {1,...,¢}, gnk converges td in W-norm by (31). And, ag — o, if j € J(c),

1 ifk=k(j),

. (33)
0 otherwise

Fnkj = Mn(1g) 0 0n (X)) = 15(Xj) = {
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The eigenvectord, 1, ..., Vh¢ chosen in the algorithm form another basid€qfi. Hence, there
exists a matrixX,, of dimensior¥ x ¢ such that

¢
Ik = &nkiVhi-
2,

Hence thg/™" component obn, forall j € J(n), may be expressed as

¢
Ik = ZEn,k.,iVn,i,j-
i£

Sincepn(X;) is the vector oR? with componentgVy  }i—1, ¢, the vectodn. j = {3nk j}k of R

is related tqon(X;) by the linear transformatiogy, that is,
19n,o,j =&n pn(Xj)-

The convergence dfy . j to &) then follows from (33) and Theorem 7 is proved. |

ooy

Remark 8 The last step of the spectral clustering algorithm consists in partitioning tmstoamed
data in the feature space, which can be performed by a standard clustdgogthm, like the k-
means algorithm or a hierarchical clustering. Theorem 7 states that #rasts a choice for a basis
of £ eigenvectors such that the transformed data concentrates ahcdi@onical basis vectorg ®f
R’. Consequently, upon choosing a suitable collectipn, V.., V;,, of eigenvectors, for ang> 0,
with probability one, for n large enough, the transformed da{éX;)’s belong to the union of balls
centered atg ..., e and of radius. Combining this result with known asymptotic properties of the
aforementioned clustering algorithms leads to the desired partition.

For instance, a hierarchical agglomerative method with single linkage altowseparate groups
provided that the minimal distance between the groups is larger than themabdiameter of the
groups. In the preceding display, by choosinguch thai2e < /2, with probability one for n large
enough the points belong tdalls of diametele which are all at a distance strictly larger thae.
Consequently, cutting the dendrogram tree of the single linkage hieratatiicstering at a height
2¢ will correctly separate the groups, and the algorithm is consistent.

Similarly, for the k-means algorithm, we may note that, upon choosing a fuliabis of eigen-
vectors, the empirical measure associated with the transformed datergasvto a discrete mea-
sure supported by the canonical vectois.e.,e,.. Consistency of the grouping then follows from
the well-known properties of the vector quantization method; see Poll@&iLj1

The existence of an appropriate choice of eigenvectors is guaranie@&tidorem 7. How to
choose such a collection of eigenvectors in practice is left for future reBedn this direction,
we may note that the two clustering methods considered above (i.e., lsrapedrhierarchical)
are invariant by isometries. So the main question concerns the choice abtimalization of an
arbitrary collection of eigenvectors.

Remark 9 Note that if one is only interested in the consistency property, then this mesutt be
obtained through another route. Indeed, it is shown in Biau et al. (2@i@a%) the neighborhood
graph with connectivity radius h has asymptotically the same number obctsthcomponents as
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the level set. Hence, splitting the graph into its connected components |ehdsiesired clustering
as well. But Theorem 7, by giving the asymptotic representation of the detia @mbedded in the
feature spaceR’, provides additional insight into spectral clustering algorithms. In pattgu
Theorem 7 provides a rationale for the heuristic of Zelnik-Manor and Re@004) for automatic
selection of the number of groups. Their idea is to quantify the amount eeotmation of the
points embedded in the feature space, and to select the number of dpadpsy to the maximal
concentration. Their method compared favorably with the eigengap hieucisnsidered in von
Luxburg (2007).

4.3 Further Spectral Convergence

Naturally, the selection of the number of groups is also linked with the choitkeoparameter
h. In this direction, let us emphasize that the opera@m and Qy, depend continuously on the
scale parametdr. Thus, the spectral properties of both operators will be close to thestetes! in
Theorem 7 ifh is in a neighborhood of the intervéD;dmin). This follows from the continuity of
an isolated set of eigenvalues, as stated in Appendix B. In particulamythefsthe eigenspaces of
Qn associated with the eigenvalues close to 1 is spanned by functions thadssréoc(inW (L(t))-
norm) the characteristic functions of the connected componeni$tpf Hence, the representation
of the data set in the feature spaestill concentrates on some neighborhoods@fl < k < ¢ and

a simple clustering algorithm such as tieneans algorithm will still lead to the desired partition.
This is made precise in the following Theorem.

Theorem 10 Suppose that assumptions 1 and 2 hold. There existshdmin, which depends only
on the density f, such that, for anyeh0; hmay), the event “for all n large enough, the representation
of the extracted data set in the feature space, naff@yX;j) } jcin), concentrates if cubes ofR?
that do not overlap” has probability one. Moreover, on this event afoability one, the/ cubes
are in one-to-one correspondence with theonnected component @ft). Hence, for all n large
enough, eaclpn(X;) with j € J() is in the cube corresponding to th¢jik™ cluster for all n large
enough.

This result contrasts with the graph techniques used to recover theatediwemponents, as in,
for example, Biau et al. (2007), where an unweighted graph is defipedrnecting two observa-
tions if and only if their distance is smaller thanThe patrtition is then obtained by the connected
components of the graph. However, whers taken slightly larger than the critical valdgn, at
least two connected components cannot be separated using the grétpinpay algorithm.

Proof Let us begin with the following consequence of Proposition 6. Fdn glldy,;, the{ largest
eigenvalues o), are all equal to 1 and the corresponding eigenspace is spanned byittean
functions of the connected components of thevel set. Moreover, 1 is an isolated eigenvalue of
Qu,,,» that is, there existyg in the interval(0; 1) such thato(Qq,,,) N{z€ C: |z— 1| < no} is the
singleton{1}.

We choose an arbitrary constaitin (0;1/2). Sinceh— Qy, is continuous for the topology of
the operator norm, Theorem 19 implies that there exists a neighbo(hg@ghmax) of dmin such
that, for allh in (hmin; hmax)

(i) Qn has exactly eigenvalues i{ze C: |z—1| < no};
(ii) the sum of the corresponding eigenspace®pis spanned by functions, sayys,...,g., at
distance (in| - |jw-norm) less thai@y/2 from the indicator functions of the connected components
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of L(t):
Hgk— 1CkH°° < Hgk— 1C|<HW < CO/Z fork= 1.0 (34)

Now, fix hin (dmin; hmax). We follow the arguments leading to Theorem 7. The convergence in
(33) becomes
rI]im Inkj = 0k(Xj) almost surely
—00 ’

Hence, there existsg such that, for alin > ng, j € J(n) andk € {1,...,¢}, we have|d,x | —
gk(Xj)| < Co/2. With the triangular inequality and (34), we obtadhx j — 14,(Xj)| < Co, that is,

the representation of the extracted data set in the feature space cateirircubes with edge
length Zy, centered a&, k=1,...,¢, up to a linear transformation @t’, for all n large enough.
Moreover, if Xj with j € J(e) lies in (), then its representation is in the cube centereg @t
Since those cubes have edge lendih 2 1, they do not overlap. Hence, a classical method such as
the k-means algorithm will asymptotically partition the extracted data set asdlesire |

4.4 Generalizationsand Open Problems

Our results allow to relate the limit partition of a spectral clustering algorithm witlctmmected
components of either the support of the distribution (dase0) or of an upper level set of the
density (casé > 0). This holds for a fixed similarity function with compact support. Interegfing
the scale parametarof the similarity function may be larger than the minimal distance between two
connected components, up to a threshold vajpgs above which we have no theoretical guarantee
that the connected components will be recovered.

Several important questions, though, remain largely open. Among théserating the limit
partition of the classical spectral clustering algorithm with the underlyingiloigion when one
asks for more groups than the number of connected components of itsrstgpains largely an
unsolved problem. Also in practice, a sequengcdecreasing to 0 with the number of observations is
frequently used for the scale parameter of the similarity function, and to st@beur knowledge,
no convergence results have been obtained yet. At last, it would besiweréo alleviate the
assumption of compact support on the similarity function. Indeed, a gaussiael is a popular
choice in practice. In this direction, one possibility would be to consider aesex of functions
with compact support converging towards the gaussian kernel ato@jate rate.

5. Auxiliary Resultsfor the Operator Norm Conver gence

In this section we give technical lemmas that were needed in the proof afi@uarresults. We also
recall several facts from empirical process theory in Section 5.2.

5.1 Preliminaries

Let us start with the following simple lemma.

Lemma 11 Let{A}n>0 be a decreasing sequence of Borel set®nwith limit A, = Nn>0An. If
H(As) = 0, then

l n
P.AL = ﬁ le{xi € A} — 0 almost surely as r» o,
i=
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wherelP, is the empirical measure associated with the random sample XX.

Proof First, note that limu(A,) = U(Ax). Next, fix an integek. For alln >k, A, C A and so
PhA, < PhAc. But lim, PrAc = H(Ax) almost surely by the law of large numbers. Consequently
limsup, PnAn < p(Ax) almost surely. Lettingc — oo yields

lim SUPPoA < p(Aw) =0,
n

which concludes the proof sin@&A, > 0. |

5.2 Uniform Laws of Large Number and Glivenko-Cantelli Classes

In this paragraph, we prove that some classes of functions satisfya@mridw of large numbers.
We shall use some facts on empirical processes that we briefly summadore Ber materials on
the subject, we refer the reader to Chapter 19 in van der Vaart (1888ha book by van der Vaart
and Wellner (2000).

A collection F of functions is Glivenko-Cantelli if it satisfies a uniform law of large nunsper
that is, if

sup
geF

1 n
=Y 9(X)—E[X]| — 0 almost surely,
ni;

where (Xn)n is an i.i.d. sequence of random variables with the same distribution as thenrando
variableX. That a clas¥ is Glivenko-Cantelli depends on its size. A simple way of measuring the
size of ¥ is in terms of bracketing numbers.

A bracket[f|, fy] is the set of functiong in ¥ such thatf, < g < f,, and are-bracket in P is
a bracket f|, fy] such thatE[( f,(X) — f;(X))P)¥/P < &. Thebracketing number Ne, F,LP) is the
minimal number of-brackets of size in the LP norm which are needed to covér. A sufficient
condition for a clasg to be Glivenko-Cantelli is thall (¢, 7, LY) is finite for alle > 0 (Theorem
2.4.1, van der Vaart and Wellner, 2000, p. 122).

A bound on thd_1-bracketing number of a clags may be obtained from a bound on its metric
entropy in the uniform norm, if appropriate. Ancovering of# in the supremum norm is a col-
lection of N balls of radius and centered at functiorfs, ..., fy in & whose union cover§ . For
ease of notation, agrcovering of ¥ is denoted by the centers of the balis. ., fy. The minimal
numberA((g, ¥, ||.||l») of balls of radiuse in the supremum norm that are needed to cao¥eis
called thecovering numbepof # in the uniform norm. Thentropyof the class is the logarithm
of the covering number, andl is said to havdinite entropyif A (€, 7, ||.||) is finite for all . If
a class may be covered by finitely many balls of radigign the supremum norm and centered
at f1,..., fy, then the bracketH; — €; fi + €] have size at mosteXor the L norm and their union
coversf¥ . This argument is used to conclude the proof of Lemma 13 below.

Lemma 12 The two collections of functions

Fri={y—=kn(Yy—X)1,0)(y) : X€ L(t—€0)},
F2:={yr Dykn(Yy =X)L ) (y) : X€ L(t—€0)},

are Glivenko-Cantelli, where {i, denotes the differential of,k

406



SPECTRAL CLUSTERING ONLEVEL SETS

Proof Denote bygy the functions in, for x ranging inL(t — €g). We proceed by constructing a
covering of 71 by finitely manyL'-brackets of an arbitrary size, as in, for example, Example 19.8
in van der Vaart (1998). Denote Ify a probability measure on(t). Letd > 0. SinceL(t —¢&p) is
compact, it can be covered by finitely many balls of raduthat is, there exists an integdrand
pointsxy, ..., Xy in L(t — &o) such thatL(t — go) € UN; B(x;,8). Define the functiong:‘é andgy's
respectively by

gs(y)= inf g(y) and g's(y)= sup gu(y).
xeB(x;,0) XEB(%;,8)

Then the union of bracke{g!@gi‘{é], fori=1,...,N, covers7;. Observe thalgx(y)| < ||kn|| for

all x e L(t—¢gg) and ally € L(t) sinceky is uniformly bounded, and that for any fixge: L(t), the
mapx — gx(Y) is continuous sinck is of classC? onRY under Assumption 2. Therefore the func-
tion g}fé — 9276 converges pointwise to 0 arj@i‘fé — g:@HLl(Q) goes to 0 a® — 0 by the Lebesgue
dominated convergence theorem. Consequently, forcanyd, one may choose a finite covering
of L(t —¢€o) by N balls of radiusd > 0 such that max . n |95 — g}75||L1(Q) < &. Hence, for all

£ > 0 theL!-bracketing number of?; is finite, so#; is Glivenko-Cantelli. Sincéy, is continuously
differentiable, the same arguments apply to each compondhikaf and sof is also a Glivenko-
Cantelli class. |

Lemma 13 Letr: £(t) x RY be a continuously differentiable function such that
(i) there exists a compadk. c RY such that £x,y) = 0 for all (x,y) € L(t) x K5;
(ii) r is uniformly bounded or(t) x RY, that is, ||r || < co.

Then the collection of functions

F3 1= {Y'—> rxy)a(y) 1. (y) : xe L), [[9llwa) < 1}
is Glivenko-Cantelli.

Proof Set® ={y+ r(x,y) : xe L(t)}. Sincer is continuous on the compact seft) x X, it is
uniformly continuous. So for ang> 0, there exist® > 0 such thafr (x,y) —r(X,y’)| < € whenever
the points(x,y) and(X,y) in L(t) x K are at a distance no more thanSinceL(t) is compact, it
may be covered by finitely many balls of radiusentered al pointsxy, ..., xy of L(t). Denote by
gi the function in®_defined bygi(y) = r(x,y), and let®, = {y — r(x,y) : X € L(t), [|[x— x| < &}.
Then the union of th&;’s cover®, and for anyg in &, ||g— gi||« < €. This shows thaf_has finite
entropy in the supremum norm, that is, thidte, ., ||.||o) < .

Second, consider the unit ball in W(L(t)), thatis,G = {g: L(t) = C : [|glw(q) < 1}
Denote byX the convex hull ofZ(t), and consider the collection of functiodg= {§: X — C :
Gllw(xy < 1}. Observe that; is a subset of the Holder spa€8(X). It is proved in Theorem
2.7.1, p. 155 in the book by van der Vaart and Wellner (2000) thétig a convex bounded subset
of RY, thenC®*(x) has finite entropy in the uniform norm (this theorem was established in van de
Vaart (1994) using results of Kolmogorov and Tikhomirov (1961). @opently, for anyg > 0,
there existN functionsgi,...,d, in G such that the union of the sef§ € G : ||§— Gill» < &}
coversé. By considering the restrictiorg of eachgi to £, it follows that the union of the sets
{g€ G : ||g—0ille <€} coversG. SON (g, G, ||.|l) < o for anye > 0.
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Now fix € > 0. Letrs,...,ry € R be ane-covering of R in the supremum norm, and let
O1,...,0On € G be ane-covering of G in the supremum norm, for some integéfisandN. For
any functionf in %3 of the form f(y) = r(x,y)g(y)1.«) for somex € L(t) andg € W(L(t)) with
l9llw() <1, there exists £i <M and 1< j <N such that|r(x,.) —ri[|« < € and||g—gj|l» <&€.
Then

sup|f(y) —ri(Y)gi(¥) 1.y (V)| = sup [r(xy)gy) —ri(y)gj(y)|
yeRd yeL(t)
= sup |(r(x.y) —ri(y)gy) +ri(y)(9y) — g;(y))|
yEL(t)
< sup [r(xy) = i) lglle+[Irille sup |a(y) —g;(y)|
YEL(Y) yeL(t)
< e+ |r]|E,
since||rille =1 for alli=1,...,M and since|g||. < €. So the collection of functions; : y —

ri(y)gj(y)1.w (y) form a finite covering offs of sizeM x N by balls of radiu§1+ [|r||« )€ in the
supremum norm, anfi{ (€, 73, ||.||») < oo for all € > 0.

To conclude the proof, observe thatfif,. .., fy € #3 is ane-covering of 73 in the supremum
norm, then the brackefd; — €; f; + €] have size at mosten the L! norm, and their union covers
F3. So foralle >0 theLl—bracketing number of is finite and#3 is Glivenko-Cantelli. [ |

5.3 Boundson Kernels

We recall that the limit operatd®y, is given by (18). The following lemma gives useful bounds on
Knh andgp, both defined in (19).

Lemma 14 1. The function Kis uniformly bounded from below by some positive numbet @r-
€o), that is,inf{Kn(x) : x€ L(t —&)} > 0;
2. The kernel glis uniformly bounded, that ig0n|| < o;
3. The differential of gwith respect to x is uniformly bounded arit — o) x RY, that is,
sup{ || Dxan(x, )] : (x,y) € L(t —g0) x R} < oo;
4. The Hessian ofigwith respect to x is uniformly bounded drft — £o) x RY, that is,
sup{|[DZah(x,Y)| : (x,y) € L(t —€0) x R?} < oo,
Proof First observe that the statements 2, 3 and 4 are immediate consequentasrést 1
together with the fact that the functidg is of classC? with compact support, which implies that
kn(y —X), Dxkn(y — X), andD2k(y — x) are uniformly bounded.

To prove statement 1, note tH&t is continuous and tha€,(x) > 0 for allx € L(t). Set

o (o) = inf{|Dxf(X)||; x € L{_¢, }.
Let (x,y) € L{ ¢, x 0L(t). Then
g0 > f(y) = f(x) > a(eo)[ly —xI.
Thus,|ly—X|| < €o/0(g0) and so

dist(x, L(t)) <

t
, forallxe £ .
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Recall from (4) thah/2 > gp/a(gp). Consequently, for alk € L(t —€p), the set(x+hB/2) N L(t)
contains a non-empty, open &&tx). Moreoverk, is bounded from below by some positive number
on hB/2 by Assumption 2. HencKEp(x) > 0 for all x in L(t — &) and point 1 follows from the
continuity of Ky and the compactness 6ft — €p). [ |

In order to prove the convergence@,{h to Qn, we also need to study the uniform convergence
of Khh, given in (2). Lemma 15 controls the difference betwégm andKp, while Lemma 16
controls the ratio oKy, overKpp.

Lemma 15 As n— co, almost surely,

1. sup [Knhh(X)— Kh(x)) — 0 and
xeL(t—¢p)
2. sup |DyxKnn(x)— DXKh(x)’ — 0.
xe L(t—eg)
Proof Let
b Py L ey :
Kn,h(x . nIJ,(L Zkh X')’ Kn,h(x) T nIJ.(L(t)) |;kh(X| X)lL(t)(x|)

Let us start with the inequality

K! (%) — Kn(x)|, (35)

Knn(X) — Kh(x)‘ <

Kan(¥) ~ K500+

forall x e L(t —¢€p). Using the inequality

Knn(X) — Knﬁh(x)‘ <

n 1
oM u(L(t))‘ [l

we conclude that the first term in (35) tends to O uniformix mver L(t — ) with probability one
asn — oo, sincej(n)/n— u(L(t)) almost surely, and sindg is bounded orRY.
Next, for allx € L(t — &), we have

KT (%) — Kn(x) ‘ (36)

K9 = KTH09 |+

Kin() —Kn(x)| <
The first term in (36) is bounded by

knllo 1
K(L®)n
Hkhlloo

Zl{lln()(xi)_l[,(t)(xi)}‘

ZanAL

where £,(t)AL(t) denotes the symmetric difference betwegyit) and L(t). Recall that, on the
eventQp, L(t —&y) C Ln(t) C L(t —¢&n). ThereforeL,(t)AL(t) C Lttfssn" onQy, and so

5 {20 00— Lo 00} 10, < 1 5 10 (0
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whereA, = [{*8” Hence by Lemma 11, and sintg, — 1 almost surely as — oo, the first term
in (36) converges to 0 with probability one as— .

Next, since the collectiody — kn(y —X)1.4)(y) : x € L(t —€0)} is Glivenko-Cantelli by
Lemma 12, we conclude that

sup
xeL(t—¢p)

KT (%) — Kh(x)) -0,

with probability one as — . This concludes the proof of the first statement.

The second statement may be proved by developing similar argumentsk,witplaced by
Dxkn, and by noting that the collection of functiofy — Dxkn(y —X)1,1)(y) : X € L(t —€0)} is
also Glivenko-Cantelli by Lemma 12. |

Lemma 16 As n— co, almost surely,

oo > imton] |

Proof Firstof all,Ky, is uniformly continuous oL (t — &g) sinceKy, is continuous and since(t —gp)
is compact. Moreovety, converges uniformly to the identity map 6ft) by Lemma 17. Hence

sup
XEL(t)

— 1‘ — 0, and sup

xeL(t)

sup [Kn(dn(X)) —Kn(x)| =0 asn— o,
XEL(t)

and sincek, h converges uniformly td&, with probability one as — « by Lemma 15, this proves
the first convergence result.

We have
((I)n(X)) ] = Dx¢n(X) [Kn,h(q)n(x))DXKh (q)n(X)) —Kh (q)n(x))DxKn,h(q)n(X))]
Knh(¢n(X)) [Kn,h (¢n(x))r

SinceDydn(X) converges to the identity matriy uniformly overx € £(t) by Lemma 17||Dy$pn(X)||
is bounded uniformly oven andx € L(t) by some positive consta@,. Furthermore the map—
Kn,n(X) is bounded from below ovef(t) by some positive constakn independent ok because
i) infyc£(t—eo) Kn(X) > O by Lemma 14, and ii) syp, ;) |[Knn(x) — Kn(x)| — 0 by Lemma 15.

Hence
ot

where we have sgt= ¢n(X) which belongs to.(t —e,) C L(t —&p). At last, Lemma 15 gives

Knh(Y)DxKn(Y) — Kn(Y)DxKnn(Y) |,

sup
ye L(t—¢&o)

Knn(Y)DxKn(y) — Kn(Y)DxKnn(y)| — 0 almost surely

asn — oo which proves the second convergence result. |
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Appendix A. Geometry of Level Sets

The proof of the following result is adapted from Theorem 3.1 in (Miln®63, p. 12) and Theo-
rem5.2.1 in (Jost, 1995, p. 176)

Lemma 17 Let f: RY — R be a function of clasg?. Lett< R and suppose that there exists> 0
such that f1([t —eo;t +£o]) is non empty, compact and contains no critical point of f. {s,
be a sequence of positive numbers such ¢hat & for all n, andg, — 0 as h— . Then there
exists a sequence of diffeomorphispgs L(t) — L(t —¢&y) carrying L(t) to L(t —&p) such that:

1. sup ||¢pn(x) —Xx|| — Oand
XeL(t)

2. sup ||[Dxdn(x) —Ig4|| — O,
xeL(t)

as n— o, where Do, denotes the differential d@f,, and where § is the identity matrix orRY.

Proof Recall first that a one-parameter group of diffeomorphigig cr of RY gives rise to a
vector fieldV defined by

g(d)u(X)) —9(x)

— i d
Vg = LILno u , XeRS
for all smooth functiorg : RY — R. Conversely, a smooth vector field which vanishes outside of a
compact set generates a unique one-parameter group of diffeomosphi®?; see Lemma 2.4 in
(Milnor, 1963, p. 10) and Theorem 1.6.2 in (Jost, 1995, p. 42)

Denote the sefx € RY : a < f(x) < b} by £2, fora<b. Letn : RY — R be the non-negative
differentiable function with compact support defined by

1/[IDx f (x) 12 if xe £ ¢,
N(X) = { (t+g0— F(X)/[|IDxf(X)]|2 if xe 7,
0 otherwise

Then the vector fielty defined by = n(x)Dxf (x) has compact suppoﬁffﬁé’, so thalv generates
a one-parameter group of diffeomorphisms

b RY—>RY, ueR.

We have
Du [f($u(¥)] = (V. Dxf)g,x = 0,

sincen is non-negative. Furthermore,
<V, DXf>¢u(x) = 1, if (I)U(X) € Lttfso

411



PELLETIER AND PUDLO

Consequently the map— f (¢y(x)) has constant derivative 1 as longdagx) lies in £{ .. This
proves the existence of the diffeomorphi$m:= ¢_¢, which carriesL(t) to L(t —&y).
Note that the map € R — ¢(X) is the integral curve of with initial conditionx. Without loss

of generality, suppose thgt < 1. For allx in Lfffg we have

10009 X1 < [ [[Du(803) [ du< e0/BlEn) < £0/BEo)

where we have set
B(e) :=inf {|Dxf(X)|| : x€ LIE} > 0.

This proves the statement 1, sinfsgx) — X is identically 0 onL(t + €p).
For the statement 2, observe tijatx) satisfies the relation

040 —x= [ Dy(B00)dv= [V (u(x) v

Differentiating with respect ta yields
u

Sincef is of class(?, the two terms inside the integral are uniformly bounded ax{éfg, so that
there exists a consta@t> 0 such that

[Dxdn — I|x < Cen,

+€o

for all xin £{*¢"

. Since||Dx$n — I ||x is identically zero on.(t + €p), this proves the statementl.

Appendix B. Continuity of an Isolated Finite Set of Eigenvalues

In brief, the spectruno(T) of a bounded linear operatdr on a Banach space is upper semi-
continuous inT, but not lower semi-continuous; see Kato (1995), IV83.1 and IV83@véver, an
isolated finite set of eigenvalues Bfis continuous ifnT, as stated in Theorem 19 below.

LetT be a bounded operator on tieBanach spacg with spectruno(T). Letoy(T) be a finite
set of eigenvalues af. Seto(T) = o(T) \ 01(T) and suppose that; (T) is separated frora,(T)
by a rectifiable, simple, and closed cuiive Assume that a neighborhood of(T) is enclosed in
the interior ofl. Then we have the following theorem; see Kato (1995), 111.86.4 andblB.8

Theorem 18 (Separation of the spectrum) The Banach space E decomposes into a pair of sup-
plementary subspaces as=EM; ® M such that T maps Minto M; (j = 1,2) and the spectrum

of the operator induced by T onjMs 0;(T) (j = 1,2). If additionally the total multiplicity m of
01(T) is finite, therdim(M1) = m.

Moreover, the following theorem states that a finite system of eigenvalu&s as well as the

decomposition oE of Theorem 18, depends continuously ©f see Kato (1995), IV.83.5. Let
{Tn}n be a sequence of operators which converges ito norm. Denote by (T,) the part of the

spectrum ofT,, enclosed in the interior of the closed cuiiveand byo,(T,) the remainder of the
spectrum ofT,,.
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Theorem 19 (Continuous approximation of the spectral decomposition) There exists a finite in-
teger iy such that the following holds true.

1. Bothoy(T,) andoz(T,) are nonempty for all > ng provided this is true for T.

2. For each n> 0, the Banach space E decomposes into two subspaces=alsliz © Mn 2 in the
manner of Theorem 18, that is, Maps M, j into itself and the spectrum of ©n M, j is 0 (Ty).

3. For alln> ng, M, j is isomorphic to M.

4. 1f 01(T) is a singleton{A}, then every sequendan}, with A, € 01(Ty) for all n > ng converges
toA.

5. If T is the projector on M along My andT1, the projector on M ; along M, », thenl, converges
in norm toll.

6. If the total multiplicity m ofb1(T) is finite, then, for all n> no, the total multiplicity ofo1(Ty) is
also m anddim(M; 1) = m.

Appendix C. Background Materialson Markov Chains

For the reader not familiar with Markov chains on a general state spackegin by summarizing
the relevant part of the theory.

Let {&;}i>0 be a Markov chain with state spasec RY and transition kernej(x,dy). We write
P for the probability measure when the initial statexiandE, for the expectation with respect to
P«. The Markov chain is calle(strongly) Fellerif the map

XE S Qgx) = /5 a0, dy)g(y) = Exf (€1)

is continuous for every bounded, measurable fundion§; see (Meyn and Tweedie, 1993, p. 132).
This condition ensures that the chain behaves nicely with the topology ofatespaces. The
notion of irreducibility expresses the idea that, from an arbitrary initial p@ath subset of the
state space may be reached by the Markov chain with a positive probabiliigllér chain is said
open set irreduciblé, for every pointsx,yin §, and everyn > 0,

> a'(xy+nB) >0,

n>1

whereq"(x, dy) stands for tha-step transition kernel; see (Meyn and Tweedie, 1993, p. 135). Even
if open set irreducible, a Markov chain may exhibit a periodic behaviat, i) there may exist a
partition s = SoUS1 U...U SN of the state space such that, for every initial siate$,

P11 € 51,82 € 52,....EN € SN, EN+1 € S0,-- - = 1

Such a behavior does not occur if the Feller chaitojmlogically aperiodic¢ that is, if for each
initial statex, eachn > 0, there exist$ip such thag"(x,x+nB) > 0 for everyn > ny; see (Meyn
and Tweedie, 1993, p. 479).

Next we come to ergodic properties of the Markov chain. A Borelset § is calledHarris
recurrentif the chain visitsA infinitely often with probability 1 when started at any pomof A,

that is,
Px <_Z)1A(zi) = oo) =1
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for all x € A. The chain is then said to kidarris recurrentif every Borel setA with positive
Lebesgue measure is Harris recurrent; see (Meyn and Tweedie, 1.9834). At least two types
of behavior, called evanescence and non-evanescence, may doewveni&, — «| denotes the
fact that the sample path visits each compact set only finitely many often, afdiaitkov chain is
callednon-evanescert P (§,, — ) = 0 for each initial statex € S. Specifically, a Feller chain is
Harris recurrent if and only if it is non-evanescent; see (Meyn aneetlie, 1993, p. 122), Theorem
9.2.2.

The ergodic properties exposed above describe the long time behattar afain. A measure
v on the state space is saitvariant if

v(A) = [ axAv(dx

for every Borel sefA in §. If the chain is Feller, open set irreducible, topologically aperiodic and
Harris recurrent, it admits a unique (up to constant multiples) invariant measeee (Meyn and
Tweedie, 1993, p. 235), Theorem 10.0.1. In this case, eithig)f < « and the chain is called
positive orv(S) = e and the chain is calledull. The following important result provides one with
the limit of the distribution o, whenn — o, whatever the initial state is. Assuming that the chain
is Feller, open set irreducible, topologically aperiodic and positive Haedarrent, the sequence
of distribution{q"(x,dy) }n>1 converges in total variation t(dy), the unique invariant probability
distribution; see Theorem 13.3.1 of (Meyn and Tweedie, 1993, p. 3@t is to say, for everyin

sgp{ ’/sg(y)qn(x’dy) _/SQ(Y)V(dY)‘} —0 asn— o,

where the supremum is taken over all continuous functgpinem $ to R with ||g|[. < 1.
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